xref: /openbmc/linux/net/ipv4/tcp.c (revision e6e6479c27aa22d11ff7109125dd5ec9ef276de8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	unsigned long val;
330 
331 	if (READ_ONCE(tcp_memory_pressure))
332 		return;
333 	val = jiffies;
334 
335 	if (!val)
336 		val--;
337 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 }
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341 
342 void tcp_leave_memory_pressure(struct sock *sk)
343 {
344 	unsigned long val;
345 
346 	if (!READ_ONCE(tcp_memory_pressure))
347 		return;
348 	val = xchg(&tcp_memory_pressure, 0);
349 	if (val)
350 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 			      jiffies_to_msecs(jiffies - val));
352 }
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354 
355 /* Convert seconds to retransmits based on initial and max timeout */
356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 {
358 	u8 res = 0;
359 
360 	if (seconds > 0) {
361 		int period = timeout;
362 
363 		res = 1;
364 		while (seconds > period && res < 255) {
365 			res++;
366 			timeout <<= 1;
367 			if (timeout > rto_max)
368 				timeout = rto_max;
369 			period += timeout;
370 		}
371 	}
372 	return res;
373 }
374 
375 /* Convert retransmits to seconds based on initial and max timeout */
376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 {
378 	int period = 0;
379 
380 	if (retrans > 0) {
381 		period = timeout;
382 		while (--retrans) {
383 			timeout <<= 1;
384 			if (timeout > rto_max)
385 				timeout = rto_max;
386 			period += timeout;
387 		}
388 	}
389 	return period;
390 }
391 
392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 {
394 	u32 rate = READ_ONCE(tp->rate_delivered);
395 	u32 intv = READ_ONCE(tp->rate_interval_us);
396 	u64 rate64 = 0;
397 
398 	if (rate && intv) {
399 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 		do_div(rate64, intv);
401 	}
402 	return rate64;
403 }
404 
405 /* Address-family independent initialization for a tcp_sock.
406  *
407  * NOTE: A lot of things set to zero explicitly by call to
408  *       sk_alloc() so need not be done here.
409  */
410 void tcp_init_sock(struct sock *sk)
411 {
412 	struct inet_connection_sock *icsk = inet_csk(sk);
413 	struct tcp_sock *tp = tcp_sk(sk);
414 
415 	tp->out_of_order_queue = RB_ROOT;
416 	sk->tcp_rtx_queue = RB_ROOT;
417 	tcp_init_xmit_timers(sk);
418 	INIT_LIST_HEAD(&tp->tsq_node);
419 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
420 
421 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
422 	icsk->icsk_rto_min = TCP_RTO_MIN;
423 	icsk->icsk_delack_max = TCP_DELACK_MAX;
424 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
425 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
426 
427 	/* So many TCP implementations out there (incorrectly) count the
428 	 * initial SYN frame in their delayed-ACK and congestion control
429 	 * algorithms that we must have the following bandaid to talk
430 	 * efficiently to them.  -DaveM
431 	 */
432 	tp->snd_cwnd = TCP_INIT_CWND;
433 
434 	/* There's a bubble in the pipe until at least the first ACK. */
435 	tp->app_limited = ~0U;
436 
437 	/* See draft-stevens-tcpca-spec-01 for discussion of the
438 	 * initialization of these values.
439 	 */
440 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 	tp->snd_cwnd_clamp = ~0;
442 	tp->mss_cache = TCP_MSS_DEFAULT;
443 
444 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
445 	tcp_assign_congestion_control(sk);
446 
447 	tp->tsoffset = 0;
448 	tp->rack.reo_wnd_steps = 1;
449 
450 	sk->sk_write_space = sk_stream_write_space;
451 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452 
453 	icsk->icsk_sync_mss = tcp_sync_mss;
454 
455 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
456 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
457 
458 	sk_sockets_allocated_inc(sk);
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461 
462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 	struct sk_buff *skb = tcp_write_queue_tail(sk);
465 
466 	if (tsflags && skb) {
467 		struct skb_shared_info *shinfo = skb_shinfo(skb);
468 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469 
470 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 			tcb->txstamp_ack = 1;
473 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 	}
476 }
477 
478 static bool tcp_stream_is_readable(struct sock *sk, int target)
479 {
480 	if (tcp_epollin_ready(sk, target))
481 		return true;
482 	return sk_is_readable(sk);
483 }
484 
485 /*
486  *	Wait for a TCP event.
487  *
488  *	Note that we don't need to lock the socket, as the upper poll layers
489  *	take care of normal races (between the test and the event) and we don't
490  *	go look at any of the socket buffers directly.
491  */
492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 	__poll_t mask;
495 	struct sock *sk = sock->sk;
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	int state;
498 
499 	sock_poll_wait(file, sock, wait);
500 
501 	state = inet_sk_state_load(sk);
502 	if (state == TCP_LISTEN)
503 		return inet_csk_listen_poll(sk);
504 
505 	/* Socket is not locked. We are protected from async events
506 	 * by poll logic and correct handling of state changes
507 	 * made by other threads is impossible in any case.
508 	 */
509 
510 	mask = 0;
511 
512 	/*
513 	 * EPOLLHUP is certainly not done right. But poll() doesn't
514 	 * have a notion of HUP in just one direction, and for a
515 	 * socket the read side is more interesting.
516 	 *
517 	 * Some poll() documentation says that EPOLLHUP is incompatible
518 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 	 * all. But careful, it tends to be safer to return too many
520 	 * bits than too few, and you can easily break real applications
521 	 * if you don't tell them that something has hung up!
522 	 *
523 	 * Check-me.
524 	 *
525 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 	 * our fs/select.c). It means that after we received EOF,
527 	 * poll always returns immediately, making impossible poll() on write()
528 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 	 * if and only if shutdown has been made in both directions.
530 	 * Actually, it is interesting to look how Solaris and DUX
531 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 	 * then we could set it on SND_SHUTDOWN. BTW examples given
533 	 * in Stevens' books assume exactly this behaviour, it explains
534 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
535 	 *
536 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 	 * blocking on fresh not-connected or disconnected socket. --ANK
538 	 */
539 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 		mask |= EPOLLHUP;
541 	if (sk->sk_shutdown & RCV_SHUTDOWN)
542 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543 
544 	/* Connected or passive Fast Open socket? */
545 	if (state != TCP_SYN_SENT &&
546 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 		int target = sock_rcvlowat(sk, 0, INT_MAX);
548 		u16 urg_data = READ_ONCE(tp->urg_data);
549 
550 		if (unlikely(urg_data) &&
551 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
552 		    !sock_flag(sk, SOCK_URGINLINE))
553 			target++;
554 
555 		if (tcp_stream_is_readable(sk, target))
556 			mask |= EPOLLIN | EPOLLRDNORM;
557 
558 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
559 			if (__sk_stream_is_writeable(sk, 1)) {
560 				mask |= EPOLLOUT | EPOLLWRNORM;
561 			} else {  /* send SIGIO later */
562 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
563 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
564 
565 				/* Race breaker. If space is freed after
566 				 * wspace test but before the flags are set,
567 				 * IO signal will be lost. Memory barrier
568 				 * pairs with the input side.
569 				 */
570 				smp_mb__after_atomic();
571 				if (__sk_stream_is_writeable(sk, 1))
572 					mask |= EPOLLOUT | EPOLLWRNORM;
573 			}
574 		} else
575 			mask |= EPOLLOUT | EPOLLWRNORM;
576 
577 		if (urg_data & TCP_URG_VALID)
578 			mask |= EPOLLPRI;
579 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
580 		/* Active TCP fastopen socket with defer_connect
581 		 * Return EPOLLOUT so application can call write()
582 		 * in order for kernel to generate SYN+data
583 		 */
584 		mask |= EPOLLOUT | EPOLLWRNORM;
585 	}
586 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
587 	smp_rmb();
588 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
589 		mask |= EPOLLERR;
590 
591 	return mask;
592 }
593 EXPORT_SYMBOL(tcp_poll);
594 
595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
596 {
597 	struct tcp_sock *tp = tcp_sk(sk);
598 	int answ;
599 	bool slow;
600 
601 	switch (cmd) {
602 	case SIOCINQ:
603 		if (sk->sk_state == TCP_LISTEN)
604 			return -EINVAL;
605 
606 		slow = lock_sock_fast(sk);
607 		answ = tcp_inq(sk);
608 		unlock_sock_fast(sk, slow);
609 		break;
610 	case SIOCATMARK:
611 		answ = READ_ONCE(tp->urg_data) &&
612 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
613 		break;
614 	case SIOCOUTQ:
615 		if (sk->sk_state == TCP_LISTEN)
616 			return -EINVAL;
617 
618 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 			answ = 0;
620 		else
621 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
622 		break;
623 	case SIOCOUTQNSD:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) -
631 			       READ_ONCE(tp->snd_nxt);
632 		break;
633 	default:
634 		return -ENOIOCTLCMD;
635 	}
636 
637 	return put_user(answ, (int __user *)arg);
638 }
639 EXPORT_SYMBOL(tcp_ioctl);
640 
641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
642 {
643 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
644 	tp->pushed_seq = tp->write_seq;
645 }
646 
647 static inline bool forced_push(const struct tcp_sock *tp)
648 {
649 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
650 }
651 
652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
656 
657 	tcb->seq     = tcb->end_seq = tp->write_seq;
658 	tcb->tcp_flags = TCPHDR_ACK;
659 	__skb_header_release(skb);
660 	tcp_add_write_queue_tail(sk, skb);
661 	sk_wmem_queued_add(sk, skb->truesize);
662 	sk_mem_charge(sk, skb->truesize);
663 	if (tp->nonagle & TCP_NAGLE_PUSH)
664 		tp->nonagle &= ~TCP_NAGLE_PUSH;
665 
666 	tcp_slow_start_after_idle_check(sk);
667 }
668 
669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
670 {
671 	if (flags & MSG_OOB)
672 		tp->snd_up = tp->write_seq;
673 }
674 
675 /* If a not yet filled skb is pushed, do not send it if
676  * we have data packets in Qdisc or NIC queues :
677  * Because TX completion will happen shortly, it gives a chance
678  * to coalesce future sendmsg() payload into this skb, without
679  * need for a timer, and with no latency trade off.
680  * As packets containing data payload have a bigger truesize
681  * than pure acks (dataless) packets, the last checks prevent
682  * autocorking if we only have an ACK in Qdisc/NIC queues,
683  * or if TX completion was delayed after we processed ACK packet.
684  */
685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 				int size_goal)
687 {
688 	return skb->len < size_goal &&
689 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
690 	       !tcp_rtx_queue_empty(sk) &&
691 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
692 }
693 
694 void tcp_push(struct sock *sk, int flags, int mss_now,
695 	      int nonagle, int size_goal)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 	struct sk_buff *skb;
699 
700 	skb = tcp_write_queue_tail(sk);
701 	if (!skb)
702 		return;
703 	if (!(flags & MSG_MORE) || forced_push(tp))
704 		tcp_mark_push(tp, skb);
705 
706 	tcp_mark_urg(tp, flags);
707 
708 	if (tcp_should_autocork(sk, skb, size_goal)) {
709 
710 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
711 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
712 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
713 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
714 		}
715 		/* It is possible TX completion already happened
716 		 * before we set TSQ_THROTTLED.
717 		 */
718 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
719 			return;
720 	}
721 
722 	if (flags & MSG_MORE)
723 		nonagle = TCP_NAGLE_CORK;
724 
725 	__tcp_push_pending_frames(sk, mss_now, nonagle);
726 }
727 
728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
729 				unsigned int offset, size_t len)
730 {
731 	struct tcp_splice_state *tss = rd_desc->arg.data;
732 	int ret;
733 
734 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
735 			      min(rd_desc->count, len), tss->flags);
736 	if (ret > 0)
737 		rd_desc->count -= ret;
738 	return ret;
739 }
740 
741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
742 {
743 	/* Store TCP splice context information in read_descriptor_t. */
744 	read_descriptor_t rd_desc = {
745 		.arg.data = tss,
746 		.count	  = tss->len,
747 	};
748 
749 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
750 }
751 
752 /**
753  *  tcp_splice_read - splice data from TCP socket to a pipe
754  * @sock:	socket to splice from
755  * @ppos:	position (not valid)
756  * @pipe:	pipe to splice to
757  * @len:	number of bytes to splice
758  * @flags:	splice modifier flags
759  *
760  * Description:
761  *    Will read pages from given socket and fill them into a pipe.
762  *
763  **/
764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
765 			struct pipe_inode_info *pipe, size_t len,
766 			unsigned int flags)
767 {
768 	struct sock *sk = sock->sk;
769 	struct tcp_splice_state tss = {
770 		.pipe = pipe,
771 		.len = len,
772 		.flags = flags,
773 	};
774 	long timeo;
775 	ssize_t spliced;
776 	int ret;
777 
778 	sock_rps_record_flow(sk);
779 	/*
780 	 * We can't seek on a socket input
781 	 */
782 	if (unlikely(*ppos))
783 		return -ESPIPE;
784 
785 	ret = spliced = 0;
786 
787 	lock_sock(sk);
788 
789 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
790 	while (tss.len) {
791 		ret = __tcp_splice_read(sk, &tss);
792 		if (ret < 0)
793 			break;
794 		else if (!ret) {
795 			if (spliced)
796 				break;
797 			if (sock_flag(sk, SOCK_DONE))
798 				break;
799 			if (sk->sk_err) {
800 				ret = sock_error(sk);
801 				break;
802 			}
803 			if (sk->sk_shutdown & RCV_SHUTDOWN)
804 				break;
805 			if (sk->sk_state == TCP_CLOSE) {
806 				/*
807 				 * This occurs when user tries to read
808 				 * from never connected socket.
809 				 */
810 				ret = -ENOTCONN;
811 				break;
812 			}
813 			if (!timeo) {
814 				ret = -EAGAIN;
815 				break;
816 			}
817 			/* if __tcp_splice_read() got nothing while we have
818 			 * an skb in receive queue, we do not want to loop.
819 			 * This might happen with URG data.
820 			 */
821 			if (!skb_queue_empty(&sk->sk_receive_queue))
822 				break;
823 			sk_wait_data(sk, &timeo, NULL);
824 			if (signal_pending(current)) {
825 				ret = sock_intr_errno(timeo);
826 				break;
827 			}
828 			continue;
829 		}
830 		tss.len -= ret;
831 		spliced += ret;
832 
833 		if (!timeo)
834 			break;
835 		release_sock(sk);
836 		lock_sock(sk);
837 
838 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
839 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
840 		    signal_pending(current))
841 			break;
842 	}
843 
844 	release_sock(sk);
845 	sk_defer_free_flush(sk);
846 
847 	if (spliced)
848 		return spliced;
849 
850 	return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853 
854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 				     bool force_schedule)
856 {
857 	struct sk_buff *skb;
858 
859 	if (unlikely(tcp_under_memory_pressure(sk)))
860 		sk_mem_reclaim_partial(sk);
861 
862 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
863 	if (likely(skb)) {
864 		bool mem_scheduled;
865 
866 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
867 		if (force_schedule) {
868 			mem_scheduled = true;
869 			sk_forced_mem_schedule(sk, skb->truesize);
870 		} else {
871 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
872 		}
873 		if (likely(mem_scheduled)) {
874 			skb_reserve(skb, MAX_TCP_HEADER);
875 			skb->ip_summed = CHECKSUM_PARTIAL;
876 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 			return skb;
878 		}
879 		__kfree_skb(skb);
880 	} else {
881 		sk->sk_prot->enter_memory_pressure(sk);
882 		sk_stream_moderate_sndbuf(sk);
883 	}
884 	return NULL;
885 }
886 
887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
888 				       int large_allowed)
889 {
890 	struct tcp_sock *tp = tcp_sk(sk);
891 	u32 new_size_goal, size_goal;
892 
893 	if (!large_allowed)
894 		return mss_now;
895 
896 	/* Note : tcp_tso_autosize() will eventually split this later */
897 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
898 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
899 
900 	/* We try hard to avoid divides here */
901 	size_goal = tp->gso_segs * mss_now;
902 	if (unlikely(new_size_goal < size_goal ||
903 		     new_size_goal >= size_goal + mss_now)) {
904 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
905 				     sk->sk_gso_max_segs);
906 		size_goal = tp->gso_segs * mss_now;
907 	}
908 
909 	return max(size_goal, mss_now);
910 }
911 
912 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
913 {
914 	int mss_now;
915 
916 	mss_now = tcp_current_mss(sk);
917 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
918 
919 	return mss_now;
920 }
921 
922 /* In some cases, both sendpage() and sendmsg() could have added
923  * an skb to the write queue, but failed adding payload on it.
924  * We need to remove it to consume less memory, but more
925  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
926  * users.
927  */
928 void tcp_remove_empty_skb(struct sock *sk)
929 {
930 	struct sk_buff *skb = tcp_write_queue_tail(sk);
931 
932 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
933 		tcp_unlink_write_queue(skb, sk);
934 		if (tcp_write_queue_empty(sk))
935 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
936 		tcp_wmem_free_skb(sk, skb);
937 	}
938 }
939 
940 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
941 				      struct page *page, int offset, size_t *size)
942 {
943 	struct sk_buff *skb = tcp_write_queue_tail(sk);
944 	struct tcp_sock *tp = tcp_sk(sk);
945 	bool can_coalesce;
946 	int copy, i;
947 
948 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
949 	    !tcp_skb_can_collapse_to(skb)) {
950 new_segment:
951 		if (!sk_stream_memory_free(sk))
952 			return NULL;
953 
954 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
955 					   tcp_rtx_and_write_queues_empty(sk));
956 		if (!skb)
957 			return NULL;
958 
959 #ifdef CONFIG_TLS_DEVICE
960 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
961 #endif
962 		tcp_skb_entail(sk, skb);
963 		copy = size_goal;
964 	}
965 
966 	if (copy > *size)
967 		copy = *size;
968 
969 	i = skb_shinfo(skb)->nr_frags;
970 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
971 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
972 		tcp_mark_push(tp, skb);
973 		goto new_segment;
974 	}
975 	if (!sk_wmem_schedule(sk, copy))
976 		return NULL;
977 
978 	if (can_coalesce) {
979 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
980 	} else {
981 		get_page(page);
982 		skb_fill_page_desc(skb, i, page, offset, copy);
983 	}
984 
985 	if (!(flags & MSG_NO_SHARED_FRAGS))
986 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
987 
988 	skb->len += copy;
989 	skb->data_len += copy;
990 	skb->truesize += copy;
991 	sk_wmem_queued_add(sk, copy);
992 	sk_mem_charge(sk, copy);
993 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
994 	TCP_SKB_CB(skb)->end_seq += copy;
995 	tcp_skb_pcount_set(skb, 0);
996 
997 	*size = copy;
998 	return skb;
999 }
1000 
1001 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1002 			 size_t size, int flags)
1003 {
1004 	struct tcp_sock *tp = tcp_sk(sk);
1005 	int mss_now, size_goal;
1006 	int err;
1007 	ssize_t copied;
1008 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1009 
1010 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1011 	    WARN_ONCE(!sendpage_ok(page),
1012 		      "page must not be a Slab one and have page_count > 0"))
1013 		return -EINVAL;
1014 
1015 	/* Wait for a connection to finish. One exception is TCP Fast Open
1016 	 * (passive side) where data is allowed to be sent before a connection
1017 	 * is fully established.
1018 	 */
1019 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1020 	    !tcp_passive_fastopen(sk)) {
1021 		err = sk_stream_wait_connect(sk, &timeo);
1022 		if (err != 0)
1023 			goto out_err;
1024 	}
1025 
1026 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1027 
1028 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1029 	copied = 0;
1030 
1031 	err = -EPIPE;
1032 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1033 		goto out_err;
1034 
1035 	while (size > 0) {
1036 		struct sk_buff *skb;
1037 		size_t copy = size;
1038 
1039 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1040 		if (!skb)
1041 			goto wait_for_space;
1042 
1043 		if (!copied)
1044 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1045 
1046 		copied += copy;
1047 		offset += copy;
1048 		size -= copy;
1049 		if (!size)
1050 			goto out;
1051 
1052 		if (skb->len < size_goal || (flags & MSG_OOB))
1053 			continue;
1054 
1055 		if (forced_push(tp)) {
1056 			tcp_mark_push(tp, skb);
1057 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1058 		} else if (skb == tcp_send_head(sk))
1059 			tcp_push_one(sk, mss_now);
1060 		continue;
1061 
1062 wait_for_space:
1063 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1064 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1065 			 TCP_NAGLE_PUSH, size_goal);
1066 
1067 		err = sk_stream_wait_memory(sk, &timeo);
1068 		if (err != 0)
1069 			goto do_error;
1070 
1071 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1072 	}
1073 
1074 out:
1075 	if (copied) {
1076 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1077 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1078 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1079 	}
1080 	return copied;
1081 
1082 do_error:
1083 	tcp_remove_empty_skb(sk);
1084 	if (copied)
1085 		goto out;
1086 out_err:
1087 	/* make sure we wake any epoll edge trigger waiter */
1088 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1089 		sk->sk_write_space(sk);
1090 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1091 	}
1092 	return sk_stream_error(sk, flags, err);
1093 }
1094 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1095 
1096 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1097 			size_t size, int flags)
1098 {
1099 	if (!(sk->sk_route_caps & NETIF_F_SG))
1100 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1101 
1102 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1103 
1104 	return do_tcp_sendpages(sk, page, offset, size, flags);
1105 }
1106 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1107 
1108 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1109 		 size_t size, int flags)
1110 {
1111 	int ret;
1112 
1113 	lock_sock(sk);
1114 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1115 	release_sock(sk);
1116 
1117 	return ret;
1118 }
1119 EXPORT_SYMBOL(tcp_sendpage);
1120 
1121 void tcp_free_fastopen_req(struct tcp_sock *tp)
1122 {
1123 	if (tp->fastopen_req) {
1124 		kfree(tp->fastopen_req);
1125 		tp->fastopen_req = NULL;
1126 	}
1127 }
1128 
1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1130 				int *copied, size_t size,
1131 				struct ubuf_info *uarg)
1132 {
1133 	struct tcp_sock *tp = tcp_sk(sk);
1134 	struct inet_sock *inet = inet_sk(sk);
1135 	struct sockaddr *uaddr = msg->msg_name;
1136 	int err, flags;
1137 
1138 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140 	     uaddr->sa_family == AF_UNSPEC))
1141 		return -EOPNOTSUPP;
1142 	if (tp->fastopen_req)
1143 		return -EALREADY; /* Another Fast Open is in progress */
1144 
1145 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146 				   sk->sk_allocation);
1147 	if (unlikely(!tp->fastopen_req))
1148 		return -ENOBUFS;
1149 	tp->fastopen_req->data = msg;
1150 	tp->fastopen_req->size = size;
1151 	tp->fastopen_req->uarg = uarg;
1152 
1153 	if (inet->defer_connect) {
1154 		err = tcp_connect(sk);
1155 		/* Same failure procedure as in tcp_v4/6_connect */
1156 		if (err) {
1157 			tcp_set_state(sk, TCP_CLOSE);
1158 			inet->inet_dport = 0;
1159 			sk->sk_route_caps = 0;
1160 		}
1161 	}
1162 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1163 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1164 				    msg->msg_namelen, flags, 1);
1165 	/* fastopen_req could already be freed in __inet_stream_connect
1166 	 * if the connection times out or gets rst
1167 	 */
1168 	if (tp->fastopen_req) {
1169 		*copied = tp->fastopen_req->copied;
1170 		tcp_free_fastopen_req(tp);
1171 		inet->defer_connect = 0;
1172 	}
1173 	return err;
1174 }
1175 
1176 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1177 {
1178 	struct tcp_sock *tp = tcp_sk(sk);
1179 	struct ubuf_info *uarg = NULL;
1180 	struct sk_buff *skb;
1181 	struct sockcm_cookie sockc;
1182 	int flags, err, copied = 0;
1183 	int mss_now = 0, size_goal, copied_syn = 0;
1184 	int process_backlog = 0;
1185 	bool zc = false;
1186 	long timeo;
1187 
1188 	flags = msg->msg_flags;
1189 
1190 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1191 		skb = tcp_write_queue_tail(sk);
1192 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1193 		if (!uarg) {
1194 			err = -ENOBUFS;
1195 			goto out_err;
1196 		}
1197 
1198 		zc = sk->sk_route_caps & NETIF_F_SG;
1199 		if (!zc)
1200 			uarg->zerocopy = 0;
1201 	}
1202 
1203 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1204 	    !tp->repair) {
1205 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1206 		if (err == -EINPROGRESS && copied_syn > 0)
1207 			goto out;
1208 		else if (err)
1209 			goto out_err;
1210 	}
1211 
1212 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1213 
1214 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1215 
1216 	/* Wait for a connection to finish. One exception is TCP Fast Open
1217 	 * (passive side) where data is allowed to be sent before a connection
1218 	 * is fully established.
1219 	 */
1220 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1221 	    !tcp_passive_fastopen(sk)) {
1222 		err = sk_stream_wait_connect(sk, &timeo);
1223 		if (err != 0)
1224 			goto do_error;
1225 	}
1226 
1227 	if (unlikely(tp->repair)) {
1228 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1229 			copied = tcp_send_rcvq(sk, msg, size);
1230 			goto out_nopush;
1231 		}
1232 
1233 		err = -EINVAL;
1234 		if (tp->repair_queue == TCP_NO_QUEUE)
1235 			goto out_err;
1236 
1237 		/* 'common' sending to sendq */
1238 	}
1239 
1240 	sockcm_init(&sockc, sk);
1241 	if (msg->msg_controllen) {
1242 		err = sock_cmsg_send(sk, msg, &sockc);
1243 		if (unlikely(err)) {
1244 			err = -EINVAL;
1245 			goto out_err;
1246 		}
1247 	}
1248 
1249 	/* This should be in poll */
1250 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1251 
1252 	/* Ok commence sending. */
1253 	copied = 0;
1254 
1255 restart:
1256 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1257 
1258 	err = -EPIPE;
1259 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1260 		goto do_error;
1261 
1262 	while (msg_data_left(msg)) {
1263 		int copy = 0;
1264 
1265 		skb = tcp_write_queue_tail(sk);
1266 		if (skb)
1267 			copy = size_goal - skb->len;
1268 
1269 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1270 			bool first_skb;
1271 
1272 new_segment:
1273 			if (!sk_stream_memory_free(sk))
1274 				goto wait_for_space;
1275 
1276 			if (unlikely(process_backlog >= 16)) {
1277 				process_backlog = 0;
1278 				if (sk_flush_backlog(sk))
1279 					goto restart;
1280 			}
1281 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1282 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1283 						   first_skb);
1284 			if (!skb)
1285 				goto wait_for_space;
1286 
1287 			process_backlog++;
1288 
1289 			tcp_skb_entail(sk, skb);
1290 			copy = size_goal;
1291 
1292 			/* All packets are restored as if they have
1293 			 * already been sent. skb_mstamp_ns isn't set to
1294 			 * avoid wrong rtt estimation.
1295 			 */
1296 			if (tp->repair)
1297 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1298 		}
1299 
1300 		/* Try to append data to the end of skb. */
1301 		if (copy > msg_data_left(msg))
1302 			copy = msg_data_left(msg);
1303 
1304 		if (!zc) {
1305 			bool merge = true;
1306 			int i = skb_shinfo(skb)->nr_frags;
1307 			struct page_frag *pfrag = sk_page_frag(sk);
1308 
1309 			if (!sk_page_frag_refill(sk, pfrag))
1310 				goto wait_for_space;
1311 
1312 			if (!skb_can_coalesce(skb, i, pfrag->page,
1313 					      pfrag->offset)) {
1314 				if (i >= sysctl_max_skb_frags) {
1315 					tcp_mark_push(tp, skb);
1316 					goto new_segment;
1317 				}
1318 				merge = false;
1319 			}
1320 
1321 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1322 
1323 			/* skb changing from pure zc to mixed, must charge zc */
1324 			if (unlikely(skb_zcopy_pure(skb))) {
1325 				u32 extra = skb->truesize -
1326 					    SKB_TRUESIZE(skb_end_offset(skb));
1327 
1328 				if (!sk_wmem_schedule(sk, extra))
1329 					goto wait_for_space;
1330 
1331 				sk_mem_charge(sk, extra);
1332 				skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
1333 			}
1334 
1335 			if (!sk_wmem_schedule(sk, copy))
1336 				goto wait_for_space;
1337 
1338 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1339 						       pfrag->page,
1340 						       pfrag->offset,
1341 						       copy);
1342 			if (err)
1343 				goto do_error;
1344 
1345 			/* Update the skb. */
1346 			if (merge) {
1347 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1348 			} else {
1349 				skb_fill_page_desc(skb, i, pfrag->page,
1350 						   pfrag->offset, copy);
1351 				page_ref_inc(pfrag->page);
1352 			}
1353 			pfrag->offset += copy;
1354 		} else {
1355 			/* First append to a fragless skb builds initial
1356 			 * pure zerocopy skb
1357 			 */
1358 			if (!skb->len)
1359 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1360 
1361 			if (!skb_zcopy_pure(skb)) {
1362 				if (!sk_wmem_schedule(sk, copy))
1363 					goto wait_for_space;
1364 			}
1365 
1366 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1367 			if (err == -EMSGSIZE || err == -EEXIST) {
1368 				tcp_mark_push(tp, skb);
1369 				goto new_segment;
1370 			}
1371 			if (err < 0)
1372 				goto do_error;
1373 			copy = err;
1374 		}
1375 
1376 		if (!copied)
1377 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1378 
1379 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1380 		TCP_SKB_CB(skb)->end_seq += copy;
1381 		tcp_skb_pcount_set(skb, 0);
1382 
1383 		copied += copy;
1384 		if (!msg_data_left(msg)) {
1385 			if (unlikely(flags & MSG_EOR))
1386 				TCP_SKB_CB(skb)->eor = 1;
1387 			goto out;
1388 		}
1389 
1390 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1391 			continue;
1392 
1393 		if (forced_push(tp)) {
1394 			tcp_mark_push(tp, skb);
1395 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1396 		} else if (skb == tcp_send_head(sk))
1397 			tcp_push_one(sk, mss_now);
1398 		continue;
1399 
1400 wait_for_space:
1401 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1402 		if (copied)
1403 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1404 				 TCP_NAGLE_PUSH, size_goal);
1405 
1406 		err = sk_stream_wait_memory(sk, &timeo);
1407 		if (err != 0)
1408 			goto do_error;
1409 
1410 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1411 	}
1412 
1413 out:
1414 	if (copied) {
1415 		tcp_tx_timestamp(sk, sockc.tsflags);
1416 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1417 	}
1418 out_nopush:
1419 	net_zcopy_put(uarg);
1420 	return copied + copied_syn;
1421 
1422 do_error:
1423 	tcp_remove_empty_skb(sk);
1424 
1425 	if (copied + copied_syn)
1426 		goto out;
1427 out_err:
1428 	net_zcopy_put_abort(uarg, true);
1429 	err = sk_stream_error(sk, flags, err);
1430 	/* make sure we wake any epoll edge trigger waiter */
1431 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1432 		sk->sk_write_space(sk);
1433 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1434 	}
1435 	return err;
1436 }
1437 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1438 
1439 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1440 {
1441 	int ret;
1442 
1443 	lock_sock(sk);
1444 	ret = tcp_sendmsg_locked(sk, msg, size);
1445 	release_sock(sk);
1446 
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL(tcp_sendmsg);
1450 
1451 /*
1452  *	Handle reading urgent data. BSD has very simple semantics for
1453  *	this, no blocking and very strange errors 8)
1454  */
1455 
1456 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1457 {
1458 	struct tcp_sock *tp = tcp_sk(sk);
1459 
1460 	/* No URG data to read. */
1461 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1462 	    tp->urg_data == TCP_URG_READ)
1463 		return -EINVAL;	/* Yes this is right ! */
1464 
1465 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1466 		return -ENOTCONN;
1467 
1468 	if (tp->urg_data & TCP_URG_VALID) {
1469 		int err = 0;
1470 		char c = tp->urg_data;
1471 
1472 		if (!(flags & MSG_PEEK))
1473 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1474 
1475 		/* Read urgent data. */
1476 		msg->msg_flags |= MSG_OOB;
1477 
1478 		if (len > 0) {
1479 			if (!(flags & MSG_TRUNC))
1480 				err = memcpy_to_msg(msg, &c, 1);
1481 			len = 1;
1482 		} else
1483 			msg->msg_flags |= MSG_TRUNC;
1484 
1485 		return err ? -EFAULT : len;
1486 	}
1487 
1488 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1489 		return 0;
1490 
1491 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1492 	 * the available implementations agree in this case:
1493 	 * this call should never block, independent of the
1494 	 * blocking state of the socket.
1495 	 * Mike <pall@rz.uni-karlsruhe.de>
1496 	 */
1497 	return -EAGAIN;
1498 }
1499 
1500 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1501 {
1502 	struct sk_buff *skb;
1503 	int copied = 0, err = 0;
1504 
1505 	/* XXX -- need to support SO_PEEK_OFF */
1506 
1507 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1508 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1509 		if (err)
1510 			return err;
1511 		copied += skb->len;
1512 	}
1513 
1514 	skb_queue_walk(&sk->sk_write_queue, skb) {
1515 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1516 		if (err)
1517 			break;
1518 
1519 		copied += skb->len;
1520 	}
1521 
1522 	return err ?: copied;
1523 }
1524 
1525 /* Clean up the receive buffer for full frames taken by the user,
1526  * then send an ACK if necessary.  COPIED is the number of bytes
1527  * tcp_recvmsg has given to the user so far, it speeds up the
1528  * calculation of whether or not we must ACK for the sake of
1529  * a window update.
1530  */
1531 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1532 {
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	bool time_to_ack = false;
1535 
1536 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1537 
1538 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1539 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1540 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1541 
1542 	if (inet_csk_ack_scheduled(sk)) {
1543 		const struct inet_connection_sock *icsk = inet_csk(sk);
1544 
1545 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1546 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1547 		    /*
1548 		     * If this read emptied read buffer, we send ACK, if
1549 		     * connection is not bidirectional, user drained
1550 		     * receive buffer and there was a small segment
1551 		     * in queue.
1552 		     */
1553 		    (copied > 0 &&
1554 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1555 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1556 		       !inet_csk_in_pingpong_mode(sk))) &&
1557 		      !atomic_read(&sk->sk_rmem_alloc)))
1558 			time_to_ack = true;
1559 	}
1560 
1561 	/* We send an ACK if we can now advertise a non-zero window
1562 	 * which has been raised "significantly".
1563 	 *
1564 	 * Even if window raised up to infinity, do not send window open ACK
1565 	 * in states, where we will not receive more. It is useless.
1566 	 */
1567 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1568 		__u32 rcv_window_now = tcp_receive_window(tp);
1569 
1570 		/* Optimize, __tcp_select_window() is not cheap. */
1571 		if (2*rcv_window_now <= tp->window_clamp) {
1572 			__u32 new_window = __tcp_select_window(sk);
1573 
1574 			/* Send ACK now, if this read freed lots of space
1575 			 * in our buffer. Certainly, new_window is new window.
1576 			 * We can advertise it now, if it is not less than current one.
1577 			 * "Lots" means "at least twice" here.
1578 			 */
1579 			if (new_window && new_window >= 2 * rcv_window_now)
1580 				time_to_ack = true;
1581 		}
1582 	}
1583 	if (time_to_ack)
1584 		tcp_send_ack(sk);
1585 }
1586 
1587 void __sk_defer_free_flush(struct sock *sk)
1588 {
1589 	struct llist_node *head;
1590 	struct sk_buff *skb, *n;
1591 
1592 	head = llist_del_all(&sk->defer_list);
1593 	llist_for_each_entry_safe(skb, n, head, ll_node) {
1594 		prefetch(n);
1595 		skb_mark_not_on_list(skb);
1596 		__kfree_skb(skb);
1597 	}
1598 }
1599 EXPORT_SYMBOL(__sk_defer_free_flush);
1600 
1601 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1602 {
1603 	__skb_unlink(skb, &sk->sk_receive_queue);
1604 	if (likely(skb->destructor == sock_rfree)) {
1605 		sock_rfree(skb);
1606 		skb->destructor = NULL;
1607 		skb->sk = NULL;
1608 		if (!skb_queue_empty(&sk->sk_receive_queue) ||
1609 		    !llist_empty(&sk->defer_list)) {
1610 			llist_add(&skb->ll_node, &sk->defer_list);
1611 			return;
1612 		}
1613 	}
1614 	__kfree_skb(skb);
1615 }
1616 
1617 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1618 {
1619 	struct sk_buff *skb;
1620 	u32 offset;
1621 
1622 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1623 		offset = seq - TCP_SKB_CB(skb)->seq;
1624 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1625 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1626 			offset--;
1627 		}
1628 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1629 			*off = offset;
1630 			return skb;
1631 		}
1632 		/* This looks weird, but this can happen if TCP collapsing
1633 		 * splitted a fat GRO packet, while we released socket lock
1634 		 * in skb_splice_bits()
1635 		 */
1636 		tcp_eat_recv_skb(sk, skb);
1637 	}
1638 	return NULL;
1639 }
1640 
1641 /*
1642  * This routine provides an alternative to tcp_recvmsg() for routines
1643  * that would like to handle copying from skbuffs directly in 'sendfile'
1644  * fashion.
1645  * Note:
1646  *	- It is assumed that the socket was locked by the caller.
1647  *	- The routine does not block.
1648  *	- At present, there is no support for reading OOB data
1649  *	  or for 'peeking' the socket using this routine
1650  *	  (although both would be easy to implement).
1651  */
1652 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1653 		  sk_read_actor_t recv_actor)
1654 {
1655 	struct sk_buff *skb;
1656 	struct tcp_sock *tp = tcp_sk(sk);
1657 	u32 seq = tp->copied_seq;
1658 	u32 offset;
1659 	int copied = 0;
1660 
1661 	if (sk->sk_state == TCP_LISTEN)
1662 		return -ENOTCONN;
1663 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1664 		if (offset < skb->len) {
1665 			int used;
1666 			size_t len;
1667 
1668 			len = skb->len - offset;
1669 			/* Stop reading if we hit a patch of urgent data */
1670 			if (unlikely(tp->urg_data)) {
1671 				u32 urg_offset = tp->urg_seq - seq;
1672 				if (urg_offset < len)
1673 					len = urg_offset;
1674 				if (!len)
1675 					break;
1676 			}
1677 			used = recv_actor(desc, skb, offset, len);
1678 			if (used <= 0) {
1679 				if (!copied)
1680 					copied = used;
1681 				break;
1682 			} else if (used <= len) {
1683 				seq += used;
1684 				copied += used;
1685 				offset += used;
1686 			}
1687 			/* If recv_actor drops the lock (e.g. TCP splice
1688 			 * receive) the skb pointer might be invalid when
1689 			 * getting here: tcp_collapse might have deleted it
1690 			 * while aggregating skbs from the socket queue.
1691 			 */
1692 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1693 			if (!skb)
1694 				break;
1695 			/* TCP coalescing might have appended data to the skb.
1696 			 * Try to splice more frags
1697 			 */
1698 			if (offset + 1 != skb->len)
1699 				continue;
1700 		}
1701 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1702 			tcp_eat_recv_skb(sk, skb);
1703 			++seq;
1704 			break;
1705 		}
1706 		tcp_eat_recv_skb(sk, skb);
1707 		if (!desc->count)
1708 			break;
1709 		WRITE_ONCE(tp->copied_seq, seq);
1710 	}
1711 	WRITE_ONCE(tp->copied_seq, seq);
1712 
1713 	tcp_rcv_space_adjust(sk);
1714 
1715 	/* Clean up data we have read: This will do ACK frames. */
1716 	if (copied > 0) {
1717 		tcp_recv_skb(sk, seq, &offset);
1718 		tcp_cleanup_rbuf(sk, copied);
1719 	}
1720 	return copied;
1721 }
1722 EXPORT_SYMBOL(tcp_read_sock);
1723 
1724 int tcp_peek_len(struct socket *sock)
1725 {
1726 	return tcp_inq(sock->sk);
1727 }
1728 EXPORT_SYMBOL(tcp_peek_len);
1729 
1730 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1731 int tcp_set_rcvlowat(struct sock *sk, int val)
1732 {
1733 	int cap;
1734 
1735 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1736 		cap = sk->sk_rcvbuf >> 1;
1737 	else
1738 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1739 	val = min(val, cap);
1740 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1741 
1742 	/* Check if we need to signal EPOLLIN right now */
1743 	tcp_data_ready(sk);
1744 
1745 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1746 		return 0;
1747 
1748 	val <<= 1;
1749 	if (val > sk->sk_rcvbuf) {
1750 		WRITE_ONCE(sk->sk_rcvbuf, val);
1751 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1752 	}
1753 	return 0;
1754 }
1755 EXPORT_SYMBOL(tcp_set_rcvlowat);
1756 
1757 void tcp_update_recv_tstamps(struct sk_buff *skb,
1758 			     struct scm_timestamping_internal *tss)
1759 {
1760 	if (skb->tstamp)
1761 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1762 	else
1763 		tss->ts[0] = (struct timespec64) {0};
1764 
1765 	if (skb_hwtstamps(skb)->hwtstamp)
1766 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1767 	else
1768 		tss->ts[2] = (struct timespec64) {0};
1769 }
1770 
1771 #ifdef CONFIG_MMU
1772 static const struct vm_operations_struct tcp_vm_ops = {
1773 };
1774 
1775 int tcp_mmap(struct file *file, struct socket *sock,
1776 	     struct vm_area_struct *vma)
1777 {
1778 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1779 		return -EPERM;
1780 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1781 
1782 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1783 	vma->vm_flags |= VM_MIXEDMAP;
1784 
1785 	vma->vm_ops = &tcp_vm_ops;
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL(tcp_mmap);
1789 
1790 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1791 				       u32 *offset_frag)
1792 {
1793 	skb_frag_t *frag;
1794 
1795 	if (unlikely(offset_skb >= skb->len))
1796 		return NULL;
1797 
1798 	offset_skb -= skb_headlen(skb);
1799 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1800 		return NULL;
1801 
1802 	frag = skb_shinfo(skb)->frags;
1803 	while (offset_skb) {
1804 		if (skb_frag_size(frag) > offset_skb) {
1805 			*offset_frag = offset_skb;
1806 			return frag;
1807 		}
1808 		offset_skb -= skb_frag_size(frag);
1809 		++frag;
1810 	}
1811 	*offset_frag = 0;
1812 	return frag;
1813 }
1814 
1815 static bool can_map_frag(const skb_frag_t *frag)
1816 {
1817 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1818 }
1819 
1820 static int find_next_mappable_frag(const skb_frag_t *frag,
1821 				   int remaining_in_skb)
1822 {
1823 	int offset = 0;
1824 
1825 	if (likely(can_map_frag(frag)))
1826 		return 0;
1827 
1828 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1829 		offset += skb_frag_size(frag);
1830 		++frag;
1831 	}
1832 	return offset;
1833 }
1834 
1835 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1836 					  struct tcp_zerocopy_receive *zc,
1837 					  struct sk_buff *skb, u32 offset)
1838 {
1839 	u32 frag_offset, partial_frag_remainder = 0;
1840 	int mappable_offset;
1841 	skb_frag_t *frag;
1842 
1843 	/* worst case: skip to next skb. try to improve on this case below */
1844 	zc->recv_skip_hint = skb->len - offset;
1845 
1846 	/* Find the frag containing this offset (and how far into that frag) */
1847 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1848 	if (!frag)
1849 		return;
1850 
1851 	if (frag_offset) {
1852 		struct skb_shared_info *info = skb_shinfo(skb);
1853 
1854 		/* We read part of the last frag, must recvmsg() rest of skb. */
1855 		if (frag == &info->frags[info->nr_frags - 1])
1856 			return;
1857 
1858 		/* Else, we must at least read the remainder in this frag. */
1859 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1860 		zc->recv_skip_hint -= partial_frag_remainder;
1861 		++frag;
1862 	}
1863 
1864 	/* partial_frag_remainder: If part way through a frag, must read rest.
1865 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1866 	 * in partial_frag_remainder.
1867 	 */
1868 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1869 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1870 }
1871 
1872 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1873 			      int nonblock, int flags,
1874 			      struct scm_timestamping_internal *tss,
1875 			      int *cmsg_flags);
1876 static int receive_fallback_to_copy(struct sock *sk,
1877 				    struct tcp_zerocopy_receive *zc, int inq,
1878 				    struct scm_timestamping_internal *tss)
1879 {
1880 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1881 	struct msghdr msg = {};
1882 	struct iovec iov;
1883 	int err;
1884 
1885 	zc->length = 0;
1886 	zc->recv_skip_hint = 0;
1887 
1888 	if (copy_address != zc->copybuf_address)
1889 		return -EINVAL;
1890 
1891 	err = import_single_range(READ, (void __user *)copy_address,
1892 				  inq, &iov, &msg.msg_iter);
1893 	if (err)
1894 		return err;
1895 
1896 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1897 				 tss, &zc->msg_flags);
1898 	if (err < 0)
1899 		return err;
1900 
1901 	zc->copybuf_len = err;
1902 	if (likely(zc->copybuf_len)) {
1903 		struct sk_buff *skb;
1904 		u32 offset;
1905 
1906 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1907 		if (skb)
1908 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1909 	}
1910 	return 0;
1911 }
1912 
1913 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1914 				   struct sk_buff *skb, u32 copylen,
1915 				   u32 *offset, u32 *seq)
1916 {
1917 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1918 	struct msghdr msg = {};
1919 	struct iovec iov;
1920 	int err;
1921 
1922 	if (copy_address != zc->copybuf_address)
1923 		return -EINVAL;
1924 
1925 	err = import_single_range(READ, (void __user *)copy_address,
1926 				  copylen, &iov, &msg.msg_iter);
1927 	if (err)
1928 		return err;
1929 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1930 	if (err)
1931 		return err;
1932 	zc->recv_skip_hint -= copylen;
1933 	*offset += copylen;
1934 	*seq += copylen;
1935 	return (__s32)copylen;
1936 }
1937 
1938 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1939 				  struct sock *sk,
1940 				  struct sk_buff *skb,
1941 				  u32 *seq,
1942 				  s32 copybuf_len,
1943 				  struct scm_timestamping_internal *tss)
1944 {
1945 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1946 
1947 	if (!copylen)
1948 		return 0;
1949 	/* skb is null if inq < PAGE_SIZE. */
1950 	if (skb) {
1951 		offset = *seq - TCP_SKB_CB(skb)->seq;
1952 	} else {
1953 		skb = tcp_recv_skb(sk, *seq, &offset);
1954 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1955 			tcp_update_recv_tstamps(skb, tss);
1956 			zc->msg_flags |= TCP_CMSG_TS;
1957 		}
1958 	}
1959 
1960 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1961 						  seq);
1962 	return zc->copybuf_len < 0 ? 0 : copylen;
1963 }
1964 
1965 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1966 					      struct page **pending_pages,
1967 					      unsigned long pages_remaining,
1968 					      unsigned long *address,
1969 					      u32 *length,
1970 					      u32 *seq,
1971 					      struct tcp_zerocopy_receive *zc,
1972 					      u32 total_bytes_to_map,
1973 					      int err)
1974 {
1975 	/* At least one page did not map. Try zapping if we skipped earlier. */
1976 	if (err == -EBUSY &&
1977 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1978 		u32 maybe_zap_len;
1979 
1980 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1981 				*length + /* Mapped or pending */
1982 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1983 		zap_page_range(vma, *address, maybe_zap_len);
1984 		err = 0;
1985 	}
1986 
1987 	if (!err) {
1988 		unsigned long leftover_pages = pages_remaining;
1989 		int bytes_mapped;
1990 
1991 		/* We called zap_page_range, try to reinsert. */
1992 		err = vm_insert_pages(vma, *address,
1993 				      pending_pages,
1994 				      &pages_remaining);
1995 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1996 		*seq += bytes_mapped;
1997 		*address += bytes_mapped;
1998 	}
1999 	if (err) {
2000 		/* Either we were unable to zap, OR we zapped, retried an
2001 		 * insert, and still had an issue. Either ways, pages_remaining
2002 		 * is the number of pages we were unable to map, and we unroll
2003 		 * some state we speculatively touched before.
2004 		 */
2005 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2006 
2007 		*length -= bytes_not_mapped;
2008 		zc->recv_skip_hint += bytes_not_mapped;
2009 	}
2010 	return err;
2011 }
2012 
2013 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2014 					struct page **pages,
2015 					unsigned int pages_to_map,
2016 					unsigned long *address,
2017 					u32 *length,
2018 					u32 *seq,
2019 					struct tcp_zerocopy_receive *zc,
2020 					u32 total_bytes_to_map)
2021 {
2022 	unsigned long pages_remaining = pages_to_map;
2023 	unsigned int pages_mapped;
2024 	unsigned int bytes_mapped;
2025 	int err;
2026 
2027 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2028 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2029 	bytes_mapped = PAGE_SIZE * pages_mapped;
2030 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2031 	 * mapping (some but not all of the pages).
2032 	 */
2033 	*seq += bytes_mapped;
2034 	*address += bytes_mapped;
2035 
2036 	if (likely(!err))
2037 		return 0;
2038 
2039 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2040 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2041 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2042 		err);
2043 }
2044 
2045 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2046 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2047 				      struct tcp_zerocopy_receive *zc,
2048 				      struct scm_timestamping_internal *tss)
2049 {
2050 	unsigned long msg_control_addr;
2051 	struct msghdr cmsg_dummy;
2052 
2053 	msg_control_addr = (unsigned long)zc->msg_control;
2054 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2055 	cmsg_dummy.msg_controllen =
2056 		(__kernel_size_t)zc->msg_controllen;
2057 	cmsg_dummy.msg_flags = in_compat_syscall()
2058 		? MSG_CMSG_COMPAT : 0;
2059 	cmsg_dummy.msg_control_is_user = true;
2060 	zc->msg_flags = 0;
2061 	if (zc->msg_control == msg_control_addr &&
2062 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2063 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2064 		zc->msg_control = (__u64)
2065 			((uintptr_t)cmsg_dummy.msg_control);
2066 		zc->msg_controllen =
2067 			(__u64)cmsg_dummy.msg_controllen;
2068 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2069 	}
2070 }
2071 
2072 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2073 static int tcp_zerocopy_receive(struct sock *sk,
2074 				struct tcp_zerocopy_receive *zc,
2075 				struct scm_timestamping_internal *tss)
2076 {
2077 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2078 	unsigned long address = (unsigned long)zc->address;
2079 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2080 	s32 copybuf_len = zc->copybuf_len;
2081 	struct tcp_sock *tp = tcp_sk(sk);
2082 	const skb_frag_t *frags = NULL;
2083 	unsigned int pages_to_map = 0;
2084 	struct vm_area_struct *vma;
2085 	struct sk_buff *skb = NULL;
2086 	u32 seq = tp->copied_seq;
2087 	u32 total_bytes_to_map;
2088 	int inq = tcp_inq(sk);
2089 	int ret;
2090 
2091 	zc->copybuf_len = 0;
2092 	zc->msg_flags = 0;
2093 
2094 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2095 		return -EINVAL;
2096 
2097 	if (sk->sk_state == TCP_LISTEN)
2098 		return -ENOTCONN;
2099 
2100 	sock_rps_record_flow(sk);
2101 
2102 	if (inq && inq <= copybuf_len)
2103 		return receive_fallback_to_copy(sk, zc, inq, tss);
2104 
2105 	if (inq < PAGE_SIZE) {
2106 		zc->length = 0;
2107 		zc->recv_skip_hint = inq;
2108 		if (!inq && sock_flag(sk, SOCK_DONE))
2109 			return -EIO;
2110 		return 0;
2111 	}
2112 
2113 	mmap_read_lock(current->mm);
2114 
2115 	vma = vma_lookup(current->mm, address);
2116 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2117 		mmap_read_unlock(current->mm);
2118 		return -EINVAL;
2119 	}
2120 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2121 	avail_len = min_t(u32, vma_len, inq);
2122 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2123 	if (total_bytes_to_map) {
2124 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2125 			zap_page_range(vma, address, total_bytes_to_map);
2126 		zc->length = total_bytes_to_map;
2127 		zc->recv_skip_hint = 0;
2128 	} else {
2129 		zc->length = avail_len;
2130 		zc->recv_skip_hint = avail_len;
2131 	}
2132 	ret = 0;
2133 	while (length + PAGE_SIZE <= zc->length) {
2134 		int mappable_offset;
2135 		struct page *page;
2136 
2137 		if (zc->recv_skip_hint < PAGE_SIZE) {
2138 			u32 offset_frag;
2139 
2140 			if (skb) {
2141 				if (zc->recv_skip_hint > 0)
2142 					break;
2143 				skb = skb->next;
2144 				offset = seq - TCP_SKB_CB(skb)->seq;
2145 			} else {
2146 				skb = tcp_recv_skb(sk, seq, &offset);
2147 			}
2148 
2149 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2150 				tcp_update_recv_tstamps(skb, tss);
2151 				zc->msg_flags |= TCP_CMSG_TS;
2152 			}
2153 			zc->recv_skip_hint = skb->len - offset;
2154 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2155 			if (!frags || offset_frag)
2156 				break;
2157 		}
2158 
2159 		mappable_offset = find_next_mappable_frag(frags,
2160 							  zc->recv_skip_hint);
2161 		if (mappable_offset) {
2162 			zc->recv_skip_hint = mappable_offset;
2163 			break;
2164 		}
2165 		page = skb_frag_page(frags);
2166 		prefetchw(page);
2167 		pages[pages_to_map++] = page;
2168 		length += PAGE_SIZE;
2169 		zc->recv_skip_hint -= PAGE_SIZE;
2170 		frags++;
2171 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2172 		    zc->recv_skip_hint < PAGE_SIZE) {
2173 			/* Either full batch, or we're about to go to next skb
2174 			 * (and we cannot unroll failed ops across skbs).
2175 			 */
2176 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2177 							   pages_to_map,
2178 							   &address, &length,
2179 							   &seq, zc,
2180 							   total_bytes_to_map);
2181 			if (ret)
2182 				goto out;
2183 			pages_to_map = 0;
2184 		}
2185 	}
2186 	if (pages_to_map) {
2187 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2188 						   &address, &length, &seq,
2189 						   zc, total_bytes_to_map);
2190 	}
2191 out:
2192 	mmap_read_unlock(current->mm);
2193 	/* Try to copy straggler data. */
2194 	if (!ret)
2195 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2196 
2197 	if (length + copylen) {
2198 		WRITE_ONCE(tp->copied_seq, seq);
2199 		tcp_rcv_space_adjust(sk);
2200 
2201 		/* Clean up data we have read: This will do ACK frames. */
2202 		tcp_recv_skb(sk, seq, &offset);
2203 		tcp_cleanup_rbuf(sk, length + copylen);
2204 		ret = 0;
2205 		if (length == zc->length)
2206 			zc->recv_skip_hint = 0;
2207 	} else {
2208 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2209 			ret = -EIO;
2210 	}
2211 	zc->length = length;
2212 	return ret;
2213 }
2214 #endif
2215 
2216 /* Similar to __sock_recv_timestamp, but does not require an skb */
2217 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2218 			struct scm_timestamping_internal *tss)
2219 {
2220 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2221 	bool has_timestamping = false;
2222 
2223 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2224 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2225 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2226 				if (new_tstamp) {
2227 					struct __kernel_timespec kts = {
2228 						.tv_sec = tss->ts[0].tv_sec,
2229 						.tv_nsec = tss->ts[0].tv_nsec,
2230 					};
2231 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2232 						 sizeof(kts), &kts);
2233 				} else {
2234 					struct __kernel_old_timespec ts_old = {
2235 						.tv_sec = tss->ts[0].tv_sec,
2236 						.tv_nsec = tss->ts[0].tv_nsec,
2237 					};
2238 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2239 						 sizeof(ts_old), &ts_old);
2240 				}
2241 			} else {
2242 				if (new_tstamp) {
2243 					struct __kernel_sock_timeval stv = {
2244 						.tv_sec = tss->ts[0].tv_sec,
2245 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2246 					};
2247 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2248 						 sizeof(stv), &stv);
2249 				} else {
2250 					struct __kernel_old_timeval tv = {
2251 						.tv_sec = tss->ts[0].tv_sec,
2252 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2253 					};
2254 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2255 						 sizeof(tv), &tv);
2256 				}
2257 			}
2258 		}
2259 
2260 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2261 			has_timestamping = true;
2262 		else
2263 			tss->ts[0] = (struct timespec64) {0};
2264 	}
2265 
2266 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2267 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2268 			has_timestamping = true;
2269 		else
2270 			tss->ts[2] = (struct timespec64) {0};
2271 	}
2272 
2273 	if (has_timestamping) {
2274 		tss->ts[1] = (struct timespec64) {0};
2275 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2276 			put_cmsg_scm_timestamping64(msg, tss);
2277 		else
2278 			put_cmsg_scm_timestamping(msg, tss);
2279 	}
2280 }
2281 
2282 static int tcp_inq_hint(struct sock *sk)
2283 {
2284 	const struct tcp_sock *tp = tcp_sk(sk);
2285 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2286 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2287 	int inq;
2288 
2289 	inq = rcv_nxt - copied_seq;
2290 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2291 		lock_sock(sk);
2292 		inq = tp->rcv_nxt - tp->copied_seq;
2293 		release_sock(sk);
2294 	}
2295 	/* After receiving a FIN, tell the user-space to continue reading
2296 	 * by returning a non-zero inq.
2297 	 */
2298 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2299 		inq = 1;
2300 	return inq;
2301 }
2302 
2303 /*
2304  *	This routine copies from a sock struct into the user buffer.
2305  *
2306  *	Technical note: in 2.3 we work on _locked_ socket, so that
2307  *	tricks with *seq access order and skb->users are not required.
2308  *	Probably, code can be easily improved even more.
2309  */
2310 
2311 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2312 			      int nonblock, int flags,
2313 			      struct scm_timestamping_internal *tss,
2314 			      int *cmsg_flags)
2315 {
2316 	struct tcp_sock *tp = tcp_sk(sk);
2317 	int copied = 0;
2318 	u32 peek_seq;
2319 	u32 *seq;
2320 	unsigned long used;
2321 	int err;
2322 	int target;		/* Read at least this many bytes */
2323 	long timeo;
2324 	struct sk_buff *skb, *last;
2325 	u32 urg_hole = 0;
2326 
2327 	err = -ENOTCONN;
2328 	if (sk->sk_state == TCP_LISTEN)
2329 		goto out;
2330 
2331 	if (tp->recvmsg_inq)
2332 		*cmsg_flags = TCP_CMSG_INQ;
2333 	timeo = sock_rcvtimeo(sk, nonblock);
2334 
2335 	/* Urgent data needs to be handled specially. */
2336 	if (flags & MSG_OOB)
2337 		goto recv_urg;
2338 
2339 	if (unlikely(tp->repair)) {
2340 		err = -EPERM;
2341 		if (!(flags & MSG_PEEK))
2342 			goto out;
2343 
2344 		if (tp->repair_queue == TCP_SEND_QUEUE)
2345 			goto recv_sndq;
2346 
2347 		err = -EINVAL;
2348 		if (tp->repair_queue == TCP_NO_QUEUE)
2349 			goto out;
2350 
2351 		/* 'common' recv queue MSG_PEEK-ing */
2352 	}
2353 
2354 	seq = &tp->copied_seq;
2355 	if (flags & MSG_PEEK) {
2356 		peek_seq = tp->copied_seq;
2357 		seq = &peek_seq;
2358 	}
2359 
2360 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2361 
2362 	do {
2363 		u32 offset;
2364 
2365 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2366 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2367 			if (copied)
2368 				break;
2369 			if (signal_pending(current)) {
2370 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2371 				break;
2372 			}
2373 		}
2374 
2375 		/* Next get a buffer. */
2376 
2377 		last = skb_peek_tail(&sk->sk_receive_queue);
2378 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2379 			last = skb;
2380 			/* Now that we have two receive queues this
2381 			 * shouldn't happen.
2382 			 */
2383 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2384 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2385 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2386 				 flags))
2387 				break;
2388 
2389 			offset = *seq - TCP_SKB_CB(skb)->seq;
2390 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2391 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2392 				offset--;
2393 			}
2394 			if (offset < skb->len)
2395 				goto found_ok_skb;
2396 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2397 				goto found_fin_ok;
2398 			WARN(!(flags & MSG_PEEK),
2399 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2400 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2401 		}
2402 
2403 		/* Well, if we have backlog, try to process it now yet. */
2404 
2405 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2406 			break;
2407 
2408 		if (copied) {
2409 			if (!timeo ||
2410 			    sk->sk_err ||
2411 			    sk->sk_state == TCP_CLOSE ||
2412 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2413 			    signal_pending(current))
2414 				break;
2415 		} else {
2416 			if (sock_flag(sk, SOCK_DONE))
2417 				break;
2418 
2419 			if (sk->sk_err) {
2420 				copied = sock_error(sk);
2421 				break;
2422 			}
2423 
2424 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2425 				break;
2426 
2427 			if (sk->sk_state == TCP_CLOSE) {
2428 				/* This occurs when user tries to read
2429 				 * from never connected socket.
2430 				 */
2431 				copied = -ENOTCONN;
2432 				break;
2433 			}
2434 
2435 			if (!timeo) {
2436 				copied = -EAGAIN;
2437 				break;
2438 			}
2439 
2440 			if (signal_pending(current)) {
2441 				copied = sock_intr_errno(timeo);
2442 				break;
2443 			}
2444 		}
2445 
2446 		if (copied >= target) {
2447 			/* Do not sleep, just process backlog. */
2448 			__sk_flush_backlog(sk);
2449 		} else {
2450 			tcp_cleanup_rbuf(sk, copied);
2451 			sk_defer_free_flush(sk);
2452 			sk_wait_data(sk, &timeo, last);
2453 		}
2454 
2455 		if ((flags & MSG_PEEK) &&
2456 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2457 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2458 					    current->comm,
2459 					    task_pid_nr(current));
2460 			peek_seq = tp->copied_seq;
2461 		}
2462 		continue;
2463 
2464 found_ok_skb:
2465 		/* Ok so how much can we use? */
2466 		used = skb->len - offset;
2467 		if (len < used)
2468 			used = len;
2469 
2470 		/* Do we have urgent data here? */
2471 		if (unlikely(tp->urg_data)) {
2472 			u32 urg_offset = tp->urg_seq - *seq;
2473 			if (urg_offset < used) {
2474 				if (!urg_offset) {
2475 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2476 						WRITE_ONCE(*seq, *seq + 1);
2477 						urg_hole++;
2478 						offset++;
2479 						used--;
2480 						if (!used)
2481 							goto skip_copy;
2482 					}
2483 				} else
2484 					used = urg_offset;
2485 			}
2486 		}
2487 
2488 		if (!(flags & MSG_TRUNC)) {
2489 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2490 			if (err) {
2491 				/* Exception. Bailout! */
2492 				if (!copied)
2493 					copied = -EFAULT;
2494 				break;
2495 			}
2496 		}
2497 
2498 		WRITE_ONCE(*seq, *seq + used);
2499 		copied += used;
2500 		len -= used;
2501 
2502 		tcp_rcv_space_adjust(sk);
2503 
2504 skip_copy:
2505 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2506 			WRITE_ONCE(tp->urg_data, 0);
2507 			tcp_fast_path_check(sk);
2508 		}
2509 
2510 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2511 			tcp_update_recv_tstamps(skb, tss);
2512 			*cmsg_flags |= TCP_CMSG_TS;
2513 		}
2514 
2515 		if (used + offset < skb->len)
2516 			continue;
2517 
2518 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2519 			goto found_fin_ok;
2520 		if (!(flags & MSG_PEEK))
2521 			tcp_eat_recv_skb(sk, skb);
2522 		continue;
2523 
2524 found_fin_ok:
2525 		/* Process the FIN. */
2526 		WRITE_ONCE(*seq, *seq + 1);
2527 		if (!(flags & MSG_PEEK))
2528 			tcp_eat_recv_skb(sk, skb);
2529 		break;
2530 	} while (len > 0);
2531 
2532 	/* According to UNIX98, msg_name/msg_namelen are ignored
2533 	 * on connected socket. I was just happy when found this 8) --ANK
2534 	 */
2535 
2536 	/* Clean up data we have read: This will do ACK frames. */
2537 	tcp_cleanup_rbuf(sk, copied);
2538 	return copied;
2539 
2540 out:
2541 	return err;
2542 
2543 recv_urg:
2544 	err = tcp_recv_urg(sk, msg, len, flags);
2545 	goto out;
2546 
2547 recv_sndq:
2548 	err = tcp_peek_sndq(sk, msg, len);
2549 	goto out;
2550 }
2551 
2552 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2553 		int flags, int *addr_len)
2554 {
2555 	int cmsg_flags = 0, ret, inq;
2556 	struct scm_timestamping_internal tss;
2557 
2558 	if (unlikely(flags & MSG_ERRQUEUE))
2559 		return inet_recv_error(sk, msg, len, addr_len);
2560 
2561 	if (sk_can_busy_loop(sk) &&
2562 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2563 	    sk->sk_state == TCP_ESTABLISHED)
2564 		sk_busy_loop(sk, nonblock);
2565 
2566 	lock_sock(sk);
2567 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2568 				 &cmsg_flags);
2569 	release_sock(sk);
2570 	sk_defer_free_flush(sk);
2571 
2572 	if (cmsg_flags && ret >= 0) {
2573 		if (cmsg_flags & TCP_CMSG_TS)
2574 			tcp_recv_timestamp(msg, sk, &tss);
2575 		if (cmsg_flags & TCP_CMSG_INQ) {
2576 			inq = tcp_inq_hint(sk);
2577 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2578 		}
2579 	}
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL(tcp_recvmsg);
2583 
2584 void tcp_set_state(struct sock *sk, int state)
2585 {
2586 	int oldstate = sk->sk_state;
2587 
2588 	/* We defined a new enum for TCP states that are exported in BPF
2589 	 * so as not force the internal TCP states to be frozen. The
2590 	 * following checks will detect if an internal state value ever
2591 	 * differs from the BPF value. If this ever happens, then we will
2592 	 * need to remap the internal value to the BPF value before calling
2593 	 * tcp_call_bpf_2arg.
2594 	 */
2595 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2596 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2597 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2598 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2599 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2600 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2601 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2602 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2603 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2604 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2605 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2606 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2607 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2608 
2609 	/* bpf uapi header bpf.h defines an anonymous enum with values
2610 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2611 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2612 	 * But clang built vmlinux does not have this enum in DWARF
2613 	 * since clang removes the above code before generating IR/debuginfo.
2614 	 * Let us explicitly emit the type debuginfo to ensure the
2615 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2616 	 * regardless of which compiler is used.
2617 	 */
2618 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2619 
2620 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2621 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2622 
2623 	switch (state) {
2624 	case TCP_ESTABLISHED:
2625 		if (oldstate != TCP_ESTABLISHED)
2626 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2627 		break;
2628 
2629 	case TCP_CLOSE:
2630 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2631 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2632 
2633 		sk->sk_prot->unhash(sk);
2634 		if (inet_csk(sk)->icsk_bind_hash &&
2635 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2636 			inet_put_port(sk);
2637 		fallthrough;
2638 	default:
2639 		if (oldstate == TCP_ESTABLISHED)
2640 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2641 	}
2642 
2643 	/* Change state AFTER socket is unhashed to avoid closed
2644 	 * socket sitting in hash tables.
2645 	 */
2646 	inet_sk_state_store(sk, state);
2647 }
2648 EXPORT_SYMBOL_GPL(tcp_set_state);
2649 
2650 /*
2651  *	State processing on a close. This implements the state shift for
2652  *	sending our FIN frame. Note that we only send a FIN for some
2653  *	states. A shutdown() may have already sent the FIN, or we may be
2654  *	closed.
2655  */
2656 
2657 static const unsigned char new_state[16] = {
2658   /* current state:        new state:      action:	*/
2659   [0 /* (Invalid) */]	= TCP_CLOSE,
2660   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2661   [TCP_SYN_SENT]	= TCP_CLOSE,
2662   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2663   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2664   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2665   [TCP_TIME_WAIT]	= TCP_CLOSE,
2666   [TCP_CLOSE]		= TCP_CLOSE,
2667   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2668   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2669   [TCP_LISTEN]		= TCP_CLOSE,
2670   [TCP_CLOSING]		= TCP_CLOSING,
2671   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2672 };
2673 
2674 static int tcp_close_state(struct sock *sk)
2675 {
2676 	int next = (int)new_state[sk->sk_state];
2677 	int ns = next & TCP_STATE_MASK;
2678 
2679 	tcp_set_state(sk, ns);
2680 
2681 	return next & TCP_ACTION_FIN;
2682 }
2683 
2684 /*
2685  *	Shutdown the sending side of a connection. Much like close except
2686  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2687  */
2688 
2689 void tcp_shutdown(struct sock *sk, int how)
2690 {
2691 	/*	We need to grab some memory, and put together a FIN,
2692 	 *	and then put it into the queue to be sent.
2693 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2694 	 */
2695 	if (!(how & SEND_SHUTDOWN))
2696 		return;
2697 
2698 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2699 	if ((1 << sk->sk_state) &
2700 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2701 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2702 		/* Clear out any half completed packets.  FIN if needed. */
2703 		if (tcp_close_state(sk))
2704 			tcp_send_fin(sk);
2705 	}
2706 }
2707 EXPORT_SYMBOL(tcp_shutdown);
2708 
2709 int tcp_orphan_count_sum(void)
2710 {
2711 	int i, total = 0;
2712 
2713 	for_each_possible_cpu(i)
2714 		total += per_cpu(tcp_orphan_count, i);
2715 
2716 	return max(total, 0);
2717 }
2718 
2719 static int tcp_orphan_cache;
2720 static struct timer_list tcp_orphan_timer;
2721 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2722 
2723 static void tcp_orphan_update(struct timer_list *unused)
2724 {
2725 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2726 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2727 }
2728 
2729 static bool tcp_too_many_orphans(int shift)
2730 {
2731 	return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2732 }
2733 
2734 bool tcp_check_oom(struct sock *sk, int shift)
2735 {
2736 	bool too_many_orphans, out_of_socket_memory;
2737 
2738 	too_many_orphans = tcp_too_many_orphans(shift);
2739 	out_of_socket_memory = tcp_out_of_memory(sk);
2740 
2741 	if (too_many_orphans)
2742 		net_info_ratelimited("too many orphaned sockets\n");
2743 	if (out_of_socket_memory)
2744 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2745 	return too_many_orphans || out_of_socket_memory;
2746 }
2747 
2748 void __tcp_close(struct sock *sk, long timeout)
2749 {
2750 	struct sk_buff *skb;
2751 	int data_was_unread = 0;
2752 	int state;
2753 
2754 	sk->sk_shutdown = SHUTDOWN_MASK;
2755 
2756 	if (sk->sk_state == TCP_LISTEN) {
2757 		tcp_set_state(sk, TCP_CLOSE);
2758 
2759 		/* Special case. */
2760 		inet_csk_listen_stop(sk);
2761 
2762 		goto adjudge_to_death;
2763 	}
2764 
2765 	/*  We need to flush the recv. buffs.  We do this only on the
2766 	 *  descriptor close, not protocol-sourced closes, because the
2767 	 *  reader process may not have drained the data yet!
2768 	 */
2769 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2770 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2771 
2772 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2773 			len--;
2774 		data_was_unread += len;
2775 		__kfree_skb(skb);
2776 	}
2777 
2778 	sk_mem_reclaim(sk);
2779 
2780 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2781 	if (sk->sk_state == TCP_CLOSE)
2782 		goto adjudge_to_death;
2783 
2784 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2785 	 * data was lost. To witness the awful effects of the old behavior of
2786 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2787 	 * GET in an FTP client, suspend the process, wait for the client to
2788 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2789 	 * Note: timeout is always zero in such a case.
2790 	 */
2791 	if (unlikely(tcp_sk(sk)->repair)) {
2792 		sk->sk_prot->disconnect(sk, 0);
2793 	} else if (data_was_unread) {
2794 		/* Unread data was tossed, zap the connection. */
2795 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2796 		tcp_set_state(sk, TCP_CLOSE);
2797 		tcp_send_active_reset(sk, sk->sk_allocation);
2798 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2799 		/* Check zero linger _after_ checking for unread data. */
2800 		sk->sk_prot->disconnect(sk, 0);
2801 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2802 	} else if (tcp_close_state(sk)) {
2803 		/* We FIN if the application ate all the data before
2804 		 * zapping the connection.
2805 		 */
2806 
2807 		/* RED-PEN. Formally speaking, we have broken TCP state
2808 		 * machine. State transitions:
2809 		 *
2810 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2811 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2812 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2813 		 *
2814 		 * are legal only when FIN has been sent (i.e. in window),
2815 		 * rather than queued out of window. Purists blame.
2816 		 *
2817 		 * F.e. "RFC state" is ESTABLISHED,
2818 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2819 		 *
2820 		 * The visible declinations are that sometimes
2821 		 * we enter time-wait state, when it is not required really
2822 		 * (harmless), do not send active resets, when they are
2823 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2824 		 * they look as CLOSING or LAST_ACK for Linux)
2825 		 * Probably, I missed some more holelets.
2826 		 * 						--ANK
2827 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2828 		 * in a single packet! (May consider it later but will
2829 		 * probably need API support or TCP_CORK SYN-ACK until
2830 		 * data is written and socket is closed.)
2831 		 */
2832 		tcp_send_fin(sk);
2833 	}
2834 
2835 	sk_stream_wait_close(sk, timeout);
2836 
2837 adjudge_to_death:
2838 	state = sk->sk_state;
2839 	sock_hold(sk);
2840 	sock_orphan(sk);
2841 
2842 	local_bh_disable();
2843 	bh_lock_sock(sk);
2844 	/* remove backlog if any, without releasing ownership. */
2845 	__release_sock(sk);
2846 
2847 	this_cpu_inc(tcp_orphan_count);
2848 
2849 	/* Have we already been destroyed by a softirq or backlog? */
2850 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2851 		goto out;
2852 
2853 	/*	This is a (useful) BSD violating of the RFC. There is a
2854 	 *	problem with TCP as specified in that the other end could
2855 	 *	keep a socket open forever with no application left this end.
2856 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2857 	 *	our end. If they send after that then tough - BUT: long enough
2858 	 *	that we won't make the old 4*rto = almost no time - whoops
2859 	 *	reset mistake.
2860 	 *
2861 	 *	Nope, it was not mistake. It is really desired behaviour
2862 	 *	f.e. on http servers, when such sockets are useless, but
2863 	 *	consume significant resources. Let's do it with special
2864 	 *	linger2	option.					--ANK
2865 	 */
2866 
2867 	if (sk->sk_state == TCP_FIN_WAIT2) {
2868 		struct tcp_sock *tp = tcp_sk(sk);
2869 		if (tp->linger2 < 0) {
2870 			tcp_set_state(sk, TCP_CLOSE);
2871 			tcp_send_active_reset(sk, GFP_ATOMIC);
2872 			__NET_INC_STATS(sock_net(sk),
2873 					LINUX_MIB_TCPABORTONLINGER);
2874 		} else {
2875 			const int tmo = tcp_fin_time(sk);
2876 
2877 			if (tmo > TCP_TIMEWAIT_LEN) {
2878 				inet_csk_reset_keepalive_timer(sk,
2879 						tmo - TCP_TIMEWAIT_LEN);
2880 			} else {
2881 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2882 				goto out;
2883 			}
2884 		}
2885 	}
2886 	if (sk->sk_state != TCP_CLOSE) {
2887 		sk_mem_reclaim(sk);
2888 		if (tcp_check_oom(sk, 0)) {
2889 			tcp_set_state(sk, TCP_CLOSE);
2890 			tcp_send_active_reset(sk, GFP_ATOMIC);
2891 			__NET_INC_STATS(sock_net(sk),
2892 					LINUX_MIB_TCPABORTONMEMORY);
2893 		} else if (!check_net(sock_net(sk))) {
2894 			/* Not possible to send reset; just close */
2895 			tcp_set_state(sk, TCP_CLOSE);
2896 		}
2897 	}
2898 
2899 	if (sk->sk_state == TCP_CLOSE) {
2900 		struct request_sock *req;
2901 
2902 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2903 						lockdep_sock_is_held(sk));
2904 		/* We could get here with a non-NULL req if the socket is
2905 		 * aborted (e.g., closed with unread data) before 3WHS
2906 		 * finishes.
2907 		 */
2908 		if (req)
2909 			reqsk_fastopen_remove(sk, req, false);
2910 		inet_csk_destroy_sock(sk);
2911 	}
2912 	/* Otherwise, socket is reprieved until protocol close. */
2913 
2914 out:
2915 	bh_unlock_sock(sk);
2916 	local_bh_enable();
2917 }
2918 
2919 void tcp_close(struct sock *sk, long timeout)
2920 {
2921 	lock_sock(sk);
2922 	__tcp_close(sk, timeout);
2923 	release_sock(sk);
2924 	sock_put(sk);
2925 }
2926 EXPORT_SYMBOL(tcp_close);
2927 
2928 /* These states need RST on ABORT according to RFC793 */
2929 
2930 static inline bool tcp_need_reset(int state)
2931 {
2932 	return (1 << state) &
2933 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2934 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2935 }
2936 
2937 static void tcp_rtx_queue_purge(struct sock *sk)
2938 {
2939 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2940 
2941 	tcp_sk(sk)->highest_sack = NULL;
2942 	while (p) {
2943 		struct sk_buff *skb = rb_to_skb(p);
2944 
2945 		p = rb_next(p);
2946 		/* Since we are deleting whole queue, no need to
2947 		 * list_del(&skb->tcp_tsorted_anchor)
2948 		 */
2949 		tcp_rtx_queue_unlink(skb, sk);
2950 		tcp_wmem_free_skb(sk, skb);
2951 	}
2952 }
2953 
2954 void tcp_write_queue_purge(struct sock *sk)
2955 {
2956 	struct sk_buff *skb;
2957 
2958 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2959 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2960 		tcp_skb_tsorted_anchor_cleanup(skb);
2961 		tcp_wmem_free_skb(sk, skb);
2962 	}
2963 	tcp_rtx_queue_purge(sk);
2964 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2965 	sk_mem_reclaim(sk);
2966 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2967 	tcp_sk(sk)->packets_out = 0;
2968 	inet_csk(sk)->icsk_backoff = 0;
2969 }
2970 
2971 int tcp_disconnect(struct sock *sk, int flags)
2972 {
2973 	struct inet_sock *inet = inet_sk(sk);
2974 	struct inet_connection_sock *icsk = inet_csk(sk);
2975 	struct tcp_sock *tp = tcp_sk(sk);
2976 	int old_state = sk->sk_state;
2977 	u32 seq;
2978 
2979 	if (old_state != TCP_CLOSE)
2980 		tcp_set_state(sk, TCP_CLOSE);
2981 
2982 	/* ABORT function of RFC793 */
2983 	if (old_state == TCP_LISTEN) {
2984 		inet_csk_listen_stop(sk);
2985 	} else if (unlikely(tp->repair)) {
2986 		sk->sk_err = ECONNABORTED;
2987 	} else if (tcp_need_reset(old_state) ||
2988 		   (tp->snd_nxt != tp->write_seq &&
2989 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2990 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2991 		 * states
2992 		 */
2993 		tcp_send_active_reset(sk, gfp_any());
2994 		sk->sk_err = ECONNRESET;
2995 	} else if (old_state == TCP_SYN_SENT)
2996 		sk->sk_err = ECONNRESET;
2997 
2998 	tcp_clear_xmit_timers(sk);
2999 	__skb_queue_purge(&sk->sk_receive_queue);
3000 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3001 	WRITE_ONCE(tp->urg_data, 0);
3002 	tcp_write_queue_purge(sk);
3003 	tcp_fastopen_active_disable_ofo_check(sk);
3004 	skb_rbtree_purge(&tp->out_of_order_queue);
3005 
3006 	inet->inet_dport = 0;
3007 
3008 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3009 		inet_reset_saddr(sk);
3010 
3011 	sk->sk_shutdown = 0;
3012 	sock_reset_flag(sk, SOCK_DONE);
3013 	tp->srtt_us = 0;
3014 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3015 	tp->rcv_rtt_last_tsecr = 0;
3016 
3017 	seq = tp->write_seq + tp->max_window + 2;
3018 	if (!seq)
3019 		seq = 1;
3020 	WRITE_ONCE(tp->write_seq, seq);
3021 
3022 	icsk->icsk_backoff = 0;
3023 	icsk->icsk_probes_out = 0;
3024 	icsk->icsk_probes_tstamp = 0;
3025 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3026 	icsk->icsk_rto_min = TCP_RTO_MIN;
3027 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3028 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3029 	tp->snd_cwnd = TCP_INIT_CWND;
3030 	tp->snd_cwnd_cnt = 0;
3031 	tp->window_clamp = 0;
3032 	tp->delivered = 0;
3033 	tp->delivered_ce = 0;
3034 	if (icsk->icsk_ca_ops->release)
3035 		icsk->icsk_ca_ops->release(sk);
3036 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3037 	icsk->icsk_ca_initialized = 0;
3038 	tcp_set_ca_state(sk, TCP_CA_Open);
3039 	tp->is_sack_reneg = 0;
3040 	tcp_clear_retrans(tp);
3041 	tp->total_retrans = 0;
3042 	inet_csk_delack_init(sk);
3043 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3044 	 * issue in __tcp_select_window()
3045 	 */
3046 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3047 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3048 	__sk_dst_reset(sk);
3049 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3050 	tcp_saved_syn_free(tp);
3051 	tp->compressed_ack = 0;
3052 	tp->segs_in = 0;
3053 	tp->segs_out = 0;
3054 	tp->bytes_sent = 0;
3055 	tp->bytes_acked = 0;
3056 	tp->bytes_received = 0;
3057 	tp->bytes_retrans = 0;
3058 	tp->data_segs_in = 0;
3059 	tp->data_segs_out = 0;
3060 	tp->duplicate_sack[0].start_seq = 0;
3061 	tp->duplicate_sack[0].end_seq = 0;
3062 	tp->dsack_dups = 0;
3063 	tp->reord_seen = 0;
3064 	tp->retrans_out = 0;
3065 	tp->sacked_out = 0;
3066 	tp->tlp_high_seq = 0;
3067 	tp->last_oow_ack_time = 0;
3068 	/* There's a bubble in the pipe until at least the first ACK. */
3069 	tp->app_limited = ~0U;
3070 	tp->rack.mstamp = 0;
3071 	tp->rack.advanced = 0;
3072 	tp->rack.reo_wnd_steps = 1;
3073 	tp->rack.last_delivered = 0;
3074 	tp->rack.reo_wnd_persist = 0;
3075 	tp->rack.dsack_seen = 0;
3076 	tp->syn_data_acked = 0;
3077 	tp->rx_opt.saw_tstamp = 0;
3078 	tp->rx_opt.dsack = 0;
3079 	tp->rx_opt.num_sacks = 0;
3080 	tp->rcv_ooopack = 0;
3081 
3082 
3083 	/* Clean up fastopen related fields */
3084 	tcp_free_fastopen_req(tp);
3085 	inet->defer_connect = 0;
3086 	tp->fastopen_client_fail = 0;
3087 
3088 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3089 
3090 	if (sk->sk_frag.page) {
3091 		put_page(sk->sk_frag.page);
3092 		sk->sk_frag.page = NULL;
3093 		sk->sk_frag.offset = 0;
3094 	}
3095 	sk_defer_free_flush(sk);
3096 	sk_error_report(sk);
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL(tcp_disconnect);
3100 
3101 static inline bool tcp_can_repair_sock(const struct sock *sk)
3102 {
3103 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3104 		(sk->sk_state != TCP_LISTEN);
3105 }
3106 
3107 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3108 {
3109 	struct tcp_repair_window opt;
3110 
3111 	if (!tp->repair)
3112 		return -EPERM;
3113 
3114 	if (len != sizeof(opt))
3115 		return -EINVAL;
3116 
3117 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3118 		return -EFAULT;
3119 
3120 	if (opt.max_window < opt.snd_wnd)
3121 		return -EINVAL;
3122 
3123 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3124 		return -EINVAL;
3125 
3126 	if (after(opt.rcv_wup, tp->rcv_nxt))
3127 		return -EINVAL;
3128 
3129 	tp->snd_wl1	= opt.snd_wl1;
3130 	tp->snd_wnd	= opt.snd_wnd;
3131 	tp->max_window	= opt.max_window;
3132 
3133 	tp->rcv_wnd	= opt.rcv_wnd;
3134 	tp->rcv_wup	= opt.rcv_wup;
3135 
3136 	return 0;
3137 }
3138 
3139 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3140 		unsigned int len)
3141 {
3142 	struct tcp_sock *tp = tcp_sk(sk);
3143 	struct tcp_repair_opt opt;
3144 	size_t offset = 0;
3145 
3146 	while (len >= sizeof(opt)) {
3147 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3148 			return -EFAULT;
3149 
3150 		offset += sizeof(opt);
3151 		len -= sizeof(opt);
3152 
3153 		switch (opt.opt_code) {
3154 		case TCPOPT_MSS:
3155 			tp->rx_opt.mss_clamp = opt.opt_val;
3156 			tcp_mtup_init(sk);
3157 			break;
3158 		case TCPOPT_WINDOW:
3159 			{
3160 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3161 				u16 rcv_wscale = opt.opt_val >> 16;
3162 
3163 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3164 					return -EFBIG;
3165 
3166 				tp->rx_opt.snd_wscale = snd_wscale;
3167 				tp->rx_opt.rcv_wscale = rcv_wscale;
3168 				tp->rx_opt.wscale_ok = 1;
3169 			}
3170 			break;
3171 		case TCPOPT_SACK_PERM:
3172 			if (opt.opt_val != 0)
3173 				return -EINVAL;
3174 
3175 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3176 			break;
3177 		case TCPOPT_TIMESTAMP:
3178 			if (opt.opt_val != 0)
3179 				return -EINVAL;
3180 
3181 			tp->rx_opt.tstamp_ok = 1;
3182 			break;
3183 		}
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3190 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3191 
3192 static void tcp_enable_tx_delay(void)
3193 {
3194 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3195 		static int __tcp_tx_delay_enabled = 0;
3196 
3197 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3198 			static_branch_enable(&tcp_tx_delay_enabled);
3199 			pr_info("TCP_TX_DELAY enabled\n");
3200 		}
3201 	}
3202 }
3203 
3204 /* When set indicates to always queue non-full frames.  Later the user clears
3205  * this option and we transmit any pending partial frames in the queue.  This is
3206  * meant to be used alongside sendfile() to get properly filled frames when the
3207  * user (for example) must write out headers with a write() call first and then
3208  * use sendfile to send out the data parts.
3209  *
3210  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3211  * TCP_NODELAY.
3212  */
3213 void __tcp_sock_set_cork(struct sock *sk, bool on)
3214 {
3215 	struct tcp_sock *tp = tcp_sk(sk);
3216 
3217 	if (on) {
3218 		tp->nonagle |= TCP_NAGLE_CORK;
3219 	} else {
3220 		tp->nonagle &= ~TCP_NAGLE_CORK;
3221 		if (tp->nonagle & TCP_NAGLE_OFF)
3222 			tp->nonagle |= TCP_NAGLE_PUSH;
3223 		tcp_push_pending_frames(sk);
3224 	}
3225 }
3226 
3227 void tcp_sock_set_cork(struct sock *sk, bool on)
3228 {
3229 	lock_sock(sk);
3230 	__tcp_sock_set_cork(sk, on);
3231 	release_sock(sk);
3232 }
3233 EXPORT_SYMBOL(tcp_sock_set_cork);
3234 
3235 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3236  * remembered, but it is not activated until cork is cleared.
3237  *
3238  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3239  * even TCP_CORK for currently queued segments.
3240  */
3241 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3242 {
3243 	if (on) {
3244 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3245 		tcp_push_pending_frames(sk);
3246 	} else {
3247 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3248 	}
3249 }
3250 
3251 void tcp_sock_set_nodelay(struct sock *sk)
3252 {
3253 	lock_sock(sk);
3254 	__tcp_sock_set_nodelay(sk, true);
3255 	release_sock(sk);
3256 }
3257 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3258 
3259 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3260 {
3261 	if (!val) {
3262 		inet_csk_enter_pingpong_mode(sk);
3263 		return;
3264 	}
3265 
3266 	inet_csk_exit_pingpong_mode(sk);
3267 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3268 	    inet_csk_ack_scheduled(sk)) {
3269 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3270 		tcp_cleanup_rbuf(sk, 1);
3271 		if (!(val & 1))
3272 			inet_csk_enter_pingpong_mode(sk);
3273 	}
3274 }
3275 
3276 void tcp_sock_set_quickack(struct sock *sk, int val)
3277 {
3278 	lock_sock(sk);
3279 	__tcp_sock_set_quickack(sk, val);
3280 	release_sock(sk);
3281 }
3282 EXPORT_SYMBOL(tcp_sock_set_quickack);
3283 
3284 int tcp_sock_set_syncnt(struct sock *sk, int val)
3285 {
3286 	if (val < 1 || val > MAX_TCP_SYNCNT)
3287 		return -EINVAL;
3288 
3289 	lock_sock(sk);
3290 	inet_csk(sk)->icsk_syn_retries = val;
3291 	release_sock(sk);
3292 	return 0;
3293 }
3294 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3295 
3296 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3297 {
3298 	lock_sock(sk);
3299 	inet_csk(sk)->icsk_user_timeout = val;
3300 	release_sock(sk);
3301 }
3302 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3303 
3304 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3305 {
3306 	struct tcp_sock *tp = tcp_sk(sk);
3307 
3308 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3309 		return -EINVAL;
3310 
3311 	tp->keepalive_time = val * HZ;
3312 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3313 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3314 		u32 elapsed = keepalive_time_elapsed(tp);
3315 
3316 		if (tp->keepalive_time > elapsed)
3317 			elapsed = tp->keepalive_time - elapsed;
3318 		else
3319 			elapsed = 0;
3320 		inet_csk_reset_keepalive_timer(sk, elapsed);
3321 	}
3322 
3323 	return 0;
3324 }
3325 
3326 int tcp_sock_set_keepidle(struct sock *sk, int val)
3327 {
3328 	int err;
3329 
3330 	lock_sock(sk);
3331 	err = tcp_sock_set_keepidle_locked(sk, val);
3332 	release_sock(sk);
3333 	return err;
3334 }
3335 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3336 
3337 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3338 {
3339 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3340 		return -EINVAL;
3341 
3342 	lock_sock(sk);
3343 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3344 	release_sock(sk);
3345 	return 0;
3346 }
3347 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3348 
3349 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3350 {
3351 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3352 		return -EINVAL;
3353 
3354 	lock_sock(sk);
3355 	tcp_sk(sk)->keepalive_probes = val;
3356 	release_sock(sk);
3357 	return 0;
3358 }
3359 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3360 
3361 int tcp_set_window_clamp(struct sock *sk, int val)
3362 {
3363 	struct tcp_sock *tp = tcp_sk(sk);
3364 
3365 	if (!val) {
3366 		if (sk->sk_state != TCP_CLOSE)
3367 			return -EINVAL;
3368 		tp->window_clamp = 0;
3369 	} else {
3370 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3371 			SOCK_MIN_RCVBUF / 2 : val;
3372 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3373 	}
3374 	return 0;
3375 }
3376 
3377 /*
3378  *	Socket option code for TCP.
3379  */
3380 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3381 		sockptr_t optval, unsigned int optlen)
3382 {
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 	struct inet_connection_sock *icsk = inet_csk(sk);
3385 	struct net *net = sock_net(sk);
3386 	int val;
3387 	int err = 0;
3388 
3389 	/* These are data/string values, all the others are ints */
3390 	switch (optname) {
3391 	case TCP_CONGESTION: {
3392 		char name[TCP_CA_NAME_MAX];
3393 
3394 		if (optlen < 1)
3395 			return -EINVAL;
3396 
3397 		val = strncpy_from_sockptr(name, optval,
3398 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3399 		if (val < 0)
3400 			return -EFAULT;
3401 		name[val] = 0;
3402 
3403 		lock_sock(sk);
3404 		err = tcp_set_congestion_control(sk, name, true,
3405 						 ns_capable(sock_net(sk)->user_ns,
3406 							    CAP_NET_ADMIN));
3407 		release_sock(sk);
3408 		return err;
3409 	}
3410 	case TCP_ULP: {
3411 		char name[TCP_ULP_NAME_MAX];
3412 
3413 		if (optlen < 1)
3414 			return -EINVAL;
3415 
3416 		val = strncpy_from_sockptr(name, optval,
3417 					min_t(long, TCP_ULP_NAME_MAX - 1,
3418 					      optlen));
3419 		if (val < 0)
3420 			return -EFAULT;
3421 		name[val] = 0;
3422 
3423 		lock_sock(sk);
3424 		err = tcp_set_ulp(sk, name);
3425 		release_sock(sk);
3426 		return err;
3427 	}
3428 	case TCP_FASTOPEN_KEY: {
3429 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3430 		__u8 *backup_key = NULL;
3431 
3432 		/* Allow a backup key as well to facilitate key rotation
3433 		 * First key is the active one.
3434 		 */
3435 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3436 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3437 			return -EINVAL;
3438 
3439 		if (copy_from_sockptr(key, optval, optlen))
3440 			return -EFAULT;
3441 
3442 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3443 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3444 
3445 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3446 	}
3447 	default:
3448 		/* fallthru */
3449 		break;
3450 	}
3451 
3452 	if (optlen < sizeof(int))
3453 		return -EINVAL;
3454 
3455 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3456 		return -EFAULT;
3457 
3458 	lock_sock(sk);
3459 
3460 	switch (optname) {
3461 	case TCP_MAXSEG:
3462 		/* Values greater than interface MTU won't take effect. However
3463 		 * at the point when this call is done we typically don't yet
3464 		 * know which interface is going to be used
3465 		 */
3466 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3467 			err = -EINVAL;
3468 			break;
3469 		}
3470 		tp->rx_opt.user_mss = val;
3471 		break;
3472 
3473 	case TCP_NODELAY:
3474 		__tcp_sock_set_nodelay(sk, val);
3475 		break;
3476 
3477 	case TCP_THIN_LINEAR_TIMEOUTS:
3478 		if (val < 0 || val > 1)
3479 			err = -EINVAL;
3480 		else
3481 			tp->thin_lto = val;
3482 		break;
3483 
3484 	case TCP_THIN_DUPACK:
3485 		if (val < 0 || val > 1)
3486 			err = -EINVAL;
3487 		break;
3488 
3489 	case TCP_REPAIR:
3490 		if (!tcp_can_repair_sock(sk))
3491 			err = -EPERM;
3492 		else if (val == TCP_REPAIR_ON) {
3493 			tp->repair = 1;
3494 			sk->sk_reuse = SK_FORCE_REUSE;
3495 			tp->repair_queue = TCP_NO_QUEUE;
3496 		} else if (val == TCP_REPAIR_OFF) {
3497 			tp->repair = 0;
3498 			sk->sk_reuse = SK_NO_REUSE;
3499 			tcp_send_window_probe(sk);
3500 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3501 			tp->repair = 0;
3502 			sk->sk_reuse = SK_NO_REUSE;
3503 		} else
3504 			err = -EINVAL;
3505 
3506 		break;
3507 
3508 	case TCP_REPAIR_QUEUE:
3509 		if (!tp->repair)
3510 			err = -EPERM;
3511 		else if ((unsigned int)val < TCP_QUEUES_NR)
3512 			tp->repair_queue = val;
3513 		else
3514 			err = -EINVAL;
3515 		break;
3516 
3517 	case TCP_QUEUE_SEQ:
3518 		if (sk->sk_state != TCP_CLOSE) {
3519 			err = -EPERM;
3520 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3521 			if (!tcp_rtx_queue_empty(sk))
3522 				err = -EPERM;
3523 			else
3524 				WRITE_ONCE(tp->write_seq, val);
3525 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3526 			if (tp->rcv_nxt != tp->copied_seq) {
3527 				err = -EPERM;
3528 			} else {
3529 				WRITE_ONCE(tp->rcv_nxt, val);
3530 				WRITE_ONCE(tp->copied_seq, val);
3531 			}
3532 		} else {
3533 			err = -EINVAL;
3534 		}
3535 		break;
3536 
3537 	case TCP_REPAIR_OPTIONS:
3538 		if (!tp->repair)
3539 			err = -EINVAL;
3540 		else if (sk->sk_state == TCP_ESTABLISHED)
3541 			err = tcp_repair_options_est(sk, optval, optlen);
3542 		else
3543 			err = -EPERM;
3544 		break;
3545 
3546 	case TCP_CORK:
3547 		__tcp_sock_set_cork(sk, val);
3548 		break;
3549 
3550 	case TCP_KEEPIDLE:
3551 		err = tcp_sock_set_keepidle_locked(sk, val);
3552 		break;
3553 	case TCP_KEEPINTVL:
3554 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3555 			err = -EINVAL;
3556 		else
3557 			tp->keepalive_intvl = val * HZ;
3558 		break;
3559 	case TCP_KEEPCNT:
3560 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3561 			err = -EINVAL;
3562 		else
3563 			tp->keepalive_probes = val;
3564 		break;
3565 	case TCP_SYNCNT:
3566 		if (val < 1 || val > MAX_TCP_SYNCNT)
3567 			err = -EINVAL;
3568 		else
3569 			icsk->icsk_syn_retries = val;
3570 		break;
3571 
3572 	case TCP_SAVE_SYN:
3573 		/* 0: disable, 1: enable, 2: start from ether_header */
3574 		if (val < 0 || val > 2)
3575 			err = -EINVAL;
3576 		else
3577 			tp->save_syn = val;
3578 		break;
3579 
3580 	case TCP_LINGER2:
3581 		if (val < 0)
3582 			tp->linger2 = -1;
3583 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3584 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3585 		else
3586 			tp->linger2 = val * HZ;
3587 		break;
3588 
3589 	case TCP_DEFER_ACCEPT:
3590 		/* Translate value in seconds to number of retransmits */
3591 		icsk->icsk_accept_queue.rskq_defer_accept =
3592 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3593 					TCP_RTO_MAX / HZ);
3594 		break;
3595 
3596 	case TCP_WINDOW_CLAMP:
3597 		err = tcp_set_window_clamp(sk, val);
3598 		break;
3599 
3600 	case TCP_QUICKACK:
3601 		__tcp_sock_set_quickack(sk, val);
3602 		break;
3603 
3604 #ifdef CONFIG_TCP_MD5SIG
3605 	case TCP_MD5SIG:
3606 	case TCP_MD5SIG_EXT:
3607 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3608 		break;
3609 #endif
3610 	case TCP_USER_TIMEOUT:
3611 		/* Cap the max time in ms TCP will retry or probe the window
3612 		 * before giving up and aborting (ETIMEDOUT) a connection.
3613 		 */
3614 		if (val < 0)
3615 			err = -EINVAL;
3616 		else
3617 			icsk->icsk_user_timeout = val;
3618 		break;
3619 
3620 	case TCP_FASTOPEN:
3621 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3622 		    TCPF_LISTEN))) {
3623 			tcp_fastopen_init_key_once(net);
3624 
3625 			fastopen_queue_tune(sk, val);
3626 		} else {
3627 			err = -EINVAL;
3628 		}
3629 		break;
3630 	case TCP_FASTOPEN_CONNECT:
3631 		if (val > 1 || val < 0) {
3632 			err = -EINVAL;
3633 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3634 			if (sk->sk_state == TCP_CLOSE)
3635 				tp->fastopen_connect = val;
3636 			else
3637 				err = -EINVAL;
3638 		} else {
3639 			err = -EOPNOTSUPP;
3640 		}
3641 		break;
3642 	case TCP_FASTOPEN_NO_COOKIE:
3643 		if (val > 1 || val < 0)
3644 			err = -EINVAL;
3645 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3646 			err = -EINVAL;
3647 		else
3648 			tp->fastopen_no_cookie = val;
3649 		break;
3650 	case TCP_TIMESTAMP:
3651 		if (!tp->repair)
3652 			err = -EPERM;
3653 		else
3654 			tp->tsoffset = val - tcp_time_stamp_raw();
3655 		break;
3656 	case TCP_REPAIR_WINDOW:
3657 		err = tcp_repair_set_window(tp, optval, optlen);
3658 		break;
3659 	case TCP_NOTSENT_LOWAT:
3660 		tp->notsent_lowat = val;
3661 		sk->sk_write_space(sk);
3662 		break;
3663 	case TCP_INQ:
3664 		if (val > 1 || val < 0)
3665 			err = -EINVAL;
3666 		else
3667 			tp->recvmsg_inq = val;
3668 		break;
3669 	case TCP_TX_DELAY:
3670 		if (val)
3671 			tcp_enable_tx_delay();
3672 		tp->tcp_tx_delay = val;
3673 		break;
3674 	default:
3675 		err = -ENOPROTOOPT;
3676 		break;
3677 	}
3678 
3679 	release_sock(sk);
3680 	return err;
3681 }
3682 
3683 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3684 		   unsigned int optlen)
3685 {
3686 	const struct inet_connection_sock *icsk = inet_csk(sk);
3687 
3688 	if (level != SOL_TCP)
3689 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3690 						     optval, optlen);
3691 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3692 }
3693 EXPORT_SYMBOL(tcp_setsockopt);
3694 
3695 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3696 				      struct tcp_info *info)
3697 {
3698 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3699 	enum tcp_chrono i;
3700 
3701 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3702 		stats[i] = tp->chrono_stat[i - 1];
3703 		if (i == tp->chrono_type)
3704 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3705 		stats[i] *= USEC_PER_SEC / HZ;
3706 		total += stats[i];
3707 	}
3708 
3709 	info->tcpi_busy_time = total;
3710 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3711 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3712 }
3713 
3714 /* Return information about state of tcp endpoint in API format. */
3715 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3716 {
3717 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3718 	const struct inet_connection_sock *icsk = inet_csk(sk);
3719 	unsigned long rate;
3720 	u32 now;
3721 	u64 rate64;
3722 	bool slow;
3723 
3724 	memset(info, 0, sizeof(*info));
3725 	if (sk->sk_type != SOCK_STREAM)
3726 		return;
3727 
3728 	info->tcpi_state = inet_sk_state_load(sk);
3729 
3730 	/* Report meaningful fields for all TCP states, including listeners */
3731 	rate = READ_ONCE(sk->sk_pacing_rate);
3732 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3733 	info->tcpi_pacing_rate = rate64;
3734 
3735 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3736 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3737 	info->tcpi_max_pacing_rate = rate64;
3738 
3739 	info->tcpi_reordering = tp->reordering;
3740 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3741 
3742 	if (info->tcpi_state == TCP_LISTEN) {
3743 		/* listeners aliased fields :
3744 		 * tcpi_unacked -> Number of children ready for accept()
3745 		 * tcpi_sacked  -> max backlog
3746 		 */
3747 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3748 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3749 		return;
3750 	}
3751 
3752 	slow = lock_sock_fast(sk);
3753 
3754 	info->tcpi_ca_state = icsk->icsk_ca_state;
3755 	info->tcpi_retransmits = icsk->icsk_retransmits;
3756 	info->tcpi_probes = icsk->icsk_probes_out;
3757 	info->tcpi_backoff = icsk->icsk_backoff;
3758 
3759 	if (tp->rx_opt.tstamp_ok)
3760 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3761 	if (tcp_is_sack(tp))
3762 		info->tcpi_options |= TCPI_OPT_SACK;
3763 	if (tp->rx_opt.wscale_ok) {
3764 		info->tcpi_options |= TCPI_OPT_WSCALE;
3765 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3766 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3767 	}
3768 
3769 	if (tp->ecn_flags & TCP_ECN_OK)
3770 		info->tcpi_options |= TCPI_OPT_ECN;
3771 	if (tp->ecn_flags & TCP_ECN_SEEN)
3772 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3773 	if (tp->syn_data_acked)
3774 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3775 
3776 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3777 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3778 	info->tcpi_snd_mss = tp->mss_cache;
3779 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3780 
3781 	info->tcpi_unacked = tp->packets_out;
3782 	info->tcpi_sacked = tp->sacked_out;
3783 
3784 	info->tcpi_lost = tp->lost_out;
3785 	info->tcpi_retrans = tp->retrans_out;
3786 
3787 	now = tcp_jiffies32;
3788 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3789 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3790 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3791 
3792 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3793 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3794 	info->tcpi_rtt = tp->srtt_us >> 3;
3795 	info->tcpi_rttvar = tp->mdev_us >> 2;
3796 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3797 	info->tcpi_advmss = tp->advmss;
3798 
3799 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3800 	info->tcpi_rcv_space = tp->rcvq_space.space;
3801 
3802 	info->tcpi_total_retrans = tp->total_retrans;
3803 
3804 	info->tcpi_bytes_acked = tp->bytes_acked;
3805 	info->tcpi_bytes_received = tp->bytes_received;
3806 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3807 	tcp_get_info_chrono_stats(tp, info);
3808 
3809 	info->tcpi_segs_out = tp->segs_out;
3810 
3811 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3812 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3813 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3814 
3815 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3816 	info->tcpi_data_segs_out = tp->data_segs_out;
3817 
3818 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3819 	rate64 = tcp_compute_delivery_rate(tp);
3820 	if (rate64)
3821 		info->tcpi_delivery_rate = rate64;
3822 	info->tcpi_delivered = tp->delivered;
3823 	info->tcpi_delivered_ce = tp->delivered_ce;
3824 	info->tcpi_bytes_sent = tp->bytes_sent;
3825 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3826 	info->tcpi_dsack_dups = tp->dsack_dups;
3827 	info->tcpi_reord_seen = tp->reord_seen;
3828 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3829 	info->tcpi_snd_wnd = tp->snd_wnd;
3830 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3831 	unlock_sock_fast(sk, slow);
3832 }
3833 EXPORT_SYMBOL_GPL(tcp_get_info);
3834 
3835 static size_t tcp_opt_stats_get_size(void)
3836 {
3837 	return
3838 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3839 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3840 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3841 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3842 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3843 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3844 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3845 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3846 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3847 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3848 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3849 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3850 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3851 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3852 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3853 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3854 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3855 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3856 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3858 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3859 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3860 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3862 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3863 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3864 		0;
3865 }
3866 
3867 /* Returns TTL or hop limit of an incoming packet from skb. */
3868 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3869 {
3870 	if (skb->protocol == htons(ETH_P_IP))
3871 		return ip_hdr(skb)->ttl;
3872 	else if (skb->protocol == htons(ETH_P_IPV6))
3873 		return ipv6_hdr(skb)->hop_limit;
3874 	else
3875 		return 0;
3876 }
3877 
3878 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3879 					       const struct sk_buff *orig_skb,
3880 					       const struct sk_buff *ack_skb)
3881 {
3882 	const struct tcp_sock *tp = tcp_sk(sk);
3883 	struct sk_buff *stats;
3884 	struct tcp_info info;
3885 	unsigned long rate;
3886 	u64 rate64;
3887 
3888 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3889 	if (!stats)
3890 		return NULL;
3891 
3892 	tcp_get_info_chrono_stats(tp, &info);
3893 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3894 			  info.tcpi_busy_time, TCP_NLA_PAD);
3895 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3896 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3897 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3898 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3899 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3900 			  tp->data_segs_out, TCP_NLA_PAD);
3901 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3902 			  tp->total_retrans, TCP_NLA_PAD);
3903 
3904 	rate = READ_ONCE(sk->sk_pacing_rate);
3905 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3906 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3907 
3908 	rate64 = tcp_compute_delivery_rate(tp);
3909 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3910 
3911 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3912 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3913 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3914 
3915 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3916 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3917 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3918 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3919 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3920 
3921 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3922 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3923 
3924 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3925 			  TCP_NLA_PAD);
3926 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3927 			  TCP_NLA_PAD);
3928 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3929 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3930 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3931 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3932 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3933 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3934 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3935 			  TCP_NLA_PAD);
3936 	if (ack_skb)
3937 		nla_put_u8(stats, TCP_NLA_TTL,
3938 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3939 
3940 	return stats;
3941 }
3942 
3943 static int do_tcp_getsockopt(struct sock *sk, int level,
3944 		int optname, char __user *optval, int __user *optlen)
3945 {
3946 	struct inet_connection_sock *icsk = inet_csk(sk);
3947 	struct tcp_sock *tp = tcp_sk(sk);
3948 	struct net *net = sock_net(sk);
3949 	int val, len;
3950 
3951 	if (get_user(len, optlen))
3952 		return -EFAULT;
3953 
3954 	len = min_t(unsigned int, len, sizeof(int));
3955 
3956 	if (len < 0)
3957 		return -EINVAL;
3958 
3959 	switch (optname) {
3960 	case TCP_MAXSEG:
3961 		val = tp->mss_cache;
3962 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3963 			val = tp->rx_opt.user_mss;
3964 		if (tp->repair)
3965 			val = tp->rx_opt.mss_clamp;
3966 		break;
3967 	case TCP_NODELAY:
3968 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3969 		break;
3970 	case TCP_CORK:
3971 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3972 		break;
3973 	case TCP_KEEPIDLE:
3974 		val = keepalive_time_when(tp) / HZ;
3975 		break;
3976 	case TCP_KEEPINTVL:
3977 		val = keepalive_intvl_when(tp) / HZ;
3978 		break;
3979 	case TCP_KEEPCNT:
3980 		val = keepalive_probes(tp);
3981 		break;
3982 	case TCP_SYNCNT:
3983 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3984 		break;
3985 	case TCP_LINGER2:
3986 		val = tp->linger2;
3987 		if (val >= 0)
3988 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3989 		break;
3990 	case TCP_DEFER_ACCEPT:
3991 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3992 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3993 		break;
3994 	case TCP_WINDOW_CLAMP:
3995 		val = tp->window_clamp;
3996 		break;
3997 	case TCP_INFO: {
3998 		struct tcp_info info;
3999 
4000 		if (get_user(len, optlen))
4001 			return -EFAULT;
4002 
4003 		tcp_get_info(sk, &info);
4004 
4005 		len = min_t(unsigned int, len, sizeof(info));
4006 		if (put_user(len, optlen))
4007 			return -EFAULT;
4008 		if (copy_to_user(optval, &info, len))
4009 			return -EFAULT;
4010 		return 0;
4011 	}
4012 	case TCP_CC_INFO: {
4013 		const struct tcp_congestion_ops *ca_ops;
4014 		union tcp_cc_info info;
4015 		size_t sz = 0;
4016 		int attr;
4017 
4018 		if (get_user(len, optlen))
4019 			return -EFAULT;
4020 
4021 		ca_ops = icsk->icsk_ca_ops;
4022 		if (ca_ops && ca_ops->get_info)
4023 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4024 
4025 		len = min_t(unsigned int, len, sz);
4026 		if (put_user(len, optlen))
4027 			return -EFAULT;
4028 		if (copy_to_user(optval, &info, len))
4029 			return -EFAULT;
4030 		return 0;
4031 	}
4032 	case TCP_QUICKACK:
4033 		val = !inet_csk_in_pingpong_mode(sk);
4034 		break;
4035 
4036 	case TCP_CONGESTION:
4037 		if (get_user(len, optlen))
4038 			return -EFAULT;
4039 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4040 		if (put_user(len, optlen))
4041 			return -EFAULT;
4042 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4043 			return -EFAULT;
4044 		return 0;
4045 
4046 	case TCP_ULP:
4047 		if (get_user(len, optlen))
4048 			return -EFAULT;
4049 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4050 		if (!icsk->icsk_ulp_ops) {
4051 			if (put_user(0, optlen))
4052 				return -EFAULT;
4053 			return 0;
4054 		}
4055 		if (put_user(len, optlen))
4056 			return -EFAULT;
4057 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4058 			return -EFAULT;
4059 		return 0;
4060 
4061 	case TCP_FASTOPEN_KEY: {
4062 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4063 		unsigned int key_len;
4064 
4065 		if (get_user(len, optlen))
4066 			return -EFAULT;
4067 
4068 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4069 				TCP_FASTOPEN_KEY_LENGTH;
4070 		len = min_t(unsigned int, len, key_len);
4071 		if (put_user(len, optlen))
4072 			return -EFAULT;
4073 		if (copy_to_user(optval, key, len))
4074 			return -EFAULT;
4075 		return 0;
4076 	}
4077 	case TCP_THIN_LINEAR_TIMEOUTS:
4078 		val = tp->thin_lto;
4079 		break;
4080 
4081 	case TCP_THIN_DUPACK:
4082 		val = 0;
4083 		break;
4084 
4085 	case TCP_REPAIR:
4086 		val = tp->repair;
4087 		break;
4088 
4089 	case TCP_REPAIR_QUEUE:
4090 		if (tp->repair)
4091 			val = tp->repair_queue;
4092 		else
4093 			return -EINVAL;
4094 		break;
4095 
4096 	case TCP_REPAIR_WINDOW: {
4097 		struct tcp_repair_window opt;
4098 
4099 		if (get_user(len, optlen))
4100 			return -EFAULT;
4101 
4102 		if (len != sizeof(opt))
4103 			return -EINVAL;
4104 
4105 		if (!tp->repair)
4106 			return -EPERM;
4107 
4108 		opt.snd_wl1	= tp->snd_wl1;
4109 		opt.snd_wnd	= tp->snd_wnd;
4110 		opt.max_window	= tp->max_window;
4111 		opt.rcv_wnd	= tp->rcv_wnd;
4112 		opt.rcv_wup	= tp->rcv_wup;
4113 
4114 		if (copy_to_user(optval, &opt, len))
4115 			return -EFAULT;
4116 		return 0;
4117 	}
4118 	case TCP_QUEUE_SEQ:
4119 		if (tp->repair_queue == TCP_SEND_QUEUE)
4120 			val = tp->write_seq;
4121 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4122 			val = tp->rcv_nxt;
4123 		else
4124 			return -EINVAL;
4125 		break;
4126 
4127 	case TCP_USER_TIMEOUT:
4128 		val = icsk->icsk_user_timeout;
4129 		break;
4130 
4131 	case TCP_FASTOPEN:
4132 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4133 		break;
4134 
4135 	case TCP_FASTOPEN_CONNECT:
4136 		val = tp->fastopen_connect;
4137 		break;
4138 
4139 	case TCP_FASTOPEN_NO_COOKIE:
4140 		val = tp->fastopen_no_cookie;
4141 		break;
4142 
4143 	case TCP_TX_DELAY:
4144 		val = tp->tcp_tx_delay;
4145 		break;
4146 
4147 	case TCP_TIMESTAMP:
4148 		val = tcp_time_stamp_raw() + tp->tsoffset;
4149 		break;
4150 	case TCP_NOTSENT_LOWAT:
4151 		val = tp->notsent_lowat;
4152 		break;
4153 	case TCP_INQ:
4154 		val = tp->recvmsg_inq;
4155 		break;
4156 	case TCP_SAVE_SYN:
4157 		val = tp->save_syn;
4158 		break;
4159 	case TCP_SAVED_SYN: {
4160 		if (get_user(len, optlen))
4161 			return -EFAULT;
4162 
4163 		lock_sock(sk);
4164 		if (tp->saved_syn) {
4165 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4166 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4167 					     optlen)) {
4168 					release_sock(sk);
4169 					return -EFAULT;
4170 				}
4171 				release_sock(sk);
4172 				return -EINVAL;
4173 			}
4174 			len = tcp_saved_syn_len(tp->saved_syn);
4175 			if (put_user(len, optlen)) {
4176 				release_sock(sk);
4177 				return -EFAULT;
4178 			}
4179 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4180 				release_sock(sk);
4181 				return -EFAULT;
4182 			}
4183 			tcp_saved_syn_free(tp);
4184 			release_sock(sk);
4185 		} else {
4186 			release_sock(sk);
4187 			len = 0;
4188 			if (put_user(len, optlen))
4189 				return -EFAULT;
4190 		}
4191 		return 0;
4192 	}
4193 #ifdef CONFIG_MMU
4194 	case TCP_ZEROCOPY_RECEIVE: {
4195 		struct scm_timestamping_internal tss;
4196 		struct tcp_zerocopy_receive zc = {};
4197 		int err;
4198 
4199 		if (get_user(len, optlen))
4200 			return -EFAULT;
4201 		if (len < 0 ||
4202 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4203 			return -EINVAL;
4204 		if (unlikely(len > sizeof(zc))) {
4205 			err = check_zeroed_user(optval + sizeof(zc),
4206 						len - sizeof(zc));
4207 			if (err < 1)
4208 				return err == 0 ? -EINVAL : err;
4209 			len = sizeof(zc);
4210 			if (put_user(len, optlen))
4211 				return -EFAULT;
4212 		}
4213 		if (copy_from_user(&zc, optval, len))
4214 			return -EFAULT;
4215 		if (zc.reserved)
4216 			return -EINVAL;
4217 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4218 			return -EINVAL;
4219 		lock_sock(sk);
4220 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4221 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4222 							  &zc, &len, err);
4223 		release_sock(sk);
4224 		sk_defer_free_flush(sk);
4225 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4226 			goto zerocopy_rcv_cmsg;
4227 		switch (len) {
4228 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4229 			goto zerocopy_rcv_cmsg;
4230 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4231 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4232 		case offsetofend(struct tcp_zerocopy_receive, flags):
4233 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4234 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4235 		case offsetofend(struct tcp_zerocopy_receive, err):
4236 			goto zerocopy_rcv_sk_err;
4237 		case offsetofend(struct tcp_zerocopy_receive, inq):
4238 			goto zerocopy_rcv_inq;
4239 		case offsetofend(struct tcp_zerocopy_receive, length):
4240 		default:
4241 			goto zerocopy_rcv_out;
4242 		}
4243 zerocopy_rcv_cmsg:
4244 		if (zc.msg_flags & TCP_CMSG_TS)
4245 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4246 		else
4247 			zc.msg_flags = 0;
4248 zerocopy_rcv_sk_err:
4249 		if (!err)
4250 			zc.err = sock_error(sk);
4251 zerocopy_rcv_inq:
4252 		zc.inq = tcp_inq_hint(sk);
4253 zerocopy_rcv_out:
4254 		if (!err && copy_to_user(optval, &zc, len))
4255 			err = -EFAULT;
4256 		return err;
4257 	}
4258 #endif
4259 	default:
4260 		return -ENOPROTOOPT;
4261 	}
4262 
4263 	if (put_user(len, optlen))
4264 		return -EFAULT;
4265 	if (copy_to_user(optval, &val, len))
4266 		return -EFAULT;
4267 	return 0;
4268 }
4269 
4270 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4271 {
4272 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4273 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4274 	 */
4275 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4276 		return true;
4277 
4278 	return false;
4279 }
4280 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4281 
4282 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4283 		   int __user *optlen)
4284 {
4285 	struct inet_connection_sock *icsk = inet_csk(sk);
4286 
4287 	if (level != SOL_TCP)
4288 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4289 						     optval, optlen);
4290 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4291 }
4292 EXPORT_SYMBOL(tcp_getsockopt);
4293 
4294 #ifdef CONFIG_TCP_MD5SIG
4295 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4296 static DEFINE_MUTEX(tcp_md5sig_mutex);
4297 static bool tcp_md5sig_pool_populated = false;
4298 
4299 static void __tcp_alloc_md5sig_pool(void)
4300 {
4301 	struct crypto_ahash *hash;
4302 	int cpu;
4303 
4304 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4305 	if (IS_ERR(hash))
4306 		return;
4307 
4308 	for_each_possible_cpu(cpu) {
4309 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4310 		struct ahash_request *req;
4311 
4312 		if (!scratch) {
4313 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4314 					       sizeof(struct tcphdr),
4315 					       GFP_KERNEL,
4316 					       cpu_to_node(cpu));
4317 			if (!scratch)
4318 				return;
4319 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4320 		}
4321 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4322 			continue;
4323 
4324 		req = ahash_request_alloc(hash, GFP_KERNEL);
4325 		if (!req)
4326 			return;
4327 
4328 		ahash_request_set_callback(req, 0, NULL, NULL);
4329 
4330 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4331 	}
4332 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4333 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4334 	 */
4335 	smp_wmb();
4336 	tcp_md5sig_pool_populated = true;
4337 }
4338 
4339 bool tcp_alloc_md5sig_pool(void)
4340 {
4341 	if (unlikely(!tcp_md5sig_pool_populated)) {
4342 		mutex_lock(&tcp_md5sig_mutex);
4343 
4344 		if (!tcp_md5sig_pool_populated) {
4345 			__tcp_alloc_md5sig_pool();
4346 			if (tcp_md5sig_pool_populated)
4347 				static_branch_inc(&tcp_md5_needed);
4348 		}
4349 
4350 		mutex_unlock(&tcp_md5sig_mutex);
4351 	}
4352 	return tcp_md5sig_pool_populated;
4353 }
4354 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4355 
4356 
4357 /**
4358  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4359  *
4360  *	We use percpu structure, so if we succeed, we exit with preemption
4361  *	and BH disabled, to make sure another thread or softirq handling
4362  *	wont try to get same context.
4363  */
4364 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4365 {
4366 	local_bh_disable();
4367 
4368 	if (tcp_md5sig_pool_populated) {
4369 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4370 		smp_rmb();
4371 		return this_cpu_ptr(&tcp_md5sig_pool);
4372 	}
4373 	local_bh_enable();
4374 	return NULL;
4375 }
4376 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4377 
4378 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4379 			  const struct sk_buff *skb, unsigned int header_len)
4380 {
4381 	struct scatterlist sg;
4382 	const struct tcphdr *tp = tcp_hdr(skb);
4383 	struct ahash_request *req = hp->md5_req;
4384 	unsigned int i;
4385 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4386 					   skb_headlen(skb) - header_len : 0;
4387 	const struct skb_shared_info *shi = skb_shinfo(skb);
4388 	struct sk_buff *frag_iter;
4389 
4390 	sg_init_table(&sg, 1);
4391 
4392 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4393 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4394 	if (crypto_ahash_update(req))
4395 		return 1;
4396 
4397 	for (i = 0; i < shi->nr_frags; ++i) {
4398 		const skb_frag_t *f = &shi->frags[i];
4399 		unsigned int offset = skb_frag_off(f);
4400 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4401 
4402 		sg_set_page(&sg, page, skb_frag_size(f),
4403 			    offset_in_page(offset));
4404 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4405 		if (crypto_ahash_update(req))
4406 			return 1;
4407 	}
4408 
4409 	skb_walk_frags(skb, frag_iter)
4410 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4411 			return 1;
4412 
4413 	return 0;
4414 }
4415 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4416 
4417 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4418 {
4419 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4420 	struct scatterlist sg;
4421 
4422 	sg_init_one(&sg, key->key, keylen);
4423 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4424 
4425 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4426 	return data_race(crypto_ahash_update(hp->md5_req));
4427 }
4428 EXPORT_SYMBOL(tcp_md5_hash_key);
4429 
4430 #endif
4431 
4432 void tcp_done(struct sock *sk)
4433 {
4434 	struct request_sock *req;
4435 
4436 	/* We might be called with a new socket, after
4437 	 * inet_csk_prepare_forced_close() has been called
4438 	 * so we can not use lockdep_sock_is_held(sk)
4439 	 */
4440 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4441 
4442 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4443 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4444 
4445 	tcp_set_state(sk, TCP_CLOSE);
4446 	tcp_clear_xmit_timers(sk);
4447 	if (req)
4448 		reqsk_fastopen_remove(sk, req, false);
4449 
4450 	sk->sk_shutdown = SHUTDOWN_MASK;
4451 
4452 	if (!sock_flag(sk, SOCK_DEAD))
4453 		sk->sk_state_change(sk);
4454 	else
4455 		inet_csk_destroy_sock(sk);
4456 }
4457 EXPORT_SYMBOL_GPL(tcp_done);
4458 
4459 int tcp_abort(struct sock *sk, int err)
4460 {
4461 	if (!sk_fullsock(sk)) {
4462 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4463 			struct request_sock *req = inet_reqsk(sk);
4464 
4465 			local_bh_disable();
4466 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4467 			local_bh_enable();
4468 			return 0;
4469 		}
4470 		return -EOPNOTSUPP;
4471 	}
4472 
4473 	/* Don't race with userspace socket closes such as tcp_close. */
4474 	lock_sock(sk);
4475 
4476 	if (sk->sk_state == TCP_LISTEN) {
4477 		tcp_set_state(sk, TCP_CLOSE);
4478 		inet_csk_listen_stop(sk);
4479 	}
4480 
4481 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4482 	local_bh_disable();
4483 	bh_lock_sock(sk);
4484 
4485 	if (!sock_flag(sk, SOCK_DEAD)) {
4486 		sk->sk_err = err;
4487 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4488 		smp_wmb();
4489 		sk_error_report(sk);
4490 		if (tcp_need_reset(sk->sk_state))
4491 			tcp_send_active_reset(sk, GFP_ATOMIC);
4492 		tcp_done(sk);
4493 	}
4494 
4495 	bh_unlock_sock(sk);
4496 	local_bh_enable();
4497 	tcp_write_queue_purge(sk);
4498 	release_sock(sk);
4499 	return 0;
4500 }
4501 EXPORT_SYMBOL_GPL(tcp_abort);
4502 
4503 extern struct tcp_congestion_ops tcp_reno;
4504 
4505 static __initdata unsigned long thash_entries;
4506 static int __init set_thash_entries(char *str)
4507 {
4508 	ssize_t ret;
4509 
4510 	if (!str)
4511 		return 0;
4512 
4513 	ret = kstrtoul(str, 0, &thash_entries);
4514 	if (ret)
4515 		return 0;
4516 
4517 	return 1;
4518 }
4519 __setup("thash_entries=", set_thash_entries);
4520 
4521 static void __init tcp_init_mem(void)
4522 {
4523 	unsigned long limit = nr_free_buffer_pages() / 16;
4524 
4525 	limit = max(limit, 128UL);
4526 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4527 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4528 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4529 }
4530 
4531 void __init tcp_init(void)
4532 {
4533 	int max_rshare, max_wshare, cnt;
4534 	unsigned long limit;
4535 	unsigned int i;
4536 
4537 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4538 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4539 		     sizeof_field(struct sk_buff, cb));
4540 
4541 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4542 
4543 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4544 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4545 
4546 	inet_hashinfo_init(&tcp_hashinfo);
4547 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4548 			    thash_entries, 21,  /* one slot per 2 MB*/
4549 			    0, 64 * 1024);
4550 	tcp_hashinfo.bind_bucket_cachep =
4551 		kmem_cache_create("tcp_bind_bucket",
4552 				  sizeof(struct inet_bind_bucket), 0,
4553 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4554 				  SLAB_ACCOUNT,
4555 				  NULL);
4556 
4557 	/* Size and allocate the main established and bind bucket
4558 	 * hash tables.
4559 	 *
4560 	 * The methodology is similar to that of the buffer cache.
4561 	 */
4562 	tcp_hashinfo.ehash =
4563 		alloc_large_system_hash("TCP established",
4564 					sizeof(struct inet_ehash_bucket),
4565 					thash_entries,
4566 					17, /* one slot per 128 KB of memory */
4567 					0,
4568 					NULL,
4569 					&tcp_hashinfo.ehash_mask,
4570 					0,
4571 					thash_entries ? 0 : 512 * 1024);
4572 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4573 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4574 
4575 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4576 		panic("TCP: failed to alloc ehash_locks");
4577 	tcp_hashinfo.bhash =
4578 		alloc_large_system_hash("TCP bind",
4579 					sizeof(struct inet_bind_hashbucket),
4580 					tcp_hashinfo.ehash_mask + 1,
4581 					17, /* one slot per 128 KB of memory */
4582 					0,
4583 					&tcp_hashinfo.bhash_size,
4584 					NULL,
4585 					0,
4586 					64 * 1024);
4587 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4588 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4589 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4590 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4591 	}
4592 
4593 
4594 	cnt = tcp_hashinfo.ehash_mask + 1;
4595 	sysctl_tcp_max_orphans = cnt / 2;
4596 
4597 	tcp_init_mem();
4598 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4599 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4600 	max_wshare = min(4UL*1024*1024, limit);
4601 	max_rshare = min(6UL*1024*1024, limit);
4602 
4603 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4604 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4605 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4606 
4607 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4608 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4609 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4610 
4611 	pr_info("Hash tables configured (established %u bind %u)\n",
4612 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4613 
4614 	tcp_v4_init();
4615 	tcp_metrics_init();
4616 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4617 	tcp_tasklet_init();
4618 	mptcp_init();
4619 }
4620