xref: /openbmc/linux/net/ipv4/tcp.c (revision e6dec923)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285 
286 int sysctl_tcp_autocorking __read_mostly = 1;
287 
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290 
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294 
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298 
299 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301 
302 /*
303  * Current number of TCP sockets.
304  */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307 
308 /*
309  * TCP splice context
310  */
311 struct tcp_splice_state {
312 	struct pipe_inode_info *pipe;
313 	size_t len;
314 	unsigned int flags;
315 };
316 
317 /*
318  * Pressure flag: try to collapse.
319  * Technical note: it is used by multiple contexts non atomically.
320  * All the __sk_mem_schedule() is of this nature: accounting
321  * is strict, actions are advisory and have some latency.
322  */
323 unsigned long tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	unsigned long val;
329 
330 	if (tcp_memory_pressure)
331 		return;
332 	val = jiffies;
333 
334 	if (!val)
335 		val--;
336 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340 
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 	unsigned long val;
344 
345 	if (!tcp_memory_pressure)
346 		return;
347 	val = xchg(&tcp_memory_pressure, 0);
348 	if (val)
349 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 			      jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353 
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 	u8 res = 0;
358 
359 	if (seconds > 0) {
360 		int period = timeout;
361 
362 		res = 1;
363 		while (seconds > period && res < 255) {
364 			res++;
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return res;
372 }
373 
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 	int period = 0;
378 
379 	if (retrans > 0) {
380 		period = timeout;
381 		while (--retrans) {
382 			timeout <<= 1;
383 			if (timeout > rto_max)
384 				timeout = rto_max;
385 			period += timeout;
386 		}
387 	}
388 	return period;
389 }
390 
391 /* Address-family independent initialization for a tcp_sock.
392  *
393  * NOTE: A lot of things set to zero explicitly by call to
394  *       sk_alloc() so need not be done here.
395  */
396 void tcp_init_sock(struct sock *sk)
397 {
398 	struct inet_connection_sock *icsk = inet_csk(sk);
399 	struct tcp_sock *tp = tcp_sk(sk);
400 
401 	tp->out_of_order_queue = RB_ROOT;
402 	tcp_init_xmit_timers(sk);
403 	tcp_prequeue_init(tp);
404 	INIT_LIST_HEAD(&tp->tsq_node);
405 
406 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
407 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
408 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
409 
410 	/* So many TCP implementations out there (incorrectly) count the
411 	 * initial SYN frame in their delayed-ACK and congestion control
412 	 * algorithms that we must have the following bandaid to talk
413 	 * efficiently to them.  -DaveM
414 	 */
415 	tp->snd_cwnd = TCP_INIT_CWND;
416 
417 	/* There's a bubble in the pipe until at least the first ACK. */
418 	tp->app_limited = ~0U;
419 
420 	/* See draft-stevens-tcpca-spec-01 for discussion of the
421 	 * initialization of these values.
422 	 */
423 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
424 	tp->snd_cwnd_clamp = ~0;
425 	tp->mss_cache = TCP_MSS_DEFAULT;
426 
427 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
428 	tcp_assign_congestion_control(sk);
429 
430 	tp->tsoffset = 0;
431 
432 	sk->sk_state = TCP_CLOSE;
433 
434 	sk->sk_write_space = sk_stream_write_space;
435 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
436 
437 	icsk->icsk_sync_mss = tcp_sync_mss;
438 
439 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
440 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
441 
442 	sk_sockets_allocated_inc(sk);
443 }
444 EXPORT_SYMBOL(tcp_init_sock);
445 
446 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
447 {
448 	if (tsflags && skb) {
449 		struct skb_shared_info *shinfo = skb_shinfo(skb);
450 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
451 
452 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
453 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
454 			tcb->txstamp_ack = 1;
455 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
456 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
457 	}
458 }
459 
460 /*
461  *	Wait for a TCP event.
462  *
463  *	Note that we don't need to lock the socket, as the upper poll layers
464  *	take care of normal races (between the test and the event) and we don't
465  *	go look at any of the socket buffers directly.
466  */
467 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
468 {
469 	unsigned int mask;
470 	struct sock *sk = sock->sk;
471 	const struct tcp_sock *tp = tcp_sk(sk);
472 	int state;
473 
474 	sock_rps_record_flow(sk);
475 
476 	sock_poll_wait(file, sk_sleep(sk), wait);
477 
478 	state = sk_state_load(sk);
479 	if (state == TCP_LISTEN)
480 		return inet_csk_listen_poll(sk);
481 
482 	/* Socket is not locked. We are protected from async events
483 	 * by poll logic and correct handling of state changes
484 	 * made by other threads is impossible in any case.
485 	 */
486 
487 	mask = 0;
488 
489 	/*
490 	 * POLLHUP is certainly not done right. But poll() doesn't
491 	 * have a notion of HUP in just one direction, and for a
492 	 * socket the read side is more interesting.
493 	 *
494 	 * Some poll() documentation says that POLLHUP is incompatible
495 	 * with the POLLOUT/POLLWR flags, so somebody should check this
496 	 * all. But careful, it tends to be safer to return too many
497 	 * bits than too few, and you can easily break real applications
498 	 * if you don't tell them that something has hung up!
499 	 *
500 	 * Check-me.
501 	 *
502 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
503 	 * our fs/select.c). It means that after we received EOF,
504 	 * poll always returns immediately, making impossible poll() on write()
505 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
506 	 * if and only if shutdown has been made in both directions.
507 	 * Actually, it is interesting to look how Solaris and DUX
508 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
509 	 * then we could set it on SND_SHUTDOWN. BTW examples given
510 	 * in Stevens' books assume exactly this behaviour, it explains
511 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
512 	 *
513 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
514 	 * blocking on fresh not-connected or disconnected socket. --ANK
515 	 */
516 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
517 		mask |= POLLHUP;
518 	if (sk->sk_shutdown & RCV_SHUTDOWN)
519 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
520 
521 	/* Connected or passive Fast Open socket? */
522 	if (state != TCP_SYN_SENT &&
523 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
524 		int target = sock_rcvlowat(sk, 0, INT_MAX);
525 
526 		if (tp->urg_seq == tp->copied_seq &&
527 		    !sock_flag(sk, SOCK_URGINLINE) &&
528 		    tp->urg_data)
529 			target++;
530 
531 		if (tp->rcv_nxt - tp->copied_seq >= target)
532 			mask |= POLLIN | POLLRDNORM;
533 
534 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
535 			if (sk_stream_is_writeable(sk)) {
536 				mask |= POLLOUT | POLLWRNORM;
537 			} else {  /* send SIGIO later */
538 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
539 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
540 
541 				/* Race breaker. If space is freed after
542 				 * wspace test but before the flags are set,
543 				 * IO signal will be lost. Memory barrier
544 				 * pairs with the input side.
545 				 */
546 				smp_mb__after_atomic();
547 				if (sk_stream_is_writeable(sk))
548 					mask |= POLLOUT | POLLWRNORM;
549 			}
550 		} else
551 			mask |= POLLOUT | POLLWRNORM;
552 
553 		if (tp->urg_data & TCP_URG_VALID)
554 			mask |= POLLPRI;
555 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
556 		/* Active TCP fastopen socket with defer_connect
557 		 * Return POLLOUT so application can call write()
558 		 * in order for kernel to generate SYN+data
559 		 */
560 		mask |= POLLOUT | POLLWRNORM;
561 	}
562 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
563 	smp_rmb();
564 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
565 		mask |= POLLERR;
566 
567 	return mask;
568 }
569 EXPORT_SYMBOL(tcp_poll);
570 
571 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
572 {
573 	struct tcp_sock *tp = tcp_sk(sk);
574 	int answ;
575 	bool slow;
576 
577 	switch (cmd) {
578 	case SIOCINQ:
579 		if (sk->sk_state == TCP_LISTEN)
580 			return -EINVAL;
581 
582 		slow = lock_sock_fast(sk);
583 		answ = tcp_inq(sk);
584 		unlock_sock_fast(sk, slow);
585 		break;
586 	case SIOCATMARK:
587 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
588 		break;
589 	case SIOCOUTQ:
590 		if (sk->sk_state == TCP_LISTEN)
591 			return -EINVAL;
592 
593 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
594 			answ = 0;
595 		else
596 			answ = tp->write_seq - tp->snd_una;
597 		break;
598 	case SIOCOUTQNSD:
599 		if (sk->sk_state == TCP_LISTEN)
600 			return -EINVAL;
601 
602 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
603 			answ = 0;
604 		else
605 			answ = tp->write_seq - tp->snd_nxt;
606 		break;
607 	default:
608 		return -ENOIOCTLCMD;
609 	}
610 
611 	return put_user(answ, (int __user *)arg);
612 }
613 EXPORT_SYMBOL(tcp_ioctl);
614 
615 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
616 {
617 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
618 	tp->pushed_seq = tp->write_seq;
619 }
620 
621 static inline bool forced_push(const struct tcp_sock *tp)
622 {
623 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
624 }
625 
626 static void skb_entail(struct sock *sk, struct sk_buff *skb)
627 {
628 	struct tcp_sock *tp = tcp_sk(sk);
629 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
630 
631 	skb->csum    = 0;
632 	tcb->seq     = tcb->end_seq = tp->write_seq;
633 	tcb->tcp_flags = TCPHDR_ACK;
634 	tcb->sacked  = 0;
635 	__skb_header_release(skb);
636 	tcp_add_write_queue_tail(sk, skb);
637 	sk->sk_wmem_queued += skb->truesize;
638 	sk_mem_charge(sk, skb->truesize);
639 	if (tp->nonagle & TCP_NAGLE_PUSH)
640 		tp->nonagle &= ~TCP_NAGLE_PUSH;
641 
642 	tcp_slow_start_after_idle_check(sk);
643 }
644 
645 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
646 {
647 	if (flags & MSG_OOB)
648 		tp->snd_up = tp->write_seq;
649 }
650 
651 /* If a not yet filled skb is pushed, do not send it if
652  * we have data packets in Qdisc or NIC queues :
653  * Because TX completion will happen shortly, it gives a chance
654  * to coalesce future sendmsg() payload into this skb, without
655  * need for a timer, and with no latency trade off.
656  * As packets containing data payload have a bigger truesize
657  * than pure acks (dataless) packets, the last checks prevent
658  * autocorking if we only have an ACK in Qdisc/NIC queues,
659  * or if TX completion was delayed after we processed ACK packet.
660  */
661 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
662 				int size_goal)
663 {
664 	return skb->len < size_goal &&
665 	       sysctl_tcp_autocorking &&
666 	       skb != tcp_write_queue_head(sk) &&
667 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
668 }
669 
670 static void tcp_push(struct sock *sk, int flags, int mss_now,
671 		     int nonagle, int size_goal)
672 {
673 	struct tcp_sock *tp = tcp_sk(sk);
674 	struct sk_buff *skb;
675 
676 	if (!tcp_send_head(sk))
677 		return;
678 
679 	skb = tcp_write_queue_tail(sk);
680 	if (!(flags & MSG_MORE) || forced_push(tp))
681 		tcp_mark_push(tp, skb);
682 
683 	tcp_mark_urg(tp, flags);
684 
685 	if (tcp_should_autocork(sk, skb, size_goal)) {
686 
687 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
688 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
689 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
690 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
691 		}
692 		/* It is possible TX completion already happened
693 		 * before we set TSQ_THROTTLED.
694 		 */
695 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
696 			return;
697 	}
698 
699 	if (flags & MSG_MORE)
700 		nonagle = TCP_NAGLE_CORK;
701 
702 	__tcp_push_pending_frames(sk, mss_now, nonagle);
703 }
704 
705 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
706 				unsigned int offset, size_t len)
707 {
708 	struct tcp_splice_state *tss = rd_desc->arg.data;
709 	int ret;
710 
711 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
712 			      min(rd_desc->count, len), tss->flags);
713 	if (ret > 0)
714 		rd_desc->count -= ret;
715 	return ret;
716 }
717 
718 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
719 {
720 	/* Store TCP splice context information in read_descriptor_t. */
721 	read_descriptor_t rd_desc = {
722 		.arg.data = tss,
723 		.count	  = tss->len,
724 	};
725 
726 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
727 }
728 
729 /**
730  *  tcp_splice_read - splice data from TCP socket to a pipe
731  * @sock:	socket to splice from
732  * @ppos:	position (not valid)
733  * @pipe:	pipe to splice to
734  * @len:	number of bytes to splice
735  * @flags:	splice modifier flags
736  *
737  * Description:
738  *    Will read pages from given socket and fill them into a pipe.
739  *
740  **/
741 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
742 			struct pipe_inode_info *pipe, size_t len,
743 			unsigned int flags)
744 {
745 	struct sock *sk = sock->sk;
746 	struct tcp_splice_state tss = {
747 		.pipe = pipe,
748 		.len = len,
749 		.flags = flags,
750 	};
751 	long timeo;
752 	ssize_t spliced;
753 	int ret;
754 
755 	sock_rps_record_flow(sk);
756 	/*
757 	 * We can't seek on a socket input
758 	 */
759 	if (unlikely(*ppos))
760 		return -ESPIPE;
761 
762 	ret = spliced = 0;
763 
764 	lock_sock(sk);
765 
766 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
767 	while (tss.len) {
768 		ret = __tcp_splice_read(sk, &tss);
769 		if (ret < 0)
770 			break;
771 		else if (!ret) {
772 			if (spliced)
773 				break;
774 			if (sock_flag(sk, SOCK_DONE))
775 				break;
776 			if (sk->sk_err) {
777 				ret = sock_error(sk);
778 				break;
779 			}
780 			if (sk->sk_shutdown & RCV_SHUTDOWN)
781 				break;
782 			if (sk->sk_state == TCP_CLOSE) {
783 				/*
784 				 * This occurs when user tries to read
785 				 * from never connected socket.
786 				 */
787 				if (!sock_flag(sk, SOCK_DONE))
788 					ret = -ENOTCONN;
789 				break;
790 			}
791 			if (!timeo) {
792 				ret = -EAGAIN;
793 				break;
794 			}
795 			/* if __tcp_splice_read() got nothing while we have
796 			 * an skb in receive queue, we do not want to loop.
797 			 * This might happen with URG data.
798 			 */
799 			if (!skb_queue_empty(&sk->sk_receive_queue))
800 				break;
801 			sk_wait_data(sk, &timeo, NULL);
802 			if (signal_pending(current)) {
803 				ret = sock_intr_errno(timeo);
804 				break;
805 			}
806 			continue;
807 		}
808 		tss.len -= ret;
809 		spliced += ret;
810 
811 		if (!timeo)
812 			break;
813 		release_sock(sk);
814 		lock_sock(sk);
815 
816 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
817 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
818 		    signal_pending(current))
819 			break;
820 	}
821 
822 	release_sock(sk);
823 
824 	if (spliced)
825 		return spliced;
826 
827 	return ret;
828 }
829 EXPORT_SYMBOL(tcp_splice_read);
830 
831 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
832 				    bool force_schedule)
833 {
834 	struct sk_buff *skb;
835 
836 	/* The TCP header must be at least 32-bit aligned.  */
837 	size = ALIGN(size, 4);
838 
839 	if (unlikely(tcp_under_memory_pressure(sk)))
840 		sk_mem_reclaim_partial(sk);
841 
842 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
843 	if (likely(skb)) {
844 		bool mem_scheduled;
845 
846 		if (force_schedule) {
847 			mem_scheduled = true;
848 			sk_forced_mem_schedule(sk, skb->truesize);
849 		} else {
850 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
851 		}
852 		if (likely(mem_scheduled)) {
853 			skb_reserve(skb, sk->sk_prot->max_header);
854 			/*
855 			 * Make sure that we have exactly size bytes
856 			 * available to the caller, no more, no less.
857 			 */
858 			skb->reserved_tailroom = skb->end - skb->tail - size;
859 			return skb;
860 		}
861 		__kfree_skb(skb);
862 	} else {
863 		sk->sk_prot->enter_memory_pressure(sk);
864 		sk_stream_moderate_sndbuf(sk);
865 	}
866 	return NULL;
867 }
868 
869 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
870 				       int large_allowed)
871 {
872 	struct tcp_sock *tp = tcp_sk(sk);
873 	u32 new_size_goal, size_goal;
874 
875 	if (!large_allowed || !sk_can_gso(sk))
876 		return mss_now;
877 
878 	/* Note : tcp_tso_autosize() will eventually split this later */
879 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
880 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
881 
882 	/* We try hard to avoid divides here */
883 	size_goal = tp->gso_segs * mss_now;
884 	if (unlikely(new_size_goal < size_goal ||
885 		     new_size_goal >= size_goal + mss_now)) {
886 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
887 				     sk->sk_gso_max_segs);
888 		size_goal = tp->gso_segs * mss_now;
889 	}
890 
891 	return max(size_goal, mss_now);
892 }
893 
894 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
895 {
896 	int mss_now;
897 
898 	mss_now = tcp_current_mss(sk);
899 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
900 
901 	return mss_now;
902 }
903 
904 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
905 			 size_t size, int flags)
906 {
907 	struct tcp_sock *tp = tcp_sk(sk);
908 	int mss_now, size_goal;
909 	int err;
910 	ssize_t copied;
911 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
912 
913 	/* Wait for a connection to finish. One exception is TCP Fast Open
914 	 * (passive side) where data is allowed to be sent before a connection
915 	 * is fully established.
916 	 */
917 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
918 	    !tcp_passive_fastopen(sk)) {
919 		err = sk_stream_wait_connect(sk, &timeo);
920 		if (err != 0)
921 			goto out_err;
922 	}
923 
924 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
925 
926 	mss_now = tcp_send_mss(sk, &size_goal, flags);
927 	copied = 0;
928 
929 	err = -EPIPE;
930 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
931 		goto out_err;
932 
933 	while (size > 0) {
934 		struct sk_buff *skb = tcp_write_queue_tail(sk);
935 		int copy, i;
936 		bool can_coalesce;
937 
938 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
939 		    !tcp_skb_can_collapse_to(skb)) {
940 new_segment:
941 			if (!sk_stream_memory_free(sk))
942 				goto wait_for_sndbuf;
943 
944 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
945 						  skb_queue_empty(&sk->sk_write_queue));
946 			if (!skb)
947 				goto wait_for_memory;
948 
949 			skb_entail(sk, skb);
950 			copy = size_goal;
951 		}
952 
953 		if (copy > size)
954 			copy = size;
955 
956 		i = skb_shinfo(skb)->nr_frags;
957 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
958 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
959 			tcp_mark_push(tp, skb);
960 			goto new_segment;
961 		}
962 		if (!sk_wmem_schedule(sk, copy))
963 			goto wait_for_memory;
964 
965 		if (can_coalesce) {
966 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
967 		} else {
968 			get_page(page);
969 			skb_fill_page_desc(skb, i, page, offset, copy);
970 		}
971 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
972 
973 		skb->len += copy;
974 		skb->data_len += copy;
975 		skb->truesize += copy;
976 		sk->sk_wmem_queued += copy;
977 		sk_mem_charge(sk, copy);
978 		skb->ip_summed = CHECKSUM_PARTIAL;
979 		tp->write_seq += copy;
980 		TCP_SKB_CB(skb)->end_seq += copy;
981 		tcp_skb_pcount_set(skb, 0);
982 
983 		if (!copied)
984 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
985 
986 		copied += copy;
987 		offset += copy;
988 		size -= copy;
989 		if (!size)
990 			goto out;
991 
992 		if (skb->len < size_goal || (flags & MSG_OOB))
993 			continue;
994 
995 		if (forced_push(tp)) {
996 			tcp_mark_push(tp, skb);
997 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
998 		} else if (skb == tcp_send_head(sk))
999 			tcp_push_one(sk, mss_now);
1000 		continue;
1001 
1002 wait_for_sndbuf:
1003 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1004 wait_for_memory:
1005 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1006 			 TCP_NAGLE_PUSH, size_goal);
1007 
1008 		err = sk_stream_wait_memory(sk, &timeo);
1009 		if (err != 0)
1010 			goto do_error;
1011 
1012 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1013 	}
1014 
1015 out:
1016 	if (copied) {
1017 		tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
1018 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1019 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1020 	}
1021 	return copied;
1022 
1023 do_error:
1024 	if (copied)
1025 		goto out;
1026 out_err:
1027 	/* make sure we wake any epoll edge trigger waiter */
1028 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1029 		     err == -EAGAIN)) {
1030 		sk->sk_write_space(sk);
1031 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1032 	}
1033 	return sk_stream_error(sk, flags, err);
1034 }
1035 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1036 
1037 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1038 		 size_t size, int flags)
1039 {
1040 	ssize_t res;
1041 
1042 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1043 	    !sk_check_csum_caps(sk))
1044 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1045 					flags);
1046 
1047 	lock_sock(sk);
1048 
1049 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1050 
1051 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1052 	release_sock(sk);
1053 	return res;
1054 }
1055 EXPORT_SYMBOL(tcp_sendpage);
1056 
1057 /* Do not bother using a page frag for very small frames.
1058  * But use this heuristic only for the first skb in write queue.
1059  *
1060  * Having no payload in skb->head allows better SACK shifting
1061  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1062  * write queue has less skbs.
1063  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1064  * This also speeds up tso_fragment(), since it wont fallback
1065  * to tcp_fragment().
1066  */
1067 static int linear_payload_sz(bool first_skb)
1068 {
1069 	if (first_skb)
1070 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1071 	return 0;
1072 }
1073 
1074 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1075 {
1076 	const struct tcp_sock *tp = tcp_sk(sk);
1077 	int tmp = tp->mss_cache;
1078 
1079 	if (sg) {
1080 		if (sk_can_gso(sk)) {
1081 			tmp = linear_payload_sz(first_skb);
1082 		} else {
1083 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1084 
1085 			if (tmp >= pgbreak &&
1086 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1087 				tmp = pgbreak;
1088 		}
1089 	}
1090 
1091 	return tmp;
1092 }
1093 
1094 void tcp_free_fastopen_req(struct tcp_sock *tp)
1095 {
1096 	if (tp->fastopen_req) {
1097 		kfree(tp->fastopen_req);
1098 		tp->fastopen_req = NULL;
1099 	}
1100 }
1101 
1102 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1103 				int *copied, size_t size)
1104 {
1105 	struct tcp_sock *tp = tcp_sk(sk);
1106 	struct inet_sock *inet = inet_sk(sk);
1107 	struct sockaddr *uaddr = msg->msg_name;
1108 	int err, flags;
1109 
1110 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1111 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1112 	     uaddr->sa_family == AF_UNSPEC))
1113 		return -EOPNOTSUPP;
1114 	if (tp->fastopen_req)
1115 		return -EALREADY; /* Another Fast Open is in progress */
1116 
1117 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1118 				   sk->sk_allocation);
1119 	if (unlikely(!tp->fastopen_req))
1120 		return -ENOBUFS;
1121 	tp->fastopen_req->data = msg;
1122 	tp->fastopen_req->size = size;
1123 
1124 	if (inet->defer_connect) {
1125 		err = tcp_connect(sk);
1126 		/* Same failure procedure as in tcp_v4/6_connect */
1127 		if (err) {
1128 			tcp_set_state(sk, TCP_CLOSE);
1129 			inet->inet_dport = 0;
1130 			sk->sk_route_caps = 0;
1131 		}
1132 	}
1133 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1134 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1135 				    msg->msg_namelen, flags, 1);
1136 	/* fastopen_req could already be freed in __inet_stream_connect
1137 	 * if the connection times out or gets rst
1138 	 */
1139 	if (tp->fastopen_req) {
1140 		*copied = tp->fastopen_req->copied;
1141 		tcp_free_fastopen_req(tp);
1142 		inet->defer_connect = 0;
1143 	}
1144 	return err;
1145 }
1146 
1147 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1148 {
1149 	struct tcp_sock *tp = tcp_sk(sk);
1150 	struct sk_buff *skb;
1151 	struct sockcm_cookie sockc;
1152 	int flags, err, copied = 0;
1153 	int mss_now = 0, size_goal, copied_syn = 0;
1154 	bool process_backlog = false;
1155 	bool sg;
1156 	long timeo;
1157 
1158 	lock_sock(sk);
1159 
1160 	flags = msg->msg_flags;
1161 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1162 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1163 		if (err == -EINPROGRESS && copied_syn > 0)
1164 			goto out;
1165 		else if (err)
1166 			goto out_err;
1167 	}
1168 
1169 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1170 
1171 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1172 
1173 	/* Wait for a connection to finish. One exception is TCP Fast Open
1174 	 * (passive side) where data is allowed to be sent before a connection
1175 	 * is fully established.
1176 	 */
1177 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1178 	    !tcp_passive_fastopen(sk)) {
1179 		err = sk_stream_wait_connect(sk, &timeo);
1180 		if (err != 0)
1181 			goto do_error;
1182 	}
1183 
1184 	if (unlikely(tp->repair)) {
1185 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1186 			copied = tcp_send_rcvq(sk, msg, size);
1187 			goto out_nopush;
1188 		}
1189 
1190 		err = -EINVAL;
1191 		if (tp->repair_queue == TCP_NO_QUEUE)
1192 			goto out_err;
1193 
1194 		/* 'common' sending to sendq */
1195 	}
1196 
1197 	sockc.tsflags = sk->sk_tsflags;
1198 	if (msg->msg_controllen) {
1199 		err = sock_cmsg_send(sk, msg, &sockc);
1200 		if (unlikely(err)) {
1201 			err = -EINVAL;
1202 			goto out_err;
1203 		}
1204 	}
1205 
1206 	/* This should be in poll */
1207 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1208 
1209 	/* Ok commence sending. */
1210 	copied = 0;
1211 
1212 restart:
1213 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1214 
1215 	err = -EPIPE;
1216 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1217 		goto do_error;
1218 
1219 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1220 
1221 	while (msg_data_left(msg)) {
1222 		int copy = 0;
1223 		int max = size_goal;
1224 
1225 		skb = tcp_write_queue_tail(sk);
1226 		if (tcp_send_head(sk)) {
1227 			if (skb->ip_summed == CHECKSUM_NONE)
1228 				max = mss_now;
1229 			copy = max - skb->len;
1230 		}
1231 
1232 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1233 			bool first_skb;
1234 
1235 new_segment:
1236 			/* Allocate new segment. If the interface is SG,
1237 			 * allocate skb fitting to single page.
1238 			 */
1239 			if (!sk_stream_memory_free(sk))
1240 				goto wait_for_sndbuf;
1241 
1242 			if (process_backlog && sk_flush_backlog(sk)) {
1243 				process_backlog = false;
1244 				goto restart;
1245 			}
1246 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1247 			skb = sk_stream_alloc_skb(sk,
1248 						  select_size(sk, sg, first_skb),
1249 						  sk->sk_allocation,
1250 						  first_skb);
1251 			if (!skb)
1252 				goto wait_for_memory;
1253 
1254 			process_backlog = true;
1255 			/*
1256 			 * Check whether we can use HW checksum.
1257 			 */
1258 			if (sk_check_csum_caps(sk))
1259 				skb->ip_summed = CHECKSUM_PARTIAL;
1260 
1261 			skb_entail(sk, skb);
1262 			copy = size_goal;
1263 			max = size_goal;
1264 
1265 			/* All packets are restored as if they have
1266 			 * already been sent. skb_mstamp isn't set to
1267 			 * avoid wrong rtt estimation.
1268 			 */
1269 			if (tp->repair)
1270 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1271 		}
1272 
1273 		/* Try to append data to the end of skb. */
1274 		if (copy > msg_data_left(msg))
1275 			copy = msg_data_left(msg);
1276 
1277 		/* Where to copy to? */
1278 		if (skb_availroom(skb) > 0) {
1279 			/* We have some space in skb head. Superb! */
1280 			copy = min_t(int, copy, skb_availroom(skb));
1281 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1282 			if (err)
1283 				goto do_fault;
1284 		} else {
1285 			bool merge = true;
1286 			int i = skb_shinfo(skb)->nr_frags;
1287 			struct page_frag *pfrag = sk_page_frag(sk);
1288 
1289 			if (!sk_page_frag_refill(sk, pfrag))
1290 				goto wait_for_memory;
1291 
1292 			if (!skb_can_coalesce(skb, i, pfrag->page,
1293 					      pfrag->offset)) {
1294 				if (i >= sysctl_max_skb_frags || !sg) {
1295 					tcp_mark_push(tp, skb);
1296 					goto new_segment;
1297 				}
1298 				merge = false;
1299 			}
1300 
1301 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1302 
1303 			if (!sk_wmem_schedule(sk, copy))
1304 				goto wait_for_memory;
1305 
1306 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1307 						       pfrag->page,
1308 						       pfrag->offset,
1309 						       copy);
1310 			if (err)
1311 				goto do_error;
1312 
1313 			/* Update the skb. */
1314 			if (merge) {
1315 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1316 			} else {
1317 				skb_fill_page_desc(skb, i, pfrag->page,
1318 						   pfrag->offset, copy);
1319 				page_ref_inc(pfrag->page);
1320 			}
1321 			pfrag->offset += copy;
1322 		}
1323 
1324 		if (!copied)
1325 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1326 
1327 		tp->write_seq += copy;
1328 		TCP_SKB_CB(skb)->end_seq += copy;
1329 		tcp_skb_pcount_set(skb, 0);
1330 
1331 		copied += copy;
1332 		if (!msg_data_left(msg)) {
1333 			if (unlikely(flags & MSG_EOR))
1334 				TCP_SKB_CB(skb)->eor = 1;
1335 			goto out;
1336 		}
1337 
1338 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1339 			continue;
1340 
1341 		if (forced_push(tp)) {
1342 			tcp_mark_push(tp, skb);
1343 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1344 		} else if (skb == tcp_send_head(sk))
1345 			tcp_push_one(sk, mss_now);
1346 		continue;
1347 
1348 wait_for_sndbuf:
1349 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1350 wait_for_memory:
1351 		if (copied)
1352 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1353 				 TCP_NAGLE_PUSH, size_goal);
1354 
1355 		err = sk_stream_wait_memory(sk, &timeo);
1356 		if (err != 0)
1357 			goto do_error;
1358 
1359 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1360 	}
1361 
1362 out:
1363 	if (copied) {
1364 		tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1365 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1366 	}
1367 out_nopush:
1368 	release_sock(sk);
1369 	return copied + copied_syn;
1370 
1371 do_fault:
1372 	if (!skb->len) {
1373 		tcp_unlink_write_queue(skb, sk);
1374 		/* It is the one place in all of TCP, except connection
1375 		 * reset, where we can be unlinking the send_head.
1376 		 */
1377 		tcp_check_send_head(sk, skb);
1378 		sk_wmem_free_skb(sk, skb);
1379 	}
1380 
1381 do_error:
1382 	if (copied + copied_syn)
1383 		goto out;
1384 out_err:
1385 	err = sk_stream_error(sk, flags, err);
1386 	/* make sure we wake any epoll edge trigger waiter */
1387 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1388 		     err == -EAGAIN)) {
1389 		sk->sk_write_space(sk);
1390 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1391 	}
1392 	release_sock(sk);
1393 	return err;
1394 }
1395 EXPORT_SYMBOL(tcp_sendmsg);
1396 
1397 /*
1398  *	Handle reading urgent data. BSD has very simple semantics for
1399  *	this, no blocking and very strange errors 8)
1400  */
1401 
1402 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1403 {
1404 	struct tcp_sock *tp = tcp_sk(sk);
1405 
1406 	/* No URG data to read. */
1407 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1408 	    tp->urg_data == TCP_URG_READ)
1409 		return -EINVAL;	/* Yes this is right ! */
1410 
1411 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1412 		return -ENOTCONN;
1413 
1414 	if (tp->urg_data & TCP_URG_VALID) {
1415 		int err = 0;
1416 		char c = tp->urg_data;
1417 
1418 		if (!(flags & MSG_PEEK))
1419 			tp->urg_data = TCP_URG_READ;
1420 
1421 		/* Read urgent data. */
1422 		msg->msg_flags |= MSG_OOB;
1423 
1424 		if (len > 0) {
1425 			if (!(flags & MSG_TRUNC))
1426 				err = memcpy_to_msg(msg, &c, 1);
1427 			len = 1;
1428 		} else
1429 			msg->msg_flags |= MSG_TRUNC;
1430 
1431 		return err ? -EFAULT : len;
1432 	}
1433 
1434 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1435 		return 0;
1436 
1437 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1438 	 * the available implementations agree in this case:
1439 	 * this call should never block, independent of the
1440 	 * blocking state of the socket.
1441 	 * Mike <pall@rz.uni-karlsruhe.de>
1442 	 */
1443 	return -EAGAIN;
1444 }
1445 
1446 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1447 {
1448 	struct sk_buff *skb;
1449 	int copied = 0, err = 0;
1450 
1451 	/* XXX -- need to support SO_PEEK_OFF */
1452 
1453 	skb_queue_walk(&sk->sk_write_queue, skb) {
1454 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1455 		if (err)
1456 			break;
1457 
1458 		copied += skb->len;
1459 	}
1460 
1461 	return err ?: copied;
1462 }
1463 
1464 /* Clean up the receive buffer for full frames taken by the user,
1465  * then send an ACK if necessary.  COPIED is the number of bytes
1466  * tcp_recvmsg has given to the user so far, it speeds up the
1467  * calculation of whether or not we must ACK for the sake of
1468  * a window update.
1469  */
1470 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1471 {
1472 	struct tcp_sock *tp = tcp_sk(sk);
1473 	bool time_to_ack = false;
1474 
1475 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1476 
1477 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1478 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1479 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1480 
1481 	if (inet_csk_ack_scheduled(sk)) {
1482 		const struct inet_connection_sock *icsk = inet_csk(sk);
1483 		   /* Delayed ACKs frequently hit locked sockets during bulk
1484 		    * receive. */
1485 		if (icsk->icsk_ack.blocked ||
1486 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1487 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1488 		    /*
1489 		     * If this read emptied read buffer, we send ACK, if
1490 		     * connection is not bidirectional, user drained
1491 		     * receive buffer and there was a small segment
1492 		     * in queue.
1493 		     */
1494 		    (copied > 0 &&
1495 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1496 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1497 		       !icsk->icsk_ack.pingpong)) &&
1498 		      !atomic_read(&sk->sk_rmem_alloc)))
1499 			time_to_ack = true;
1500 	}
1501 
1502 	/* We send an ACK if we can now advertise a non-zero window
1503 	 * which has been raised "significantly".
1504 	 *
1505 	 * Even if window raised up to infinity, do not send window open ACK
1506 	 * in states, where we will not receive more. It is useless.
1507 	 */
1508 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1509 		__u32 rcv_window_now = tcp_receive_window(tp);
1510 
1511 		/* Optimize, __tcp_select_window() is not cheap. */
1512 		if (2*rcv_window_now <= tp->window_clamp) {
1513 			__u32 new_window = __tcp_select_window(sk);
1514 
1515 			/* Send ACK now, if this read freed lots of space
1516 			 * in our buffer. Certainly, new_window is new window.
1517 			 * We can advertise it now, if it is not less than current one.
1518 			 * "Lots" means "at least twice" here.
1519 			 */
1520 			if (new_window && new_window >= 2 * rcv_window_now)
1521 				time_to_ack = true;
1522 		}
1523 	}
1524 	if (time_to_ack)
1525 		tcp_send_ack(sk);
1526 }
1527 
1528 static void tcp_prequeue_process(struct sock *sk)
1529 {
1530 	struct sk_buff *skb;
1531 	struct tcp_sock *tp = tcp_sk(sk);
1532 
1533 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1534 
1535 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1536 		sk_backlog_rcv(sk, skb);
1537 
1538 	/* Clear memory counter. */
1539 	tp->ucopy.memory = 0;
1540 }
1541 
1542 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1543 {
1544 	struct sk_buff *skb;
1545 	u32 offset;
1546 
1547 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1548 		offset = seq - TCP_SKB_CB(skb)->seq;
1549 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1550 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1551 			offset--;
1552 		}
1553 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1554 			*off = offset;
1555 			return skb;
1556 		}
1557 		/* This looks weird, but this can happen if TCP collapsing
1558 		 * splitted a fat GRO packet, while we released socket lock
1559 		 * in skb_splice_bits()
1560 		 */
1561 		sk_eat_skb(sk, skb);
1562 	}
1563 	return NULL;
1564 }
1565 
1566 /*
1567  * This routine provides an alternative to tcp_recvmsg() for routines
1568  * that would like to handle copying from skbuffs directly in 'sendfile'
1569  * fashion.
1570  * Note:
1571  *	- It is assumed that the socket was locked by the caller.
1572  *	- The routine does not block.
1573  *	- At present, there is no support for reading OOB data
1574  *	  or for 'peeking' the socket using this routine
1575  *	  (although both would be easy to implement).
1576  */
1577 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1578 		  sk_read_actor_t recv_actor)
1579 {
1580 	struct sk_buff *skb;
1581 	struct tcp_sock *tp = tcp_sk(sk);
1582 	u32 seq = tp->copied_seq;
1583 	u32 offset;
1584 	int copied = 0;
1585 
1586 	if (sk->sk_state == TCP_LISTEN)
1587 		return -ENOTCONN;
1588 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1589 		if (offset < skb->len) {
1590 			int used;
1591 			size_t len;
1592 
1593 			len = skb->len - offset;
1594 			/* Stop reading if we hit a patch of urgent data */
1595 			if (tp->urg_data) {
1596 				u32 urg_offset = tp->urg_seq - seq;
1597 				if (urg_offset < len)
1598 					len = urg_offset;
1599 				if (!len)
1600 					break;
1601 			}
1602 			used = recv_actor(desc, skb, offset, len);
1603 			if (used <= 0) {
1604 				if (!copied)
1605 					copied = used;
1606 				break;
1607 			} else if (used <= len) {
1608 				seq += used;
1609 				copied += used;
1610 				offset += used;
1611 			}
1612 			/* If recv_actor drops the lock (e.g. TCP splice
1613 			 * receive) the skb pointer might be invalid when
1614 			 * getting here: tcp_collapse might have deleted it
1615 			 * while aggregating skbs from the socket queue.
1616 			 */
1617 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1618 			if (!skb)
1619 				break;
1620 			/* TCP coalescing might have appended data to the skb.
1621 			 * Try to splice more frags
1622 			 */
1623 			if (offset + 1 != skb->len)
1624 				continue;
1625 		}
1626 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1627 			sk_eat_skb(sk, skb);
1628 			++seq;
1629 			break;
1630 		}
1631 		sk_eat_skb(sk, skb);
1632 		if (!desc->count)
1633 			break;
1634 		tp->copied_seq = seq;
1635 	}
1636 	tp->copied_seq = seq;
1637 
1638 	tcp_rcv_space_adjust(sk);
1639 
1640 	/* Clean up data we have read: This will do ACK frames. */
1641 	if (copied > 0) {
1642 		tcp_recv_skb(sk, seq, &offset);
1643 		tcp_cleanup_rbuf(sk, copied);
1644 	}
1645 	return copied;
1646 }
1647 EXPORT_SYMBOL(tcp_read_sock);
1648 
1649 int tcp_peek_len(struct socket *sock)
1650 {
1651 	return tcp_inq(sock->sk);
1652 }
1653 EXPORT_SYMBOL(tcp_peek_len);
1654 
1655 /*
1656  *	This routine copies from a sock struct into the user buffer.
1657  *
1658  *	Technical note: in 2.3 we work on _locked_ socket, so that
1659  *	tricks with *seq access order and skb->users are not required.
1660  *	Probably, code can be easily improved even more.
1661  */
1662 
1663 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1664 		int flags, int *addr_len)
1665 {
1666 	struct tcp_sock *tp = tcp_sk(sk);
1667 	int copied = 0;
1668 	u32 peek_seq;
1669 	u32 *seq;
1670 	unsigned long used;
1671 	int err;
1672 	int target;		/* Read at least this many bytes */
1673 	long timeo;
1674 	struct task_struct *user_recv = NULL;
1675 	struct sk_buff *skb, *last;
1676 	u32 urg_hole = 0;
1677 
1678 	if (unlikely(flags & MSG_ERRQUEUE))
1679 		return inet_recv_error(sk, msg, len, addr_len);
1680 
1681 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1682 	    (sk->sk_state == TCP_ESTABLISHED))
1683 		sk_busy_loop(sk, nonblock);
1684 
1685 	lock_sock(sk);
1686 
1687 	err = -ENOTCONN;
1688 	if (sk->sk_state == TCP_LISTEN)
1689 		goto out;
1690 
1691 	timeo = sock_rcvtimeo(sk, nonblock);
1692 
1693 	/* Urgent data needs to be handled specially. */
1694 	if (flags & MSG_OOB)
1695 		goto recv_urg;
1696 
1697 	if (unlikely(tp->repair)) {
1698 		err = -EPERM;
1699 		if (!(flags & MSG_PEEK))
1700 			goto out;
1701 
1702 		if (tp->repair_queue == TCP_SEND_QUEUE)
1703 			goto recv_sndq;
1704 
1705 		err = -EINVAL;
1706 		if (tp->repair_queue == TCP_NO_QUEUE)
1707 			goto out;
1708 
1709 		/* 'common' recv queue MSG_PEEK-ing */
1710 	}
1711 
1712 	seq = &tp->copied_seq;
1713 	if (flags & MSG_PEEK) {
1714 		peek_seq = tp->copied_seq;
1715 		seq = &peek_seq;
1716 	}
1717 
1718 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1719 
1720 	do {
1721 		u32 offset;
1722 
1723 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1724 		if (tp->urg_data && tp->urg_seq == *seq) {
1725 			if (copied)
1726 				break;
1727 			if (signal_pending(current)) {
1728 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1729 				break;
1730 			}
1731 		}
1732 
1733 		/* Next get a buffer. */
1734 
1735 		last = skb_peek_tail(&sk->sk_receive_queue);
1736 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1737 			last = skb;
1738 			/* Now that we have two receive queues this
1739 			 * shouldn't happen.
1740 			 */
1741 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1742 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1743 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1744 				 flags))
1745 				break;
1746 
1747 			offset = *seq - TCP_SKB_CB(skb)->seq;
1748 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1749 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1750 				offset--;
1751 			}
1752 			if (offset < skb->len)
1753 				goto found_ok_skb;
1754 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1755 				goto found_fin_ok;
1756 			WARN(!(flags & MSG_PEEK),
1757 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1758 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1759 		}
1760 
1761 		/* Well, if we have backlog, try to process it now yet. */
1762 
1763 		if (copied >= target && !sk->sk_backlog.tail)
1764 			break;
1765 
1766 		if (copied) {
1767 			if (sk->sk_err ||
1768 			    sk->sk_state == TCP_CLOSE ||
1769 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1770 			    !timeo ||
1771 			    signal_pending(current))
1772 				break;
1773 		} else {
1774 			if (sock_flag(sk, SOCK_DONE))
1775 				break;
1776 
1777 			if (sk->sk_err) {
1778 				copied = sock_error(sk);
1779 				break;
1780 			}
1781 
1782 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1783 				break;
1784 
1785 			if (sk->sk_state == TCP_CLOSE) {
1786 				if (!sock_flag(sk, SOCK_DONE)) {
1787 					/* This occurs when user tries to read
1788 					 * from never connected socket.
1789 					 */
1790 					copied = -ENOTCONN;
1791 					break;
1792 				}
1793 				break;
1794 			}
1795 
1796 			if (!timeo) {
1797 				copied = -EAGAIN;
1798 				break;
1799 			}
1800 
1801 			if (signal_pending(current)) {
1802 				copied = sock_intr_errno(timeo);
1803 				break;
1804 			}
1805 		}
1806 
1807 		tcp_cleanup_rbuf(sk, copied);
1808 
1809 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1810 			/* Install new reader */
1811 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1812 				user_recv = current;
1813 				tp->ucopy.task = user_recv;
1814 				tp->ucopy.msg = msg;
1815 			}
1816 
1817 			tp->ucopy.len = len;
1818 
1819 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1820 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1821 
1822 			/* Ugly... If prequeue is not empty, we have to
1823 			 * process it before releasing socket, otherwise
1824 			 * order will be broken at second iteration.
1825 			 * More elegant solution is required!!!
1826 			 *
1827 			 * Look: we have the following (pseudo)queues:
1828 			 *
1829 			 * 1. packets in flight
1830 			 * 2. backlog
1831 			 * 3. prequeue
1832 			 * 4. receive_queue
1833 			 *
1834 			 * Each queue can be processed only if the next ones
1835 			 * are empty. At this point we have empty receive_queue.
1836 			 * But prequeue _can_ be not empty after 2nd iteration,
1837 			 * when we jumped to start of loop because backlog
1838 			 * processing added something to receive_queue.
1839 			 * We cannot release_sock(), because backlog contains
1840 			 * packets arrived _after_ prequeued ones.
1841 			 *
1842 			 * Shortly, algorithm is clear --- to process all
1843 			 * the queues in order. We could make it more directly,
1844 			 * requeueing packets from backlog to prequeue, if
1845 			 * is not empty. It is more elegant, but eats cycles,
1846 			 * unfortunately.
1847 			 */
1848 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1849 				goto do_prequeue;
1850 
1851 			/* __ Set realtime policy in scheduler __ */
1852 		}
1853 
1854 		if (copied >= target) {
1855 			/* Do not sleep, just process backlog. */
1856 			release_sock(sk);
1857 			lock_sock(sk);
1858 		} else {
1859 			sk_wait_data(sk, &timeo, last);
1860 		}
1861 
1862 		if (user_recv) {
1863 			int chunk;
1864 
1865 			/* __ Restore normal policy in scheduler __ */
1866 
1867 			chunk = len - tp->ucopy.len;
1868 			if (chunk != 0) {
1869 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1870 				len -= chunk;
1871 				copied += chunk;
1872 			}
1873 
1874 			if (tp->rcv_nxt == tp->copied_seq &&
1875 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1876 do_prequeue:
1877 				tcp_prequeue_process(sk);
1878 
1879 				chunk = len - tp->ucopy.len;
1880 				if (chunk != 0) {
1881 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1882 					len -= chunk;
1883 					copied += chunk;
1884 				}
1885 			}
1886 		}
1887 		if ((flags & MSG_PEEK) &&
1888 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1889 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1890 					    current->comm,
1891 					    task_pid_nr(current));
1892 			peek_seq = tp->copied_seq;
1893 		}
1894 		continue;
1895 
1896 	found_ok_skb:
1897 		/* Ok so how much can we use? */
1898 		used = skb->len - offset;
1899 		if (len < used)
1900 			used = len;
1901 
1902 		/* Do we have urgent data here? */
1903 		if (tp->urg_data) {
1904 			u32 urg_offset = tp->urg_seq - *seq;
1905 			if (urg_offset < used) {
1906 				if (!urg_offset) {
1907 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1908 						++*seq;
1909 						urg_hole++;
1910 						offset++;
1911 						used--;
1912 						if (!used)
1913 							goto skip_copy;
1914 					}
1915 				} else
1916 					used = urg_offset;
1917 			}
1918 		}
1919 
1920 		if (!(flags & MSG_TRUNC)) {
1921 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1922 			if (err) {
1923 				/* Exception. Bailout! */
1924 				if (!copied)
1925 					copied = -EFAULT;
1926 				break;
1927 			}
1928 		}
1929 
1930 		*seq += used;
1931 		copied += used;
1932 		len -= used;
1933 
1934 		tcp_rcv_space_adjust(sk);
1935 
1936 skip_copy:
1937 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1938 			tp->urg_data = 0;
1939 			tcp_fast_path_check(sk);
1940 		}
1941 		if (used + offset < skb->len)
1942 			continue;
1943 
1944 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1945 			goto found_fin_ok;
1946 		if (!(flags & MSG_PEEK))
1947 			sk_eat_skb(sk, skb);
1948 		continue;
1949 
1950 	found_fin_ok:
1951 		/* Process the FIN. */
1952 		++*seq;
1953 		if (!(flags & MSG_PEEK))
1954 			sk_eat_skb(sk, skb);
1955 		break;
1956 	} while (len > 0);
1957 
1958 	if (user_recv) {
1959 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1960 			int chunk;
1961 
1962 			tp->ucopy.len = copied > 0 ? len : 0;
1963 
1964 			tcp_prequeue_process(sk);
1965 
1966 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1967 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1968 				len -= chunk;
1969 				copied += chunk;
1970 			}
1971 		}
1972 
1973 		tp->ucopy.task = NULL;
1974 		tp->ucopy.len = 0;
1975 	}
1976 
1977 	/* According to UNIX98, msg_name/msg_namelen are ignored
1978 	 * on connected socket. I was just happy when found this 8) --ANK
1979 	 */
1980 
1981 	/* Clean up data we have read: This will do ACK frames. */
1982 	tcp_cleanup_rbuf(sk, copied);
1983 
1984 	release_sock(sk);
1985 	return copied;
1986 
1987 out:
1988 	release_sock(sk);
1989 	return err;
1990 
1991 recv_urg:
1992 	err = tcp_recv_urg(sk, msg, len, flags);
1993 	goto out;
1994 
1995 recv_sndq:
1996 	err = tcp_peek_sndq(sk, msg, len);
1997 	goto out;
1998 }
1999 EXPORT_SYMBOL(tcp_recvmsg);
2000 
2001 void tcp_set_state(struct sock *sk, int state)
2002 {
2003 	int oldstate = sk->sk_state;
2004 
2005 	switch (state) {
2006 	case TCP_ESTABLISHED:
2007 		if (oldstate != TCP_ESTABLISHED)
2008 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2009 		break;
2010 
2011 	case TCP_CLOSE:
2012 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2013 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2014 
2015 		sk->sk_prot->unhash(sk);
2016 		if (inet_csk(sk)->icsk_bind_hash &&
2017 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2018 			inet_put_port(sk);
2019 		/* fall through */
2020 	default:
2021 		if (oldstate == TCP_ESTABLISHED)
2022 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2023 	}
2024 
2025 	/* Change state AFTER socket is unhashed to avoid closed
2026 	 * socket sitting in hash tables.
2027 	 */
2028 	sk_state_store(sk, state);
2029 
2030 #ifdef STATE_TRACE
2031 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2032 #endif
2033 }
2034 EXPORT_SYMBOL_GPL(tcp_set_state);
2035 
2036 /*
2037  *	State processing on a close. This implements the state shift for
2038  *	sending our FIN frame. Note that we only send a FIN for some
2039  *	states. A shutdown() may have already sent the FIN, or we may be
2040  *	closed.
2041  */
2042 
2043 static const unsigned char new_state[16] = {
2044   /* current state:        new state:      action:	*/
2045   [0 /* (Invalid) */]	= TCP_CLOSE,
2046   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2047   [TCP_SYN_SENT]	= TCP_CLOSE,
2048   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2049   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2050   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2051   [TCP_TIME_WAIT]	= TCP_CLOSE,
2052   [TCP_CLOSE]		= TCP_CLOSE,
2053   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2054   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2055   [TCP_LISTEN]		= TCP_CLOSE,
2056   [TCP_CLOSING]		= TCP_CLOSING,
2057   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2058 };
2059 
2060 static int tcp_close_state(struct sock *sk)
2061 {
2062 	int next = (int)new_state[sk->sk_state];
2063 	int ns = next & TCP_STATE_MASK;
2064 
2065 	tcp_set_state(sk, ns);
2066 
2067 	return next & TCP_ACTION_FIN;
2068 }
2069 
2070 /*
2071  *	Shutdown the sending side of a connection. Much like close except
2072  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2073  */
2074 
2075 void tcp_shutdown(struct sock *sk, int how)
2076 {
2077 	/*	We need to grab some memory, and put together a FIN,
2078 	 *	and then put it into the queue to be sent.
2079 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2080 	 */
2081 	if (!(how & SEND_SHUTDOWN))
2082 		return;
2083 
2084 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2085 	if ((1 << sk->sk_state) &
2086 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2087 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2088 		/* Clear out any half completed packets.  FIN if needed. */
2089 		if (tcp_close_state(sk))
2090 			tcp_send_fin(sk);
2091 	}
2092 }
2093 EXPORT_SYMBOL(tcp_shutdown);
2094 
2095 bool tcp_check_oom(struct sock *sk, int shift)
2096 {
2097 	bool too_many_orphans, out_of_socket_memory;
2098 
2099 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2100 	out_of_socket_memory = tcp_out_of_memory(sk);
2101 
2102 	if (too_many_orphans)
2103 		net_info_ratelimited("too many orphaned sockets\n");
2104 	if (out_of_socket_memory)
2105 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2106 	return too_many_orphans || out_of_socket_memory;
2107 }
2108 
2109 void tcp_close(struct sock *sk, long timeout)
2110 {
2111 	struct sk_buff *skb;
2112 	int data_was_unread = 0;
2113 	int state;
2114 
2115 	lock_sock(sk);
2116 	sk->sk_shutdown = SHUTDOWN_MASK;
2117 
2118 	if (sk->sk_state == TCP_LISTEN) {
2119 		tcp_set_state(sk, TCP_CLOSE);
2120 
2121 		/* Special case. */
2122 		inet_csk_listen_stop(sk);
2123 
2124 		goto adjudge_to_death;
2125 	}
2126 
2127 	/*  We need to flush the recv. buffs.  We do this only on the
2128 	 *  descriptor close, not protocol-sourced closes, because the
2129 	 *  reader process may not have drained the data yet!
2130 	 */
2131 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2132 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2133 
2134 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2135 			len--;
2136 		data_was_unread += len;
2137 		__kfree_skb(skb);
2138 	}
2139 
2140 	sk_mem_reclaim(sk);
2141 
2142 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2143 	if (sk->sk_state == TCP_CLOSE)
2144 		goto adjudge_to_death;
2145 
2146 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2147 	 * data was lost. To witness the awful effects of the old behavior of
2148 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2149 	 * GET in an FTP client, suspend the process, wait for the client to
2150 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2151 	 * Note: timeout is always zero in such a case.
2152 	 */
2153 	if (unlikely(tcp_sk(sk)->repair)) {
2154 		sk->sk_prot->disconnect(sk, 0);
2155 	} else if (data_was_unread) {
2156 		/* Unread data was tossed, zap the connection. */
2157 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2158 		tcp_set_state(sk, TCP_CLOSE);
2159 		tcp_send_active_reset(sk, sk->sk_allocation);
2160 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2161 		/* Check zero linger _after_ checking for unread data. */
2162 		sk->sk_prot->disconnect(sk, 0);
2163 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2164 	} else if (tcp_close_state(sk)) {
2165 		/* We FIN if the application ate all the data before
2166 		 * zapping the connection.
2167 		 */
2168 
2169 		/* RED-PEN. Formally speaking, we have broken TCP state
2170 		 * machine. State transitions:
2171 		 *
2172 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2173 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2174 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2175 		 *
2176 		 * are legal only when FIN has been sent (i.e. in window),
2177 		 * rather than queued out of window. Purists blame.
2178 		 *
2179 		 * F.e. "RFC state" is ESTABLISHED,
2180 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2181 		 *
2182 		 * The visible declinations are that sometimes
2183 		 * we enter time-wait state, when it is not required really
2184 		 * (harmless), do not send active resets, when they are
2185 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2186 		 * they look as CLOSING or LAST_ACK for Linux)
2187 		 * Probably, I missed some more holelets.
2188 		 * 						--ANK
2189 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2190 		 * in a single packet! (May consider it later but will
2191 		 * probably need API support or TCP_CORK SYN-ACK until
2192 		 * data is written and socket is closed.)
2193 		 */
2194 		tcp_send_fin(sk);
2195 	}
2196 
2197 	sk_stream_wait_close(sk, timeout);
2198 
2199 adjudge_to_death:
2200 	state = sk->sk_state;
2201 	sock_hold(sk);
2202 	sock_orphan(sk);
2203 
2204 	/* It is the last release_sock in its life. It will remove backlog. */
2205 	release_sock(sk);
2206 
2207 
2208 	/* Now socket is owned by kernel and we acquire BH lock
2209 	 *  to finish close. No need to check for user refs.
2210 	 */
2211 	local_bh_disable();
2212 	bh_lock_sock(sk);
2213 	WARN_ON(sock_owned_by_user(sk));
2214 
2215 	percpu_counter_inc(sk->sk_prot->orphan_count);
2216 
2217 	/* Have we already been destroyed by a softirq or backlog? */
2218 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2219 		goto out;
2220 
2221 	/*	This is a (useful) BSD violating of the RFC. There is a
2222 	 *	problem with TCP as specified in that the other end could
2223 	 *	keep a socket open forever with no application left this end.
2224 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2225 	 *	our end. If they send after that then tough - BUT: long enough
2226 	 *	that we won't make the old 4*rto = almost no time - whoops
2227 	 *	reset mistake.
2228 	 *
2229 	 *	Nope, it was not mistake. It is really desired behaviour
2230 	 *	f.e. on http servers, when such sockets are useless, but
2231 	 *	consume significant resources. Let's do it with special
2232 	 *	linger2	option.					--ANK
2233 	 */
2234 
2235 	if (sk->sk_state == TCP_FIN_WAIT2) {
2236 		struct tcp_sock *tp = tcp_sk(sk);
2237 		if (tp->linger2 < 0) {
2238 			tcp_set_state(sk, TCP_CLOSE);
2239 			tcp_send_active_reset(sk, GFP_ATOMIC);
2240 			__NET_INC_STATS(sock_net(sk),
2241 					LINUX_MIB_TCPABORTONLINGER);
2242 		} else {
2243 			const int tmo = tcp_fin_time(sk);
2244 
2245 			if (tmo > TCP_TIMEWAIT_LEN) {
2246 				inet_csk_reset_keepalive_timer(sk,
2247 						tmo - TCP_TIMEWAIT_LEN);
2248 			} else {
2249 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2250 				goto out;
2251 			}
2252 		}
2253 	}
2254 	if (sk->sk_state != TCP_CLOSE) {
2255 		sk_mem_reclaim(sk);
2256 		if (tcp_check_oom(sk, 0)) {
2257 			tcp_set_state(sk, TCP_CLOSE);
2258 			tcp_send_active_reset(sk, GFP_ATOMIC);
2259 			__NET_INC_STATS(sock_net(sk),
2260 					LINUX_MIB_TCPABORTONMEMORY);
2261 		}
2262 	}
2263 
2264 	if (sk->sk_state == TCP_CLOSE) {
2265 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2266 		/* We could get here with a non-NULL req if the socket is
2267 		 * aborted (e.g., closed with unread data) before 3WHS
2268 		 * finishes.
2269 		 */
2270 		if (req)
2271 			reqsk_fastopen_remove(sk, req, false);
2272 		inet_csk_destroy_sock(sk);
2273 	}
2274 	/* Otherwise, socket is reprieved until protocol close. */
2275 
2276 out:
2277 	bh_unlock_sock(sk);
2278 	local_bh_enable();
2279 	sock_put(sk);
2280 }
2281 EXPORT_SYMBOL(tcp_close);
2282 
2283 /* These states need RST on ABORT according to RFC793 */
2284 
2285 static inline bool tcp_need_reset(int state)
2286 {
2287 	return (1 << state) &
2288 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2289 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2290 }
2291 
2292 int tcp_disconnect(struct sock *sk, int flags)
2293 {
2294 	struct inet_sock *inet = inet_sk(sk);
2295 	struct inet_connection_sock *icsk = inet_csk(sk);
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 	int err = 0;
2298 	int old_state = sk->sk_state;
2299 
2300 	if (old_state != TCP_CLOSE)
2301 		tcp_set_state(sk, TCP_CLOSE);
2302 
2303 	/* ABORT function of RFC793 */
2304 	if (old_state == TCP_LISTEN) {
2305 		inet_csk_listen_stop(sk);
2306 	} else if (unlikely(tp->repair)) {
2307 		sk->sk_err = ECONNABORTED;
2308 	} else if (tcp_need_reset(old_state) ||
2309 		   (tp->snd_nxt != tp->write_seq &&
2310 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2311 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2312 		 * states
2313 		 */
2314 		tcp_send_active_reset(sk, gfp_any());
2315 		sk->sk_err = ECONNRESET;
2316 	} else if (old_state == TCP_SYN_SENT)
2317 		sk->sk_err = ECONNRESET;
2318 
2319 	tcp_clear_xmit_timers(sk);
2320 	__skb_queue_purge(&sk->sk_receive_queue);
2321 	tcp_write_queue_purge(sk);
2322 	tcp_fastopen_active_disable_ofo_check(sk);
2323 	skb_rbtree_purge(&tp->out_of_order_queue);
2324 
2325 	inet->inet_dport = 0;
2326 
2327 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2328 		inet_reset_saddr(sk);
2329 
2330 	sk->sk_shutdown = 0;
2331 	sock_reset_flag(sk, SOCK_DONE);
2332 	tp->srtt_us = 0;
2333 	tp->write_seq += tp->max_window + 2;
2334 	if (tp->write_seq == 0)
2335 		tp->write_seq = 1;
2336 	icsk->icsk_backoff = 0;
2337 	tp->snd_cwnd = 2;
2338 	icsk->icsk_probes_out = 0;
2339 	tp->packets_out = 0;
2340 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2341 	tp->snd_cwnd_cnt = 0;
2342 	tp->window_clamp = 0;
2343 	tcp_set_ca_state(sk, TCP_CA_Open);
2344 	tcp_clear_retrans(tp);
2345 	inet_csk_delack_init(sk);
2346 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2347 	 * issue in __tcp_select_window()
2348 	 */
2349 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2350 	tcp_init_send_head(sk);
2351 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2352 	__sk_dst_reset(sk);
2353 	dst_release(sk->sk_rx_dst);
2354 	sk->sk_rx_dst = NULL;
2355 	tcp_saved_syn_free(tp);
2356 
2357 	/* Clean up fastopen related fields */
2358 	tcp_free_fastopen_req(tp);
2359 	inet->defer_connect = 0;
2360 
2361 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2362 
2363 	sk->sk_error_report(sk);
2364 	return err;
2365 }
2366 EXPORT_SYMBOL(tcp_disconnect);
2367 
2368 static inline bool tcp_can_repair_sock(const struct sock *sk)
2369 {
2370 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2371 		(sk->sk_state != TCP_LISTEN);
2372 }
2373 
2374 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2375 {
2376 	struct tcp_repair_window opt;
2377 
2378 	if (!tp->repair)
2379 		return -EPERM;
2380 
2381 	if (len != sizeof(opt))
2382 		return -EINVAL;
2383 
2384 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2385 		return -EFAULT;
2386 
2387 	if (opt.max_window < opt.snd_wnd)
2388 		return -EINVAL;
2389 
2390 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2391 		return -EINVAL;
2392 
2393 	if (after(opt.rcv_wup, tp->rcv_nxt))
2394 		return -EINVAL;
2395 
2396 	tp->snd_wl1	= opt.snd_wl1;
2397 	tp->snd_wnd	= opt.snd_wnd;
2398 	tp->max_window	= opt.max_window;
2399 
2400 	tp->rcv_wnd	= opt.rcv_wnd;
2401 	tp->rcv_wup	= opt.rcv_wup;
2402 
2403 	return 0;
2404 }
2405 
2406 static int tcp_repair_options_est(struct sock *sk,
2407 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2408 {
2409 	struct tcp_sock *tp = tcp_sk(sk);
2410 	struct tcp_repair_opt opt;
2411 
2412 	while (len >= sizeof(opt)) {
2413 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2414 			return -EFAULT;
2415 
2416 		optbuf++;
2417 		len -= sizeof(opt);
2418 
2419 		switch (opt.opt_code) {
2420 		case TCPOPT_MSS:
2421 			tp->rx_opt.mss_clamp = opt.opt_val;
2422 			tcp_mtup_init(sk);
2423 			break;
2424 		case TCPOPT_WINDOW:
2425 			{
2426 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2427 				u16 rcv_wscale = opt.opt_val >> 16;
2428 
2429 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2430 					return -EFBIG;
2431 
2432 				tp->rx_opt.snd_wscale = snd_wscale;
2433 				tp->rx_opt.rcv_wscale = rcv_wscale;
2434 				tp->rx_opt.wscale_ok = 1;
2435 			}
2436 			break;
2437 		case TCPOPT_SACK_PERM:
2438 			if (opt.opt_val != 0)
2439 				return -EINVAL;
2440 
2441 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2442 			if (sysctl_tcp_fack)
2443 				tcp_enable_fack(tp);
2444 			break;
2445 		case TCPOPT_TIMESTAMP:
2446 			if (opt.opt_val != 0)
2447 				return -EINVAL;
2448 
2449 			tp->rx_opt.tstamp_ok = 1;
2450 			break;
2451 		}
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 /*
2458  *	Socket option code for TCP.
2459  */
2460 static int do_tcp_setsockopt(struct sock *sk, int level,
2461 		int optname, char __user *optval, unsigned int optlen)
2462 {
2463 	struct tcp_sock *tp = tcp_sk(sk);
2464 	struct inet_connection_sock *icsk = inet_csk(sk);
2465 	struct net *net = sock_net(sk);
2466 	int val;
2467 	int err = 0;
2468 
2469 	/* These are data/string values, all the others are ints */
2470 	switch (optname) {
2471 	case TCP_CONGESTION: {
2472 		char name[TCP_CA_NAME_MAX];
2473 
2474 		if (optlen < 1)
2475 			return -EINVAL;
2476 
2477 		val = strncpy_from_user(name, optval,
2478 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2479 		if (val < 0)
2480 			return -EFAULT;
2481 		name[val] = 0;
2482 
2483 		lock_sock(sk);
2484 		err = tcp_set_congestion_control(sk, name, true);
2485 		release_sock(sk);
2486 		return err;
2487 	}
2488 	case TCP_ULP: {
2489 		char name[TCP_ULP_NAME_MAX];
2490 
2491 		if (optlen < 1)
2492 			return -EINVAL;
2493 
2494 		val = strncpy_from_user(name, optval,
2495 					min_t(long, TCP_ULP_NAME_MAX - 1,
2496 					      optlen));
2497 		if (val < 0)
2498 			return -EFAULT;
2499 		name[val] = 0;
2500 
2501 		lock_sock(sk);
2502 		err = tcp_set_ulp(sk, name);
2503 		release_sock(sk);
2504 		return err;
2505 	}
2506 	default:
2507 		/* fallthru */
2508 		break;
2509 	}
2510 
2511 	if (optlen < sizeof(int))
2512 		return -EINVAL;
2513 
2514 	if (get_user(val, (int __user *)optval))
2515 		return -EFAULT;
2516 
2517 	lock_sock(sk);
2518 
2519 	switch (optname) {
2520 	case TCP_MAXSEG:
2521 		/* Values greater than interface MTU won't take effect. However
2522 		 * at the point when this call is done we typically don't yet
2523 		 * know which interface is going to be used
2524 		 */
2525 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2526 			err = -EINVAL;
2527 			break;
2528 		}
2529 		tp->rx_opt.user_mss = val;
2530 		break;
2531 
2532 	case TCP_NODELAY:
2533 		if (val) {
2534 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2535 			 * this option on corked socket is remembered, but
2536 			 * it is not activated until cork is cleared.
2537 			 *
2538 			 * However, when TCP_NODELAY is set we make
2539 			 * an explicit push, which overrides even TCP_CORK
2540 			 * for currently queued segments.
2541 			 */
2542 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2543 			tcp_push_pending_frames(sk);
2544 		} else {
2545 			tp->nonagle &= ~TCP_NAGLE_OFF;
2546 		}
2547 		break;
2548 
2549 	case TCP_THIN_LINEAR_TIMEOUTS:
2550 		if (val < 0 || val > 1)
2551 			err = -EINVAL;
2552 		else
2553 			tp->thin_lto = val;
2554 		break;
2555 
2556 	case TCP_THIN_DUPACK:
2557 		if (val < 0 || val > 1)
2558 			err = -EINVAL;
2559 		break;
2560 
2561 	case TCP_REPAIR:
2562 		if (!tcp_can_repair_sock(sk))
2563 			err = -EPERM;
2564 		else if (val == 1) {
2565 			tp->repair = 1;
2566 			sk->sk_reuse = SK_FORCE_REUSE;
2567 			tp->repair_queue = TCP_NO_QUEUE;
2568 		} else if (val == 0) {
2569 			tp->repair = 0;
2570 			sk->sk_reuse = SK_NO_REUSE;
2571 			tcp_send_window_probe(sk);
2572 		} else
2573 			err = -EINVAL;
2574 
2575 		break;
2576 
2577 	case TCP_REPAIR_QUEUE:
2578 		if (!tp->repair)
2579 			err = -EPERM;
2580 		else if (val < TCP_QUEUES_NR)
2581 			tp->repair_queue = val;
2582 		else
2583 			err = -EINVAL;
2584 		break;
2585 
2586 	case TCP_QUEUE_SEQ:
2587 		if (sk->sk_state != TCP_CLOSE)
2588 			err = -EPERM;
2589 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2590 			tp->write_seq = val;
2591 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2592 			tp->rcv_nxt = val;
2593 		else
2594 			err = -EINVAL;
2595 		break;
2596 
2597 	case TCP_REPAIR_OPTIONS:
2598 		if (!tp->repair)
2599 			err = -EINVAL;
2600 		else if (sk->sk_state == TCP_ESTABLISHED)
2601 			err = tcp_repair_options_est(sk,
2602 					(struct tcp_repair_opt __user *)optval,
2603 					optlen);
2604 		else
2605 			err = -EPERM;
2606 		break;
2607 
2608 	case TCP_CORK:
2609 		/* When set indicates to always queue non-full frames.
2610 		 * Later the user clears this option and we transmit
2611 		 * any pending partial frames in the queue.  This is
2612 		 * meant to be used alongside sendfile() to get properly
2613 		 * filled frames when the user (for example) must write
2614 		 * out headers with a write() call first and then use
2615 		 * sendfile to send out the data parts.
2616 		 *
2617 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2618 		 * stronger than TCP_NODELAY.
2619 		 */
2620 		if (val) {
2621 			tp->nonagle |= TCP_NAGLE_CORK;
2622 		} else {
2623 			tp->nonagle &= ~TCP_NAGLE_CORK;
2624 			if (tp->nonagle&TCP_NAGLE_OFF)
2625 				tp->nonagle |= TCP_NAGLE_PUSH;
2626 			tcp_push_pending_frames(sk);
2627 		}
2628 		break;
2629 
2630 	case TCP_KEEPIDLE:
2631 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2632 			err = -EINVAL;
2633 		else {
2634 			tp->keepalive_time = val * HZ;
2635 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2636 			    !((1 << sk->sk_state) &
2637 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2638 				u32 elapsed = keepalive_time_elapsed(tp);
2639 				if (tp->keepalive_time > elapsed)
2640 					elapsed = tp->keepalive_time - elapsed;
2641 				else
2642 					elapsed = 0;
2643 				inet_csk_reset_keepalive_timer(sk, elapsed);
2644 			}
2645 		}
2646 		break;
2647 	case TCP_KEEPINTVL:
2648 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2649 			err = -EINVAL;
2650 		else
2651 			tp->keepalive_intvl = val * HZ;
2652 		break;
2653 	case TCP_KEEPCNT:
2654 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2655 			err = -EINVAL;
2656 		else
2657 			tp->keepalive_probes = val;
2658 		break;
2659 	case TCP_SYNCNT:
2660 		if (val < 1 || val > MAX_TCP_SYNCNT)
2661 			err = -EINVAL;
2662 		else
2663 			icsk->icsk_syn_retries = val;
2664 		break;
2665 
2666 	case TCP_SAVE_SYN:
2667 		if (val < 0 || val > 1)
2668 			err = -EINVAL;
2669 		else
2670 			tp->save_syn = val;
2671 		break;
2672 
2673 	case TCP_LINGER2:
2674 		if (val < 0)
2675 			tp->linger2 = -1;
2676 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2677 			tp->linger2 = 0;
2678 		else
2679 			tp->linger2 = val * HZ;
2680 		break;
2681 
2682 	case TCP_DEFER_ACCEPT:
2683 		/* Translate value in seconds to number of retransmits */
2684 		icsk->icsk_accept_queue.rskq_defer_accept =
2685 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2686 					TCP_RTO_MAX / HZ);
2687 		break;
2688 
2689 	case TCP_WINDOW_CLAMP:
2690 		if (!val) {
2691 			if (sk->sk_state != TCP_CLOSE) {
2692 				err = -EINVAL;
2693 				break;
2694 			}
2695 			tp->window_clamp = 0;
2696 		} else
2697 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2698 						SOCK_MIN_RCVBUF / 2 : val;
2699 		break;
2700 
2701 	case TCP_QUICKACK:
2702 		if (!val) {
2703 			icsk->icsk_ack.pingpong = 1;
2704 		} else {
2705 			icsk->icsk_ack.pingpong = 0;
2706 			if ((1 << sk->sk_state) &
2707 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2708 			    inet_csk_ack_scheduled(sk)) {
2709 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2710 				tcp_cleanup_rbuf(sk, 1);
2711 				if (!(val & 1))
2712 					icsk->icsk_ack.pingpong = 1;
2713 			}
2714 		}
2715 		break;
2716 
2717 #ifdef CONFIG_TCP_MD5SIG
2718 	case TCP_MD5SIG:
2719 	case TCP_MD5SIG_EXT:
2720 		/* Read the IP->Key mappings from userspace */
2721 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2722 		break;
2723 #endif
2724 	case TCP_USER_TIMEOUT:
2725 		/* Cap the max time in ms TCP will retry or probe the window
2726 		 * before giving up and aborting (ETIMEDOUT) a connection.
2727 		 */
2728 		if (val < 0)
2729 			err = -EINVAL;
2730 		else
2731 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2732 		break;
2733 
2734 	case TCP_FASTOPEN:
2735 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2736 		    TCPF_LISTEN))) {
2737 			tcp_fastopen_init_key_once(true);
2738 
2739 			fastopen_queue_tune(sk, val);
2740 		} else {
2741 			err = -EINVAL;
2742 		}
2743 		break;
2744 	case TCP_FASTOPEN_CONNECT:
2745 		if (val > 1 || val < 0) {
2746 			err = -EINVAL;
2747 		} else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2748 			if (sk->sk_state == TCP_CLOSE)
2749 				tp->fastopen_connect = val;
2750 			else
2751 				err = -EINVAL;
2752 		} else {
2753 			err = -EOPNOTSUPP;
2754 		}
2755 		break;
2756 	case TCP_TIMESTAMP:
2757 		if (!tp->repair)
2758 			err = -EPERM;
2759 		else
2760 			tp->tsoffset = val - tcp_time_stamp_raw();
2761 		break;
2762 	case TCP_REPAIR_WINDOW:
2763 		err = tcp_repair_set_window(tp, optval, optlen);
2764 		break;
2765 	case TCP_NOTSENT_LOWAT:
2766 		tp->notsent_lowat = val;
2767 		sk->sk_write_space(sk);
2768 		break;
2769 	default:
2770 		err = -ENOPROTOOPT;
2771 		break;
2772 	}
2773 
2774 	release_sock(sk);
2775 	return err;
2776 }
2777 
2778 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2779 		   unsigned int optlen)
2780 {
2781 	const struct inet_connection_sock *icsk = inet_csk(sk);
2782 
2783 	if (level != SOL_TCP)
2784 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2785 						     optval, optlen);
2786 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2787 }
2788 EXPORT_SYMBOL(tcp_setsockopt);
2789 
2790 #ifdef CONFIG_COMPAT
2791 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2792 			  char __user *optval, unsigned int optlen)
2793 {
2794 	if (level != SOL_TCP)
2795 		return inet_csk_compat_setsockopt(sk, level, optname,
2796 						  optval, optlen);
2797 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2798 }
2799 EXPORT_SYMBOL(compat_tcp_setsockopt);
2800 #endif
2801 
2802 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2803 				      struct tcp_info *info)
2804 {
2805 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2806 	enum tcp_chrono i;
2807 
2808 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2809 		stats[i] = tp->chrono_stat[i - 1];
2810 		if (i == tp->chrono_type)
2811 			stats[i] += tcp_jiffies32 - tp->chrono_start;
2812 		stats[i] *= USEC_PER_SEC / HZ;
2813 		total += stats[i];
2814 	}
2815 
2816 	info->tcpi_busy_time = total;
2817 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2818 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2819 }
2820 
2821 /* Return information about state of tcp endpoint in API format. */
2822 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2823 {
2824 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2825 	const struct inet_connection_sock *icsk = inet_csk(sk);
2826 	u32 now, intv;
2827 	u64 rate64;
2828 	bool slow;
2829 	u32 rate;
2830 
2831 	memset(info, 0, sizeof(*info));
2832 	if (sk->sk_type != SOCK_STREAM)
2833 		return;
2834 
2835 	info->tcpi_state = sk_state_load(sk);
2836 
2837 	/* Report meaningful fields for all TCP states, including listeners */
2838 	rate = READ_ONCE(sk->sk_pacing_rate);
2839 	rate64 = rate != ~0U ? rate : ~0ULL;
2840 	info->tcpi_pacing_rate = rate64;
2841 
2842 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2843 	rate64 = rate != ~0U ? rate : ~0ULL;
2844 	info->tcpi_max_pacing_rate = rate64;
2845 
2846 	info->tcpi_reordering = tp->reordering;
2847 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2848 
2849 	if (info->tcpi_state == TCP_LISTEN) {
2850 		/* listeners aliased fields :
2851 		 * tcpi_unacked -> Number of children ready for accept()
2852 		 * tcpi_sacked  -> max backlog
2853 		 */
2854 		info->tcpi_unacked = sk->sk_ack_backlog;
2855 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2856 		return;
2857 	}
2858 
2859 	slow = lock_sock_fast(sk);
2860 
2861 	info->tcpi_ca_state = icsk->icsk_ca_state;
2862 	info->tcpi_retransmits = icsk->icsk_retransmits;
2863 	info->tcpi_probes = icsk->icsk_probes_out;
2864 	info->tcpi_backoff = icsk->icsk_backoff;
2865 
2866 	if (tp->rx_opt.tstamp_ok)
2867 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2868 	if (tcp_is_sack(tp))
2869 		info->tcpi_options |= TCPI_OPT_SACK;
2870 	if (tp->rx_opt.wscale_ok) {
2871 		info->tcpi_options |= TCPI_OPT_WSCALE;
2872 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2873 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2874 	}
2875 
2876 	if (tp->ecn_flags & TCP_ECN_OK)
2877 		info->tcpi_options |= TCPI_OPT_ECN;
2878 	if (tp->ecn_flags & TCP_ECN_SEEN)
2879 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2880 	if (tp->syn_data_acked)
2881 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2882 
2883 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2884 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2885 	info->tcpi_snd_mss = tp->mss_cache;
2886 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2887 
2888 	info->tcpi_unacked = tp->packets_out;
2889 	info->tcpi_sacked = tp->sacked_out;
2890 
2891 	info->tcpi_lost = tp->lost_out;
2892 	info->tcpi_retrans = tp->retrans_out;
2893 	info->tcpi_fackets = tp->fackets_out;
2894 
2895 	now = tcp_jiffies32;
2896 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2897 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2898 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2899 
2900 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2901 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2902 	info->tcpi_rtt = tp->srtt_us >> 3;
2903 	info->tcpi_rttvar = tp->mdev_us >> 2;
2904 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2905 	info->tcpi_advmss = tp->advmss;
2906 
2907 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2908 	info->tcpi_rcv_space = tp->rcvq_space.space;
2909 
2910 	info->tcpi_total_retrans = tp->total_retrans;
2911 
2912 	info->tcpi_bytes_acked = tp->bytes_acked;
2913 	info->tcpi_bytes_received = tp->bytes_received;
2914 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2915 	tcp_get_info_chrono_stats(tp, info);
2916 
2917 	info->tcpi_segs_out = tp->segs_out;
2918 	info->tcpi_segs_in = tp->segs_in;
2919 
2920 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2921 	info->tcpi_data_segs_in = tp->data_segs_in;
2922 	info->tcpi_data_segs_out = tp->data_segs_out;
2923 
2924 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2925 	rate = READ_ONCE(tp->rate_delivered);
2926 	intv = READ_ONCE(tp->rate_interval_us);
2927 	if (rate && intv) {
2928 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2929 		do_div(rate64, intv);
2930 		info->tcpi_delivery_rate = rate64;
2931 	}
2932 	unlock_sock_fast(sk, slow);
2933 }
2934 EXPORT_SYMBOL_GPL(tcp_get_info);
2935 
2936 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2937 {
2938 	const struct tcp_sock *tp = tcp_sk(sk);
2939 	struct sk_buff *stats;
2940 	struct tcp_info info;
2941 
2942 	stats = alloc_skb(5 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2943 	if (!stats)
2944 		return NULL;
2945 
2946 	tcp_get_info_chrono_stats(tp, &info);
2947 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2948 			  info.tcpi_busy_time, TCP_NLA_PAD);
2949 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2950 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
2951 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2952 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2953 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2954 			  tp->data_segs_out, TCP_NLA_PAD);
2955 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
2956 			  tp->total_retrans, TCP_NLA_PAD);
2957 	return stats;
2958 }
2959 
2960 static int do_tcp_getsockopt(struct sock *sk, int level,
2961 		int optname, char __user *optval, int __user *optlen)
2962 {
2963 	struct inet_connection_sock *icsk = inet_csk(sk);
2964 	struct tcp_sock *tp = tcp_sk(sk);
2965 	struct net *net = sock_net(sk);
2966 	int val, len;
2967 
2968 	if (get_user(len, optlen))
2969 		return -EFAULT;
2970 
2971 	len = min_t(unsigned int, len, sizeof(int));
2972 
2973 	if (len < 0)
2974 		return -EINVAL;
2975 
2976 	switch (optname) {
2977 	case TCP_MAXSEG:
2978 		val = tp->mss_cache;
2979 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2980 			val = tp->rx_opt.user_mss;
2981 		if (tp->repair)
2982 			val = tp->rx_opt.mss_clamp;
2983 		break;
2984 	case TCP_NODELAY:
2985 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2986 		break;
2987 	case TCP_CORK:
2988 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2989 		break;
2990 	case TCP_KEEPIDLE:
2991 		val = keepalive_time_when(tp) / HZ;
2992 		break;
2993 	case TCP_KEEPINTVL:
2994 		val = keepalive_intvl_when(tp) / HZ;
2995 		break;
2996 	case TCP_KEEPCNT:
2997 		val = keepalive_probes(tp);
2998 		break;
2999 	case TCP_SYNCNT:
3000 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3001 		break;
3002 	case TCP_LINGER2:
3003 		val = tp->linger2;
3004 		if (val >= 0)
3005 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3006 		break;
3007 	case TCP_DEFER_ACCEPT:
3008 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3009 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3010 		break;
3011 	case TCP_WINDOW_CLAMP:
3012 		val = tp->window_clamp;
3013 		break;
3014 	case TCP_INFO: {
3015 		struct tcp_info info;
3016 
3017 		if (get_user(len, optlen))
3018 			return -EFAULT;
3019 
3020 		tcp_get_info(sk, &info);
3021 
3022 		len = min_t(unsigned int, len, sizeof(info));
3023 		if (put_user(len, optlen))
3024 			return -EFAULT;
3025 		if (copy_to_user(optval, &info, len))
3026 			return -EFAULT;
3027 		return 0;
3028 	}
3029 	case TCP_CC_INFO: {
3030 		const struct tcp_congestion_ops *ca_ops;
3031 		union tcp_cc_info info;
3032 		size_t sz = 0;
3033 		int attr;
3034 
3035 		if (get_user(len, optlen))
3036 			return -EFAULT;
3037 
3038 		ca_ops = icsk->icsk_ca_ops;
3039 		if (ca_ops && ca_ops->get_info)
3040 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3041 
3042 		len = min_t(unsigned int, len, sz);
3043 		if (put_user(len, optlen))
3044 			return -EFAULT;
3045 		if (copy_to_user(optval, &info, len))
3046 			return -EFAULT;
3047 		return 0;
3048 	}
3049 	case TCP_QUICKACK:
3050 		val = !icsk->icsk_ack.pingpong;
3051 		break;
3052 
3053 	case TCP_CONGESTION:
3054 		if (get_user(len, optlen))
3055 			return -EFAULT;
3056 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3057 		if (put_user(len, optlen))
3058 			return -EFAULT;
3059 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3060 			return -EFAULT;
3061 		return 0;
3062 
3063 	case TCP_ULP:
3064 		if (get_user(len, optlen))
3065 			return -EFAULT;
3066 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3067 		if (!icsk->icsk_ulp_ops) {
3068 			if (put_user(0, optlen))
3069 				return -EFAULT;
3070 			return 0;
3071 		}
3072 		if (put_user(len, optlen))
3073 			return -EFAULT;
3074 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3075 			return -EFAULT;
3076 		return 0;
3077 
3078 	case TCP_THIN_LINEAR_TIMEOUTS:
3079 		val = tp->thin_lto;
3080 		break;
3081 
3082 	case TCP_THIN_DUPACK:
3083 		val = 0;
3084 		break;
3085 
3086 	case TCP_REPAIR:
3087 		val = tp->repair;
3088 		break;
3089 
3090 	case TCP_REPAIR_QUEUE:
3091 		if (tp->repair)
3092 			val = tp->repair_queue;
3093 		else
3094 			return -EINVAL;
3095 		break;
3096 
3097 	case TCP_REPAIR_WINDOW: {
3098 		struct tcp_repair_window opt;
3099 
3100 		if (get_user(len, optlen))
3101 			return -EFAULT;
3102 
3103 		if (len != sizeof(opt))
3104 			return -EINVAL;
3105 
3106 		if (!tp->repair)
3107 			return -EPERM;
3108 
3109 		opt.snd_wl1	= tp->snd_wl1;
3110 		opt.snd_wnd	= tp->snd_wnd;
3111 		opt.max_window	= tp->max_window;
3112 		opt.rcv_wnd	= tp->rcv_wnd;
3113 		opt.rcv_wup	= tp->rcv_wup;
3114 
3115 		if (copy_to_user(optval, &opt, len))
3116 			return -EFAULT;
3117 		return 0;
3118 	}
3119 	case TCP_QUEUE_SEQ:
3120 		if (tp->repair_queue == TCP_SEND_QUEUE)
3121 			val = tp->write_seq;
3122 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3123 			val = tp->rcv_nxt;
3124 		else
3125 			return -EINVAL;
3126 		break;
3127 
3128 	case TCP_USER_TIMEOUT:
3129 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3130 		break;
3131 
3132 	case TCP_FASTOPEN:
3133 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3134 		break;
3135 
3136 	case TCP_FASTOPEN_CONNECT:
3137 		val = tp->fastopen_connect;
3138 		break;
3139 
3140 	case TCP_TIMESTAMP:
3141 		val = tcp_time_stamp_raw() + tp->tsoffset;
3142 		break;
3143 	case TCP_NOTSENT_LOWAT:
3144 		val = tp->notsent_lowat;
3145 		break;
3146 	case TCP_SAVE_SYN:
3147 		val = tp->save_syn;
3148 		break;
3149 	case TCP_SAVED_SYN: {
3150 		if (get_user(len, optlen))
3151 			return -EFAULT;
3152 
3153 		lock_sock(sk);
3154 		if (tp->saved_syn) {
3155 			if (len < tp->saved_syn[0]) {
3156 				if (put_user(tp->saved_syn[0], optlen)) {
3157 					release_sock(sk);
3158 					return -EFAULT;
3159 				}
3160 				release_sock(sk);
3161 				return -EINVAL;
3162 			}
3163 			len = tp->saved_syn[0];
3164 			if (put_user(len, optlen)) {
3165 				release_sock(sk);
3166 				return -EFAULT;
3167 			}
3168 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3169 				release_sock(sk);
3170 				return -EFAULT;
3171 			}
3172 			tcp_saved_syn_free(tp);
3173 			release_sock(sk);
3174 		} else {
3175 			release_sock(sk);
3176 			len = 0;
3177 			if (put_user(len, optlen))
3178 				return -EFAULT;
3179 		}
3180 		return 0;
3181 	}
3182 	default:
3183 		return -ENOPROTOOPT;
3184 	}
3185 
3186 	if (put_user(len, optlen))
3187 		return -EFAULT;
3188 	if (copy_to_user(optval, &val, len))
3189 		return -EFAULT;
3190 	return 0;
3191 }
3192 
3193 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3194 		   int __user *optlen)
3195 {
3196 	struct inet_connection_sock *icsk = inet_csk(sk);
3197 
3198 	if (level != SOL_TCP)
3199 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3200 						     optval, optlen);
3201 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3202 }
3203 EXPORT_SYMBOL(tcp_getsockopt);
3204 
3205 #ifdef CONFIG_COMPAT
3206 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3207 			  char __user *optval, int __user *optlen)
3208 {
3209 	if (level != SOL_TCP)
3210 		return inet_csk_compat_getsockopt(sk, level, optname,
3211 						  optval, optlen);
3212 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3213 }
3214 EXPORT_SYMBOL(compat_tcp_getsockopt);
3215 #endif
3216 
3217 #ifdef CONFIG_TCP_MD5SIG
3218 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3219 static DEFINE_MUTEX(tcp_md5sig_mutex);
3220 static bool tcp_md5sig_pool_populated = false;
3221 
3222 static void __tcp_alloc_md5sig_pool(void)
3223 {
3224 	struct crypto_ahash *hash;
3225 	int cpu;
3226 
3227 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3228 	if (IS_ERR(hash))
3229 		return;
3230 
3231 	for_each_possible_cpu(cpu) {
3232 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3233 		struct ahash_request *req;
3234 
3235 		if (!scratch) {
3236 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3237 					       sizeof(struct tcphdr),
3238 					       GFP_KERNEL,
3239 					       cpu_to_node(cpu));
3240 			if (!scratch)
3241 				return;
3242 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3243 		}
3244 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3245 			continue;
3246 
3247 		req = ahash_request_alloc(hash, GFP_KERNEL);
3248 		if (!req)
3249 			return;
3250 
3251 		ahash_request_set_callback(req, 0, NULL, NULL);
3252 
3253 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3254 	}
3255 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3256 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3257 	 */
3258 	smp_wmb();
3259 	tcp_md5sig_pool_populated = true;
3260 }
3261 
3262 bool tcp_alloc_md5sig_pool(void)
3263 {
3264 	if (unlikely(!tcp_md5sig_pool_populated)) {
3265 		mutex_lock(&tcp_md5sig_mutex);
3266 
3267 		if (!tcp_md5sig_pool_populated)
3268 			__tcp_alloc_md5sig_pool();
3269 
3270 		mutex_unlock(&tcp_md5sig_mutex);
3271 	}
3272 	return tcp_md5sig_pool_populated;
3273 }
3274 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3275 
3276 
3277 /**
3278  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3279  *
3280  *	We use percpu structure, so if we succeed, we exit with preemption
3281  *	and BH disabled, to make sure another thread or softirq handling
3282  *	wont try to get same context.
3283  */
3284 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3285 {
3286 	local_bh_disable();
3287 
3288 	if (tcp_md5sig_pool_populated) {
3289 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3290 		smp_rmb();
3291 		return this_cpu_ptr(&tcp_md5sig_pool);
3292 	}
3293 	local_bh_enable();
3294 	return NULL;
3295 }
3296 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3297 
3298 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3299 			  const struct sk_buff *skb, unsigned int header_len)
3300 {
3301 	struct scatterlist sg;
3302 	const struct tcphdr *tp = tcp_hdr(skb);
3303 	struct ahash_request *req = hp->md5_req;
3304 	unsigned int i;
3305 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3306 					   skb_headlen(skb) - header_len : 0;
3307 	const struct skb_shared_info *shi = skb_shinfo(skb);
3308 	struct sk_buff *frag_iter;
3309 
3310 	sg_init_table(&sg, 1);
3311 
3312 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3313 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3314 	if (crypto_ahash_update(req))
3315 		return 1;
3316 
3317 	for (i = 0; i < shi->nr_frags; ++i) {
3318 		const struct skb_frag_struct *f = &shi->frags[i];
3319 		unsigned int offset = f->page_offset;
3320 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3321 
3322 		sg_set_page(&sg, page, skb_frag_size(f),
3323 			    offset_in_page(offset));
3324 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3325 		if (crypto_ahash_update(req))
3326 			return 1;
3327 	}
3328 
3329 	skb_walk_frags(skb, frag_iter)
3330 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3331 			return 1;
3332 
3333 	return 0;
3334 }
3335 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3336 
3337 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3338 {
3339 	struct scatterlist sg;
3340 
3341 	sg_init_one(&sg, key->key, key->keylen);
3342 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3343 	return crypto_ahash_update(hp->md5_req);
3344 }
3345 EXPORT_SYMBOL(tcp_md5_hash_key);
3346 
3347 #endif
3348 
3349 void tcp_done(struct sock *sk)
3350 {
3351 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3352 
3353 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3354 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3355 
3356 	tcp_set_state(sk, TCP_CLOSE);
3357 	tcp_clear_xmit_timers(sk);
3358 	if (req)
3359 		reqsk_fastopen_remove(sk, req, false);
3360 
3361 	sk->sk_shutdown = SHUTDOWN_MASK;
3362 
3363 	if (!sock_flag(sk, SOCK_DEAD))
3364 		sk->sk_state_change(sk);
3365 	else
3366 		inet_csk_destroy_sock(sk);
3367 }
3368 EXPORT_SYMBOL_GPL(tcp_done);
3369 
3370 int tcp_abort(struct sock *sk, int err)
3371 {
3372 	if (!sk_fullsock(sk)) {
3373 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3374 			struct request_sock *req = inet_reqsk(sk);
3375 
3376 			local_bh_disable();
3377 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3378 							  req);
3379 			local_bh_enable();
3380 			return 0;
3381 		}
3382 		return -EOPNOTSUPP;
3383 	}
3384 
3385 	/* Don't race with userspace socket closes such as tcp_close. */
3386 	lock_sock(sk);
3387 
3388 	if (sk->sk_state == TCP_LISTEN) {
3389 		tcp_set_state(sk, TCP_CLOSE);
3390 		inet_csk_listen_stop(sk);
3391 	}
3392 
3393 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3394 	local_bh_disable();
3395 	bh_lock_sock(sk);
3396 
3397 	if (!sock_flag(sk, SOCK_DEAD)) {
3398 		sk->sk_err = err;
3399 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3400 		smp_wmb();
3401 		sk->sk_error_report(sk);
3402 		if (tcp_need_reset(sk->sk_state))
3403 			tcp_send_active_reset(sk, GFP_ATOMIC);
3404 		tcp_done(sk);
3405 	}
3406 
3407 	bh_unlock_sock(sk);
3408 	local_bh_enable();
3409 	release_sock(sk);
3410 	return 0;
3411 }
3412 EXPORT_SYMBOL_GPL(tcp_abort);
3413 
3414 extern struct tcp_congestion_ops tcp_reno;
3415 
3416 static __initdata unsigned long thash_entries;
3417 static int __init set_thash_entries(char *str)
3418 {
3419 	ssize_t ret;
3420 
3421 	if (!str)
3422 		return 0;
3423 
3424 	ret = kstrtoul(str, 0, &thash_entries);
3425 	if (ret)
3426 		return 0;
3427 
3428 	return 1;
3429 }
3430 __setup("thash_entries=", set_thash_entries);
3431 
3432 static void __init tcp_init_mem(void)
3433 {
3434 	unsigned long limit = nr_free_buffer_pages() / 16;
3435 
3436 	limit = max(limit, 128UL);
3437 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3438 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3439 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3440 }
3441 
3442 void __init tcp_init(void)
3443 {
3444 	int max_rshare, max_wshare, cnt;
3445 	unsigned long limit;
3446 	unsigned int i;
3447 
3448 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3449 		     FIELD_SIZEOF(struct sk_buff, cb));
3450 
3451 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3452 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3453 	inet_hashinfo_init(&tcp_hashinfo);
3454 	tcp_hashinfo.bind_bucket_cachep =
3455 		kmem_cache_create("tcp_bind_bucket",
3456 				  sizeof(struct inet_bind_bucket), 0,
3457 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3458 
3459 	/* Size and allocate the main established and bind bucket
3460 	 * hash tables.
3461 	 *
3462 	 * The methodology is similar to that of the buffer cache.
3463 	 */
3464 	tcp_hashinfo.ehash =
3465 		alloc_large_system_hash("TCP established",
3466 					sizeof(struct inet_ehash_bucket),
3467 					thash_entries,
3468 					17, /* one slot per 128 KB of memory */
3469 					0,
3470 					NULL,
3471 					&tcp_hashinfo.ehash_mask,
3472 					0,
3473 					thash_entries ? 0 : 512 * 1024);
3474 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3475 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3476 
3477 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3478 		panic("TCP: failed to alloc ehash_locks");
3479 	tcp_hashinfo.bhash =
3480 		alloc_large_system_hash("TCP bind",
3481 					sizeof(struct inet_bind_hashbucket),
3482 					tcp_hashinfo.ehash_mask + 1,
3483 					17, /* one slot per 128 KB of memory */
3484 					0,
3485 					&tcp_hashinfo.bhash_size,
3486 					NULL,
3487 					0,
3488 					64 * 1024);
3489 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3490 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3491 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3492 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3493 	}
3494 
3495 
3496 	cnt = tcp_hashinfo.ehash_mask + 1;
3497 	sysctl_tcp_max_orphans = cnt / 2;
3498 
3499 	tcp_init_mem();
3500 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3501 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3502 	max_wshare = min(4UL*1024*1024, limit);
3503 	max_rshare = min(6UL*1024*1024, limit);
3504 
3505 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3506 	sysctl_tcp_wmem[1] = 16*1024;
3507 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3508 
3509 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3510 	sysctl_tcp_rmem[1] = 87380;
3511 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3512 
3513 	pr_info("Hash tables configured (established %u bind %u)\n",
3514 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3515 
3516 	tcp_v4_init();
3517 	tcp_metrics_init();
3518 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3519 	tcp_tasklet_init();
3520 }
3521