1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 462 sk_sockets_allocated_inc(sk); 463 } 464 EXPORT_SYMBOL(tcp_init_sock); 465 466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 467 { 468 struct sk_buff *skb = tcp_write_queue_tail(sk); 469 470 if (tsflags && skb) { 471 struct skb_shared_info *shinfo = skb_shinfo(skb); 472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 473 474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 475 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 476 tcb->txstamp_ack = 1; 477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 479 } 480 } 481 482 static bool tcp_stream_is_readable(struct sock *sk, int target) 483 { 484 if (tcp_epollin_ready(sk, target)) 485 return true; 486 return sk_is_readable(sk); 487 } 488 489 /* 490 * Wait for a TCP event. 491 * 492 * Note that we don't need to lock the socket, as the upper poll layers 493 * take care of normal races (between the test and the event) and we don't 494 * go look at any of the socket buffers directly. 495 */ 496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 497 { 498 __poll_t mask; 499 struct sock *sk = sock->sk; 500 const struct tcp_sock *tp = tcp_sk(sk); 501 int state; 502 503 sock_poll_wait(file, sock, wait); 504 505 state = inet_sk_state_load(sk); 506 if (state == TCP_LISTEN) 507 return inet_csk_listen_poll(sk); 508 509 /* Socket is not locked. We are protected from async events 510 * by poll logic and correct handling of state changes 511 * made by other threads is impossible in any case. 512 */ 513 514 mask = 0; 515 516 /* 517 * EPOLLHUP is certainly not done right. But poll() doesn't 518 * have a notion of HUP in just one direction, and for a 519 * socket the read side is more interesting. 520 * 521 * Some poll() documentation says that EPOLLHUP is incompatible 522 * with the EPOLLOUT/POLLWR flags, so somebody should check this 523 * all. But careful, it tends to be safer to return too many 524 * bits than too few, and you can easily break real applications 525 * if you don't tell them that something has hung up! 526 * 527 * Check-me. 528 * 529 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 530 * our fs/select.c). It means that after we received EOF, 531 * poll always returns immediately, making impossible poll() on write() 532 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 533 * if and only if shutdown has been made in both directions. 534 * Actually, it is interesting to look how Solaris and DUX 535 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 536 * then we could set it on SND_SHUTDOWN. BTW examples given 537 * in Stevens' books assume exactly this behaviour, it explains 538 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 539 * 540 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 541 * blocking on fresh not-connected or disconnected socket. --ANK 542 */ 543 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 544 mask |= EPOLLHUP; 545 if (sk->sk_shutdown & RCV_SHUTDOWN) 546 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 547 548 /* Connected or passive Fast Open socket? */ 549 if (state != TCP_SYN_SENT && 550 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 551 int target = sock_rcvlowat(sk, 0, INT_MAX); 552 u16 urg_data = READ_ONCE(tp->urg_data); 553 554 if (unlikely(urg_data) && 555 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 556 !sock_flag(sk, SOCK_URGINLINE)) 557 target++; 558 559 if (tcp_stream_is_readable(sk, target)) 560 mask |= EPOLLIN | EPOLLRDNORM; 561 562 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 563 if (__sk_stream_is_writeable(sk, 1)) { 564 mask |= EPOLLOUT | EPOLLWRNORM; 565 } else { /* send SIGIO later */ 566 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 567 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 568 569 /* Race breaker. If space is freed after 570 * wspace test but before the flags are set, 571 * IO signal will be lost. Memory barrier 572 * pairs with the input side. 573 */ 574 smp_mb__after_atomic(); 575 if (__sk_stream_is_writeable(sk, 1)) 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 } 578 } else 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 581 if (urg_data & TCP_URG_VALID) 582 mask |= EPOLLPRI; 583 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 584 /* Active TCP fastopen socket with defer_connect 585 * Return EPOLLOUT so application can call write() 586 * in order for kernel to generate SYN+data 587 */ 588 mask |= EPOLLOUT | EPOLLWRNORM; 589 } 590 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 591 smp_rmb(); 592 if (READ_ONCE(sk->sk_err) || 593 !skb_queue_empty_lockless(&sk->sk_error_queue)) 594 mask |= EPOLLERR; 595 596 return mask; 597 } 598 EXPORT_SYMBOL(tcp_poll); 599 600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 601 { 602 struct tcp_sock *tp = tcp_sk(sk); 603 int answ; 604 bool slow; 605 606 switch (cmd) { 607 case SIOCINQ: 608 if (sk->sk_state == TCP_LISTEN) 609 return -EINVAL; 610 611 slow = lock_sock_fast(sk); 612 answ = tcp_inq(sk); 613 unlock_sock_fast(sk, slow); 614 break; 615 case SIOCATMARK: 616 answ = READ_ONCE(tp->urg_data) && 617 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 618 break; 619 case SIOCOUTQ: 620 if (sk->sk_state == TCP_LISTEN) 621 return -EINVAL; 622 623 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 624 answ = 0; 625 else 626 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 627 break; 628 case SIOCOUTQNSD: 629 if (sk->sk_state == TCP_LISTEN) 630 return -EINVAL; 631 632 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 633 answ = 0; 634 else 635 answ = READ_ONCE(tp->write_seq) - 636 READ_ONCE(tp->snd_nxt); 637 break; 638 default: 639 return -ENOIOCTLCMD; 640 } 641 642 return put_user(answ, (int __user *)arg); 643 } 644 EXPORT_SYMBOL(tcp_ioctl); 645 646 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 647 { 648 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 649 tp->pushed_seq = tp->write_seq; 650 } 651 652 static inline bool forced_push(const struct tcp_sock *tp) 653 { 654 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 655 } 656 657 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 658 { 659 struct tcp_sock *tp = tcp_sk(sk); 660 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 661 662 tcb->seq = tcb->end_seq = tp->write_seq; 663 tcb->tcp_flags = TCPHDR_ACK; 664 __skb_header_release(skb); 665 tcp_add_write_queue_tail(sk, skb); 666 sk_wmem_queued_add(sk, skb->truesize); 667 sk_mem_charge(sk, skb->truesize); 668 if (tp->nonagle & TCP_NAGLE_PUSH) 669 tp->nonagle &= ~TCP_NAGLE_PUSH; 670 671 tcp_slow_start_after_idle_check(sk); 672 } 673 674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 675 { 676 if (flags & MSG_OOB) 677 tp->snd_up = tp->write_seq; 678 } 679 680 /* If a not yet filled skb is pushed, do not send it if 681 * we have data packets in Qdisc or NIC queues : 682 * Because TX completion will happen shortly, it gives a chance 683 * to coalesce future sendmsg() payload into this skb, without 684 * need for a timer, and with no latency trade off. 685 * As packets containing data payload have a bigger truesize 686 * than pure acks (dataless) packets, the last checks prevent 687 * autocorking if we only have an ACK in Qdisc/NIC queues, 688 * or if TX completion was delayed after we processed ACK packet. 689 */ 690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 691 int size_goal) 692 { 693 return skb->len < size_goal && 694 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 695 !tcp_rtx_queue_empty(sk) && 696 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 697 tcp_skb_can_collapse_to(skb); 698 } 699 700 void tcp_push(struct sock *sk, int flags, int mss_now, 701 int nonagle, int size_goal) 702 { 703 struct tcp_sock *tp = tcp_sk(sk); 704 struct sk_buff *skb; 705 706 skb = tcp_write_queue_tail(sk); 707 if (!skb) 708 return; 709 if (!(flags & MSG_MORE) || forced_push(tp)) 710 tcp_mark_push(tp, skb); 711 712 tcp_mark_urg(tp, flags); 713 714 if (tcp_should_autocork(sk, skb, size_goal)) { 715 716 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 717 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 719 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 720 } 721 /* It is possible TX completion already happened 722 * before we set TSQ_THROTTLED. 723 */ 724 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 725 return; 726 } 727 728 if (flags & MSG_MORE) 729 nonagle = TCP_NAGLE_CORK; 730 731 __tcp_push_pending_frames(sk, mss_now, nonagle); 732 } 733 734 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 735 unsigned int offset, size_t len) 736 { 737 struct tcp_splice_state *tss = rd_desc->arg.data; 738 int ret; 739 740 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 741 min(rd_desc->count, len), tss->flags); 742 if (ret > 0) 743 rd_desc->count -= ret; 744 return ret; 745 } 746 747 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 748 { 749 /* Store TCP splice context information in read_descriptor_t. */ 750 read_descriptor_t rd_desc = { 751 .arg.data = tss, 752 .count = tss->len, 753 }; 754 755 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 756 } 757 758 /** 759 * tcp_splice_read - splice data from TCP socket to a pipe 760 * @sock: socket to splice from 761 * @ppos: position (not valid) 762 * @pipe: pipe to splice to 763 * @len: number of bytes to splice 764 * @flags: splice modifier flags 765 * 766 * Description: 767 * Will read pages from given socket and fill them into a pipe. 768 * 769 **/ 770 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 771 struct pipe_inode_info *pipe, size_t len, 772 unsigned int flags) 773 { 774 struct sock *sk = sock->sk; 775 struct tcp_splice_state tss = { 776 .pipe = pipe, 777 .len = len, 778 .flags = flags, 779 }; 780 long timeo; 781 ssize_t spliced; 782 int ret; 783 784 sock_rps_record_flow(sk); 785 /* 786 * We can't seek on a socket input 787 */ 788 if (unlikely(*ppos)) 789 return -ESPIPE; 790 791 ret = spliced = 0; 792 793 lock_sock(sk); 794 795 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 796 while (tss.len) { 797 ret = __tcp_splice_read(sk, &tss); 798 if (ret < 0) 799 break; 800 else if (!ret) { 801 if (spliced) 802 break; 803 if (sock_flag(sk, SOCK_DONE)) 804 break; 805 if (sk->sk_err) { 806 ret = sock_error(sk); 807 break; 808 } 809 if (sk->sk_shutdown & RCV_SHUTDOWN) 810 break; 811 if (sk->sk_state == TCP_CLOSE) { 812 /* 813 * This occurs when user tries to read 814 * from never connected socket. 815 */ 816 ret = -ENOTCONN; 817 break; 818 } 819 if (!timeo) { 820 ret = -EAGAIN; 821 break; 822 } 823 /* if __tcp_splice_read() got nothing while we have 824 * an skb in receive queue, we do not want to loop. 825 * This might happen with URG data. 826 */ 827 if (!skb_queue_empty(&sk->sk_receive_queue)) 828 break; 829 sk_wait_data(sk, &timeo, NULL); 830 if (signal_pending(current)) { 831 ret = sock_intr_errno(timeo); 832 break; 833 } 834 continue; 835 } 836 tss.len -= ret; 837 spliced += ret; 838 839 if (!timeo) 840 break; 841 release_sock(sk); 842 lock_sock(sk); 843 844 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 845 (sk->sk_shutdown & RCV_SHUTDOWN) || 846 signal_pending(current)) 847 break; 848 } 849 850 release_sock(sk); 851 852 if (spliced) 853 return spliced; 854 855 return ret; 856 } 857 EXPORT_SYMBOL(tcp_splice_read); 858 859 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 860 bool force_schedule) 861 { 862 struct sk_buff *skb; 863 864 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 865 if (likely(skb)) { 866 bool mem_scheduled; 867 868 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 869 if (force_schedule) { 870 mem_scheduled = true; 871 sk_forced_mem_schedule(sk, skb->truesize); 872 } else { 873 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 874 } 875 if (likely(mem_scheduled)) { 876 skb_reserve(skb, MAX_TCP_HEADER); 877 skb->ip_summed = CHECKSUM_PARTIAL; 878 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 879 return skb; 880 } 881 __kfree_skb(skb); 882 } else { 883 sk->sk_prot->enter_memory_pressure(sk); 884 sk_stream_moderate_sndbuf(sk); 885 } 886 return NULL; 887 } 888 889 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 890 int large_allowed) 891 { 892 struct tcp_sock *tp = tcp_sk(sk); 893 u32 new_size_goal, size_goal; 894 895 if (!large_allowed) 896 return mss_now; 897 898 /* Note : tcp_tso_autosize() will eventually split this later */ 899 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 900 901 /* We try hard to avoid divides here */ 902 size_goal = tp->gso_segs * mss_now; 903 if (unlikely(new_size_goal < size_goal || 904 new_size_goal >= size_goal + mss_now)) { 905 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 906 sk->sk_gso_max_segs); 907 size_goal = tp->gso_segs * mss_now; 908 } 909 910 return max(size_goal, mss_now); 911 } 912 913 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 914 { 915 int mss_now; 916 917 mss_now = tcp_current_mss(sk); 918 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 919 920 return mss_now; 921 } 922 923 /* In some cases, both sendpage() and sendmsg() could have added 924 * an skb to the write queue, but failed adding payload on it. 925 * We need to remove it to consume less memory, but more 926 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 927 * users. 928 */ 929 void tcp_remove_empty_skb(struct sock *sk) 930 { 931 struct sk_buff *skb = tcp_write_queue_tail(sk); 932 933 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 934 tcp_unlink_write_queue(skb, sk); 935 if (tcp_write_queue_empty(sk)) 936 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 937 tcp_wmem_free_skb(sk, skb); 938 } 939 } 940 941 /* skb changing from pure zc to mixed, must charge zc */ 942 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 943 { 944 if (unlikely(skb_zcopy_pure(skb))) { 945 u32 extra = skb->truesize - 946 SKB_TRUESIZE(skb_end_offset(skb)); 947 948 if (!sk_wmem_schedule(sk, extra)) 949 return -ENOMEM; 950 951 sk_mem_charge(sk, extra); 952 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 953 } 954 return 0; 955 } 956 957 958 static int tcp_wmem_schedule(struct sock *sk, int copy) 959 { 960 int left; 961 962 if (likely(sk_wmem_schedule(sk, copy))) 963 return copy; 964 965 /* We could be in trouble if we have nothing queued. 966 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 967 * to guarantee some progress. 968 */ 969 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 970 if (left > 0) 971 sk_forced_mem_schedule(sk, min(left, copy)); 972 return min(copy, sk->sk_forward_alloc); 973 } 974 975 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 976 struct page *page, int offset, size_t *size) 977 { 978 struct sk_buff *skb = tcp_write_queue_tail(sk); 979 struct tcp_sock *tp = tcp_sk(sk); 980 bool can_coalesce; 981 int copy, i; 982 983 if (!skb || (copy = size_goal - skb->len) <= 0 || 984 !tcp_skb_can_collapse_to(skb)) { 985 new_segment: 986 if (!sk_stream_memory_free(sk)) 987 return NULL; 988 989 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 990 tcp_rtx_and_write_queues_empty(sk)); 991 if (!skb) 992 return NULL; 993 994 #ifdef CONFIG_TLS_DEVICE 995 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 996 #endif 997 tcp_skb_entail(sk, skb); 998 copy = size_goal; 999 } 1000 1001 if (copy > *size) 1002 copy = *size; 1003 1004 i = skb_shinfo(skb)->nr_frags; 1005 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1006 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1007 tcp_mark_push(tp, skb); 1008 goto new_segment; 1009 } 1010 if (tcp_downgrade_zcopy_pure(sk, skb)) 1011 return NULL; 1012 1013 copy = tcp_wmem_schedule(sk, copy); 1014 if (!copy) 1015 return NULL; 1016 1017 if (can_coalesce) { 1018 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1019 } else { 1020 get_page(page); 1021 skb_fill_page_desc_noacc(skb, i, page, offset, copy); 1022 } 1023 1024 if (!(flags & MSG_NO_SHARED_FRAGS)) 1025 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1026 1027 skb->len += copy; 1028 skb->data_len += copy; 1029 skb->truesize += copy; 1030 sk_wmem_queued_add(sk, copy); 1031 sk_mem_charge(sk, copy); 1032 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1033 TCP_SKB_CB(skb)->end_seq += copy; 1034 tcp_skb_pcount_set(skb, 0); 1035 1036 *size = copy; 1037 return skb; 1038 } 1039 1040 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1041 size_t size, int flags) 1042 { 1043 struct tcp_sock *tp = tcp_sk(sk); 1044 int mss_now, size_goal; 1045 int err; 1046 ssize_t copied; 1047 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1048 1049 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1050 WARN_ONCE(!sendpage_ok(page), 1051 "page must not be a Slab one and have page_count > 0")) 1052 return -EINVAL; 1053 1054 /* Wait for a connection to finish. One exception is TCP Fast Open 1055 * (passive side) where data is allowed to be sent before a connection 1056 * is fully established. 1057 */ 1058 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1059 !tcp_passive_fastopen(sk)) { 1060 err = sk_stream_wait_connect(sk, &timeo); 1061 if (err != 0) 1062 goto out_err; 1063 } 1064 1065 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1066 1067 mss_now = tcp_send_mss(sk, &size_goal, flags); 1068 copied = 0; 1069 1070 err = -EPIPE; 1071 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1072 goto out_err; 1073 1074 while (size > 0) { 1075 struct sk_buff *skb; 1076 size_t copy = size; 1077 1078 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1079 if (!skb) 1080 goto wait_for_space; 1081 1082 if (!copied) 1083 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1084 1085 copied += copy; 1086 offset += copy; 1087 size -= copy; 1088 if (!size) 1089 goto out; 1090 1091 if (skb->len < size_goal || (flags & MSG_OOB)) 1092 continue; 1093 1094 if (forced_push(tp)) { 1095 tcp_mark_push(tp, skb); 1096 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1097 } else if (skb == tcp_send_head(sk)) 1098 tcp_push_one(sk, mss_now); 1099 continue; 1100 1101 wait_for_space: 1102 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1103 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1104 TCP_NAGLE_PUSH, size_goal); 1105 1106 err = sk_stream_wait_memory(sk, &timeo); 1107 if (err != 0) 1108 goto do_error; 1109 1110 mss_now = tcp_send_mss(sk, &size_goal, flags); 1111 } 1112 1113 out: 1114 if (copied) { 1115 tcp_tx_timestamp(sk, sk->sk_tsflags); 1116 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1117 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1118 } 1119 return copied; 1120 1121 do_error: 1122 tcp_remove_empty_skb(sk); 1123 if (copied) 1124 goto out; 1125 out_err: 1126 /* make sure we wake any epoll edge trigger waiter */ 1127 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1128 sk->sk_write_space(sk); 1129 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1130 } 1131 return sk_stream_error(sk, flags, err); 1132 } 1133 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1134 1135 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1136 size_t size, int flags) 1137 { 1138 if (!(sk->sk_route_caps & NETIF_F_SG)) 1139 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1140 1141 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1142 1143 return do_tcp_sendpages(sk, page, offset, size, flags); 1144 } 1145 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1146 1147 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1148 size_t size, int flags) 1149 { 1150 int ret; 1151 1152 lock_sock(sk); 1153 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1154 release_sock(sk); 1155 1156 return ret; 1157 } 1158 EXPORT_SYMBOL(tcp_sendpage); 1159 1160 void tcp_free_fastopen_req(struct tcp_sock *tp) 1161 { 1162 if (tp->fastopen_req) { 1163 kfree(tp->fastopen_req); 1164 tp->fastopen_req = NULL; 1165 } 1166 } 1167 1168 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1169 size_t size, struct ubuf_info *uarg) 1170 { 1171 struct tcp_sock *tp = tcp_sk(sk); 1172 struct inet_sock *inet = inet_sk(sk); 1173 struct sockaddr *uaddr = msg->msg_name; 1174 int err, flags; 1175 1176 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1177 TFO_CLIENT_ENABLE) || 1178 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1179 uaddr->sa_family == AF_UNSPEC)) 1180 return -EOPNOTSUPP; 1181 if (tp->fastopen_req) 1182 return -EALREADY; /* Another Fast Open is in progress */ 1183 1184 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1185 sk->sk_allocation); 1186 if (unlikely(!tp->fastopen_req)) 1187 return -ENOBUFS; 1188 tp->fastopen_req->data = msg; 1189 tp->fastopen_req->size = size; 1190 tp->fastopen_req->uarg = uarg; 1191 1192 if (inet->defer_connect) { 1193 err = tcp_connect(sk); 1194 /* Same failure procedure as in tcp_v4/6_connect */ 1195 if (err) { 1196 tcp_set_state(sk, TCP_CLOSE); 1197 inet->inet_dport = 0; 1198 sk->sk_route_caps = 0; 1199 } 1200 } 1201 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1202 err = __inet_stream_connect(sk->sk_socket, uaddr, 1203 msg->msg_namelen, flags, 1); 1204 /* fastopen_req could already be freed in __inet_stream_connect 1205 * if the connection times out or gets rst 1206 */ 1207 if (tp->fastopen_req) { 1208 *copied = tp->fastopen_req->copied; 1209 tcp_free_fastopen_req(tp); 1210 inet->defer_connect = 0; 1211 } 1212 return err; 1213 } 1214 1215 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1216 { 1217 struct tcp_sock *tp = tcp_sk(sk); 1218 struct ubuf_info *uarg = NULL; 1219 struct sk_buff *skb; 1220 struct sockcm_cookie sockc; 1221 int flags, err, copied = 0; 1222 int mss_now = 0, size_goal, copied_syn = 0; 1223 int process_backlog = 0; 1224 bool zc = false; 1225 long timeo; 1226 1227 flags = msg->msg_flags; 1228 1229 if ((flags & MSG_ZEROCOPY) && size) { 1230 skb = tcp_write_queue_tail(sk); 1231 1232 if (msg->msg_ubuf) { 1233 uarg = msg->msg_ubuf; 1234 net_zcopy_get(uarg); 1235 zc = sk->sk_route_caps & NETIF_F_SG; 1236 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1237 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1238 if (!uarg) { 1239 err = -ENOBUFS; 1240 goto out_err; 1241 } 1242 zc = sk->sk_route_caps & NETIF_F_SG; 1243 if (!zc) 1244 uarg_to_msgzc(uarg)->zerocopy = 0; 1245 } 1246 } 1247 1248 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1249 !tp->repair) { 1250 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1251 if (err == -EINPROGRESS && copied_syn > 0) 1252 goto out; 1253 else if (err) 1254 goto out_err; 1255 } 1256 1257 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1258 1259 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1260 1261 /* Wait for a connection to finish. One exception is TCP Fast Open 1262 * (passive side) where data is allowed to be sent before a connection 1263 * is fully established. 1264 */ 1265 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1266 !tcp_passive_fastopen(sk)) { 1267 err = sk_stream_wait_connect(sk, &timeo); 1268 if (err != 0) 1269 goto do_error; 1270 } 1271 1272 if (unlikely(tp->repair)) { 1273 if (tp->repair_queue == TCP_RECV_QUEUE) { 1274 copied = tcp_send_rcvq(sk, msg, size); 1275 goto out_nopush; 1276 } 1277 1278 err = -EINVAL; 1279 if (tp->repair_queue == TCP_NO_QUEUE) 1280 goto out_err; 1281 1282 /* 'common' sending to sendq */ 1283 } 1284 1285 sockcm_init(&sockc, sk); 1286 if (msg->msg_controllen) { 1287 err = sock_cmsg_send(sk, msg, &sockc); 1288 if (unlikely(err)) { 1289 err = -EINVAL; 1290 goto out_err; 1291 } 1292 } 1293 1294 /* This should be in poll */ 1295 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1296 1297 /* Ok commence sending. */ 1298 copied = 0; 1299 1300 restart: 1301 mss_now = tcp_send_mss(sk, &size_goal, flags); 1302 1303 err = -EPIPE; 1304 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1305 goto do_error; 1306 1307 while (msg_data_left(msg)) { 1308 int copy = 0; 1309 1310 skb = tcp_write_queue_tail(sk); 1311 if (skb) 1312 copy = size_goal - skb->len; 1313 1314 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1315 bool first_skb; 1316 1317 new_segment: 1318 if (!sk_stream_memory_free(sk)) 1319 goto wait_for_space; 1320 1321 if (unlikely(process_backlog >= 16)) { 1322 process_backlog = 0; 1323 if (sk_flush_backlog(sk)) 1324 goto restart; 1325 } 1326 first_skb = tcp_rtx_and_write_queues_empty(sk); 1327 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1328 first_skb); 1329 if (!skb) 1330 goto wait_for_space; 1331 1332 process_backlog++; 1333 1334 tcp_skb_entail(sk, skb); 1335 copy = size_goal; 1336 1337 /* All packets are restored as if they have 1338 * already been sent. skb_mstamp_ns isn't set to 1339 * avoid wrong rtt estimation. 1340 */ 1341 if (tp->repair) 1342 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1343 } 1344 1345 /* Try to append data to the end of skb. */ 1346 if (copy > msg_data_left(msg)) 1347 copy = msg_data_left(msg); 1348 1349 if (!zc) { 1350 bool merge = true; 1351 int i = skb_shinfo(skb)->nr_frags; 1352 struct page_frag *pfrag = sk_page_frag(sk); 1353 1354 if (!sk_page_frag_refill(sk, pfrag)) 1355 goto wait_for_space; 1356 1357 if (!skb_can_coalesce(skb, i, pfrag->page, 1358 pfrag->offset)) { 1359 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1360 tcp_mark_push(tp, skb); 1361 goto new_segment; 1362 } 1363 merge = false; 1364 } 1365 1366 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1367 1368 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1369 if (tcp_downgrade_zcopy_pure(sk, skb)) 1370 goto wait_for_space; 1371 skb_zcopy_downgrade_managed(skb); 1372 } 1373 1374 copy = tcp_wmem_schedule(sk, copy); 1375 if (!copy) 1376 goto wait_for_space; 1377 1378 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1379 pfrag->page, 1380 pfrag->offset, 1381 copy); 1382 if (err) 1383 goto do_error; 1384 1385 /* Update the skb. */ 1386 if (merge) { 1387 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1388 } else { 1389 skb_fill_page_desc(skb, i, pfrag->page, 1390 pfrag->offset, copy); 1391 page_ref_inc(pfrag->page); 1392 } 1393 pfrag->offset += copy; 1394 } else { 1395 /* First append to a fragless skb builds initial 1396 * pure zerocopy skb 1397 */ 1398 if (!skb->len) 1399 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1400 1401 if (!skb_zcopy_pure(skb)) { 1402 copy = tcp_wmem_schedule(sk, copy); 1403 if (!copy) 1404 goto wait_for_space; 1405 } 1406 1407 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1408 if (err == -EMSGSIZE || err == -EEXIST) { 1409 tcp_mark_push(tp, skb); 1410 goto new_segment; 1411 } 1412 if (err < 0) 1413 goto do_error; 1414 copy = err; 1415 } 1416 1417 if (!copied) 1418 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1419 1420 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1421 TCP_SKB_CB(skb)->end_seq += copy; 1422 tcp_skb_pcount_set(skb, 0); 1423 1424 copied += copy; 1425 if (!msg_data_left(msg)) { 1426 if (unlikely(flags & MSG_EOR)) 1427 TCP_SKB_CB(skb)->eor = 1; 1428 goto out; 1429 } 1430 1431 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1432 continue; 1433 1434 if (forced_push(tp)) { 1435 tcp_mark_push(tp, skb); 1436 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1437 } else if (skb == tcp_send_head(sk)) 1438 tcp_push_one(sk, mss_now); 1439 continue; 1440 1441 wait_for_space: 1442 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1443 if (copied) 1444 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1445 TCP_NAGLE_PUSH, size_goal); 1446 1447 err = sk_stream_wait_memory(sk, &timeo); 1448 if (err != 0) 1449 goto do_error; 1450 1451 mss_now = tcp_send_mss(sk, &size_goal, flags); 1452 } 1453 1454 out: 1455 if (copied) { 1456 tcp_tx_timestamp(sk, sockc.tsflags); 1457 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1458 } 1459 out_nopush: 1460 net_zcopy_put(uarg); 1461 return copied + copied_syn; 1462 1463 do_error: 1464 tcp_remove_empty_skb(sk); 1465 1466 if (copied + copied_syn) 1467 goto out; 1468 out_err: 1469 net_zcopy_put_abort(uarg, true); 1470 err = sk_stream_error(sk, flags, err); 1471 /* make sure we wake any epoll edge trigger waiter */ 1472 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1473 sk->sk_write_space(sk); 1474 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1475 } 1476 return err; 1477 } 1478 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1479 1480 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1481 { 1482 int ret; 1483 1484 lock_sock(sk); 1485 ret = tcp_sendmsg_locked(sk, msg, size); 1486 release_sock(sk); 1487 1488 return ret; 1489 } 1490 EXPORT_SYMBOL(tcp_sendmsg); 1491 1492 /* 1493 * Handle reading urgent data. BSD has very simple semantics for 1494 * this, no blocking and very strange errors 8) 1495 */ 1496 1497 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1498 { 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 1501 /* No URG data to read. */ 1502 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1503 tp->urg_data == TCP_URG_READ) 1504 return -EINVAL; /* Yes this is right ! */ 1505 1506 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1507 return -ENOTCONN; 1508 1509 if (tp->urg_data & TCP_URG_VALID) { 1510 int err = 0; 1511 char c = tp->urg_data; 1512 1513 if (!(flags & MSG_PEEK)) 1514 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1515 1516 /* Read urgent data. */ 1517 msg->msg_flags |= MSG_OOB; 1518 1519 if (len > 0) { 1520 if (!(flags & MSG_TRUNC)) 1521 err = memcpy_to_msg(msg, &c, 1); 1522 len = 1; 1523 } else 1524 msg->msg_flags |= MSG_TRUNC; 1525 1526 return err ? -EFAULT : len; 1527 } 1528 1529 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1530 return 0; 1531 1532 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1533 * the available implementations agree in this case: 1534 * this call should never block, independent of the 1535 * blocking state of the socket. 1536 * Mike <pall@rz.uni-karlsruhe.de> 1537 */ 1538 return -EAGAIN; 1539 } 1540 1541 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1542 { 1543 struct sk_buff *skb; 1544 int copied = 0, err = 0; 1545 1546 /* XXX -- need to support SO_PEEK_OFF */ 1547 1548 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1549 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1550 if (err) 1551 return err; 1552 copied += skb->len; 1553 } 1554 1555 skb_queue_walk(&sk->sk_write_queue, skb) { 1556 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1557 if (err) 1558 break; 1559 1560 copied += skb->len; 1561 } 1562 1563 return err ?: copied; 1564 } 1565 1566 /* Clean up the receive buffer for full frames taken by the user, 1567 * then send an ACK if necessary. COPIED is the number of bytes 1568 * tcp_recvmsg has given to the user so far, it speeds up the 1569 * calculation of whether or not we must ACK for the sake of 1570 * a window update. 1571 */ 1572 static void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1573 { 1574 struct tcp_sock *tp = tcp_sk(sk); 1575 bool time_to_ack = false; 1576 1577 if (inet_csk_ack_scheduled(sk)) { 1578 const struct inet_connection_sock *icsk = inet_csk(sk); 1579 1580 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1581 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1582 /* 1583 * If this read emptied read buffer, we send ACK, if 1584 * connection is not bidirectional, user drained 1585 * receive buffer and there was a small segment 1586 * in queue. 1587 */ 1588 (copied > 0 && 1589 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1590 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1591 !inet_csk_in_pingpong_mode(sk))) && 1592 !atomic_read(&sk->sk_rmem_alloc))) 1593 time_to_ack = true; 1594 } 1595 1596 /* We send an ACK if we can now advertise a non-zero window 1597 * which has been raised "significantly". 1598 * 1599 * Even if window raised up to infinity, do not send window open ACK 1600 * in states, where we will not receive more. It is useless. 1601 */ 1602 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1603 __u32 rcv_window_now = tcp_receive_window(tp); 1604 1605 /* Optimize, __tcp_select_window() is not cheap. */ 1606 if (2*rcv_window_now <= tp->window_clamp) { 1607 __u32 new_window = __tcp_select_window(sk); 1608 1609 /* Send ACK now, if this read freed lots of space 1610 * in our buffer. Certainly, new_window is new window. 1611 * We can advertise it now, if it is not less than current one. 1612 * "Lots" means "at least twice" here. 1613 */ 1614 if (new_window && new_window >= 2 * rcv_window_now) 1615 time_to_ack = true; 1616 } 1617 } 1618 if (time_to_ack) 1619 tcp_send_ack(sk); 1620 } 1621 1622 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1623 { 1624 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1625 struct tcp_sock *tp = tcp_sk(sk); 1626 1627 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1628 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1629 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1630 __tcp_cleanup_rbuf(sk, copied); 1631 } 1632 1633 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1634 { 1635 __skb_unlink(skb, &sk->sk_receive_queue); 1636 if (likely(skb->destructor == sock_rfree)) { 1637 sock_rfree(skb); 1638 skb->destructor = NULL; 1639 skb->sk = NULL; 1640 return skb_attempt_defer_free(skb); 1641 } 1642 __kfree_skb(skb); 1643 } 1644 1645 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1646 { 1647 struct sk_buff *skb; 1648 u32 offset; 1649 1650 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1651 offset = seq - TCP_SKB_CB(skb)->seq; 1652 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1653 pr_err_once("%s: found a SYN, please report !\n", __func__); 1654 offset--; 1655 } 1656 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1657 *off = offset; 1658 return skb; 1659 } 1660 /* This looks weird, but this can happen if TCP collapsing 1661 * splitted a fat GRO packet, while we released socket lock 1662 * in skb_splice_bits() 1663 */ 1664 tcp_eat_recv_skb(sk, skb); 1665 } 1666 return NULL; 1667 } 1668 EXPORT_SYMBOL(tcp_recv_skb); 1669 1670 /* 1671 * This routine provides an alternative to tcp_recvmsg() for routines 1672 * that would like to handle copying from skbuffs directly in 'sendfile' 1673 * fashion. 1674 * Note: 1675 * - It is assumed that the socket was locked by the caller. 1676 * - The routine does not block. 1677 * - At present, there is no support for reading OOB data 1678 * or for 'peeking' the socket using this routine 1679 * (although both would be easy to implement). 1680 */ 1681 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1682 sk_read_actor_t recv_actor) 1683 { 1684 struct sk_buff *skb; 1685 struct tcp_sock *tp = tcp_sk(sk); 1686 u32 seq = tp->copied_seq; 1687 u32 offset; 1688 int copied = 0; 1689 1690 if (sk->sk_state == TCP_LISTEN) 1691 return -ENOTCONN; 1692 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1693 if (offset < skb->len) { 1694 int used; 1695 size_t len; 1696 1697 len = skb->len - offset; 1698 /* Stop reading if we hit a patch of urgent data */ 1699 if (unlikely(tp->urg_data)) { 1700 u32 urg_offset = tp->urg_seq - seq; 1701 if (urg_offset < len) 1702 len = urg_offset; 1703 if (!len) 1704 break; 1705 } 1706 used = recv_actor(desc, skb, offset, len); 1707 if (used <= 0) { 1708 if (!copied) 1709 copied = used; 1710 break; 1711 } 1712 if (WARN_ON_ONCE(used > len)) 1713 used = len; 1714 seq += used; 1715 copied += used; 1716 offset += used; 1717 1718 /* If recv_actor drops the lock (e.g. TCP splice 1719 * receive) the skb pointer might be invalid when 1720 * getting here: tcp_collapse might have deleted it 1721 * while aggregating skbs from the socket queue. 1722 */ 1723 skb = tcp_recv_skb(sk, seq - 1, &offset); 1724 if (!skb) 1725 break; 1726 /* TCP coalescing might have appended data to the skb. 1727 * Try to splice more frags 1728 */ 1729 if (offset + 1 != skb->len) 1730 continue; 1731 } 1732 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1733 tcp_eat_recv_skb(sk, skb); 1734 ++seq; 1735 break; 1736 } 1737 tcp_eat_recv_skb(sk, skb); 1738 if (!desc->count) 1739 break; 1740 WRITE_ONCE(tp->copied_seq, seq); 1741 } 1742 WRITE_ONCE(tp->copied_seq, seq); 1743 1744 tcp_rcv_space_adjust(sk); 1745 1746 /* Clean up data we have read: This will do ACK frames. */ 1747 if (copied > 0) { 1748 tcp_recv_skb(sk, seq, &offset); 1749 tcp_cleanup_rbuf(sk, copied); 1750 } 1751 return copied; 1752 } 1753 EXPORT_SYMBOL(tcp_read_sock); 1754 1755 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1756 { 1757 struct tcp_sock *tp = tcp_sk(sk); 1758 u32 seq = tp->copied_seq; 1759 struct sk_buff *skb; 1760 int copied = 0; 1761 u32 offset; 1762 1763 if (sk->sk_state == TCP_LISTEN) 1764 return -ENOTCONN; 1765 1766 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1767 u8 tcp_flags; 1768 int used; 1769 1770 __skb_unlink(skb, &sk->sk_receive_queue); 1771 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1772 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1773 used = recv_actor(sk, skb); 1774 consume_skb(skb); 1775 if (used < 0) { 1776 if (!copied) 1777 copied = used; 1778 break; 1779 } 1780 seq += used; 1781 copied += used; 1782 1783 if (tcp_flags & TCPHDR_FIN) { 1784 ++seq; 1785 break; 1786 } 1787 } 1788 WRITE_ONCE(tp->copied_seq, seq); 1789 1790 tcp_rcv_space_adjust(sk); 1791 1792 /* Clean up data we have read: This will do ACK frames. */ 1793 if (copied > 0) 1794 __tcp_cleanup_rbuf(sk, copied); 1795 1796 return copied; 1797 } 1798 EXPORT_SYMBOL(tcp_read_skb); 1799 1800 void tcp_read_done(struct sock *sk, size_t len) 1801 { 1802 struct tcp_sock *tp = tcp_sk(sk); 1803 u32 seq = tp->copied_seq; 1804 struct sk_buff *skb; 1805 size_t left; 1806 u32 offset; 1807 1808 if (sk->sk_state == TCP_LISTEN) 1809 return; 1810 1811 left = len; 1812 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1813 int used; 1814 1815 used = min_t(size_t, skb->len - offset, left); 1816 seq += used; 1817 left -= used; 1818 1819 if (skb->len > offset + used) 1820 break; 1821 1822 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1823 tcp_eat_recv_skb(sk, skb); 1824 ++seq; 1825 break; 1826 } 1827 tcp_eat_recv_skb(sk, skb); 1828 } 1829 WRITE_ONCE(tp->copied_seq, seq); 1830 1831 tcp_rcv_space_adjust(sk); 1832 1833 /* Clean up data we have read: This will do ACK frames. */ 1834 if (left != len) 1835 tcp_cleanup_rbuf(sk, len - left); 1836 } 1837 EXPORT_SYMBOL(tcp_read_done); 1838 1839 int tcp_peek_len(struct socket *sock) 1840 { 1841 return tcp_inq(sock->sk); 1842 } 1843 EXPORT_SYMBOL(tcp_peek_len); 1844 1845 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1846 int tcp_set_rcvlowat(struct sock *sk, int val) 1847 { 1848 int cap; 1849 1850 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1851 cap = sk->sk_rcvbuf >> 1; 1852 else 1853 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1854 val = min(val, cap); 1855 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1856 1857 /* Check if we need to signal EPOLLIN right now */ 1858 tcp_data_ready(sk); 1859 1860 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1861 return 0; 1862 1863 val <<= 1; 1864 if (val > sk->sk_rcvbuf) { 1865 WRITE_ONCE(sk->sk_rcvbuf, val); 1866 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1867 } 1868 return 0; 1869 } 1870 EXPORT_SYMBOL(tcp_set_rcvlowat); 1871 1872 void tcp_update_recv_tstamps(struct sk_buff *skb, 1873 struct scm_timestamping_internal *tss) 1874 { 1875 if (skb->tstamp) 1876 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1877 else 1878 tss->ts[0] = (struct timespec64) {0}; 1879 1880 if (skb_hwtstamps(skb)->hwtstamp) 1881 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1882 else 1883 tss->ts[2] = (struct timespec64) {0}; 1884 } 1885 1886 #ifdef CONFIG_MMU 1887 static const struct vm_operations_struct tcp_vm_ops = { 1888 }; 1889 1890 int tcp_mmap(struct file *file, struct socket *sock, 1891 struct vm_area_struct *vma) 1892 { 1893 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1894 return -EPERM; 1895 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1896 1897 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1898 vm_flags_set(vma, VM_MIXEDMAP); 1899 1900 vma->vm_ops = &tcp_vm_ops; 1901 return 0; 1902 } 1903 EXPORT_SYMBOL(tcp_mmap); 1904 1905 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1906 u32 *offset_frag) 1907 { 1908 skb_frag_t *frag; 1909 1910 if (unlikely(offset_skb >= skb->len)) 1911 return NULL; 1912 1913 offset_skb -= skb_headlen(skb); 1914 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1915 return NULL; 1916 1917 frag = skb_shinfo(skb)->frags; 1918 while (offset_skb) { 1919 if (skb_frag_size(frag) > offset_skb) { 1920 *offset_frag = offset_skb; 1921 return frag; 1922 } 1923 offset_skb -= skb_frag_size(frag); 1924 ++frag; 1925 } 1926 *offset_frag = 0; 1927 return frag; 1928 } 1929 1930 static bool can_map_frag(const skb_frag_t *frag) 1931 { 1932 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1933 } 1934 1935 static int find_next_mappable_frag(const skb_frag_t *frag, 1936 int remaining_in_skb) 1937 { 1938 int offset = 0; 1939 1940 if (likely(can_map_frag(frag))) 1941 return 0; 1942 1943 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1944 offset += skb_frag_size(frag); 1945 ++frag; 1946 } 1947 return offset; 1948 } 1949 1950 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1951 struct tcp_zerocopy_receive *zc, 1952 struct sk_buff *skb, u32 offset) 1953 { 1954 u32 frag_offset, partial_frag_remainder = 0; 1955 int mappable_offset; 1956 skb_frag_t *frag; 1957 1958 /* worst case: skip to next skb. try to improve on this case below */ 1959 zc->recv_skip_hint = skb->len - offset; 1960 1961 /* Find the frag containing this offset (and how far into that frag) */ 1962 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1963 if (!frag) 1964 return; 1965 1966 if (frag_offset) { 1967 struct skb_shared_info *info = skb_shinfo(skb); 1968 1969 /* We read part of the last frag, must recvmsg() rest of skb. */ 1970 if (frag == &info->frags[info->nr_frags - 1]) 1971 return; 1972 1973 /* Else, we must at least read the remainder in this frag. */ 1974 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1975 zc->recv_skip_hint -= partial_frag_remainder; 1976 ++frag; 1977 } 1978 1979 /* partial_frag_remainder: If part way through a frag, must read rest. 1980 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1981 * in partial_frag_remainder. 1982 */ 1983 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1984 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1985 } 1986 1987 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1988 int flags, struct scm_timestamping_internal *tss, 1989 int *cmsg_flags); 1990 static int receive_fallback_to_copy(struct sock *sk, 1991 struct tcp_zerocopy_receive *zc, int inq, 1992 struct scm_timestamping_internal *tss) 1993 { 1994 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1995 struct msghdr msg = {}; 1996 struct iovec iov; 1997 int err; 1998 1999 zc->length = 0; 2000 zc->recv_skip_hint = 0; 2001 2002 if (copy_address != zc->copybuf_address) 2003 return -EINVAL; 2004 2005 err = import_single_range(ITER_DEST, (void __user *)copy_address, 2006 inq, &iov, &msg.msg_iter); 2007 if (err) 2008 return err; 2009 2010 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 2011 tss, &zc->msg_flags); 2012 if (err < 0) 2013 return err; 2014 2015 zc->copybuf_len = err; 2016 if (likely(zc->copybuf_len)) { 2017 struct sk_buff *skb; 2018 u32 offset; 2019 2020 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 2021 if (skb) 2022 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 2023 } 2024 return 0; 2025 } 2026 2027 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 2028 struct sk_buff *skb, u32 copylen, 2029 u32 *offset, u32 *seq) 2030 { 2031 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2032 struct msghdr msg = {}; 2033 struct iovec iov; 2034 int err; 2035 2036 if (copy_address != zc->copybuf_address) 2037 return -EINVAL; 2038 2039 err = import_single_range(ITER_DEST, (void __user *)copy_address, 2040 copylen, &iov, &msg.msg_iter); 2041 if (err) 2042 return err; 2043 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 2044 if (err) 2045 return err; 2046 zc->recv_skip_hint -= copylen; 2047 *offset += copylen; 2048 *seq += copylen; 2049 return (__s32)copylen; 2050 } 2051 2052 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2053 struct sock *sk, 2054 struct sk_buff *skb, 2055 u32 *seq, 2056 s32 copybuf_len, 2057 struct scm_timestamping_internal *tss) 2058 { 2059 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2060 2061 if (!copylen) 2062 return 0; 2063 /* skb is null if inq < PAGE_SIZE. */ 2064 if (skb) { 2065 offset = *seq - TCP_SKB_CB(skb)->seq; 2066 } else { 2067 skb = tcp_recv_skb(sk, *seq, &offset); 2068 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2069 tcp_update_recv_tstamps(skb, tss); 2070 zc->msg_flags |= TCP_CMSG_TS; 2071 } 2072 } 2073 2074 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2075 seq); 2076 return zc->copybuf_len < 0 ? 0 : copylen; 2077 } 2078 2079 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2080 struct page **pending_pages, 2081 unsigned long pages_remaining, 2082 unsigned long *address, 2083 u32 *length, 2084 u32 *seq, 2085 struct tcp_zerocopy_receive *zc, 2086 u32 total_bytes_to_map, 2087 int err) 2088 { 2089 /* At least one page did not map. Try zapping if we skipped earlier. */ 2090 if (err == -EBUSY && 2091 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2092 u32 maybe_zap_len; 2093 2094 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2095 *length + /* Mapped or pending */ 2096 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2097 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 2098 err = 0; 2099 } 2100 2101 if (!err) { 2102 unsigned long leftover_pages = pages_remaining; 2103 int bytes_mapped; 2104 2105 /* We called zap_page_range_single, try to reinsert. */ 2106 err = vm_insert_pages(vma, *address, 2107 pending_pages, 2108 &pages_remaining); 2109 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2110 *seq += bytes_mapped; 2111 *address += bytes_mapped; 2112 } 2113 if (err) { 2114 /* Either we were unable to zap, OR we zapped, retried an 2115 * insert, and still had an issue. Either ways, pages_remaining 2116 * is the number of pages we were unable to map, and we unroll 2117 * some state we speculatively touched before. 2118 */ 2119 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2120 2121 *length -= bytes_not_mapped; 2122 zc->recv_skip_hint += bytes_not_mapped; 2123 } 2124 return err; 2125 } 2126 2127 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2128 struct page **pages, 2129 unsigned int pages_to_map, 2130 unsigned long *address, 2131 u32 *length, 2132 u32 *seq, 2133 struct tcp_zerocopy_receive *zc, 2134 u32 total_bytes_to_map) 2135 { 2136 unsigned long pages_remaining = pages_to_map; 2137 unsigned int pages_mapped; 2138 unsigned int bytes_mapped; 2139 int err; 2140 2141 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2142 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2143 bytes_mapped = PAGE_SIZE * pages_mapped; 2144 /* Even if vm_insert_pages fails, it may have partially succeeded in 2145 * mapping (some but not all of the pages). 2146 */ 2147 *seq += bytes_mapped; 2148 *address += bytes_mapped; 2149 2150 if (likely(!err)) 2151 return 0; 2152 2153 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2154 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2155 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2156 err); 2157 } 2158 2159 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2160 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2161 struct tcp_zerocopy_receive *zc, 2162 struct scm_timestamping_internal *tss) 2163 { 2164 unsigned long msg_control_addr; 2165 struct msghdr cmsg_dummy; 2166 2167 msg_control_addr = (unsigned long)zc->msg_control; 2168 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2169 cmsg_dummy.msg_controllen = 2170 (__kernel_size_t)zc->msg_controllen; 2171 cmsg_dummy.msg_flags = in_compat_syscall() 2172 ? MSG_CMSG_COMPAT : 0; 2173 cmsg_dummy.msg_control_is_user = true; 2174 zc->msg_flags = 0; 2175 if (zc->msg_control == msg_control_addr && 2176 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2177 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2178 zc->msg_control = (__u64) 2179 ((uintptr_t)cmsg_dummy.msg_control_user); 2180 zc->msg_controllen = 2181 (__u64)cmsg_dummy.msg_controllen; 2182 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2183 } 2184 } 2185 2186 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2187 static int tcp_zerocopy_receive(struct sock *sk, 2188 struct tcp_zerocopy_receive *zc, 2189 struct scm_timestamping_internal *tss) 2190 { 2191 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2192 unsigned long address = (unsigned long)zc->address; 2193 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2194 s32 copybuf_len = zc->copybuf_len; 2195 struct tcp_sock *tp = tcp_sk(sk); 2196 const skb_frag_t *frags = NULL; 2197 unsigned int pages_to_map = 0; 2198 struct vm_area_struct *vma; 2199 struct sk_buff *skb = NULL; 2200 u32 seq = tp->copied_seq; 2201 u32 total_bytes_to_map; 2202 int inq = tcp_inq(sk); 2203 int ret; 2204 2205 zc->copybuf_len = 0; 2206 zc->msg_flags = 0; 2207 2208 if (address & (PAGE_SIZE - 1) || address != zc->address) 2209 return -EINVAL; 2210 2211 if (sk->sk_state == TCP_LISTEN) 2212 return -ENOTCONN; 2213 2214 sock_rps_record_flow(sk); 2215 2216 if (inq && inq <= copybuf_len) 2217 return receive_fallback_to_copy(sk, zc, inq, tss); 2218 2219 if (inq < PAGE_SIZE) { 2220 zc->length = 0; 2221 zc->recv_skip_hint = inq; 2222 if (!inq && sock_flag(sk, SOCK_DONE)) 2223 return -EIO; 2224 return 0; 2225 } 2226 2227 mmap_read_lock(current->mm); 2228 2229 vma = vma_lookup(current->mm, address); 2230 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2231 mmap_read_unlock(current->mm); 2232 return -EINVAL; 2233 } 2234 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2235 avail_len = min_t(u32, vma_len, inq); 2236 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2237 if (total_bytes_to_map) { 2238 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2239 zap_page_range_single(vma, address, total_bytes_to_map, 2240 NULL); 2241 zc->length = total_bytes_to_map; 2242 zc->recv_skip_hint = 0; 2243 } else { 2244 zc->length = avail_len; 2245 zc->recv_skip_hint = avail_len; 2246 } 2247 ret = 0; 2248 while (length + PAGE_SIZE <= zc->length) { 2249 int mappable_offset; 2250 struct page *page; 2251 2252 if (zc->recv_skip_hint < PAGE_SIZE) { 2253 u32 offset_frag; 2254 2255 if (skb) { 2256 if (zc->recv_skip_hint > 0) 2257 break; 2258 skb = skb->next; 2259 offset = seq - TCP_SKB_CB(skb)->seq; 2260 } else { 2261 skb = tcp_recv_skb(sk, seq, &offset); 2262 } 2263 2264 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2265 tcp_update_recv_tstamps(skb, tss); 2266 zc->msg_flags |= TCP_CMSG_TS; 2267 } 2268 zc->recv_skip_hint = skb->len - offset; 2269 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2270 if (!frags || offset_frag) 2271 break; 2272 } 2273 2274 mappable_offset = find_next_mappable_frag(frags, 2275 zc->recv_skip_hint); 2276 if (mappable_offset) { 2277 zc->recv_skip_hint = mappable_offset; 2278 break; 2279 } 2280 page = skb_frag_page(frags); 2281 prefetchw(page); 2282 pages[pages_to_map++] = page; 2283 length += PAGE_SIZE; 2284 zc->recv_skip_hint -= PAGE_SIZE; 2285 frags++; 2286 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2287 zc->recv_skip_hint < PAGE_SIZE) { 2288 /* Either full batch, or we're about to go to next skb 2289 * (and we cannot unroll failed ops across skbs). 2290 */ 2291 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2292 pages_to_map, 2293 &address, &length, 2294 &seq, zc, 2295 total_bytes_to_map); 2296 if (ret) 2297 goto out; 2298 pages_to_map = 0; 2299 } 2300 } 2301 if (pages_to_map) { 2302 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2303 &address, &length, &seq, 2304 zc, total_bytes_to_map); 2305 } 2306 out: 2307 mmap_read_unlock(current->mm); 2308 /* Try to copy straggler data. */ 2309 if (!ret) 2310 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2311 2312 if (length + copylen) { 2313 WRITE_ONCE(tp->copied_seq, seq); 2314 tcp_rcv_space_adjust(sk); 2315 2316 /* Clean up data we have read: This will do ACK frames. */ 2317 tcp_recv_skb(sk, seq, &offset); 2318 tcp_cleanup_rbuf(sk, length + copylen); 2319 ret = 0; 2320 if (length == zc->length) 2321 zc->recv_skip_hint = 0; 2322 } else { 2323 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2324 ret = -EIO; 2325 } 2326 zc->length = length; 2327 return ret; 2328 } 2329 #endif 2330 2331 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2332 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2333 struct scm_timestamping_internal *tss) 2334 { 2335 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2336 bool has_timestamping = false; 2337 2338 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2339 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2340 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2341 if (new_tstamp) { 2342 struct __kernel_timespec kts = { 2343 .tv_sec = tss->ts[0].tv_sec, 2344 .tv_nsec = tss->ts[0].tv_nsec, 2345 }; 2346 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2347 sizeof(kts), &kts); 2348 } else { 2349 struct __kernel_old_timespec ts_old = { 2350 .tv_sec = tss->ts[0].tv_sec, 2351 .tv_nsec = tss->ts[0].tv_nsec, 2352 }; 2353 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2354 sizeof(ts_old), &ts_old); 2355 } 2356 } else { 2357 if (new_tstamp) { 2358 struct __kernel_sock_timeval stv = { 2359 .tv_sec = tss->ts[0].tv_sec, 2360 .tv_usec = tss->ts[0].tv_nsec / 1000, 2361 }; 2362 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2363 sizeof(stv), &stv); 2364 } else { 2365 struct __kernel_old_timeval tv = { 2366 .tv_sec = tss->ts[0].tv_sec, 2367 .tv_usec = tss->ts[0].tv_nsec / 1000, 2368 }; 2369 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2370 sizeof(tv), &tv); 2371 } 2372 } 2373 } 2374 2375 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2376 has_timestamping = true; 2377 else 2378 tss->ts[0] = (struct timespec64) {0}; 2379 } 2380 2381 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2382 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2383 has_timestamping = true; 2384 else 2385 tss->ts[2] = (struct timespec64) {0}; 2386 } 2387 2388 if (has_timestamping) { 2389 tss->ts[1] = (struct timespec64) {0}; 2390 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2391 put_cmsg_scm_timestamping64(msg, tss); 2392 else 2393 put_cmsg_scm_timestamping(msg, tss); 2394 } 2395 } 2396 2397 static int tcp_inq_hint(struct sock *sk) 2398 { 2399 const struct tcp_sock *tp = tcp_sk(sk); 2400 u32 copied_seq = READ_ONCE(tp->copied_seq); 2401 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2402 int inq; 2403 2404 inq = rcv_nxt - copied_seq; 2405 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2406 lock_sock(sk); 2407 inq = tp->rcv_nxt - tp->copied_seq; 2408 release_sock(sk); 2409 } 2410 /* After receiving a FIN, tell the user-space to continue reading 2411 * by returning a non-zero inq. 2412 */ 2413 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2414 inq = 1; 2415 return inq; 2416 } 2417 2418 /* 2419 * This routine copies from a sock struct into the user buffer. 2420 * 2421 * Technical note: in 2.3 we work on _locked_ socket, so that 2422 * tricks with *seq access order and skb->users are not required. 2423 * Probably, code can be easily improved even more. 2424 */ 2425 2426 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2427 int flags, struct scm_timestamping_internal *tss, 2428 int *cmsg_flags) 2429 { 2430 struct tcp_sock *tp = tcp_sk(sk); 2431 int copied = 0; 2432 u32 peek_seq; 2433 u32 *seq; 2434 unsigned long used; 2435 int err; 2436 int target; /* Read at least this many bytes */ 2437 long timeo; 2438 struct sk_buff *skb, *last; 2439 u32 urg_hole = 0; 2440 2441 err = -ENOTCONN; 2442 if (sk->sk_state == TCP_LISTEN) 2443 goto out; 2444 2445 if (tp->recvmsg_inq) { 2446 *cmsg_flags = TCP_CMSG_INQ; 2447 msg->msg_get_inq = 1; 2448 } 2449 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2450 2451 /* Urgent data needs to be handled specially. */ 2452 if (flags & MSG_OOB) 2453 goto recv_urg; 2454 2455 if (unlikely(tp->repair)) { 2456 err = -EPERM; 2457 if (!(flags & MSG_PEEK)) 2458 goto out; 2459 2460 if (tp->repair_queue == TCP_SEND_QUEUE) 2461 goto recv_sndq; 2462 2463 err = -EINVAL; 2464 if (tp->repair_queue == TCP_NO_QUEUE) 2465 goto out; 2466 2467 /* 'common' recv queue MSG_PEEK-ing */ 2468 } 2469 2470 seq = &tp->copied_seq; 2471 if (flags & MSG_PEEK) { 2472 peek_seq = tp->copied_seq; 2473 seq = &peek_seq; 2474 } 2475 2476 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2477 2478 do { 2479 u32 offset; 2480 2481 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2482 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2483 if (copied) 2484 break; 2485 if (signal_pending(current)) { 2486 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2487 break; 2488 } 2489 } 2490 2491 /* Next get a buffer. */ 2492 2493 last = skb_peek_tail(&sk->sk_receive_queue); 2494 skb_queue_walk(&sk->sk_receive_queue, skb) { 2495 last = skb; 2496 /* Now that we have two receive queues this 2497 * shouldn't happen. 2498 */ 2499 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2500 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2501 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2502 flags)) 2503 break; 2504 2505 offset = *seq - TCP_SKB_CB(skb)->seq; 2506 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2507 pr_err_once("%s: found a SYN, please report !\n", __func__); 2508 offset--; 2509 } 2510 if (offset < skb->len) 2511 goto found_ok_skb; 2512 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2513 goto found_fin_ok; 2514 WARN(!(flags & MSG_PEEK), 2515 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2516 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2517 } 2518 2519 /* Well, if we have backlog, try to process it now yet. */ 2520 2521 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2522 break; 2523 2524 if (copied) { 2525 if (!timeo || 2526 sk->sk_err || 2527 sk->sk_state == TCP_CLOSE || 2528 (sk->sk_shutdown & RCV_SHUTDOWN) || 2529 signal_pending(current)) 2530 break; 2531 } else { 2532 if (sock_flag(sk, SOCK_DONE)) 2533 break; 2534 2535 if (sk->sk_err) { 2536 copied = sock_error(sk); 2537 break; 2538 } 2539 2540 if (sk->sk_shutdown & RCV_SHUTDOWN) 2541 break; 2542 2543 if (sk->sk_state == TCP_CLOSE) { 2544 /* This occurs when user tries to read 2545 * from never connected socket. 2546 */ 2547 copied = -ENOTCONN; 2548 break; 2549 } 2550 2551 if (!timeo) { 2552 copied = -EAGAIN; 2553 break; 2554 } 2555 2556 if (signal_pending(current)) { 2557 copied = sock_intr_errno(timeo); 2558 break; 2559 } 2560 } 2561 2562 if (copied >= target) { 2563 /* Do not sleep, just process backlog. */ 2564 __sk_flush_backlog(sk); 2565 } else { 2566 tcp_cleanup_rbuf(sk, copied); 2567 sk_wait_data(sk, &timeo, last); 2568 } 2569 2570 if ((flags & MSG_PEEK) && 2571 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2572 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2573 current->comm, 2574 task_pid_nr(current)); 2575 peek_seq = tp->copied_seq; 2576 } 2577 continue; 2578 2579 found_ok_skb: 2580 /* Ok so how much can we use? */ 2581 used = skb->len - offset; 2582 if (len < used) 2583 used = len; 2584 2585 /* Do we have urgent data here? */ 2586 if (unlikely(tp->urg_data)) { 2587 u32 urg_offset = tp->urg_seq - *seq; 2588 if (urg_offset < used) { 2589 if (!urg_offset) { 2590 if (!sock_flag(sk, SOCK_URGINLINE)) { 2591 WRITE_ONCE(*seq, *seq + 1); 2592 urg_hole++; 2593 offset++; 2594 used--; 2595 if (!used) 2596 goto skip_copy; 2597 } 2598 } else 2599 used = urg_offset; 2600 } 2601 } 2602 2603 if (!(flags & MSG_TRUNC)) { 2604 err = skb_copy_datagram_msg(skb, offset, msg, used); 2605 if (err) { 2606 /* Exception. Bailout! */ 2607 if (!copied) 2608 copied = -EFAULT; 2609 break; 2610 } 2611 } 2612 2613 WRITE_ONCE(*seq, *seq + used); 2614 copied += used; 2615 len -= used; 2616 2617 tcp_rcv_space_adjust(sk); 2618 2619 skip_copy: 2620 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2621 WRITE_ONCE(tp->urg_data, 0); 2622 tcp_fast_path_check(sk); 2623 } 2624 2625 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2626 tcp_update_recv_tstamps(skb, tss); 2627 *cmsg_flags |= TCP_CMSG_TS; 2628 } 2629 2630 if (used + offset < skb->len) 2631 continue; 2632 2633 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2634 goto found_fin_ok; 2635 if (!(flags & MSG_PEEK)) 2636 tcp_eat_recv_skb(sk, skb); 2637 continue; 2638 2639 found_fin_ok: 2640 /* Process the FIN. */ 2641 WRITE_ONCE(*seq, *seq + 1); 2642 if (!(flags & MSG_PEEK)) 2643 tcp_eat_recv_skb(sk, skb); 2644 break; 2645 } while (len > 0); 2646 2647 /* According to UNIX98, msg_name/msg_namelen are ignored 2648 * on connected socket. I was just happy when found this 8) --ANK 2649 */ 2650 2651 /* Clean up data we have read: This will do ACK frames. */ 2652 tcp_cleanup_rbuf(sk, copied); 2653 return copied; 2654 2655 out: 2656 return err; 2657 2658 recv_urg: 2659 err = tcp_recv_urg(sk, msg, len, flags); 2660 goto out; 2661 2662 recv_sndq: 2663 err = tcp_peek_sndq(sk, msg, len); 2664 goto out; 2665 } 2666 2667 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2668 int *addr_len) 2669 { 2670 int cmsg_flags = 0, ret; 2671 struct scm_timestamping_internal tss; 2672 2673 if (unlikely(flags & MSG_ERRQUEUE)) 2674 return inet_recv_error(sk, msg, len, addr_len); 2675 2676 if (sk_can_busy_loop(sk) && 2677 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2678 sk->sk_state == TCP_ESTABLISHED) 2679 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2680 2681 lock_sock(sk); 2682 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2683 release_sock(sk); 2684 2685 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2686 if (cmsg_flags & TCP_CMSG_TS) 2687 tcp_recv_timestamp(msg, sk, &tss); 2688 if (msg->msg_get_inq) { 2689 msg->msg_inq = tcp_inq_hint(sk); 2690 if (cmsg_flags & TCP_CMSG_INQ) 2691 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2692 sizeof(msg->msg_inq), &msg->msg_inq); 2693 } 2694 } 2695 return ret; 2696 } 2697 EXPORT_SYMBOL(tcp_recvmsg); 2698 2699 void tcp_set_state(struct sock *sk, int state) 2700 { 2701 int oldstate = sk->sk_state; 2702 2703 /* We defined a new enum for TCP states that are exported in BPF 2704 * so as not force the internal TCP states to be frozen. The 2705 * following checks will detect if an internal state value ever 2706 * differs from the BPF value. If this ever happens, then we will 2707 * need to remap the internal value to the BPF value before calling 2708 * tcp_call_bpf_2arg. 2709 */ 2710 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2711 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2712 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2713 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2714 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2715 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2716 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2717 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2718 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2719 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2720 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2721 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2722 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2723 2724 /* bpf uapi header bpf.h defines an anonymous enum with values 2725 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2726 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2727 * But clang built vmlinux does not have this enum in DWARF 2728 * since clang removes the above code before generating IR/debuginfo. 2729 * Let us explicitly emit the type debuginfo to ensure the 2730 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2731 * regardless of which compiler is used. 2732 */ 2733 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2734 2735 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2736 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2737 2738 switch (state) { 2739 case TCP_ESTABLISHED: 2740 if (oldstate != TCP_ESTABLISHED) 2741 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2742 break; 2743 2744 case TCP_CLOSE: 2745 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2746 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2747 2748 sk->sk_prot->unhash(sk); 2749 if (inet_csk(sk)->icsk_bind_hash && 2750 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2751 inet_put_port(sk); 2752 fallthrough; 2753 default: 2754 if (oldstate == TCP_ESTABLISHED) 2755 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2756 } 2757 2758 /* Change state AFTER socket is unhashed to avoid closed 2759 * socket sitting in hash tables. 2760 */ 2761 inet_sk_state_store(sk, state); 2762 } 2763 EXPORT_SYMBOL_GPL(tcp_set_state); 2764 2765 /* 2766 * State processing on a close. This implements the state shift for 2767 * sending our FIN frame. Note that we only send a FIN for some 2768 * states. A shutdown() may have already sent the FIN, or we may be 2769 * closed. 2770 */ 2771 2772 static const unsigned char new_state[16] = { 2773 /* current state: new state: action: */ 2774 [0 /* (Invalid) */] = TCP_CLOSE, 2775 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2776 [TCP_SYN_SENT] = TCP_CLOSE, 2777 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2778 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2779 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2780 [TCP_TIME_WAIT] = TCP_CLOSE, 2781 [TCP_CLOSE] = TCP_CLOSE, 2782 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2783 [TCP_LAST_ACK] = TCP_LAST_ACK, 2784 [TCP_LISTEN] = TCP_CLOSE, 2785 [TCP_CLOSING] = TCP_CLOSING, 2786 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2787 }; 2788 2789 static int tcp_close_state(struct sock *sk) 2790 { 2791 int next = (int)new_state[sk->sk_state]; 2792 int ns = next & TCP_STATE_MASK; 2793 2794 tcp_set_state(sk, ns); 2795 2796 return next & TCP_ACTION_FIN; 2797 } 2798 2799 /* 2800 * Shutdown the sending side of a connection. Much like close except 2801 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2802 */ 2803 2804 void tcp_shutdown(struct sock *sk, int how) 2805 { 2806 /* We need to grab some memory, and put together a FIN, 2807 * and then put it into the queue to be sent. 2808 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2809 */ 2810 if (!(how & SEND_SHUTDOWN)) 2811 return; 2812 2813 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2814 if ((1 << sk->sk_state) & 2815 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2816 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2817 /* Clear out any half completed packets. FIN if needed. */ 2818 if (tcp_close_state(sk)) 2819 tcp_send_fin(sk); 2820 } 2821 } 2822 EXPORT_SYMBOL(tcp_shutdown); 2823 2824 int tcp_orphan_count_sum(void) 2825 { 2826 int i, total = 0; 2827 2828 for_each_possible_cpu(i) 2829 total += per_cpu(tcp_orphan_count, i); 2830 2831 return max(total, 0); 2832 } 2833 2834 static int tcp_orphan_cache; 2835 static struct timer_list tcp_orphan_timer; 2836 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2837 2838 static void tcp_orphan_update(struct timer_list *unused) 2839 { 2840 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2841 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2842 } 2843 2844 static bool tcp_too_many_orphans(int shift) 2845 { 2846 return READ_ONCE(tcp_orphan_cache) << shift > 2847 READ_ONCE(sysctl_tcp_max_orphans); 2848 } 2849 2850 bool tcp_check_oom(struct sock *sk, int shift) 2851 { 2852 bool too_many_orphans, out_of_socket_memory; 2853 2854 too_many_orphans = tcp_too_many_orphans(shift); 2855 out_of_socket_memory = tcp_out_of_memory(sk); 2856 2857 if (too_many_orphans) 2858 net_info_ratelimited("too many orphaned sockets\n"); 2859 if (out_of_socket_memory) 2860 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2861 return too_many_orphans || out_of_socket_memory; 2862 } 2863 2864 void __tcp_close(struct sock *sk, long timeout) 2865 { 2866 struct sk_buff *skb; 2867 int data_was_unread = 0; 2868 int state; 2869 2870 sk->sk_shutdown = SHUTDOWN_MASK; 2871 2872 if (sk->sk_state == TCP_LISTEN) { 2873 tcp_set_state(sk, TCP_CLOSE); 2874 2875 /* Special case. */ 2876 inet_csk_listen_stop(sk); 2877 2878 goto adjudge_to_death; 2879 } 2880 2881 /* We need to flush the recv. buffs. We do this only on the 2882 * descriptor close, not protocol-sourced closes, because the 2883 * reader process may not have drained the data yet! 2884 */ 2885 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2886 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2887 2888 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2889 len--; 2890 data_was_unread += len; 2891 __kfree_skb(skb); 2892 } 2893 2894 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2895 if (sk->sk_state == TCP_CLOSE) 2896 goto adjudge_to_death; 2897 2898 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2899 * data was lost. To witness the awful effects of the old behavior of 2900 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2901 * GET in an FTP client, suspend the process, wait for the client to 2902 * advertise a zero window, then kill -9 the FTP client, wheee... 2903 * Note: timeout is always zero in such a case. 2904 */ 2905 if (unlikely(tcp_sk(sk)->repair)) { 2906 sk->sk_prot->disconnect(sk, 0); 2907 } else if (data_was_unread) { 2908 /* Unread data was tossed, zap the connection. */ 2909 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2910 tcp_set_state(sk, TCP_CLOSE); 2911 tcp_send_active_reset(sk, sk->sk_allocation); 2912 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2913 /* Check zero linger _after_ checking for unread data. */ 2914 sk->sk_prot->disconnect(sk, 0); 2915 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2916 } else if (tcp_close_state(sk)) { 2917 /* We FIN if the application ate all the data before 2918 * zapping the connection. 2919 */ 2920 2921 /* RED-PEN. Formally speaking, we have broken TCP state 2922 * machine. State transitions: 2923 * 2924 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2925 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2926 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2927 * 2928 * are legal only when FIN has been sent (i.e. in window), 2929 * rather than queued out of window. Purists blame. 2930 * 2931 * F.e. "RFC state" is ESTABLISHED, 2932 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2933 * 2934 * The visible declinations are that sometimes 2935 * we enter time-wait state, when it is not required really 2936 * (harmless), do not send active resets, when they are 2937 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2938 * they look as CLOSING or LAST_ACK for Linux) 2939 * Probably, I missed some more holelets. 2940 * --ANK 2941 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2942 * in a single packet! (May consider it later but will 2943 * probably need API support or TCP_CORK SYN-ACK until 2944 * data is written and socket is closed.) 2945 */ 2946 tcp_send_fin(sk); 2947 } 2948 2949 sk_stream_wait_close(sk, timeout); 2950 2951 adjudge_to_death: 2952 state = sk->sk_state; 2953 sock_hold(sk); 2954 sock_orphan(sk); 2955 2956 local_bh_disable(); 2957 bh_lock_sock(sk); 2958 /* remove backlog if any, without releasing ownership. */ 2959 __release_sock(sk); 2960 2961 this_cpu_inc(tcp_orphan_count); 2962 2963 /* Have we already been destroyed by a softirq or backlog? */ 2964 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2965 goto out; 2966 2967 /* This is a (useful) BSD violating of the RFC. There is a 2968 * problem with TCP as specified in that the other end could 2969 * keep a socket open forever with no application left this end. 2970 * We use a 1 minute timeout (about the same as BSD) then kill 2971 * our end. If they send after that then tough - BUT: long enough 2972 * that we won't make the old 4*rto = almost no time - whoops 2973 * reset mistake. 2974 * 2975 * Nope, it was not mistake. It is really desired behaviour 2976 * f.e. on http servers, when such sockets are useless, but 2977 * consume significant resources. Let's do it with special 2978 * linger2 option. --ANK 2979 */ 2980 2981 if (sk->sk_state == TCP_FIN_WAIT2) { 2982 struct tcp_sock *tp = tcp_sk(sk); 2983 if (tp->linger2 < 0) { 2984 tcp_set_state(sk, TCP_CLOSE); 2985 tcp_send_active_reset(sk, GFP_ATOMIC); 2986 __NET_INC_STATS(sock_net(sk), 2987 LINUX_MIB_TCPABORTONLINGER); 2988 } else { 2989 const int tmo = tcp_fin_time(sk); 2990 2991 if (tmo > TCP_TIMEWAIT_LEN) { 2992 inet_csk_reset_keepalive_timer(sk, 2993 tmo - TCP_TIMEWAIT_LEN); 2994 } else { 2995 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2996 goto out; 2997 } 2998 } 2999 } 3000 if (sk->sk_state != TCP_CLOSE) { 3001 if (tcp_check_oom(sk, 0)) { 3002 tcp_set_state(sk, TCP_CLOSE); 3003 tcp_send_active_reset(sk, GFP_ATOMIC); 3004 __NET_INC_STATS(sock_net(sk), 3005 LINUX_MIB_TCPABORTONMEMORY); 3006 } else if (!check_net(sock_net(sk))) { 3007 /* Not possible to send reset; just close */ 3008 tcp_set_state(sk, TCP_CLOSE); 3009 } 3010 } 3011 3012 if (sk->sk_state == TCP_CLOSE) { 3013 struct request_sock *req; 3014 3015 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3016 lockdep_sock_is_held(sk)); 3017 /* We could get here with a non-NULL req if the socket is 3018 * aborted (e.g., closed with unread data) before 3WHS 3019 * finishes. 3020 */ 3021 if (req) 3022 reqsk_fastopen_remove(sk, req, false); 3023 inet_csk_destroy_sock(sk); 3024 } 3025 /* Otherwise, socket is reprieved until protocol close. */ 3026 3027 out: 3028 bh_unlock_sock(sk); 3029 local_bh_enable(); 3030 } 3031 3032 void tcp_close(struct sock *sk, long timeout) 3033 { 3034 lock_sock(sk); 3035 __tcp_close(sk, timeout); 3036 release_sock(sk); 3037 sock_put(sk); 3038 } 3039 EXPORT_SYMBOL(tcp_close); 3040 3041 /* These states need RST on ABORT according to RFC793 */ 3042 3043 static inline bool tcp_need_reset(int state) 3044 { 3045 return (1 << state) & 3046 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3047 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3048 } 3049 3050 static void tcp_rtx_queue_purge(struct sock *sk) 3051 { 3052 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3053 3054 tcp_sk(sk)->highest_sack = NULL; 3055 while (p) { 3056 struct sk_buff *skb = rb_to_skb(p); 3057 3058 p = rb_next(p); 3059 /* Since we are deleting whole queue, no need to 3060 * list_del(&skb->tcp_tsorted_anchor) 3061 */ 3062 tcp_rtx_queue_unlink(skb, sk); 3063 tcp_wmem_free_skb(sk, skb); 3064 } 3065 } 3066 3067 void tcp_write_queue_purge(struct sock *sk) 3068 { 3069 struct sk_buff *skb; 3070 3071 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3072 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3073 tcp_skb_tsorted_anchor_cleanup(skb); 3074 tcp_wmem_free_skb(sk, skb); 3075 } 3076 tcp_rtx_queue_purge(sk); 3077 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3078 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3079 tcp_sk(sk)->packets_out = 0; 3080 inet_csk(sk)->icsk_backoff = 0; 3081 } 3082 3083 int tcp_disconnect(struct sock *sk, int flags) 3084 { 3085 struct inet_sock *inet = inet_sk(sk); 3086 struct inet_connection_sock *icsk = inet_csk(sk); 3087 struct tcp_sock *tp = tcp_sk(sk); 3088 int old_state = sk->sk_state; 3089 u32 seq; 3090 3091 if (old_state != TCP_CLOSE) 3092 tcp_set_state(sk, TCP_CLOSE); 3093 3094 /* ABORT function of RFC793 */ 3095 if (old_state == TCP_LISTEN) { 3096 inet_csk_listen_stop(sk); 3097 } else if (unlikely(tp->repair)) { 3098 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3099 } else if (tcp_need_reset(old_state) || 3100 (tp->snd_nxt != tp->write_seq && 3101 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3102 /* The last check adjusts for discrepancy of Linux wrt. RFC 3103 * states 3104 */ 3105 tcp_send_active_reset(sk, gfp_any()); 3106 WRITE_ONCE(sk->sk_err, ECONNRESET); 3107 } else if (old_state == TCP_SYN_SENT) 3108 WRITE_ONCE(sk->sk_err, ECONNRESET); 3109 3110 tcp_clear_xmit_timers(sk); 3111 __skb_queue_purge(&sk->sk_receive_queue); 3112 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3113 WRITE_ONCE(tp->urg_data, 0); 3114 tcp_write_queue_purge(sk); 3115 tcp_fastopen_active_disable_ofo_check(sk); 3116 skb_rbtree_purge(&tp->out_of_order_queue); 3117 3118 inet->inet_dport = 0; 3119 3120 inet_bhash2_reset_saddr(sk); 3121 3122 sk->sk_shutdown = 0; 3123 sock_reset_flag(sk, SOCK_DONE); 3124 tp->srtt_us = 0; 3125 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3126 tp->rcv_rtt_last_tsecr = 0; 3127 3128 seq = tp->write_seq + tp->max_window + 2; 3129 if (!seq) 3130 seq = 1; 3131 WRITE_ONCE(tp->write_seq, seq); 3132 3133 icsk->icsk_backoff = 0; 3134 icsk->icsk_probes_out = 0; 3135 icsk->icsk_probes_tstamp = 0; 3136 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3137 icsk->icsk_rto_min = TCP_RTO_MIN; 3138 icsk->icsk_delack_max = TCP_DELACK_MAX; 3139 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3140 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3141 tp->snd_cwnd_cnt = 0; 3142 tp->is_cwnd_limited = 0; 3143 tp->max_packets_out = 0; 3144 tp->window_clamp = 0; 3145 tp->delivered = 0; 3146 tp->delivered_ce = 0; 3147 if (icsk->icsk_ca_ops->release) 3148 icsk->icsk_ca_ops->release(sk); 3149 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3150 icsk->icsk_ca_initialized = 0; 3151 tcp_set_ca_state(sk, TCP_CA_Open); 3152 tp->is_sack_reneg = 0; 3153 tcp_clear_retrans(tp); 3154 tp->total_retrans = 0; 3155 inet_csk_delack_init(sk); 3156 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3157 * issue in __tcp_select_window() 3158 */ 3159 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3160 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3161 __sk_dst_reset(sk); 3162 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3163 tcp_saved_syn_free(tp); 3164 tp->compressed_ack = 0; 3165 tp->segs_in = 0; 3166 tp->segs_out = 0; 3167 tp->bytes_sent = 0; 3168 tp->bytes_acked = 0; 3169 tp->bytes_received = 0; 3170 tp->bytes_retrans = 0; 3171 tp->data_segs_in = 0; 3172 tp->data_segs_out = 0; 3173 tp->duplicate_sack[0].start_seq = 0; 3174 tp->duplicate_sack[0].end_seq = 0; 3175 tp->dsack_dups = 0; 3176 tp->reord_seen = 0; 3177 tp->retrans_out = 0; 3178 tp->sacked_out = 0; 3179 tp->tlp_high_seq = 0; 3180 tp->last_oow_ack_time = 0; 3181 tp->plb_rehash = 0; 3182 /* There's a bubble in the pipe until at least the first ACK. */ 3183 tp->app_limited = ~0U; 3184 tp->rate_app_limited = 1; 3185 tp->rack.mstamp = 0; 3186 tp->rack.advanced = 0; 3187 tp->rack.reo_wnd_steps = 1; 3188 tp->rack.last_delivered = 0; 3189 tp->rack.reo_wnd_persist = 0; 3190 tp->rack.dsack_seen = 0; 3191 tp->syn_data_acked = 0; 3192 tp->rx_opt.saw_tstamp = 0; 3193 tp->rx_opt.dsack = 0; 3194 tp->rx_opt.num_sacks = 0; 3195 tp->rcv_ooopack = 0; 3196 3197 3198 /* Clean up fastopen related fields */ 3199 tcp_free_fastopen_req(tp); 3200 inet->defer_connect = 0; 3201 tp->fastopen_client_fail = 0; 3202 3203 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3204 3205 if (sk->sk_frag.page) { 3206 put_page(sk->sk_frag.page); 3207 sk->sk_frag.page = NULL; 3208 sk->sk_frag.offset = 0; 3209 } 3210 sk_error_report(sk); 3211 return 0; 3212 } 3213 EXPORT_SYMBOL(tcp_disconnect); 3214 3215 static inline bool tcp_can_repair_sock(const struct sock *sk) 3216 { 3217 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3218 (sk->sk_state != TCP_LISTEN); 3219 } 3220 3221 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3222 { 3223 struct tcp_repair_window opt; 3224 3225 if (!tp->repair) 3226 return -EPERM; 3227 3228 if (len != sizeof(opt)) 3229 return -EINVAL; 3230 3231 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3232 return -EFAULT; 3233 3234 if (opt.max_window < opt.snd_wnd) 3235 return -EINVAL; 3236 3237 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3238 return -EINVAL; 3239 3240 if (after(opt.rcv_wup, tp->rcv_nxt)) 3241 return -EINVAL; 3242 3243 tp->snd_wl1 = opt.snd_wl1; 3244 tp->snd_wnd = opt.snd_wnd; 3245 tp->max_window = opt.max_window; 3246 3247 tp->rcv_wnd = opt.rcv_wnd; 3248 tp->rcv_wup = opt.rcv_wup; 3249 3250 return 0; 3251 } 3252 3253 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3254 unsigned int len) 3255 { 3256 struct tcp_sock *tp = tcp_sk(sk); 3257 struct tcp_repair_opt opt; 3258 size_t offset = 0; 3259 3260 while (len >= sizeof(opt)) { 3261 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3262 return -EFAULT; 3263 3264 offset += sizeof(opt); 3265 len -= sizeof(opt); 3266 3267 switch (opt.opt_code) { 3268 case TCPOPT_MSS: 3269 tp->rx_opt.mss_clamp = opt.opt_val; 3270 tcp_mtup_init(sk); 3271 break; 3272 case TCPOPT_WINDOW: 3273 { 3274 u16 snd_wscale = opt.opt_val & 0xFFFF; 3275 u16 rcv_wscale = opt.opt_val >> 16; 3276 3277 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3278 return -EFBIG; 3279 3280 tp->rx_opt.snd_wscale = snd_wscale; 3281 tp->rx_opt.rcv_wscale = rcv_wscale; 3282 tp->rx_opt.wscale_ok = 1; 3283 } 3284 break; 3285 case TCPOPT_SACK_PERM: 3286 if (opt.opt_val != 0) 3287 return -EINVAL; 3288 3289 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3290 break; 3291 case TCPOPT_TIMESTAMP: 3292 if (opt.opt_val != 0) 3293 return -EINVAL; 3294 3295 tp->rx_opt.tstamp_ok = 1; 3296 break; 3297 } 3298 } 3299 3300 return 0; 3301 } 3302 3303 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3304 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3305 3306 static void tcp_enable_tx_delay(void) 3307 { 3308 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3309 static int __tcp_tx_delay_enabled = 0; 3310 3311 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3312 static_branch_enable(&tcp_tx_delay_enabled); 3313 pr_info("TCP_TX_DELAY enabled\n"); 3314 } 3315 } 3316 } 3317 3318 /* When set indicates to always queue non-full frames. Later the user clears 3319 * this option and we transmit any pending partial frames in the queue. This is 3320 * meant to be used alongside sendfile() to get properly filled frames when the 3321 * user (for example) must write out headers with a write() call first and then 3322 * use sendfile to send out the data parts. 3323 * 3324 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3325 * TCP_NODELAY. 3326 */ 3327 void __tcp_sock_set_cork(struct sock *sk, bool on) 3328 { 3329 struct tcp_sock *tp = tcp_sk(sk); 3330 3331 if (on) { 3332 tp->nonagle |= TCP_NAGLE_CORK; 3333 } else { 3334 tp->nonagle &= ~TCP_NAGLE_CORK; 3335 if (tp->nonagle & TCP_NAGLE_OFF) 3336 tp->nonagle |= TCP_NAGLE_PUSH; 3337 tcp_push_pending_frames(sk); 3338 } 3339 } 3340 3341 void tcp_sock_set_cork(struct sock *sk, bool on) 3342 { 3343 lock_sock(sk); 3344 __tcp_sock_set_cork(sk, on); 3345 release_sock(sk); 3346 } 3347 EXPORT_SYMBOL(tcp_sock_set_cork); 3348 3349 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3350 * remembered, but it is not activated until cork is cleared. 3351 * 3352 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3353 * even TCP_CORK for currently queued segments. 3354 */ 3355 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3356 { 3357 if (on) { 3358 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3359 tcp_push_pending_frames(sk); 3360 } else { 3361 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3362 } 3363 } 3364 3365 void tcp_sock_set_nodelay(struct sock *sk) 3366 { 3367 lock_sock(sk); 3368 __tcp_sock_set_nodelay(sk, true); 3369 release_sock(sk); 3370 } 3371 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3372 3373 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3374 { 3375 if (!val) { 3376 inet_csk_enter_pingpong_mode(sk); 3377 return; 3378 } 3379 3380 inet_csk_exit_pingpong_mode(sk); 3381 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3382 inet_csk_ack_scheduled(sk)) { 3383 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3384 tcp_cleanup_rbuf(sk, 1); 3385 if (!(val & 1)) 3386 inet_csk_enter_pingpong_mode(sk); 3387 } 3388 } 3389 3390 void tcp_sock_set_quickack(struct sock *sk, int val) 3391 { 3392 lock_sock(sk); 3393 __tcp_sock_set_quickack(sk, val); 3394 release_sock(sk); 3395 } 3396 EXPORT_SYMBOL(tcp_sock_set_quickack); 3397 3398 int tcp_sock_set_syncnt(struct sock *sk, int val) 3399 { 3400 if (val < 1 || val > MAX_TCP_SYNCNT) 3401 return -EINVAL; 3402 3403 lock_sock(sk); 3404 inet_csk(sk)->icsk_syn_retries = val; 3405 release_sock(sk); 3406 return 0; 3407 } 3408 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3409 3410 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3411 { 3412 lock_sock(sk); 3413 inet_csk(sk)->icsk_user_timeout = val; 3414 release_sock(sk); 3415 } 3416 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3417 3418 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3419 { 3420 struct tcp_sock *tp = tcp_sk(sk); 3421 3422 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3423 return -EINVAL; 3424 3425 tp->keepalive_time = val * HZ; 3426 if (sock_flag(sk, SOCK_KEEPOPEN) && 3427 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3428 u32 elapsed = keepalive_time_elapsed(tp); 3429 3430 if (tp->keepalive_time > elapsed) 3431 elapsed = tp->keepalive_time - elapsed; 3432 else 3433 elapsed = 0; 3434 inet_csk_reset_keepalive_timer(sk, elapsed); 3435 } 3436 3437 return 0; 3438 } 3439 3440 int tcp_sock_set_keepidle(struct sock *sk, int val) 3441 { 3442 int err; 3443 3444 lock_sock(sk); 3445 err = tcp_sock_set_keepidle_locked(sk, val); 3446 release_sock(sk); 3447 return err; 3448 } 3449 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3450 3451 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3452 { 3453 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3454 return -EINVAL; 3455 3456 lock_sock(sk); 3457 tcp_sk(sk)->keepalive_intvl = val * HZ; 3458 release_sock(sk); 3459 return 0; 3460 } 3461 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3462 3463 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3464 { 3465 if (val < 1 || val > MAX_TCP_KEEPCNT) 3466 return -EINVAL; 3467 3468 lock_sock(sk); 3469 tcp_sk(sk)->keepalive_probes = val; 3470 release_sock(sk); 3471 return 0; 3472 } 3473 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3474 3475 int tcp_set_window_clamp(struct sock *sk, int val) 3476 { 3477 struct tcp_sock *tp = tcp_sk(sk); 3478 3479 if (!val) { 3480 if (sk->sk_state != TCP_CLOSE) 3481 return -EINVAL; 3482 tp->window_clamp = 0; 3483 } else { 3484 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3485 SOCK_MIN_RCVBUF / 2 : val; 3486 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3487 } 3488 return 0; 3489 } 3490 3491 /* 3492 * Socket option code for TCP. 3493 */ 3494 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3495 sockptr_t optval, unsigned int optlen) 3496 { 3497 struct tcp_sock *tp = tcp_sk(sk); 3498 struct inet_connection_sock *icsk = inet_csk(sk); 3499 struct net *net = sock_net(sk); 3500 int val; 3501 int err = 0; 3502 3503 /* These are data/string values, all the others are ints */ 3504 switch (optname) { 3505 case TCP_CONGESTION: { 3506 char name[TCP_CA_NAME_MAX]; 3507 3508 if (optlen < 1) 3509 return -EINVAL; 3510 3511 val = strncpy_from_sockptr(name, optval, 3512 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3513 if (val < 0) 3514 return -EFAULT; 3515 name[val] = 0; 3516 3517 sockopt_lock_sock(sk); 3518 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3519 sockopt_ns_capable(sock_net(sk)->user_ns, 3520 CAP_NET_ADMIN)); 3521 sockopt_release_sock(sk); 3522 return err; 3523 } 3524 case TCP_ULP: { 3525 char name[TCP_ULP_NAME_MAX]; 3526 3527 if (optlen < 1) 3528 return -EINVAL; 3529 3530 val = strncpy_from_sockptr(name, optval, 3531 min_t(long, TCP_ULP_NAME_MAX - 1, 3532 optlen)); 3533 if (val < 0) 3534 return -EFAULT; 3535 name[val] = 0; 3536 3537 sockopt_lock_sock(sk); 3538 err = tcp_set_ulp(sk, name); 3539 sockopt_release_sock(sk); 3540 return err; 3541 } 3542 case TCP_FASTOPEN_KEY: { 3543 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3544 __u8 *backup_key = NULL; 3545 3546 /* Allow a backup key as well to facilitate key rotation 3547 * First key is the active one. 3548 */ 3549 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3550 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3551 return -EINVAL; 3552 3553 if (copy_from_sockptr(key, optval, optlen)) 3554 return -EFAULT; 3555 3556 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3557 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3558 3559 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3560 } 3561 default: 3562 /* fallthru */ 3563 break; 3564 } 3565 3566 if (optlen < sizeof(int)) 3567 return -EINVAL; 3568 3569 if (copy_from_sockptr(&val, optval, sizeof(val))) 3570 return -EFAULT; 3571 3572 sockopt_lock_sock(sk); 3573 3574 switch (optname) { 3575 case TCP_MAXSEG: 3576 /* Values greater than interface MTU won't take effect. However 3577 * at the point when this call is done we typically don't yet 3578 * know which interface is going to be used 3579 */ 3580 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3581 err = -EINVAL; 3582 break; 3583 } 3584 tp->rx_opt.user_mss = val; 3585 break; 3586 3587 case TCP_NODELAY: 3588 __tcp_sock_set_nodelay(sk, val); 3589 break; 3590 3591 case TCP_THIN_LINEAR_TIMEOUTS: 3592 if (val < 0 || val > 1) 3593 err = -EINVAL; 3594 else 3595 tp->thin_lto = val; 3596 break; 3597 3598 case TCP_THIN_DUPACK: 3599 if (val < 0 || val > 1) 3600 err = -EINVAL; 3601 break; 3602 3603 case TCP_REPAIR: 3604 if (!tcp_can_repair_sock(sk)) 3605 err = -EPERM; 3606 else if (val == TCP_REPAIR_ON) { 3607 tp->repair = 1; 3608 sk->sk_reuse = SK_FORCE_REUSE; 3609 tp->repair_queue = TCP_NO_QUEUE; 3610 } else if (val == TCP_REPAIR_OFF) { 3611 tp->repair = 0; 3612 sk->sk_reuse = SK_NO_REUSE; 3613 tcp_send_window_probe(sk); 3614 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3615 tp->repair = 0; 3616 sk->sk_reuse = SK_NO_REUSE; 3617 } else 3618 err = -EINVAL; 3619 3620 break; 3621 3622 case TCP_REPAIR_QUEUE: 3623 if (!tp->repair) 3624 err = -EPERM; 3625 else if ((unsigned int)val < TCP_QUEUES_NR) 3626 tp->repair_queue = val; 3627 else 3628 err = -EINVAL; 3629 break; 3630 3631 case TCP_QUEUE_SEQ: 3632 if (sk->sk_state != TCP_CLOSE) { 3633 err = -EPERM; 3634 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3635 if (!tcp_rtx_queue_empty(sk)) 3636 err = -EPERM; 3637 else 3638 WRITE_ONCE(tp->write_seq, val); 3639 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3640 if (tp->rcv_nxt != tp->copied_seq) { 3641 err = -EPERM; 3642 } else { 3643 WRITE_ONCE(tp->rcv_nxt, val); 3644 WRITE_ONCE(tp->copied_seq, val); 3645 } 3646 } else { 3647 err = -EINVAL; 3648 } 3649 break; 3650 3651 case TCP_REPAIR_OPTIONS: 3652 if (!tp->repair) 3653 err = -EINVAL; 3654 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3655 err = tcp_repair_options_est(sk, optval, optlen); 3656 else 3657 err = -EPERM; 3658 break; 3659 3660 case TCP_CORK: 3661 __tcp_sock_set_cork(sk, val); 3662 break; 3663 3664 case TCP_KEEPIDLE: 3665 err = tcp_sock_set_keepidle_locked(sk, val); 3666 break; 3667 case TCP_KEEPINTVL: 3668 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3669 err = -EINVAL; 3670 else 3671 tp->keepalive_intvl = val * HZ; 3672 break; 3673 case TCP_KEEPCNT: 3674 if (val < 1 || val > MAX_TCP_KEEPCNT) 3675 err = -EINVAL; 3676 else 3677 tp->keepalive_probes = val; 3678 break; 3679 case TCP_SYNCNT: 3680 if (val < 1 || val > MAX_TCP_SYNCNT) 3681 err = -EINVAL; 3682 else 3683 icsk->icsk_syn_retries = val; 3684 break; 3685 3686 case TCP_SAVE_SYN: 3687 /* 0: disable, 1: enable, 2: start from ether_header */ 3688 if (val < 0 || val > 2) 3689 err = -EINVAL; 3690 else 3691 tp->save_syn = val; 3692 break; 3693 3694 case TCP_LINGER2: 3695 if (val < 0) 3696 tp->linger2 = -1; 3697 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3698 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3699 else 3700 tp->linger2 = val * HZ; 3701 break; 3702 3703 case TCP_DEFER_ACCEPT: 3704 /* Translate value in seconds to number of retransmits */ 3705 icsk->icsk_accept_queue.rskq_defer_accept = 3706 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3707 TCP_RTO_MAX / HZ); 3708 break; 3709 3710 case TCP_WINDOW_CLAMP: 3711 err = tcp_set_window_clamp(sk, val); 3712 break; 3713 3714 case TCP_QUICKACK: 3715 __tcp_sock_set_quickack(sk, val); 3716 break; 3717 3718 #ifdef CONFIG_TCP_MD5SIG 3719 case TCP_MD5SIG: 3720 case TCP_MD5SIG_EXT: 3721 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3722 break; 3723 #endif 3724 case TCP_USER_TIMEOUT: 3725 /* Cap the max time in ms TCP will retry or probe the window 3726 * before giving up and aborting (ETIMEDOUT) a connection. 3727 */ 3728 if (val < 0) 3729 err = -EINVAL; 3730 else 3731 icsk->icsk_user_timeout = val; 3732 break; 3733 3734 case TCP_FASTOPEN: 3735 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3736 TCPF_LISTEN))) { 3737 tcp_fastopen_init_key_once(net); 3738 3739 fastopen_queue_tune(sk, val); 3740 } else { 3741 err = -EINVAL; 3742 } 3743 break; 3744 case TCP_FASTOPEN_CONNECT: 3745 if (val > 1 || val < 0) { 3746 err = -EINVAL; 3747 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3748 TFO_CLIENT_ENABLE) { 3749 if (sk->sk_state == TCP_CLOSE) 3750 tp->fastopen_connect = val; 3751 else 3752 err = -EINVAL; 3753 } else { 3754 err = -EOPNOTSUPP; 3755 } 3756 break; 3757 case TCP_FASTOPEN_NO_COOKIE: 3758 if (val > 1 || val < 0) 3759 err = -EINVAL; 3760 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3761 err = -EINVAL; 3762 else 3763 tp->fastopen_no_cookie = val; 3764 break; 3765 case TCP_TIMESTAMP: 3766 if (!tp->repair) 3767 err = -EPERM; 3768 else 3769 tp->tsoffset = val - tcp_time_stamp_raw(); 3770 break; 3771 case TCP_REPAIR_WINDOW: 3772 err = tcp_repair_set_window(tp, optval, optlen); 3773 break; 3774 case TCP_NOTSENT_LOWAT: 3775 tp->notsent_lowat = val; 3776 sk->sk_write_space(sk); 3777 break; 3778 case TCP_INQ: 3779 if (val > 1 || val < 0) 3780 err = -EINVAL; 3781 else 3782 tp->recvmsg_inq = val; 3783 break; 3784 case TCP_TX_DELAY: 3785 if (val) 3786 tcp_enable_tx_delay(); 3787 tp->tcp_tx_delay = val; 3788 break; 3789 default: 3790 err = -ENOPROTOOPT; 3791 break; 3792 } 3793 3794 sockopt_release_sock(sk); 3795 return err; 3796 } 3797 3798 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3799 unsigned int optlen) 3800 { 3801 const struct inet_connection_sock *icsk = inet_csk(sk); 3802 3803 if (level != SOL_TCP) 3804 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3805 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3806 optval, optlen); 3807 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3808 } 3809 EXPORT_SYMBOL(tcp_setsockopt); 3810 3811 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3812 struct tcp_info *info) 3813 { 3814 u64 stats[__TCP_CHRONO_MAX], total = 0; 3815 enum tcp_chrono i; 3816 3817 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3818 stats[i] = tp->chrono_stat[i - 1]; 3819 if (i == tp->chrono_type) 3820 stats[i] += tcp_jiffies32 - tp->chrono_start; 3821 stats[i] *= USEC_PER_SEC / HZ; 3822 total += stats[i]; 3823 } 3824 3825 info->tcpi_busy_time = total; 3826 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3827 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3828 } 3829 3830 /* Return information about state of tcp endpoint in API format. */ 3831 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3832 { 3833 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3834 const struct inet_connection_sock *icsk = inet_csk(sk); 3835 unsigned long rate; 3836 u32 now; 3837 u64 rate64; 3838 bool slow; 3839 3840 memset(info, 0, sizeof(*info)); 3841 if (sk->sk_type != SOCK_STREAM) 3842 return; 3843 3844 info->tcpi_state = inet_sk_state_load(sk); 3845 3846 /* Report meaningful fields for all TCP states, including listeners */ 3847 rate = READ_ONCE(sk->sk_pacing_rate); 3848 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3849 info->tcpi_pacing_rate = rate64; 3850 3851 rate = READ_ONCE(sk->sk_max_pacing_rate); 3852 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3853 info->tcpi_max_pacing_rate = rate64; 3854 3855 info->tcpi_reordering = tp->reordering; 3856 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3857 3858 if (info->tcpi_state == TCP_LISTEN) { 3859 /* listeners aliased fields : 3860 * tcpi_unacked -> Number of children ready for accept() 3861 * tcpi_sacked -> max backlog 3862 */ 3863 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3864 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3865 return; 3866 } 3867 3868 slow = lock_sock_fast(sk); 3869 3870 info->tcpi_ca_state = icsk->icsk_ca_state; 3871 info->tcpi_retransmits = icsk->icsk_retransmits; 3872 info->tcpi_probes = icsk->icsk_probes_out; 3873 info->tcpi_backoff = icsk->icsk_backoff; 3874 3875 if (tp->rx_opt.tstamp_ok) 3876 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3877 if (tcp_is_sack(tp)) 3878 info->tcpi_options |= TCPI_OPT_SACK; 3879 if (tp->rx_opt.wscale_ok) { 3880 info->tcpi_options |= TCPI_OPT_WSCALE; 3881 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3882 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3883 } 3884 3885 if (tp->ecn_flags & TCP_ECN_OK) 3886 info->tcpi_options |= TCPI_OPT_ECN; 3887 if (tp->ecn_flags & TCP_ECN_SEEN) 3888 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3889 if (tp->syn_data_acked) 3890 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3891 3892 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3893 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3894 info->tcpi_snd_mss = tp->mss_cache; 3895 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3896 3897 info->tcpi_unacked = tp->packets_out; 3898 info->tcpi_sacked = tp->sacked_out; 3899 3900 info->tcpi_lost = tp->lost_out; 3901 info->tcpi_retrans = tp->retrans_out; 3902 3903 now = tcp_jiffies32; 3904 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3905 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3906 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3907 3908 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3909 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3910 info->tcpi_rtt = tp->srtt_us >> 3; 3911 info->tcpi_rttvar = tp->mdev_us >> 2; 3912 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3913 info->tcpi_advmss = tp->advmss; 3914 3915 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3916 info->tcpi_rcv_space = tp->rcvq_space.space; 3917 3918 info->tcpi_total_retrans = tp->total_retrans; 3919 3920 info->tcpi_bytes_acked = tp->bytes_acked; 3921 info->tcpi_bytes_received = tp->bytes_received; 3922 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3923 tcp_get_info_chrono_stats(tp, info); 3924 3925 info->tcpi_segs_out = tp->segs_out; 3926 3927 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3928 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3929 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3930 3931 info->tcpi_min_rtt = tcp_min_rtt(tp); 3932 info->tcpi_data_segs_out = tp->data_segs_out; 3933 3934 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3935 rate64 = tcp_compute_delivery_rate(tp); 3936 if (rate64) 3937 info->tcpi_delivery_rate = rate64; 3938 info->tcpi_delivered = tp->delivered; 3939 info->tcpi_delivered_ce = tp->delivered_ce; 3940 info->tcpi_bytes_sent = tp->bytes_sent; 3941 info->tcpi_bytes_retrans = tp->bytes_retrans; 3942 info->tcpi_dsack_dups = tp->dsack_dups; 3943 info->tcpi_reord_seen = tp->reord_seen; 3944 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3945 info->tcpi_snd_wnd = tp->snd_wnd; 3946 info->tcpi_rcv_wnd = tp->rcv_wnd; 3947 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3948 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3949 unlock_sock_fast(sk, slow); 3950 } 3951 EXPORT_SYMBOL_GPL(tcp_get_info); 3952 3953 static size_t tcp_opt_stats_get_size(void) 3954 { 3955 return 3956 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3957 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3958 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3959 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3960 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3961 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3962 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3963 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3964 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3965 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3966 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3967 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3968 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3969 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3970 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3971 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3972 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3973 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3974 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3975 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3976 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3977 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3978 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3979 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3980 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3981 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3982 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3983 0; 3984 } 3985 3986 /* Returns TTL or hop limit of an incoming packet from skb. */ 3987 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3988 { 3989 if (skb->protocol == htons(ETH_P_IP)) 3990 return ip_hdr(skb)->ttl; 3991 else if (skb->protocol == htons(ETH_P_IPV6)) 3992 return ipv6_hdr(skb)->hop_limit; 3993 else 3994 return 0; 3995 } 3996 3997 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3998 const struct sk_buff *orig_skb, 3999 const struct sk_buff *ack_skb) 4000 { 4001 const struct tcp_sock *tp = tcp_sk(sk); 4002 struct sk_buff *stats; 4003 struct tcp_info info; 4004 unsigned long rate; 4005 u64 rate64; 4006 4007 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4008 if (!stats) 4009 return NULL; 4010 4011 tcp_get_info_chrono_stats(tp, &info); 4012 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4013 info.tcpi_busy_time, TCP_NLA_PAD); 4014 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4015 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4016 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4017 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4018 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4019 tp->data_segs_out, TCP_NLA_PAD); 4020 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4021 tp->total_retrans, TCP_NLA_PAD); 4022 4023 rate = READ_ONCE(sk->sk_pacing_rate); 4024 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4025 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4026 4027 rate64 = tcp_compute_delivery_rate(tp); 4028 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4029 4030 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4031 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4032 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4033 4034 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4035 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4036 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4037 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4038 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4039 4040 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4041 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4042 4043 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4044 TCP_NLA_PAD); 4045 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4046 TCP_NLA_PAD); 4047 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4048 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4049 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4050 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4051 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4052 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4053 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4054 TCP_NLA_PAD); 4055 if (ack_skb) 4056 nla_put_u8(stats, TCP_NLA_TTL, 4057 tcp_skb_ttl_or_hop_limit(ack_skb)); 4058 4059 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4060 return stats; 4061 } 4062 4063 int do_tcp_getsockopt(struct sock *sk, int level, 4064 int optname, sockptr_t optval, sockptr_t optlen) 4065 { 4066 struct inet_connection_sock *icsk = inet_csk(sk); 4067 struct tcp_sock *tp = tcp_sk(sk); 4068 struct net *net = sock_net(sk); 4069 int val, len; 4070 4071 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4072 return -EFAULT; 4073 4074 len = min_t(unsigned int, len, sizeof(int)); 4075 4076 if (len < 0) 4077 return -EINVAL; 4078 4079 switch (optname) { 4080 case TCP_MAXSEG: 4081 val = tp->mss_cache; 4082 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4083 val = tp->rx_opt.user_mss; 4084 if (tp->repair) 4085 val = tp->rx_opt.mss_clamp; 4086 break; 4087 case TCP_NODELAY: 4088 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4089 break; 4090 case TCP_CORK: 4091 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4092 break; 4093 case TCP_KEEPIDLE: 4094 val = keepalive_time_when(tp) / HZ; 4095 break; 4096 case TCP_KEEPINTVL: 4097 val = keepalive_intvl_when(tp) / HZ; 4098 break; 4099 case TCP_KEEPCNT: 4100 val = keepalive_probes(tp); 4101 break; 4102 case TCP_SYNCNT: 4103 val = icsk->icsk_syn_retries ? : 4104 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4105 break; 4106 case TCP_LINGER2: 4107 val = tp->linger2; 4108 if (val >= 0) 4109 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4110 break; 4111 case TCP_DEFER_ACCEPT: 4112 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4113 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4114 break; 4115 case TCP_WINDOW_CLAMP: 4116 val = tp->window_clamp; 4117 break; 4118 case TCP_INFO: { 4119 struct tcp_info info; 4120 4121 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4122 return -EFAULT; 4123 4124 tcp_get_info(sk, &info); 4125 4126 len = min_t(unsigned int, len, sizeof(info)); 4127 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4128 return -EFAULT; 4129 if (copy_to_sockptr(optval, &info, len)) 4130 return -EFAULT; 4131 return 0; 4132 } 4133 case TCP_CC_INFO: { 4134 const struct tcp_congestion_ops *ca_ops; 4135 union tcp_cc_info info; 4136 size_t sz = 0; 4137 int attr; 4138 4139 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4140 return -EFAULT; 4141 4142 ca_ops = icsk->icsk_ca_ops; 4143 if (ca_ops && ca_ops->get_info) 4144 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4145 4146 len = min_t(unsigned int, len, sz); 4147 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4148 return -EFAULT; 4149 if (copy_to_sockptr(optval, &info, len)) 4150 return -EFAULT; 4151 return 0; 4152 } 4153 case TCP_QUICKACK: 4154 val = !inet_csk_in_pingpong_mode(sk); 4155 break; 4156 4157 case TCP_CONGESTION: 4158 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4159 return -EFAULT; 4160 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4161 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4162 return -EFAULT; 4163 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4164 return -EFAULT; 4165 return 0; 4166 4167 case TCP_ULP: 4168 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4169 return -EFAULT; 4170 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4171 if (!icsk->icsk_ulp_ops) { 4172 len = 0; 4173 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4174 return -EFAULT; 4175 return 0; 4176 } 4177 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4178 return -EFAULT; 4179 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4180 return -EFAULT; 4181 return 0; 4182 4183 case TCP_FASTOPEN_KEY: { 4184 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4185 unsigned int key_len; 4186 4187 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4188 return -EFAULT; 4189 4190 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4191 TCP_FASTOPEN_KEY_LENGTH; 4192 len = min_t(unsigned int, len, key_len); 4193 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4194 return -EFAULT; 4195 if (copy_to_sockptr(optval, key, len)) 4196 return -EFAULT; 4197 return 0; 4198 } 4199 case TCP_THIN_LINEAR_TIMEOUTS: 4200 val = tp->thin_lto; 4201 break; 4202 4203 case TCP_THIN_DUPACK: 4204 val = 0; 4205 break; 4206 4207 case TCP_REPAIR: 4208 val = tp->repair; 4209 break; 4210 4211 case TCP_REPAIR_QUEUE: 4212 if (tp->repair) 4213 val = tp->repair_queue; 4214 else 4215 return -EINVAL; 4216 break; 4217 4218 case TCP_REPAIR_WINDOW: { 4219 struct tcp_repair_window opt; 4220 4221 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4222 return -EFAULT; 4223 4224 if (len != sizeof(opt)) 4225 return -EINVAL; 4226 4227 if (!tp->repair) 4228 return -EPERM; 4229 4230 opt.snd_wl1 = tp->snd_wl1; 4231 opt.snd_wnd = tp->snd_wnd; 4232 opt.max_window = tp->max_window; 4233 opt.rcv_wnd = tp->rcv_wnd; 4234 opt.rcv_wup = tp->rcv_wup; 4235 4236 if (copy_to_sockptr(optval, &opt, len)) 4237 return -EFAULT; 4238 return 0; 4239 } 4240 case TCP_QUEUE_SEQ: 4241 if (tp->repair_queue == TCP_SEND_QUEUE) 4242 val = tp->write_seq; 4243 else if (tp->repair_queue == TCP_RECV_QUEUE) 4244 val = tp->rcv_nxt; 4245 else 4246 return -EINVAL; 4247 break; 4248 4249 case TCP_USER_TIMEOUT: 4250 val = icsk->icsk_user_timeout; 4251 break; 4252 4253 case TCP_FASTOPEN: 4254 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4255 break; 4256 4257 case TCP_FASTOPEN_CONNECT: 4258 val = tp->fastopen_connect; 4259 break; 4260 4261 case TCP_FASTOPEN_NO_COOKIE: 4262 val = tp->fastopen_no_cookie; 4263 break; 4264 4265 case TCP_TX_DELAY: 4266 val = tp->tcp_tx_delay; 4267 break; 4268 4269 case TCP_TIMESTAMP: 4270 val = tcp_time_stamp_raw() + tp->tsoffset; 4271 break; 4272 case TCP_NOTSENT_LOWAT: 4273 val = tp->notsent_lowat; 4274 break; 4275 case TCP_INQ: 4276 val = tp->recvmsg_inq; 4277 break; 4278 case TCP_SAVE_SYN: 4279 val = tp->save_syn; 4280 break; 4281 case TCP_SAVED_SYN: { 4282 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4283 return -EFAULT; 4284 4285 sockopt_lock_sock(sk); 4286 if (tp->saved_syn) { 4287 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4288 len = tcp_saved_syn_len(tp->saved_syn); 4289 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4290 sockopt_release_sock(sk); 4291 return -EFAULT; 4292 } 4293 sockopt_release_sock(sk); 4294 return -EINVAL; 4295 } 4296 len = tcp_saved_syn_len(tp->saved_syn); 4297 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4298 sockopt_release_sock(sk); 4299 return -EFAULT; 4300 } 4301 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4302 sockopt_release_sock(sk); 4303 return -EFAULT; 4304 } 4305 tcp_saved_syn_free(tp); 4306 sockopt_release_sock(sk); 4307 } else { 4308 sockopt_release_sock(sk); 4309 len = 0; 4310 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4311 return -EFAULT; 4312 } 4313 return 0; 4314 } 4315 #ifdef CONFIG_MMU 4316 case TCP_ZEROCOPY_RECEIVE: { 4317 struct scm_timestamping_internal tss; 4318 struct tcp_zerocopy_receive zc = {}; 4319 int err; 4320 4321 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4322 return -EFAULT; 4323 if (len < 0 || 4324 len < offsetofend(struct tcp_zerocopy_receive, length)) 4325 return -EINVAL; 4326 if (unlikely(len > sizeof(zc))) { 4327 err = check_zeroed_sockptr(optval, sizeof(zc), 4328 len - sizeof(zc)); 4329 if (err < 1) 4330 return err == 0 ? -EINVAL : err; 4331 len = sizeof(zc); 4332 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4333 return -EFAULT; 4334 } 4335 if (copy_from_sockptr(&zc, optval, len)) 4336 return -EFAULT; 4337 if (zc.reserved) 4338 return -EINVAL; 4339 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4340 return -EINVAL; 4341 sockopt_lock_sock(sk); 4342 err = tcp_zerocopy_receive(sk, &zc, &tss); 4343 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4344 &zc, &len, err); 4345 sockopt_release_sock(sk); 4346 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4347 goto zerocopy_rcv_cmsg; 4348 switch (len) { 4349 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4350 goto zerocopy_rcv_cmsg; 4351 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4352 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4353 case offsetofend(struct tcp_zerocopy_receive, flags): 4354 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4355 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4356 case offsetofend(struct tcp_zerocopy_receive, err): 4357 goto zerocopy_rcv_sk_err; 4358 case offsetofend(struct tcp_zerocopy_receive, inq): 4359 goto zerocopy_rcv_inq; 4360 case offsetofend(struct tcp_zerocopy_receive, length): 4361 default: 4362 goto zerocopy_rcv_out; 4363 } 4364 zerocopy_rcv_cmsg: 4365 if (zc.msg_flags & TCP_CMSG_TS) 4366 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4367 else 4368 zc.msg_flags = 0; 4369 zerocopy_rcv_sk_err: 4370 if (!err) 4371 zc.err = sock_error(sk); 4372 zerocopy_rcv_inq: 4373 zc.inq = tcp_inq_hint(sk); 4374 zerocopy_rcv_out: 4375 if (!err && copy_to_sockptr(optval, &zc, len)) 4376 err = -EFAULT; 4377 return err; 4378 } 4379 #endif 4380 default: 4381 return -ENOPROTOOPT; 4382 } 4383 4384 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4385 return -EFAULT; 4386 if (copy_to_sockptr(optval, &val, len)) 4387 return -EFAULT; 4388 return 0; 4389 } 4390 4391 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4392 { 4393 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4394 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4395 */ 4396 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4397 return true; 4398 4399 return false; 4400 } 4401 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4402 4403 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4404 int __user *optlen) 4405 { 4406 struct inet_connection_sock *icsk = inet_csk(sk); 4407 4408 if (level != SOL_TCP) 4409 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4410 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4411 optval, optlen); 4412 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4413 USER_SOCKPTR(optlen)); 4414 } 4415 EXPORT_SYMBOL(tcp_getsockopt); 4416 4417 #ifdef CONFIG_TCP_MD5SIG 4418 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4419 static DEFINE_MUTEX(tcp_md5sig_mutex); 4420 static bool tcp_md5sig_pool_populated = false; 4421 4422 static void __tcp_alloc_md5sig_pool(void) 4423 { 4424 struct crypto_ahash *hash; 4425 int cpu; 4426 4427 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4428 if (IS_ERR(hash)) 4429 return; 4430 4431 for_each_possible_cpu(cpu) { 4432 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4433 struct ahash_request *req; 4434 4435 if (!scratch) { 4436 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4437 sizeof(struct tcphdr), 4438 GFP_KERNEL, 4439 cpu_to_node(cpu)); 4440 if (!scratch) 4441 return; 4442 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4443 } 4444 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4445 continue; 4446 4447 req = ahash_request_alloc(hash, GFP_KERNEL); 4448 if (!req) 4449 return; 4450 4451 ahash_request_set_callback(req, 0, NULL, NULL); 4452 4453 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4454 } 4455 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4456 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4457 */ 4458 smp_wmb(); 4459 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4460 * and tcp_get_md5sig_pool(). 4461 */ 4462 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4463 } 4464 4465 bool tcp_alloc_md5sig_pool(void) 4466 { 4467 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4468 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4469 mutex_lock(&tcp_md5sig_mutex); 4470 4471 if (!tcp_md5sig_pool_populated) 4472 __tcp_alloc_md5sig_pool(); 4473 4474 mutex_unlock(&tcp_md5sig_mutex); 4475 } 4476 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4477 return READ_ONCE(tcp_md5sig_pool_populated); 4478 } 4479 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4480 4481 4482 /** 4483 * tcp_get_md5sig_pool - get md5sig_pool for this user 4484 * 4485 * We use percpu structure, so if we succeed, we exit with preemption 4486 * and BH disabled, to make sure another thread or softirq handling 4487 * wont try to get same context. 4488 */ 4489 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4490 { 4491 local_bh_disable(); 4492 4493 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4494 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4495 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4496 smp_rmb(); 4497 return this_cpu_ptr(&tcp_md5sig_pool); 4498 } 4499 local_bh_enable(); 4500 return NULL; 4501 } 4502 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4503 4504 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4505 const struct sk_buff *skb, unsigned int header_len) 4506 { 4507 struct scatterlist sg; 4508 const struct tcphdr *tp = tcp_hdr(skb); 4509 struct ahash_request *req = hp->md5_req; 4510 unsigned int i; 4511 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4512 skb_headlen(skb) - header_len : 0; 4513 const struct skb_shared_info *shi = skb_shinfo(skb); 4514 struct sk_buff *frag_iter; 4515 4516 sg_init_table(&sg, 1); 4517 4518 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4519 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4520 if (crypto_ahash_update(req)) 4521 return 1; 4522 4523 for (i = 0; i < shi->nr_frags; ++i) { 4524 const skb_frag_t *f = &shi->frags[i]; 4525 unsigned int offset = skb_frag_off(f); 4526 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4527 4528 sg_set_page(&sg, page, skb_frag_size(f), 4529 offset_in_page(offset)); 4530 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4531 if (crypto_ahash_update(req)) 4532 return 1; 4533 } 4534 4535 skb_walk_frags(skb, frag_iter) 4536 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4537 return 1; 4538 4539 return 0; 4540 } 4541 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4542 4543 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4544 { 4545 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4546 struct scatterlist sg; 4547 4548 sg_init_one(&sg, key->key, keylen); 4549 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4550 4551 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4552 return data_race(crypto_ahash_update(hp->md5_req)); 4553 } 4554 EXPORT_SYMBOL(tcp_md5_hash_key); 4555 4556 /* Called with rcu_read_lock() */ 4557 enum skb_drop_reason 4558 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4559 const void *saddr, const void *daddr, 4560 int family, int dif, int sdif) 4561 { 4562 /* 4563 * This gets called for each TCP segment that arrives 4564 * so we want to be efficient. 4565 * We have 3 drop cases: 4566 * o No MD5 hash and one expected. 4567 * o MD5 hash and we're not expecting one. 4568 * o MD5 hash and its wrong. 4569 */ 4570 const __u8 *hash_location = NULL; 4571 struct tcp_md5sig_key *hash_expected; 4572 const struct tcphdr *th = tcp_hdr(skb); 4573 const struct tcp_sock *tp = tcp_sk(sk); 4574 int genhash, l3index; 4575 u8 newhash[16]; 4576 4577 /* sdif set, means packet ingressed via a device 4578 * in an L3 domain and dif is set to the l3mdev 4579 */ 4580 l3index = sdif ? dif : 0; 4581 4582 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4583 hash_location = tcp_parse_md5sig_option(th); 4584 4585 /* We've parsed the options - do we have a hash? */ 4586 if (!hash_expected && !hash_location) 4587 return SKB_NOT_DROPPED_YET; 4588 4589 if (hash_expected && !hash_location) { 4590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4591 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4592 } 4593 4594 if (!hash_expected && hash_location) { 4595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4596 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4597 } 4598 4599 /* Check the signature. 4600 * To support dual stack listeners, we need to handle 4601 * IPv4-mapped case. 4602 */ 4603 if (family == AF_INET) 4604 genhash = tcp_v4_md5_hash_skb(newhash, 4605 hash_expected, 4606 NULL, skb); 4607 else 4608 genhash = tp->af_specific->calc_md5_hash(newhash, 4609 hash_expected, 4610 NULL, skb); 4611 4612 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4613 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4614 if (family == AF_INET) { 4615 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4616 saddr, ntohs(th->source), 4617 daddr, ntohs(th->dest), 4618 genhash ? " tcp_v4_calc_md5_hash failed" 4619 : "", l3index); 4620 } else { 4621 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4622 genhash ? "failed" : "mismatch", 4623 saddr, ntohs(th->source), 4624 daddr, ntohs(th->dest), l3index); 4625 } 4626 return SKB_DROP_REASON_TCP_MD5FAILURE; 4627 } 4628 return SKB_NOT_DROPPED_YET; 4629 } 4630 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4631 4632 #endif 4633 4634 void tcp_done(struct sock *sk) 4635 { 4636 struct request_sock *req; 4637 4638 /* We might be called with a new socket, after 4639 * inet_csk_prepare_forced_close() has been called 4640 * so we can not use lockdep_sock_is_held(sk) 4641 */ 4642 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4643 4644 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4645 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4646 4647 tcp_set_state(sk, TCP_CLOSE); 4648 tcp_clear_xmit_timers(sk); 4649 if (req) 4650 reqsk_fastopen_remove(sk, req, false); 4651 4652 sk->sk_shutdown = SHUTDOWN_MASK; 4653 4654 if (!sock_flag(sk, SOCK_DEAD)) 4655 sk->sk_state_change(sk); 4656 else 4657 inet_csk_destroy_sock(sk); 4658 } 4659 EXPORT_SYMBOL_GPL(tcp_done); 4660 4661 int tcp_abort(struct sock *sk, int err) 4662 { 4663 int state = inet_sk_state_load(sk); 4664 4665 if (state == TCP_NEW_SYN_RECV) { 4666 struct request_sock *req = inet_reqsk(sk); 4667 4668 local_bh_disable(); 4669 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4670 local_bh_enable(); 4671 return 0; 4672 } 4673 if (state == TCP_TIME_WAIT) { 4674 struct inet_timewait_sock *tw = inet_twsk(sk); 4675 4676 refcount_inc(&tw->tw_refcnt); 4677 local_bh_disable(); 4678 inet_twsk_deschedule_put(tw); 4679 local_bh_enable(); 4680 return 0; 4681 } 4682 4683 /* Don't race with userspace socket closes such as tcp_close. */ 4684 lock_sock(sk); 4685 4686 if (sk->sk_state == TCP_LISTEN) { 4687 tcp_set_state(sk, TCP_CLOSE); 4688 inet_csk_listen_stop(sk); 4689 } 4690 4691 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4692 local_bh_disable(); 4693 bh_lock_sock(sk); 4694 4695 if (!sock_flag(sk, SOCK_DEAD)) { 4696 WRITE_ONCE(sk->sk_err, err); 4697 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4698 smp_wmb(); 4699 sk_error_report(sk); 4700 if (tcp_need_reset(sk->sk_state)) 4701 tcp_send_active_reset(sk, GFP_ATOMIC); 4702 tcp_done(sk); 4703 } 4704 4705 bh_unlock_sock(sk); 4706 local_bh_enable(); 4707 tcp_write_queue_purge(sk); 4708 release_sock(sk); 4709 return 0; 4710 } 4711 EXPORT_SYMBOL_GPL(tcp_abort); 4712 4713 extern struct tcp_congestion_ops tcp_reno; 4714 4715 static __initdata unsigned long thash_entries; 4716 static int __init set_thash_entries(char *str) 4717 { 4718 ssize_t ret; 4719 4720 if (!str) 4721 return 0; 4722 4723 ret = kstrtoul(str, 0, &thash_entries); 4724 if (ret) 4725 return 0; 4726 4727 return 1; 4728 } 4729 __setup("thash_entries=", set_thash_entries); 4730 4731 static void __init tcp_init_mem(void) 4732 { 4733 unsigned long limit = nr_free_buffer_pages() / 16; 4734 4735 limit = max(limit, 128UL); 4736 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4737 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4738 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4739 } 4740 4741 void __init tcp_init(void) 4742 { 4743 int max_rshare, max_wshare, cnt; 4744 unsigned long limit; 4745 unsigned int i; 4746 4747 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4748 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4749 sizeof_field(struct sk_buff, cb)); 4750 4751 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4752 4753 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4754 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4755 4756 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4757 thash_entries, 21, /* one slot per 2 MB*/ 4758 0, 64 * 1024); 4759 tcp_hashinfo.bind_bucket_cachep = 4760 kmem_cache_create("tcp_bind_bucket", 4761 sizeof(struct inet_bind_bucket), 0, 4762 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4763 SLAB_ACCOUNT, 4764 NULL); 4765 tcp_hashinfo.bind2_bucket_cachep = 4766 kmem_cache_create("tcp_bind2_bucket", 4767 sizeof(struct inet_bind2_bucket), 0, 4768 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4769 SLAB_ACCOUNT, 4770 NULL); 4771 4772 /* Size and allocate the main established and bind bucket 4773 * hash tables. 4774 * 4775 * The methodology is similar to that of the buffer cache. 4776 */ 4777 tcp_hashinfo.ehash = 4778 alloc_large_system_hash("TCP established", 4779 sizeof(struct inet_ehash_bucket), 4780 thash_entries, 4781 17, /* one slot per 128 KB of memory */ 4782 0, 4783 NULL, 4784 &tcp_hashinfo.ehash_mask, 4785 0, 4786 thash_entries ? 0 : 512 * 1024); 4787 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4788 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4789 4790 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4791 panic("TCP: failed to alloc ehash_locks"); 4792 tcp_hashinfo.bhash = 4793 alloc_large_system_hash("TCP bind", 4794 2 * sizeof(struct inet_bind_hashbucket), 4795 tcp_hashinfo.ehash_mask + 1, 4796 17, /* one slot per 128 KB of memory */ 4797 0, 4798 &tcp_hashinfo.bhash_size, 4799 NULL, 4800 0, 4801 64 * 1024); 4802 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4803 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4804 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4805 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4806 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4807 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4808 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4809 } 4810 4811 tcp_hashinfo.pernet = false; 4812 4813 cnt = tcp_hashinfo.ehash_mask + 1; 4814 sysctl_tcp_max_orphans = cnt / 2; 4815 4816 tcp_init_mem(); 4817 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4818 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4819 max_wshare = min(4UL*1024*1024, limit); 4820 max_rshare = min(6UL*1024*1024, limit); 4821 4822 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4823 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4824 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4825 4826 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4827 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4828 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4829 4830 pr_info("Hash tables configured (established %u bind %u)\n", 4831 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4832 4833 tcp_v4_init(); 4834 tcp_metrics_init(); 4835 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4836 tcp_tasklet_init(); 4837 mptcp_init(); 4838 } 4839