1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #include <linux/kernel.h> 249 #include <linux/module.h> 250 #include <linux/types.h> 251 #include <linux/fcntl.h> 252 #include <linux/poll.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/bootmem.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/crypto.h> 267 #include <linux/time.h> 268 #include <linux/slab.h> 269 270 #include <net/icmp.h> 271 #include <net/tcp.h> 272 #include <net/xfrm.h> 273 #include <net/ip.h> 274 #include <net/netdma.h> 275 #include <net/sock.h> 276 277 #include <asm/uaccess.h> 278 #include <asm/ioctls.h> 279 280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 int sysctl_tcp_wmem[3] __read_mostly; 287 int sysctl_tcp_rmem[3] __read_mostly; 288 289 EXPORT_SYMBOL(sysctl_tcp_mem); 290 EXPORT_SYMBOL(sysctl_tcp_rmem); 291 EXPORT_SYMBOL(sysctl_tcp_wmem); 292 293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 294 EXPORT_SYMBOL(tcp_memory_allocated); 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 int tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL(tcp_memory_pressure); 319 320 void tcp_enter_memory_pressure(struct sock *sk) 321 { 322 if (!tcp_memory_pressure) { 323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 324 tcp_memory_pressure = 1; 325 } 326 } 327 EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329 /* Convert seconds to retransmits based on initial and max timeout */ 330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 331 { 332 u8 res = 0; 333 334 if (seconds > 0) { 335 int period = timeout; 336 337 res = 1; 338 while (seconds > period && res < 255) { 339 res++; 340 timeout <<= 1; 341 if (timeout > rto_max) 342 timeout = rto_max; 343 period += timeout; 344 } 345 } 346 return res; 347 } 348 349 /* Convert retransmits to seconds based on initial and max timeout */ 350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 351 { 352 int period = 0; 353 354 if (retrans > 0) { 355 period = timeout; 356 while (--retrans) { 357 timeout <<= 1; 358 if (timeout > rto_max) 359 timeout = rto_max; 360 period += timeout; 361 } 362 } 363 return period; 364 } 365 366 /* 367 * Wait for a TCP event. 368 * 369 * Note that we don't need to lock the socket, as the upper poll layers 370 * take care of normal races (between the test and the event) and we don't 371 * go look at any of the socket buffers directly. 372 */ 373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 374 { 375 unsigned int mask; 376 struct sock *sk = sock->sk; 377 struct tcp_sock *tp = tcp_sk(sk); 378 379 sock_poll_wait(file, sk_sleep(sk), wait); 380 if (sk->sk_state == TCP_LISTEN) 381 return inet_csk_listen_poll(sk); 382 383 /* Socket is not locked. We are protected from async events 384 * by poll logic and correct handling of state changes 385 * made by other threads is impossible in any case. 386 */ 387 388 mask = 0; 389 390 /* 391 * POLLHUP is certainly not done right. But poll() doesn't 392 * have a notion of HUP in just one direction, and for a 393 * socket the read side is more interesting. 394 * 395 * Some poll() documentation says that POLLHUP is incompatible 396 * with the POLLOUT/POLLWR flags, so somebody should check this 397 * all. But careful, it tends to be safer to return too many 398 * bits than too few, and you can easily break real applications 399 * if you don't tell them that something has hung up! 400 * 401 * Check-me. 402 * 403 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 404 * our fs/select.c). It means that after we received EOF, 405 * poll always returns immediately, making impossible poll() on write() 406 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 407 * if and only if shutdown has been made in both directions. 408 * Actually, it is interesting to look how Solaris and DUX 409 * solve this dilemma. I would prefer, if POLLHUP were maskable, 410 * then we could set it on SND_SHUTDOWN. BTW examples given 411 * in Stevens' books assume exactly this behaviour, it explains 412 * why POLLHUP is incompatible with POLLOUT. --ANK 413 * 414 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 415 * blocking on fresh not-connected or disconnected socket. --ANK 416 */ 417 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 418 mask |= POLLHUP; 419 if (sk->sk_shutdown & RCV_SHUTDOWN) 420 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 421 422 /* Connected? */ 423 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 424 int target = sock_rcvlowat(sk, 0, INT_MAX); 425 426 if (tp->urg_seq == tp->copied_seq && 427 !sock_flag(sk, SOCK_URGINLINE) && 428 tp->urg_data) 429 target++; 430 431 /* Potential race condition. If read of tp below will 432 * escape above sk->sk_state, we can be illegally awaken 433 * in SYN_* states. */ 434 if (tp->rcv_nxt - tp->copied_seq >= target) 435 mask |= POLLIN | POLLRDNORM; 436 437 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 438 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 439 mask |= POLLOUT | POLLWRNORM; 440 } else { /* send SIGIO later */ 441 set_bit(SOCK_ASYNC_NOSPACE, 442 &sk->sk_socket->flags); 443 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 444 445 /* Race breaker. If space is freed after 446 * wspace test but before the flags are set, 447 * IO signal will be lost. 448 */ 449 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 450 mask |= POLLOUT | POLLWRNORM; 451 } 452 } else 453 mask |= POLLOUT | POLLWRNORM; 454 455 if (tp->urg_data & TCP_URG_VALID) 456 mask |= POLLPRI; 457 } 458 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 459 smp_rmb(); 460 if (sk->sk_err) 461 mask |= POLLERR; 462 463 return mask; 464 } 465 EXPORT_SYMBOL(tcp_poll); 466 467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 468 { 469 struct tcp_sock *tp = tcp_sk(sk); 470 int answ; 471 472 switch (cmd) { 473 case SIOCINQ: 474 if (sk->sk_state == TCP_LISTEN) 475 return -EINVAL; 476 477 lock_sock(sk); 478 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 479 answ = 0; 480 else if (sock_flag(sk, SOCK_URGINLINE) || 481 !tp->urg_data || 482 before(tp->urg_seq, tp->copied_seq) || 483 !before(tp->urg_seq, tp->rcv_nxt)) { 484 struct sk_buff *skb; 485 486 answ = tp->rcv_nxt - tp->copied_seq; 487 488 /* Subtract 1, if FIN is in queue. */ 489 skb = skb_peek_tail(&sk->sk_receive_queue); 490 if (answ && skb) 491 answ -= tcp_hdr(skb)->fin; 492 } else 493 answ = tp->urg_seq - tp->copied_seq; 494 release_sock(sk); 495 break; 496 case SIOCATMARK: 497 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 498 break; 499 case SIOCOUTQ: 500 if (sk->sk_state == TCP_LISTEN) 501 return -EINVAL; 502 503 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 504 answ = 0; 505 else 506 answ = tp->write_seq - tp->snd_una; 507 break; 508 case SIOCOUTQNSD: 509 if (sk->sk_state == TCP_LISTEN) 510 return -EINVAL; 511 512 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 513 answ = 0; 514 else 515 answ = tp->write_seq - tp->snd_nxt; 516 break; 517 default: 518 return -ENOIOCTLCMD; 519 } 520 521 return put_user(answ, (int __user *)arg); 522 } 523 EXPORT_SYMBOL(tcp_ioctl); 524 525 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 526 { 527 TCP_SKB_CB(skb)->flags |= TCPHDR_PSH; 528 tp->pushed_seq = tp->write_seq; 529 } 530 531 static inline int forced_push(struct tcp_sock *tp) 532 { 533 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 534 } 535 536 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 540 541 skb->csum = 0; 542 tcb->seq = tcb->end_seq = tp->write_seq; 543 tcb->flags = TCPHDR_ACK; 544 tcb->sacked = 0; 545 skb_header_release(skb); 546 tcp_add_write_queue_tail(sk, skb); 547 sk->sk_wmem_queued += skb->truesize; 548 sk_mem_charge(sk, skb->truesize); 549 if (tp->nonagle & TCP_NAGLE_PUSH) 550 tp->nonagle &= ~TCP_NAGLE_PUSH; 551 } 552 553 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 554 { 555 if (flags & MSG_OOB) 556 tp->snd_up = tp->write_seq; 557 } 558 559 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 560 int nonagle) 561 { 562 if (tcp_send_head(sk)) { 563 struct tcp_sock *tp = tcp_sk(sk); 564 565 if (!(flags & MSG_MORE) || forced_push(tp)) 566 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 567 568 tcp_mark_urg(tp, flags); 569 __tcp_push_pending_frames(sk, mss_now, 570 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 571 } 572 } 573 574 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 575 unsigned int offset, size_t len) 576 { 577 struct tcp_splice_state *tss = rd_desc->arg.data; 578 int ret; 579 580 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 581 tss->flags); 582 if (ret > 0) 583 rd_desc->count -= ret; 584 return ret; 585 } 586 587 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 588 { 589 /* Store TCP splice context information in read_descriptor_t. */ 590 read_descriptor_t rd_desc = { 591 .arg.data = tss, 592 .count = tss->len, 593 }; 594 595 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 596 } 597 598 /** 599 * tcp_splice_read - splice data from TCP socket to a pipe 600 * @sock: socket to splice from 601 * @ppos: position (not valid) 602 * @pipe: pipe to splice to 603 * @len: number of bytes to splice 604 * @flags: splice modifier flags 605 * 606 * Description: 607 * Will read pages from given socket and fill them into a pipe. 608 * 609 **/ 610 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 611 struct pipe_inode_info *pipe, size_t len, 612 unsigned int flags) 613 { 614 struct sock *sk = sock->sk; 615 struct tcp_splice_state tss = { 616 .pipe = pipe, 617 .len = len, 618 .flags = flags, 619 }; 620 long timeo; 621 ssize_t spliced; 622 int ret; 623 624 sock_rps_record_flow(sk); 625 /* 626 * We can't seek on a socket input 627 */ 628 if (unlikely(*ppos)) 629 return -ESPIPE; 630 631 ret = spliced = 0; 632 633 lock_sock(sk); 634 635 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 636 while (tss.len) { 637 ret = __tcp_splice_read(sk, &tss); 638 if (ret < 0) 639 break; 640 else if (!ret) { 641 if (spliced) 642 break; 643 if (sock_flag(sk, SOCK_DONE)) 644 break; 645 if (sk->sk_err) { 646 ret = sock_error(sk); 647 break; 648 } 649 if (sk->sk_shutdown & RCV_SHUTDOWN) 650 break; 651 if (sk->sk_state == TCP_CLOSE) { 652 /* 653 * This occurs when user tries to read 654 * from never connected socket. 655 */ 656 if (!sock_flag(sk, SOCK_DONE)) 657 ret = -ENOTCONN; 658 break; 659 } 660 if (!timeo) { 661 ret = -EAGAIN; 662 break; 663 } 664 sk_wait_data(sk, &timeo); 665 if (signal_pending(current)) { 666 ret = sock_intr_errno(timeo); 667 break; 668 } 669 continue; 670 } 671 tss.len -= ret; 672 spliced += ret; 673 674 if (!timeo) 675 break; 676 release_sock(sk); 677 lock_sock(sk); 678 679 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 680 (sk->sk_shutdown & RCV_SHUTDOWN) || 681 signal_pending(current)) 682 break; 683 } 684 685 release_sock(sk); 686 687 if (spliced) 688 return spliced; 689 690 return ret; 691 } 692 EXPORT_SYMBOL(tcp_splice_read); 693 694 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 695 { 696 struct sk_buff *skb; 697 698 /* The TCP header must be at least 32-bit aligned. */ 699 size = ALIGN(size, 4); 700 701 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 702 if (skb) { 703 if (sk_wmem_schedule(sk, skb->truesize)) { 704 /* 705 * Make sure that we have exactly size bytes 706 * available to the caller, no more, no less. 707 */ 708 skb_reserve(skb, skb_tailroom(skb) - size); 709 return skb; 710 } 711 __kfree_skb(skb); 712 } else { 713 sk->sk_prot->enter_memory_pressure(sk); 714 sk_stream_moderate_sndbuf(sk); 715 } 716 return NULL; 717 } 718 719 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 720 int large_allowed) 721 { 722 struct tcp_sock *tp = tcp_sk(sk); 723 u32 xmit_size_goal, old_size_goal; 724 725 xmit_size_goal = mss_now; 726 727 if (large_allowed && sk_can_gso(sk)) { 728 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 729 inet_csk(sk)->icsk_af_ops->net_header_len - 730 inet_csk(sk)->icsk_ext_hdr_len - 731 tp->tcp_header_len); 732 733 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 734 735 /* We try hard to avoid divides here */ 736 old_size_goal = tp->xmit_size_goal_segs * mss_now; 737 738 if (likely(old_size_goal <= xmit_size_goal && 739 old_size_goal + mss_now > xmit_size_goal)) { 740 xmit_size_goal = old_size_goal; 741 } else { 742 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 743 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 744 } 745 } 746 747 return max(xmit_size_goal, mss_now); 748 } 749 750 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 751 { 752 int mss_now; 753 754 mss_now = tcp_current_mss(sk); 755 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 756 757 return mss_now; 758 } 759 760 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 761 size_t psize, int flags) 762 { 763 struct tcp_sock *tp = tcp_sk(sk); 764 int mss_now, size_goal; 765 int err; 766 ssize_t copied; 767 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 768 769 /* Wait for a connection to finish. */ 770 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 771 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 772 goto out_err; 773 774 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 775 776 mss_now = tcp_send_mss(sk, &size_goal, flags); 777 copied = 0; 778 779 err = -EPIPE; 780 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 781 goto out_err; 782 783 while (psize > 0) { 784 struct sk_buff *skb = tcp_write_queue_tail(sk); 785 struct page *page = pages[poffset / PAGE_SIZE]; 786 int copy, i, can_coalesce; 787 int offset = poffset % PAGE_SIZE; 788 int size = min_t(size_t, psize, PAGE_SIZE - offset); 789 790 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 791 new_segment: 792 if (!sk_stream_memory_free(sk)) 793 goto wait_for_sndbuf; 794 795 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 796 if (!skb) 797 goto wait_for_memory; 798 799 skb_entail(sk, skb); 800 copy = size_goal; 801 } 802 803 if (copy > size) 804 copy = size; 805 806 i = skb_shinfo(skb)->nr_frags; 807 can_coalesce = skb_can_coalesce(skb, i, page, offset); 808 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 809 tcp_mark_push(tp, skb); 810 goto new_segment; 811 } 812 if (!sk_wmem_schedule(sk, copy)) 813 goto wait_for_memory; 814 815 if (can_coalesce) { 816 skb_shinfo(skb)->frags[i - 1].size += copy; 817 } else { 818 get_page(page); 819 skb_fill_page_desc(skb, i, page, offset, copy); 820 } 821 822 skb->len += copy; 823 skb->data_len += copy; 824 skb->truesize += copy; 825 sk->sk_wmem_queued += copy; 826 sk_mem_charge(sk, copy); 827 skb->ip_summed = CHECKSUM_PARTIAL; 828 tp->write_seq += copy; 829 TCP_SKB_CB(skb)->end_seq += copy; 830 skb_shinfo(skb)->gso_segs = 0; 831 832 if (!copied) 833 TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH; 834 835 copied += copy; 836 poffset += copy; 837 if (!(psize -= copy)) 838 goto out; 839 840 if (skb->len < size_goal || (flags & MSG_OOB)) 841 continue; 842 843 if (forced_push(tp)) { 844 tcp_mark_push(tp, skb); 845 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 846 } else if (skb == tcp_send_head(sk)) 847 tcp_push_one(sk, mss_now); 848 continue; 849 850 wait_for_sndbuf: 851 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 852 wait_for_memory: 853 if (copied) 854 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 855 856 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 857 goto do_error; 858 859 mss_now = tcp_send_mss(sk, &size_goal, flags); 860 } 861 862 out: 863 if (copied) 864 tcp_push(sk, flags, mss_now, tp->nonagle); 865 return copied; 866 867 do_error: 868 if (copied) 869 goto out; 870 out_err: 871 return sk_stream_error(sk, flags, err); 872 } 873 874 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 875 size_t size, int flags) 876 { 877 ssize_t res; 878 879 if (!(sk->sk_route_caps & NETIF_F_SG) || 880 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 881 return sock_no_sendpage(sk->sk_socket, page, offset, size, 882 flags); 883 884 lock_sock(sk); 885 res = do_tcp_sendpages(sk, &page, offset, size, flags); 886 release_sock(sk); 887 return res; 888 } 889 EXPORT_SYMBOL(tcp_sendpage); 890 891 #define TCP_PAGE(sk) (sk->sk_sndmsg_page) 892 #define TCP_OFF(sk) (sk->sk_sndmsg_off) 893 894 static inline int select_size(struct sock *sk, int sg) 895 { 896 struct tcp_sock *tp = tcp_sk(sk); 897 int tmp = tp->mss_cache; 898 899 if (sg) { 900 if (sk_can_gso(sk)) 901 tmp = 0; 902 else { 903 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 904 905 if (tmp >= pgbreak && 906 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 907 tmp = pgbreak; 908 } 909 } 910 911 return tmp; 912 } 913 914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 915 size_t size) 916 { 917 struct iovec *iov; 918 struct tcp_sock *tp = tcp_sk(sk); 919 struct sk_buff *skb; 920 int iovlen, flags; 921 int mss_now, size_goal; 922 int sg, err, copied; 923 long timeo; 924 925 lock_sock(sk); 926 927 flags = msg->msg_flags; 928 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 929 930 /* Wait for a connection to finish. */ 931 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 932 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 933 goto out_err; 934 935 /* This should be in poll */ 936 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 937 938 mss_now = tcp_send_mss(sk, &size_goal, flags); 939 940 /* Ok commence sending. */ 941 iovlen = msg->msg_iovlen; 942 iov = msg->msg_iov; 943 copied = 0; 944 945 err = -EPIPE; 946 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 947 goto out_err; 948 949 sg = sk->sk_route_caps & NETIF_F_SG; 950 951 while (--iovlen >= 0) { 952 size_t seglen = iov->iov_len; 953 unsigned char __user *from = iov->iov_base; 954 955 iov++; 956 957 while (seglen > 0) { 958 int copy = 0; 959 int max = size_goal; 960 961 skb = tcp_write_queue_tail(sk); 962 if (tcp_send_head(sk)) { 963 if (skb->ip_summed == CHECKSUM_NONE) 964 max = mss_now; 965 copy = max - skb->len; 966 } 967 968 if (copy <= 0) { 969 new_segment: 970 /* Allocate new segment. If the interface is SG, 971 * allocate skb fitting to single page. 972 */ 973 if (!sk_stream_memory_free(sk)) 974 goto wait_for_sndbuf; 975 976 skb = sk_stream_alloc_skb(sk, 977 select_size(sk, sg), 978 sk->sk_allocation); 979 if (!skb) 980 goto wait_for_memory; 981 982 /* 983 * Check whether we can use HW checksum. 984 */ 985 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 986 skb->ip_summed = CHECKSUM_PARTIAL; 987 988 skb_entail(sk, skb); 989 copy = size_goal; 990 max = size_goal; 991 } 992 993 /* Try to append data to the end of skb. */ 994 if (copy > seglen) 995 copy = seglen; 996 997 /* Where to copy to? */ 998 if (skb_tailroom(skb) > 0) { 999 /* We have some space in skb head. Superb! */ 1000 if (copy > skb_tailroom(skb)) 1001 copy = skb_tailroom(skb); 1002 err = skb_add_data_nocache(sk, skb, from, copy); 1003 if (err) 1004 goto do_fault; 1005 } else { 1006 int merge = 0; 1007 int i = skb_shinfo(skb)->nr_frags; 1008 struct page *page = TCP_PAGE(sk); 1009 int off = TCP_OFF(sk); 1010 1011 if (skb_can_coalesce(skb, i, page, off) && 1012 off != PAGE_SIZE) { 1013 /* We can extend the last page 1014 * fragment. */ 1015 merge = 1; 1016 } else if (i == MAX_SKB_FRAGS || !sg) { 1017 /* Need to add new fragment and cannot 1018 * do this because interface is non-SG, 1019 * or because all the page slots are 1020 * busy. */ 1021 tcp_mark_push(tp, skb); 1022 goto new_segment; 1023 } else if (page) { 1024 if (off == PAGE_SIZE) { 1025 put_page(page); 1026 TCP_PAGE(sk) = page = NULL; 1027 off = 0; 1028 } 1029 } else 1030 off = 0; 1031 1032 if (copy > PAGE_SIZE - off) 1033 copy = PAGE_SIZE - off; 1034 1035 if (!sk_wmem_schedule(sk, copy)) 1036 goto wait_for_memory; 1037 1038 if (!page) { 1039 /* Allocate new cache page. */ 1040 if (!(page = sk_stream_alloc_page(sk))) 1041 goto wait_for_memory; 1042 } 1043 1044 /* Time to copy data. We are close to 1045 * the end! */ 1046 err = skb_copy_to_page_nocache(sk, from, skb, 1047 page, off, copy); 1048 if (err) { 1049 /* If this page was new, give it to the 1050 * socket so it does not get leaked. 1051 */ 1052 if (!TCP_PAGE(sk)) { 1053 TCP_PAGE(sk) = page; 1054 TCP_OFF(sk) = 0; 1055 } 1056 goto do_error; 1057 } 1058 1059 /* Update the skb. */ 1060 if (merge) { 1061 skb_shinfo(skb)->frags[i - 1].size += 1062 copy; 1063 } else { 1064 skb_fill_page_desc(skb, i, page, off, copy); 1065 if (TCP_PAGE(sk)) { 1066 get_page(page); 1067 } else if (off + copy < PAGE_SIZE) { 1068 get_page(page); 1069 TCP_PAGE(sk) = page; 1070 } 1071 } 1072 1073 TCP_OFF(sk) = off + copy; 1074 } 1075 1076 if (!copied) 1077 TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH; 1078 1079 tp->write_seq += copy; 1080 TCP_SKB_CB(skb)->end_seq += copy; 1081 skb_shinfo(skb)->gso_segs = 0; 1082 1083 from += copy; 1084 copied += copy; 1085 if ((seglen -= copy) == 0 && iovlen == 0) 1086 goto out; 1087 1088 if (skb->len < max || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_sndbuf: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 wait_for_memory: 1101 if (copied) 1102 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1103 1104 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 } 1110 1111 out: 1112 if (copied) 1113 tcp_push(sk, flags, mss_now, tp->nonagle); 1114 release_sock(sk); 1115 return copied; 1116 1117 do_fault: 1118 if (!skb->len) { 1119 tcp_unlink_write_queue(skb, sk); 1120 /* It is the one place in all of TCP, except connection 1121 * reset, where we can be unlinking the send_head. 1122 */ 1123 tcp_check_send_head(sk, skb); 1124 sk_wmem_free_skb(sk, skb); 1125 } 1126 1127 do_error: 1128 if (copied) 1129 goto out; 1130 out_err: 1131 err = sk_stream_error(sk, flags, err); 1132 release_sock(sk); 1133 return err; 1134 } 1135 EXPORT_SYMBOL(tcp_sendmsg); 1136 1137 /* 1138 * Handle reading urgent data. BSD has very simple semantics for 1139 * this, no blocking and very strange errors 8) 1140 */ 1141 1142 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1143 { 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 1146 /* No URG data to read. */ 1147 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1148 tp->urg_data == TCP_URG_READ) 1149 return -EINVAL; /* Yes this is right ! */ 1150 1151 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1152 return -ENOTCONN; 1153 1154 if (tp->urg_data & TCP_URG_VALID) { 1155 int err = 0; 1156 char c = tp->urg_data; 1157 1158 if (!(flags & MSG_PEEK)) 1159 tp->urg_data = TCP_URG_READ; 1160 1161 /* Read urgent data. */ 1162 msg->msg_flags |= MSG_OOB; 1163 1164 if (len > 0) { 1165 if (!(flags & MSG_TRUNC)) 1166 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1167 len = 1; 1168 } else 1169 msg->msg_flags |= MSG_TRUNC; 1170 1171 return err ? -EFAULT : len; 1172 } 1173 1174 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1175 return 0; 1176 1177 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1178 * the available implementations agree in this case: 1179 * this call should never block, independent of the 1180 * blocking state of the socket. 1181 * Mike <pall@rz.uni-karlsruhe.de> 1182 */ 1183 return -EAGAIN; 1184 } 1185 1186 /* Clean up the receive buffer for full frames taken by the user, 1187 * then send an ACK if necessary. COPIED is the number of bytes 1188 * tcp_recvmsg has given to the user so far, it speeds up the 1189 * calculation of whether or not we must ACK for the sake of 1190 * a window update. 1191 */ 1192 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1193 { 1194 struct tcp_sock *tp = tcp_sk(sk); 1195 int time_to_ack = 0; 1196 1197 #if TCP_DEBUG 1198 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1199 1200 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1201 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1202 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1203 #endif 1204 1205 if (inet_csk_ack_scheduled(sk)) { 1206 const struct inet_connection_sock *icsk = inet_csk(sk); 1207 /* Delayed ACKs frequently hit locked sockets during bulk 1208 * receive. */ 1209 if (icsk->icsk_ack.blocked || 1210 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1211 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1212 /* 1213 * If this read emptied read buffer, we send ACK, if 1214 * connection is not bidirectional, user drained 1215 * receive buffer and there was a small segment 1216 * in queue. 1217 */ 1218 (copied > 0 && 1219 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1220 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1221 !icsk->icsk_ack.pingpong)) && 1222 !atomic_read(&sk->sk_rmem_alloc))) 1223 time_to_ack = 1; 1224 } 1225 1226 /* We send an ACK if we can now advertise a non-zero window 1227 * which has been raised "significantly". 1228 * 1229 * Even if window raised up to infinity, do not send window open ACK 1230 * in states, where we will not receive more. It is useless. 1231 */ 1232 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1233 __u32 rcv_window_now = tcp_receive_window(tp); 1234 1235 /* Optimize, __tcp_select_window() is not cheap. */ 1236 if (2*rcv_window_now <= tp->window_clamp) { 1237 __u32 new_window = __tcp_select_window(sk); 1238 1239 /* Send ACK now, if this read freed lots of space 1240 * in our buffer. Certainly, new_window is new window. 1241 * We can advertise it now, if it is not less than current one. 1242 * "Lots" means "at least twice" here. 1243 */ 1244 if (new_window && new_window >= 2 * rcv_window_now) 1245 time_to_ack = 1; 1246 } 1247 } 1248 if (time_to_ack) 1249 tcp_send_ack(sk); 1250 } 1251 1252 static void tcp_prequeue_process(struct sock *sk) 1253 { 1254 struct sk_buff *skb; 1255 struct tcp_sock *tp = tcp_sk(sk); 1256 1257 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1258 1259 /* RX process wants to run with disabled BHs, though it is not 1260 * necessary */ 1261 local_bh_disable(); 1262 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1263 sk_backlog_rcv(sk, skb); 1264 local_bh_enable(); 1265 1266 /* Clear memory counter. */ 1267 tp->ucopy.memory = 0; 1268 } 1269 1270 #ifdef CONFIG_NET_DMA 1271 static void tcp_service_net_dma(struct sock *sk, bool wait) 1272 { 1273 dma_cookie_t done, used; 1274 dma_cookie_t last_issued; 1275 struct tcp_sock *tp = tcp_sk(sk); 1276 1277 if (!tp->ucopy.dma_chan) 1278 return; 1279 1280 last_issued = tp->ucopy.dma_cookie; 1281 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1282 1283 do { 1284 if (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1285 last_issued, &done, 1286 &used) == DMA_SUCCESS) { 1287 /* Safe to free early-copied skbs now */ 1288 __skb_queue_purge(&sk->sk_async_wait_queue); 1289 break; 1290 } else { 1291 struct sk_buff *skb; 1292 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1293 (dma_async_is_complete(skb->dma_cookie, done, 1294 used) == DMA_SUCCESS)) { 1295 __skb_dequeue(&sk->sk_async_wait_queue); 1296 kfree_skb(skb); 1297 } 1298 } 1299 } while (wait); 1300 } 1301 #endif 1302 1303 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1304 { 1305 struct sk_buff *skb; 1306 u32 offset; 1307 1308 skb_queue_walk(&sk->sk_receive_queue, skb) { 1309 offset = seq - TCP_SKB_CB(skb)->seq; 1310 if (tcp_hdr(skb)->syn) 1311 offset--; 1312 if (offset < skb->len || tcp_hdr(skb)->fin) { 1313 *off = offset; 1314 return skb; 1315 } 1316 } 1317 return NULL; 1318 } 1319 1320 /* 1321 * This routine provides an alternative to tcp_recvmsg() for routines 1322 * that would like to handle copying from skbuffs directly in 'sendfile' 1323 * fashion. 1324 * Note: 1325 * - It is assumed that the socket was locked by the caller. 1326 * - The routine does not block. 1327 * - At present, there is no support for reading OOB data 1328 * or for 'peeking' the socket using this routine 1329 * (although both would be easy to implement). 1330 */ 1331 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1332 sk_read_actor_t recv_actor) 1333 { 1334 struct sk_buff *skb; 1335 struct tcp_sock *tp = tcp_sk(sk); 1336 u32 seq = tp->copied_seq; 1337 u32 offset; 1338 int copied = 0; 1339 1340 if (sk->sk_state == TCP_LISTEN) 1341 return -ENOTCONN; 1342 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1343 if (offset < skb->len) { 1344 int used; 1345 size_t len; 1346 1347 len = skb->len - offset; 1348 /* Stop reading if we hit a patch of urgent data */ 1349 if (tp->urg_data) { 1350 u32 urg_offset = tp->urg_seq - seq; 1351 if (urg_offset < len) 1352 len = urg_offset; 1353 if (!len) 1354 break; 1355 } 1356 used = recv_actor(desc, skb, offset, len); 1357 if (used < 0) { 1358 if (!copied) 1359 copied = used; 1360 break; 1361 } else if (used <= len) { 1362 seq += used; 1363 copied += used; 1364 offset += used; 1365 } 1366 /* 1367 * If recv_actor drops the lock (e.g. TCP splice 1368 * receive) the skb pointer might be invalid when 1369 * getting here: tcp_collapse might have deleted it 1370 * while aggregating skbs from the socket queue. 1371 */ 1372 skb = tcp_recv_skb(sk, seq-1, &offset); 1373 if (!skb || (offset+1 != skb->len)) 1374 break; 1375 } 1376 if (tcp_hdr(skb)->fin) { 1377 sk_eat_skb(sk, skb, 0); 1378 ++seq; 1379 break; 1380 } 1381 sk_eat_skb(sk, skb, 0); 1382 if (!desc->count) 1383 break; 1384 tp->copied_seq = seq; 1385 } 1386 tp->copied_seq = seq; 1387 1388 tcp_rcv_space_adjust(sk); 1389 1390 /* Clean up data we have read: This will do ACK frames. */ 1391 if (copied > 0) 1392 tcp_cleanup_rbuf(sk, copied); 1393 return copied; 1394 } 1395 EXPORT_SYMBOL(tcp_read_sock); 1396 1397 /* 1398 * This routine copies from a sock struct into the user buffer. 1399 * 1400 * Technical note: in 2.3 we work on _locked_ socket, so that 1401 * tricks with *seq access order and skb->users are not required. 1402 * Probably, code can be easily improved even more. 1403 */ 1404 1405 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1406 size_t len, int nonblock, int flags, int *addr_len) 1407 { 1408 struct tcp_sock *tp = tcp_sk(sk); 1409 int copied = 0; 1410 u32 peek_seq; 1411 u32 *seq; 1412 unsigned long used; 1413 int err; 1414 int target; /* Read at least this many bytes */ 1415 long timeo; 1416 struct task_struct *user_recv = NULL; 1417 int copied_early = 0; 1418 struct sk_buff *skb; 1419 u32 urg_hole = 0; 1420 1421 lock_sock(sk); 1422 1423 err = -ENOTCONN; 1424 if (sk->sk_state == TCP_LISTEN) 1425 goto out; 1426 1427 timeo = sock_rcvtimeo(sk, nonblock); 1428 1429 /* Urgent data needs to be handled specially. */ 1430 if (flags & MSG_OOB) 1431 goto recv_urg; 1432 1433 seq = &tp->copied_seq; 1434 if (flags & MSG_PEEK) { 1435 peek_seq = tp->copied_seq; 1436 seq = &peek_seq; 1437 } 1438 1439 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1440 1441 #ifdef CONFIG_NET_DMA 1442 tp->ucopy.dma_chan = NULL; 1443 preempt_disable(); 1444 skb = skb_peek_tail(&sk->sk_receive_queue); 1445 { 1446 int available = 0; 1447 1448 if (skb) 1449 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1450 if ((available < target) && 1451 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1452 !sysctl_tcp_low_latency && 1453 dma_find_channel(DMA_MEMCPY)) { 1454 preempt_enable_no_resched(); 1455 tp->ucopy.pinned_list = 1456 dma_pin_iovec_pages(msg->msg_iov, len); 1457 } else { 1458 preempt_enable_no_resched(); 1459 } 1460 } 1461 #endif 1462 1463 do { 1464 u32 offset; 1465 1466 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1467 if (tp->urg_data && tp->urg_seq == *seq) { 1468 if (copied) 1469 break; 1470 if (signal_pending(current)) { 1471 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1472 break; 1473 } 1474 } 1475 1476 /* Next get a buffer. */ 1477 1478 skb_queue_walk(&sk->sk_receive_queue, skb) { 1479 /* Now that we have two receive queues this 1480 * shouldn't happen. 1481 */ 1482 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1483 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1484 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1485 flags)) 1486 break; 1487 1488 offset = *seq - TCP_SKB_CB(skb)->seq; 1489 if (tcp_hdr(skb)->syn) 1490 offset--; 1491 if (offset < skb->len) 1492 goto found_ok_skb; 1493 if (tcp_hdr(skb)->fin) 1494 goto found_fin_ok; 1495 WARN(!(flags & MSG_PEEK), 1496 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1497 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1498 } 1499 1500 /* Well, if we have backlog, try to process it now yet. */ 1501 1502 if (copied >= target && !sk->sk_backlog.tail) 1503 break; 1504 1505 if (copied) { 1506 if (sk->sk_err || 1507 sk->sk_state == TCP_CLOSE || 1508 (sk->sk_shutdown & RCV_SHUTDOWN) || 1509 !timeo || 1510 signal_pending(current)) 1511 break; 1512 } else { 1513 if (sock_flag(sk, SOCK_DONE)) 1514 break; 1515 1516 if (sk->sk_err) { 1517 copied = sock_error(sk); 1518 break; 1519 } 1520 1521 if (sk->sk_shutdown & RCV_SHUTDOWN) 1522 break; 1523 1524 if (sk->sk_state == TCP_CLOSE) { 1525 if (!sock_flag(sk, SOCK_DONE)) { 1526 /* This occurs when user tries to read 1527 * from never connected socket. 1528 */ 1529 copied = -ENOTCONN; 1530 break; 1531 } 1532 break; 1533 } 1534 1535 if (!timeo) { 1536 copied = -EAGAIN; 1537 break; 1538 } 1539 1540 if (signal_pending(current)) { 1541 copied = sock_intr_errno(timeo); 1542 break; 1543 } 1544 } 1545 1546 tcp_cleanup_rbuf(sk, copied); 1547 1548 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1549 /* Install new reader */ 1550 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1551 user_recv = current; 1552 tp->ucopy.task = user_recv; 1553 tp->ucopy.iov = msg->msg_iov; 1554 } 1555 1556 tp->ucopy.len = len; 1557 1558 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1559 !(flags & (MSG_PEEK | MSG_TRUNC))); 1560 1561 /* Ugly... If prequeue is not empty, we have to 1562 * process it before releasing socket, otherwise 1563 * order will be broken at second iteration. 1564 * More elegant solution is required!!! 1565 * 1566 * Look: we have the following (pseudo)queues: 1567 * 1568 * 1. packets in flight 1569 * 2. backlog 1570 * 3. prequeue 1571 * 4. receive_queue 1572 * 1573 * Each queue can be processed only if the next ones 1574 * are empty. At this point we have empty receive_queue. 1575 * But prequeue _can_ be not empty after 2nd iteration, 1576 * when we jumped to start of loop because backlog 1577 * processing added something to receive_queue. 1578 * We cannot release_sock(), because backlog contains 1579 * packets arrived _after_ prequeued ones. 1580 * 1581 * Shortly, algorithm is clear --- to process all 1582 * the queues in order. We could make it more directly, 1583 * requeueing packets from backlog to prequeue, if 1584 * is not empty. It is more elegant, but eats cycles, 1585 * unfortunately. 1586 */ 1587 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1588 goto do_prequeue; 1589 1590 /* __ Set realtime policy in scheduler __ */ 1591 } 1592 1593 #ifdef CONFIG_NET_DMA 1594 if (tp->ucopy.dma_chan) 1595 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1596 #endif 1597 if (copied >= target) { 1598 /* Do not sleep, just process backlog. */ 1599 release_sock(sk); 1600 lock_sock(sk); 1601 } else 1602 sk_wait_data(sk, &timeo); 1603 1604 #ifdef CONFIG_NET_DMA 1605 tcp_service_net_dma(sk, false); /* Don't block */ 1606 tp->ucopy.wakeup = 0; 1607 #endif 1608 1609 if (user_recv) { 1610 int chunk; 1611 1612 /* __ Restore normal policy in scheduler __ */ 1613 1614 if ((chunk = len - tp->ucopy.len) != 0) { 1615 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1616 len -= chunk; 1617 copied += chunk; 1618 } 1619 1620 if (tp->rcv_nxt == tp->copied_seq && 1621 !skb_queue_empty(&tp->ucopy.prequeue)) { 1622 do_prequeue: 1623 tcp_prequeue_process(sk); 1624 1625 if ((chunk = len - tp->ucopy.len) != 0) { 1626 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1627 len -= chunk; 1628 copied += chunk; 1629 } 1630 } 1631 } 1632 if ((flags & MSG_PEEK) && 1633 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1634 if (net_ratelimit()) 1635 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1636 current->comm, task_pid_nr(current)); 1637 peek_seq = tp->copied_seq; 1638 } 1639 continue; 1640 1641 found_ok_skb: 1642 /* Ok so how much can we use? */ 1643 used = skb->len - offset; 1644 if (len < used) 1645 used = len; 1646 1647 /* Do we have urgent data here? */ 1648 if (tp->urg_data) { 1649 u32 urg_offset = tp->urg_seq - *seq; 1650 if (urg_offset < used) { 1651 if (!urg_offset) { 1652 if (!sock_flag(sk, SOCK_URGINLINE)) { 1653 ++*seq; 1654 urg_hole++; 1655 offset++; 1656 used--; 1657 if (!used) 1658 goto skip_copy; 1659 } 1660 } else 1661 used = urg_offset; 1662 } 1663 } 1664 1665 if (!(flags & MSG_TRUNC)) { 1666 #ifdef CONFIG_NET_DMA 1667 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1668 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1669 1670 if (tp->ucopy.dma_chan) { 1671 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1672 tp->ucopy.dma_chan, skb, offset, 1673 msg->msg_iov, used, 1674 tp->ucopy.pinned_list); 1675 1676 if (tp->ucopy.dma_cookie < 0) { 1677 1678 printk(KERN_ALERT "dma_cookie < 0\n"); 1679 1680 /* Exception. Bailout! */ 1681 if (!copied) 1682 copied = -EFAULT; 1683 break; 1684 } 1685 1686 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1687 1688 if ((offset + used) == skb->len) 1689 copied_early = 1; 1690 1691 } else 1692 #endif 1693 { 1694 err = skb_copy_datagram_iovec(skb, offset, 1695 msg->msg_iov, used); 1696 if (err) { 1697 /* Exception. Bailout! */ 1698 if (!copied) 1699 copied = -EFAULT; 1700 break; 1701 } 1702 } 1703 } 1704 1705 *seq += used; 1706 copied += used; 1707 len -= used; 1708 1709 tcp_rcv_space_adjust(sk); 1710 1711 skip_copy: 1712 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1713 tp->urg_data = 0; 1714 tcp_fast_path_check(sk); 1715 } 1716 if (used + offset < skb->len) 1717 continue; 1718 1719 if (tcp_hdr(skb)->fin) 1720 goto found_fin_ok; 1721 if (!(flags & MSG_PEEK)) { 1722 sk_eat_skb(sk, skb, copied_early); 1723 copied_early = 0; 1724 } 1725 continue; 1726 1727 found_fin_ok: 1728 /* Process the FIN. */ 1729 ++*seq; 1730 if (!(flags & MSG_PEEK)) { 1731 sk_eat_skb(sk, skb, copied_early); 1732 copied_early = 0; 1733 } 1734 break; 1735 } while (len > 0); 1736 1737 if (user_recv) { 1738 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1739 int chunk; 1740 1741 tp->ucopy.len = copied > 0 ? len : 0; 1742 1743 tcp_prequeue_process(sk); 1744 1745 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1746 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1747 len -= chunk; 1748 copied += chunk; 1749 } 1750 } 1751 1752 tp->ucopy.task = NULL; 1753 tp->ucopy.len = 0; 1754 } 1755 1756 #ifdef CONFIG_NET_DMA 1757 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1758 tp->ucopy.dma_chan = NULL; 1759 1760 if (tp->ucopy.pinned_list) { 1761 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1762 tp->ucopy.pinned_list = NULL; 1763 } 1764 #endif 1765 1766 /* According to UNIX98, msg_name/msg_namelen are ignored 1767 * on connected socket. I was just happy when found this 8) --ANK 1768 */ 1769 1770 /* Clean up data we have read: This will do ACK frames. */ 1771 tcp_cleanup_rbuf(sk, copied); 1772 1773 release_sock(sk); 1774 return copied; 1775 1776 out: 1777 release_sock(sk); 1778 return err; 1779 1780 recv_urg: 1781 err = tcp_recv_urg(sk, msg, len, flags); 1782 goto out; 1783 } 1784 EXPORT_SYMBOL(tcp_recvmsg); 1785 1786 void tcp_set_state(struct sock *sk, int state) 1787 { 1788 int oldstate = sk->sk_state; 1789 1790 switch (state) { 1791 case TCP_ESTABLISHED: 1792 if (oldstate != TCP_ESTABLISHED) 1793 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1794 break; 1795 1796 case TCP_CLOSE: 1797 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1798 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1799 1800 sk->sk_prot->unhash(sk); 1801 if (inet_csk(sk)->icsk_bind_hash && 1802 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1803 inet_put_port(sk); 1804 /* fall through */ 1805 default: 1806 if (oldstate == TCP_ESTABLISHED) 1807 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1808 } 1809 1810 /* Change state AFTER socket is unhashed to avoid closed 1811 * socket sitting in hash tables. 1812 */ 1813 sk->sk_state = state; 1814 1815 #ifdef STATE_TRACE 1816 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1817 #endif 1818 } 1819 EXPORT_SYMBOL_GPL(tcp_set_state); 1820 1821 /* 1822 * State processing on a close. This implements the state shift for 1823 * sending our FIN frame. Note that we only send a FIN for some 1824 * states. A shutdown() may have already sent the FIN, or we may be 1825 * closed. 1826 */ 1827 1828 static const unsigned char new_state[16] = { 1829 /* current state: new state: action: */ 1830 /* (Invalid) */ TCP_CLOSE, 1831 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1832 /* TCP_SYN_SENT */ TCP_CLOSE, 1833 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1834 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1835 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1836 /* TCP_TIME_WAIT */ TCP_CLOSE, 1837 /* TCP_CLOSE */ TCP_CLOSE, 1838 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1839 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1840 /* TCP_LISTEN */ TCP_CLOSE, 1841 /* TCP_CLOSING */ TCP_CLOSING, 1842 }; 1843 1844 static int tcp_close_state(struct sock *sk) 1845 { 1846 int next = (int)new_state[sk->sk_state]; 1847 int ns = next & TCP_STATE_MASK; 1848 1849 tcp_set_state(sk, ns); 1850 1851 return next & TCP_ACTION_FIN; 1852 } 1853 1854 /* 1855 * Shutdown the sending side of a connection. Much like close except 1856 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1857 */ 1858 1859 void tcp_shutdown(struct sock *sk, int how) 1860 { 1861 /* We need to grab some memory, and put together a FIN, 1862 * and then put it into the queue to be sent. 1863 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1864 */ 1865 if (!(how & SEND_SHUTDOWN)) 1866 return; 1867 1868 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1869 if ((1 << sk->sk_state) & 1870 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1871 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1872 /* Clear out any half completed packets. FIN if needed. */ 1873 if (tcp_close_state(sk)) 1874 tcp_send_fin(sk); 1875 } 1876 } 1877 EXPORT_SYMBOL(tcp_shutdown); 1878 1879 void tcp_close(struct sock *sk, long timeout) 1880 { 1881 struct sk_buff *skb; 1882 int data_was_unread = 0; 1883 int state; 1884 1885 lock_sock(sk); 1886 sk->sk_shutdown = SHUTDOWN_MASK; 1887 1888 if (sk->sk_state == TCP_LISTEN) { 1889 tcp_set_state(sk, TCP_CLOSE); 1890 1891 /* Special case. */ 1892 inet_csk_listen_stop(sk); 1893 1894 goto adjudge_to_death; 1895 } 1896 1897 /* We need to flush the recv. buffs. We do this only on the 1898 * descriptor close, not protocol-sourced closes, because the 1899 * reader process may not have drained the data yet! 1900 */ 1901 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1902 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1903 tcp_hdr(skb)->fin; 1904 data_was_unread += len; 1905 __kfree_skb(skb); 1906 } 1907 1908 sk_mem_reclaim(sk); 1909 1910 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 1911 if (sk->sk_state == TCP_CLOSE) 1912 goto adjudge_to_death; 1913 1914 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1915 * data was lost. To witness the awful effects of the old behavior of 1916 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1917 * GET in an FTP client, suspend the process, wait for the client to 1918 * advertise a zero window, then kill -9 the FTP client, wheee... 1919 * Note: timeout is always zero in such a case. 1920 */ 1921 if (data_was_unread) { 1922 /* Unread data was tossed, zap the connection. */ 1923 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1924 tcp_set_state(sk, TCP_CLOSE); 1925 tcp_send_active_reset(sk, sk->sk_allocation); 1926 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1927 /* Check zero linger _after_ checking for unread data. */ 1928 sk->sk_prot->disconnect(sk, 0); 1929 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1930 } else if (tcp_close_state(sk)) { 1931 /* We FIN if the application ate all the data before 1932 * zapping the connection. 1933 */ 1934 1935 /* RED-PEN. Formally speaking, we have broken TCP state 1936 * machine. State transitions: 1937 * 1938 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1939 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1940 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1941 * 1942 * are legal only when FIN has been sent (i.e. in window), 1943 * rather than queued out of window. Purists blame. 1944 * 1945 * F.e. "RFC state" is ESTABLISHED, 1946 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1947 * 1948 * The visible declinations are that sometimes 1949 * we enter time-wait state, when it is not required really 1950 * (harmless), do not send active resets, when they are 1951 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1952 * they look as CLOSING or LAST_ACK for Linux) 1953 * Probably, I missed some more holelets. 1954 * --ANK 1955 */ 1956 tcp_send_fin(sk); 1957 } 1958 1959 sk_stream_wait_close(sk, timeout); 1960 1961 adjudge_to_death: 1962 state = sk->sk_state; 1963 sock_hold(sk); 1964 sock_orphan(sk); 1965 1966 /* It is the last release_sock in its life. It will remove backlog. */ 1967 release_sock(sk); 1968 1969 1970 /* Now socket is owned by kernel and we acquire BH lock 1971 to finish close. No need to check for user refs. 1972 */ 1973 local_bh_disable(); 1974 bh_lock_sock(sk); 1975 WARN_ON(sock_owned_by_user(sk)); 1976 1977 percpu_counter_inc(sk->sk_prot->orphan_count); 1978 1979 /* Have we already been destroyed by a softirq or backlog? */ 1980 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1981 goto out; 1982 1983 /* This is a (useful) BSD violating of the RFC. There is a 1984 * problem with TCP as specified in that the other end could 1985 * keep a socket open forever with no application left this end. 1986 * We use a 3 minute timeout (about the same as BSD) then kill 1987 * our end. If they send after that then tough - BUT: long enough 1988 * that we won't make the old 4*rto = almost no time - whoops 1989 * reset mistake. 1990 * 1991 * Nope, it was not mistake. It is really desired behaviour 1992 * f.e. on http servers, when such sockets are useless, but 1993 * consume significant resources. Let's do it with special 1994 * linger2 option. --ANK 1995 */ 1996 1997 if (sk->sk_state == TCP_FIN_WAIT2) { 1998 struct tcp_sock *tp = tcp_sk(sk); 1999 if (tp->linger2 < 0) { 2000 tcp_set_state(sk, TCP_CLOSE); 2001 tcp_send_active_reset(sk, GFP_ATOMIC); 2002 NET_INC_STATS_BH(sock_net(sk), 2003 LINUX_MIB_TCPABORTONLINGER); 2004 } else { 2005 const int tmo = tcp_fin_time(sk); 2006 2007 if (tmo > TCP_TIMEWAIT_LEN) { 2008 inet_csk_reset_keepalive_timer(sk, 2009 tmo - TCP_TIMEWAIT_LEN); 2010 } else { 2011 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2012 goto out; 2013 } 2014 } 2015 } 2016 if (sk->sk_state != TCP_CLOSE) { 2017 sk_mem_reclaim(sk); 2018 if (tcp_too_many_orphans(sk, 0)) { 2019 if (net_ratelimit()) 2020 printk(KERN_INFO "TCP: too many of orphaned " 2021 "sockets\n"); 2022 tcp_set_state(sk, TCP_CLOSE); 2023 tcp_send_active_reset(sk, GFP_ATOMIC); 2024 NET_INC_STATS_BH(sock_net(sk), 2025 LINUX_MIB_TCPABORTONMEMORY); 2026 } 2027 } 2028 2029 if (sk->sk_state == TCP_CLOSE) 2030 inet_csk_destroy_sock(sk); 2031 /* Otherwise, socket is reprieved until protocol close. */ 2032 2033 out: 2034 bh_unlock_sock(sk); 2035 local_bh_enable(); 2036 sock_put(sk); 2037 } 2038 EXPORT_SYMBOL(tcp_close); 2039 2040 /* These states need RST on ABORT according to RFC793 */ 2041 2042 static inline int tcp_need_reset(int state) 2043 { 2044 return (1 << state) & 2045 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2046 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2047 } 2048 2049 int tcp_disconnect(struct sock *sk, int flags) 2050 { 2051 struct inet_sock *inet = inet_sk(sk); 2052 struct inet_connection_sock *icsk = inet_csk(sk); 2053 struct tcp_sock *tp = tcp_sk(sk); 2054 int err = 0; 2055 int old_state = sk->sk_state; 2056 2057 if (old_state != TCP_CLOSE) 2058 tcp_set_state(sk, TCP_CLOSE); 2059 2060 /* ABORT function of RFC793 */ 2061 if (old_state == TCP_LISTEN) { 2062 inet_csk_listen_stop(sk); 2063 } else if (tcp_need_reset(old_state) || 2064 (tp->snd_nxt != tp->write_seq && 2065 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2066 /* The last check adjusts for discrepancy of Linux wrt. RFC 2067 * states 2068 */ 2069 tcp_send_active_reset(sk, gfp_any()); 2070 sk->sk_err = ECONNRESET; 2071 } else if (old_state == TCP_SYN_SENT) 2072 sk->sk_err = ECONNRESET; 2073 2074 tcp_clear_xmit_timers(sk); 2075 __skb_queue_purge(&sk->sk_receive_queue); 2076 tcp_write_queue_purge(sk); 2077 __skb_queue_purge(&tp->out_of_order_queue); 2078 #ifdef CONFIG_NET_DMA 2079 __skb_queue_purge(&sk->sk_async_wait_queue); 2080 #endif 2081 2082 inet->inet_dport = 0; 2083 2084 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2085 inet_reset_saddr(sk); 2086 2087 sk->sk_shutdown = 0; 2088 sock_reset_flag(sk, SOCK_DONE); 2089 tp->srtt = 0; 2090 if ((tp->write_seq += tp->max_window + 2) == 0) 2091 tp->write_seq = 1; 2092 icsk->icsk_backoff = 0; 2093 tp->snd_cwnd = 2; 2094 icsk->icsk_probes_out = 0; 2095 tp->packets_out = 0; 2096 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2097 tp->snd_cwnd_cnt = 0; 2098 tp->bytes_acked = 0; 2099 tp->window_clamp = 0; 2100 tcp_set_ca_state(sk, TCP_CA_Open); 2101 tcp_clear_retrans(tp); 2102 inet_csk_delack_init(sk); 2103 tcp_init_send_head(sk); 2104 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2105 __sk_dst_reset(sk); 2106 2107 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2108 2109 sk->sk_error_report(sk); 2110 return err; 2111 } 2112 EXPORT_SYMBOL(tcp_disconnect); 2113 2114 /* 2115 * Socket option code for TCP. 2116 */ 2117 static int do_tcp_setsockopt(struct sock *sk, int level, 2118 int optname, char __user *optval, unsigned int optlen) 2119 { 2120 struct tcp_sock *tp = tcp_sk(sk); 2121 struct inet_connection_sock *icsk = inet_csk(sk); 2122 int val; 2123 int err = 0; 2124 2125 /* These are data/string values, all the others are ints */ 2126 switch (optname) { 2127 case TCP_CONGESTION: { 2128 char name[TCP_CA_NAME_MAX]; 2129 2130 if (optlen < 1) 2131 return -EINVAL; 2132 2133 val = strncpy_from_user(name, optval, 2134 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2135 if (val < 0) 2136 return -EFAULT; 2137 name[val] = 0; 2138 2139 lock_sock(sk); 2140 err = tcp_set_congestion_control(sk, name); 2141 release_sock(sk); 2142 return err; 2143 } 2144 case TCP_COOKIE_TRANSACTIONS: { 2145 struct tcp_cookie_transactions ctd; 2146 struct tcp_cookie_values *cvp = NULL; 2147 2148 if (sizeof(ctd) > optlen) 2149 return -EINVAL; 2150 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2151 return -EFAULT; 2152 2153 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2154 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2155 return -EINVAL; 2156 2157 if (ctd.tcpct_cookie_desired == 0) { 2158 /* default to global value */ 2159 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2160 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2161 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2162 return -EINVAL; 2163 } 2164 2165 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2166 /* Supercedes all other values */ 2167 lock_sock(sk); 2168 if (tp->cookie_values != NULL) { 2169 kref_put(&tp->cookie_values->kref, 2170 tcp_cookie_values_release); 2171 tp->cookie_values = NULL; 2172 } 2173 tp->rx_opt.cookie_in_always = 0; /* false */ 2174 tp->rx_opt.cookie_out_never = 1; /* true */ 2175 release_sock(sk); 2176 return err; 2177 } 2178 2179 /* Allocate ancillary memory before locking. 2180 */ 2181 if (ctd.tcpct_used > 0 || 2182 (tp->cookie_values == NULL && 2183 (sysctl_tcp_cookie_size > 0 || 2184 ctd.tcpct_cookie_desired > 0 || 2185 ctd.tcpct_s_data_desired > 0))) { 2186 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2187 GFP_KERNEL); 2188 if (cvp == NULL) 2189 return -ENOMEM; 2190 2191 kref_init(&cvp->kref); 2192 } 2193 lock_sock(sk); 2194 tp->rx_opt.cookie_in_always = 2195 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2196 tp->rx_opt.cookie_out_never = 0; /* false */ 2197 2198 if (tp->cookie_values != NULL) { 2199 if (cvp != NULL) { 2200 /* Changed values are recorded by a changed 2201 * pointer, ensuring the cookie will differ, 2202 * without separately hashing each value later. 2203 */ 2204 kref_put(&tp->cookie_values->kref, 2205 tcp_cookie_values_release); 2206 } else { 2207 cvp = tp->cookie_values; 2208 } 2209 } 2210 2211 if (cvp != NULL) { 2212 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2213 2214 if (ctd.tcpct_used > 0) { 2215 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2216 ctd.tcpct_used); 2217 cvp->s_data_desired = ctd.tcpct_used; 2218 cvp->s_data_constant = 1; /* true */ 2219 } else { 2220 /* No constant payload data. */ 2221 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2222 cvp->s_data_constant = 0; /* false */ 2223 } 2224 2225 tp->cookie_values = cvp; 2226 } 2227 release_sock(sk); 2228 return err; 2229 } 2230 default: 2231 /* fallthru */ 2232 break; 2233 } 2234 2235 if (optlen < sizeof(int)) 2236 return -EINVAL; 2237 2238 if (get_user(val, (int __user *)optval)) 2239 return -EFAULT; 2240 2241 lock_sock(sk); 2242 2243 switch (optname) { 2244 case TCP_MAXSEG: 2245 /* Values greater than interface MTU won't take effect. However 2246 * at the point when this call is done we typically don't yet 2247 * know which interface is going to be used */ 2248 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2249 err = -EINVAL; 2250 break; 2251 } 2252 tp->rx_opt.user_mss = val; 2253 break; 2254 2255 case TCP_NODELAY: 2256 if (val) { 2257 /* TCP_NODELAY is weaker than TCP_CORK, so that 2258 * this option on corked socket is remembered, but 2259 * it is not activated until cork is cleared. 2260 * 2261 * However, when TCP_NODELAY is set we make 2262 * an explicit push, which overrides even TCP_CORK 2263 * for currently queued segments. 2264 */ 2265 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2266 tcp_push_pending_frames(sk); 2267 } else { 2268 tp->nonagle &= ~TCP_NAGLE_OFF; 2269 } 2270 break; 2271 2272 case TCP_THIN_LINEAR_TIMEOUTS: 2273 if (val < 0 || val > 1) 2274 err = -EINVAL; 2275 else 2276 tp->thin_lto = val; 2277 break; 2278 2279 case TCP_THIN_DUPACK: 2280 if (val < 0 || val > 1) 2281 err = -EINVAL; 2282 else 2283 tp->thin_dupack = val; 2284 break; 2285 2286 case TCP_CORK: 2287 /* When set indicates to always queue non-full frames. 2288 * Later the user clears this option and we transmit 2289 * any pending partial frames in the queue. This is 2290 * meant to be used alongside sendfile() to get properly 2291 * filled frames when the user (for example) must write 2292 * out headers with a write() call first and then use 2293 * sendfile to send out the data parts. 2294 * 2295 * TCP_CORK can be set together with TCP_NODELAY and it is 2296 * stronger than TCP_NODELAY. 2297 */ 2298 if (val) { 2299 tp->nonagle |= TCP_NAGLE_CORK; 2300 } else { 2301 tp->nonagle &= ~TCP_NAGLE_CORK; 2302 if (tp->nonagle&TCP_NAGLE_OFF) 2303 tp->nonagle |= TCP_NAGLE_PUSH; 2304 tcp_push_pending_frames(sk); 2305 } 2306 break; 2307 2308 case TCP_KEEPIDLE: 2309 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2310 err = -EINVAL; 2311 else { 2312 tp->keepalive_time = val * HZ; 2313 if (sock_flag(sk, SOCK_KEEPOPEN) && 2314 !((1 << sk->sk_state) & 2315 (TCPF_CLOSE | TCPF_LISTEN))) { 2316 u32 elapsed = keepalive_time_elapsed(tp); 2317 if (tp->keepalive_time > elapsed) 2318 elapsed = tp->keepalive_time - elapsed; 2319 else 2320 elapsed = 0; 2321 inet_csk_reset_keepalive_timer(sk, elapsed); 2322 } 2323 } 2324 break; 2325 case TCP_KEEPINTVL: 2326 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2327 err = -EINVAL; 2328 else 2329 tp->keepalive_intvl = val * HZ; 2330 break; 2331 case TCP_KEEPCNT: 2332 if (val < 1 || val > MAX_TCP_KEEPCNT) 2333 err = -EINVAL; 2334 else 2335 tp->keepalive_probes = val; 2336 break; 2337 case TCP_SYNCNT: 2338 if (val < 1 || val > MAX_TCP_SYNCNT) 2339 err = -EINVAL; 2340 else 2341 icsk->icsk_syn_retries = val; 2342 break; 2343 2344 case TCP_LINGER2: 2345 if (val < 0) 2346 tp->linger2 = -1; 2347 else if (val > sysctl_tcp_fin_timeout / HZ) 2348 tp->linger2 = 0; 2349 else 2350 tp->linger2 = val * HZ; 2351 break; 2352 2353 case TCP_DEFER_ACCEPT: 2354 /* Translate value in seconds to number of retransmits */ 2355 icsk->icsk_accept_queue.rskq_defer_accept = 2356 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2357 TCP_RTO_MAX / HZ); 2358 break; 2359 2360 case TCP_WINDOW_CLAMP: 2361 if (!val) { 2362 if (sk->sk_state != TCP_CLOSE) { 2363 err = -EINVAL; 2364 break; 2365 } 2366 tp->window_clamp = 0; 2367 } else 2368 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2369 SOCK_MIN_RCVBUF / 2 : val; 2370 break; 2371 2372 case TCP_QUICKACK: 2373 if (!val) { 2374 icsk->icsk_ack.pingpong = 1; 2375 } else { 2376 icsk->icsk_ack.pingpong = 0; 2377 if ((1 << sk->sk_state) & 2378 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2379 inet_csk_ack_scheduled(sk)) { 2380 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2381 tcp_cleanup_rbuf(sk, 1); 2382 if (!(val & 1)) 2383 icsk->icsk_ack.pingpong = 1; 2384 } 2385 } 2386 break; 2387 2388 #ifdef CONFIG_TCP_MD5SIG 2389 case TCP_MD5SIG: 2390 /* Read the IP->Key mappings from userspace */ 2391 err = tp->af_specific->md5_parse(sk, optval, optlen); 2392 break; 2393 #endif 2394 case TCP_USER_TIMEOUT: 2395 /* Cap the max timeout in ms TCP will retry/retrans 2396 * before giving up and aborting (ETIMEDOUT) a connection. 2397 */ 2398 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2399 break; 2400 default: 2401 err = -ENOPROTOOPT; 2402 break; 2403 } 2404 2405 release_sock(sk); 2406 return err; 2407 } 2408 2409 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2410 unsigned int optlen) 2411 { 2412 struct inet_connection_sock *icsk = inet_csk(sk); 2413 2414 if (level != SOL_TCP) 2415 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2416 optval, optlen); 2417 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2418 } 2419 EXPORT_SYMBOL(tcp_setsockopt); 2420 2421 #ifdef CONFIG_COMPAT 2422 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2423 char __user *optval, unsigned int optlen) 2424 { 2425 if (level != SOL_TCP) 2426 return inet_csk_compat_setsockopt(sk, level, optname, 2427 optval, optlen); 2428 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2429 } 2430 EXPORT_SYMBOL(compat_tcp_setsockopt); 2431 #endif 2432 2433 /* Return information about state of tcp endpoint in API format. */ 2434 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2435 { 2436 struct tcp_sock *tp = tcp_sk(sk); 2437 const struct inet_connection_sock *icsk = inet_csk(sk); 2438 u32 now = tcp_time_stamp; 2439 2440 memset(info, 0, sizeof(*info)); 2441 2442 info->tcpi_state = sk->sk_state; 2443 info->tcpi_ca_state = icsk->icsk_ca_state; 2444 info->tcpi_retransmits = icsk->icsk_retransmits; 2445 info->tcpi_probes = icsk->icsk_probes_out; 2446 info->tcpi_backoff = icsk->icsk_backoff; 2447 2448 if (tp->rx_opt.tstamp_ok) 2449 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2450 if (tcp_is_sack(tp)) 2451 info->tcpi_options |= TCPI_OPT_SACK; 2452 if (tp->rx_opt.wscale_ok) { 2453 info->tcpi_options |= TCPI_OPT_WSCALE; 2454 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2455 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2456 } 2457 2458 if (tp->ecn_flags&TCP_ECN_OK) 2459 info->tcpi_options |= TCPI_OPT_ECN; 2460 2461 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2462 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2463 info->tcpi_snd_mss = tp->mss_cache; 2464 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2465 2466 if (sk->sk_state == TCP_LISTEN) { 2467 info->tcpi_unacked = sk->sk_ack_backlog; 2468 info->tcpi_sacked = sk->sk_max_ack_backlog; 2469 } else { 2470 info->tcpi_unacked = tp->packets_out; 2471 info->tcpi_sacked = tp->sacked_out; 2472 } 2473 info->tcpi_lost = tp->lost_out; 2474 info->tcpi_retrans = tp->retrans_out; 2475 info->tcpi_fackets = tp->fackets_out; 2476 2477 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2478 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2479 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2480 2481 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2482 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2483 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2484 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2485 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2486 info->tcpi_snd_cwnd = tp->snd_cwnd; 2487 info->tcpi_advmss = tp->advmss; 2488 info->tcpi_reordering = tp->reordering; 2489 2490 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2491 info->tcpi_rcv_space = tp->rcvq_space.space; 2492 2493 info->tcpi_total_retrans = tp->total_retrans; 2494 } 2495 EXPORT_SYMBOL_GPL(tcp_get_info); 2496 2497 static int do_tcp_getsockopt(struct sock *sk, int level, 2498 int optname, char __user *optval, int __user *optlen) 2499 { 2500 struct inet_connection_sock *icsk = inet_csk(sk); 2501 struct tcp_sock *tp = tcp_sk(sk); 2502 int val, len; 2503 2504 if (get_user(len, optlen)) 2505 return -EFAULT; 2506 2507 len = min_t(unsigned int, len, sizeof(int)); 2508 2509 if (len < 0) 2510 return -EINVAL; 2511 2512 switch (optname) { 2513 case TCP_MAXSEG: 2514 val = tp->mss_cache; 2515 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2516 val = tp->rx_opt.user_mss; 2517 break; 2518 case TCP_NODELAY: 2519 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2520 break; 2521 case TCP_CORK: 2522 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2523 break; 2524 case TCP_KEEPIDLE: 2525 val = keepalive_time_when(tp) / HZ; 2526 break; 2527 case TCP_KEEPINTVL: 2528 val = keepalive_intvl_when(tp) / HZ; 2529 break; 2530 case TCP_KEEPCNT: 2531 val = keepalive_probes(tp); 2532 break; 2533 case TCP_SYNCNT: 2534 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2535 break; 2536 case TCP_LINGER2: 2537 val = tp->linger2; 2538 if (val >= 0) 2539 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2540 break; 2541 case TCP_DEFER_ACCEPT: 2542 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2543 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2544 break; 2545 case TCP_WINDOW_CLAMP: 2546 val = tp->window_clamp; 2547 break; 2548 case TCP_INFO: { 2549 struct tcp_info info; 2550 2551 if (get_user(len, optlen)) 2552 return -EFAULT; 2553 2554 tcp_get_info(sk, &info); 2555 2556 len = min_t(unsigned int, len, sizeof(info)); 2557 if (put_user(len, optlen)) 2558 return -EFAULT; 2559 if (copy_to_user(optval, &info, len)) 2560 return -EFAULT; 2561 return 0; 2562 } 2563 case TCP_QUICKACK: 2564 val = !icsk->icsk_ack.pingpong; 2565 break; 2566 2567 case TCP_CONGESTION: 2568 if (get_user(len, optlen)) 2569 return -EFAULT; 2570 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2571 if (put_user(len, optlen)) 2572 return -EFAULT; 2573 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2574 return -EFAULT; 2575 return 0; 2576 2577 case TCP_COOKIE_TRANSACTIONS: { 2578 struct tcp_cookie_transactions ctd; 2579 struct tcp_cookie_values *cvp = tp->cookie_values; 2580 2581 if (get_user(len, optlen)) 2582 return -EFAULT; 2583 if (len < sizeof(ctd)) 2584 return -EINVAL; 2585 2586 memset(&ctd, 0, sizeof(ctd)); 2587 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2588 TCP_COOKIE_IN_ALWAYS : 0) 2589 | (tp->rx_opt.cookie_out_never ? 2590 TCP_COOKIE_OUT_NEVER : 0); 2591 2592 if (cvp != NULL) { 2593 ctd.tcpct_flags |= (cvp->s_data_in ? 2594 TCP_S_DATA_IN : 0) 2595 | (cvp->s_data_out ? 2596 TCP_S_DATA_OUT : 0); 2597 2598 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2599 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2600 2601 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2602 cvp->cookie_pair_size); 2603 ctd.tcpct_used = cvp->cookie_pair_size; 2604 } 2605 2606 if (put_user(sizeof(ctd), optlen)) 2607 return -EFAULT; 2608 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2609 return -EFAULT; 2610 return 0; 2611 } 2612 case TCP_THIN_LINEAR_TIMEOUTS: 2613 val = tp->thin_lto; 2614 break; 2615 case TCP_THIN_DUPACK: 2616 val = tp->thin_dupack; 2617 break; 2618 2619 case TCP_USER_TIMEOUT: 2620 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2621 break; 2622 default: 2623 return -ENOPROTOOPT; 2624 } 2625 2626 if (put_user(len, optlen)) 2627 return -EFAULT; 2628 if (copy_to_user(optval, &val, len)) 2629 return -EFAULT; 2630 return 0; 2631 } 2632 2633 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2634 int __user *optlen) 2635 { 2636 struct inet_connection_sock *icsk = inet_csk(sk); 2637 2638 if (level != SOL_TCP) 2639 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2640 optval, optlen); 2641 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2642 } 2643 EXPORT_SYMBOL(tcp_getsockopt); 2644 2645 #ifdef CONFIG_COMPAT 2646 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2647 char __user *optval, int __user *optlen) 2648 { 2649 if (level != SOL_TCP) 2650 return inet_csk_compat_getsockopt(sk, level, optname, 2651 optval, optlen); 2652 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2653 } 2654 EXPORT_SYMBOL(compat_tcp_getsockopt); 2655 #endif 2656 2657 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features) 2658 { 2659 struct sk_buff *segs = ERR_PTR(-EINVAL); 2660 struct tcphdr *th; 2661 unsigned thlen; 2662 unsigned int seq; 2663 __be32 delta; 2664 unsigned int oldlen; 2665 unsigned int mss; 2666 2667 if (!pskb_may_pull(skb, sizeof(*th))) 2668 goto out; 2669 2670 th = tcp_hdr(skb); 2671 thlen = th->doff * 4; 2672 if (thlen < sizeof(*th)) 2673 goto out; 2674 2675 if (!pskb_may_pull(skb, thlen)) 2676 goto out; 2677 2678 oldlen = (u16)~skb->len; 2679 __skb_pull(skb, thlen); 2680 2681 mss = skb_shinfo(skb)->gso_size; 2682 if (unlikely(skb->len <= mss)) 2683 goto out; 2684 2685 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2686 /* Packet is from an untrusted source, reset gso_segs. */ 2687 int type = skb_shinfo(skb)->gso_type; 2688 2689 if (unlikely(type & 2690 ~(SKB_GSO_TCPV4 | 2691 SKB_GSO_DODGY | 2692 SKB_GSO_TCP_ECN | 2693 SKB_GSO_TCPV6 | 2694 0) || 2695 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2696 goto out; 2697 2698 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2699 2700 segs = NULL; 2701 goto out; 2702 } 2703 2704 segs = skb_segment(skb, features); 2705 if (IS_ERR(segs)) 2706 goto out; 2707 2708 delta = htonl(oldlen + (thlen + mss)); 2709 2710 skb = segs; 2711 th = tcp_hdr(skb); 2712 seq = ntohl(th->seq); 2713 2714 do { 2715 th->fin = th->psh = 0; 2716 2717 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2718 (__force u32)delta)); 2719 if (skb->ip_summed != CHECKSUM_PARTIAL) 2720 th->check = 2721 csum_fold(csum_partial(skb_transport_header(skb), 2722 thlen, skb->csum)); 2723 2724 seq += mss; 2725 skb = skb->next; 2726 th = tcp_hdr(skb); 2727 2728 th->seq = htonl(seq); 2729 th->cwr = 0; 2730 } while (skb->next); 2731 2732 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2733 skb->data_len); 2734 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2735 (__force u32)delta)); 2736 if (skb->ip_summed != CHECKSUM_PARTIAL) 2737 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2738 thlen, skb->csum)); 2739 2740 out: 2741 return segs; 2742 } 2743 EXPORT_SYMBOL(tcp_tso_segment); 2744 2745 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2746 { 2747 struct sk_buff **pp = NULL; 2748 struct sk_buff *p; 2749 struct tcphdr *th; 2750 struct tcphdr *th2; 2751 unsigned int len; 2752 unsigned int thlen; 2753 __be32 flags; 2754 unsigned int mss = 1; 2755 unsigned int hlen; 2756 unsigned int off; 2757 int flush = 1; 2758 int i; 2759 2760 off = skb_gro_offset(skb); 2761 hlen = off + sizeof(*th); 2762 th = skb_gro_header_fast(skb, off); 2763 if (skb_gro_header_hard(skb, hlen)) { 2764 th = skb_gro_header_slow(skb, hlen, off); 2765 if (unlikely(!th)) 2766 goto out; 2767 } 2768 2769 thlen = th->doff * 4; 2770 if (thlen < sizeof(*th)) 2771 goto out; 2772 2773 hlen = off + thlen; 2774 if (skb_gro_header_hard(skb, hlen)) { 2775 th = skb_gro_header_slow(skb, hlen, off); 2776 if (unlikely(!th)) 2777 goto out; 2778 } 2779 2780 skb_gro_pull(skb, thlen); 2781 2782 len = skb_gro_len(skb); 2783 flags = tcp_flag_word(th); 2784 2785 for (; (p = *head); head = &p->next) { 2786 if (!NAPI_GRO_CB(p)->same_flow) 2787 continue; 2788 2789 th2 = tcp_hdr(p); 2790 2791 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 2792 NAPI_GRO_CB(p)->same_flow = 0; 2793 continue; 2794 } 2795 2796 goto found; 2797 } 2798 2799 goto out_check_final; 2800 2801 found: 2802 flush = NAPI_GRO_CB(p)->flush; 2803 flush |= (__force int)(flags & TCP_FLAG_CWR); 2804 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 2805 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 2806 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 2807 for (i = sizeof(*th); i < thlen; i += 4) 2808 flush |= *(u32 *)((u8 *)th + i) ^ 2809 *(u32 *)((u8 *)th2 + i); 2810 2811 mss = skb_shinfo(p)->gso_size; 2812 2813 flush |= (len - 1) >= mss; 2814 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2815 2816 if (flush || skb_gro_receive(head, skb)) { 2817 mss = 1; 2818 goto out_check_final; 2819 } 2820 2821 p = *head; 2822 th2 = tcp_hdr(p); 2823 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2824 2825 out_check_final: 2826 flush = len < mss; 2827 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 2828 TCP_FLAG_RST | TCP_FLAG_SYN | 2829 TCP_FLAG_FIN)); 2830 2831 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2832 pp = head; 2833 2834 out: 2835 NAPI_GRO_CB(skb)->flush |= flush; 2836 2837 return pp; 2838 } 2839 EXPORT_SYMBOL(tcp_gro_receive); 2840 2841 int tcp_gro_complete(struct sk_buff *skb) 2842 { 2843 struct tcphdr *th = tcp_hdr(skb); 2844 2845 skb->csum_start = skb_transport_header(skb) - skb->head; 2846 skb->csum_offset = offsetof(struct tcphdr, check); 2847 skb->ip_summed = CHECKSUM_PARTIAL; 2848 2849 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2850 2851 if (th->cwr) 2852 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2853 2854 return 0; 2855 } 2856 EXPORT_SYMBOL(tcp_gro_complete); 2857 2858 #ifdef CONFIG_TCP_MD5SIG 2859 static unsigned long tcp_md5sig_users; 2860 static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool; 2861 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2862 2863 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool) 2864 { 2865 int cpu; 2866 for_each_possible_cpu(cpu) { 2867 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu); 2868 if (p) { 2869 if (p->md5_desc.tfm) 2870 crypto_free_hash(p->md5_desc.tfm); 2871 kfree(p); 2872 } 2873 } 2874 free_percpu(pool); 2875 } 2876 2877 void tcp_free_md5sig_pool(void) 2878 { 2879 struct tcp_md5sig_pool * __percpu *pool = NULL; 2880 2881 spin_lock_bh(&tcp_md5sig_pool_lock); 2882 if (--tcp_md5sig_users == 0) { 2883 pool = tcp_md5sig_pool; 2884 tcp_md5sig_pool = NULL; 2885 } 2886 spin_unlock_bh(&tcp_md5sig_pool_lock); 2887 if (pool) 2888 __tcp_free_md5sig_pool(pool); 2889 } 2890 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2891 2892 static struct tcp_md5sig_pool * __percpu * 2893 __tcp_alloc_md5sig_pool(struct sock *sk) 2894 { 2895 int cpu; 2896 struct tcp_md5sig_pool * __percpu *pool; 2897 2898 pool = alloc_percpu(struct tcp_md5sig_pool *); 2899 if (!pool) 2900 return NULL; 2901 2902 for_each_possible_cpu(cpu) { 2903 struct tcp_md5sig_pool *p; 2904 struct crypto_hash *hash; 2905 2906 p = kzalloc(sizeof(*p), sk->sk_allocation); 2907 if (!p) 2908 goto out_free; 2909 *per_cpu_ptr(pool, cpu) = p; 2910 2911 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2912 if (!hash || IS_ERR(hash)) 2913 goto out_free; 2914 2915 p->md5_desc.tfm = hash; 2916 } 2917 return pool; 2918 out_free: 2919 __tcp_free_md5sig_pool(pool); 2920 return NULL; 2921 } 2922 2923 struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 2924 { 2925 struct tcp_md5sig_pool * __percpu *pool; 2926 int alloc = 0; 2927 2928 retry: 2929 spin_lock_bh(&tcp_md5sig_pool_lock); 2930 pool = tcp_md5sig_pool; 2931 if (tcp_md5sig_users++ == 0) { 2932 alloc = 1; 2933 spin_unlock_bh(&tcp_md5sig_pool_lock); 2934 } else if (!pool) { 2935 tcp_md5sig_users--; 2936 spin_unlock_bh(&tcp_md5sig_pool_lock); 2937 cpu_relax(); 2938 goto retry; 2939 } else 2940 spin_unlock_bh(&tcp_md5sig_pool_lock); 2941 2942 if (alloc) { 2943 /* we cannot hold spinlock here because this may sleep. */ 2944 struct tcp_md5sig_pool * __percpu *p; 2945 2946 p = __tcp_alloc_md5sig_pool(sk); 2947 spin_lock_bh(&tcp_md5sig_pool_lock); 2948 if (!p) { 2949 tcp_md5sig_users--; 2950 spin_unlock_bh(&tcp_md5sig_pool_lock); 2951 return NULL; 2952 } 2953 pool = tcp_md5sig_pool; 2954 if (pool) { 2955 /* oops, it has already been assigned. */ 2956 spin_unlock_bh(&tcp_md5sig_pool_lock); 2957 __tcp_free_md5sig_pool(p); 2958 } else { 2959 tcp_md5sig_pool = pool = p; 2960 spin_unlock_bh(&tcp_md5sig_pool_lock); 2961 } 2962 } 2963 return pool; 2964 } 2965 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2966 2967 2968 /** 2969 * tcp_get_md5sig_pool - get md5sig_pool for this user 2970 * 2971 * We use percpu structure, so if we succeed, we exit with preemption 2972 * and BH disabled, to make sure another thread or softirq handling 2973 * wont try to get same context. 2974 */ 2975 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2976 { 2977 struct tcp_md5sig_pool * __percpu *p; 2978 2979 local_bh_disable(); 2980 2981 spin_lock(&tcp_md5sig_pool_lock); 2982 p = tcp_md5sig_pool; 2983 if (p) 2984 tcp_md5sig_users++; 2985 spin_unlock(&tcp_md5sig_pool_lock); 2986 2987 if (p) 2988 return *this_cpu_ptr(p); 2989 2990 local_bh_enable(); 2991 return NULL; 2992 } 2993 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2994 2995 void tcp_put_md5sig_pool(void) 2996 { 2997 local_bh_enable(); 2998 tcp_free_md5sig_pool(); 2999 } 3000 EXPORT_SYMBOL(tcp_put_md5sig_pool); 3001 3002 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3003 struct tcphdr *th) 3004 { 3005 struct scatterlist sg; 3006 int err; 3007 3008 __sum16 old_checksum = th->check; 3009 th->check = 0; 3010 /* options aren't included in the hash */ 3011 sg_init_one(&sg, th, sizeof(struct tcphdr)); 3012 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr)); 3013 th->check = old_checksum; 3014 return err; 3015 } 3016 EXPORT_SYMBOL(tcp_md5_hash_header); 3017 3018 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3019 struct sk_buff *skb, unsigned header_len) 3020 { 3021 struct scatterlist sg; 3022 const struct tcphdr *tp = tcp_hdr(skb); 3023 struct hash_desc *desc = &hp->md5_desc; 3024 unsigned i; 3025 const unsigned head_data_len = skb_headlen(skb) > header_len ? 3026 skb_headlen(skb) - header_len : 0; 3027 const struct skb_shared_info *shi = skb_shinfo(skb); 3028 struct sk_buff *frag_iter; 3029 3030 sg_init_table(&sg, 1); 3031 3032 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3033 if (crypto_hash_update(desc, &sg, head_data_len)) 3034 return 1; 3035 3036 for (i = 0; i < shi->nr_frags; ++i) { 3037 const struct skb_frag_struct *f = &shi->frags[i]; 3038 sg_set_page(&sg, f->page, f->size, f->page_offset); 3039 if (crypto_hash_update(desc, &sg, f->size)) 3040 return 1; 3041 } 3042 3043 skb_walk_frags(skb, frag_iter) 3044 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3045 return 1; 3046 3047 return 0; 3048 } 3049 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3050 3051 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key) 3052 { 3053 struct scatterlist sg; 3054 3055 sg_init_one(&sg, key->key, key->keylen); 3056 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3057 } 3058 EXPORT_SYMBOL(tcp_md5_hash_key); 3059 3060 #endif 3061 3062 /** 3063 * Each Responder maintains up to two secret values concurrently for 3064 * efficient secret rollover. Each secret value has 4 states: 3065 * 3066 * Generating. (tcp_secret_generating != tcp_secret_primary) 3067 * Generates new Responder-Cookies, but not yet used for primary 3068 * verification. This is a short-term state, typically lasting only 3069 * one round trip time (RTT). 3070 * 3071 * Primary. (tcp_secret_generating == tcp_secret_primary) 3072 * Used both for generation and primary verification. 3073 * 3074 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3075 * Used for verification, until the first failure that can be 3076 * verified by the newer Generating secret. At that time, this 3077 * cookie's state is changed to Secondary, and the Generating 3078 * cookie's state is changed to Primary. This is a short-term state, 3079 * typically lasting only one round trip time (RTT). 3080 * 3081 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3082 * Used for secondary verification, after primary verification 3083 * failures. This state lasts no more than twice the Maximum Segment 3084 * Lifetime (2MSL). Then, the secret is discarded. 3085 */ 3086 struct tcp_cookie_secret { 3087 /* The secret is divided into two parts. The digest part is the 3088 * equivalent of previously hashing a secret and saving the state, 3089 * and serves as an initialization vector (IV). The message part 3090 * serves as the trailing secret. 3091 */ 3092 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3093 unsigned long expires; 3094 }; 3095 3096 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3097 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3098 #define TCP_SECRET_LIFE (HZ * 600) 3099 3100 static struct tcp_cookie_secret tcp_secret_one; 3101 static struct tcp_cookie_secret tcp_secret_two; 3102 3103 /* Essentially a circular list, without dynamic allocation. */ 3104 static struct tcp_cookie_secret *tcp_secret_generating; 3105 static struct tcp_cookie_secret *tcp_secret_primary; 3106 static struct tcp_cookie_secret *tcp_secret_retiring; 3107 static struct tcp_cookie_secret *tcp_secret_secondary; 3108 3109 static DEFINE_SPINLOCK(tcp_secret_locker); 3110 3111 /* Select a pseudo-random word in the cookie workspace. 3112 */ 3113 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3114 { 3115 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3116 } 3117 3118 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3119 * Called in softirq context. 3120 * Returns: 0 for success. 3121 */ 3122 int tcp_cookie_generator(u32 *bakery) 3123 { 3124 unsigned long jiffy = jiffies; 3125 3126 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3127 spin_lock_bh(&tcp_secret_locker); 3128 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3129 /* refreshed by another */ 3130 memcpy(bakery, 3131 &tcp_secret_generating->secrets[0], 3132 COOKIE_WORKSPACE_WORDS); 3133 } else { 3134 /* still needs refreshing */ 3135 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3136 3137 /* The first time, paranoia assumes that the 3138 * randomization function isn't as strong. But, 3139 * this secret initialization is delayed until 3140 * the last possible moment (packet arrival). 3141 * Although that time is observable, it is 3142 * unpredictably variable. Mash in the most 3143 * volatile clock bits available, and expire the 3144 * secret extra quickly. 3145 */ 3146 if (unlikely(tcp_secret_primary->expires == 3147 tcp_secret_secondary->expires)) { 3148 struct timespec tv; 3149 3150 getnstimeofday(&tv); 3151 bakery[COOKIE_DIGEST_WORDS+0] ^= 3152 (u32)tv.tv_nsec; 3153 3154 tcp_secret_secondary->expires = jiffy 3155 + TCP_SECRET_1MSL 3156 + (0x0f & tcp_cookie_work(bakery, 0)); 3157 } else { 3158 tcp_secret_secondary->expires = jiffy 3159 + TCP_SECRET_LIFE 3160 + (0xff & tcp_cookie_work(bakery, 1)); 3161 tcp_secret_primary->expires = jiffy 3162 + TCP_SECRET_2MSL 3163 + (0x1f & tcp_cookie_work(bakery, 2)); 3164 } 3165 memcpy(&tcp_secret_secondary->secrets[0], 3166 bakery, COOKIE_WORKSPACE_WORDS); 3167 3168 rcu_assign_pointer(tcp_secret_generating, 3169 tcp_secret_secondary); 3170 rcu_assign_pointer(tcp_secret_retiring, 3171 tcp_secret_primary); 3172 /* 3173 * Neither call_rcu() nor synchronize_rcu() needed. 3174 * Retiring data is not freed. It is replaced after 3175 * further (locked) pointer updates, and a quiet time 3176 * (minimum 1MSL, maximum LIFE - 2MSL). 3177 */ 3178 } 3179 spin_unlock_bh(&tcp_secret_locker); 3180 } else { 3181 rcu_read_lock_bh(); 3182 memcpy(bakery, 3183 &rcu_dereference(tcp_secret_generating)->secrets[0], 3184 COOKIE_WORKSPACE_WORDS); 3185 rcu_read_unlock_bh(); 3186 } 3187 return 0; 3188 } 3189 EXPORT_SYMBOL(tcp_cookie_generator); 3190 3191 void tcp_done(struct sock *sk) 3192 { 3193 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3194 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3195 3196 tcp_set_state(sk, TCP_CLOSE); 3197 tcp_clear_xmit_timers(sk); 3198 3199 sk->sk_shutdown = SHUTDOWN_MASK; 3200 3201 if (!sock_flag(sk, SOCK_DEAD)) 3202 sk->sk_state_change(sk); 3203 else 3204 inet_csk_destroy_sock(sk); 3205 } 3206 EXPORT_SYMBOL_GPL(tcp_done); 3207 3208 extern struct tcp_congestion_ops tcp_reno; 3209 3210 static __initdata unsigned long thash_entries; 3211 static int __init set_thash_entries(char *str) 3212 { 3213 if (!str) 3214 return 0; 3215 thash_entries = simple_strtoul(str, &str, 0); 3216 return 1; 3217 } 3218 __setup("thash_entries=", set_thash_entries); 3219 3220 void __init tcp_init(void) 3221 { 3222 struct sk_buff *skb = NULL; 3223 unsigned long limit; 3224 int i, max_share, cnt; 3225 unsigned long jiffy = jiffies; 3226 3227 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3228 3229 percpu_counter_init(&tcp_sockets_allocated, 0); 3230 percpu_counter_init(&tcp_orphan_count, 0); 3231 tcp_hashinfo.bind_bucket_cachep = 3232 kmem_cache_create("tcp_bind_bucket", 3233 sizeof(struct inet_bind_bucket), 0, 3234 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3235 3236 /* Size and allocate the main established and bind bucket 3237 * hash tables. 3238 * 3239 * The methodology is similar to that of the buffer cache. 3240 */ 3241 tcp_hashinfo.ehash = 3242 alloc_large_system_hash("TCP established", 3243 sizeof(struct inet_ehash_bucket), 3244 thash_entries, 3245 (totalram_pages >= 128 * 1024) ? 3246 13 : 15, 3247 0, 3248 NULL, 3249 &tcp_hashinfo.ehash_mask, 3250 thash_entries ? 0 : 512 * 1024); 3251 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3252 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3253 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3254 } 3255 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3256 panic("TCP: failed to alloc ehash_locks"); 3257 tcp_hashinfo.bhash = 3258 alloc_large_system_hash("TCP bind", 3259 sizeof(struct inet_bind_hashbucket), 3260 tcp_hashinfo.ehash_mask + 1, 3261 (totalram_pages >= 128 * 1024) ? 3262 13 : 15, 3263 0, 3264 &tcp_hashinfo.bhash_size, 3265 NULL, 3266 64 * 1024); 3267 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 3268 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3269 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3270 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3271 } 3272 3273 3274 cnt = tcp_hashinfo.ehash_mask + 1; 3275 3276 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3277 sysctl_tcp_max_orphans = cnt / 2; 3278 sysctl_max_syn_backlog = max(128, cnt / 256); 3279 3280 limit = nr_free_buffer_pages() / 8; 3281 limit = max(limit, 128UL); 3282 sysctl_tcp_mem[0] = limit / 4 * 3; 3283 sysctl_tcp_mem[1] = limit; 3284 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3285 3286 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3287 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 3288 max_share = min(4UL*1024*1024, limit); 3289 3290 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3291 sysctl_tcp_wmem[1] = 16*1024; 3292 sysctl_tcp_wmem[2] = max(64*1024, max_share); 3293 3294 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3295 sysctl_tcp_rmem[1] = 87380; 3296 sysctl_tcp_rmem[2] = max(87380, max_share); 3297 3298 printk(KERN_INFO "TCP: Hash tables configured " 3299 "(established %u bind %u)\n", 3300 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3301 3302 tcp_register_congestion_control(&tcp_reno); 3303 3304 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3305 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3306 tcp_secret_one.expires = jiffy; /* past due */ 3307 tcp_secret_two.expires = jiffy; /* past due */ 3308 tcp_secret_generating = &tcp_secret_one; 3309 tcp_secret_primary = &tcp_secret_one; 3310 tcp_secret_retiring = &tcp_secret_two; 3311 tcp_secret_secondary = &tcp_secret_two; 3312 } 3313