xref: /openbmc/linux/net/ipv4/tcp.c (revision e330fb14)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 /* Track pending CMSGs. */
285 enum {
286 	TCP_CMSG_INQ = 1,
287 	TCP_CMSG_TS = 2
288 };
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295 
296 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298 
299 #if IS_ENABLED(CONFIG_SMC)
300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
301 EXPORT_SYMBOL(tcp_have_smc);
302 #endif
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 unsigned long tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
327 
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	unsigned long val;
331 
332 	if (READ_ONCE(tcp_memory_pressure))
333 		return;
334 	val = jiffies;
335 
336 	if (!val)
337 		val--;
338 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
339 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
340 }
341 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
342 
343 void tcp_leave_memory_pressure(struct sock *sk)
344 {
345 	unsigned long val;
346 
347 	if (!READ_ONCE(tcp_memory_pressure))
348 		return;
349 	val = xchg(&tcp_memory_pressure, 0);
350 	if (val)
351 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
352 			      jiffies_to_msecs(jiffies - val));
353 }
354 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
355 
356 /* Convert seconds to retransmits based on initial and max timeout */
357 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
358 {
359 	u8 res = 0;
360 
361 	if (seconds > 0) {
362 		int period = timeout;
363 
364 		res = 1;
365 		while (seconds > period && res < 255) {
366 			res++;
367 			timeout <<= 1;
368 			if (timeout > rto_max)
369 				timeout = rto_max;
370 			period += timeout;
371 		}
372 	}
373 	return res;
374 }
375 
376 /* Convert retransmits to seconds based on initial and max timeout */
377 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
378 {
379 	int period = 0;
380 
381 	if (retrans > 0) {
382 		period = timeout;
383 		while (--retrans) {
384 			timeout <<= 1;
385 			if (timeout > rto_max)
386 				timeout = rto_max;
387 			period += timeout;
388 		}
389 	}
390 	return period;
391 }
392 
393 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
394 {
395 	u32 rate = READ_ONCE(tp->rate_delivered);
396 	u32 intv = READ_ONCE(tp->rate_interval_us);
397 	u64 rate64 = 0;
398 
399 	if (rate && intv) {
400 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
401 		do_div(rate64, intv);
402 	}
403 	return rate64;
404 }
405 
406 /* Address-family independent initialization for a tcp_sock.
407  *
408  * NOTE: A lot of things set to zero explicitly by call to
409  *       sk_alloc() so need not be done here.
410  */
411 void tcp_init_sock(struct sock *sk)
412 {
413 	struct inet_connection_sock *icsk = inet_csk(sk);
414 	struct tcp_sock *tp = tcp_sk(sk);
415 
416 	tp->out_of_order_queue = RB_ROOT;
417 	sk->tcp_rtx_queue = RB_ROOT;
418 	tcp_init_xmit_timers(sk);
419 	INIT_LIST_HEAD(&tp->tsq_node);
420 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
421 
422 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
423 	icsk->icsk_rto_min = TCP_RTO_MIN;
424 	icsk->icsk_delack_max = TCP_DELACK_MAX;
425 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
426 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
427 
428 	/* So many TCP implementations out there (incorrectly) count the
429 	 * initial SYN frame in their delayed-ACK and congestion control
430 	 * algorithms that we must have the following bandaid to talk
431 	 * efficiently to them.  -DaveM
432 	 */
433 	tp->snd_cwnd = TCP_INIT_CWND;
434 
435 	/* There's a bubble in the pipe until at least the first ACK. */
436 	tp->app_limited = ~0U;
437 
438 	/* See draft-stevens-tcpca-spec-01 for discussion of the
439 	 * initialization of these values.
440 	 */
441 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
442 	tp->snd_cwnd_clamp = ~0;
443 	tp->mss_cache = TCP_MSS_DEFAULT;
444 
445 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
446 	tcp_assign_congestion_control(sk);
447 
448 	tp->tsoffset = 0;
449 	tp->rack.reo_wnd_steps = 1;
450 
451 	sk->sk_write_space = sk_stream_write_space;
452 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
453 
454 	icsk->icsk_sync_mss = tcp_sync_mss;
455 
456 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
457 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
458 
459 	sk_sockets_allocated_inc(sk);
460 	sk->sk_route_forced_caps = NETIF_F_GSO;
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463 
464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 	struct sk_buff *skb = tcp_write_queue_tail(sk);
467 
468 	if (tsflags && skb) {
469 		struct skb_shared_info *shinfo = skb_shinfo(skb);
470 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471 
472 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 			tcb->txstamp_ack = 1;
475 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 	}
478 }
479 
480 static bool tcp_stream_is_readable(struct sock *sk, int target)
481 {
482 	if (tcp_epollin_ready(sk, target))
483 		return true;
484 
485 	if (sk->sk_prot->stream_memory_read)
486 		return sk->sk_prot->stream_memory_read(sk);
487 	return false;
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	int state;
503 
504 	sock_poll_wait(file, sock, wait);
505 
506 	state = inet_sk_state_load(sk);
507 	if (state == TCP_LISTEN)
508 		return inet_csk_listen_poll(sk);
509 
510 	/* Socket is not locked. We are protected from async events
511 	 * by poll logic and correct handling of state changes
512 	 * made by other threads is impossible in any case.
513 	 */
514 
515 	mask = 0;
516 
517 	/*
518 	 * EPOLLHUP is certainly not done right. But poll() doesn't
519 	 * have a notion of HUP in just one direction, and for a
520 	 * socket the read side is more interesting.
521 	 *
522 	 * Some poll() documentation says that EPOLLHUP is incompatible
523 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
524 	 * all. But careful, it tends to be safer to return too many
525 	 * bits than too few, and you can easily break real applications
526 	 * if you don't tell them that something has hung up!
527 	 *
528 	 * Check-me.
529 	 *
530 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
531 	 * our fs/select.c). It means that after we received EOF,
532 	 * poll always returns immediately, making impossible poll() on write()
533 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
534 	 * if and only if shutdown has been made in both directions.
535 	 * Actually, it is interesting to look how Solaris and DUX
536 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
537 	 * then we could set it on SND_SHUTDOWN. BTW examples given
538 	 * in Stevens' books assume exactly this behaviour, it explains
539 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
540 	 *
541 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
542 	 * blocking on fresh not-connected or disconnected socket. --ANK
543 	 */
544 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
545 		mask |= EPOLLHUP;
546 	if (sk->sk_shutdown & RCV_SHUTDOWN)
547 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
548 
549 	/* Connected or passive Fast Open socket? */
550 	if (state != TCP_SYN_SENT &&
551 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
552 		int target = sock_rcvlowat(sk, 0, INT_MAX);
553 
554 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
555 		    !sock_flag(sk, SOCK_URGINLINE) &&
556 		    tp->urg_data)
557 			target++;
558 
559 		if (tcp_stream_is_readable(sk, target))
560 			mask |= EPOLLIN | EPOLLRDNORM;
561 
562 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
563 			if (__sk_stream_is_writeable(sk, 1)) {
564 				mask |= EPOLLOUT | EPOLLWRNORM;
565 			} else {  /* send SIGIO later */
566 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
567 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
568 
569 				/* Race breaker. If space is freed after
570 				 * wspace test but before the flags are set,
571 				 * IO signal will be lost. Memory barrier
572 				 * pairs with the input side.
573 				 */
574 				smp_mb__after_atomic();
575 				if (__sk_stream_is_writeable(sk, 1))
576 					mask |= EPOLLOUT | EPOLLWRNORM;
577 			}
578 		} else
579 			mask |= EPOLLOUT | EPOLLWRNORM;
580 
581 		if (tp->urg_data & TCP_URG_VALID)
582 			mask |= EPOLLPRI;
583 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
584 		/* Active TCP fastopen socket with defer_connect
585 		 * Return EPOLLOUT so application can call write()
586 		 * in order for kernel to generate SYN+data
587 		 */
588 		mask |= EPOLLOUT | EPOLLWRNORM;
589 	}
590 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
591 	smp_rmb();
592 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
593 		mask |= EPOLLERR;
594 
595 	return mask;
596 }
597 EXPORT_SYMBOL(tcp_poll);
598 
599 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
600 {
601 	struct tcp_sock *tp = tcp_sk(sk);
602 	int answ;
603 	bool slow;
604 
605 	switch (cmd) {
606 	case SIOCINQ:
607 		if (sk->sk_state == TCP_LISTEN)
608 			return -EINVAL;
609 
610 		slow = lock_sock_fast(sk);
611 		answ = tcp_inq(sk);
612 		unlock_sock_fast(sk, slow);
613 		break;
614 	case SIOCATMARK:
615 		answ = tp->urg_data &&
616 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
617 		break;
618 	case SIOCOUTQ:
619 		if (sk->sk_state == TCP_LISTEN)
620 			return -EINVAL;
621 
622 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
623 			answ = 0;
624 		else
625 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
626 		break;
627 	case SIOCOUTQNSD:
628 		if (sk->sk_state == TCP_LISTEN)
629 			return -EINVAL;
630 
631 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
632 			answ = 0;
633 		else
634 			answ = READ_ONCE(tp->write_seq) -
635 			       READ_ONCE(tp->snd_nxt);
636 		break;
637 	default:
638 		return -ENOIOCTLCMD;
639 	}
640 
641 	return put_user(answ, (int __user *)arg);
642 }
643 EXPORT_SYMBOL(tcp_ioctl);
644 
645 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
646 {
647 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
648 	tp->pushed_seq = tp->write_seq;
649 }
650 
651 static inline bool forced_push(const struct tcp_sock *tp)
652 {
653 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
654 }
655 
656 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
657 {
658 	struct tcp_sock *tp = tcp_sk(sk);
659 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
660 
661 	skb->csum    = 0;
662 	tcb->seq     = tcb->end_seq = tp->write_seq;
663 	tcb->tcp_flags = TCPHDR_ACK;
664 	tcb->sacked  = 0;
665 	__skb_header_release(skb);
666 	tcp_add_write_queue_tail(sk, skb);
667 	sk_wmem_queued_add(sk, skb->truesize);
668 	sk_mem_charge(sk, skb->truesize);
669 	if (tp->nonagle & TCP_NAGLE_PUSH)
670 		tp->nonagle &= ~TCP_NAGLE_PUSH;
671 
672 	tcp_slow_start_after_idle_check(sk);
673 }
674 
675 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
676 {
677 	if (flags & MSG_OOB)
678 		tp->snd_up = tp->write_seq;
679 }
680 
681 /* If a not yet filled skb is pushed, do not send it if
682  * we have data packets in Qdisc or NIC queues :
683  * Because TX completion will happen shortly, it gives a chance
684  * to coalesce future sendmsg() payload into this skb, without
685  * need for a timer, and with no latency trade off.
686  * As packets containing data payload have a bigger truesize
687  * than pure acks (dataless) packets, the last checks prevent
688  * autocorking if we only have an ACK in Qdisc/NIC queues,
689  * or if TX completion was delayed after we processed ACK packet.
690  */
691 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
692 				int size_goal)
693 {
694 	return skb->len < size_goal &&
695 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
696 	       !tcp_rtx_queue_empty(sk) &&
697 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
698 }
699 
700 void tcp_push(struct sock *sk, int flags, int mss_now,
701 	      int nonagle, int size_goal)
702 {
703 	struct tcp_sock *tp = tcp_sk(sk);
704 	struct sk_buff *skb;
705 
706 	skb = tcp_write_queue_tail(sk);
707 	if (!skb)
708 		return;
709 	if (!(flags & MSG_MORE) || forced_push(tp))
710 		tcp_mark_push(tp, skb);
711 
712 	tcp_mark_urg(tp, flags);
713 
714 	if (tcp_should_autocork(sk, skb, size_goal)) {
715 
716 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
717 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
718 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
719 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
720 		}
721 		/* It is possible TX completion already happened
722 		 * before we set TSQ_THROTTLED.
723 		 */
724 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
725 			return;
726 	}
727 
728 	if (flags & MSG_MORE)
729 		nonagle = TCP_NAGLE_CORK;
730 
731 	__tcp_push_pending_frames(sk, mss_now, nonagle);
732 }
733 
734 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
735 				unsigned int offset, size_t len)
736 {
737 	struct tcp_splice_state *tss = rd_desc->arg.data;
738 	int ret;
739 
740 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
741 			      min(rd_desc->count, len), tss->flags);
742 	if (ret > 0)
743 		rd_desc->count -= ret;
744 	return ret;
745 }
746 
747 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
748 {
749 	/* Store TCP splice context information in read_descriptor_t. */
750 	read_descriptor_t rd_desc = {
751 		.arg.data = tss,
752 		.count	  = tss->len,
753 	};
754 
755 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
756 }
757 
758 /**
759  *  tcp_splice_read - splice data from TCP socket to a pipe
760  * @sock:	socket to splice from
761  * @ppos:	position (not valid)
762  * @pipe:	pipe to splice to
763  * @len:	number of bytes to splice
764  * @flags:	splice modifier flags
765  *
766  * Description:
767  *    Will read pages from given socket and fill them into a pipe.
768  *
769  **/
770 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
771 			struct pipe_inode_info *pipe, size_t len,
772 			unsigned int flags)
773 {
774 	struct sock *sk = sock->sk;
775 	struct tcp_splice_state tss = {
776 		.pipe = pipe,
777 		.len = len,
778 		.flags = flags,
779 	};
780 	long timeo;
781 	ssize_t spliced;
782 	int ret;
783 
784 	sock_rps_record_flow(sk);
785 	/*
786 	 * We can't seek on a socket input
787 	 */
788 	if (unlikely(*ppos))
789 		return -ESPIPE;
790 
791 	ret = spliced = 0;
792 
793 	lock_sock(sk);
794 
795 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
796 	while (tss.len) {
797 		ret = __tcp_splice_read(sk, &tss);
798 		if (ret < 0)
799 			break;
800 		else if (!ret) {
801 			if (spliced)
802 				break;
803 			if (sock_flag(sk, SOCK_DONE))
804 				break;
805 			if (sk->sk_err) {
806 				ret = sock_error(sk);
807 				break;
808 			}
809 			if (sk->sk_shutdown & RCV_SHUTDOWN)
810 				break;
811 			if (sk->sk_state == TCP_CLOSE) {
812 				/*
813 				 * This occurs when user tries to read
814 				 * from never connected socket.
815 				 */
816 				ret = -ENOTCONN;
817 				break;
818 			}
819 			if (!timeo) {
820 				ret = -EAGAIN;
821 				break;
822 			}
823 			/* if __tcp_splice_read() got nothing while we have
824 			 * an skb in receive queue, we do not want to loop.
825 			 * This might happen with URG data.
826 			 */
827 			if (!skb_queue_empty(&sk->sk_receive_queue))
828 				break;
829 			sk_wait_data(sk, &timeo, NULL);
830 			if (signal_pending(current)) {
831 				ret = sock_intr_errno(timeo);
832 				break;
833 			}
834 			continue;
835 		}
836 		tss.len -= ret;
837 		spliced += ret;
838 
839 		if (!timeo)
840 			break;
841 		release_sock(sk);
842 		lock_sock(sk);
843 
844 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
845 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
846 		    signal_pending(current))
847 			break;
848 	}
849 
850 	release_sock(sk);
851 
852 	if (spliced)
853 		return spliced;
854 
855 	return ret;
856 }
857 EXPORT_SYMBOL(tcp_splice_read);
858 
859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
860 				    bool force_schedule)
861 {
862 	struct sk_buff *skb;
863 
864 	/* The TCP header must be at least 32-bit aligned.  */
865 	size = ALIGN(size, 4);
866 
867 	if (unlikely(tcp_under_memory_pressure(sk)))
868 		sk_mem_reclaim_partial(sk);
869 
870 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
871 	if (likely(skb)) {
872 		bool mem_scheduled;
873 
874 		if (force_schedule) {
875 			mem_scheduled = true;
876 			sk_forced_mem_schedule(sk, skb->truesize);
877 		} else {
878 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 		}
880 		if (likely(mem_scheduled)) {
881 			skb_reserve(skb, sk->sk_prot->max_header);
882 			/*
883 			 * Make sure that we have exactly size bytes
884 			 * available to the caller, no more, no less.
885 			 */
886 			skb->reserved_tailroom = skb->end - skb->tail - size;
887 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 			return skb;
889 		}
890 		__kfree_skb(skb);
891 	} else {
892 		sk->sk_prot->enter_memory_pressure(sk);
893 		sk_stream_moderate_sndbuf(sk);
894 	}
895 	return NULL;
896 }
897 
898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 				       int large_allowed)
900 {
901 	struct tcp_sock *tp = tcp_sk(sk);
902 	u32 new_size_goal, size_goal;
903 
904 	if (!large_allowed)
905 		return mss_now;
906 
907 	/* Note : tcp_tso_autosize() will eventually split this later */
908 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
909 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
910 
911 	/* We try hard to avoid divides here */
912 	size_goal = tp->gso_segs * mss_now;
913 	if (unlikely(new_size_goal < size_goal ||
914 		     new_size_goal >= size_goal + mss_now)) {
915 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
916 				     sk->sk_gso_max_segs);
917 		size_goal = tp->gso_segs * mss_now;
918 	}
919 
920 	return max(size_goal, mss_now);
921 }
922 
923 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
924 {
925 	int mss_now;
926 
927 	mss_now = tcp_current_mss(sk);
928 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
929 
930 	return mss_now;
931 }
932 
933 /* In some cases, both sendpage() and sendmsg() could have added
934  * an skb to the write queue, but failed adding payload on it.
935  * We need to remove it to consume less memory, but more
936  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
937  * users.
938  */
939 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
940 {
941 	if (skb && !skb->len) {
942 		tcp_unlink_write_queue(skb, sk);
943 		if (tcp_write_queue_empty(sk))
944 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945 		sk_wmem_free_skb(sk, skb);
946 	}
947 }
948 
949 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
950 				      struct page *page, int offset, size_t *size)
951 {
952 	struct sk_buff *skb = tcp_write_queue_tail(sk);
953 	struct tcp_sock *tp = tcp_sk(sk);
954 	bool can_coalesce;
955 	int copy, i;
956 
957 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
958 	    !tcp_skb_can_collapse_to(skb)) {
959 new_segment:
960 		if (!sk_stream_memory_free(sk))
961 			return NULL;
962 
963 		skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
964 					  tcp_rtx_and_write_queues_empty(sk));
965 		if (!skb)
966 			return NULL;
967 
968 #ifdef CONFIG_TLS_DEVICE
969 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
970 #endif
971 		tcp_skb_entail(sk, skb);
972 		copy = size_goal;
973 	}
974 
975 	if (copy > *size)
976 		copy = *size;
977 
978 	i = skb_shinfo(skb)->nr_frags;
979 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
980 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
981 		tcp_mark_push(tp, skb);
982 		goto new_segment;
983 	}
984 	if (!sk_wmem_schedule(sk, copy))
985 		return NULL;
986 
987 	if (can_coalesce) {
988 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
989 	} else {
990 		get_page(page);
991 		skb_fill_page_desc(skb, i, page, offset, copy);
992 	}
993 
994 	if (!(flags & MSG_NO_SHARED_FRAGS))
995 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
996 
997 	skb->len += copy;
998 	skb->data_len += copy;
999 	skb->truesize += copy;
1000 	sk_wmem_queued_add(sk, copy);
1001 	sk_mem_charge(sk, copy);
1002 	skb->ip_summed = CHECKSUM_PARTIAL;
1003 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1004 	TCP_SKB_CB(skb)->end_seq += copy;
1005 	tcp_skb_pcount_set(skb, 0);
1006 
1007 	*size = copy;
1008 	return skb;
1009 }
1010 
1011 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1012 			 size_t size, int flags)
1013 {
1014 	struct tcp_sock *tp = tcp_sk(sk);
1015 	int mss_now, size_goal;
1016 	int err;
1017 	ssize_t copied;
1018 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1019 
1020 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1021 	    WARN_ONCE(!sendpage_ok(page),
1022 		      "page must not be a Slab one and have page_count > 0"))
1023 		return -EINVAL;
1024 
1025 	/* Wait for a connection to finish. One exception is TCP Fast Open
1026 	 * (passive side) where data is allowed to be sent before a connection
1027 	 * is fully established.
1028 	 */
1029 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1030 	    !tcp_passive_fastopen(sk)) {
1031 		err = sk_stream_wait_connect(sk, &timeo);
1032 		if (err != 0)
1033 			goto out_err;
1034 	}
1035 
1036 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1037 
1038 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1039 	copied = 0;
1040 
1041 	err = -EPIPE;
1042 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1043 		goto out_err;
1044 
1045 	while (size > 0) {
1046 		struct sk_buff *skb;
1047 		size_t copy = size;
1048 
1049 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1050 		if (!skb)
1051 			goto wait_for_space;
1052 
1053 		if (!copied)
1054 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1055 
1056 		copied += copy;
1057 		offset += copy;
1058 		size -= copy;
1059 		if (!size)
1060 			goto out;
1061 
1062 		if (skb->len < size_goal || (flags & MSG_OOB))
1063 			continue;
1064 
1065 		if (forced_push(tp)) {
1066 			tcp_mark_push(tp, skb);
1067 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1068 		} else if (skb == tcp_send_head(sk))
1069 			tcp_push_one(sk, mss_now);
1070 		continue;
1071 
1072 wait_for_space:
1073 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1074 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1075 			 TCP_NAGLE_PUSH, size_goal);
1076 
1077 		err = sk_stream_wait_memory(sk, &timeo);
1078 		if (err != 0)
1079 			goto do_error;
1080 
1081 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1082 	}
1083 
1084 out:
1085 	if (copied) {
1086 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1087 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1088 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1089 	}
1090 	return copied;
1091 
1092 do_error:
1093 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1094 	if (copied)
1095 		goto out;
1096 out_err:
1097 	/* make sure we wake any epoll edge trigger waiter */
1098 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1099 		sk->sk_write_space(sk);
1100 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1101 	}
1102 	return sk_stream_error(sk, flags, err);
1103 }
1104 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1105 
1106 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1107 			size_t size, int flags)
1108 {
1109 	if (!(sk->sk_route_caps & NETIF_F_SG))
1110 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1111 
1112 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1113 
1114 	return do_tcp_sendpages(sk, page, offset, size, flags);
1115 }
1116 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1117 
1118 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1119 		 size_t size, int flags)
1120 {
1121 	int ret;
1122 
1123 	lock_sock(sk);
1124 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1125 	release_sock(sk);
1126 
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL(tcp_sendpage);
1130 
1131 void tcp_free_fastopen_req(struct tcp_sock *tp)
1132 {
1133 	if (tp->fastopen_req) {
1134 		kfree(tp->fastopen_req);
1135 		tp->fastopen_req = NULL;
1136 	}
1137 }
1138 
1139 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1140 				int *copied, size_t size,
1141 				struct ubuf_info *uarg)
1142 {
1143 	struct tcp_sock *tp = tcp_sk(sk);
1144 	struct inet_sock *inet = inet_sk(sk);
1145 	struct sockaddr *uaddr = msg->msg_name;
1146 	int err, flags;
1147 
1148 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1149 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1150 	     uaddr->sa_family == AF_UNSPEC))
1151 		return -EOPNOTSUPP;
1152 	if (tp->fastopen_req)
1153 		return -EALREADY; /* Another Fast Open is in progress */
1154 
1155 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1156 				   sk->sk_allocation);
1157 	if (unlikely(!tp->fastopen_req))
1158 		return -ENOBUFS;
1159 	tp->fastopen_req->data = msg;
1160 	tp->fastopen_req->size = size;
1161 	tp->fastopen_req->uarg = uarg;
1162 
1163 	if (inet->defer_connect) {
1164 		err = tcp_connect(sk);
1165 		/* Same failure procedure as in tcp_v4/6_connect */
1166 		if (err) {
1167 			tcp_set_state(sk, TCP_CLOSE);
1168 			inet->inet_dport = 0;
1169 			sk->sk_route_caps = 0;
1170 		}
1171 	}
1172 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1173 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1174 				    msg->msg_namelen, flags, 1);
1175 	/* fastopen_req could already be freed in __inet_stream_connect
1176 	 * if the connection times out or gets rst
1177 	 */
1178 	if (tp->fastopen_req) {
1179 		*copied = tp->fastopen_req->copied;
1180 		tcp_free_fastopen_req(tp);
1181 		inet->defer_connect = 0;
1182 	}
1183 	return err;
1184 }
1185 
1186 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1187 {
1188 	struct tcp_sock *tp = tcp_sk(sk);
1189 	struct ubuf_info *uarg = NULL;
1190 	struct sk_buff *skb;
1191 	struct sockcm_cookie sockc;
1192 	int flags, err, copied = 0;
1193 	int mss_now = 0, size_goal, copied_syn = 0;
1194 	int process_backlog = 0;
1195 	bool zc = false;
1196 	long timeo;
1197 
1198 	flags = msg->msg_flags;
1199 
1200 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1201 		skb = tcp_write_queue_tail(sk);
1202 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1203 		if (!uarg) {
1204 			err = -ENOBUFS;
1205 			goto out_err;
1206 		}
1207 
1208 		zc = sk->sk_route_caps & NETIF_F_SG;
1209 		if (!zc)
1210 			uarg->zerocopy = 0;
1211 	}
1212 
1213 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1214 	    !tp->repair) {
1215 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1216 		if (err == -EINPROGRESS && copied_syn > 0)
1217 			goto out;
1218 		else if (err)
1219 			goto out_err;
1220 	}
1221 
1222 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1223 
1224 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1225 
1226 	/* Wait for a connection to finish. One exception is TCP Fast Open
1227 	 * (passive side) where data is allowed to be sent before a connection
1228 	 * is fully established.
1229 	 */
1230 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1231 	    !tcp_passive_fastopen(sk)) {
1232 		err = sk_stream_wait_connect(sk, &timeo);
1233 		if (err != 0)
1234 			goto do_error;
1235 	}
1236 
1237 	if (unlikely(tp->repair)) {
1238 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1239 			copied = tcp_send_rcvq(sk, msg, size);
1240 			goto out_nopush;
1241 		}
1242 
1243 		err = -EINVAL;
1244 		if (tp->repair_queue == TCP_NO_QUEUE)
1245 			goto out_err;
1246 
1247 		/* 'common' sending to sendq */
1248 	}
1249 
1250 	sockcm_init(&sockc, sk);
1251 	if (msg->msg_controllen) {
1252 		err = sock_cmsg_send(sk, msg, &sockc);
1253 		if (unlikely(err)) {
1254 			err = -EINVAL;
1255 			goto out_err;
1256 		}
1257 	}
1258 
1259 	/* This should be in poll */
1260 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1261 
1262 	/* Ok commence sending. */
1263 	copied = 0;
1264 
1265 restart:
1266 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1267 
1268 	err = -EPIPE;
1269 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1270 		goto do_error;
1271 
1272 	while (msg_data_left(msg)) {
1273 		int copy = 0;
1274 
1275 		skb = tcp_write_queue_tail(sk);
1276 		if (skb)
1277 			copy = size_goal - skb->len;
1278 
1279 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1280 			bool first_skb;
1281 
1282 new_segment:
1283 			if (!sk_stream_memory_free(sk))
1284 				goto wait_for_space;
1285 
1286 			if (unlikely(process_backlog >= 16)) {
1287 				process_backlog = 0;
1288 				if (sk_flush_backlog(sk))
1289 					goto restart;
1290 			}
1291 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1292 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1293 						  first_skb);
1294 			if (!skb)
1295 				goto wait_for_space;
1296 
1297 			process_backlog++;
1298 			skb->ip_summed = CHECKSUM_PARTIAL;
1299 
1300 			tcp_skb_entail(sk, skb);
1301 			copy = size_goal;
1302 
1303 			/* All packets are restored as if they have
1304 			 * already been sent. skb_mstamp_ns isn't set to
1305 			 * avoid wrong rtt estimation.
1306 			 */
1307 			if (tp->repair)
1308 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1309 		}
1310 
1311 		/* Try to append data to the end of skb. */
1312 		if (copy > msg_data_left(msg))
1313 			copy = msg_data_left(msg);
1314 
1315 		/* Where to copy to? */
1316 		if (skb_availroom(skb) > 0 && !zc) {
1317 			/* We have some space in skb head. Superb! */
1318 			copy = min_t(int, copy, skb_availroom(skb));
1319 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1320 			if (err)
1321 				goto do_fault;
1322 		} else if (!zc) {
1323 			bool merge = true;
1324 			int i = skb_shinfo(skb)->nr_frags;
1325 			struct page_frag *pfrag = sk_page_frag(sk);
1326 
1327 			if (!sk_page_frag_refill(sk, pfrag))
1328 				goto wait_for_space;
1329 
1330 			if (!skb_can_coalesce(skb, i, pfrag->page,
1331 					      pfrag->offset)) {
1332 				if (i >= sysctl_max_skb_frags) {
1333 					tcp_mark_push(tp, skb);
1334 					goto new_segment;
1335 				}
1336 				merge = false;
1337 			}
1338 
1339 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1340 
1341 			if (!sk_wmem_schedule(sk, copy))
1342 				goto wait_for_space;
1343 
1344 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1345 						       pfrag->page,
1346 						       pfrag->offset,
1347 						       copy);
1348 			if (err)
1349 				goto do_error;
1350 
1351 			/* Update the skb. */
1352 			if (merge) {
1353 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1354 			} else {
1355 				skb_fill_page_desc(skb, i, pfrag->page,
1356 						   pfrag->offset, copy);
1357 				page_ref_inc(pfrag->page);
1358 			}
1359 			pfrag->offset += copy;
1360 		} else {
1361 			if (!sk_wmem_schedule(sk, copy))
1362 				goto wait_for_space;
1363 
1364 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1365 			if (err == -EMSGSIZE || err == -EEXIST) {
1366 				tcp_mark_push(tp, skb);
1367 				goto new_segment;
1368 			}
1369 			if (err < 0)
1370 				goto do_error;
1371 			copy = err;
1372 		}
1373 
1374 		if (!copied)
1375 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1376 
1377 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1378 		TCP_SKB_CB(skb)->end_seq += copy;
1379 		tcp_skb_pcount_set(skb, 0);
1380 
1381 		copied += copy;
1382 		if (!msg_data_left(msg)) {
1383 			if (unlikely(flags & MSG_EOR))
1384 				TCP_SKB_CB(skb)->eor = 1;
1385 			goto out;
1386 		}
1387 
1388 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1389 			continue;
1390 
1391 		if (forced_push(tp)) {
1392 			tcp_mark_push(tp, skb);
1393 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1394 		} else if (skb == tcp_send_head(sk))
1395 			tcp_push_one(sk, mss_now);
1396 		continue;
1397 
1398 wait_for_space:
1399 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1400 		if (copied)
1401 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1402 				 TCP_NAGLE_PUSH, size_goal);
1403 
1404 		err = sk_stream_wait_memory(sk, &timeo);
1405 		if (err != 0)
1406 			goto do_error;
1407 
1408 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1409 	}
1410 
1411 out:
1412 	if (copied) {
1413 		tcp_tx_timestamp(sk, sockc.tsflags);
1414 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1415 	}
1416 out_nopush:
1417 	net_zcopy_put(uarg);
1418 	return copied + copied_syn;
1419 
1420 do_error:
1421 	skb = tcp_write_queue_tail(sk);
1422 do_fault:
1423 	tcp_remove_empty_skb(sk, skb);
1424 
1425 	if (copied + copied_syn)
1426 		goto out;
1427 out_err:
1428 	net_zcopy_put_abort(uarg, true);
1429 	err = sk_stream_error(sk, flags, err);
1430 	/* make sure we wake any epoll edge trigger waiter */
1431 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1432 		sk->sk_write_space(sk);
1433 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1434 	}
1435 	return err;
1436 }
1437 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1438 
1439 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1440 {
1441 	int ret;
1442 
1443 	lock_sock(sk);
1444 	ret = tcp_sendmsg_locked(sk, msg, size);
1445 	release_sock(sk);
1446 
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL(tcp_sendmsg);
1450 
1451 /*
1452  *	Handle reading urgent data. BSD has very simple semantics for
1453  *	this, no blocking and very strange errors 8)
1454  */
1455 
1456 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1457 {
1458 	struct tcp_sock *tp = tcp_sk(sk);
1459 
1460 	/* No URG data to read. */
1461 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1462 	    tp->urg_data == TCP_URG_READ)
1463 		return -EINVAL;	/* Yes this is right ! */
1464 
1465 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1466 		return -ENOTCONN;
1467 
1468 	if (tp->urg_data & TCP_URG_VALID) {
1469 		int err = 0;
1470 		char c = tp->urg_data;
1471 
1472 		if (!(flags & MSG_PEEK))
1473 			tp->urg_data = TCP_URG_READ;
1474 
1475 		/* Read urgent data. */
1476 		msg->msg_flags |= MSG_OOB;
1477 
1478 		if (len > 0) {
1479 			if (!(flags & MSG_TRUNC))
1480 				err = memcpy_to_msg(msg, &c, 1);
1481 			len = 1;
1482 		} else
1483 			msg->msg_flags |= MSG_TRUNC;
1484 
1485 		return err ? -EFAULT : len;
1486 	}
1487 
1488 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1489 		return 0;
1490 
1491 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1492 	 * the available implementations agree in this case:
1493 	 * this call should never block, independent of the
1494 	 * blocking state of the socket.
1495 	 * Mike <pall@rz.uni-karlsruhe.de>
1496 	 */
1497 	return -EAGAIN;
1498 }
1499 
1500 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1501 {
1502 	struct sk_buff *skb;
1503 	int copied = 0, err = 0;
1504 
1505 	/* XXX -- need to support SO_PEEK_OFF */
1506 
1507 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1508 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1509 		if (err)
1510 			return err;
1511 		copied += skb->len;
1512 	}
1513 
1514 	skb_queue_walk(&sk->sk_write_queue, skb) {
1515 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1516 		if (err)
1517 			break;
1518 
1519 		copied += skb->len;
1520 	}
1521 
1522 	return err ?: copied;
1523 }
1524 
1525 /* Clean up the receive buffer for full frames taken by the user,
1526  * then send an ACK if necessary.  COPIED is the number of bytes
1527  * tcp_recvmsg has given to the user so far, it speeds up the
1528  * calculation of whether or not we must ACK for the sake of
1529  * a window update.
1530  */
1531 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1532 {
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	bool time_to_ack = false;
1535 
1536 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1537 
1538 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1539 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1540 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1541 
1542 	if (inet_csk_ack_scheduled(sk)) {
1543 		const struct inet_connection_sock *icsk = inet_csk(sk);
1544 
1545 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1546 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1547 		    /*
1548 		     * If this read emptied read buffer, we send ACK, if
1549 		     * connection is not bidirectional, user drained
1550 		     * receive buffer and there was a small segment
1551 		     * in queue.
1552 		     */
1553 		    (copied > 0 &&
1554 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1555 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1556 		       !inet_csk_in_pingpong_mode(sk))) &&
1557 		      !atomic_read(&sk->sk_rmem_alloc)))
1558 			time_to_ack = true;
1559 	}
1560 
1561 	/* We send an ACK if we can now advertise a non-zero window
1562 	 * which has been raised "significantly".
1563 	 *
1564 	 * Even if window raised up to infinity, do not send window open ACK
1565 	 * in states, where we will not receive more. It is useless.
1566 	 */
1567 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1568 		__u32 rcv_window_now = tcp_receive_window(tp);
1569 
1570 		/* Optimize, __tcp_select_window() is not cheap. */
1571 		if (2*rcv_window_now <= tp->window_clamp) {
1572 			__u32 new_window = __tcp_select_window(sk);
1573 
1574 			/* Send ACK now, if this read freed lots of space
1575 			 * in our buffer. Certainly, new_window is new window.
1576 			 * We can advertise it now, if it is not less than current one.
1577 			 * "Lots" means "at least twice" here.
1578 			 */
1579 			if (new_window && new_window >= 2 * rcv_window_now)
1580 				time_to_ack = true;
1581 		}
1582 	}
1583 	if (time_to_ack)
1584 		tcp_send_ack(sk);
1585 }
1586 
1587 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1588 {
1589 	struct sk_buff *skb;
1590 	u32 offset;
1591 
1592 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1593 		offset = seq - TCP_SKB_CB(skb)->seq;
1594 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1595 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1596 			offset--;
1597 		}
1598 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1599 			*off = offset;
1600 			return skb;
1601 		}
1602 		/* This looks weird, but this can happen if TCP collapsing
1603 		 * splitted a fat GRO packet, while we released socket lock
1604 		 * in skb_splice_bits()
1605 		 */
1606 		sk_eat_skb(sk, skb);
1607 	}
1608 	return NULL;
1609 }
1610 
1611 /*
1612  * This routine provides an alternative to tcp_recvmsg() for routines
1613  * that would like to handle copying from skbuffs directly in 'sendfile'
1614  * fashion.
1615  * Note:
1616  *	- It is assumed that the socket was locked by the caller.
1617  *	- The routine does not block.
1618  *	- At present, there is no support for reading OOB data
1619  *	  or for 'peeking' the socket using this routine
1620  *	  (although both would be easy to implement).
1621  */
1622 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1623 		  sk_read_actor_t recv_actor)
1624 {
1625 	struct sk_buff *skb;
1626 	struct tcp_sock *tp = tcp_sk(sk);
1627 	u32 seq = tp->copied_seq;
1628 	u32 offset;
1629 	int copied = 0;
1630 
1631 	if (sk->sk_state == TCP_LISTEN)
1632 		return -ENOTCONN;
1633 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1634 		if (offset < skb->len) {
1635 			int used;
1636 			size_t len;
1637 
1638 			len = skb->len - offset;
1639 			/* Stop reading if we hit a patch of urgent data */
1640 			if (tp->urg_data) {
1641 				u32 urg_offset = tp->urg_seq - seq;
1642 				if (urg_offset < len)
1643 					len = urg_offset;
1644 				if (!len)
1645 					break;
1646 			}
1647 			used = recv_actor(desc, skb, offset, len);
1648 			if (used <= 0) {
1649 				if (!copied)
1650 					copied = used;
1651 				break;
1652 			} else if (used <= len) {
1653 				seq += used;
1654 				copied += used;
1655 				offset += used;
1656 			}
1657 			/* If recv_actor drops the lock (e.g. TCP splice
1658 			 * receive) the skb pointer might be invalid when
1659 			 * getting here: tcp_collapse might have deleted it
1660 			 * while aggregating skbs from the socket queue.
1661 			 */
1662 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1663 			if (!skb)
1664 				break;
1665 			/* TCP coalescing might have appended data to the skb.
1666 			 * Try to splice more frags
1667 			 */
1668 			if (offset + 1 != skb->len)
1669 				continue;
1670 		}
1671 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1672 			sk_eat_skb(sk, skb);
1673 			++seq;
1674 			break;
1675 		}
1676 		sk_eat_skb(sk, skb);
1677 		if (!desc->count)
1678 			break;
1679 		WRITE_ONCE(tp->copied_seq, seq);
1680 	}
1681 	WRITE_ONCE(tp->copied_seq, seq);
1682 
1683 	tcp_rcv_space_adjust(sk);
1684 
1685 	/* Clean up data we have read: This will do ACK frames. */
1686 	if (copied > 0) {
1687 		tcp_recv_skb(sk, seq, &offset);
1688 		tcp_cleanup_rbuf(sk, copied);
1689 	}
1690 	return copied;
1691 }
1692 EXPORT_SYMBOL(tcp_read_sock);
1693 
1694 int tcp_peek_len(struct socket *sock)
1695 {
1696 	return tcp_inq(sock->sk);
1697 }
1698 EXPORT_SYMBOL(tcp_peek_len);
1699 
1700 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1701 int tcp_set_rcvlowat(struct sock *sk, int val)
1702 {
1703 	int cap;
1704 
1705 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1706 		cap = sk->sk_rcvbuf >> 1;
1707 	else
1708 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1709 	val = min(val, cap);
1710 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1711 
1712 	/* Check if we need to signal EPOLLIN right now */
1713 	tcp_data_ready(sk);
1714 
1715 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716 		return 0;
1717 
1718 	val <<= 1;
1719 	if (val > sk->sk_rcvbuf) {
1720 		WRITE_ONCE(sk->sk_rcvbuf, val);
1721 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1722 	}
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(tcp_set_rcvlowat);
1726 
1727 void tcp_update_recv_tstamps(struct sk_buff *skb,
1728 			     struct scm_timestamping_internal *tss)
1729 {
1730 	if (skb->tstamp)
1731 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1732 	else
1733 		tss->ts[0] = (struct timespec64) {0};
1734 
1735 	if (skb_hwtstamps(skb)->hwtstamp)
1736 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1737 	else
1738 		tss->ts[2] = (struct timespec64) {0};
1739 }
1740 
1741 #ifdef CONFIG_MMU
1742 static const struct vm_operations_struct tcp_vm_ops = {
1743 };
1744 
1745 int tcp_mmap(struct file *file, struct socket *sock,
1746 	     struct vm_area_struct *vma)
1747 {
1748 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1749 		return -EPERM;
1750 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1751 
1752 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1753 	vma->vm_flags |= VM_MIXEDMAP;
1754 
1755 	vma->vm_ops = &tcp_vm_ops;
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL(tcp_mmap);
1759 
1760 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1761 				       u32 *offset_frag)
1762 {
1763 	skb_frag_t *frag;
1764 
1765 	offset_skb -= skb_headlen(skb);
1766 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1767 		return NULL;
1768 
1769 	frag = skb_shinfo(skb)->frags;
1770 	while (offset_skb) {
1771 		if (skb_frag_size(frag) > offset_skb) {
1772 			*offset_frag = offset_skb;
1773 			return frag;
1774 		}
1775 		offset_skb -= skb_frag_size(frag);
1776 		++frag;
1777 	}
1778 	*offset_frag = 0;
1779 	return frag;
1780 }
1781 
1782 static bool can_map_frag(const skb_frag_t *frag)
1783 {
1784 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1785 }
1786 
1787 static int find_next_mappable_frag(const skb_frag_t *frag,
1788 				   int remaining_in_skb)
1789 {
1790 	int offset = 0;
1791 
1792 	if (likely(can_map_frag(frag)))
1793 		return 0;
1794 
1795 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1796 		offset += skb_frag_size(frag);
1797 		++frag;
1798 	}
1799 	return offset;
1800 }
1801 
1802 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1803 					  struct tcp_zerocopy_receive *zc,
1804 					  struct sk_buff *skb, u32 offset)
1805 {
1806 	u32 frag_offset, partial_frag_remainder = 0;
1807 	int mappable_offset;
1808 	skb_frag_t *frag;
1809 
1810 	/* worst case: skip to next skb. try to improve on this case below */
1811 	zc->recv_skip_hint = skb->len - offset;
1812 
1813 	/* Find the frag containing this offset (and how far into that frag) */
1814 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1815 	if (!frag)
1816 		return;
1817 
1818 	if (frag_offset) {
1819 		struct skb_shared_info *info = skb_shinfo(skb);
1820 
1821 		/* We read part of the last frag, must recvmsg() rest of skb. */
1822 		if (frag == &info->frags[info->nr_frags - 1])
1823 			return;
1824 
1825 		/* Else, we must at least read the remainder in this frag. */
1826 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1827 		zc->recv_skip_hint -= partial_frag_remainder;
1828 		++frag;
1829 	}
1830 
1831 	/* partial_frag_remainder: If part way through a frag, must read rest.
1832 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1833 	 * in partial_frag_remainder.
1834 	 */
1835 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1836 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1837 }
1838 
1839 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1840 			      int nonblock, int flags,
1841 			      struct scm_timestamping_internal *tss,
1842 			      int *cmsg_flags);
1843 static int receive_fallback_to_copy(struct sock *sk,
1844 				    struct tcp_zerocopy_receive *zc, int inq,
1845 				    struct scm_timestamping_internal *tss)
1846 {
1847 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1848 	struct msghdr msg = {};
1849 	struct iovec iov;
1850 	int err;
1851 
1852 	zc->length = 0;
1853 	zc->recv_skip_hint = 0;
1854 
1855 	if (copy_address != zc->copybuf_address)
1856 		return -EINVAL;
1857 
1858 	err = import_single_range(READ, (void __user *)copy_address,
1859 				  inq, &iov, &msg.msg_iter);
1860 	if (err)
1861 		return err;
1862 
1863 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1864 				 tss, &zc->msg_flags);
1865 	if (err < 0)
1866 		return err;
1867 
1868 	zc->copybuf_len = err;
1869 	if (likely(zc->copybuf_len)) {
1870 		struct sk_buff *skb;
1871 		u32 offset;
1872 
1873 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1874 		if (skb)
1875 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1876 	}
1877 	return 0;
1878 }
1879 
1880 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1881 				   struct sk_buff *skb, u32 copylen,
1882 				   u32 *offset, u32 *seq)
1883 {
1884 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1885 	struct msghdr msg = {};
1886 	struct iovec iov;
1887 	int err;
1888 
1889 	if (copy_address != zc->copybuf_address)
1890 		return -EINVAL;
1891 
1892 	err = import_single_range(READ, (void __user *)copy_address,
1893 				  copylen, &iov, &msg.msg_iter);
1894 	if (err)
1895 		return err;
1896 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1897 	if (err)
1898 		return err;
1899 	zc->recv_skip_hint -= copylen;
1900 	*offset += copylen;
1901 	*seq += copylen;
1902 	return (__s32)copylen;
1903 }
1904 
1905 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1906 				  struct sock *sk,
1907 				  struct sk_buff *skb,
1908 				  u32 *seq,
1909 				  s32 copybuf_len,
1910 				  struct scm_timestamping_internal *tss)
1911 {
1912 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1913 
1914 	if (!copylen)
1915 		return 0;
1916 	/* skb is null if inq < PAGE_SIZE. */
1917 	if (skb) {
1918 		offset = *seq - TCP_SKB_CB(skb)->seq;
1919 	} else {
1920 		skb = tcp_recv_skb(sk, *seq, &offset);
1921 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1922 			tcp_update_recv_tstamps(skb, tss);
1923 			zc->msg_flags |= TCP_CMSG_TS;
1924 		}
1925 	}
1926 
1927 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1928 						  seq);
1929 	return zc->copybuf_len < 0 ? 0 : copylen;
1930 }
1931 
1932 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1933 					      struct page **pending_pages,
1934 					      unsigned long pages_remaining,
1935 					      unsigned long *address,
1936 					      u32 *length,
1937 					      u32 *seq,
1938 					      struct tcp_zerocopy_receive *zc,
1939 					      u32 total_bytes_to_map,
1940 					      int err)
1941 {
1942 	/* At least one page did not map. Try zapping if we skipped earlier. */
1943 	if (err == -EBUSY &&
1944 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1945 		u32 maybe_zap_len;
1946 
1947 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1948 				*length + /* Mapped or pending */
1949 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1950 		zap_page_range(vma, *address, maybe_zap_len);
1951 		err = 0;
1952 	}
1953 
1954 	if (!err) {
1955 		unsigned long leftover_pages = pages_remaining;
1956 		int bytes_mapped;
1957 
1958 		/* We called zap_page_range, try to reinsert. */
1959 		err = vm_insert_pages(vma, *address,
1960 				      pending_pages,
1961 				      &pages_remaining);
1962 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1963 		*seq += bytes_mapped;
1964 		*address += bytes_mapped;
1965 	}
1966 	if (err) {
1967 		/* Either we were unable to zap, OR we zapped, retried an
1968 		 * insert, and still had an issue. Either ways, pages_remaining
1969 		 * is the number of pages we were unable to map, and we unroll
1970 		 * some state we speculatively touched before.
1971 		 */
1972 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1973 
1974 		*length -= bytes_not_mapped;
1975 		zc->recv_skip_hint += bytes_not_mapped;
1976 	}
1977 	return err;
1978 }
1979 
1980 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1981 					struct page **pages,
1982 					unsigned int pages_to_map,
1983 					unsigned long *address,
1984 					u32 *length,
1985 					u32 *seq,
1986 					struct tcp_zerocopy_receive *zc,
1987 					u32 total_bytes_to_map)
1988 {
1989 	unsigned long pages_remaining = pages_to_map;
1990 	unsigned int pages_mapped;
1991 	unsigned int bytes_mapped;
1992 	int err;
1993 
1994 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1995 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1996 	bytes_mapped = PAGE_SIZE * pages_mapped;
1997 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1998 	 * mapping (some but not all of the pages).
1999 	 */
2000 	*seq += bytes_mapped;
2001 	*address += bytes_mapped;
2002 
2003 	if (likely(!err))
2004 		return 0;
2005 
2006 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2007 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2008 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2009 		err);
2010 }
2011 
2012 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2013 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2014 				      struct tcp_zerocopy_receive *zc,
2015 				      struct scm_timestamping_internal *tss)
2016 {
2017 	unsigned long msg_control_addr;
2018 	struct msghdr cmsg_dummy;
2019 
2020 	msg_control_addr = (unsigned long)zc->msg_control;
2021 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2022 	cmsg_dummy.msg_controllen =
2023 		(__kernel_size_t)zc->msg_controllen;
2024 	cmsg_dummy.msg_flags = in_compat_syscall()
2025 		? MSG_CMSG_COMPAT : 0;
2026 	cmsg_dummy.msg_control_is_user = true;
2027 	zc->msg_flags = 0;
2028 	if (zc->msg_control == msg_control_addr &&
2029 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2030 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2031 		zc->msg_control = (__u64)
2032 			((uintptr_t)cmsg_dummy.msg_control);
2033 		zc->msg_controllen =
2034 			(__u64)cmsg_dummy.msg_controllen;
2035 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2036 	}
2037 }
2038 
2039 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2040 static int tcp_zerocopy_receive(struct sock *sk,
2041 				struct tcp_zerocopy_receive *zc,
2042 				struct scm_timestamping_internal *tss)
2043 {
2044 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2045 	unsigned long address = (unsigned long)zc->address;
2046 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2047 	s32 copybuf_len = zc->copybuf_len;
2048 	struct tcp_sock *tp = tcp_sk(sk);
2049 	const skb_frag_t *frags = NULL;
2050 	unsigned int pages_to_map = 0;
2051 	struct vm_area_struct *vma;
2052 	struct sk_buff *skb = NULL;
2053 	u32 seq = tp->copied_seq;
2054 	u32 total_bytes_to_map;
2055 	int inq = tcp_inq(sk);
2056 	int ret;
2057 
2058 	zc->copybuf_len = 0;
2059 	zc->msg_flags = 0;
2060 
2061 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2062 		return -EINVAL;
2063 
2064 	if (sk->sk_state == TCP_LISTEN)
2065 		return -ENOTCONN;
2066 
2067 	sock_rps_record_flow(sk);
2068 
2069 	if (inq && inq <= copybuf_len)
2070 		return receive_fallback_to_copy(sk, zc, inq, tss);
2071 
2072 	if (inq < PAGE_SIZE) {
2073 		zc->length = 0;
2074 		zc->recv_skip_hint = inq;
2075 		if (!inq && sock_flag(sk, SOCK_DONE))
2076 			return -EIO;
2077 		return 0;
2078 	}
2079 
2080 	mmap_read_lock(current->mm);
2081 
2082 	vma = vma_lookup(current->mm, address);
2083 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2084 		mmap_read_unlock(current->mm);
2085 		return -EINVAL;
2086 	}
2087 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2088 	avail_len = min_t(u32, vma_len, inq);
2089 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2090 	if (total_bytes_to_map) {
2091 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2092 			zap_page_range(vma, address, total_bytes_to_map);
2093 		zc->length = total_bytes_to_map;
2094 		zc->recv_skip_hint = 0;
2095 	} else {
2096 		zc->length = avail_len;
2097 		zc->recv_skip_hint = avail_len;
2098 	}
2099 	ret = 0;
2100 	while (length + PAGE_SIZE <= zc->length) {
2101 		int mappable_offset;
2102 		struct page *page;
2103 
2104 		if (zc->recv_skip_hint < PAGE_SIZE) {
2105 			u32 offset_frag;
2106 
2107 			if (skb) {
2108 				if (zc->recv_skip_hint > 0)
2109 					break;
2110 				skb = skb->next;
2111 				offset = seq - TCP_SKB_CB(skb)->seq;
2112 			} else {
2113 				skb = tcp_recv_skb(sk, seq, &offset);
2114 			}
2115 
2116 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2117 				tcp_update_recv_tstamps(skb, tss);
2118 				zc->msg_flags |= TCP_CMSG_TS;
2119 			}
2120 			zc->recv_skip_hint = skb->len - offset;
2121 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2122 			if (!frags || offset_frag)
2123 				break;
2124 		}
2125 
2126 		mappable_offset = find_next_mappable_frag(frags,
2127 							  zc->recv_skip_hint);
2128 		if (mappable_offset) {
2129 			zc->recv_skip_hint = mappable_offset;
2130 			break;
2131 		}
2132 		page = skb_frag_page(frags);
2133 		prefetchw(page);
2134 		pages[pages_to_map++] = page;
2135 		length += PAGE_SIZE;
2136 		zc->recv_skip_hint -= PAGE_SIZE;
2137 		frags++;
2138 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2139 		    zc->recv_skip_hint < PAGE_SIZE) {
2140 			/* Either full batch, or we're about to go to next skb
2141 			 * (and we cannot unroll failed ops across skbs).
2142 			 */
2143 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2144 							   pages_to_map,
2145 							   &address, &length,
2146 							   &seq, zc,
2147 							   total_bytes_to_map);
2148 			if (ret)
2149 				goto out;
2150 			pages_to_map = 0;
2151 		}
2152 	}
2153 	if (pages_to_map) {
2154 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2155 						   &address, &length, &seq,
2156 						   zc, total_bytes_to_map);
2157 	}
2158 out:
2159 	mmap_read_unlock(current->mm);
2160 	/* Try to copy straggler data. */
2161 	if (!ret)
2162 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2163 
2164 	if (length + copylen) {
2165 		WRITE_ONCE(tp->copied_seq, seq);
2166 		tcp_rcv_space_adjust(sk);
2167 
2168 		/* Clean up data we have read: This will do ACK frames. */
2169 		tcp_recv_skb(sk, seq, &offset);
2170 		tcp_cleanup_rbuf(sk, length + copylen);
2171 		ret = 0;
2172 		if (length == zc->length)
2173 			zc->recv_skip_hint = 0;
2174 	} else {
2175 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2176 			ret = -EIO;
2177 	}
2178 	zc->length = length;
2179 	return ret;
2180 }
2181 #endif
2182 
2183 /* Similar to __sock_recv_timestamp, but does not require an skb */
2184 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2185 			struct scm_timestamping_internal *tss)
2186 {
2187 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2188 	bool has_timestamping = false;
2189 
2190 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2191 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2192 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2193 				if (new_tstamp) {
2194 					struct __kernel_timespec kts = {
2195 						.tv_sec = tss->ts[0].tv_sec,
2196 						.tv_nsec = tss->ts[0].tv_nsec,
2197 					};
2198 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2199 						 sizeof(kts), &kts);
2200 				} else {
2201 					struct __kernel_old_timespec ts_old = {
2202 						.tv_sec = tss->ts[0].tv_sec,
2203 						.tv_nsec = tss->ts[0].tv_nsec,
2204 					};
2205 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2206 						 sizeof(ts_old), &ts_old);
2207 				}
2208 			} else {
2209 				if (new_tstamp) {
2210 					struct __kernel_sock_timeval stv = {
2211 						.tv_sec = tss->ts[0].tv_sec,
2212 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2213 					};
2214 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2215 						 sizeof(stv), &stv);
2216 				} else {
2217 					struct __kernel_old_timeval tv = {
2218 						.tv_sec = tss->ts[0].tv_sec,
2219 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2220 					};
2221 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2222 						 sizeof(tv), &tv);
2223 				}
2224 			}
2225 		}
2226 
2227 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2228 			has_timestamping = true;
2229 		else
2230 			tss->ts[0] = (struct timespec64) {0};
2231 	}
2232 
2233 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2234 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2235 			has_timestamping = true;
2236 		else
2237 			tss->ts[2] = (struct timespec64) {0};
2238 	}
2239 
2240 	if (has_timestamping) {
2241 		tss->ts[1] = (struct timespec64) {0};
2242 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2243 			put_cmsg_scm_timestamping64(msg, tss);
2244 		else
2245 			put_cmsg_scm_timestamping(msg, tss);
2246 	}
2247 }
2248 
2249 static int tcp_inq_hint(struct sock *sk)
2250 {
2251 	const struct tcp_sock *tp = tcp_sk(sk);
2252 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2253 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2254 	int inq;
2255 
2256 	inq = rcv_nxt - copied_seq;
2257 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2258 		lock_sock(sk);
2259 		inq = tp->rcv_nxt - tp->copied_seq;
2260 		release_sock(sk);
2261 	}
2262 	/* After receiving a FIN, tell the user-space to continue reading
2263 	 * by returning a non-zero inq.
2264 	 */
2265 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2266 		inq = 1;
2267 	return inq;
2268 }
2269 
2270 /*
2271  *	This routine copies from a sock struct into the user buffer.
2272  *
2273  *	Technical note: in 2.3 we work on _locked_ socket, so that
2274  *	tricks with *seq access order and skb->users are not required.
2275  *	Probably, code can be easily improved even more.
2276  */
2277 
2278 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2279 			      int nonblock, int flags,
2280 			      struct scm_timestamping_internal *tss,
2281 			      int *cmsg_flags)
2282 {
2283 	struct tcp_sock *tp = tcp_sk(sk);
2284 	int copied = 0;
2285 	u32 peek_seq;
2286 	u32 *seq;
2287 	unsigned long used;
2288 	int err;
2289 	int target;		/* Read at least this many bytes */
2290 	long timeo;
2291 	struct sk_buff *skb, *last;
2292 	u32 urg_hole = 0;
2293 
2294 	err = -ENOTCONN;
2295 	if (sk->sk_state == TCP_LISTEN)
2296 		goto out;
2297 
2298 	if (tp->recvmsg_inq)
2299 		*cmsg_flags = TCP_CMSG_INQ;
2300 	timeo = sock_rcvtimeo(sk, nonblock);
2301 
2302 	/* Urgent data needs to be handled specially. */
2303 	if (flags & MSG_OOB)
2304 		goto recv_urg;
2305 
2306 	if (unlikely(tp->repair)) {
2307 		err = -EPERM;
2308 		if (!(flags & MSG_PEEK))
2309 			goto out;
2310 
2311 		if (tp->repair_queue == TCP_SEND_QUEUE)
2312 			goto recv_sndq;
2313 
2314 		err = -EINVAL;
2315 		if (tp->repair_queue == TCP_NO_QUEUE)
2316 			goto out;
2317 
2318 		/* 'common' recv queue MSG_PEEK-ing */
2319 	}
2320 
2321 	seq = &tp->copied_seq;
2322 	if (flags & MSG_PEEK) {
2323 		peek_seq = tp->copied_seq;
2324 		seq = &peek_seq;
2325 	}
2326 
2327 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2328 
2329 	do {
2330 		u32 offset;
2331 
2332 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2333 		if (tp->urg_data && tp->urg_seq == *seq) {
2334 			if (copied)
2335 				break;
2336 			if (signal_pending(current)) {
2337 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2338 				break;
2339 			}
2340 		}
2341 
2342 		/* Next get a buffer. */
2343 
2344 		last = skb_peek_tail(&sk->sk_receive_queue);
2345 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2346 			last = skb;
2347 			/* Now that we have two receive queues this
2348 			 * shouldn't happen.
2349 			 */
2350 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2351 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2352 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2353 				 flags))
2354 				break;
2355 
2356 			offset = *seq - TCP_SKB_CB(skb)->seq;
2357 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2358 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2359 				offset--;
2360 			}
2361 			if (offset < skb->len)
2362 				goto found_ok_skb;
2363 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2364 				goto found_fin_ok;
2365 			WARN(!(flags & MSG_PEEK),
2366 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2367 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2368 		}
2369 
2370 		/* Well, if we have backlog, try to process it now yet. */
2371 
2372 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2373 			break;
2374 
2375 		if (copied) {
2376 			if (sk->sk_err ||
2377 			    sk->sk_state == TCP_CLOSE ||
2378 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2379 			    !timeo ||
2380 			    signal_pending(current))
2381 				break;
2382 		} else {
2383 			if (sock_flag(sk, SOCK_DONE))
2384 				break;
2385 
2386 			if (sk->sk_err) {
2387 				copied = sock_error(sk);
2388 				break;
2389 			}
2390 
2391 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2392 				break;
2393 
2394 			if (sk->sk_state == TCP_CLOSE) {
2395 				/* This occurs when user tries to read
2396 				 * from never connected socket.
2397 				 */
2398 				copied = -ENOTCONN;
2399 				break;
2400 			}
2401 
2402 			if (!timeo) {
2403 				copied = -EAGAIN;
2404 				break;
2405 			}
2406 
2407 			if (signal_pending(current)) {
2408 				copied = sock_intr_errno(timeo);
2409 				break;
2410 			}
2411 		}
2412 
2413 		tcp_cleanup_rbuf(sk, copied);
2414 
2415 		if (copied >= target) {
2416 			/* Do not sleep, just process backlog. */
2417 			release_sock(sk);
2418 			lock_sock(sk);
2419 		} else {
2420 			sk_wait_data(sk, &timeo, last);
2421 		}
2422 
2423 		if ((flags & MSG_PEEK) &&
2424 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2425 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2426 					    current->comm,
2427 					    task_pid_nr(current));
2428 			peek_seq = tp->copied_seq;
2429 		}
2430 		continue;
2431 
2432 found_ok_skb:
2433 		/* Ok so how much can we use? */
2434 		used = skb->len - offset;
2435 		if (len < used)
2436 			used = len;
2437 
2438 		/* Do we have urgent data here? */
2439 		if (tp->urg_data) {
2440 			u32 urg_offset = tp->urg_seq - *seq;
2441 			if (urg_offset < used) {
2442 				if (!urg_offset) {
2443 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2444 						WRITE_ONCE(*seq, *seq + 1);
2445 						urg_hole++;
2446 						offset++;
2447 						used--;
2448 						if (!used)
2449 							goto skip_copy;
2450 					}
2451 				} else
2452 					used = urg_offset;
2453 			}
2454 		}
2455 
2456 		if (!(flags & MSG_TRUNC)) {
2457 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2458 			if (err) {
2459 				/* Exception. Bailout! */
2460 				if (!copied)
2461 					copied = -EFAULT;
2462 				break;
2463 			}
2464 		}
2465 
2466 		WRITE_ONCE(*seq, *seq + used);
2467 		copied += used;
2468 		len -= used;
2469 
2470 		tcp_rcv_space_adjust(sk);
2471 
2472 skip_copy:
2473 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2474 			tp->urg_data = 0;
2475 			tcp_fast_path_check(sk);
2476 		}
2477 
2478 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2479 			tcp_update_recv_tstamps(skb, tss);
2480 			*cmsg_flags |= TCP_CMSG_TS;
2481 		}
2482 
2483 		if (used + offset < skb->len)
2484 			continue;
2485 
2486 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2487 			goto found_fin_ok;
2488 		if (!(flags & MSG_PEEK))
2489 			sk_eat_skb(sk, skb);
2490 		continue;
2491 
2492 found_fin_ok:
2493 		/* Process the FIN. */
2494 		WRITE_ONCE(*seq, *seq + 1);
2495 		if (!(flags & MSG_PEEK))
2496 			sk_eat_skb(sk, skb);
2497 		break;
2498 	} while (len > 0);
2499 
2500 	/* According to UNIX98, msg_name/msg_namelen are ignored
2501 	 * on connected socket. I was just happy when found this 8) --ANK
2502 	 */
2503 
2504 	/* Clean up data we have read: This will do ACK frames. */
2505 	tcp_cleanup_rbuf(sk, copied);
2506 	return copied;
2507 
2508 out:
2509 	return err;
2510 
2511 recv_urg:
2512 	err = tcp_recv_urg(sk, msg, len, flags);
2513 	goto out;
2514 
2515 recv_sndq:
2516 	err = tcp_peek_sndq(sk, msg, len);
2517 	goto out;
2518 }
2519 
2520 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2521 		int flags, int *addr_len)
2522 {
2523 	int cmsg_flags = 0, ret, inq;
2524 	struct scm_timestamping_internal tss;
2525 
2526 	if (unlikely(flags & MSG_ERRQUEUE))
2527 		return inet_recv_error(sk, msg, len, addr_len);
2528 
2529 	if (sk_can_busy_loop(sk) &&
2530 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2531 	    sk->sk_state == TCP_ESTABLISHED)
2532 		sk_busy_loop(sk, nonblock);
2533 
2534 	lock_sock(sk);
2535 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2536 				 &cmsg_flags);
2537 	release_sock(sk);
2538 
2539 	if (cmsg_flags && ret >= 0) {
2540 		if (cmsg_flags & TCP_CMSG_TS)
2541 			tcp_recv_timestamp(msg, sk, &tss);
2542 		if (cmsg_flags & TCP_CMSG_INQ) {
2543 			inq = tcp_inq_hint(sk);
2544 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2545 		}
2546 	}
2547 	return ret;
2548 }
2549 EXPORT_SYMBOL(tcp_recvmsg);
2550 
2551 void tcp_set_state(struct sock *sk, int state)
2552 {
2553 	int oldstate = sk->sk_state;
2554 
2555 	/* We defined a new enum for TCP states that are exported in BPF
2556 	 * so as not force the internal TCP states to be frozen. The
2557 	 * following checks will detect if an internal state value ever
2558 	 * differs from the BPF value. If this ever happens, then we will
2559 	 * need to remap the internal value to the BPF value before calling
2560 	 * tcp_call_bpf_2arg.
2561 	 */
2562 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2563 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2564 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2565 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2566 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2567 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2568 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2569 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2570 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2571 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2572 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2573 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2574 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2575 
2576 	/* bpf uapi header bpf.h defines an anonymous enum with values
2577 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2578 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2579 	 * But clang built vmlinux does not have this enum in DWARF
2580 	 * since clang removes the above code before generating IR/debuginfo.
2581 	 * Let us explicitly emit the type debuginfo to ensure the
2582 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2583 	 * regardless of which compiler is used.
2584 	 */
2585 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2586 
2587 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2588 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2589 
2590 	switch (state) {
2591 	case TCP_ESTABLISHED:
2592 		if (oldstate != TCP_ESTABLISHED)
2593 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2594 		break;
2595 
2596 	case TCP_CLOSE:
2597 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2598 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2599 
2600 		sk->sk_prot->unhash(sk);
2601 		if (inet_csk(sk)->icsk_bind_hash &&
2602 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2603 			inet_put_port(sk);
2604 		fallthrough;
2605 	default:
2606 		if (oldstate == TCP_ESTABLISHED)
2607 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2608 	}
2609 
2610 	/* Change state AFTER socket is unhashed to avoid closed
2611 	 * socket sitting in hash tables.
2612 	 */
2613 	inet_sk_state_store(sk, state);
2614 }
2615 EXPORT_SYMBOL_GPL(tcp_set_state);
2616 
2617 /*
2618  *	State processing on a close. This implements the state shift for
2619  *	sending our FIN frame. Note that we only send a FIN for some
2620  *	states. A shutdown() may have already sent the FIN, or we may be
2621  *	closed.
2622  */
2623 
2624 static const unsigned char new_state[16] = {
2625   /* current state:        new state:      action:	*/
2626   [0 /* (Invalid) */]	= TCP_CLOSE,
2627   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2628   [TCP_SYN_SENT]	= TCP_CLOSE,
2629   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2630   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2631   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2632   [TCP_TIME_WAIT]	= TCP_CLOSE,
2633   [TCP_CLOSE]		= TCP_CLOSE,
2634   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2635   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2636   [TCP_LISTEN]		= TCP_CLOSE,
2637   [TCP_CLOSING]		= TCP_CLOSING,
2638   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2639 };
2640 
2641 static int tcp_close_state(struct sock *sk)
2642 {
2643 	int next = (int)new_state[sk->sk_state];
2644 	int ns = next & TCP_STATE_MASK;
2645 
2646 	tcp_set_state(sk, ns);
2647 
2648 	return next & TCP_ACTION_FIN;
2649 }
2650 
2651 /*
2652  *	Shutdown the sending side of a connection. Much like close except
2653  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2654  */
2655 
2656 void tcp_shutdown(struct sock *sk, int how)
2657 {
2658 	/*	We need to grab some memory, and put together a FIN,
2659 	 *	and then put it into the queue to be sent.
2660 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2661 	 */
2662 	if (!(how & SEND_SHUTDOWN))
2663 		return;
2664 
2665 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2666 	if ((1 << sk->sk_state) &
2667 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2668 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2669 		/* Clear out any half completed packets.  FIN if needed. */
2670 		if (tcp_close_state(sk))
2671 			tcp_send_fin(sk);
2672 	}
2673 }
2674 EXPORT_SYMBOL(tcp_shutdown);
2675 
2676 bool tcp_check_oom(struct sock *sk, int shift)
2677 {
2678 	bool too_many_orphans, out_of_socket_memory;
2679 
2680 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2681 	out_of_socket_memory = tcp_out_of_memory(sk);
2682 
2683 	if (too_many_orphans)
2684 		net_info_ratelimited("too many orphaned sockets\n");
2685 	if (out_of_socket_memory)
2686 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2687 	return too_many_orphans || out_of_socket_memory;
2688 }
2689 
2690 void __tcp_close(struct sock *sk, long timeout)
2691 {
2692 	struct sk_buff *skb;
2693 	int data_was_unread = 0;
2694 	int state;
2695 
2696 	sk->sk_shutdown = SHUTDOWN_MASK;
2697 
2698 	if (sk->sk_state == TCP_LISTEN) {
2699 		tcp_set_state(sk, TCP_CLOSE);
2700 
2701 		/* Special case. */
2702 		inet_csk_listen_stop(sk);
2703 
2704 		goto adjudge_to_death;
2705 	}
2706 
2707 	/*  We need to flush the recv. buffs.  We do this only on the
2708 	 *  descriptor close, not protocol-sourced closes, because the
2709 	 *  reader process may not have drained the data yet!
2710 	 */
2711 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2712 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2713 
2714 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2715 			len--;
2716 		data_was_unread += len;
2717 		__kfree_skb(skb);
2718 	}
2719 
2720 	sk_mem_reclaim(sk);
2721 
2722 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2723 	if (sk->sk_state == TCP_CLOSE)
2724 		goto adjudge_to_death;
2725 
2726 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2727 	 * data was lost. To witness the awful effects of the old behavior of
2728 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2729 	 * GET in an FTP client, suspend the process, wait for the client to
2730 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2731 	 * Note: timeout is always zero in such a case.
2732 	 */
2733 	if (unlikely(tcp_sk(sk)->repair)) {
2734 		sk->sk_prot->disconnect(sk, 0);
2735 	} else if (data_was_unread) {
2736 		/* Unread data was tossed, zap the connection. */
2737 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2738 		tcp_set_state(sk, TCP_CLOSE);
2739 		tcp_send_active_reset(sk, sk->sk_allocation);
2740 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2741 		/* Check zero linger _after_ checking for unread data. */
2742 		sk->sk_prot->disconnect(sk, 0);
2743 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2744 	} else if (tcp_close_state(sk)) {
2745 		/* We FIN if the application ate all the data before
2746 		 * zapping the connection.
2747 		 */
2748 
2749 		/* RED-PEN. Formally speaking, we have broken TCP state
2750 		 * machine. State transitions:
2751 		 *
2752 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2753 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2754 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2755 		 *
2756 		 * are legal only when FIN has been sent (i.e. in window),
2757 		 * rather than queued out of window. Purists blame.
2758 		 *
2759 		 * F.e. "RFC state" is ESTABLISHED,
2760 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2761 		 *
2762 		 * The visible declinations are that sometimes
2763 		 * we enter time-wait state, when it is not required really
2764 		 * (harmless), do not send active resets, when they are
2765 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2766 		 * they look as CLOSING or LAST_ACK for Linux)
2767 		 * Probably, I missed some more holelets.
2768 		 * 						--ANK
2769 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2770 		 * in a single packet! (May consider it later but will
2771 		 * probably need API support or TCP_CORK SYN-ACK until
2772 		 * data is written and socket is closed.)
2773 		 */
2774 		tcp_send_fin(sk);
2775 	}
2776 
2777 	sk_stream_wait_close(sk, timeout);
2778 
2779 adjudge_to_death:
2780 	state = sk->sk_state;
2781 	sock_hold(sk);
2782 	sock_orphan(sk);
2783 
2784 	local_bh_disable();
2785 	bh_lock_sock(sk);
2786 	/* remove backlog if any, without releasing ownership. */
2787 	__release_sock(sk);
2788 
2789 	percpu_counter_inc(sk->sk_prot->orphan_count);
2790 
2791 	/* Have we already been destroyed by a softirq or backlog? */
2792 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2793 		goto out;
2794 
2795 	/*	This is a (useful) BSD violating of the RFC. There is a
2796 	 *	problem with TCP as specified in that the other end could
2797 	 *	keep a socket open forever with no application left this end.
2798 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2799 	 *	our end. If they send after that then tough - BUT: long enough
2800 	 *	that we won't make the old 4*rto = almost no time - whoops
2801 	 *	reset mistake.
2802 	 *
2803 	 *	Nope, it was not mistake. It is really desired behaviour
2804 	 *	f.e. on http servers, when such sockets are useless, but
2805 	 *	consume significant resources. Let's do it with special
2806 	 *	linger2	option.					--ANK
2807 	 */
2808 
2809 	if (sk->sk_state == TCP_FIN_WAIT2) {
2810 		struct tcp_sock *tp = tcp_sk(sk);
2811 		if (tp->linger2 < 0) {
2812 			tcp_set_state(sk, TCP_CLOSE);
2813 			tcp_send_active_reset(sk, GFP_ATOMIC);
2814 			__NET_INC_STATS(sock_net(sk),
2815 					LINUX_MIB_TCPABORTONLINGER);
2816 		} else {
2817 			const int tmo = tcp_fin_time(sk);
2818 
2819 			if (tmo > TCP_TIMEWAIT_LEN) {
2820 				inet_csk_reset_keepalive_timer(sk,
2821 						tmo - TCP_TIMEWAIT_LEN);
2822 			} else {
2823 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2824 				goto out;
2825 			}
2826 		}
2827 	}
2828 	if (sk->sk_state != TCP_CLOSE) {
2829 		sk_mem_reclaim(sk);
2830 		if (tcp_check_oom(sk, 0)) {
2831 			tcp_set_state(sk, TCP_CLOSE);
2832 			tcp_send_active_reset(sk, GFP_ATOMIC);
2833 			__NET_INC_STATS(sock_net(sk),
2834 					LINUX_MIB_TCPABORTONMEMORY);
2835 		} else if (!check_net(sock_net(sk))) {
2836 			/* Not possible to send reset; just close */
2837 			tcp_set_state(sk, TCP_CLOSE);
2838 		}
2839 	}
2840 
2841 	if (sk->sk_state == TCP_CLOSE) {
2842 		struct request_sock *req;
2843 
2844 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2845 						lockdep_sock_is_held(sk));
2846 		/* We could get here with a non-NULL req if the socket is
2847 		 * aborted (e.g., closed with unread data) before 3WHS
2848 		 * finishes.
2849 		 */
2850 		if (req)
2851 			reqsk_fastopen_remove(sk, req, false);
2852 		inet_csk_destroy_sock(sk);
2853 	}
2854 	/* Otherwise, socket is reprieved until protocol close. */
2855 
2856 out:
2857 	bh_unlock_sock(sk);
2858 	local_bh_enable();
2859 }
2860 
2861 void tcp_close(struct sock *sk, long timeout)
2862 {
2863 	lock_sock(sk);
2864 	__tcp_close(sk, timeout);
2865 	release_sock(sk);
2866 	sock_put(sk);
2867 }
2868 EXPORT_SYMBOL(tcp_close);
2869 
2870 /* These states need RST on ABORT according to RFC793 */
2871 
2872 static inline bool tcp_need_reset(int state)
2873 {
2874 	return (1 << state) &
2875 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2876 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2877 }
2878 
2879 static void tcp_rtx_queue_purge(struct sock *sk)
2880 {
2881 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2882 
2883 	tcp_sk(sk)->highest_sack = NULL;
2884 	while (p) {
2885 		struct sk_buff *skb = rb_to_skb(p);
2886 
2887 		p = rb_next(p);
2888 		/* Since we are deleting whole queue, no need to
2889 		 * list_del(&skb->tcp_tsorted_anchor)
2890 		 */
2891 		tcp_rtx_queue_unlink(skb, sk);
2892 		sk_wmem_free_skb(sk, skb);
2893 	}
2894 }
2895 
2896 void tcp_write_queue_purge(struct sock *sk)
2897 {
2898 	struct sk_buff *skb;
2899 
2900 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2901 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2902 		tcp_skb_tsorted_anchor_cleanup(skb);
2903 		sk_wmem_free_skb(sk, skb);
2904 	}
2905 	tcp_rtx_queue_purge(sk);
2906 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2907 	sk_mem_reclaim(sk);
2908 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2909 	tcp_sk(sk)->packets_out = 0;
2910 	inet_csk(sk)->icsk_backoff = 0;
2911 }
2912 
2913 int tcp_disconnect(struct sock *sk, int flags)
2914 {
2915 	struct inet_sock *inet = inet_sk(sk);
2916 	struct inet_connection_sock *icsk = inet_csk(sk);
2917 	struct tcp_sock *tp = tcp_sk(sk);
2918 	int old_state = sk->sk_state;
2919 	u32 seq;
2920 
2921 	if (old_state != TCP_CLOSE)
2922 		tcp_set_state(sk, TCP_CLOSE);
2923 
2924 	/* ABORT function of RFC793 */
2925 	if (old_state == TCP_LISTEN) {
2926 		inet_csk_listen_stop(sk);
2927 	} else if (unlikely(tp->repair)) {
2928 		sk->sk_err = ECONNABORTED;
2929 	} else if (tcp_need_reset(old_state) ||
2930 		   (tp->snd_nxt != tp->write_seq &&
2931 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2932 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2933 		 * states
2934 		 */
2935 		tcp_send_active_reset(sk, gfp_any());
2936 		sk->sk_err = ECONNRESET;
2937 	} else if (old_state == TCP_SYN_SENT)
2938 		sk->sk_err = ECONNRESET;
2939 
2940 	tcp_clear_xmit_timers(sk);
2941 	__skb_queue_purge(&sk->sk_receive_queue);
2942 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2943 	tp->urg_data = 0;
2944 	tcp_write_queue_purge(sk);
2945 	tcp_fastopen_active_disable_ofo_check(sk);
2946 	skb_rbtree_purge(&tp->out_of_order_queue);
2947 
2948 	inet->inet_dport = 0;
2949 
2950 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2951 		inet_reset_saddr(sk);
2952 
2953 	sk->sk_shutdown = 0;
2954 	sock_reset_flag(sk, SOCK_DONE);
2955 	tp->srtt_us = 0;
2956 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2957 	tp->rcv_rtt_last_tsecr = 0;
2958 
2959 	seq = tp->write_seq + tp->max_window + 2;
2960 	if (!seq)
2961 		seq = 1;
2962 	WRITE_ONCE(tp->write_seq, seq);
2963 
2964 	icsk->icsk_backoff = 0;
2965 	icsk->icsk_probes_out = 0;
2966 	icsk->icsk_probes_tstamp = 0;
2967 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2968 	icsk->icsk_rto_min = TCP_RTO_MIN;
2969 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2970 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2971 	tp->snd_cwnd = TCP_INIT_CWND;
2972 	tp->snd_cwnd_cnt = 0;
2973 	tp->window_clamp = 0;
2974 	tp->delivered = 0;
2975 	tp->delivered_ce = 0;
2976 	if (icsk->icsk_ca_ops->release)
2977 		icsk->icsk_ca_ops->release(sk);
2978 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2979 	icsk->icsk_ca_initialized = 0;
2980 	tcp_set_ca_state(sk, TCP_CA_Open);
2981 	tp->is_sack_reneg = 0;
2982 	tcp_clear_retrans(tp);
2983 	tp->total_retrans = 0;
2984 	inet_csk_delack_init(sk);
2985 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2986 	 * issue in __tcp_select_window()
2987 	 */
2988 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2989 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2990 	__sk_dst_reset(sk);
2991 	dst_release(sk->sk_rx_dst);
2992 	sk->sk_rx_dst = NULL;
2993 	tcp_saved_syn_free(tp);
2994 	tp->compressed_ack = 0;
2995 	tp->segs_in = 0;
2996 	tp->segs_out = 0;
2997 	tp->bytes_sent = 0;
2998 	tp->bytes_acked = 0;
2999 	tp->bytes_received = 0;
3000 	tp->bytes_retrans = 0;
3001 	tp->data_segs_in = 0;
3002 	tp->data_segs_out = 0;
3003 	tp->duplicate_sack[0].start_seq = 0;
3004 	tp->duplicate_sack[0].end_seq = 0;
3005 	tp->dsack_dups = 0;
3006 	tp->reord_seen = 0;
3007 	tp->retrans_out = 0;
3008 	tp->sacked_out = 0;
3009 	tp->tlp_high_seq = 0;
3010 	tp->last_oow_ack_time = 0;
3011 	/* There's a bubble in the pipe until at least the first ACK. */
3012 	tp->app_limited = ~0U;
3013 	tp->rack.mstamp = 0;
3014 	tp->rack.advanced = 0;
3015 	tp->rack.reo_wnd_steps = 1;
3016 	tp->rack.last_delivered = 0;
3017 	tp->rack.reo_wnd_persist = 0;
3018 	tp->rack.dsack_seen = 0;
3019 	tp->syn_data_acked = 0;
3020 	tp->rx_opt.saw_tstamp = 0;
3021 	tp->rx_opt.dsack = 0;
3022 	tp->rx_opt.num_sacks = 0;
3023 	tp->rcv_ooopack = 0;
3024 
3025 
3026 	/* Clean up fastopen related fields */
3027 	tcp_free_fastopen_req(tp);
3028 	inet->defer_connect = 0;
3029 	tp->fastopen_client_fail = 0;
3030 
3031 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3032 
3033 	if (sk->sk_frag.page) {
3034 		put_page(sk->sk_frag.page);
3035 		sk->sk_frag.page = NULL;
3036 		sk->sk_frag.offset = 0;
3037 	}
3038 
3039 	sk_error_report(sk);
3040 	return 0;
3041 }
3042 EXPORT_SYMBOL(tcp_disconnect);
3043 
3044 static inline bool tcp_can_repair_sock(const struct sock *sk)
3045 {
3046 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3047 		(sk->sk_state != TCP_LISTEN);
3048 }
3049 
3050 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3051 {
3052 	struct tcp_repair_window opt;
3053 
3054 	if (!tp->repair)
3055 		return -EPERM;
3056 
3057 	if (len != sizeof(opt))
3058 		return -EINVAL;
3059 
3060 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3061 		return -EFAULT;
3062 
3063 	if (opt.max_window < opt.snd_wnd)
3064 		return -EINVAL;
3065 
3066 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3067 		return -EINVAL;
3068 
3069 	if (after(opt.rcv_wup, tp->rcv_nxt))
3070 		return -EINVAL;
3071 
3072 	tp->snd_wl1	= opt.snd_wl1;
3073 	tp->snd_wnd	= opt.snd_wnd;
3074 	tp->max_window	= opt.max_window;
3075 
3076 	tp->rcv_wnd	= opt.rcv_wnd;
3077 	tp->rcv_wup	= opt.rcv_wup;
3078 
3079 	return 0;
3080 }
3081 
3082 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3083 		unsigned int len)
3084 {
3085 	struct tcp_sock *tp = tcp_sk(sk);
3086 	struct tcp_repair_opt opt;
3087 	size_t offset = 0;
3088 
3089 	while (len >= sizeof(opt)) {
3090 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3091 			return -EFAULT;
3092 
3093 		offset += sizeof(opt);
3094 		len -= sizeof(opt);
3095 
3096 		switch (opt.opt_code) {
3097 		case TCPOPT_MSS:
3098 			tp->rx_opt.mss_clamp = opt.opt_val;
3099 			tcp_mtup_init(sk);
3100 			break;
3101 		case TCPOPT_WINDOW:
3102 			{
3103 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3104 				u16 rcv_wscale = opt.opt_val >> 16;
3105 
3106 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3107 					return -EFBIG;
3108 
3109 				tp->rx_opt.snd_wscale = snd_wscale;
3110 				tp->rx_opt.rcv_wscale = rcv_wscale;
3111 				tp->rx_opt.wscale_ok = 1;
3112 			}
3113 			break;
3114 		case TCPOPT_SACK_PERM:
3115 			if (opt.opt_val != 0)
3116 				return -EINVAL;
3117 
3118 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3119 			break;
3120 		case TCPOPT_TIMESTAMP:
3121 			if (opt.opt_val != 0)
3122 				return -EINVAL;
3123 
3124 			tp->rx_opt.tstamp_ok = 1;
3125 			break;
3126 		}
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3133 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3134 
3135 static void tcp_enable_tx_delay(void)
3136 {
3137 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3138 		static int __tcp_tx_delay_enabled = 0;
3139 
3140 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3141 			static_branch_enable(&tcp_tx_delay_enabled);
3142 			pr_info("TCP_TX_DELAY enabled\n");
3143 		}
3144 	}
3145 }
3146 
3147 /* When set indicates to always queue non-full frames.  Later the user clears
3148  * this option and we transmit any pending partial frames in the queue.  This is
3149  * meant to be used alongside sendfile() to get properly filled frames when the
3150  * user (for example) must write out headers with a write() call first and then
3151  * use sendfile to send out the data parts.
3152  *
3153  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3154  * TCP_NODELAY.
3155  */
3156 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3157 {
3158 	struct tcp_sock *tp = tcp_sk(sk);
3159 
3160 	if (on) {
3161 		tp->nonagle |= TCP_NAGLE_CORK;
3162 	} else {
3163 		tp->nonagle &= ~TCP_NAGLE_CORK;
3164 		if (tp->nonagle & TCP_NAGLE_OFF)
3165 			tp->nonagle |= TCP_NAGLE_PUSH;
3166 		tcp_push_pending_frames(sk);
3167 	}
3168 }
3169 
3170 void tcp_sock_set_cork(struct sock *sk, bool on)
3171 {
3172 	lock_sock(sk);
3173 	__tcp_sock_set_cork(sk, on);
3174 	release_sock(sk);
3175 }
3176 EXPORT_SYMBOL(tcp_sock_set_cork);
3177 
3178 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3179  * remembered, but it is not activated until cork is cleared.
3180  *
3181  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3182  * even TCP_CORK for currently queued segments.
3183  */
3184 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3185 {
3186 	if (on) {
3187 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3188 		tcp_push_pending_frames(sk);
3189 	} else {
3190 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3191 	}
3192 }
3193 
3194 void tcp_sock_set_nodelay(struct sock *sk)
3195 {
3196 	lock_sock(sk);
3197 	__tcp_sock_set_nodelay(sk, true);
3198 	release_sock(sk);
3199 }
3200 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3201 
3202 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3203 {
3204 	if (!val) {
3205 		inet_csk_enter_pingpong_mode(sk);
3206 		return;
3207 	}
3208 
3209 	inet_csk_exit_pingpong_mode(sk);
3210 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3211 	    inet_csk_ack_scheduled(sk)) {
3212 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3213 		tcp_cleanup_rbuf(sk, 1);
3214 		if (!(val & 1))
3215 			inet_csk_enter_pingpong_mode(sk);
3216 	}
3217 }
3218 
3219 void tcp_sock_set_quickack(struct sock *sk, int val)
3220 {
3221 	lock_sock(sk);
3222 	__tcp_sock_set_quickack(sk, val);
3223 	release_sock(sk);
3224 }
3225 EXPORT_SYMBOL(tcp_sock_set_quickack);
3226 
3227 int tcp_sock_set_syncnt(struct sock *sk, int val)
3228 {
3229 	if (val < 1 || val > MAX_TCP_SYNCNT)
3230 		return -EINVAL;
3231 
3232 	lock_sock(sk);
3233 	inet_csk(sk)->icsk_syn_retries = val;
3234 	release_sock(sk);
3235 	return 0;
3236 }
3237 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3238 
3239 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3240 {
3241 	lock_sock(sk);
3242 	inet_csk(sk)->icsk_user_timeout = val;
3243 	release_sock(sk);
3244 }
3245 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3246 
3247 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3248 {
3249 	struct tcp_sock *tp = tcp_sk(sk);
3250 
3251 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3252 		return -EINVAL;
3253 
3254 	tp->keepalive_time = val * HZ;
3255 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3256 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3257 		u32 elapsed = keepalive_time_elapsed(tp);
3258 
3259 		if (tp->keepalive_time > elapsed)
3260 			elapsed = tp->keepalive_time - elapsed;
3261 		else
3262 			elapsed = 0;
3263 		inet_csk_reset_keepalive_timer(sk, elapsed);
3264 	}
3265 
3266 	return 0;
3267 }
3268 
3269 int tcp_sock_set_keepidle(struct sock *sk, int val)
3270 {
3271 	int err;
3272 
3273 	lock_sock(sk);
3274 	err = tcp_sock_set_keepidle_locked(sk, val);
3275 	release_sock(sk);
3276 	return err;
3277 }
3278 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3279 
3280 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3281 {
3282 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3283 		return -EINVAL;
3284 
3285 	lock_sock(sk);
3286 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3287 	release_sock(sk);
3288 	return 0;
3289 }
3290 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3291 
3292 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3293 {
3294 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3295 		return -EINVAL;
3296 
3297 	lock_sock(sk);
3298 	tcp_sk(sk)->keepalive_probes = val;
3299 	release_sock(sk);
3300 	return 0;
3301 }
3302 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3303 
3304 int tcp_set_window_clamp(struct sock *sk, int val)
3305 {
3306 	struct tcp_sock *tp = tcp_sk(sk);
3307 
3308 	if (!val) {
3309 		if (sk->sk_state != TCP_CLOSE)
3310 			return -EINVAL;
3311 		tp->window_clamp = 0;
3312 	} else {
3313 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3314 			SOCK_MIN_RCVBUF / 2 : val;
3315 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3316 	}
3317 	return 0;
3318 }
3319 
3320 /*
3321  *	Socket option code for TCP.
3322  */
3323 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3324 		sockptr_t optval, unsigned int optlen)
3325 {
3326 	struct tcp_sock *tp = tcp_sk(sk);
3327 	struct inet_connection_sock *icsk = inet_csk(sk);
3328 	struct net *net = sock_net(sk);
3329 	int val;
3330 	int err = 0;
3331 
3332 	/* These are data/string values, all the others are ints */
3333 	switch (optname) {
3334 	case TCP_CONGESTION: {
3335 		char name[TCP_CA_NAME_MAX];
3336 
3337 		if (optlen < 1)
3338 			return -EINVAL;
3339 
3340 		val = strncpy_from_sockptr(name, optval,
3341 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3342 		if (val < 0)
3343 			return -EFAULT;
3344 		name[val] = 0;
3345 
3346 		lock_sock(sk);
3347 		err = tcp_set_congestion_control(sk, name, true,
3348 						 ns_capable(sock_net(sk)->user_ns,
3349 							    CAP_NET_ADMIN));
3350 		release_sock(sk);
3351 		return err;
3352 	}
3353 	case TCP_ULP: {
3354 		char name[TCP_ULP_NAME_MAX];
3355 
3356 		if (optlen < 1)
3357 			return -EINVAL;
3358 
3359 		val = strncpy_from_sockptr(name, optval,
3360 					min_t(long, TCP_ULP_NAME_MAX - 1,
3361 					      optlen));
3362 		if (val < 0)
3363 			return -EFAULT;
3364 		name[val] = 0;
3365 
3366 		lock_sock(sk);
3367 		err = tcp_set_ulp(sk, name);
3368 		release_sock(sk);
3369 		return err;
3370 	}
3371 	case TCP_FASTOPEN_KEY: {
3372 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3373 		__u8 *backup_key = NULL;
3374 
3375 		/* Allow a backup key as well to facilitate key rotation
3376 		 * First key is the active one.
3377 		 */
3378 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3379 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3380 			return -EINVAL;
3381 
3382 		if (copy_from_sockptr(key, optval, optlen))
3383 			return -EFAULT;
3384 
3385 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3386 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3387 
3388 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3389 	}
3390 	default:
3391 		/* fallthru */
3392 		break;
3393 	}
3394 
3395 	if (optlen < sizeof(int))
3396 		return -EINVAL;
3397 
3398 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3399 		return -EFAULT;
3400 
3401 	lock_sock(sk);
3402 
3403 	switch (optname) {
3404 	case TCP_MAXSEG:
3405 		/* Values greater than interface MTU won't take effect. However
3406 		 * at the point when this call is done we typically don't yet
3407 		 * know which interface is going to be used
3408 		 */
3409 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3410 			err = -EINVAL;
3411 			break;
3412 		}
3413 		tp->rx_opt.user_mss = val;
3414 		break;
3415 
3416 	case TCP_NODELAY:
3417 		__tcp_sock_set_nodelay(sk, val);
3418 		break;
3419 
3420 	case TCP_THIN_LINEAR_TIMEOUTS:
3421 		if (val < 0 || val > 1)
3422 			err = -EINVAL;
3423 		else
3424 			tp->thin_lto = val;
3425 		break;
3426 
3427 	case TCP_THIN_DUPACK:
3428 		if (val < 0 || val > 1)
3429 			err = -EINVAL;
3430 		break;
3431 
3432 	case TCP_REPAIR:
3433 		if (!tcp_can_repair_sock(sk))
3434 			err = -EPERM;
3435 		else if (val == TCP_REPAIR_ON) {
3436 			tp->repair = 1;
3437 			sk->sk_reuse = SK_FORCE_REUSE;
3438 			tp->repair_queue = TCP_NO_QUEUE;
3439 		} else if (val == TCP_REPAIR_OFF) {
3440 			tp->repair = 0;
3441 			sk->sk_reuse = SK_NO_REUSE;
3442 			tcp_send_window_probe(sk);
3443 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3444 			tp->repair = 0;
3445 			sk->sk_reuse = SK_NO_REUSE;
3446 		} else
3447 			err = -EINVAL;
3448 
3449 		break;
3450 
3451 	case TCP_REPAIR_QUEUE:
3452 		if (!tp->repair)
3453 			err = -EPERM;
3454 		else if ((unsigned int)val < TCP_QUEUES_NR)
3455 			tp->repair_queue = val;
3456 		else
3457 			err = -EINVAL;
3458 		break;
3459 
3460 	case TCP_QUEUE_SEQ:
3461 		if (sk->sk_state != TCP_CLOSE) {
3462 			err = -EPERM;
3463 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3464 			if (!tcp_rtx_queue_empty(sk))
3465 				err = -EPERM;
3466 			else
3467 				WRITE_ONCE(tp->write_seq, val);
3468 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3469 			if (tp->rcv_nxt != tp->copied_seq) {
3470 				err = -EPERM;
3471 			} else {
3472 				WRITE_ONCE(tp->rcv_nxt, val);
3473 				WRITE_ONCE(tp->copied_seq, val);
3474 			}
3475 		} else {
3476 			err = -EINVAL;
3477 		}
3478 		break;
3479 
3480 	case TCP_REPAIR_OPTIONS:
3481 		if (!tp->repair)
3482 			err = -EINVAL;
3483 		else if (sk->sk_state == TCP_ESTABLISHED)
3484 			err = tcp_repair_options_est(sk, optval, optlen);
3485 		else
3486 			err = -EPERM;
3487 		break;
3488 
3489 	case TCP_CORK:
3490 		__tcp_sock_set_cork(sk, val);
3491 		break;
3492 
3493 	case TCP_KEEPIDLE:
3494 		err = tcp_sock_set_keepidle_locked(sk, val);
3495 		break;
3496 	case TCP_KEEPINTVL:
3497 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3498 			err = -EINVAL;
3499 		else
3500 			tp->keepalive_intvl = val * HZ;
3501 		break;
3502 	case TCP_KEEPCNT:
3503 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3504 			err = -EINVAL;
3505 		else
3506 			tp->keepalive_probes = val;
3507 		break;
3508 	case TCP_SYNCNT:
3509 		if (val < 1 || val > MAX_TCP_SYNCNT)
3510 			err = -EINVAL;
3511 		else
3512 			icsk->icsk_syn_retries = val;
3513 		break;
3514 
3515 	case TCP_SAVE_SYN:
3516 		/* 0: disable, 1: enable, 2: start from ether_header */
3517 		if (val < 0 || val > 2)
3518 			err = -EINVAL;
3519 		else
3520 			tp->save_syn = val;
3521 		break;
3522 
3523 	case TCP_LINGER2:
3524 		if (val < 0)
3525 			tp->linger2 = -1;
3526 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3527 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3528 		else
3529 			tp->linger2 = val * HZ;
3530 		break;
3531 
3532 	case TCP_DEFER_ACCEPT:
3533 		/* Translate value in seconds to number of retransmits */
3534 		icsk->icsk_accept_queue.rskq_defer_accept =
3535 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3536 					TCP_RTO_MAX / HZ);
3537 		break;
3538 
3539 	case TCP_WINDOW_CLAMP:
3540 		err = tcp_set_window_clamp(sk, val);
3541 		break;
3542 
3543 	case TCP_QUICKACK:
3544 		__tcp_sock_set_quickack(sk, val);
3545 		break;
3546 
3547 #ifdef CONFIG_TCP_MD5SIG
3548 	case TCP_MD5SIG:
3549 	case TCP_MD5SIG_EXT:
3550 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3551 		break;
3552 #endif
3553 	case TCP_USER_TIMEOUT:
3554 		/* Cap the max time in ms TCP will retry or probe the window
3555 		 * before giving up and aborting (ETIMEDOUT) a connection.
3556 		 */
3557 		if (val < 0)
3558 			err = -EINVAL;
3559 		else
3560 			icsk->icsk_user_timeout = val;
3561 		break;
3562 
3563 	case TCP_FASTOPEN:
3564 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3565 		    TCPF_LISTEN))) {
3566 			tcp_fastopen_init_key_once(net);
3567 
3568 			fastopen_queue_tune(sk, val);
3569 		} else {
3570 			err = -EINVAL;
3571 		}
3572 		break;
3573 	case TCP_FASTOPEN_CONNECT:
3574 		if (val > 1 || val < 0) {
3575 			err = -EINVAL;
3576 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3577 			if (sk->sk_state == TCP_CLOSE)
3578 				tp->fastopen_connect = val;
3579 			else
3580 				err = -EINVAL;
3581 		} else {
3582 			err = -EOPNOTSUPP;
3583 		}
3584 		break;
3585 	case TCP_FASTOPEN_NO_COOKIE:
3586 		if (val > 1 || val < 0)
3587 			err = -EINVAL;
3588 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3589 			err = -EINVAL;
3590 		else
3591 			tp->fastopen_no_cookie = val;
3592 		break;
3593 	case TCP_TIMESTAMP:
3594 		if (!tp->repair)
3595 			err = -EPERM;
3596 		else
3597 			tp->tsoffset = val - tcp_time_stamp_raw();
3598 		break;
3599 	case TCP_REPAIR_WINDOW:
3600 		err = tcp_repair_set_window(tp, optval, optlen);
3601 		break;
3602 	case TCP_NOTSENT_LOWAT:
3603 		tp->notsent_lowat = val;
3604 		sk->sk_write_space(sk);
3605 		break;
3606 	case TCP_INQ:
3607 		if (val > 1 || val < 0)
3608 			err = -EINVAL;
3609 		else
3610 			tp->recvmsg_inq = val;
3611 		break;
3612 	case TCP_TX_DELAY:
3613 		if (val)
3614 			tcp_enable_tx_delay();
3615 		tp->tcp_tx_delay = val;
3616 		break;
3617 	default:
3618 		err = -ENOPROTOOPT;
3619 		break;
3620 	}
3621 
3622 	release_sock(sk);
3623 	return err;
3624 }
3625 
3626 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3627 		   unsigned int optlen)
3628 {
3629 	const struct inet_connection_sock *icsk = inet_csk(sk);
3630 
3631 	if (level != SOL_TCP)
3632 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3633 						     optval, optlen);
3634 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3635 }
3636 EXPORT_SYMBOL(tcp_setsockopt);
3637 
3638 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3639 				      struct tcp_info *info)
3640 {
3641 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3642 	enum tcp_chrono i;
3643 
3644 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3645 		stats[i] = tp->chrono_stat[i - 1];
3646 		if (i == tp->chrono_type)
3647 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3648 		stats[i] *= USEC_PER_SEC / HZ;
3649 		total += stats[i];
3650 	}
3651 
3652 	info->tcpi_busy_time = total;
3653 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3654 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3655 }
3656 
3657 /* Return information about state of tcp endpoint in API format. */
3658 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3659 {
3660 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3661 	const struct inet_connection_sock *icsk = inet_csk(sk);
3662 	unsigned long rate;
3663 	u32 now;
3664 	u64 rate64;
3665 	bool slow;
3666 
3667 	memset(info, 0, sizeof(*info));
3668 	if (sk->sk_type != SOCK_STREAM)
3669 		return;
3670 
3671 	info->tcpi_state = inet_sk_state_load(sk);
3672 
3673 	/* Report meaningful fields for all TCP states, including listeners */
3674 	rate = READ_ONCE(sk->sk_pacing_rate);
3675 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3676 	info->tcpi_pacing_rate = rate64;
3677 
3678 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3679 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3680 	info->tcpi_max_pacing_rate = rate64;
3681 
3682 	info->tcpi_reordering = tp->reordering;
3683 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3684 
3685 	if (info->tcpi_state == TCP_LISTEN) {
3686 		/* listeners aliased fields :
3687 		 * tcpi_unacked -> Number of children ready for accept()
3688 		 * tcpi_sacked  -> max backlog
3689 		 */
3690 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3691 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3692 		return;
3693 	}
3694 
3695 	slow = lock_sock_fast(sk);
3696 
3697 	info->tcpi_ca_state = icsk->icsk_ca_state;
3698 	info->tcpi_retransmits = icsk->icsk_retransmits;
3699 	info->tcpi_probes = icsk->icsk_probes_out;
3700 	info->tcpi_backoff = icsk->icsk_backoff;
3701 
3702 	if (tp->rx_opt.tstamp_ok)
3703 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3704 	if (tcp_is_sack(tp))
3705 		info->tcpi_options |= TCPI_OPT_SACK;
3706 	if (tp->rx_opt.wscale_ok) {
3707 		info->tcpi_options |= TCPI_OPT_WSCALE;
3708 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3709 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3710 	}
3711 
3712 	if (tp->ecn_flags & TCP_ECN_OK)
3713 		info->tcpi_options |= TCPI_OPT_ECN;
3714 	if (tp->ecn_flags & TCP_ECN_SEEN)
3715 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3716 	if (tp->syn_data_acked)
3717 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3718 
3719 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3720 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3721 	info->tcpi_snd_mss = tp->mss_cache;
3722 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3723 
3724 	info->tcpi_unacked = tp->packets_out;
3725 	info->tcpi_sacked = tp->sacked_out;
3726 
3727 	info->tcpi_lost = tp->lost_out;
3728 	info->tcpi_retrans = tp->retrans_out;
3729 
3730 	now = tcp_jiffies32;
3731 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3732 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3733 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3734 
3735 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3736 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3737 	info->tcpi_rtt = tp->srtt_us >> 3;
3738 	info->tcpi_rttvar = tp->mdev_us >> 2;
3739 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3740 	info->tcpi_advmss = tp->advmss;
3741 
3742 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3743 	info->tcpi_rcv_space = tp->rcvq_space.space;
3744 
3745 	info->tcpi_total_retrans = tp->total_retrans;
3746 
3747 	info->tcpi_bytes_acked = tp->bytes_acked;
3748 	info->tcpi_bytes_received = tp->bytes_received;
3749 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3750 	tcp_get_info_chrono_stats(tp, info);
3751 
3752 	info->tcpi_segs_out = tp->segs_out;
3753 	info->tcpi_segs_in = tp->segs_in;
3754 
3755 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3756 	info->tcpi_data_segs_in = tp->data_segs_in;
3757 	info->tcpi_data_segs_out = tp->data_segs_out;
3758 
3759 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3760 	rate64 = tcp_compute_delivery_rate(tp);
3761 	if (rate64)
3762 		info->tcpi_delivery_rate = rate64;
3763 	info->tcpi_delivered = tp->delivered;
3764 	info->tcpi_delivered_ce = tp->delivered_ce;
3765 	info->tcpi_bytes_sent = tp->bytes_sent;
3766 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3767 	info->tcpi_dsack_dups = tp->dsack_dups;
3768 	info->tcpi_reord_seen = tp->reord_seen;
3769 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3770 	info->tcpi_snd_wnd = tp->snd_wnd;
3771 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3772 	unlock_sock_fast(sk, slow);
3773 }
3774 EXPORT_SYMBOL_GPL(tcp_get_info);
3775 
3776 static size_t tcp_opt_stats_get_size(void)
3777 {
3778 	return
3779 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3780 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3781 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3782 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3783 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3784 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3785 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3786 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3787 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3788 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3789 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3790 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3791 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3792 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3793 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3794 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3795 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3796 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3797 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3798 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3799 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3800 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3801 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3802 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3803 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3804 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3805 		0;
3806 }
3807 
3808 /* Returns TTL or hop limit of an incoming packet from skb. */
3809 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3810 {
3811 	if (skb->protocol == htons(ETH_P_IP))
3812 		return ip_hdr(skb)->ttl;
3813 	else if (skb->protocol == htons(ETH_P_IPV6))
3814 		return ipv6_hdr(skb)->hop_limit;
3815 	else
3816 		return 0;
3817 }
3818 
3819 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3820 					       const struct sk_buff *orig_skb,
3821 					       const struct sk_buff *ack_skb)
3822 {
3823 	const struct tcp_sock *tp = tcp_sk(sk);
3824 	struct sk_buff *stats;
3825 	struct tcp_info info;
3826 	unsigned long rate;
3827 	u64 rate64;
3828 
3829 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3830 	if (!stats)
3831 		return NULL;
3832 
3833 	tcp_get_info_chrono_stats(tp, &info);
3834 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3835 			  info.tcpi_busy_time, TCP_NLA_PAD);
3836 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3837 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3838 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3839 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3840 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3841 			  tp->data_segs_out, TCP_NLA_PAD);
3842 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3843 			  tp->total_retrans, TCP_NLA_PAD);
3844 
3845 	rate = READ_ONCE(sk->sk_pacing_rate);
3846 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3847 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3848 
3849 	rate64 = tcp_compute_delivery_rate(tp);
3850 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3851 
3852 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3853 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3854 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3855 
3856 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3857 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3858 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3859 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3860 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3861 
3862 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3863 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3864 
3865 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3866 			  TCP_NLA_PAD);
3867 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3868 			  TCP_NLA_PAD);
3869 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3870 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3871 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3872 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3873 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3874 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3875 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3876 			  TCP_NLA_PAD);
3877 	if (ack_skb)
3878 		nla_put_u8(stats, TCP_NLA_TTL,
3879 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3880 
3881 	return stats;
3882 }
3883 
3884 static int do_tcp_getsockopt(struct sock *sk, int level,
3885 		int optname, char __user *optval, int __user *optlen)
3886 {
3887 	struct inet_connection_sock *icsk = inet_csk(sk);
3888 	struct tcp_sock *tp = tcp_sk(sk);
3889 	struct net *net = sock_net(sk);
3890 	int val, len;
3891 
3892 	if (get_user(len, optlen))
3893 		return -EFAULT;
3894 
3895 	len = min_t(unsigned int, len, sizeof(int));
3896 
3897 	if (len < 0)
3898 		return -EINVAL;
3899 
3900 	switch (optname) {
3901 	case TCP_MAXSEG:
3902 		val = tp->mss_cache;
3903 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3904 			val = tp->rx_opt.user_mss;
3905 		if (tp->repair)
3906 			val = tp->rx_opt.mss_clamp;
3907 		break;
3908 	case TCP_NODELAY:
3909 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3910 		break;
3911 	case TCP_CORK:
3912 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3913 		break;
3914 	case TCP_KEEPIDLE:
3915 		val = keepalive_time_when(tp) / HZ;
3916 		break;
3917 	case TCP_KEEPINTVL:
3918 		val = keepalive_intvl_when(tp) / HZ;
3919 		break;
3920 	case TCP_KEEPCNT:
3921 		val = keepalive_probes(tp);
3922 		break;
3923 	case TCP_SYNCNT:
3924 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3925 		break;
3926 	case TCP_LINGER2:
3927 		val = tp->linger2;
3928 		if (val >= 0)
3929 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3930 		break;
3931 	case TCP_DEFER_ACCEPT:
3932 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3933 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3934 		break;
3935 	case TCP_WINDOW_CLAMP:
3936 		val = tp->window_clamp;
3937 		break;
3938 	case TCP_INFO: {
3939 		struct tcp_info info;
3940 
3941 		if (get_user(len, optlen))
3942 			return -EFAULT;
3943 
3944 		tcp_get_info(sk, &info);
3945 
3946 		len = min_t(unsigned int, len, sizeof(info));
3947 		if (put_user(len, optlen))
3948 			return -EFAULT;
3949 		if (copy_to_user(optval, &info, len))
3950 			return -EFAULT;
3951 		return 0;
3952 	}
3953 	case TCP_CC_INFO: {
3954 		const struct tcp_congestion_ops *ca_ops;
3955 		union tcp_cc_info info;
3956 		size_t sz = 0;
3957 		int attr;
3958 
3959 		if (get_user(len, optlen))
3960 			return -EFAULT;
3961 
3962 		ca_ops = icsk->icsk_ca_ops;
3963 		if (ca_ops && ca_ops->get_info)
3964 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3965 
3966 		len = min_t(unsigned int, len, sz);
3967 		if (put_user(len, optlen))
3968 			return -EFAULT;
3969 		if (copy_to_user(optval, &info, len))
3970 			return -EFAULT;
3971 		return 0;
3972 	}
3973 	case TCP_QUICKACK:
3974 		val = !inet_csk_in_pingpong_mode(sk);
3975 		break;
3976 
3977 	case TCP_CONGESTION:
3978 		if (get_user(len, optlen))
3979 			return -EFAULT;
3980 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3981 		if (put_user(len, optlen))
3982 			return -EFAULT;
3983 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3984 			return -EFAULT;
3985 		return 0;
3986 
3987 	case TCP_ULP:
3988 		if (get_user(len, optlen))
3989 			return -EFAULT;
3990 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3991 		if (!icsk->icsk_ulp_ops) {
3992 			if (put_user(0, optlen))
3993 				return -EFAULT;
3994 			return 0;
3995 		}
3996 		if (put_user(len, optlen))
3997 			return -EFAULT;
3998 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3999 			return -EFAULT;
4000 		return 0;
4001 
4002 	case TCP_FASTOPEN_KEY: {
4003 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4004 		unsigned int key_len;
4005 
4006 		if (get_user(len, optlen))
4007 			return -EFAULT;
4008 
4009 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4010 				TCP_FASTOPEN_KEY_LENGTH;
4011 		len = min_t(unsigned int, len, key_len);
4012 		if (put_user(len, optlen))
4013 			return -EFAULT;
4014 		if (copy_to_user(optval, key, len))
4015 			return -EFAULT;
4016 		return 0;
4017 	}
4018 	case TCP_THIN_LINEAR_TIMEOUTS:
4019 		val = tp->thin_lto;
4020 		break;
4021 
4022 	case TCP_THIN_DUPACK:
4023 		val = 0;
4024 		break;
4025 
4026 	case TCP_REPAIR:
4027 		val = tp->repair;
4028 		break;
4029 
4030 	case TCP_REPAIR_QUEUE:
4031 		if (tp->repair)
4032 			val = tp->repair_queue;
4033 		else
4034 			return -EINVAL;
4035 		break;
4036 
4037 	case TCP_REPAIR_WINDOW: {
4038 		struct tcp_repair_window opt;
4039 
4040 		if (get_user(len, optlen))
4041 			return -EFAULT;
4042 
4043 		if (len != sizeof(opt))
4044 			return -EINVAL;
4045 
4046 		if (!tp->repair)
4047 			return -EPERM;
4048 
4049 		opt.snd_wl1	= tp->snd_wl1;
4050 		opt.snd_wnd	= tp->snd_wnd;
4051 		opt.max_window	= tp->max_window;
4052 		opt.rcv_wnd	= tp->rcv_wnd;
4053 		opt.rcv_wup	= tp->rcv_wup;
4054 
4055 		if (copy_to_user(optval, &opt, len))
4056 			return -EFAULT;
4057 		return 0;
4058 	}
4059 	case TCP_QUEUE_SEQ:
4060 		if (tp->repair_queue == TCP_SEND_QUEUE)
4061 			val = tp->write_seq;
4062 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4063 			val = tp->rcv_nxt;
4064 		else
4065 			return -EINVAL;
4066 		break;
4067 
4068 	case TCP_USER_TIMEOUT:
4069 		val = icsk->icsk_user_timeout;
4070 		break;
4071 
4072 	case TCP_FASTOPEN:
4073 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4074 		break;
4075 
4076 	case TCP_FASTOPEN_CONNECT:
4077 		val = tp->fastopen_connect;
4078 		break;
4079 
4080 	case TCP_FASTOPEN_NO_COOKIE:
4081 		val = tp->fastopen_no_cookie;
4082 		break;
4083 
4084 	case TCP_TX_DELAY:
4085 		val = tp->tcp_tx_delay;
4086 		break;
4087 
4088 	case TCP_TIMESTAMP:
4089 		val = tcp_time_stamp_raw() + tp->tsoffset;
4090 		break;
4091 	case TCP_NOTSENT_LOWAT:
4092 		val = tp->notsent_lowat;
4093 		break;
4094 	case TCP_INQ:
4095 		val = tp->recvmsg_inq;
4096 		break;
4097 	case TCP_SAVE_SYN:
4098 		val = tp->save_syn;
4099 		break;
4100 	case TCP_SAVED_SYN: {
4101 		if (get_user(len, optlen))
4102 			return -EFAULT;
4103 
4104 		lock_sock(sk);
4105 		if (tp->saved_syn) {
4106 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4107 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4108 					     optlen)) {
4109 					release_sock(sk);
4110 					return -EFAULT;
4111 				}
4112 				release_sock(sk);
4113 				return -EINVAL;
4114 			}
4115 			len = tcp_saved_syn_len(tp->saved_syn);
4116 			if (put_user(len, optlen)) {
4117 				release_sock(sk);
4118 				return -EFAULT;
4119 			}
4120 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4121 				release_sock(sk);
4122 				return -EFAULT;
4123 			}
4124 			tcp_saved_syn_free(tp);
4125 			release_sock(sk);
4126 		} else {
4127 			release_sock(sk);
4128 			len = 0;
4129 			if (put_user(len, optlen))
4130 				return -EFAULT;
4131 		}
4132 		return 0;
4133 	}
4134 #ifdef CONFIG_MMU
4135 	case TCP_ZEROCOPY_RECEIVE: {
4136 		struct scm_timestamping_internal tss;
4137 		struct tcp_zerocopy_receive zc = {};
4138 		int err;
4139 
4140 		if (get_user(len, optlen))
4141 			return -EFAULT;
4142 		if (len < 0 ||
4143 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4144 			return -EINVAL;
4145 		if (unlikely(len > sizeof(zc))) {
4146 			err = check_zeroed_user(optval + sizeof(zc),
4147 						len - sizeof(zc));
4148 			if (err < 1)
4149 				return err == 0 ? -EINVAL : err;
4150 			len = sizeof(zc);
4151 			if (put_user(len, optlen))
4152 				return -EFAULT;
4153 		}
4154 		if (copy_from_user(&zc, optval, len))
4155 			return -EFAULT;
4156 		if (zc.reserved)
4157 			return -EINVAL;
4158 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4159 			return -EINVAL;
4160 		lock_sock(sk);
4161 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4162 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4163 							  &zc, &len, err);
4164 		release_sock(sk);
4165 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4166 			goto zerocopy_rcv_cmsg;
4167 		switch (len) {
4168 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4169 			goto zerocopy_rcv_cmsg;
4170 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4171 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4172 		case offsetofend(struct tcp_zerocopy_receive, flags):
4173 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4174 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4175 		case offsetofend(struct tcp_zerocopy_receive, err):
4176 			goto zerocopy_rcv_sk_err;
4177 		case offsetofend(struct tcp_zerocopy_receive, inq):
4178 			goto zerocopy_rcv_inq;
4179 		case offsetofend(struct tcp_zerocopy_receive, length):
4180 		default:
4181 			goto zerocopy_rcv_out;
4182 		}
4183 zerocopy_rcv_cmsg:
4184 		if (zc.msg_flags & TCP_CMSG_TS)
4185 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4186 		else
4187 			zc.msg_flags = 0;
4188 zerocopy_rcv_sk_err:
4189 		if (!err)
4190 			zc.err = sock_error(sk);
4191 zerocopy_rcv_inq:
4192 		zc.inq = tcp_inq_hint(sk);
4193 zerocopy_rcv_out:
4194 		if (!err && copy_to_user(optval, &zc, len))
4195 			err = -EFAULT;
4196 		return err;
4197 	}
4198 #endif
4199 	default:
4200 		return -ENOPROTOOPT;
4201 	}
4202 
4203 	if (put_user(len, optlen))
4204 		return -EFAULT;
4205 	if (copy_to_user(optval, &val, len))
4206 		return -EFAULT;
4207 	return 0;
4208 }
4209 
4210 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4211 {
4212 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4213 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4214 	 */
4215 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4216 		return true;
4217 
4218 	return false;
4219 }
4220 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4221 
4222 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4223 		   int __user *optlen)
4224 {
4225 	struct inet_connection_sock *icsk = inet_csk(sk);
4226 
4227 	if (level != SOL_TCP)
4228 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4229 						     optval, optlen);
4230 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4231 }
4232 EXPORT_SYMBOL(tcp_getsockopt);
4233 
4234 #ifdef CONFIG_TCP_MD5SIG
4235 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4236 static DEFINE_MUTEX(tcp_md5sig_mutex);
4237 static bool tcp_md5sig_pool_populated = false;
4238 
4239 static void __tcp_alloc_md5sig_pool(void)
4240 {
4241 	struct crypto_ahash *hash;
4242 	int cpu;
4243 
4244 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4245 	if (IS_ERR(hash))
4246 		return;
4247 
4248 	for_each_possible_cpu(cpu) {
4249 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4250 		struct ahash_request *req;
4251 
4252 		if (!scratch) {
4253 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4254 					       sizeof(struct tcphdr),
4255 					       GFP_KERNEL,
4256 					       cpu_to_node(cpu));
4257 			if (!scratch)
4258 				return;
4259 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4260 		}
4261 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4262 			continue;
4263 
4264 		req = ahash_request_alloc(hash, GFP_KERNEL);
4265 		if (!req)
4266 			return;
4267 
4268 		ahash_request_set_callback(req, 0, NULL, NULL);
4269 
4270 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4271 	}
4272 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4273 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4274 	 */
4275 	smp_wmb();
4276 	tcp_md5sig_pool_populated = true;
4277 }
4278 
4279 bool tcp_alloc_md5sig_pool(void)
4280 {
4281 	if (unlikely(!tcp_md5sig_pool_populated)) {
4282 		mutex_lock(&tcp_md5sig_mutex);
4283 
4284 		if (!tcp_md5sig_pool_populated) {
4285 			__tcp_alloc_md5sig_pool();
4286 			if (tcp_md5sig_pool_populated)
4287 				static_branch_inc(&tcp_md5_needed);
4288 		}
4289 
4290 		mutex_unlock(&tcp_md5sig_mutex);
4291 	}
4292 	return tcp_md5sig_pool_populated;
4293 }
4294 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4295 
4296 
4297 /**
4298  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4299  *
4300  *	We use percpu structure, so if we succeed, we exit with preemption
4301  *	and BH disabled, to make sure another thread or softirq handling
4302  *	wont try to get same context.
4303  */
4304 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4305 {
4306 	local_bh_disable();
4307 
4308 	if (tcp_md5sig_pool_populated) {
4309 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4310 		smp_rmb();
4311 		return this_cpu_ptr(&tcp_md5sig_pool);
4312 	}
4313 	local_bh_enable();
4314 	return NULL;
4315 }
4316 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4317 
4318 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4319 			  const struct sk_buff *skb, unsigned int header_len)
4320 {
4321 	struct scatterlist sg;
4322 	const struct tcphdr *tp = tcp_hdr(skb);
4323 	struct ahash_request *req = hp->md5_req;
4324 	unsigned int i;
4325 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4326 					   skb_headlen(skb) - header_len : 0;
4327 	const struct skb_shared_info *shi = skb_shinfo(skb);
4328 	struct sk_buff *frag_iter;
4329 
4330 	sg_init_table(&sg, 1);
4331 
4332 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4333 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4334 	if (crypto_ahash_update(req))
4335 		return 1;
4336 
4337 	for (i = 0; i < shi->nr_frags; ++i) {
4338 		const skb_frag_t *f = &shi->frags[i];
4339 		unsigned int offset = skb_frag_off(f);
4340 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4341 
4342 		sg_set_page(&sg, page, skb_frag_size(f),
4343 			    offset_in_page(offset));
4344 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4345 		if (crypto_ahash_update(req))
4346 			return 1;
4347 	}
4348 
4349 	skb_walk_frags(skb, frag_iter)
4350 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4351 			return 1;
4352 
4353 	return 0;
4354 }
4355 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4356 
4357 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4358 {
4359 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4360 	struct scatterlist sg;
4361 
4362 	sg_init_one(&sg, key->key, keylen);
4363 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4364 
4365 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4366 	return data_race(crypto_ahash_update(hp->md5_req));
4367 }
4368 EXPORT_SYMBOL(tcp_md5_hash_key);
4369 
4370 #endif
4371 
4372 void tcp_done(struct sock *sk)
4373 {
4374 	struct request_sock *req;
4375 
4376 	/* We might be called with a new socket, after
4377 	 * inet_csk_prepare_forced_close() has been called
4378 	 * so we can not use lockdep_sock_is_held(sk)
4379 	 */
4380 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4381 
4382 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4383 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4384 
4385 	tcp_set_state(sk, TCP_CLOSE);
4386 	tcp_clear_xmit_timers(sk);
4387 	if (req)
4388 		reqsk_fastopen_remove(sk, req, false);
4389 
4390 	sk->sk_shutdown = SHUTDOWN_MASK;
4391 
4392 	if (!sock_flag(sk, SOCK_DEAD))
4393 		sk->sk_state_change(sk);
4394 	else
4395 		inet_csk_destroy_sock(sk);
4396 }
4397 EXPORT_SYMBOL_GPL(tcp_done);
4398 
4399 int tcp_abort(struct sock *sk, int err)
4400 {
4401 	if (!sk_fullsock(sk)) {
4402 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4403 			struct request_sock *req = inet_reqsk(sk);
4404 
4405 			local_bh_disable();
4406 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4407 			local_bh_enable();
4408 			return 0;
4409 		}
4410 		return -EOPNOTSUPP;
4411 	}
4412 
4413 	/* Don't race with userspace socket closes such as tcp_close. */
4414 	lock_sock(sk);
4415 
4416 	if (sk->sk_state == TCP_LISTEN) {
4417 		tcp_set_state(sk, TCP_CLOSE);
4418 		inet_csk_listen_stop(sk);
4419 	}
4420 
4421 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4422 	local_bh_disable();
4423 	bh_lock_sock(sk);
4424 
4425 	if (!sock_flag(sk, SOCK_DEAD)) {
4426 		sk->sk_err = err;
4427 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4428 		smp_wmb();
4429 		sk_error_report(sk);
4430 		if (tcp_need_reset(sk->sk_state))
4431 			tcp_send_active_reset(sk, GFP_ATOMIC);
4432 		tcp_done(sk);
4433 	}
4434 
4435 	bh_unlock_sock(sk);
4436 	local_bh_enable();
4437 	tcp_write_queue_purge(sk);
4438 	release_sock(sk);
4439 	return 0;
4440 }
4441 EXPORT_SYMBOL_GPL(tcp_abort);
4442 
4443 extern struct tcp_congestion_ops tcp_reno;
4444 
4445 static __initdata unsigned long thash_entries;
4446 static int __init set_thash_entries(char *str)
4447 {
4448 	ssize_t ret;
4449 
4450 	if (!str)
4451 		return 0;
4452 
4453 	ret = kstrtoul(str, 0, &thash_entries);
4454 	if (ret)
4455 		return 0;
4456 
4457 	return 1;
4458 }
4459 __setup("thash_entries=", set_thash_entries);
4460 
4461 static void __init tcp_init_mem(void)
4462 {
4463 	unsigned long limit = nr_free_buffer_pages() / 16;
4464 
4465 	limit = max(limit, 128UL);
4466 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4467 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4468 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4469 }
4470 
4471 void __init tcp_init(void)
4472 {
4473 	int max_rshare, max_wshare, cnt;
4474 	unsigned long limit;
4475 	unsigned int i;
4476 
4477 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4478 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4479 		     sizeof_field(struct sk_buff, cb));
4480 
4481 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4482 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4483 	inet_hashinfo_init(&tcp_hashinfo);
4484 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4485 			    thash_entries, 21,  /* one slot per 2 MB*/
4486 			    0, 64 * 1024);
4487 	tcp_hashinfo.bind_bucket_cachep =
4488 		kmem_cache_create("tcp_bind_bucket",
4489 				  sizeof(struct inet_bind_bucket), 0,
4490 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4491 				  SLAB_ACCOUNT,
4492 				  NULL);
4493 
4494 	/* Size and allocate the main established and bind bucket
4495 	 * hash tables.
4496 	 *
4497 	 * The methodology is similar to that of the buffer cache.
4498 	 */
4499 	tcp_hashinfo.ehash =
4500 		alloc_large_system_hash("TCP established",
4501 					sizeof(struct inet_ehash_bucket),
4502 					thash_entries,
4503 					17, /* one slot per 128 KB of memory */
4504 					0,
4505 					NULL,
4506 					&tcp_hashinfo.ehash_mask,
4507 					0,
4508 					thash_entries ? 0 : 512 * 1024);
4509 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4510 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4511 
4512 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4513 		panic("TCP: failed to alloc ehash_locks");
4514 	tcp_hashinfo.bhash =
4515 		alloc_large_system_hash("TCP bind",
4516 					sizeof(struct inet_bind_hashbucket),
4517 					tcp_hashinfo.ehash_mask + 1,
4518 					17, /* one slot per 128 KB of memory */
4519 					0,
4520 					&tcp_hashinfo.bhash_size,
4521 					NULL,
4522 					0,
4523 					64 * 1024);
4524 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4525 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4526 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4527 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4528 	}
4529 
4530 
4531 	cnt = tcp_hashinfo.ehash_mask + 1;
4532 	sysctl_tcp_max_orphans = cnt / 2;
4533 
4534 	tcp_init_mem();
4535 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4536 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4537 	max_wshare = min(4UL*1024*1024, limit);
4538 	max_rshare = min(6UL*1024*1024, limit);
4539 
4540 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4541 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4542 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4543 
4544 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4545 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4546 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4547 
4548 	pr_info("Hash tables configured (established %u bind %u)\n",
4549 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4550 
4551 	tcp_v4_init();
4552 	tcp_metrics_init();
4553 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4554 	tcp_tasklet_init();
4555 	mptcp_init();
4556 }
4557