xref: /openbmc/linux/net/ipv4/tcp.c (revision e2f1cf25)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 int sysctl_tcp_autocorking __read_mostly = 1;
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296 
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 
301 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327 
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	if (!tcp_memory_pressure) {
331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 		tcp_memory_pressure = 1;
333 	}
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 	u8 res = 0;
341 
342 	if (seconds > 0) {
343 		int period = timeout;
344 
345 		res = 1;
346 		while (seconds > period && res < 255) {
347 			res++;
348 			timeout <<= 1;
349 			if (timeout > rto_max)
350 				timeout = rto_max;
351 			period += timeout;
352 		}
353 	}
354 	return res;
355 }
356 
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 	int period = 0;
361 
362 	if (retrans > 0) {
363 		period = timeout;
364 		while (--retrans) {
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return period;
372 }
373 
374 /* Address-family independent initialization for a tcp_sock.
375  *
376  * NOTE: A lot of things set to zero explicitly by call to
377  *       sk_alloc() so need not be done here.
378  */
379 void tcp_init_sock(struct sock *sk)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	__skb_queue_head_init(&tp->out_of_order_queue);
385 	tcp_init_xmit_timers(sk);
386 	tcp_prequeue_init(tp);
387 	INIT_LIST_HEAD(&tp->tsq_node);
388 
389 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* See draft-stevens-tcpca-spec-01 for discussion of the
400 	 * initialization of these values.
401 	 */
402 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 	tp->snd_cwnd_clamp = ~0;
404 	tp->mss_cache = TCP_MSS_DEFAULT;
405 	u64_stats_init(&tp->syncp);
406 
407 	tp->reordering = sysctl_tcp_reordering;
408 	tcp_enable_early_retrans(tp);
409 	tcp_assign_congestion_control(sk);
410 
411 	tp->tsoffset = 0;
412 
413 	sk->sk_state = TCP_CLOSE;
414 
415 	sk->sk_write_space = sk_stream_write_space;
416 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417 
418 	icsk->icsk_sync_mss = tcp_sync_mss;
419 
420 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422 
423 	local_bh_disable();
424 	sock_update_memcg(sk);
425 	sk_sockets_allocated_inc(sk);
426 	local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429 
430 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
431 {
432 	if (sk->sk_tsflags) {
433 		struct skb_shared_info *shinfo = skb_shinfo(skb);
434 
435 		sock_tx_timestamp(sk, &shinfo->tx_flags);
436 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
437 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
438 	}
439 }
440 
441 /*
442  *	Wait for a TCP event.
443  *
444  *	Note that we don't need to lock the socket, as the upper poll layers
445  *	take care of normal races (between the test and the event) and we don't
446  *	go look at any of the socket buffers directly.
447  */
448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
449 {
450 	unsigned int mask;
451 	struct sock *sk = sock->sk;
452 	const struct tcp_sock *tp = tcp_sk(sk);
453 
454 	sock_rps_record_flow(sk);
455 
456 	sock_poll_wait(file, sk_sleep(sk), wait);
457 	if (sk->sk_state == TCP_LISTEN)
458 		return inet_csk_listen_poll(sk);
459 
460 	/* Socket is not locked. We are protected from async events
461 	 * by poll logic and correct handling of state changes
462 	 * made by other threads is impossible in any case.
463 	 */
464 
465 	mask = 0;
466 
467 	/*
468 	 * POLLHUP is certainly not done right. But poll() doesn't
469 	 * have a notion of HUP in just one direction, and for a
470 	 * socket the read side is more interesting.
471 	 *
472 	 * Some poll() documentation says that POLLHUP is incompatible
473 	 * with the POLLOUT/POLLWR flags, so somebody should check this
474 	 * all. But careful, it tends to be safer to return too many
475 	 * bits than too few, and you can easily break real applications
476 	 * if you don't tell them that something has hung up!
477 	 *
478 	 * Check-me.
479 	 *
480 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
481 	 * our fs/select.c). It means that after we received EOF,
482 	 * poll always returns immediately, making impossible poll() on write()
483 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
484 	 * if and only if shutdown has been made in both directions.
485 	 * Actually, it is interesting to look how Solaris and DUX
486 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
487 	 * then we could set it on SND_SHUTDOWN. BTW examples given
488 	 * in Stevens' books assume exactly this behaviour, it explains
489 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
490 	 *
491 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
492 	 * blocking on fresh not-connected or disconnected socket. --ANK
493 	 */
494 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
495 		mask |= POLLHUP;
496 	if (sk->sk_shutdown & RCV_SHUTDOWN)
497 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
498 
499 	/* Connected or passive Fast Open socket? */
500 	if (sk->sk_state != TCP_SYN_SENT &&
501 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
502 		int target = sock_rcvlowat(sk, 0, INT_MAX);
503 
504 		if (tp->urg_seq == tp->copied_seq &&
505 		    !sock_flag(sk, SOCK_URGINLINE) &&
506 		    tp->urg_data)
507 			target++;
508 
509 		/* Potential race condition. If read of tp below will
510 		 * escape above sk->sk_state, we can be illegally awaken
511 		 * in SYN_* states. */
512 		if (tp->rcv_nxt - tp->copied_seq >= target)
513 			mask |= POLLIN | POLLRDNORM;
514 
515 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
516 			if (sk_stream_is_writeable(sk)) {
517 				mask |= POLLOUT | POLLWRNORM;
518 			} else {  /* send SIGIO later */
519 				set_bit(SOCK_ASYNC_NOSPACE,
520 					&sk->sk_socket->flags);
521 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522 
523 				/* Race breaker. If space is freed after
524 				 * wspace test but before the flags are set,
525 				 * IO signal will be lost. Memory barrier
526 				 * pairs with the input side.
527 				 */
528 				smp_mb__after_atomic();
529 				if (sk_stream_is_writeable(sk))
530 					mask |= POLLOUT | POLLWRNORM;
531 			}
532 		} else
533 			mask |= POLLOUT | POLLWRNORM;
534 
535 		if (tp->urg_data & TCP_URG_VALID)
536 			mask |= POLLPRI;
537 	}
538 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
539 	smp_rmb();
540 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 		mask |= POLLERR;
542 
543 	return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546 
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 	int answ;
551 	bool slow;
552 
553 	switch (cmd) {
554 	case SIOCINQ:
555 		if (sk->sk_state == TCP_LISTEN)
556 			return -EINVAL;
557 
558 		slow = lock_sock_fast(sk);
559 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 			answ = 0;
561 		else if (sock_flag(sk, SOCK_URGINLINE) ||
562 			 !tp->urg_data ||
563 			 before(tp->urg_seq, tp->copied_seq) ||
564 			 !before(tp->urg_seq, tp->rcv_nxt)) {
565 
566 			answ = tp->rcv_nxt - tp->copied_seq;
567 
568 			/* Subtract 1, if FIN was received */
569 			if (answ && sock_flag(sk, SOCK_DONE))
570 				answ--;
571 		} else
572 			answ = tp->urg_seq - tp->copied_seq;
573 		unlock_sock_fast(sk, slow);
574 		break;
575 	case SIOCATMARK:
576 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 		break;
578 	case SIOCOUTQ:
579 		if (sk->sk_state == TCP_LISTEN)
580 			return -EINVAL;
581 
582 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 			answ = 0;
584 		else
585 			answ = tp->write_seq - tp->snd_una;
586 		break;
587 	case SIOCOUTQNSD:
588 		if (sk->sk_state == TCP_LISTEN)
589 			return -EINVAL;
590 
591 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 			answ = 0;
593 		else
594 			answ = tp->write_seq - tp->snd_nxt;
595 		break;
596 	default:
597 		return -ENOIOCTLCMD;
598 	}
599 
600 	return put_user(answ, (int __user *)arg);
601 }
602 EXPORT_SYMBOL(tcp_ioctl);
603 
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
605 {
606 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 	tp->pushed_seq = tp->write_seq;
608 }
609 
610 static inline bool forced_push(const struct tcp_sock *tp)
611 {
612 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
613 }
614 
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
619 
620 	skb->csum    = 0;
621 	tcb->seq     = tcb->end_seq = tp->write_seq;
622 	tcb->tcp_flags = TCPHDR_ACK;
623 	tcb->sacked  = 0;
624 	__skb_header_release(skb);
625 	tcp_add_write_queue_tail(sk, skb);
626 	sk->sk_wmem_queued += skb->truesize;
627 	sk_mem_charge(sk, skb->truesize);
628 	if (tp->nonagle & TCP_NAGLE_PUSH)
629 		tp->nonagle &= ~TCP_NAGLE_PUSH;
630 }
631 
632 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
633 {
634 	if (flags & MSG_OOB)
635 		tp->snd_up = tp->write_seq;
636 }
637 
638 /* If a not yet filled skb is pushed, do not send it if
639  * we have data packets in Qdisc or NIC queues :
640  * Because TX completion will happen shortly, it gives a chance
641  * to coalesce future sendmsg() payload into this skb, without
642  * need for a timer, and with no latency trade off.
643  * As packets containing data payload have a bigger truesize
644  * than pure acks (dataless) packets, the last checks prevent
645  * autocorking if we only have an ACK in Qdisc/NIC queues,
646  * or if TX completion was delayed after we processed ACK packet.
647  */
648 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
649 				int size_goal)
650 {
651 	return skb->len < size_goal &&
652 	       sysctl_tcp_autocorking &&
653 	       skb != tcp_write_queue_head(sk) &&
654 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
655 }
656 
657 static void tcp_push(struct sock *sk, int flags, int mss_now,
658 		     int nonagle, int size_goal)
659 {
660 	struct tcp_sock *tp = tcp_sk(sk);
661 	struct sk_buff *skb;
662 
663 	if (!tcp_send_head(sk))
664 		return;
665 
666 	skb = tcp_write_queue_tail(sk);
667 	if (!(flags & MSG_MORE) || forced_push(tp))
668 		tcp_mark_push(tp, skb);
669 
670 	tcp_mark_urg(tp, flags);
671 
672 	if (tcp_should_autocork(sk, skb, size_goal)) {
673 
674 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
675 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
676 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
677 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
678 		}
679 		/* It is possible TX completion already happened
680 		 * before we set TSQ_THROTTLED.
681 		 */
682 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
683 			return;
684 	}
685 
686 	if (flags & MSG_MORE)
687 		nonagle = TCP_NAGLE_CORK;
688 
689 	__tcp_push_pending_frames(sk, mss_now, nonagle);
690 }
691 
692 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
693 				unsigned int offset, size_t len)
694 {
695 	struct tcp_splice_state *tss = rd_desc->arg.data;
696 	int ret;
697 
698 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
699 			      min(rd_desc->count, len), tss->flags,
700 			      skb_socket_splice);
701 	if (ret > 0)
702 		rd_desc->count -= ret;
703 	return ret;
704 }
705 
706 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
707 {
708 	/* Store TCP splice context information in read_descriptor_t. */
709 	read_descriptor_t rd_desc = {
710 		.arg.data = tss,
711 		.count	  = tss->len,
712 	};
713 
714 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
715 }
716 
717 /**
718  *  tcp_splice_read - splice data from TCP socket to a pipe
719  * @sock:	socket to splice from
720  * @ppos:	position (not valid)
721  * @pipe:	pipe to splice to
722  * @len:	number of bytes to splice
723  * @flags:	splice modifier flags
724  *
725  * Description:
726  *    Will read pages from given socket and fill them into a pipe.
727  *
728  **/
729 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
730 			struct pipe_inode_info *pipe, size_t len,
731 			unsigned int flags)
732 {
733 	struct sock *sk = sock->sk;
734 	struct tcp_splice_state tss = {
735 		.pipe = pipe,
736 		.len = len,
737 		.flags = flags,
738 	};
739 	long timeo;
740 	ssize_t spliced;
741 	int ret;
742 
743 	sock_rps_record_flow(sk);
744 	/*
745 	 * We can't seek on a socket input
746 	 */
747 	if (unlikely(*ppos))
748 		return -ESPIPE;
749 
750 	ret = spliced = 0;
751 
752 	lock_sock(sk);
753 
754 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
755 	while (tss.len) {
756 		ret = __tcp_splice_read(sk, &tss);
757 		if (ret < 0)
758 			break;
759 		else if (!ret) {
760 			if (spliced)
761 				break;
762 			if (sock_flag(sk, SOCK_DONE))
763 				break;
764 			if (sk->sk_err) {
765 				ret = sock_error(sk);
766 				break;
767 			}
768 			if (sk->sk_shutdown & RCV_SHUTDOWN)
769 				break;
770 			if (sk->sk_state == TCP_CLOSE) {
771 				/*
772 				 * This occurs when user tries to read
773 				 * from never connected socket.
774 				 */
775 				if (!sock_flag(sk, SOCK_DONE))
776 					ret = -ENOTCONN;
777 				break;
778 			}
779 			if (!timeo) {
780 				ret = -EAGAIN;
781 				break;
782 			}
783 			sk_wait_data(sk, &timeo, NULL);
784 			if (signal_pending(current)) {
785 				ret = sock_intr_errno(timeo);
786 				break;
787 			}
788 			continue;
789 		}
790 		tss.len -= ret;
791 		spliced += ret;
792 
793 		if (!timeo)
794 			break;
795 		release_sock(sk);
796 		lock_sock(sk);
797 
798 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
799 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
800 		    signal_pending(current))
801 			break;
802 	}
803 
804 	release_sock(sk);
805 
806 	if (spliced)
807 		return spliced;
808 
809 	return ret;
810 }
811 EXPORT_SYMBOL(tcp_splice_read);
812 
813 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
814 				    bool force_schedule)
815 {
816 	struct sk_buff *skb;
817 
818 	/* The TCP header must be at least 32-bit aligned.  */
819 	size = ALIGN(size, 4);
820 
821 	if (unlikely(tcp_under_memory_pressure(sk)))
822 		sk_mem_reclaim_partial(sk);
823 
824 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
825 	if (likely(skb)) {
826 		bool mem_scheduled;
827 
828 		if (force_schedule) {
829 			mem_scheduled = true;
830 			sk_forced_mem_schedule(sk, skb->truesize);
831 		} else {
832 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
833 		}
834 		if (likely(mem_scheduled)) {
835 			skb_reserve(skb, sk->sk_prot->max_header);
836 			/*
837 			 * Make sure that we have exactly size bytes
838 			 * available to the caller, no more, no less.
839 			 */
840 			skb->reserved_tailroom = skb->end - skb->tail - size;
841 			return skb;
842 		}
843 		__kfree_skb(skb);
844 	} else {
845 		sk->sk_prot->enter_memory_pressure(sk);
846 		sk_stream_moderate_sndbuf(sk);
847 	}
848 	return NULL;
849 }
850 
851 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
852 				       int large_allowed)
853 {
854 	struct tcp_sock *tp = tcp_sk(sk);
855 	u32 new_size_goal, size_goal;
856 
857 	if (!large_allowed || !sk_can_gso(sk))
858 		return mss_now;
859 
860 	/* Note : tcp_tso_autosize() will eventually split this later */
861 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
862 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
863 
864 	/* We try hard to avoid divides here */
865 	size_goal = tp->gso_segs * mss_now;
866 	if (unlikely(new_size_goal < size_goal ||
867 		     new_size_goal >= size_goal + mss_now)) {
868 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
869 				     sk->sk_gso_max_segs);
870 		size_goal = tp->gso_segs * mss_now;
871 	}
872 
873 	return max(size_goal, mss_now);
874 }
875 
876 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
877 {
878 	int mss_now;
879 
880 	mss_now = tcp_current_mss(sk);
881 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
882 
883 	return mss_now;
884 }
885 
886 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
887 				size_t size, int flags)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	int mss_now, size_goal;
891 	int err;
892 	ssize_t copied;
893 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
894 
895 	/* Wait for a connection to finish. One exception is TCP Fast Open
896 	 * (passive side) where data is allowed to be sent before a connection
897 	 * is fully established.
898 	 */
899 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
900 	    !tcp_passive_fastopen(sk)) {
901 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
902 			goto out_err;
903 	}
904 
905 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
906 
907 	mss_now = tcp_send_mss(sk, &size_goal, flags);
908 	copied = 0;
909 
910 	err = -EPIPE;
911 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
912 		goto out_err;
913 
914 	while (size > 0) {
915 		struct sk_buff *skb = tcp_write_queue_tail(sk);
916 		int copy, i;
917 		bool can_coalesce;
918 
919 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
920 new_segment:
921 			if (!sk_stream_memory_free(sk))
922 				goto wait_for_sndbuf;
923 
924 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
925 						  skb_queue_empty(&sk->sk_write_queue));
926 			if (!skb)
927 				goto wait_for_memory;
928 
929 			skb_entail(sk, skb);
930 			copy = size_goal;
931 		}
932 
933 		if (copy > size)
934 			copy = size;
935 
936 		i = skb_shinfo(skb)->nr_frags;
937 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
938 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
939 			tcp_mark_push(tp, skb);
940 			goto new_segment;
941 		}
942 		if (!sk_wmem_schedule(sk, copy))
943 			goto wait_for_memory;
944 
945 		if (can_coalesce) {
946 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
947 		} else {
948 			get_page(page);
949 			skb_fill_page_desc(skb, i, page, offset, copy);
950 		}
951 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
952 
953 		skb->len += copy;
954 		skb->data_len += copy;
955 		skb->truesize += copy;
956 		sk->sk_wmem_queued += copy;
957 		sk_mem_charge(sk, copy);
958 		skb->ip_summed = CHECKSUM_PARTIAL;
959 		tp->write_seq += copy;
960 		TCP_SKB_CB(skb)->end_seq += copy;
961 		tcp_skb_pcount_set(skb, 0);
962 
963 		if (!copied)
964 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
965 
966 		copied += copy;
967 		offset += copy;
968 		if (!(size -= copy)) {
969 			tcp_tx_timestamp(sk, skb);
970 			goto out;
971 		}
972 
973 		if (skb->len < size_goal || (flags & MSG_OOB))
974 			continue;
975 
976 		if (forced_push(tp)) {
977 			tcp_mark_push(tp, skb);
978 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
979 		} else if (skb == tcp_send_head(sk))
980 			tcp_push_one(sk, mss_now);
981 		continue;
982 
983 wait_for_sndbuf:
984 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
985 wait_for_memory:
986 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
987 			 TCP_NAGLE_PUSH, size_goal);
988 
989 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
990 			goto do_error;
991 
992 		mss_now = tcp_send_mss(sk, &size_goal, flags);
993 	}
994 
995 out:
996 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
997 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
998 	return copied;
999 
1000 do_error:
1001 	if (copied)
1002 		goto out;
1003 out_err:
1004 	/* make sure we wake any epoll edge trigger waiter */
1005 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1006 		sk->sk_write_space(sk);
1007 	return sk_stream_error(sk, flags, err);
1008 }
1009 
1010 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1011 		 size_t size, int flags)
1012 {
1013 	ssize_t res;
1014 
1015 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1016 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1017 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1018 					flags);
1019 
1020 	lock_sock(sk);
1021 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1022 	release_sock(sk);
1023 	return res;
1024 }
1025 EXPORT_SYMBOL(tcp_sendpage);
1026 
1027 static inline int select_size(const struct sock *sk, bool sg)
1028 {
1029 	const struct tcp_sock *tp = tcp_sk(sk);
1030 	int tmp = tp->mss_cache;
1031 
1032 	if (sg) {
1033 		if (sk_can_gso(sk)) {
1034 			/* Small frames wont use a full page:
1035 			 * Payload will immediately follow tcp header.
1036 			 */
1037 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1038 		} else {
1039 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1040 
1041 			if (tmp >= pgbreak &&
1042 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1043 				tmp = pgbreak;
1044 		}
1045 	}
1046 
1047 	return tmp;
1048 }
1049 
1050 void tcp_free_fastopen_req(struct tcp_sock *tp)
1051 {
1052 	if (tp->fastopen_req) {
1053 		kfree(tp->fastopen_req);
1054 		tp->fastopen_req = NULL;
1055 	}
1056 }
1057 
1058 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1059 				int *copied, size_t size)
1060 {
1061 	struct tcp_sock *tp = tcp_sk(sk);
1062 	int err, flags;
1063 
1064 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1065 		return -EOPNOTSUPP;
1066 	if (tp->fastopen_req)
1067 		return -EALREADY; /* Another Fast Open is in progress */
1068 
1069 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1070 				   sk->sk_allocation);
1071 	if (unlikely(!tp->fastopen_req))
1072 		return -ENOBUFS;
1073 	tp->fastopen_req->data = msg;
1074 	tp->fastopen_req->size = size;
1075 
1076 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1077 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1078 				    msg->msg_namelen, flags);
1079 	*copied = tp->fastopen_req->copied;
1080 	tcp_free_fastopen_req(tp);
1081 	return err;
1082 }
1083 
1084 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1085 {
1086 	struct tcp_sock *tp = tcp_sk(sk);
1087 	struct sk_buff *skb;
1088 	int flags, err, copied = 0;
1089 	int mss_now = 0, size_goal, copied_syn = 0;
1090 	bool sg;
1091 	long timeo;
1092 
1093 	lock_sock(sk);
1094 
1095 	flags = msg->msg_flags;
1096 	if (flags & MSG_FASTOPEN) {
1097 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1098 		if (err == -EINPROGRESS && copied_syn > 0)
1099 			goto out;
1100 		else if (err)
1101 			goto out_err;
1102 	}
1103 
1104 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1105 
1106 	/* Wait for a connection to finish. One exception is TCP Fast Open
1107 	 * (passive side) where data is allowed to be sent before a connection
1108 	 * is fully established.
1109 	 */
1110 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1111 	    !tcp_passive_fastopen(sk)) {
1112 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1113 			goto do_error;
1114 	}
1115 
1116 	if (unlikely(tp->repair)) {
1117 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1118 			copied = tcp_send_rcvq(sk, msg, size);
1119 			goto out_nopush;
1120 		}
1121 
1122 		err = -EINVAL;
1123 		if (tp->repair_queue == TCP_NO_QUEUE)
1124 			goto out_err;
1125 
1126 		/* 'common' sending to sendq */
1127 	}
1128 
1129 	/* This should be in poll */
1130 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1131 
1132 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1133 
1134 	/* Ok commence sending. */
1135 	copied = 0;
1136 
1137 	err = -EPIPE;
1138 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1139 		goto out_err;
1140 
1141 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1142 
1143 	while (msg_data_left(msg)) {
1144 		int copy = 0;
1145 		int max = size_goal;
1146 
1147 		skb = tcp_write_queue_tail(sk);
1148 		if (tcp_send_head(sk)) {
1149 			if (skb->ip_summed == CHECKSUM_NONE)
1150 				max = mss_now;
1151 			copy = max - skb->len;
1152 		}
1153 
1154 		if (copy <= 0) {
1155 new_segment:
1156 			/* Allocate new segment. If the interface is SG,
1157 			 * allocate skb fitting to single page.
1158 			 */
1159 			if (!sk_stream_memory_free(sk))
1160 				goto wait_for_sndbuf;
1161 
1162 			skb = sk_stream_alloc_skb(sk,
1163 						  select_size(sk, sg),
1164 						  sk->sk_allocation,
1165 						  skb_queue_empty(&sk->sk_write_queue));
1166 			if (!skb)
1167 				goto wait_for_memory;
1168 
1169 			/*
1170 			 * Check whether we can use HW checksum.
1171 			 */
1172 			if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1173 				skb->ip_summed = CHECKSUM_PARTIAL;
1174 
1175 			skb_entail(sk, skb);
1176 			copy = size_goal;
1177 			max = size_goal;
1178 
1179 			/* All packets are restored as if they have
1180 			 * already been sent. skb_mstamp isn't set to
1181 			 * avoid wrong rtt estimation.
1182 			 */
1183 			if (tp->repair)
1184 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1185 		}
1186 
1187 		/* Try to append data to the end of skb. */
1188 		if (copy > msg_data_left(msg))
1189 			copy = msg_data_left(msg);
1190 
1191 		/* Where to copy to? */
1192 		if (skb_availroom(skb) > 0) {
1193 			/* We have some space in skb head. Superb! */
1194 			copy = min_t(int, copy, skb_availroom(skb));
1195 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1196 			if (err)
1197 				goto do_fault;
1198 		} else {
1199 			bool merge = true;
1200 			int i = skb_shinfo(skb)->nr_frags;
1201 			struct page_frag *pfrag = sk_page_frag(sk);
1202 
1203 			if (!sk_page_frag_refill(sk, pfrag))
1204 				goto wait_for_memory;
1205 
1206 			if (!skb_can_coalesce(skb, i, pfrag->page,
1207 					      pfrag->offset)) {
1208 				if (i == MAX_SKB_FRAGS || !sg) {
1209 					tcp_mark_push(tp, skb);
1210 					goto new_segment;
1211 				}
1212 				merge = false;
1213 			}
1214 
1215 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1216 
1217 			if (!sk_wmem_schedule(sk, copy))
1218 				goto wait_for_memory;
1219 
1220 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1221 						       pfrag->page,
1222 						       pfrag->offset,
1223 						       copy);
1224 			if (err)
1225 				goto do_error;
1226 
1227 			/* Update the skb. */
1228 			if (merge) {
1229 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1230 			} else {
1231 				skb_fill_page_desc(skb, i, pfrag->page,
1232 						   pfrag->offset, copy);
1233 				get_page(pfrag->page);
1234 			}
1235 			pfrag->offset += copy;
1236 		}
1237 
1238 		if (!copied)
1239 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1240 
1241 		tp->write_seq += copy;
1242 		TCP_SKB_CB(skb)->end_seq += copy;
1243 		tcp_skb_pcount_set(skb, 0);
1244 
1245 		copied += copy;
1246 		if (!msg_data_left(msg)) {
1247 			tcp_tx_timestamp(sk, skb);
1248 			goto out;
1249 		}
1250 
1251 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1252 			continue;
1253 
1254 		if (forced_push(tp)) {
1255 			tcp_mark_push(tp, skb);
1256 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1257 		} else if (skb == tcp_send_head(sk))
1258 			tcp_push_one(sk, mss_now);
1259 		continue;
1260 
1261 wait_for_sndbuf:
1262 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1263 wait_for_memory:
1264 		if (copied)
1265 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1266 				 TCP_NAGLE_PUSH, size_goal);
1267 
1268 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1269 			goto do_error;
1270 
1271 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1272 	}
1273 
1274 out:
1275 	if (copied)
1276 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1277 out_nopush:
1278 	release_sock(sk);
1279 	return copied + copied_syn;
1280 
1281 do_fault:
1282 	if (!skb->len) {
1283 		tcp_unlink_write_queue(skb, sk);
1284 		/* It is the one place in all of TCP, except connection
1285 		 * reset, where we can be unlinking the send_head.
1286 		 */
1287 		tcp_check_send_head(sk, skb);
1288 		sk_wmem_free_skb(sk, skb);
1289 	}
1290 
1291 do_error:
1292 	if (copied + copied_syn)
1293 		goto out;
1294 out_err:
1295 	err = sk_stream_error(sk, flags, err);
1296 	/* make sure we wake any epoll edge trigger waiter */
1297 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1298 		sk->sk_write_space(sk);
1299 	release_sock(sk);
1300 	return err;
1301 }
1302 EXPORT_SYMBOL(tcp_sendmsg);
1303 
1304 /*
1305  *	Handle reading urgent data. BSD has very simple semantics for
1306  *	this, no blocking and very strange errors 8)
1307  */
1308 
1309 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1310 {
1311 	struct tcp_sock *tp = tcp_sk(sk);
1312 
1313 	/* No URG data to read. */
1314 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1315 	    tp->urg_data == TCP_URG_READ)
1316 		return -EINVAL;	/* Yes this is right ! */
1317 
1318 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1319 		return -ENOTCONN;
1320 
1321 	if (tp->urg_data & TCP_URG_VALID) {
1322 		int err = 0;
1323 		char c = tp->urg_data;
1324 
1325 		if (!(flags & MSG_PEEK))
1326 			tp->urg_data = TCP_URG_READ;
1327 
1328 		/* Read urgent data. */
1329 		msg->msg_flags |= MSG_OOB;
1330 
1331 		if (len > 0) {
1332 			if (!(flags & MSG_TRUNC))
1333 				err = memcpy_to_msg(msg, &c, 1);
1334 			len = 1;
1335 		} else
1336 			msg->msg_flags |= MSG_TRUNC;
1337 
1338 		return err ? -EFAULT : len;
1339 	}
1340 
1341 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1342 		return 0;
1343 
1344 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1345 	 * the available implementations agree in this case:
1346 	 * this call should never block, independent of the
1347 	 * blocking state of the socket.
1348 	 * Mike <pall@rz.uni-karlsruhe.de>
1349 	 */
1350 	return -EAGAIN;
1351 }
1352 
1353 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1354 {
1355 	struct sk_buff *skb;
1356 	int copied = 0, err = 0;
1357 
1358 	/* XXX -- need to support SO_PEEK_OFF */
1359 
1360 	skb_queue_walk(&sk->sk_write_queue, skb) {
1361 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1362 		if (err)
1363 			break;
1364 
1365 		copied += skb->len;
1366 	}
1367 
1368 	return err ?: copied;
1369 }
1370 
1371 /* Clean up the receive buffer for full frames taken by the user,
1372  * then send an ACK if necessary.  COPIED is the number of bytes
1373  * tcp_recvmsg has given to the user so far, it speeds up the
1374  * calculation of whether or not we must ACK for the sake of
1375  * a window update.
1376  */
1377 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1378 {
1379 	struct tcp_sock *tp = tcp_sk(sk);
1380 	bool time_to_ack = false;
1381 
1382 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1383 
1384 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1385 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1386 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1387 
1388 	if (inet_csk_ack_scheduled(sk)) {
1389 		const struct inet_connection_sock *icsk = inet_csk(sk);
1390 		   /* Delayed ACKs frequently hit locked sockets during bulk
1391 		    * receive. */
1392 		if (icsk->icsk_ack.blocked ||
1393 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1394 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1395 		    /*
1396 		     * If this read emptied read buffer, we send ACK, if
1397 		     * connection is not bidirectional, user drained
1398 		     * receive buffer and there was a small segment
1399 		     * in queue.
1400 		     */
1401 		    (copied > 0 &&
1402 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1403 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1404 		       !icsk->icsk_ack.pingpong)) &&
1405 		      !atomic_read(&sk->sk_rmem_alloc)))
1406 			time_to_ack = true;
1407 	}
1408 
1409 	/* We send an ACK if we can now advertise a non-zero window
1410 	 * which has been raised "significantly".
1411 	 *
1412 	 * Even if window raised up to infinity, do not send window open ACK
1413 	 * in states, where we will not receive more. It is useless.
1414 	 */
1415 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1416 		__u32 rcv_window_now = tcp_receive_window(tp);
1417 
1418 		/* Optimize, __tcp_select_window() is not cheap. */
1419 		if (2*rcv_window_now <= tp->window_clamp) {
1420 			__u32 new_window = __tcp_select_window(sk);
1421 
1422 			/* Send ACK now, if this read freed lots of space
1423 			 * in our buffer. Certainly, new_window is new window.
1424 			 * We can advertise it now, if it is not less than current one.
1425 			 * "Lots" means "at least twice" here.
1426 			 */
1427 			if (new_window && new_window >= 2 * rcv_window_now)
1428 				time_to_ack = true;
1429 		}
1430 	}
1431 	if (time_to_ack)
1432 		tcp_send_ack(sk);
1433 }
1434 
1435 static void tcp_prequeue_process(struct sock *sk)
1436 {
1437 	struct sk_buff *skb;
1438 	struct tcp_sock *tp = tcp_sk(sk);
1439 
1440 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1441 
1442 	/* RX process wants to run with disabled BHs, though it is not
1443 	 * necessary */
1444 	local_bh_disable();
1445 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1446 		sk_backlog_rcv(sk, skb);
1447 	local_bh_enable();
1448 
1449 	/* Clear memory counter. */
1450 	tp->ucopy.memory = 0;
1451 }
1452 
1453 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1454 {
1455 	struct sk_buff *skb;
1456 	u32 offset;
1457 
1458 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1459 		offset = seq - TCP_SKB_CB(skb)->seq;
1460 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1461 			offset--;
1462 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1463 			*off = offset;
1464 			return skb;
1465 		}
1466 		/* This looks weird, but this can happen if TCP collapsing
1467 		 * splitted a fat GRO packet, while we released socket lock
1468 		 * in skb_splice_bits()
1469 		 */
1470 		sk_eat_skb(sk, skb);
1471 	}
1472 	return NULL;
1473 }
1474 
1475 /*
1476  * This routine provides an alternative to tcp_recvmsg() for routines
1477  * that would like to handle copying from skbuffs directly in 'sendfile'
1478  * fashion.
1479  * Note:
1480  *	- It is assumed that the socket was locked by the caller.
1481  *	- The routine does not block.
1482  *	- At present, there is no support for reading OOB data
1483  *	  or for 'peeking' the socket using this routine
1484  *	  (although both would be easy to implement).
1485  */
1486 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1487 		  sk_read_actor_t recv_actor)
1488 {
1489 	struct sk_buff *skb;
1490 	struct tcp_sock *tp = tcp_sk(sk);
1491 	u32 seq = tp->copied_seq;
1492 	u32 offset;
1493 	int copied = 0;
1494 
1495 	if (sk->sk_state == TCP_LISTEN)
1496 		return -ENOTCONN;
1497 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1498 		if (offset < skb->len) {
1499 			int used;
1500 			size_t len;
1501 
1502 			len = skb->len - offset;
1503 			/* Stop reading if we hit a patch of urgent data */
1504 			if (tp->urg_data) {
1505 				u32 urg_offset = tp->urg_seq - seq;
1506 				if (urg_offset < len)
1507 					len = urg_offset;
1508 				if (!len)
1509 					break;
1510 			}
1511 			used = recv_actor(desc, skb, offset, len);
1512 			if (used <= 0) {
1513 				if (!copied)
1514 					copied = used;
1515 				break;
1516 			} else if (used <= len) {
1517 				seq += used;
1518 				copied += used;
1519 				offset += used;
1520 			}
1521 			/* If recv_actor drops the lock (e.g. TCP splice
1522 			 * receive) the skb pointer might be invalid when
1523 			 * getting here: tcp_collapse might have deleted it
1524 			 * while aggregating skbs from the socket queue.
1525 			 */
1526 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1527 			if (!skb)
1528 				break;
1529 			/* TCP coalescing might have appended data to the skb.
1530 			 * Try to splice more frags
1531 			 */
1532 			if (offset + 1 != skb->len)
1533 				continue;
1534 		}
1535 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1536 			sk_eat_skb(sk, skb);
1537 			++seq;
1538 			break;
1539 		}
1540 		sk_eat_skb(sk, skb);
1541 		if (!desc->count)
1542 			break;
1543 		tp->copied_seq = seq;
1544 	}
1545 	tp->copied_seq = seq;
1546 
1547 	tcp_rcv_space_adjust(sk);
1548 
1549 	/* Clean up data we have read: This will do ACK frames. */
1550 	if (copied > 0) {
1551 		tcp_recv_skb(sk, seq, &offset);
1552 		tcp_cleanup_rbuf(sk, copied);
1553 	}
1554 	return copied;
1555 }
1556 EXPORT_SYMBOL(tcp_read_sock);
1557 
1558 /*
1559  *	This routine copies from a sock struct into the user buffer.
1560  *
1561  *	Technical note: in 2.3 we work on _locked_ socket, so that
1562  *	tricks with *seq access order and skb->users are not required.
1563  *	Probably, code can be easily improved even more.
1564  */
1565 
1566 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1567 		int flags, int *addr_len)
1568 {
1569 	struct tcp_sock *tp = tcp_sk(sk);
1570 	int copied = 0;
1571 	u32 peek_seq;
1572 	u32 *seq;
1573 	unsigned long used;
1574 	int err;
1575 	int target;		/* Read at least this many bytes */
1576 	long timeo;
1577 	struct task_struct *user_recv = NULL;
1578 	struct sk_buff *skb, *last;
1579 	u32 urg_hole = 0;
1580 
1581 	if (unlikely(flags & MSG_ERRQUEUE))
1582 		return inet_recv_error(sk, msg, len, addr_len);
1583 
1584 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1585 	    (sk->sk_state == TCP_ESTABLISHED))
1586 		sk_busy_loop(sk, nonblock);
1587 
1588 	lock_sock(sk);
1589 
1590 	err = -ENOTCONN;
1591 	if (sk->sk_state == TCP_LISTEN)
1592 		goto out;
1593 
1594 	timeo = sock_rcvtimeo(sk, nonblock);
1595 
1596 	/* Urgent data needs to be handled specially. */
1597 	if (flags & MSG_OOB)
1598 		goto recv_urg;
1599 
1600 	if (unlikely(tp->repair)) {
1601 		err = -EPERM;
1602 		if (!(flags & MSG_PEEK))
1603 			goto out;
1604 
1605 		if (tp->repair_queue == TCP_SEND_QUEUE)
1606 			goto recv_sndq;
1607 
1608 		err = -EINVAL;
1609 		if (tp->repair_queue == TCP_NO_QUEUE)
1610 			goto out;
1611 
1612 		/* 'common' recv queue MSG_PEEK-ing */
1613 	}
1614 
1615 	seq = &tp->copied_seq;
1616 	if (flags & MSG_PEEK) {
1617 		peek_seq = tp->copied_seq;
1618 		seq = &peek_seq;
1619 	}
1620 
1621 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1622 
1623 	do {
1624 		u32 offset;
1625 
1626 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1627 		if (tp->urg_data && tp->urg_seq == *seq) {
1628 			if (copied)
1629 				break;
1630 			if (signal_pending(current)) {
1631 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1632 				break;
1633 			}
1634 		}
1635 
1636 		/* Next get a buffer. */
1637 
1638 		last = skb_peek_tail(&sk->sk_receive_queue);
1639 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1640 			last = skb;
1641 			/* Now that we have two receive queues this
1642 			 * shouldn't happen.
1643 			 */
1644 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1645 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1646 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1647 				 flags))
1648 				break;
1649 
1650 			offset = *seq - TCP_SKB_CB(skb)->seq;
1651 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1652 				offset--;
1653 			if (offset < skb->len)
1654 				goto found_ok_skb;
1655 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1656 				goto found_fin_ok;
1657 			WARN(!(flags & MSG_PEEK),
1658 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1659 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1660 		}
1661 
1662 		/* Well, if we have backlog, try to process it now yet. */
1663 
1664 		if (copied >= target && !sk->sk_backlog.tail)
1665 			break;
1666 
1667 		if (copied) {
1668 			if (sk->sk_err ||
1669 			    sk->sk_state == TCP_CLOSE ||
1670 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1671 			    !timeo ||
1672 			    signal_pending(current))
1673 				break;
1674 		} else {
1675 			if (sock_flag(sk, SOCK_DONE))
1676 				break;
1677 
1678 			if (sk->sk_err) {
1679 				copied = sock_error(sk);
1680 				break;
1681 			}
1682 
1683 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1684 				break;
1685 
1686 			if (sk->sk_state == TCP_CLOSE) {
1687 				if (!sock_flag(sk, SOCK_DONE)) {
1688 					/* This occurs when user tries to read
1689 					 * from never connected socket.
1690 					 */
1691 					copied = -ENOTCONN;
1692 					break;
1693 				}
1694 				break;
1695 			}
1696 
1697 			if (!timeo) {
1698 				copied = -EAGAIN;
1699 				break;
1700 			}
1701 
1702 			if (signal_pending(current)) {
1703 				copied = sock_intr_errno(timeo);
1704 				break;
1705 			}
1706 		}
1707 
1708 		tcp_cleanup_rbuf(sk, copied);
1709 
1710 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1711 			/* Install new reader */
1712 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1713 				user_recv = current;
1714 				tp->ucopy.task = user_recv;
1715 				tp->ucopy.msg = msg;
1716 			}
1717 
1718 			tp->ucopy.len = len;
1719 
1720 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1721 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1722 
1723 			/* Ugly... If prequeue is not empty, we have to
1724 			 * process it before releasing socket, otherwise
1725 			 * order will be broken at second iteration.
1726 			 * More elegant solution is required!!!
1727 			 *
1728 			 * Look: we have the following (pseudo)queues:
1729 			 *
1730 			 * 1. packets in flight
1731 			 * 2. backlog
1732 			 * 3. prequeue
1733 			 * 4. receive_queue
1734 			 *
1735 			 * Each queue can be processed only if the next ones
1736 			 * are empty. At this point we have empty receive_queue.
1737 			 * But prequeue _can_ be not empty after 2nd iteration,
1738 			 * when we jumped to start of loop because backlog
1739 			 * processing added something to receive_queue.
1740 			 * We cannot release_sock(), because backlog contains
1741 			 * packets arrived _after_ prequeued ones.
1742 			 *
1743 			 * Shortly, algorithm is clear --- to process all
1744 			 * the queues in order. We could make it more directly,
1745 			 * requeueing packets from backlog to prequeue, if
1746 			 * is not empty. It is more elegant, but eats cycles,
1747 			 * unfortunately.
1748 			 */
1749 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1750 				goto do_prequeue;
1751 
1752 			/* __ Set realtime policy in scheduler __ */
1753 		}
1754 
1755 		if (copied >= target) {
1756 			/* Do not sleep, just process backlog. */
1757 			release_sock(sk);
1758 			lock_sock(sk);
1759 		} else {
1760 			sk_wait_data(sk, &timeo, last);
1761 		}
1762 
1763 		if (user_recv) {
1764 			int chunk;
1765 
1766 			/* __ Restore normal policy in scheduler __ */
1767 
1768 			if ((chunk = len - tp->ucopy.len) != 0) {
1769 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1770 				len -= chunk;
1771 				copied += chunk;
1772 			}
1773 
1774 			if (tp->rcv_nxt == tp->copied_seq &&
1775 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1776 do_prequeue:
1777 				tcp_prequeue_process(sk);
1778 
1779 				if ((chunk = len - tp->ucopy.len) != 0) {
1780 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1781 					len -= chunk;
1782 					copied += chunk;
1783 				}
1784 			}
1785 		}
1786 		if ((flags & MSG_PEEK) &&
1787 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1788 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1789 					    current->comm,
1790 					    task_pid_nr(current));
1791 			peek_seq = tp->copied_seq;
1792 		}
1793 		continue;
1794 
1795 	found_ok_skb:
1796 		/* Ok so how much can we use? */
1797 		used = skb->len - offset;
1798 		if (len < used)
1799 			used = len;
1800 
1801 		/* Do we have urgent data here? */
1802 		if (tp->urg_data) {
1803 			u32 urg_offset = tp->urg_seq - *seq;
1804 			if (urg_offset < used) {
1805 				if (!urg_offset) {
1806 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1807 						++*seq;
1808 						urg_hole++;
1809 						offset++;
1810 						used--;
1811 						if (!used)
1812 							goto skip_copy;
1813 					}
1814 				} else
1815 					used = urg_offset;
1816 			}
1817 		}
1818 
1819 		if (!(flags & MSG_TRUNC)) {
1820 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1821 			if (err) {
1822 				/* Exception. Bailout! */
1823 				if (!copied)
1824 					copied = -EFAULT;
1825 				break;
1826 			}
1827 		}
1828 
1829 		*seq += used;
1830 		copied += used;
1831 		len -= used;
1832 
1833 		tcp_rcv_space_adjust(sk);
1834 
1835 skip_copy:
1836 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1837 			tp->urg_data = 0;
1838 			tcp_fast_path_check(sk);
1839 		}
1840 		if (used + offset < skb->len)
1841 			continue;
1842 
1843 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1844 			goto found_fin_ok;
1845 		if (!(flags & MSG_PEEK))
1846 			sk_eat_skb(sk, skb);
1847 		continue;
1848 
1849 	found_fin_ok:
1850 		/* Process the FIN. */
1851 		++*seq;
1852 		if (!(flags & MSG_PEEK))
1853 			sk_eat_skb(sk, skb);
1854 		break;
1855 	} while (len > 0);
1856 
1857 	if (user_recv) {
1858 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1859 			int chunk;
1860 
1861 			tp->ucopy.len = copied > 0 ? len : 0;
1862 
1863 			tcp_prequeue_process(sk);
1864 
1865 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1866 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1867 				len -= chunk;
1868 				copied += chunk;
1869 			}
1870 		}
1871 
1872 		tp->ucopy.task = NULL;
1873 		tp->ucopy.len = 0;
1874 	}
1875 
1876 	/* According to UNIX98, msg_name/msg_namelen are ignored
1877 	 * on connected socket. I was just happy when found this 8) --ANK
1878 	 */
1879 
1880 	/* Clean up data we have read: This will do ACK frames. */
1881 	tcp_cleanup_rbuf(sk, copied);
1882 
1883 	release_sock(sk);
1884 	return copied;
1885 
1886 out:
1887 	release_sock(sk);
1888 	return err;
1889 
1890 recv_urg:
1891 	err = tcp_recv_urg(sk, msg, len, flags);
1892 	goto out;
1893 
1894 recv_sndq:
1895 	err = tcp_peek_sndq(sk, msg, len);
1896 	goto out;
1897 }
1898 EXPORT_SYMBOL(tcp_recvmsg);
1899 
1900 void tcp_set_state(struct sock *sk, int state)
1901 {
1902 	int oldstate = sk->sk_state;
1903 
1904 	switch (state) {
1905 	case TCP_ESTABLISHED:
1906 		if (oldstate != TCP_ESTABLISHED)
1907 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1908 		break;
1909 
1910 	case TCP_CLOSE:
1911 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1912 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1913 
1914 		sk->sk_prot->unhash(sk);
1915 		if (inet_csk(sk)->icsk_bind_hash &&
1916 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1917 			inet_put_port(sk);
1918 		/* fall through */
1919 	default:
1920 		if (oldstate == TCP_ESTABLISHED)
1921 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1922 	}
1923 
1924 	/* Change state AFTER socket is unhashed to avoid closed
1925 	 * socket sitting in hash tables.
1926 	 */
1927 	sk->sk_state = state;
1928 
1929 #ifdef STATE_TRACE
1930 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1931 #endif
1932 }
1933 EXPORT_SYMBOL_GPL(tcp_set_state);
1934 
1935 /*
1936  *	State processing on a close. This implements the state shift for
1937  *	sending our FIN frame. Note that we only send a FIN for some
1938  *	states. A shutdown() may have already sent the FIN, or we may be
1939  *	closed.
1940  */
1941 
1942 static const unsigned char new_state[16] = {
1943   /* current state:        new state:      action:	*/
1944   [0 /* (Invalid) */]	= TCP_CLOSE,
1945   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1946   [TCP_SYN_SENT]	= TCP_CLOSE,
1947   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1948   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1949   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1950   [TCP_TIME_WAIT]	= TCP_CLOSE,
1951   [TCP_CLOSE]		= TCP_CLOSE,
1952   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1953   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1954   [TCP_LISTEN]		= TCP_CLOSE,
1955   [TCP_CLOSING]		= TCP_CLOSING,
1956   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1957 };
1958 
1959 static int tcp_close_state(struct sock *sk)
1960 {
1961 	int next = (int)new_state[sk->sk_state];
1962 	int ns = next & TCP_STATE_MASK;
1963 
1964 	tcp_set_state(sk, ns);
1965 
1966 	return next & TCP_ACTION_FIN;
1967 }
1968 
1969 /*
1970  *	Shutdown the sending side of a connection. Much like close except
1971  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1972  */
1973 
1974 void tcp_shutdown(struct sock *sk, int how)
1975 {
1976 	/*	We need to grab some memory, and put together a FIN,
1977 	 *	and then put it into the queue to be sent.
1978 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1979 	 */
1980 	if (!(how & SEND_SHUTDOWN))
1981 		return;
1982 
1983 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1984 	if ((1 << sk->sk_state) &
1985 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1986 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1987 		/* Clear out any half completed packets.  FIN if needed. */
1988 		if (tcp_close_state(sk))
1989 			tcp_send_fin(sk);
1990 	}
1991 }
1992 EXPORT_SYMBOL(tcp_shutdown);
1993 
1994 bool tcp_check_oom(struct sock *sk, int shift)
1995 {
1996 	bool too_many_orphans, out_of_socket_memory;
1997 
1998 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1999 	out_of_socket_memory = tcp_out_of_memory(sk);
2000 
2001 	if (too_many_orphans)
2002 		net_info_ratelimited("too many orphaned sockets\n");
2003 	if (out_of_socket_memory)
2004 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2005 	return too_many_orphans || out_of_socket_memory;
2006 }
2007 
2008 void tcp_close(struct sock *sk, long timeout)
2009 {
2010 	struct sk_buff *skb;
2011 	int data_was_unread = 0;
2012 	int state;
2013 
2014 	lock_sock(sk);
2015 	sk->sk_shutdown = SHUTDOWN_MASK;
2016 
2017 	if (sk->sk_state == TCP_LISTEN) {
2018 		tcp_set_state(sk, TCP_CLOSE);
2019 
2020 		/* Special case. */
2021 		inet_csk_listen_stop(sk);
2022 
2023 		goto adjudge_to_death;
2024 	}
2025 
2026 	/*  We need to flush the recv. buffs.  We do this only on the
2027 	 *  descriptor close, not protocol-sourced closes, because the
2028 	 *  reader process may not have drained the data yet!
2029 	 */
2030 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2031 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2032 
2033 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2034 			len--;
2035 		data_was_unread += len;
2036 		__kfree_skb(skb);
2037 	}
2038 
2039 	sk_mem_reclaim(sk);
2040 
2041 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2042 	if (sk->sk_state == TCP_CLOSE)
2043 		goto adjudge_to_death;
2044 
2045 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2046 	 * data was lost. To witness the awful effects of the old behavior of
2047 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2048 	 * GET in an FTP client, suspend the process, wait for the client to
2049 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2050 	 * Note: timeout is always zero in such a case.
2051 	 */
2052 	if (unlikely(tcp_sk(sk)->repair)) {
2053 		sk->sk_prot->disconnect(sk, 0);
2054 	} else if (data_was_unread) {
2055 		/* Unread data was tossed, zap the connection. */
2056 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2057 		tcp_set_state(sk, TCP_CLOSE);
2058 		tcp_send_active_reset(sk, sk->sk_allocation);
2059 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2060 		/* Check zero linger _after_ checking for unread data. */
2061 		sk->sk_prot->disconnect(sk, 0);
2062 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2063 	} else if (tcp_close_state(sk)) {
2064 		/* We FIN if the application ate all the data before
2065 		 * zapping the connection.
2066 		 */
2067 
2068 		/* RED-PEN. Formally speaking, we have broken TCP state
2069 		 * machine. State transitions:
2070 		 *
2071 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2072 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2073 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2074 		 *
2075 		 * are legal only when FIN has been sent (i.e. in window),
2076 		 * rather than queued out of window. Purists blame.
2077 		 *
2078 		 * F.e. "RFC state" is ESTABLISHED,
2079 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2080 		 *
2081 		 * The visible declinations are that sometimes
2082 		 * we enter time-wait state, when it is not required really
2083 		 * (harmless), do not send active resets, when they are
2084 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2085 		 * they look as CLOSING or LAST_ACK for Linux)
2086 		 * Probably, I missed some more holelets.
2087 		 * 						--ANK
2088 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2089 		 * in a single packet! (May consider it later but will
2090 		 * probably need API support or TCP_CORK SYN-ACK until
2091 		 * data is written and socket is closed.)
2092 		 */
2093 		tcp_send_fin(sk);
2094 	}
2095 
2096 	sk_stream_wait_close(sk, timeout);
2097 
2098 adjudge_to_death:
2099 	state = sk->sk_state;
2100 	sock_hold(sk);
2101 	sock_orphan(sk);
2102 
2103 	/* It is the last release_sock in its life. It will remove backlog. */
2104 	release_sock(sk);
2105 
2106 
2107 	/* Now socket is owned by kernel and we acquire BH lock
2108 	   to finish close. No need to check for user refs.
2109 	 */
2110 	local_bh_disable();
2111 	bh_lock_sock(sk);
2112 	WARN_ON(sock_owned_by_user(sk));
2113 
2114 	percpu_counter_inc(sk->sk_prot->orphan_count);
2115 
2116 	/* Have we already been destroyed by a softirq or backlog? */
2117 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2118 		goto out;
2119 
2120 	/*	This is a (useful) BSD violating of the RFC. There is a
2121 	 *	problem with TCP as specified in that the other end could
2122 	 *	keep a socket open forever with no application left this end.
2123 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2124 	 *	our end. If they send after that then tough - BUT: long enough
2125 	 *	that we won't make the old 4*rto = almost no time - whoops
2126 	 *	reset mistake.
2127 	 *
2128 	 *	Nope, it was not mistake. It is really desired behaviour
2129 	 *	f.e. on http servers, when such sockets are useless, but
2130 	 *	consume significant resources. Let's do it with special
2131 	 *	linger2	option.					--ANK
2132 	 */
2133 
2134 	if (sk->sk_state == TCP_FIN_WAIT2) {
2135 		struct tcp_sock *tp = tcp_sk(sk);
2136 		if (tp->linger2 < 0) {
2137 			tcp_set_state(sk, TCP_CLOSE);
2138 			tcp_send_active_reset(sk, GFP_ATOMIC);
2139 			NET_INC_STATS_BH(sock_net(sk),
2140 					LINUX_MIB_TCPABORTONLINGER);
2141 		} else {
2142 			const int tmo = tcp_fin_time(sk);
2143 
2144 			if (tmo > TCP_TIMEWAIT_LEN) {
2145 				inet_csk_reset_keepalive_timer(sk,
2146 						tmo - TCP_TIMEWAIT_LEN);
2147 			} else {
2148 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2149 				goto out;
2150 			}
2151 		}
2152 	}
2153 	if (sk->sk_state != TCP_CLOSE) {
2154 		sk_mem_reclaim(sk);
2155 		if (tcp_check_oom(sk, 0)) {
2156 			tcp_set_state(sk, TCP_CLOSE);
2157 			tcp_send_active_reset(sk, GFP_ATOMIC);
2158 			NET_INC_STATS_BH(sock_net(sk),
2159 					LINUX_MIB_TCPABORTONMEMORY);
2160 		}
2161 	}
2162 
2163 	if (sk->sk_state == TCP_CLOSE) {
2164 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2165 		/* We could get here with a non-NULL req if the socket is
2166 		 * aborted (e.g., closed with unread data) before 3WHS
2167 		 * finishes.
2168 		 */
2169 		if (req)
2170 			reqsk_fastopen_remove(sk, req, false);
2171 		inet_csk_destroy_sock(sk);
2172 	}
2173 	/* Otherwise, socket is reprieved until protocol close. */
2174 
2175 out:
2176 	bh_unlock_sock(sk);
2177 	local_bh_enable();
2178 	sock_put(sk);
2179 }
2180 EXPORT_SYMBOL(tcp_close);
2181 
2182 /* These states need RST on ABORT according to RFC793 */
2183 
2184 static inline bool tcp_need_reset(int state)
2185 {
2186 	return (1 << state) &
2187 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2188 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2189 }
2190 
2191 int tcp_disconnect(struct sock *sk, int flags)
2192 {
2193 	struct inet_sock *inet = inet_sk(sk);
2194 	struct inet_connection_sock *icsk = inet_csk(sk);
2195 	struct tcp_sock *tp = tcp_sk(sk);
2196 	int err = 0;
2197 	int old_state = sk->sk_state;
2198 
2199 	if (old_state != TCP_CLOSE)
2200 		tcp_set_state(sk, TCP_CLOSE);
2201 
2202 	/* ABORT function of RFC793 */
2203 	if (old_state == TCP_LISTEN) {
2204 		inet_csk_listen_stop(sk);
2205 	} else if (unlikely(tp->repair)) {
2206 		sk->sk_err = ECONNABORTED;
2207 	} else if (tcp_need_reset(old_state) ||
2208 		   (tp->snd_nxt != tp->write_seq &&
2209 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2210 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2211 		 * states
2212 		 */
2213 		tcp_send_active_reset(sk, gfp_any());
2214 		sk->sk_err = ECONNRESET;
2215 	} else if (old_state == TCP_SYN_SENT)
2216 		sk->sk_err = ECONNRESET;
2217 
2218 	tcp_clear_xmit_timers(sk);
2219 	__skb_queue_purge(&sk->sk_receive_queue);
2220 	tcp_write_queue_purge(sk);
2221 	__skb_queue_purge(&tp->out_of_order_queue);
2222 
2223 	inet->inet_dport = 0;
2224 
2225 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2226 		inet_reset_saddr(sk);
2227 
2228 	sk->sk_shutdown = 0;
2229 	sock_reset_flag(sk, SOCK_DONE);
2230 	tp->srtt_us = 0;
2231 	if ((tp->write_seq += tp->max_window + 2) == 0)
2232 		tp->write_seq = 1;
2233 	icsk->icsk_backoff = 0;
2234 	tp->snd_cwnd = 2;
2235 	icsk->icsk_probes_out = 0;
2236 	tp->packets_out = 0;
2237 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2238 	tp->snd_cwnd_cnt = 0;
2239 	tp->window_clamp = 0;
2240 	tcp_set_ca_state(sk, TCP_CA_Open);
2241 	tcp_clear_retrans(tp);
2242 	inet_csk_delack_init(sk);
2243 	tcp_init_send_head(sk);
2244 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2245 	__sk_dst_reset(sk);
2246 
2247 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2248 
2249 	sk->sk_error_report(sk);
2250 	return err;
2251 }
2252 EXPORT_SYMBOL(tcp_disconnect);
2253 
2254 void tcp_sock_destruct(struct sock *sk)
2255 {
2256 	inet_sock_destruct(sk);
2257 
2258 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2259 }
2260 
2261 static inline bool tcp_can_repair_sock(const struct sock *sk)
2262 {
2263 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2264 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2265 }
2266 
2267 static int tcp_repair_options_est(struct tcp_sock *tp,
2268 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2269 {
2270 	struct tcp_repair_opt opt;
2271 
2272 	while (len >= sizeof(opt)) {
2273 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2274 			return -EFAULT;
2275 
2276 		optbuf++;
2277 		len -= sizeof(opt);
2278 
2279 		switch (opt.opt_code) {
2280 		case TCPOPT_MSS:
2281 			tp->rx_opt.mss_clamp = opt.opt_val;
2282 			break;
2283 		case TCPOPT_WINDOW:
2284 			{
2285 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2286 				u16 rcv_wscale = opt.opt_val >> 16;
2287 
2288 				if (snd_wscale > 14 || rcv_wscale > 14)
2289 					return -EFBIG;
2290 
2291 				tp->rx_opt.snd_wscale = snd_wscale;
2292 				tp->rx_opt.rcv_wscale = rcv_wscale;
2293 				tp->rx_opt.wscale_ok = 1;
2294 			}
2295 			break;
2296 		case TCPOPT_SACK_PERM:
2297 			if (opt.opt_val != 0)
2298 				return -EINVAL;
2299 
2300 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2301 			if (sysctl_tcp_fack)
2302 				tcp_enable_fack(tp);
2303 			break;
2304 		case TCPOPT_TIMESTAMP:
2305 			if (opt.opt_val != 0)
2306 				return -EINVAL;
2307 
2308 			tp->rx_opt.tstamp_ok = 1;
2309 			break;
2310 		}
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 /*
2317  *	Socket option code for TCP.
2318  */
2319 static int do_tcp_setsockopt(struct sock *sk, int level,
2320 		int optname, char __user *optval, unsigned int optlen)
2321 {
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 	struct inet_connection_sock *icsk = inet_csk(sk);
2324 	int val;
2325 	int err = 0;
2326 
2327 	/* These are data/string values, all the others are ints */
2328 	switch (optname) {
2329 	case TCP_CONGESTION: {
2330 		char name[TCP_CA_NAME_MAX];
2331 
2332 		if (optlen < 1)
2333 			return -EINVAL;
2334 
2335 		val = strncpy_from_user(name, optval,
2336 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2337 		if (val < 0)
2338 			return -EFAULT;
2339 		name[val] = 0;
2340 
2341 		lock_sock(sk);
2342 		err = tcp_set_congestion_control(sk, name);
2343 		release_sock(sk);
2344 		return err;
2345 	}
2346 	default:
2347 		/* fallthru */
2348 		break;
2349 	}
2350 
2351 	if (optlen < sizeof(int))
2352 		return -EINVAL;
2353 
2354 	if (get_user(val, (int __user *)optval))
2355 		return -EFAULT;
2356 
2357 	lock_sock(sk);
2358 
2359 	switch (optname) {
2360 	case TCP_MAXSEG:
2361 		/* Values greater than interface MTU won't take effect. However
2362 		 * at the point when this call is done we typically don't yet
2363 		 * know which interface is going to be used */
2364 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2365 			err = -EINVAL;
2366 			break;
2367 		}
2368 		tp->rx_opt.user_mss = val;
2369 		break;
2370 
2371 	case TCP_NODELAY:
2372 		if (val) {
2373 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2374 			 * this option on corked socket is remembered, but
2375 			 * it is not activated until cork is cleared.
2376 			 *
2377 			 * However, when TCP_NODELAY is set we make
2378 			 * an explicit push, which overrides even TCP_CORK
2379 			 * for currently queued segments.
2380 			 */
2381 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2382 			tcp_push_pending_frames(sk);
2383 		} else {
2384 			tp->nonagle &= ~TCP_NAGLE_OFF;
2385 		}
2386 		break;
2387 
2388 	case TCP_THIN_LINEAR_TIMEOUTS:
2389 		if (val < 0 || val > 1)
2390 			err = -EINVAL;
2391 		else
2392 			tp->thin_lto = val;
2393 		break;
2394 
2395 	case TCP_THIN_DUPACK:
2396 		if (val < 0 || val > 1)
2397 			err = -EINVAL;
2398 		else {
2399 			tp->thin_dupack = val;
2400 			if (tp->thin_dupack)
2401 				tcp_disable_early_retrans(tp);
2402 		}
2403 		break;
2404 
2405 	case TCP_REPAIR:
2406 		if (!tcp_can_repair_sock(sk))
2407 			err = -EPERM;
2408 		else if (val == 1) {
2409 			tp->repair = 1;
2410 			sk->sk_reuse = SK_FORCE_REUSE;
2411 			tp->repair_queue = TCP_NO_QUEUE;
2412 		} else if (val == 0) {
2413 			tp->repair = 0;
2414 			sk->sk_reuse = SK_NO_REUSE;
2415 			tcp_send_window_probe(sk);
2416 		} else
2417 			err = -EINVAL;
2418 
2419 		break;
2420 
2421 	case TCP_REPAIR_QUEUE:
2422 		if (!tp->repair)
2423 			err = -EPERM;
2424 		else if (val < TCP_QUEUES_NR)
2425 			tp->repair_queue = val;
2426 		else
2427 			err = -EINVAL;
2428 		break;
2429 
2430 	case TCP_QUEUE_SEQ:
2431 		if (sk->sk_state != TCP_CLOSE)
2432 			err = -EPERM;
2433 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2434 			tp->write_seq = val;
2435 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2436 			tp->rcv_nxt = val;
2437 		else
2438 			err = -EINVAL;
2439 		break;
2440 
2441 	case TCP_REPAIR_OPTIONS:
2442 		if (!tp->repair)
2443 			err = -EINVAL;
2444 		else if (sk->sk_state == TCP_ESTABLISHED)
2445 			err = tcp_repair_options_est(tp,
2446 					(struct tcp_repair_opt __user *)optval,
2447 					optlen);
2448 		else
2449 			err = -EPERM;
2450 		break;
2451 
2452 	case TCP_CORK:
2453 		/* When set indicates to always queue non-full frames.
2454 		 * Later the user clears this option and we transmit
2455 		 * any pending partial frames in the queue.  This is
2456 		 * meant to be used alongside sendfile() to get properly
2457 		 * filled frames when the user (for example) must write
2458 		 * out headers with a write() call first and then use
2459 		 * sendfile to send out the data parts.
2460 		 *
2461 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2462 		 * stronger than TCP_NODELAY.
2463 		 */
2464 		if (val) {
2465 			tp->nonagle |= TCP_NAGLE_CORK;
2466 		} else {
2467 			tp->nonagle &= ~TCP_NAGLE_CORK;
2468 			if (tp->nonagle&TCP_NAGLE_OFF)
2469 				tp->nonagle |= TCP_NAGLE_PUSH;
2470 			tcp_push_pending_frames(sk);
2471 		}
2472 		break;
2473 
2474 	case TCP_KEEPIDLE:
2475 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2476 			err = -EINVAL;
2477 		else {
2478 			tp->keepalive_time = val * HZ;
2479 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2480 			    !((1 << sk->sk_state) &
2481 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2482 				u32 elapsed = keepalive_time_elapsed(tp);
2483 				if (tp->keepalive_time > elapsed)
2484 					elapsed = tp->keepalive_time - elapsed;
2485 				else
2486 					elapsed = 0;
2487 				inet_csk_reset_keepalive_timer(sk, elapsed);
2488 			}
2489 		}
2490 		break;
2491 	case TCP_KEEPINTVL:
2492 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2493 			err = -EINVAL;
2494 		else
2495 			tp->keepalive_intvl = val * HZ;
2496 		break;
2497 	case TCP_KEEPCNT:
2498 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2499 			err = -EINVAL;
2500 		else
2501 			tp->keepalive_probes = val;
2502 		break;
2503 	case TCP_SYNCNT:
2504 		if (val < 1 || val > MAX_TCP_SYNCNT)
2505 			err = -EINVAL;
2506 		else
2507 			icsk->icsk_syn_retries = val;
2508 		break;
2509 
2510 	case TCP_SAVE_SYN:
2511 		if (val < 0 || val > 1)
2512 			err = -EINVAL;
2513 		else
2514 			tp->save_syn = val;
2515 		break;
2516 
2517 	case TCP_LINGER2:
2518 		if (val < 0)
2519 			tp->linger2 = -1;
2520 		else if (val > sysctl_tcp_fin_timeout / HZ)
2521 			tp->linger2 = 0;
2522 		else
2523 			tp->linger2 = val * HZ;
2524 		break;
2525 
2526 	case TCP_DEFER_ACCEPT:
2527 		/* Translate value in seconds to number of retransmits */
2528 		icsk->icsk_accept_queue.rskq_defer_accept =
2529 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2530 					TCP_RTO_MAX / HZ);
2531 		break;
2532 
2533 	case TCP_WINDOW_CLAMP:
2534 		if (!val) {
2535 			if (sk->sk_state != TCP_CLOSE) {
2536 				err = -EINVAL;
2537 				break;
2538 			}
2539 			tp->window_clamp = 0;
2540 		} else
2541 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2542 						SOCK_MIN_RCVBUF / 2 : val;
2543 		break;
2544 
2545 	case TCP_QUICKACK:
2546 		if (!val) {
2547 			icsk->icsk_ack.pingpong = 1;
2548 		} else {
2549 			icsk->icsk_ack.pingpong = 0;
2550 			if ((1 << sk->sk_state) &
2551 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2552 			    inet_csk_ack_scheduled(sk)) {
2553 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2554 				tcp_cleanup_rbuf(sk, 1);
2555 				if (!(val & 1))
2556 					icsk->icsk_ack.pingpong = 1;
2557 			}
2558 		}
2559 		break;
2560 
2561 #ifdef CONFIG_TCP_MD5SIG
2562 	case TCP_MD5SIG:
2563 		/* Read the IP->Key mappings from userspace */
2564 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2565 		break;
2566 #endif
2567 	case TCP_USER_TIMEOUT:
2568 		/* Cap the max time in ms TCP will retry or probe the window
2569 		 * before giving up and aborting (ETIMEDOUT) a connection.
2570 		 */
2571 		if (val < 0)
2572 			err = -EINVAL;
2573 		else
2574 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2575 		break;
2576 
2577 	case TCP_FASTOPEN:
2578 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2579 		    TCPF_LISTEN))) {
2580 			tcp_fastopen_init_key_once(true);
2581 
2582 			err = fastopen_init_queue(sk, val);
2583 		} else {
2584 			err = -EINVAL;
2585 		}
2586 		break;
2587 	case TCP_TIMESTAMP:
2588 		if (!tp->repair)
2589 			err = -EPERM;
2590 		else
2591 			tp->tsoffset = val - tcp_time_stamp;
2592 		break;
2593 	case TCP_NOTSENT_LOWAT:
2594 		tp->notsent_lowat = val;
2595 		sk->sk_write_space(sk);
2596 		break;
2597 	default:
2598 		err = -ENOPROTOOPT;
2599 		break;
2600 	}
2601 
2602 	release_sock(sk);
2603 	return err;
2604 }
2605 
2606 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2607 		   unsigned int optlen)
2608 {
2609 	const struct inet_connection_sock *icsk = inet_csk(sk);
2610 
2611 	if (level != SOL_TCP)
2612 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2613 						     optval, optlen);
2614 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2615 }
2616 EXPORT_SYMBOL(tcp_setsockopt);
2617 
2618 #ifdef CONFIG_COMPAT
2619 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2620 			  char __user *optval, unsigned int optlen)
2621 {
2622 	if (level != SOL_TCP)
2623 		return inet_csk_compat_setsockopt(sk, level, optname,
2624 						  optval, optlen);
2625 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2626 }
2627 EXPORT_SYMBOL(compat_tcp_setsockopt);
2628 #endif
2629 
2630 /* Return information about state of tcp endpoint in API format. */
2631 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2632 {
2633 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2634 	const struct inet_connection_sock *icsk = inet_csk(sk);
2635 	u32 now = tcp_time_stamp;
2636 	unsigned int start;
2637 	u32 rate;
2638 
2639 	memset(info, 0, sizeof(*info));
2640 	if (sk->sk_type != SOCK_STREAM)
2641 		return;
2642 
2643 	info->tcpi_state = sk->sk_state;
2644 	info->tcpi_ca_state = icsk->icsk_ca_state;
2645 	info->tcpi_retransmits = icsk->icsk_retransmits;
2646 	info->tcpi_probes = icsk->icsk_probes_out;
2647 	info->tcpi_backoff = icsk->icsk_backoff;
2648 
2649 	if (tp->rx_opt.tstamp_ok)
2650 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2651 	if (tcp_is_sack(tp))
2652 		info->tcpi_options |= TCPI_OPT_SACK;
2653 	if (tp->rx_opt.wscale_ok) {
2654 		info->tcpi_options |= TCPI_OPT_WSCALE;
2655 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2656 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2657 	}
2658 
2659 	if (tp->ecn_flags & TCP_ECN_OK)
2660 		info->tcpi_options |= TCPI_OPT_ECN;
2661 	if (tp->ecn_flags & TCP_ECN_SEEN)
2662 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2663 	if (tp->syn_data_acked)
2664 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2665 
2666 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2667 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2668 	info->tcpi_snd_mss = tp->mss_cache;
2669 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2670 
2671 	if (sk->sk_state == TCP_LISTEN) {
2672 		info->tcpi_unacked = sk->sk_ack_backlog;
2673 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2674 	} else {
2675 		info->tcpi_unacked = tp->packets_out;
2676 		info->tcpi_sacked = tp->sacked_out;
2677 	}
2678 	info->tcpi_lost = tp->lost_out;
2679 	info->tcpi_retrans = tp->retrans_out;
2680 	info->tcpi_fackets = tp->fackets_out;
2681 
2682 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2683 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2684 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2685 
2686 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2687 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2688 	info->tcpi_rtt = tp->srtt_us >> 3;
2689 	info->tcpi_rttvar = tp->mdev_us >> 2;
2690 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2691 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2692 	info->tcpi_advmss = tp->advmss;
2693 	info->tcpi_reordering = tp->reordering;
2694 
2695 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2696 	info->tcpi_rcv_space = tp->rcvq_space.space;
2697 
2698 	info->tcpi_total_retrans = tp->total_retrans;
2699 
2700 	rate = READ_ONCE(sk->sk_pacing_rate);
2701 	info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2702 
2703 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2704 	info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2705 
2706 	do {
2707 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2708 		info->tcpi_bytes_acked = tp->bytes_acked;
2709 		info->tcpi_bytes_received = tp->bytes_received;
2710 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2711 	info->tcpi_segs_out = tp->segs_out;
2712 	info->tcpi_segs_in = tp->segs_in;
2713 }
2714 EXPORT_SYMBOL_GPL(tcp_get_info);
2715 
2716 static int do_tcp_getsockopt(struct sock *sk, int level,
2717 		int optname, char __user *optval, int __user *optlen)
2718 {
2719 	struct inet_connection_sock *icsk = inet_csk(sk);
2720 	struct tcp_sock *tp = tcp_sk(sk);
2721 	int val, len;
2722 
2723 	if (get_user(len, optlen))
2724 		return -EFAULT;
2725 
2726 	len = min_t(unsigned int, len, sizeof(int));
2727 
2728 	if (len < 0)
2729 		return -EINVAL;
2730 
2731 	switch (optname) {
2732 	case TCP_MAXSEG:
2733 		val = tp->mss_cache;
2734 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2735 			val = tp->rx_opt.user_mss;
2736 		if (tp->repair)
2737 			val = tp->rx_opt.mss_clamp;
2738 		break;
2739 	case TCP_NODELAY:
2740 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2741 		break;
2742 	case TCP_CORK:
2743 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2744 		break;
2745 	case TCP_KEEPIDLE:
2746 		val = keepalive_time_when(tp) / HZ;
2747 		break;
2748 	case TCP_KEEPINTVL:
2749 		val = keepalive_intvl_when(tp) / HZ;
2750 		break;
2751 	case TCP_KEEPCNT:
2752 		val = keepalive_probes(tp);
2753 		break;
2754 	case TCP_SYNCNT:
2755 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2756 		break;
2757 	case TCP_LINGER2:
2758 		val = tp->linger2;
2759 		if (val >= 0)
2760 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2761 		break;
2762 	case TCP_DEFER_ACCEPT:
2763 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2764 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2765 		break;
2766 	case TCP_WINDOW_CLAMP:
2767 		val = tp->window_clamp;
2768 		break;
2769 	case TCP_INFO: {
2770 		struct tcp_info info;
2771 
2772 		if (get_user(len, optlen))
2773 			return -EFAULT;
2774 
2775 		tcp_get_info(sk, &info);
2776 
2777 		len = min_t(unsigned int, len, sizeof(info));
2778 		if (put_user(len, optlen))
2779 			return -EFAULT;
2780 		if (copy_to_user(optval, &info, len))
2781 			return -EFAULT;
2782 		return 0;
2783 	}
2784 	case TCP_CC_INFO: {
2785 		const struct tcp_congestion_ops *ca_ops;
2786 		union tcp_cc_info info;
2787 		size_t sz = 0;
2788 		int attr;
2789 
2790 		if (get_user(len, optlen))
2791 			return -EFAULT;
2792 
2793 		ca_ops = icsk->icsk_ca_ops;
2794 		if (ca_ops && ca_ops->get_info)
2795 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2796 
2797 		len = min_t(unsigned int, len, sz);
2798 		if (put_user(len, optlen))
2799 			return -EFAULT;
2800 		if (copy_to_user(optval, &info, len))
2801 			return -EFAULT;
2802 		return 0;
2803 	}
2804 	case TCP_QUICKACK:
2805 		val = !icsk->icsk_ack.pingpong;
2806 		break;
2807 
2808 	case TCP_CONGESTION:
2809 		if (get_user(len, optlen))
2810 			return -EFAULT;
2811 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2812 		if (put_user(len, optlen))
2813 			return -EFAULT;
2814 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2815 			return -EFAULT;
2816 		return 0;
2817 
2818 	case TCP_THIN_LINEAR_TIMEOUTS:
2819 		val = tp->thin_lto;
2820 		break;
2821 	case TCP_THIN_DUPACK:
2822 		val = tp->thin_dupack;
2823 		break;
2824 
2825 	case TCP_REPAIR:
2826 		val = tp->repair;
2827 		break;
2828 
2829 	case TCP_REPAIR_QUEUE:
2830 		if (tp->repair)
2831 			val = tp->repair_queue;
2832 		else
2833 			return -EINVAL;
2834 		break;
2835 
2836 	case TCP_QUEUE_SEQ:
2837 		if (tp->repair_queue == TCP_SEND_QUEUE)
2838 			val = tp->write_seq;
2839 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2840 			val = tp->rcv_nxt;
2841 		else
2842 			return -EINVAL;
2843 		break;
2844 
2845 	case TCP_USER_TIMEOUT:
2846 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2847 		break;
2848 
2849 	case TCP_FASTOPEN:
2850 		if (icsk->icsk_accept_queue.fastopenq)
2851 			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2852 		else
2853 			val = 0;
2854 		break;
2855 
2856 	case TCP_TIMESTAMP:
2857 		val = tcp_time_stamp + tp->tsoffset;
2858 		break;
2859 	case TCP_NOTSENT_LOWAT:
2860 		val = tp->notsent_lowat;
2861 		break;
2862 	case TCP_SAVE_SYN:
2863 		val = tp->save_syn;
2864 		break;
2865 	case TCP_SAVED_SYN: {
2866 		if (get_user(len, optlen))
2867 			return -EFAULT;
2868 
2869 		lock_sock(sk);
2870 		if (tp->saved_syn) {
2871 			if (len < tp->saved_syn[0]) {
2872 				if (put_user(tp->saved_syn[0], optlen)) {
2873 					release_sock(sk);
2874 					return -EFAULT;
2875 				}
2876 				release_sock(sk);
2877 				return -EINVAL;
2878 			}
2879 			len = tp->saved_syn[0];
2880 			if (put_user(len, optlen)) {
2881 				release_sock(sk);
2882 				return -EFAULT;
2883 			}
2884 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2885 				release_sock(sk);
2886 				return -EFAULT;
2887 			}
2888 			tcp_saved_syn_free(tp);
2889 			release_sock(sk);
2890 		} else {
2891 			release_sock(sk);
2892 			len = 0;
2893 			if (put_user(len, optlen))
2894 				return -EFAULT;
2895 		}
2896 		return 0;
2897 	}
2898 	default:
2899 		return -ENOPROTOOPT;
2900 	}
2901 
2902 	if (put_user(len, optlen))
2903 		return -EFAULT;
2904 	if (copy_to_user(optval, &val, len))
2905 		return -EFAULT;
2906 	return 0;
2907 }
2908 
2909 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2910 		   int __user *optlen)
2911 {
2912 	struct inet_connection_sock *icsk = inet_csk(sk);
2913 
2914 	if (level != SOL_TCP)
2915 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2916 						     optval, optlen);
2917 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2918 }
2919 EXPORT_SYMBOL(tcp_getsockopt);
2920 
2921 #ifdef CONFIG_COMPAT
2922 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2923 			  char __user *optval, int __user *optlen)
2924 {
2925 	if (level != SOL_TCP)
2926 		return inet_csk_compat_getsockopt(sk, level, optname,
2927 						  optval, optlen);
2928 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2929 }
2930 EXPORT_SYMBOL(compat_tcp_getsockopt);
2931 #endif
2932 
2933 #ifdef CONFIG_TCP_MD5SIG
2934 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2935 static DEFINE_MUTEX(tcp_md5sig_mutex);
2936 static bool tcp_md5sig_pool_populated = false;
2937 
2938 static void __tcp_alloc_md5sig_pool(void)
2939 {
2940 	int cpu;
2941 
2942 	for_each_possible_cpu(cpu) {
2943 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2944 			struct crypto_hash *hash;
2945 
2946 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2947 			if (IS_ERR_OR_NULL(hash))
2948 				return;
2949 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2950 		}
2951 	}
2952 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2953 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2954 	 */
2955 	smp_wmb();
2956 	tcp_md5sig_pool_populated = true;
2957 }
2958 
2959 bool tcp_alloc_md5sig_pool(void)
2960 {
2961 	if (unlikely(!tcp_md5sig_pool_populated)) {
2962 		mutex_lock(&tcp_md5sig_mutex);
2963 
2964 		if (!tcp_md5sig_pool_populated)
2965 			__tcp_alloc_md5sig_pool();
2966 
2967 		mutex_unlock(&tcp_md5sig_mutex);
2968 	}
2969 	return tcp_md5sig_pool_populated;
2970 }
2971 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2972 
2973 
2974 /**
2975  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2976  *
2977  *	We use percpu structure, so if we succeed, we exit with preemption
2978  *	and BH disabled, to make sure another thread or softirq handling
2979  *	wont try to get same context.
2980  */
2981 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2982 {
2983 	local_bh_disable();
2984 
2985 	if (tcp_md5sig_pool_populated) {
2986 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2987 		smp_rmb();
2988 		return this_cpu_ptr(&tcp_md5sig_pool);
2989 	}
2990 	local_bh_enable();
2991 	return NULL;
2992 }
2993 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2994 
2995 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2996 			const struct tcphdr *th)
2997 {
2998 	struct scatterlist sg;
2999 	struct tcphdr hdr;
3000 	int err;
3001 
3002 	/* We are not allowed to change tcphdr, make a local copy */
3003 	memcpy(&hdr, th, sizeof(hdr));
3004 	hdr.check = 0;
3005 
3006 	/* options aren't included in the hash */
3007 	sg_init_one(&sg, &hdr, sizeof(hdr));
3008 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3009 	return err;
3010 }
3011 EXPORT_SYMBOL(tcp_md5_hash_header);
3012 
3013 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3014 			  const struct sk_buff *skb, unsigned int header_len)
3015 {
3016 	struct scatterlist sg;
3017 	const struct tcphdr *tp = tcp_hdr(skb);
3018 	struct hash_desc *desc = &hp->md5_desc;
3019 	unsigned int i;
3020 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3021 					   skb_headlen(skb) - header_len : 0;
3022 	const struct skb_shared_info *shi = skb_shinfo(skb);
3023 	struct sk_buff *frag_iter;
3024 
3025 	sg_init_table(&sg, 1);
3026 
3027 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3028 	if (crypto_hash_update(desc, &sg, head_data_len))
3029 		return 1;
3030 
3031 	for (i = 0; i < shi->nr_frags; ++i) {
3032 		const struct skb_frag_struct *f = &shi->frags[i];
3033 		unsigned int offset = f->page_offset;
3034 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3035 
3036 		sg_set_page(&sg, page, skb_frag_size(f),
3037 			    offset_in_page(offset));
3038 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3039 			return 1;
3040 	}
3041 
3042 	skb_walk_frags(skb, frag_iter)
3043 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3044 			return 1;
3045 
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3049 
3050 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3051 {
3052 	struct scatterlist sg;
3053 
3054 	sg_init_one(&sg, key->key, key->keylen);
3055 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3056 }
3057 EXPORT_SYMBOL(tcp_md5_hash_key);
3058 
3059 #endif
3060 
3061 void tcp_done(struct sock *sk)
3062 {
3063 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3064 
3065 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3066 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3067 
3068 	tcp_set_state(sk, TCP_CLOSE);
3069 	tcp_clear_xmit_timers(sk);
3070 	if (req)
3071 		reqsk_fastopen_remove(sk, req, false);
3072 
3073 	sk->sk_shutdown = SHUTDOWN_MASK;
3074 
3075 	if (!sock_flag(sk, SOCK_DEAD))
3076 		sk->sk_state_change(sk);
3077 	else
3078 		inet_csk_destroy_sock(sk);
3079 }
3080 EXPORT_SYMBOL_GPL(tcp_done);
3081 
3082 extern struct tcp_congestion_ops tcp_reno;
3083 
3084 static __initdata unsigned long thash_entries;
3085 static int __init set_thash_entries(char *str)
3086 {
3087 	ssize_t ret;
3088 
3089 	if (!str)
3090 		return 0;
3091 
3092 	ret = kstrtoul(str, 0, &thash_entries);
3093 	if (ret)
3094 		return 0;
3095 
3096 	return 1;
3097 }
3098 __setup("thash_entries=", set_thash_entries);
3099 
3100 static void __init tcp_init_mem(void)
3101 {
3102 	unsigned long limit = nr_free_buffer_pages() / 16;
3103 
3104 	limit = max(limit, 128UL);
3105 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3106 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3107 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3108 }
3109 
3110 void __init tcp_init(void)
3111 {
3112 	unsigned long limit;
3113 	int max_rshare, max_wshare, cnt;
3114 	unsigned int i;
3115 
3116 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3117 
3118 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3119 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3120 	tcp_hashinfo.bind_bucket_cachep =
3121 		kmem_cache_create("tcp_bind_bucket",
3122 				  sizeof(struct inet_bind_bucket), 0,
3123 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3124 
3125 	/* Size and allocate the main established and bind bucket
3126 	 * hash tables.
3127 	 *
3128 	 * The methodology is similar to that of the buffer cache.
3129 	 */
3130 	tcp_hashinfo.ehash =
3131 		alloc_large_system_hash("TCP established",
3132 					sizeof(struct inet_ehash_bucket),
3133 					thash_entries,
3134 					17, /* one slot per 128 KB of memory */
3135 					0,
3136 					NULL,
3137 					&tcp_hashinfo.ehash_mask,
3138 					0,
3139 					thash_entries ? 0 : 512 * 1024);
3140 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3141 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3142 
3143 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3144 		panic("TCP: failed to alloc ehash_locks");
3145 	tcp_hashinfo.bhash =
3146 		alloc_large_system_hash("TCP bind",
3147 					sizeof(struct inet_bind_hashbucket),
3148 					tcp_hashinfo.ehash_mask + 1,
3149 					17, /* one slot per 128 KB of memory */
3150 					0,
3151 					&tcp_hashinfo.bhash_size,
3152 					NULL,
3153 					0,
3154 					64 * 1024);
3155 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3156 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3157 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3158 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3159 	}
3160 
3161 
3162 	cnt = tcp_hashinfo.ehash_mask + 1;
3163 
3164 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3165 	sysctl_tcp_max_orphans = cnt / 2;
3166 	sysctl_max_syn_backlog = max(128, cnt / 256);
3167 
3168 	tcp_init_mem();
3169 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3170 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3171 	max_wshare = min(4UL*1024*1024, limit);
3172 	max_rshare = min(6UL*1024*1024, limit);
3173 
3174 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3175 	sysctl_tcp_wmem[1] = 16*1024;
3176 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3177 
3178 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3179 	sysctl_tcp_rmem[1] = 87380;
3180 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3181 
3182 	pr_info("Hash tables configured (established %u bind %u)\n",
3183 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3184 
3185 	tcp_metrics_init();
3186 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3187 	tcp_tasklet_init();
3188 }
3189