xref: /openbmc/linux/net/ipv4/tcp.c (revision e2c75e76)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274 
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281 
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285 
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291 
292 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294 
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299 
300 /*
301  * Current number of TCP sockets.
302  */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305 
306 /*
307  * TCP splice context
308  */
309 struct tcp_splice_state {
310 	struct pipe_inode_info *pipe;
311 	size_t len;
312 	unsigned int flags;
313 };
314 
315 /*
316  * Pressure flag: try to collapse.
317  * Technical note: it is used by multiple contexts non atomically.
318  * All the __sk_mem_schedule() is of this nature: accounting
319  * is strict, actions are advisory and have some latency.
320  */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323 
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 	unsigned long val;
327 
328 	if (tcp_memory_pressure)
329 		return;
330 	val = jiffies;
331 
332 	if (!val)
333 		val--;
334 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338 
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (!tcp_memory_pressure)
344 		return;
345 	val = xchg(&tcp_memory_pressure, 0);
346 	if (val)
347 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 			      jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351 
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 	u8 res = 0;
356 
357 	if (seconds > 0) {
358 		int period = timeout;
359 
360 		res = 1;
361 		while (seconds > period && res < 255) {
362 			res++;
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return res;
370 }
371 
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 	int period = 0;
376 
377 	if (retrans > 0) {
378 		period = timeout;
379 		while (--retrans) {
380 			timeout <<= 1;
381 			if (timeout > rto_max)
382 				timeout = rto_max;
383 			period += timeout;
384 		}
385 	}
386 	return period;
387 }
388 
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 	u32 rate = READ_ONCE(tp->rate_delivered);
392 	u32 intv = READ_ONCE(tp->rate_interval_us);
393 	u64 rate64 = 0;
394 
395 	if (rate && intv) {
396 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 		do_div(rate64, intv);
398 	}
399 	return rate64;
400 }
401 
402 /* Address-family independent initialization for a tcp_sock.
403  *
404  * NOTE: A lot of things set to zero explicitly by call to
405  *       sk_alloc() so need not be done here.
406  */
407 void tcp_init_sock(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	struct tcp_sock *tp = tcp_sk(sk);
411 
412 	tp->out_of_order_queue = RB_ROOT;
413 	sk->tcp_rtx_queue = RB_ROOT;
414 	tcp_init_xmit_timers(sk);
415 	INIT_LIST_HEAD(&tp->tsq_node);
416 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417 
418 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421 
422 	/* So many TCP implementations out there (incorrectly) count the
423 	 * initial SYN frame in their delayed-ACK and congestion control
424 	 * algorithms that we must have the following bandaid to talk
425 	 * efficiently to them.  -DaveM
426 	 */
427 	tp->snd_cwnd = TCP_INIT_CWND;
428 
429 	/* There's a bubble in the pipe until at least the first ACK. */
430 	tp->app_limited = ~0U;
431 
432 	/* See draft-stevens-tcpca-spec-01 for discussion of the
433 	 * initialization of these values.
434 	 */
435 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 	tp->snd_cwnd_clamp = ~0;
437 	tp->mss_cache = TCP_MSS_DEFAULT;
438 
439 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 	tcp_assign_congestion_control(sk);
441 
442 	tp->tsoffset = 0;
443 	tp->rack.reo_wnd_steps = 1;
444 
445 	sk->sk_state = TCP_CLOSE;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454 
455 	sk_sockets_allocated_inc(sk);
456 }
457 EXPORT_SYMBOL(tcp_init_sock);
458 
459 void tcp_init_transfer(struct sock *sk, int bpf_op)
460 {
461 	struct inet_connection_sock *icsk = inet_csk(sk);
462 
463 	tcp_mtup_init(sk);
464 	icsk->icsk_af_ops->rebuild_header(sk);
465 	tcp_init_metrics(sk);
466 	tcp_call_bpf(sk, bpf_op, 0, NULL);
467 	tcp_init_congestion_control(sk);
468 	tcp_init_buffer_space(sk);
469 }
470 
471 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
472 {
473 	struct sk_buff *skb = tcp_write_queue_tail(sk);
474 
475 	if (tsflags && skb) {
476 		struct skb_shared_info *shinfo = skb_shinfo(skb);
477 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
478 
479 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
480 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
481 			tcb->txstamp_ack = 1;
482 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
483 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
484 	}
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	__poll_t mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_poll_wait(file, sk_sleep(sk), wait);
502 
503 	state = inet_sk_state_load(sk);
504 	if (state == TCP_LISTEN)
505 		return inet_csk_listen_poll(sk);
506 
507 	/* Socket is not locked. We are protected from async events
508 	 * by poll logic and correct handling of state changes
509 	 * made by other threads is impossible in any case.
510 	 */
511 
512 	mask = 0;
513 
514 	/*
515 	 * EPOLLHUP is certainly not done right. But poll() doesn't
516 	 * have a notion of HUP in just one direction, and for a
517 	 * socket the read side is more interesting.
518 	 *
519 	 * Some poll() documentation says that EPOLLHUP is incompatible
520 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 	 * all. But careful, it tends to be safer to return too many
522 	 * bits than too few, and you can easily break real applications
523 	 * if you don't tell them that something has hung up!
524 	 *
525 	 * Check-me.
526 	 *
527 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 	 * our fs/select.c). It means that after we received EOF,
529 	 * poll always returns immediately, making impossible poll() on write()
530 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 	 * if and only if shutdown has been made in both directions.
532 	 * Actually, it is interesting to look how Solaris and DUX
533 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 	 * then we could set it on SND_SHUTDOWN. BTW examples given
535 	 * in Stevens' books assume exactly this behaviour, it explains
536 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
537 	 *
538 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 	 * blocking on fresh not-connected or disconnected socket. --ANK
540 	 */
541 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 		mask |= EPOLLHUP;
543 	if (sk->sk_shutdown & RCV_SHUTDOWN)
544 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545 
546 	/* Connected or passive Fast Open socket? */
547 	if (state != TCP_SYN_SENT &&
548 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
549 		int target = sock_rcvlowat(sk, 0, INT_MAX);
550 
551 		if (tp->urg_seq == tp->copied_seq &&
552 		    !sock_flag(sk, SOCK_URGINLINE) &&
553 		    tp->urg_data)
554 			target++;
555 
556 		if (tp->rcv_nxt - tp->copied_seq >= target)
557 			mask |= EPOLLIN | EPOLLRDNORM;
558 
559 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
560 			if (sk_stream_is_writeable(sk)) {
561 				mask |= EPOLLOUT | EPOLLWRNORM;
562 			} else {  /* send SIGIO later */
563 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
564 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
565 
566 				/* Race breaker. If space is freed after
567 				 * wspace test but before the flags are set,
568 				 * IO signal will be lost. Memory barrier
569 				 * pairs with the input side.
570 				 */
571 				smp_mb__after_atomic();
572 				if (sk_stream_is_writeable(sk))
573 					mask |= EPOLLOUT | EPOLLWRNORM;
574 			}
575 		} else
576 			mask |= EPOLLOUT | EPOLLWRNORM;
577 
578 		if (tp->urg_data & TCP_URG_VALID)
579 			mask |= EPOLLPRI;
580 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
581 		/* Active TCP fastopen socket with defer_connect
582 		 * Return EPOLLOUT so application can call write()
583 		 * in order for kernel to generate SYN+data
584 		 */
585 		mask |= EPOLLOUT | EPOLLWRNORM;
586 	}
587 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
588 	smp_rmb();
589 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
590 		mask |= EPOLLERR;
591 
592 	return mask;
593 }
594 EXPORT_SYMBOL(tcp_poll);
595 
596 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
597 {
598 	struct tcp_sock *tp = tcp_sk(sk);
599 	int answ;
600 	bool slow;
601 
602 	switch (cmd) {
603 	case SIOCINQ:
604 		if (sk->sk_state == TCP_LISTEN)
605 			return -EINVAL;
606 
607 		slow = lock_sock_fast(sk);
608 		answ = tcp_inq(sk);
609 		unlock_sock_fast(sk, slow);
610 		break;
611 	case SIOCATMARK:
612 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
613 		break;
614 	case SIOCOUTQ:
615 		if (sk->sk_state == TCP_LISTEN)
616 			return -EINVAL;
617 
618 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 			answ = 0;
620 		else
621 			answ = tp->write_seq - tp->snd_una;
622 		break;
623 	case SIOCOUTQNSD:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = tp->write_seq - tp->snd_nxt;
631 		break;
632 	default:
633 		return -ENOIOCTLCMD;
634 	}
635 
636 	return put_user(answ, (int __user *)arg);
637 }
638 EXPORT_SYMBOL(tcp_ioctl);
639 
640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
641 {
642 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
643 	tp->pushed_seq = tp->write_seq;
644 }
645 
646 static inline bool forced_push(const struct tcp_sock *tp)
647 {
648 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
649 }
650 
651 static void skb_entail(struct sock *sk, struct sk_buff *skb)
652 {
653 	struct tcp_sock *tp = tcp_sk(sk);
654 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
655 
656 	skb->csum    = 0;
657 	tcb->seq     = tcb->end_seq = tp->write_seq;
658 	tcb->tcp_flags = TCPHDR_ACK;
659 	tcb->sacked  = 0;
660 	__skb_header_release(skb);
661 	tcp_add_write_queue_tail(sk, skb);
662 	sk->sk_wmem_queued += skb->truesize;
663 	sk_mem_charge(sk, skb->truesize);
664 	if (tp->nonagle & TCP_NAGLE_PUSH)
665 		tp->nonagle &= ~TCP_NAGLE_PUSH;
666 
667 	tcp_slow_start_after_idle_check(sk);
668 }
669 
670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671 {
672 	if (flags & MSG_OOB)
673 		tp->snd_up = tp->write_seq;
674 }
675 
676 /* If a not yet filled skb is pushed, do not send it if
677  * we have data packets in Qdisc or NIC queues :
678  * Because TX completion will happen shortly, it gives a chance
679  * to coalesce future sendmsg() payload into this skb, without
680  * need for a timer, and with no latency trade off.
681  * As packets containing data payload have a bigger truesize
682  * than pure acks (dataless) packets, the last checks prevent
683  * autocorking if we only have an ACK in Qdisc/NIC queues,
684  * or if TX completion was delayed after we processed ACK packet.
685  */
686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
687 				int size_goal)
688 {
689 	return skb->len < size_goal &&
690 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
691 	       skb != tcp_write_queue_head(sk) &&
692 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
693 }
694 
695 static void tcp_push(struct sock *sk, int flags, int mss_now,
696 		     int nonagle, int size_goal)
697 {
698 	struct tcp_sock *tp = tcp_sk(sk);
699 	struct sk_buff *skb;
700 
701 	skb = tcp_write_queue_tail(sk);
702 	if (!skb)
703 		return;
704 	if (!(flags & MSG_MORE) || forced_push(tp))
705 		tcp_mark_push(tp, skb);
706 
707 	tcp_mark_urg(tp, flags);
708 
709 	if (tcp_should_autocork(sk, skb, size_goal)) {
710 
711 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
712 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 		}
716 		/* It is possible TX completion already happened
717 		 * before we set TSQ_THROTTLED.
718 		 */
719 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 			return;
721 	}
722 
723 	if (flags & MSG_MORE)
724 		nonagle = TCP_NAGLE_CORK;
725 
726 	__tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728 
729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 				unsigned int offset, size_t len)
731 {
732 	struct tcp_splice_state *tss = rd_desc->arg.data;
733 	int ret;
734 
735 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 			      min(rd_desc->count, len), tss->flags);
737 	if (ret > 0)
738 		rd_desc->count -= ret;
739 	return ret;
740 }
741 
742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 	/* Store TCP splice context information in read_descriptor_t. */
745 	read_descriptor_t rd_desc = {
746 		.arg.data = tss,
747 		.count	  = tss->len,
748 	};
749 
750 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752 
753 /**
754  *  tcp_splice_read - splice data from TCP socket to a pipe
755  * @sock:	socket to splice from
756  * @ppos:	position (not valid)
757  * @pipe:	pipe to splice to
758  * @len:	number of bytes to splice
759  * @flags:	splice modifier flags
760  *
761  * Description:
762  *    Will read pages from given socket and fill them into a pipe.
763  *
764  **/
765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 			struct pipe_inode_info *pipe, size_t len,
767 			unsigned int flags)
768 {
769 	struct sock *sk = sock->sk;
770 	struct tcp_splice_state tss = {
771 		.pipe = pipe,
772 		.len = len,
773 		.flags = flags,
774 	};
775 	long timeo;
776 	ssize_t spliced;
777 	int ret;
778 
779 	sock_rps_record_flow(sk);
780 	/*
781 	 * We can't seek on a socket input
782 	 */
783 	if (unlikely(*ppos))
784 		return -ESPIPE;
785 
786 	ret = spliced = 0;
787 
788 	lock_sock(sk);
789 
790 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 	while (tss.len) {
792 		ret = __tcp_splice_read(sk, &tss);
793 		if (ret < 0)
794 			break;
795 		else if (!ret) {
796 			if (spliced)
797 				break;
798 			if (sock_flag(sk, SOCK_DONE))
799 				break;
800 			if (sk->sk_err) {
801 				ret = sock_error(sk);
802 				break;
803 			}
804 			if (sk->sk_shutdown & RCV_SHUTDOWN)
805 				break;
806 			if (sk->sk_state == TCP_CLOSE) {
807 				/*
808 				 * This occurs when user tries to read
809 				 * from never connected socket.
810 				 */
811 				if (!sock_flag(sk, SOCK_DONE))
812 					ret = -ENOTCONN;
813 				break;
814 			}
815 			if (!timeo) {
816 				ret = -EAGAIN;
817 				break;
818 			}
819 			/* if __tcp_splice_read() got nothing while we have
820 			 * an skb in receive queue, we do not want to loop.
821 			 * This might happen with URG data.
822 			 */
823 			if (!skb_queue_empty(&sk->sk_receive_queue))
824 				break;
825 			sk_wait_data(sk, &timeo, NULL);
826 			if (signal_pending(current)) {
827 				ret = sock_intr_errno(timeo);
828 				break;
829 			}
830 			continue;
831 		}
832 		tss.len -= ret;
833 		spliced += ret;
834 
835 		if (!timeo)
836 			break;
837 		release_sock(sk);
838 		lock_sock(sk);
839 
840 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
841 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
842 		    signal_pending(current))
843 			break;
844 	}
845 
846 	release_sock(sk);
847 
848 	if (spliced)
849 		return spliced;
850 
851 	return ret;
852 }
853 EXPORT_SYMBOL(tcp_splice_read);
854 
855 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
856 				    bool force_schedule)
857 {
858 	struct sk_buff *skb;
859 
860 	/* The TCP header must be at least 32-bit aligned.  */
861 	size = ALIGN(size, 4);
862 
863 	if (unlikely(tcp_under_memory_pressure(sk)))
864 		sk_mem_reclaim_partial(sk);
865 
866 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
867 	if (likely(skb)) {
868 		bool mem_scheduled;
869 
870 		if (force_schedule) {
871 			mem_scheduled = true;
872 			sk_forced_mem_schedule(sk, skb->truesize);
873 		} else {
874 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
875 		}
876 		if (likely(mem_scheduled)) {
877 			skb_reserve(skb, sk->sk_prot->max_header);
878 			/*
879 			 * Make sure that we have exactly size bytes
880 			 * available to the caller, no more, no less.
881 			 */
882 			skb->reserved_tailroom = skb->end - skb->tail - size;
883 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
884 			return skb;
885 		}
886 		__kfree_skb(skb);
887 	} else {
888 		sk->sk_prot->enter_memory_pressure(sk);
889 		sk_stream_moderate_sndbuf(sk);
890 	}
891 	return NULL;
892 }
893 
894 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
895 				       int large_allowed)
896 {
897 	struct tcp_sock *tp = tcp_sk(sk);
898 	u32 new_size_goal, size_goal;
899 
900 	if (!large_allowed || !sk_can_gso(sk))
901 		return mss_now;
902 
903 	/* Note : tcp_tso_autosize() will eventually split this later */
904 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
905 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
906 
907 	/* We try hard to avoid divides here */
908 	size_goal = tp->gso_segs * mss_now;
909 	if (unlikely(new_size_goal < size_goal ||
910 		     new_size_goal >= size_goal + mss_now)) {
911 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
912 				     sk->sk_gso_max_segs);
913 		size_goal = tp->gso_segs * mss_now;
914 	}
915 
916 	return max(size_goal, mss_now);
917 }
918 
919 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
920 {
921 	int mss_now;
922 
923 	mss_now = tcp_current_mss(sk);
924 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
925 
926 	return mss_now;
927 }
928 
929 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
930 			 size_t size, int flags)
931 {
932 	struct tcp_sock *tp = tcp_sk(sk);
933 	int mss_now, size_goal;
934 	int err;
935 	ssize_t copied;
936 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
937 
938 	/* Wait for a connection to finish. One exception is TCP Fast Open
939 	 * (passive side) where data is allowed to be sent before a connection
940 	 * is fully established.
941 	 */
942 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
943 	    !tcp_passive_fastopen(sk)) {
944 		err = sk_stream_wait_connect(sk, &timeo);
945 		if (err != 0)
946 			goto out_err;
947 	}
948 
949 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
950 
951 	mss_now = tcp_send_mss(sk, &size_goal, flags);
952 	copied = 0;
953 
954 	err = -EPIPE;
955 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
956 		goto out_err;
957 
958 	while (size > 0) {
959 		struct sk_buff *skb = tcp_write_queue_tail(sk);
960 		int copy, i;
961 		bool can_coalesce;
962 
963 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
964 		    !tcp_skb_can_collapse_to(skb)) {
965 new_segment:
966 			if (!sk_stream_memory_free(sk))
967 				goto wait_for_sndbuf;
968 
969 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
970 					tcp_rtx_and_write_queues_empty(sk));
971 			if (!skb)
972 				goto wait_for_memory;
973 
974 			skb_entail(sk, skb);
975 			copy = size_goal;
976 		}
977 
978 		if (copy > size)
979 			copy = size;
980 
981 		i = skb_shinfo(skb)->nr_frags;
982 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
983 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
984 			tcp_mark_push(tp, skb);
985 			goto new_segment;
986 		}
987 		if (!sk_wmem_schedule(sk, copy))
988 			goto wait_for_memory;
989 
990 		if (can_coalesce) {
991 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
992 		} else {
993 			get_page(page);
994 			skb_fill_page_desc(skb, i, page, offset, copy);
995 		}
996 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
997 
998 		skb->len += copy;
999 		skb->data_len += copy;
1000 		skb->truesize += copy;
1001 		sk->sk_wmem_queued += copy;
1002 		sk_mem_charge(sk, copy);
1003 		skb->ip_summed = CHECKSUM_PARTIAL;
1004 		tp->write_seq += copy;
1005 		TCP_SKB_CB(skb)->end_seq += copy;
1006 		tcp_skb_pcount_set(skb, 0);
1007 
1008 		if (!copied)
1009 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1010 
1011 		copied += copy;
1012 		offset += copy;
1013 		size -= copy;
1014 		if (!size)
1015 			goto out;
1016 
1017 		if (skb->len < size_goal || (flags & MSG_OOB))
1018 			continue;
1019 
1020 		if (forced_push(tp)) {
1021 			tcp_mark_push(tp, skb);
1022 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1023 		} else if (skb == tcp_send_head(sk))
1024 			tcp_push_one(sk, mss_now);
1025 		continue;
1026 
1027 wait_for_sndbuf:
1028 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1029 wait_for_memory:
1030 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1031 			 TCP_NAGLE_PUSH, size_goal);
1032 
1033 		err = sk_stream_wait_memory(sk, &timeo);
1034 		if (err != 0)
1035 			goto do_error;
1036 
1037 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1038 	}
1039 
1040 out:
1041 	if (copied) {
1042 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1043 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1044 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1045 	}
1046 	return copied;
1047 
1048 do_error:
1049 	if (copied)
1050 		goto out;
1051 out_err:
1052 	/* make sure we wake any epoll edge trigger waiter */
1053 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1054 		     err == -EAGAIN)) {
1055 		sk->sk_write_space(sk);
1056 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1057 	}
1058 	return sk_stream_error(sk, flags, err);
1059 }
1060 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1061 
1062 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1063 			size_t size, int flags)
1064 {
1065 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1066 	    !sk_check_csum_caps(sk))
1067 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1068 
1069 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1070 
1071 	return do_tcp_sendpages(sk, page, offset, size, flags);
1072 }
1073 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1074 
1075 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1076 		 size_t size, int flags)
1077 {
1078 	int ret;
1079 
1080 	lock_sock(sk);
1081 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1082 	release_sock(sk);
1083 
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(tcp_sendpage);
1087 
1088 /* Do not bother using a page frag for very small frames.
1089  * But use this heuristic only for the first skb in write queue.
1090  *
1091  * Having no payload in skb->head allows better SACK shifting
1092  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1093  * write queue has less skbs.
1094  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1095  * This also speeds up tso_fragment(), since it wont fallback
1096  * to tcp_fragment().
1097  */
1098 static int linear_payload_sz(bool first_skb)
1099 {
1100 	if (first_skb)
1101 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1102 	return 0;
1103 }
1104 
1105 static int select_size(const struct sock *sk, bool sg, bool first_skb, bool zc)
1106 {
1107 	const struct tcp_sock *tp = tcp_sk(sk);
1108 	int tmp = tp->mss_cache;
1109 
1110 	if (sg) {
1111 		if (zc)
1112 			return 0;
1113 
1114 		if (sk_can_gso(sk)) {
1115 			tmp = linear_payload_sz(first_skb);
1116 		} else {
1117 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1118 
1119 			if (tmp >= pgbreak &&
1120 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1121 				tmp = pgbreak;
1122 		}
1123 	}
1124 
1125 	return tmp;
1126 }
1127 
1128 void tcp_free_fastopen_req(struct tcp_sock *tp)
1129 {
1130 	if (tp->fastopen_req) {
1131 		kfree(tp->fastopen_req);
1132 		tp->fastopen_req = NULL;
1133 	}
1134 }
1135 
1136 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1137 				int *copied, size_t size)
1138 {
1139 	struct tcp_sock *tp = tcp_sk(sk);
1140 	struct inet_sock *inet = inet_sk(sk);
1141 	struct sockaddr *uaddr = msg->msg_name;
1142 	int err, flags;
1143 
1144 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1145 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1146 	     uaddr->sa_family == AF_UNSPEC))
1147 		return -EOPNOTSUPP;
1148 	if (tp->fastopen_req)
1149 		return -EALREADY; /* Another Fast Open is in progress */
1150 
1151 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1152 				   sk->sk_allocation);
1153 	if (unlikely(!tp->fastopen_req))
1154 		return -ENOBUFS;
1155 	tp->fastopen_req->data = msg;
1156 	tp->fastopen_req->size = size;
1157 
1158 	if (inet->defer_connect) {
1159 		err = tcp_connect(sk);
1160 		/* Same failure procedure as in tcp_v4/6_connect */
1161 		if (err) {
1162 			tcp_set_state(sk, TCP_CLOSE);
1163 			inet->inet_dport = 0;
1164 			sk->sk_route_caps = 0;
1165 		}
1166 	}
1167 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1168 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1169 				    msg->msg_namelen, flags, 1);
1170 	/* fastopen_req could already be freed in __inet_stream_connect
1171 	 * if the connection times out or gets rst
1172 	 */
1173 	if (tp->fastopen_req) {
1174 		*copied = tp->fastopen_req->copied;
1175 		tcp_free_fastopen_req(tp);
1176 		inet->defer_connect = 0;
1177 	}
1178 	return err;
1179 }
1180 
1181 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1182 {
1183 	struct tcp_sock *tp = tcp_sk(sk);
1184 	struct ubuf_info *uarg = NULL;
1185 	struct sk_buff *skb;
1186 	struct sockcm_cookie sockc;
1187 	int flags, err, copied = 0;
1188 	int mss_now = 0, size_goal, copied_syn = 0;
1189 	bool process_backlog = false;
1190 	bool sg, zc = false;
1191 	long timeo;
1192 
1193 	flags = msg->msg_flags;
1194 
1195 	if (flags & MSG_ZEROCOPY && size) {
1196 		if (sk->sk_state != TCP_ESTABLISHED) {
1197 			err = -EINVAL;
1198 			goto out_err;
1199 		}
1200 
1201 		skb = tcp_write_queue_tail(sk);
1202 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1203 		if (!uarg) {
1204 			err = -ENOBUFS;
1205 			goto out_err;
1206 		}
1207 
1208 		zc = sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG;
1209 		if (!zc)
1210 			uarg->zerocopy = 0;
1211 	}
1212 
1213 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1214 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1215 		if (err == -EINPROGRESS && copied_syn > 0)
1216 			goto out;
1217 		else if (err)
1218 			goto out_err;
1219 	}
1220 
1221 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1222 
1223 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1224 
1225 	/* Wait for a connection to finish. One exception is TCP Fast Open
1226 	 * (passive side) where data is allowed to be sent before a connection
1227 	 * is fully established.
1228 	 */
1229 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1230 	    !tcp_passive_fastopen(sk)) {
1231 		err = sk_stream_wait_connect(sk, &timeo);
1232 		if (err != 0)
1233 			goto do_error;
1234 	}
1235 
1236 	if (unlikely(tp->repair)) {
1237 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1238 			copied = tcp_send_rcvq(sk, msg, size);
1239 			goto out_nopush;
1240 		}
1241 
1242 		err = -EINVAL;
1243 		if (tp->repair_queue == TCP_NO_QUEUE)
1244 			goto out_err;
1245 
1246 		/* 'common' sending to sendq */
1247 	}
1248 
1249 	sockc.tsflags = sk->sk_tsflags;
1250 	if (msg->msg_controllen) {
1251 		err = sock_cmsg_send(sk, msg, &sockc);
1252 		if (unlikely(err)) {
1253 			err = -EINVAL;
1254 			goto out_err;
1255 		}
1256 	}
1257 
1258 	/* This should be in poll */
1259 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1260 
1261 	/* Ok commence sending. */
1262 	copied = 0;
1263 
1264 restart:
1265 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1266 
1267 	err = -EPIPE;
1268 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1269 		goto do_error;
1270 
1271 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1272 
1273 	while (msg_data_left(msg)) {
1274 		int copy = 0;
1275 		int max = size_goal;
1276 
1277 		skb = tcp_write_queue_tail(sk);
1278 		if (skb) {
1279 			if (skb->ip_summed == CHECKSUM_NONE)
1280 				max = mss_now;
1281 			copy = max - skb->len;
1282 		}
1283 
1284 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1285 			bool first_skb;
1286 			int linear;
1287 
1288 new_segment:
1289 			/* Allocate new segment. If the interface is SG,
1290 			 * allocate skb fitting to single page.
1291 			 */
1292 			if (!sk_stream_memory_free(sk))
1293 				goto wait_for_sndbuf;
1294 
1295 			if (process_backlog && sk_flush_backlog(sk)) {
1296 				process_backlog = false;
1297 				goto restart;
1298 			}
1299 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1300 			linear = select_size(sk, sg, first_skb, zc);
1301 			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1302 						  first_skb);
1303 			if (!skb)
1304 				goto wait_for_memory;
1305 
1306 			process_backlog = true;
1307 			/*
1308 			 * Check whether we can use HW checksum.
1309 			 */
1310 			if (sk_check_csum_caps(sk))
1311 				skb->ip_summed = CHECKSUM_PARTIAL;
1312 
1313 			skb_entail(sk, skb);
1314 			copy = size_goal;
1315 			max = size_goal;
1316 
1317 			/* All packets are restored as if they have
1318 			 * already been sent. skb_mstamp isn't set to
1319 			 * avoid wrong rtt estimation.
1320 			 */
1321 			if (tp->repair)
1322 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1323 		}
1324 
1325 		/* Try to append data to the end of skb. */
1326 		if (copy > msg_data_left(msg))
1327 			copy = msg_data_left(msg);
1328 
1329 		/* Where to copy to? */
1330 		if (skb_availroom(skb) > 0 && !zc) {
1331 			/* We have some space in skb head. Superb! */
1332 			copy = min_t(int, copy, skb_availroom(skb));
1333 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1334 			if (err)
1335 				goto do_fault;
1336 		} else if (!zc) {
1337 			bool merge = true;
1338 			int i = skb_shinfo(skb)->nr_frags;
1339 			struct page_frag *pfrag = sk_page_frag(sk);
1340 
1341 			if (!sk_page_frag_refill(sk, pfrag))
1342 				goto wait_for_memory;
1343 
1344 			if (!skb_can_coalesce(skb, i, pfrag->page,
1345 					      pfrag->offset)) {
1346 				if (i >= sysctl_max_skb_frags || !sg) {
1347 					tcp_mark_push(tp, skb);
1348 					goto new_segment;
1349 				}
1350 				merge = false;
1351 			}
1352 
1353 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354 
1355 			if (!sk_wmem_schedule(sk, copy))
1356 				goto wait_for_memory;
1357 
1358 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 						       pfrag->page,
1360 						       pfrag->offset,
1361 						       copy);
1362 			if (err)
1363 				goto do_error;
1364 
1365 			/* Update the skb. */
1366 			if (merge) {
1367 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 			} else {
1369 				skb_fill_page_desc(skb, i, pfrag->page,
1370 						   pfrag->offset, copy);
1371 				page_ref_inc(pfrag->page);
1372 			}
1373 			pfrag->offset += copy;
1374 		} else {
1375 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1376 			if (err == -EMSGSIZE || err == -EEXIST) {
1377 				tcp_mark_push(tp, skb);
1378 				goto new_segment;
1379 			}
1380 			if (err < 0)
1381 				goto do_error;
1382 			copy = err;
1383 		}
1384 
1385 		if (!copied)
1386 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1387 
1388 		tp->write_seq += copy;
1389 		TCP_SKB_CB(skb)->end_seq += copy;
1390 		tcp_skb_pcount_set(skb, 0);
1391 
1392 		copied += copy;
1393 		if (!msg_data_left(msg)) {
1394 			if (unlikely(flags & MSG_EOR))
1395 				TCP_SKB_CB(skb)->eor = 1;
1396 			goto out;
1397 		}
1398 
1399 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1400 			continue;
1401 
1402 		if (forced_push(tp)) {
1403 			tcp_mark_push(tp, skb);
1404 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1405 		} else if (skb == tcp_send_head(sk))
1406 			tcp_push_one(sk, mss_now);
1407 		continue;
1408 
1409 wait_for_sndbuf:
1410 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1411 wait_for_memory:
1412 		if (copied)
1413 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1414 				 TCP_NAGLE_PUSH, size_goal);
1415 
1416 		err = sk_stream_wait_memory(sk, &timeo);
1417 		if (err != 0)
1418 			goto do_error;
1419 
1420 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1421 	}
1422 
1423 out:
1424 	if (copied) {
1425 		tcp_tx_timestamp(sk, sockc.tsflags);
1426 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1427 	}
1428 out_nopush:
1429 	sock_zerocopy_put(uarg);
1430 	return copied + copied_syn;
1431 
1432 do_fault:
1433 	if (!skb->len) {
1434 		tcp_unlink_write_queue(skb, sk);
1435 		/* It is the one place in all of TCP, except connection
1436 		 * reset, where we can be unlinking the send_head.
1437 		 */
1438 		tcp_check_send_head(sk, skb);
1439 		sk_wmem_free_skb(sk, skb);
1440 	}
1441 
1442 do_error:
1443 	if (copied + copied_syn)
1444 		goto out;
1445 out_err:
1446 	sock_zerocopy_put_abort(uarg);
1447 	err = sk_stream_error(sk, flags, err);
1448 	/* make sure we wake any epoll edge trigger waiter */
1449 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1450 		     err == -EAGAIN)) {
1451 		sk->sk_write_space(sk);
1452 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1453 	}
1454 	return err;
1455 }
1456 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1457 
1458 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1459 {
1460 	int ret;
1461 
1462 	lock_sock(sk);
1463 	ret = tcp_sendmsg_locked(sk, msg, size);
1464 	release_sock(sk);
1465 
1466 	return ret;
1467 }
1468 EXPORT_SYMBOL(tcp_sendmsg);
1469 
1470 /*
1471  *	Handle reading urgent data. BSD has very simple semantics for
1472  *	this, no blocking and very strange errors 8)
1473  */
1474 
1475 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1476 {
1477 	struct tcp_sock *tp = tcp_sk(sk);
1478 
1479 	/* No URG data to read. */
1480 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1481 	    tp->urg_data == TCP_URG_READ)
1482 		return -EINVAL;	/* Yes this is right ! */
1483 
1484 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1485 		return -ENOTCONN;
1486 
1487 	if (tp->urg_data & TCP_URG_VALID) {
1488 		int err = 0;
1489 		char c = tp->urg_data;
1490 
1491 		if (!(flags & MSG_PEEK))
1492 			tp->urg_data = TCP_URG_READ;
1493 
1494 		/* Read urgent data. */
1495 		msg->msg_flags |= MSG_OOB;
1496 
1497 		if (len > 0) {
1498 			if (!(flags & MSG_TRUNC))
1499 				err = memcpy_to_msg(msg, &c, 1);
1500 			len = 1;
1501 		} else
1502 			msg->msg_flags |= MSG_TRUNC;
1503 
1504 		return err ? -EFAULT : len;
1505 	}
1506 
1507 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1508 		return 0;
1509 
1510 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1511 	 * the available implementations agree in this case:
1512 	 * this call should never block, independent of the
1513 	 * blocking state of the socket.
1514 	 * Mike <pall@rz.uni-karlsruhe.de>
1515 	 */
1516 	return -EAGAIN;
1517 }
1518 
1519 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1520 {
1521 	struct sk_buff *skb;
1522 	int copied = 0, err = 0;
1523 
1524 	/* XXX -- need to support SO_PEEK_OFF */
1525 
1526 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1527 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1528 		if (err)
1529 			return err;
1530 		copied += skb->len;
1531 	}
1532 
1533 	skb_queue_walk(&sk->sk_write_queue, skb) {
1534 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1535 		if (err)
1536 			break;
1537 
1538 		copied += skb->len;
1539 	}
1540 
1541 	return err ?: copied;
1542 }
1543 
1544 /* Clean up the receive buffer for full frames taken by the user,
1545  * then send an ACK if necessary.  COPIED is the number of bytes
1546  * tcp_recvmsg has given to the user so far, it speeds up the
1547  * calculation of whether or not we must ACK for the sake of
1548  * a window update.
1549  */
1550 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1551 {
1552 	struct tcp_sock *tp = tcp_sk(sk);
1553 	bool time_to_ack = false;
1554 
1555 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1556 
1557 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1558 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1559 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1560 
1561 	if (inet_csk_ack_scheduled(sk)) {
1562 		const struct inet_connection_sock *icsk = inet_csk(sk);
1563 		   /* Delayed ACKs frequently hit locked sockets during bulk
1564 		    * receive. */
1565 		if (icsk->icsk_ack.blocked ||
1566 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1567 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1568 		    /*
1569 		     * If this read emptied read buffer, we send ACK, if
1570 		     * connection is not bidirectional, user drained
1571 		     * receive buffer and there was a small segment
1572 		     * in queue.
1573 		     */
1574 		    (copied > 0 &&
1575 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1576 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1577 		       !icsk->icsk_ack.pingpong)) &&
1578 		      !atomic_read(&sk->sk_rmem_alloc)))
1579 			time_to_ack = true;
1580 	}
1581 
1582 	/* We send an ACK if we can now advertise a non-zero window
1583 	 * which has been raised "significantly".
1584 	 *
1585 	 * Even if window raised up to infinity, do not send window open ACK
1586 	 * in states, where we will not receive more. It is useless.
1587 	 */
1588 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1589 		__u32 rcv_window_now = tcp_receive_window(tp);
1590 
1591 		/* Optimize, __tcp_select_window() is not cheap. */
1592 		if (2*rcv_window_now <= tp->window_clamp) {
1593 			__u32 new_window = __tcp_select_window(sk);
1594 
1595 			/* Send ACK now, if this read freed lots of space
1596 			 * in our buffer. Certainly, new_window is new window.
1597 			 * We can advertise it now, if it is not less than current one.
1598 			 * "Lots" means "at least twice" here.
1599 			 */
1600 			if (new_window && new_window >= 2 * rcv_window_now)
1601 				time_to_ack = true;
1602 		}
1603 	}
1604 	if (time_to_ack)
1605 		tcp_send_ack(sk);
1606 }
1607 
1608 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1609 {
1610 	struct sk_buff *skb;
1611 	u32 offset;
1612 
1613 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1614 		offset = seq - TCP_SKB_CB(skb)->seq;
1615 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1616 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1617 			offset--;
1618 		}
1619 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1620 			*off = offset;
1621 			return skb;
1622 		}
1623 		/* This looks weird, but this can happen if TCP collapsing
1624 		 * splitted a fat GRO packet, while we released socket lock
1625 		 * in skb_splice_bits()
1626 		 */
1627 		sk_eat_skb(sk, skb);
1628 	}
1629 	return NULL;
1630 }
1631 
1632 /*
1633  * This routine provides an alternative to tcp_recvmsg() for routines
1634  * that would like to handle copying from skbuffs directly in 'sendfile'
1635  * fashion.
1636  * Note:
1637  *	- It is assumed that the socket was locked by the caller.
1638  *	- The routine does not block.
1639  *	- At present, there is no support for reading OOB data
1640  *	  or for 'peeking' the socket using this routine
1641  *	  (although both would be easy to implement).
1642  */
1643 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1644 		  sk_read_actor_t recv_actor)
1645 {
1646 	struct sk_buff *skb;
1647 	struct tcp_sock *tp = tcp_sk(sk);
1648 	u32 seq = tp->copied_seq;
1649 	u32 offset;
1650 	int copied = 0;
1651 
1652 	if (sk->sk_state == TCP_LISTEN)
1653 		return -ENOTCONN;
1654 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1655 		if (offset < skb->len) {
1656 			int used;
1657 			size_t len;
1658 
1659 			len = skb->len - offset;
1660 			/* Stop reading if we hit a patch of urgent data */
1661 			if (tp->urg_data) {
1662 				u32 urg_offset = tp->urg_seq - seq;
1663 				if (urg_offset < len)
1664 					len = urg_offset;
1665 				if (!len)
1666 					break;
1667 			}
1668 			used = recv_actor(desc, skb, offset, len);
1669 			if (used <= 0) {
1670 				if (!copied)
1671 					copied = used;
1672 				break;
1673 			} else if (used <= len) {
1674 				seq += used;
1675 				copied += used;
1676 				offset += used;
1677 			}
1678 			/* If recv_actor drops the lock (e.g. TCP splice
1679 			 * receive) the skb pointer might be invalid when
1680 			 * getting here: tcp_collapse might have deleted it
1681 			 * while aggregating skbs from the socket queue.
1682 			 */
1683 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1684 			if (!skb)
1685 				break;
1686 			/* TCP coalescing might have appended data to the skb.
1687 			 * Try to splice more frags
1688 			 */
1689 			if (offset + 1 != skb->len)
1690 				continue;
1691 		}
1692 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1693 			sk_eat_skb(sk, skb);
1694 			++seq;
1695 			break;
1696 		}
1697 		sk_eat_skb(sk, skb);
1698 		if (!desc->count)
1699 			break;
1700 		tp->copied_seq = seq;
1701 	}
1702 	tp->copied_seq = seq;
1703 
1704 	tcp_rcv_space_adjust(sk);
1705 
1706 	/* Clean up data we have read: This will do ACK frames. */
1707 	if (copied > 0) {
1708 		tcp_recv_skb(sk, seq, &offset);
1709 		tcp_cleanup_rbuf(sk, copied);
1710 	}
1711 	return copied;
1712 }
1713 EXPORT_SYMBOL(tcp_read_sock);
1714 
1715 int tcp_peek_len(struct socket *sock)
1716 {
1717 	return tcp_inq(sock->sk);
1718 }
1719 EXPORT_SYMBOL(tcp_peek_len);
1720 
1721 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1722 				    struct scm_timestamping *tss)
1723 {
1724 	if (skb->tstamp)
1725 		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1726 	else
1727 		tss->ts[0] = (struct timespec) {0};
1728 
1729 	if (skb_hwtstamps(skb)->hwtstamp)
1730 		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1731 	else
1732 		tss->ts[2] = (struct timespec) {0};
1733 }
1734 
1735 /* Similar to __sock_recv_timestamp, but does not require an skb */
1736 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1737 			       struct scm_timestamping *tss)
1738 {
1739 	struct timeval tv;
1740 	bool has_timestamping = false;
1741 
1742 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1743 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1744 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1745 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1746 					 sizeof(tss->ts[0]), &tss->ts[0]);
1747 			} else {
1748 				tv.tv_sec = tss->ts[0].tv_sec;
1749 				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1750 
1751 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1752 					 sizeof(tv), &tv);
1753 			}
1754 		}
1755 
1756 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1757 			has_timestamping = true;
1758 		else
1759 			tss->ts[0] = (struct timespec) {0};
1760 	}
1761 
1762 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1763 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1764 			has_timestamping = true;
1765 		else
1766 			tss->ts[2] = (struct timespec) {0};
1767 	}
1768 
1769 	if (has_timestamping) {
1770 		tss->ts[1] = (struct timespec) {0};
1771 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1772 			 sizeof(*tss), tss);
1773 	}
1774 }
1775 
1776 /*
1777  *	This routine copies from a sock struct into the user buffer.
1778  *
1779  *	Technical note: in 2.3 we work on _locked_ socket, so that
1780  *	tricks with *seq access order and skb->users are not required.
1781  *	Probably, code can be easily improved even more.
1782  */
1783 
1784 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1785 		int flags, int *addr_len)
1786 {
1787 	struct tcp_sock *tp = tcp_sk(sk);
1788 	int copied = 0;
1789 	u32 peek_seq;
1790 	u32 *seq;
1791 	unsigned long used;
1792 	int err;
1793 	int target;		/* Read at least this many bytes */
1794 	long timeo;
1795 	struct sk_buff *skb, *last;
1796 	u32 urg_hole = 0;
1797 	struct scm_timestamping tss;
1798 	bool has_tss = false;
1799 
1800 	if (unlikely(flags & MSG_ERRQUEUE))
1801 		return inet_recv_error(sk, msg, len, addr_len);
1802 
1803 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1804 	    (sk->sk_state == TCP_ESTABLISHED))
1805 		sk_busy_loop(sk, nonblock);
1806 
1807 	lock_sock(sk);
1808 
1809 	err = -ENOTCONN;
1810 	if (sk->sk_state == TCP_LISTEN)
1811 		goto out;
1812 
1813 	timeo = sock_rcvtimeo(sk, nonblock);
1814 
1815 	/* Urgent data needs to be handled specially. */
1816 	if (flags & MSG_OOB)
1817 		goto recv_urg;
1818 
1819 	if (unlikely(tp->repair)) {
1820 		err = -EPERM;
1821 		if (!(flags & MSG_PEEK))
1822 			goto out;
1823 
1824 		if (tp->repair_queue == TCP_SEND_QUEUE)
1825 			goto recv_sndq;
1826 
1827 		err = -EINVAL;
1828 		if (tp->repair_queue == TCP_NO_QUEUE)
1829 			goto out;
1830 
1831 		/* 'common' recv queue MSG_PEEK-ing */
1832 	}
1833 
1834 	seq = &tp->copied_seq;
1835 	if (flags & MSG_PEEK) {
1836 		peek_seq = tp->copied_seq;
1837 		seq = &peek_seq;
1838 	}
1839 
1840 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1841 
1842 	do {
1843 		u32 offset;
1844 
1845 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1846 		if (tp->urg_data && tp->urg_seq == *seq) {
1847 			if (copied)
1848 				break;
1849 			if (signal_pending(current)) {
1850 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1851 				break;
1852 			}
1853 		}
1854 
1855 		/* Next get a buffer. */
1856 
1857 		last = skb_peek_tail(&sk->sk_receive_queue);
1858 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1859 			last = skb;
1860 			/* Now that we have two receive queues this
1861 			 * shouldn't happen.
1862 			 */
1863 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1864 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1865 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1866 				 flags))
1867 				break;
1868 
1869 			offset = *seq - TCP_SKB_CB(skb)->seq;
1870 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1871 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1872 				offset--;
1873 			}
1874 			if (offset < skb->len)
1875 				goto found_ok_skb;
1876 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1877 				goto found_fin_ok;
1878 			WARN(!(flags & MSG_PEEK),
1879 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1880 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1881 		}
1882 
1883 		/* Well, if we have backlog, try to process it now yet. */
1884 
1885 		if (copied >= target && !sk->sk_backlog.tail)
1886 			break;
1887 
1888 		if (copied) {
1889 			if (sk->sk_err ||
1890 			    sk->sk_state == TCP_CLOSE ||
1891 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1892 			    !timeo ||
1893 			    signal_pending(current))
1894 				break;
1895 		} else {
1896 			if (sock_flag(sk, SOCK_DONE))
1897 				break;
1898 
1899 			if (sk->sk_err) {
1900 				copied = sock_error(sk);
1901 				break;
1902 			}
1903 
1904 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1905 				break;
1906 
1907 			if (sk->sk_state == TCP_CLOSE) {
1908 				if (!sock_flag(sk, SOCK_DONE)) {
1909 					/* This occurs when user tries to read
1910 					 * from never connected socket.
1911 					 */
1912 					copied = -ENOTCONN;
1913 					break;
1914 				}
1915 				break;
1916 			}
1917 
1918 			if (!timeo) {
1919 				copied = -EAGAIN;
1920 				break;
1921 			}
1922 
1923 			if (signal_pending(current)) {
1924 				copied = sock_intr_errno(timeo);
1925 				break;
1926 			}
1927 		}
1928 
1929 		tcp_cleanup_rbuf(sk, copied);
1930 
1931 		if (copied >= target) {
1932 			/* Do not sleep, just process backlog. */
1933 			release_sock(sk);
1934 			lock_sock(sk);
1935 		} else {
1936 			sk_wait_data(sk, &timeo, last);
1937 		}
1938 
1939 		if ((flags & MSG_PEEK) &&
1940 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1941 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1942 					    current->comm,
1943 					    task_pid_nr(current));
1944 			peek_seq = tp->copied_seq;
1945 		}
1946 		continue;
1947 
1948 	found_ok_skb:
1949 		/* Ok so how much can we use? */
1950 		used = skb->len - offset;
1951 		if (len < used)
1952 			used = len;
1953 
1954 		/* Do we have urgent data here? */
1955 		if (tp->urg_data) {
1956 			u32 urg_offset = tp->urg_seq - *seq;
1957 			if (urg_offset < used) {
1958 				if (!urg_offset) {
1959 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1960 						++*seq;
1961 						urg_hole++;
1962 						offset++;
1963 						used--;
1964 						if (!used)
1965 							goto skip_copy;
1966 					}
1967 				} else
1968 					used = urg_offset;
1969 			}
1970 		}
1971 
1972 		if (!(flags & MSG_TRUNC)) {
1973 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1974 			if (err) {
1975 				/* Exception. Bailout! */
1976 				if (!copied)
1977 					copied = -EFAULT;
1978 				break;
1979 			}
1980 		}
1981 
1982 		*seq += used;
1983 		copied += used;
1984 		len -= used;
1985 
1986 		tcp_rcv_space_adjust(sk);
1987 
1988 skip_copy:
1989 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1990 			tp->urg_data = 0;
1991 			tcp_fast_path_check(sk);
1992 		}
1993 		if (used + offset < skb->len)
1994 			continue;
1995 
1996 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1997 			tcp_update_recv_tstamps(skb, &tss);
1998 			has_tss = true;
1999 		}
2000 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2001 			goto found_fin_ok;
2002 		if (!(flags & MSG_PEEK))
2003 			sk_eat_skb(sk, skb);
2004 		continue;
2005 
2006 	found_fin_ok:
2007 		/* Process the FIN. */
2008 		++*seq;
2009 		if (!(flags & MSG_PEEK))
2010 			sk_eat_skb(sk, skb);
2011 		break;
2012 	} while (len > 0);
2013 
2014 	/* According to UNIX98, msg_name/msg_namelen are ignored
2015 	 * on connected socket. I was just happy when found this 8) --ANK
2016 	 */
2017 
2018 	if (has_tss)
2019 		tcp_recv_timestamp(msg, sk, &tss);
2020 
2021 	/* Clean up data we have read: This will do ACK frames. */
2022 	tcp_cleanup_rbuf(sk, copied);
2023 
2024 	release_sock(sk);
2025 	return copied;
2026 
2027 out:
2028 	release_sock(sk);
2029 	return err;
2030 
2031 recv_urg:
2032 	err = tcp_recv_urg(sk, msg, len, flags);
2033 	goto out;
2034 
2035 recv_sndq:
2036 	err = tcp_peek_sndq(sk, msg, len);
2037 	goto out;
2038 }
2039 EXPORT_SYMBOL(tcp_recvmsg);
2040 
2041 void tcp_set_state(struct sock *sk, int state)
2042 {
2043 	int oldstate = sk->sk_state;
2044 
2045 	/* We defined a new enum for TCP states that are exported in BPF
2046 	 * so as not force the internal TCP states to be frozen. The
2047 	 * following checks will detect if an internal state value ever
2048 	 * differs from the BPF value. If this ever happens, then we will
2049 	 * need to remap the internal value to the BPF value before calling
2050 	 * tcp_call_bpf_2arg.
2051 	 */
2052 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2053 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2054 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2055 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2056 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2057 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2058 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2059 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2060 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2061 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2062 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2063 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2064 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2065 
2066 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2067 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2068 
2069 	switch (state) {
2070 	case TCP_ESTABLISHED:
2071 		if (oldstate != TCP_ESTABLISHED)
2072 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2073 		break;
2074 
2075 	case TCP_CLOSE:
2076 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2077 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2078 
2079 		sk->sk_prot->unhash(sk);
2080 		if (inet_csk(sk)->icsk_bind_hash &&
2081 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2082 			inet_put_port(sk);
2083 		/* fall through */
2084 	default:
2085 		if (oldstate == TCP_ESTABLISHED)
2086 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2087 	}
2088 
2089 	/* Change state AFTER socket is unhashed to avoid closed
2090 	 * socket sitting in hash tables.
2091 	 */
2092 	inet_sk_state_store(sk, state);
2093 
2094 #ifdef STATE_TRACE
2095 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2096 #endif
2097 }
2098 EXPORT_SYMBOL_GPL(tcp_set_state);
2099 
2100 /*
2101  *	State processing on a close. This implements the state shift for
2102  *	sending our FIN frame. Note that we only send a FIN for some
2103  *	states. A shutdown() may have already sent the FIN, or we may be
2104  *	closed.
2105  */
2106 
2107 static const unsigned char new_state[16] = {
2108   /* current state:        new state:      action:	*/
2109   [0 /* (Invalid) */]	= TCP_CLOSE,
2110   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2111   [TCP_SYN_SENT]	= TCP_CLOSE,
2112   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2113   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2114   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2115   [TCP_TIME_WAIT]	= TCP_CLOSE,
2116   [TCP_CLOSE]		= TCP_CLOSE,
2117   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2118   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2119   [TCP_LISTEN]		= TCP_CLOSE,
2120   [TCP_CLOSING]		= TCP_CLOSING,
2121   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2122 };
2123 
2124 static int tcp_close_state(struct sock *sk)
2125 {
2126 	int next = (int)new_state[sk->sk_state];
2127 	int ns = next & TCP_STATE_MASK;
2128 
2129 	tcp_set_state(sk, ns);
2130 
2131 	return next & TCP_ACTION_FIN;
2132 }
2133 
2134 /*
2135  *	Shutdown the sending side of a connection. Much like close except
2136  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2137  */
2138 
2139 void tcp_shutdown(struct sock *sk, int how)
2140 {
2141 	/*	We need to grab some memory, and put together a FIN,
2142 	 *	and then put it into the queue to be sent.
2143 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2144 	 */
2145 	if (!(how & SEND_SHUTDOWN))
2146 		return;
2147 
2148 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2149 	if ((1 << sk->sk_state) &
2150 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2151 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2152 		/* Clear out any half completed packets.  FIN if needed. */
2153 		if (tcp_close_state(sk))
2154 			tcp_send_fin(sk);
2155 	}
2156 }
2157 EXPORT_SYMBOL(tcp_shutdown);
2158 
2159 bool tcp_check_oom(struct sock *sk, int shift)
2160 {
2161 	bool too_many_orphans, out_of_socket_memory;
2162 
2163 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2164 	out_of_socket_memory = tcp_out_of_memory(sk);
2165 
2166 	if (too_many_orphans)
2167 		net_info_ratelimited("too many orphaned sockets\n");
2168 	if (out_of_socket_memory)
2169 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2170 	return too_many_orphans || out_of_socket_memory;
2171 }
2172 
2173 void tcp_close(struct sock *sk, long timeout)
2174 {
2175 	struct sk_buff *skb;
2176 	int data_was_unread = 0;
2177 	int state;
2178 
2179 	lock_sock(sk);
2180 	sk->sk_shutdown = SHUTDOWN_MASK;
2181 
2182 	if (sk->sk_state == TCP_LISTEN) {
2183 		tcp_set_state(sk, TCP_CLOSE);
2184 
2185 		/* Special case. */
2186 		inet_csk_listen_stop(sk);
2187 
2188 		goto adjudge_to_death;
2189 	}
2190 
2191 	/*  We need to flush the recv. buffs.  We do this only on the
2192 	 *  descriptor close, not protocol-sourced closes, because the
2193 	 *  reader process may not have drained the data yet!
2194 	 */
2195 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2196 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2197 
2198 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2199 			len--;
2200 		data_was_unread += len;
2201 		__kfree_skb(skb);
2202 	}
2203 
2204 	sk_mem_reclaim(sk);
2205 
2206 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2207 	if (sk->sk_state == TCP_CLOSE)
2208 		goto adjudge_to_death;
2209 
2210 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2211 	 * data was lost. To witness the awful effects of the old behavior of
2212 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2213 	 * GET in an FTP client, suspend the process, wait for the client to
2214 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2215 	 * Note: timeout is always zero in such a case.
2216 	 */
2217 	if (unlikely(tcp_sk(sk)->repair)) {
2218 		sk->sk_prot->disconnect(sk, 0);
2219 	} else if (data_was_unread) {
2220 		/* Unread data was tossed, zap the connection. */
2221 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2222 		tcp_set_state(sk, TCP_CLOSE);
2223 		tcp_send_active_reset(sk, sk->sk_allocation);
2224 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2225 		/* Check zero linger _after_ checking for unread data. */
2226 		sk->sk_prot->disconnect(sk, 0);
2227 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2228 	} else if (tcp_close_state(sk)) {
2229 		/* We FIN if the application ate all the data before
2230 		 * zapping the connection.
2231 		 */
2232 
2233 		/* RED-PEN. Formally speaking, we have broken TCP state
2234 		 * machine. State transitions:
2235 		 *
2236 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2237 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2238 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2239 		 *
2240 		 * are legal only when FIN has been sent (i.e. in window),
2241 		 * rather than queued out of window. Purists blame.
2242 		 *
2243 		 * F.e. "RFC state" is ESTABLISHED,
2244 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2245 		 *
2246 		 * The visible declinations are that sometimes
2247 		 * we enter time-wait state, when it is not required really
2248 		 * (harmless), do not send active resets, when they are
2249 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2250 		 * they look as CLOSING or LAST_ACK for Linux)
2251 		 * Probably, I missed some more holelets.
2252 		 * 						--ANK
2253 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2254 		 * in a single packet! (May consider it later but will
2255 		 * probably need API support or TCP_CORK SYN-ACK until
2256 		 * data is written and socket is closed.)
2257 		 */
2258 		tcp_send_fin(sk);
2259 	}
2260 
2261 	sk_stream_wait_close(sk, timeout);
2262 
2263 adjudge_to_death:
2264 	state = sk->sk_state;
2265 	sock_hold(sk);
2266 	sock_orphan(sk);
2267 
2268 	/* It is the last release_sock in its life. It will remove backlog. */
2269 	release_sock(sk);
2270 
2271 
2272 	/* Now socket is owned by kernel and we acquire BH lock
2273 	 *  to finish close. No need to check for user refs.
2274 	 */
2275 	local_bh_disable();
2276 	bh_lock_sock(sk);
2277 	WARN_ON(sock_owned_by_user(sk));
2278 
2279 	percpu_counter_inc(sk->sk_prot->orphan_count);
2280 
2281 	/* Have we already been destroyed by a softirq or backlog? */
2282 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2283 		goto out;
2284 
2285 	/*	This is a (useful) BSD violating of the RFC. There is a
2286 	 *	problem with TCP as specified in that the other end could
2287 	 *	keep a socket open forever with no application left this end.
2288 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2289 	 *	our end. If they send after that then tough - BUT: long enough
2290 	 *	that we won't make the old 4*rto = almost no time - whoops
2291 	 *	reset mistake.
2292 	 *
2293 	 *	Nope, it was not mistake. It is really desired behaviour
2294 	 *	f.e. on http servers, when such sockets are useless, but
2295 	 *	consume significant resources. Let's do it with special
2296 	 *	linger2	option.					--ANK
2297 	 */
2298 
2299 	if (sk->sk_state == TCP_FIN_WAIT2) {
2300 		struct tcp_sock *tp = tcp_sk(sk);
2301 		if (tp->linger2 < 0) {
2302 			tcp_set_state(sk, TCP_CLOSE);
2303 			tcp_send_active_reset(sk, GFP_ATOMIC);
2304 			__NET_INC_STATS(sock_net(sk),
2305 					LINUX_MIB_TCPABORTONLINGER);
2306 		} else {
2307 			const int tmo = tcp_fin_time(sk);
2308 
2309 			if (tmo > TCP_TIMEWAIT_LEN) {
2310 				inet_csk_reset_keepalive_timer(sk,
2311 						tmo - TCP_TIMEWAIT_LEN);
2312 			} else {
2313 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2314 				goto out;
2315 			}
2316 		}
2317 	}
2318 	if (sk->sk_state != TCP_CLOSE) {
2319 		sk_mem_reclaim(sk);
2320 		if (tcp_check_oom(sk, 0)) {
2321 			tcp_set_state(sk, TCP_CLOSE);
2322 			tcp_send_active_reset(sk, GFP_ATOMIC);
2323 			__NET_INC_STATS(sock_net(sk),
2324 					LINUX_MIB_TCPABORTONMEMORY);
2325 		} else if (!check_net(sock_net(sk))) {
2326 			/* Not possible to send reset; just close */
2327 			tcp_set_state(sk, TCP_CLOSE);
2328 		}
2329 	}
2330 
2331 	if (sk->sk_state == TCP_CLOSE) {
2332 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2333 		/* We could get here with a non-NULL req if the socket is
2334 		 * aborted (e.g., closed with unread data) before 3WHS
2335 		 * finishes.
2336 		 */
2337 		if (req)
2338 			reqsk_fastopen_remove(sk, req, false);
2339 		inet_csk_destroy_sock(sk);
2340 	}
2341 	/* Otherwise, socket is reprieved until protocol close. */
2342 
2343 out:
2344 	bh_unlock_sock(sk);
2345 	local_bh_enable();
2346 	sock_put(sk);
2347 }
2348 EXPORT_SYMBOL(tcp_close);
2349 
2350 /* These states need RST on ABORT according to RFC793 */
2351 
2352 static inline bool tcp_need_reset(int state)
2353 {
2354 	return (1 << state) &
2355 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2356 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2357 }
2358 
2359 static void tcp_rtx_queue_purge(struct sock *sk)
2360 {
2361 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2362 
2363 	while (p) {
2364 		struct sk_buff *skb = rb_to_skb(p);
2365 
2366 		p = rb_next(p);
2367 		/* Since we are deleting whole queue, no need to
2368 		 * list_del(&skb->tcp_tsorted_anchor)
2369 		 */
2370 		tcp_rtx_queue_unlink(skb, sk);
2371 		sk_wmem_free_skb(sk, skb);
2372 	}
2373 }
2374 
2375 void tcp_write_queue_purge(struct sock *sk)
2376 {
2377 	struct sk_buff *skb;
2378 
2379 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2380 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2381 		tcp_skb_tsorted_anchor_cleanup(skb);
2382 		sk_wmem_free_skb(sk, skb);
2383 	}
2384 	tcp_rtx_queue_purge(sk);
2385 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2386 	sk_mem_reclaim(sk);
2387 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2388 }
2389 
2390 int tcp_disconnect(struct sock *sk, int flags)
2391 {
2392 	struct inet_sock *inet = inet_sk(sk);
2393 	struct inet_connection_sock *icsk = inet_csk(sk);
2394 	struct tcp_sock *tp = tcp_sk(sk);
2395 	int err = 0;
2396 	int old_state = sk->sk_state;
2397 
2398 	if (old_state != TCP_CLOSE)
2399 		tcp_set_state(sk, TCP_CLOSE);
2400 
2401 	/* ABORT function of RFC793 */
2402 	if (old_state == TCP_LISTEN) {
2403 		inet_csk_listen_stop(sk);
2404 	} else if (unlikely(tp->repair)) {
2405 		sk->sk_err = ECONNABORTED;
2406 	} else if (tcp_need_reset(old_state) ||
2407 		   (tp->snd_nxt != tp->write_seq &&
2408 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2409 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2410 		 * states
2411 		 */
2412 		tcp_send_active_reset(sk, gfp_any());
2413 		sk->sk_err = ECONNRESET;
2414 	} else if (old_state == TCP_SYN_SENT)
2415 		sk->sk_err = ECONNRESET;
2416 
2417 	tcp_clear_xmit_timers(sk);
2418 	__skb_queue_purge(&sk->sk_receive_queue);
2419 	tcp_write_queue_purge(sk);
2420 	tcp_fastopen_active_disable_ofo_check(sk);
2421 	skb_rbtree_purge(&tp->out_of_order_queue);
2422 
2423 	inet->inet_dport = 0;
2424 
2425 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2426 		inet_reset_saddr(sk);
2427 
2428 	sk->sk_shutdown = 0;
2429 	sock_reset_flag(sk, SOCK_DONE);
2430 	tp->srtt_us = 0;
2431 	tp->write_seq += tp->max_window + 2;
2432 	if (tp->write_seq == 0)
2433 		tp->write_seq = 1;
2434 	icsk->icsk_backoff = 0;
2435 	tp->snd_cwnd = 2;
2436 	icsk->icsk_probes_out = 0;
2437 	tp->packets_out = 0;
2438 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2439 	tp->snd_cwnd_cnt = 0;
2440 	tp->window_clamp = 0;
2441 	tcp_set_ca_state(sk, TCP_CA_Open);
2442 	tp->is_sack_reneg = 0;
2443 	tcp_clear_retrans(tp);
2444 	inet_csk_delack_init(sk);
2445 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2446 	 * issue in __tcp_select_window()
2447 	 */
2448 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2449 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2450 	__sk_dst_reset(sk);
2451 	dst_release(sk->sk_rx_dst);
2452 	sk->sk_rx_dst = NULL;
2453 	tcp_saved_syn_free(tp);
2454 
2455 	/* Clean up fastopen related fields */
2456 	tcp_free_fastopen_req(tp);
2457 	inet->defer_connect = 0;
2458 
2459 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2460 
2461 	if (sk->sk_frag.page) {
2462 		put_page(sk->sk_frag.page);
2463 		sk->sk_frag.page = NULL;
2464 		sk->sk_frag.offset = 0;
2465 	}
2466 
2467 	sk->sk_error_report(sk);
2468 	return err;
2469 }
2470 EXPORT_SYMBOL(tcp_disconnect);
2471 
2472 static inline bool tcp_can_repair_sock(const struct sock *sk)
2473 {
2474 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2475 		(sk->sk_state != TCP_LISTEN);
2476 }
2477 
2478 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2479 {
2480 	struct tcp_repair_window opt;
2481 
2482 	if (!tp->repair)
2483 		return -EPERM;
2484 
2485 	if (len != sizeof(opt))
2486 		return -EINVAL;
2487 
2488 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2489 		return -EFAULT;
2490 
2491 	if (opt.max_window < opt.snd_wnd)
2492 		return -EINVAL;
2493 
2494 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2495 		return -EINVAL;
2496 
2497 	if (after(opt.rcv_wup, tp->rcv_nxt))
2498 		return -EINVAL;
2499 
2500 	tp->snd_wl1	= opt.snd_wl1;
2501 	tp->snd_wnd	= opt.snd_wnd;
2502 	tp->max_window	= opt.max_window;
2503 
2504 	tp->rcv_wnd	= opt.rcv_wnd;
2505 	tp->rcv_wup	= opt.rcv_wup;
2506 
2507 	return 0;
2508 }
2509 
2510 static int tcp_repair_options_est(struct sock *sk,
2511 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 	struct tcp_repair_opt opt;
2515 
2516 	while (len >= sizeof(opt)) {
2517 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2518 			return -EFAULT;
2519 
2520 		optbuf++;
2521 		len -= sizeof(opt);
2522 
2523 		switch (opt.opt_code) {
2524 		case TCPOPT_MSS:
2525 			tp->rx_opt.mss_clamp = opt.opt_val;
2526 			tcp_mtup_init(sk);
2527 			break;
2528 		case TCPOPT_WINDOW:
2529 			{
2530 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2531 				u16 rcv_wscale = opt.opt_val >> 16;
2532 
2533 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2534 					return -EFBIG;
2535 
2536 				tp->rx_opt.snd_wscale = snd_wscale;
2537 				tp->rx_opt.rcv_wscale = rcv_wscale;
2538 				tp->rx_opt.wscale_ok = 1;
2539 			}
2540 			break;
2541 		case TCPOPT_SACK_PERM:
2542 			if (opt.opt_val != 0)
2543 				return -EINVAL;
2544 
2545 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2546 			break;
2547 		case TCPOPT_TIMESTAMP:
2548 			if (opt.opt_val != 0)
2549 				return -EINVAL;
2550 
2551 			tp->rx_opt.tstamp_ok = 1;
2552 			break;
2553 		}
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 /*
2560  *	Socket option code for TCP.
2561  */
2562 static int do_tcp_setsockopt(struct sock *sk, int level,
2563 		int optname, char __user *optval, unsigned int optlen)
2564 {
2565 	struct tcp_sock *tp = tcp_sk(sk);
2566 	struct inet_connection_sock *icsk = inet_csk(sk);
2567 	struct net *net = sock_net(sk);
2568 	int val;
2569 	int err = 0;
2570 
2571 	/* These are data/string values, all the others are ints */
2572 	switch (optname) {
2573 	case TCP_CONGESTION: {
2574 		char name[TCP_CA_NAME_MAX];
2575 
2576 		if (optlen < 1)
2577 			return -EINVAL;
2578 
2579 		val = strncpy_from_user(name, optval,
2580 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2581 		if (val < 0)
2582 			return -EFAULT;
2583 		name[val] = 0;
2584 
2585 		lock_sock(sk);
2586 		err = tcp_set_congestion_control(sk, name, true, true);
2587 		release_sock(sk);
2588 		return err;
2589 	}
2590 	case TCP_ULP: {
2591 		char name[TCP_ULP_NAME_MAX];
2592 
2593 		if (optlen < 1)
2594 			return -EINVAL;
2595 
2596 		val = strncpy_from_user(name, optval,
2597 					min_t(long, TCP_ULP_NAME_MAX - 1,
2598 					      optlen));
2599 		if (val < 0)
2600 			return -EFAULT;
2601 		name[val] = 0;
2602 
2603 		lock_sock(sk);
2604 		err = tcp_set_ulp(sk, name);
2605 		release_sock(sk);
2606 		return err;
2607 	}
2608 	case TCP_FASTOPEN_KEY: {
2609 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2610 
2611 		if (optlen != sizeof(key))
2612 			return -EINVAL;
2613 
2614 		if (copy_from_user(key, optval, optlen))
2615 			return -EFAULT;
2616 
2617 		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2618 	}
2619 	default:
2620 		/* fallthru */
2621 		break;
2622 	}
2623 
2624 	if (optlen < sizeof(int))
2625 		return -EINVAL;
2626 
2627 	if (get_user(val, (int __user *)optval))
2628 		return -EFAULT;
2629 
2630 	lock_sock(sk);
2631 
2632 	switch (optname) {
2633 	case TCP_MAXSEG:
2634 		/* Values greater than interface MTU won't take effect. However
2635 		 * at the point when this call is done we typically don't yet
2636 		 * know which interface is going to be used
2637 		 */
2638 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2639 			err = -EINVAL;
2640 			break;
2641 		}
2642 		tp->rx_opt.user_mss = val;
2643 		break;
2644 
2645 	case TCP_NODELAY:
2646 		if (val) {
2647 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2648 			 * this option on corked socket is remembered, but
2649 			 * it is not activated until cork is cleared.
2650 			 *
2651 			 * However, when TCP_NODELAY is set we make
2652 			 * an explicit push, which overrides even TCP_CORK
2653 			 * for currently queued segments.
2654 			 */
2655 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2656 			tcp_push_pending_frames(sk);
2657 		} else {
2658 			tp->nonagle &= ~TCP_NAGLE_OFF;
2659 		}
2660 		break;
2661 
2662 	case TCP_THIN_LINEAR_TIMEOUTS:
2663 		if (val < 0 || val > 1)
2664 			err = -EINVAL;
2665 		else
2666 			tp->thin_lto = val;
2667 		break;
2668 
2669 	case TCP_THIN_DUPACK:
2670 		if (val < 0 || val > 1)
2671 			err = -EINVAL;
2672 		break;
2673 
2674 	case TCP_REPAIR:
2675 		if (!tcp_can_repair_sock(sk))
2676 			err = -EPERM;
2677 		else if (val == 1) {
2678 			tp->repair = 1;
2679 			sk->sk_reuse = SK_FORCE_REUSE;
2680 			tp->repair_queue = TCP_NO_QUEUE;
2681 		} else if (val == 0) {
2682 			tp->repair = 0;
2683 			sk->sk_reuse = SK_NO_REUSE;
2684 			tcp_send_window_probe(sk);
2685 		} else
2686 			err = -EINVAL;
2687 
2688 		break;
2689 
2690 	case TCP_REPAIR_QUEUE:
2691 		if (!tp->repair)
2692 			err = -EPERM;
2693 		else if (val < TCP_QUEUES_NR)
2694 			tp->repair_queue = val;
2695 		else
2696 			err = -EINVAL;
2697 		break;
2698 
2699 	case TCP_QUEUE_SEQ:
2700 		if (sk->sk_state != TCP_CLOSE)
2701 			err = -EPERM;
2702 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2703 			tp->write_seq = val;
2704 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2705 			tp->rcv_nxt = val;
2706 		else
2707 			err = -EINVAL;
2708 		break;
2709 
2710 	case TCP_REPAIR_OPTIONS:
2711 		if (!tp->repair)
2712 			err = -EINVAL;
2713 		else if (sk->sk_state == TCP_ESTABLISHED)
2714 			err = tcp_repair_options_est(sk,
2715 					(struct tcp_repair_opt __user *)optval,
2716 					optlen);
2717 		else
2718 			err = -EPERM;
2719 		break;
2720 
2721 	case TCP_CORK:
2722 		/* When set indicates to always queue non-full frames.
2723 		 * Later the user clears this option and we transmit
2724 		 * any pending partial frames in the queue.  This is
2725 		 * meant to be used alongside sendfile() to get properly
2726 		 * filled frames when the user (for example) must write
2727 		 * out headers with a write() call first and then use
2728 		 * sendfile to send out the data parts.
2729 		 *
2730 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2731 		 * stronger than TCP_NODELAY.
2732 		 */
2733 		if (val) {
2734 			tp->nonagle |= TCP_NAGLE_CORK;
2735 		} else {
2736 			tp->nonagle &= ~TCP_NAGLE_CORK;
2737 			if (tp->nonagle&TCP_NAGLE_OFF)
2738 				tp->nonagle |= TCP_NAGLE_PUSH;
2739 			tcp_push_pending_frames(sk);
2740 		}
2741 		break;
2742 
2743 	case TCP_KEEPIDLE:
2744 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2745 			err = -EINVAL;
2746 		else {
2747 			tp->keepalive_time = val * HZ;
2748 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2749 			    !((1 << sk->sk_state) &
2750 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2751 				u32 elapsed = keepalive_time_elapsed(tp);
2752 				if (tp->keepalive_time > elapsed)
2753 					elapsed = tp->keepalive_time - elapsed;
2754 				else
2755 					elapsed = 0;
2756 				inet_csk_reset_keepalive_timer(sk, elapsed);
2757 			}
2758 		}
2759 		break;
2760 	case TCP_KEEPINTVL:
2761 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2762 			err = -EINVAL;
2763 		else
2764 			tp->keepalive_intvl = val * HZ;
2765 		break;
2766 	case TCP_KEEPCNT:
2767 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2768 			err = -EINVAL;
2769 		else
2770 			tp->keepalive_probes = val;
2771 		break;
2772 	case TCP_SYNCNT:
2773 		if (val < 1 || val > MAX_TCP_SYNCNT)
2774 			err = -EINVAL;
2775 		else
2776 			icsk->icsk_syn_retries = val;
2777 		break;
2778 
2779 	case TCP_SAVE_SYN:
2780 		if (val < 0 || val > 1)
2781 			err = -EINVAL;
2782 		else
2783 			tp->save_syn = val;
2784 		break;
2785 
2786 	case TCP_LINGER2:
2787 		if (val < 0)
2788 			tp->linger2 = -1;
2789 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2790 			tp->linger2 = 0;
2791 		else
2792 			tp->linger2 = val * HZ;
2793 		break;
2794 
2795 	case TCP_DEFER_ACCEPT:
2796 		/* Translate value in seconds to number of retransmits */
2797 		icsk->icsk_accept_queue.rskq_defer_accept =
2798 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2799 					TCP_RTO_MAX / HZ);
2800 		break;
2801 
2802 	case TCP_WINDOW_CLAMP:
2803 		if (!val) {
2804 			if (sk->sk_state != TCP_CLOSE) {
2805 				err = -EINVAL;
2806 				break;
2807 			}
2808 			tp->window_clamp = 0;
2809 		} else
2810 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2811 						SOCK_MIN_RCVBUF / 2 : val;
2812 		break;
2813 
2814 	case TCP_QUICKACK:
2815 		if (!val) {
2816 			icsk->icsk_ack.pingpong = 1;
2817 		} else {
2818 			icsk->icsk_ack.pingpong = 0;
2819 			if ((1 << sk->sk_state) &
2820 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2821 			    inet_csk_ack_scheduled(sk)) {
2822 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2823 				tcp_cleanup_rbuf(sk, 1);
2824 				if (!(val & 1))
2825 					icsk->icsk_ack.pingpong = 1;
2826 			}
2827 		}
2828 		break;
2829 
2830 #ifdef CONFIG_TCP_MD5SIG
2831 	case TCP_MD5SIG:
2832 	case TCP_MD5SIG_EXT:
2833 		/* Read the IP->Key mappings from userspace */
2834 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2835 		break;
2836 #endif
2837 	case TCP_USER_TIMEOUT:
2838 		/* Cap the max time in ms TCP will retry or probe the window
2839 		 * before giving up and aborting (ETIMEDOUT) a connection.
2840 		 */
2841 		if (val < 0)
2842 			err = -EINVAL;
2843 		else
2844 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2845 		break;
2846 
2847 	case TCP_FASTOPEN:
2848 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2849 		    TCPF_LISTEN))) {
2850 			tcp_fastopen_init_key_once(net);
2851 
2852 			fastopen_queue_tune(sk, val);
2853 		} else {
2854 			err = -EINVAL;
2855 		}
2856 		break;
2857 	case TCP_FASTOPEN_CONNECT:
2858 		if (val > 1 || val < 0) {
2859 			err = -EINVAL;
2860 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2861 			if (sk->sk_state == TCP_CLOSE)
2862 				tp->fastopen_connect = val;
2863 			else
2864 				err = -EINVAL;
2865 		} else {
2866 			err = -EOPNOTSUPP;
2867 		}
2868 		break;
2869 	case TCP_FASTOPEN_NO_COOKIE:
2870 		if (val > 1 || val < 0)
2871 			err = -EINVAL;
2872 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2873 			err = -EINVAL;
2874 		else
2875 			tp->fastopen_no_cookie = val;
2876 		break;
2877 	case TCP_TIMESTAMP:
2878 		if (!tp->repair)
2879 			err = -EPERM;
2880 		else
2881 			tp->tsoffset = val - tcp_time_stamp_raw();
2882 		break;
2883 	case TCP_REPAIR_WINDOW:
2884 		err = tcp_repair_set_window(tp, optval, optlen);
2885 		break;
2886 	case TCP_NOTSENT_LOWAT:
2887 		tp->notsent_lowat = val;
2888 		sk->sk_write_space(sk);
2889 		break;
2890 	default:
2891 		err = -ENOPROTOOPT;
2892 		break;
2893 	}
2894 
2895 	release_sock(sk);
2896 	return err;
2897 }
2898 
2899 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2900 		   unsigned int optlen)
2901 {
2902 	const struct inet_connection_sock *icsk = inet_csk(sk);
2903 
2904 	if (level != SOL_TCP)
2905 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2906 						     optval, optlen);
2907 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2908 }
2909 EXPORT_SYMBOL(tcp_setsockopt);
2910 
2911 #ifdef CONFIG_COMPAT
2912 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2913 			  char __user *optval, unsigned int optlen)
2914 {
2915 	if (level != SOL_TCP)
2916 		return inet_csk_compat_setsockopt(sk, level, optname,
2917 						  optval, optlen);
2918 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2919 }
2920 EXPORT_SYMBOL(compat_tcp_setsockopt);
2921 #endif
2922 
2923 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2924 				      struct tcp_info *info)
2925 {
2926 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2927 	enum tcp_chrono i;
2928 
2929 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2930 		stats[i] = tp->chrono_stat[i - 1];
2931 		if (i == tp->chrono_type)
2932 			stats[i] += tcp_jiffies32 - tp->chrono_start;
2933 		stats[i] *= USEC_PER_SEC / HZ;
2934 		total += stats[i];
2935 	}
2936 
2937 	info->tcpi_busy_time = total;
2938 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2939 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2940 }
2941 
2942 /* Return information about state of tcp endpoint in API format. */
2943 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2944 {
2945 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2946 	const struct inet_connection_sock *icsk = inet_csk(sk);
2947 	u32 now;
2948 	u64 rate64;
2949 	bool slow;
2950 	u32 rate;
2951 
2952 	memset(info, 0, sizeof(*info));
2953 	if (sk->sk_type != SOCK_STREAM)
2954 		return;
2955 
2956 	info->tcpi_state = inet_sk_state_load(sk);
2957 
2958 	/* Report meaningful fields for all TCP states, including listeners */
2959 	rate = READ_ONCE(sk->sk_pacing_rate);
2960 	rate64 = rate != ~0U ? rate : ~0ULL;
2961 	info->tcpi_pacing_rate = rate64;
2962 
2963 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2964 	rate64 = rate != ~0U ? rate : ~0ULL;
2965 	info->tcpi_max_pacing_rate = rate64;
2966 
2967 	info->tcpi_reordering = tp->reordering;
2968 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2969 
2970 	if (info->tcpi_state == TCP_LISTEN) {
2971 		/* listeners aliased fields :
2972 		 * tcpi_unacked -> Number of children ready for accept()
2973 		 * tcpi_sacked  -> max backlog
2974 		 */
2975 		info->tcpi_unacked = sk->sk_ack_backlog;
2976 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2977 		return;
2978 	}
2979 
2980 	slow = lock_sock_fast(sk);
2981 
2982 	info->tcpi_ca_state = icsk->icsk_ca_state;
2983 	info->tcpi_retransmits = icsk->icsk_retransmits;
2984 	info->tcpi_probes = icsk->icsk_probes_out;
2985 	info->tcpi_backoff = icsk->icsk_backoff;
2986 
2987 	if (tp->rx_opt.tstamp_ok)
2988 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2989 	if (tcp_is_sack(tp))
2990 		info->tcpi_options |= TCPI_OPT_SACK;
2991 	if (tp->rx_opt.wscale_ok) {
2992 		info->tcpi_options |= TCPI_OPT_WSCALE;
2993 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2994 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2995 	}
2996 
2997 	if (tp->ecn_flags & TCP_ECN_OK)
2998 		info->tcpi_options |= TCPI_OPT_ECN;
2999 	if (tp->ecn_flags & TCP_ECN_SEEN)
3000 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3001 	if (tp->syn_data_acked)
3002 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3003 
3004 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3005 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3006 	info->tcpi_snd_mss = tp->mss_cache;
3007 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3008 
3009 	info->tcpi_unacked = tp->packets_out;
3010 	info->tcpi_sacked = tp->sacked_out;
3011 
3012 	info->tcpi_lost = tp->lost_out;
3013 	info->tcpi_retrans = tp->retrans_out;
3014 
3015 	now = tcp_jiffies32;
3016 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3017 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3018 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3019 
3020 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3021 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3022 	info->tcpi_rtt = tp->srtt_us >> 3;
3023 	info->tcpi_rttvar = tp->mdev_us >> 2;
3024 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3025 	info->tcpi_advmss = tp->advmss;
3026 
3027 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3028 	info->tcpi_rcv_space = tp->rcvq_space.space;
3029 
3030 	info->tcpi_total_retrans = tp->total_retrans;
3031 
3032 	info->tcpi_bytes_acked = tp->bytes_acked;
3033 	info->tcpi_bytes_received = tp->bytes_received;
3034 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3035 	tcp_get_info_chrono_stats(tp, info);
3036 
3037 	info->tcpi_segs_out = tp->segs_out;
3038 	info->tcpi_segs_in = tp->segs_in;
3039 
3040 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3041 	info->tcpi_data_segs_in = tp->data_segs_in;
3042 	info->tcpi_data_segs_out = tp->data_segs_out;
3043 
3044 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3045 	rate64 = tcp_compute_delivery_rate(tp);
3046 	if (rate64)
3047 		info->tcpi_delivery_rate = rate64;
3048 	unlock_sock_fast(sk, slow);
3049 }
3050 EXPORT_SYMBOL_GPL(tcp_get_info);
3051 
3052 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3053 {
3054 	const struct tcp_sock *tp = tcp_sk(sk);
3055 	struct sk_buff *stats;
3056 	struct tcp_info info;
3057 	u64 rate64;
3058 	u32 rate;
3059 
3060 	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3061 			  3 * nla_total_size(sizeof(u32)) +
3062 			  2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3063 	if (!stats)
3064 		return NULL;
3065 
3066 	tcp_get_info_chrono_stats(tp, &info);
3067 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3068 			  info.tcpi_busy_time, TCP_NLA_PAD);
3069 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3070 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3071 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3072 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3073 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3074 			  tp->data_segs_out, TCP_NLA_PAD);
3075 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3076 			  tp->total_retrans, TCP_NLA_PAD);
3077 
3078 	rate = READ_ONCE(sk->sk_pacing_rate);
3079 	rate64 = rate != ~0U ? rate : ~0ULL;
3080 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3081 
3082 	rate64 = tcp_compute_delivery_rate(tp);
3083 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3084 
3085 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3086 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3087 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3088 
3089 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3090 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3091 	return stats;
3092 }
3093 
3094 static int do_tcp_getsockopt(struct sock *sk, int level,
3095 		int optname, char __user *optval, int __user *optlen)
3096 {
3097 	struct inet_connection_sock *icsk = inet_csk(sk);
3098 	struct tcp_sock *tp = tcp_sk(sk);
3099 	struct net *net = sock_net(sk);
3100 	int val, len;
3101 
3102 	if (get_user(len, optlen))
3103 		return -EFAULT;
3104 
3105 	len = min_t(unsigned int, len, sizeof(int));
3106 
3107 	if (len < 0)
3108 		return -EINVAL;
3109 
3110 	switch (optname) {
3111 	case TCP_MAXSEG:
3112 		val = tp->mss_cache;
3113 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3114 			val = tp->rx_opt.user_mss;
3115 		if (tp->repair)
3116 			val = tp->rx_opt.mss_clamp;
3117 		break;
3118 	case TCP_NODELAY:
3119 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3120 		break;
3121 	case TCP_CORK:
3122 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3123 		break;
3124 	case TCP_KEEPIDLE:
3125 		val = keepalive_time_when(tp) / HZ;
3126 		break;
3127 	case TCP_KEEPINTVL:
3128 		val = keepalive_intvl_when(tp) / HZ;
3129 		break;
3130 	case TCP_KEEPCNT:
3131 		val = keepalive_probes(tp);
3132 		break;
3133 	case TCP_SYNCNT:
3134 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3135 		break;
3136 	case TCP_LINGER2:
3137 		val = tp->linger2;
3138 		if (val >= 0)
3139 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3140 		break;
3141 	case TCP_DEFER_ACCEPT:
3142 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3143 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3144 		break;
3145 	case TCP_WINDOW_CLAMP:
3146 		val = tp->window_clamp;
3147 		break;
3148 	case TCP_INFO: {
3149 		struct tcp_info info;
3150 
3151 		if (get_user(len, optlen))
3152 			return -EFAULT;
3153 
3154 		tcp_get_info(sk, &info);
3155 
3156 		len = min_t(unsigned int, len, sizeof(info));
3157 		if (put_user(len, optlen))
3158 			return -EFAULT;
3159 		if (copy_to_user(optval, &info, len))
3160 			return -EFAULT;
3161 		return 0;
3162 	}
3163 	case TCP_CC_INFO: {
3164 		const struct tcp_congestion_ops *ca_ops;
3165 		union tcp_cc_info info;
3166 		size_t sz = 0;
3167 		int attr;
3168 
3169 		if (get_user(len, optlen))
3170 			return -EFAULT;
3171 
3172 		ca_ops = icsk->icsk_ca_ops;
3173 		if (ca_ops && ca_ops->get_info)
3174 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3175 
3176 		len = min_t(unsigned int, len, sz);
3177 		if (put_user(len, optlen))
3178 			return -EFAULT;
3179 		if (copy_to_user(optval, &info, len))
3180 			return -EFAULT;
3181 		return 0;
3182 	}
3183 	case TCP_QUICKACK:
3184 		val = !icsk->icsk_ack.pingpong;
3185 		break;
3186 
3187 	case TCP_CONGESTION:
3188 		if (get_user(len, optlen))
3189 			return -EFAULT;
3190 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3191 		if (put_user(len, optlen))
3192 			return -EFAULT;
3193 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3194 			return -EFAULT;
3195 		return 0;
3196 
3197 	case TCP_ULP:
3198 		if (get_user(len, optlen))
3199 			return -EFAULT;
3200 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3201 		if (!icsk->icsk_ulp_ops) {
3202 			if (put_user(0, optlen))
3203 				return -EFAULT;
3204 			return 0;
3205 		}
3206 		if (put_user(len, optlen))
3207 			return -EFAULT;
3208 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3209 			return -EFAULT;
3210 		return 0;
3211 
3212 	case TCP_FASTOPEN_KEY: {
3213 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3214 		struct tcp_fastopen_context *ctx;
3215 
3216 		if (get_user(len, optlen))
3217 			return -EFAULT;
3218 
3219 		rcu_read_lock();
3220 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3221 		if (ctx)
3222 			memcpy(key, ctx->key, sizeof(key));
3223 		else
3224 			len = 0;
3225 		rcu_read_unlock();
3226 
3227 		len = min_t(unsigned int, len, sizeof(key));
3228 		if (put_user(len, optlen))
3229 			return -EFAULT;
3230 		if (copy_to_user(optval, key, len))
3231 			return -EFAULT;
3232 		return 0;
3233 	}
3234 	case TCP_THIN_LINEAR_TIMEOUTS:
3235 		val = tp->thin_lto;
3236 		break;
3237 
3238 	case TCP_THIN_DUPACK:
3239 		val = 0;
3240 		break;
3241 
3242 	case TCP_REPAIR:
3243 		val = tp->repair;
3244 		break;
3245 
3246 	case TCP_REPAIR_QUEUE:
3247 		if (tp->repair)
3248 			val = tp->repair_queue;
3249 		else
3250 			return -EINVAL;
3251 		break;
3252 
3253 	case TCP_REPAIR_WINDOW: {
3254 		struct tcp_repair_window opt;
3255 
3256 		if (get_user(len, optlen))
3257 			return -EFAULT;
3258 
3259 		if (len != sizeof(opt))
3260 			return -EINVAL;
3261 
3262 		if (!tp->repair)
3263 			return -EPERM;
3264 
3265 		opt.snd_wl1	= tp->snd_wl1;
3266 		opt.snd_wnd	= tp->snd_wnd;
3267 		opt.max_window	= tp->max_window;
3268 		opt.rcv_wnd	= tp->rcv_wnd;
3269 		opt.rcv_wup	= tp->rcv_wup;
3270 
3271 		if (copy_to_user(optval, &opt, len))
3272 			return -EFAULT;
3273 		return 0;
3274 	}
3275 	case TCP_QUEUE_SEQ:
3276 		if (tp->repair_queue == TCP_SEND_QUEUE)
3277 			val = tp->write_seq;
3278 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3279 			val = tp->rcv_nxt;
3280 		else
3281 			return -EINVAL;
3282 		break;
3283 
3284 	case TCP_USER_TIMEOUT:
3285 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3286 		break;
3287 
3288 	case TCP_FASTOPEN:
3289 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3290 		break;
3291 
3292 	case TCP_FASTOPEN_CONNECT:
3293 		val = tp->fastopen_connect;
3294 		break;
3295 
3296 	case TCP_FASTOPEN_NO_COOKIE:
3297 		val = tp->fastopen_no_cookie;
3298 		break;
3299 
3300 	case TCP_TIMESTAMP:
3301 		val = tcp_time_stamp_raw() + tp->tsoffset;
3302 		break;
3303 	case TCP_NOTSENT_LOWAT:
3304 		val = tp->notsent_lowat;
3305 		break;
3306 	case TCP_SAVE_SYN:
3307 		val = tp->save_syn;
3308 		break;
3309 	case TCP_SAVED_SYN: {
3310 		if (get_user(len, optlen))
3311 			return -EFAULT;
3312 
3313 		lock_sock(sk);
3314 		if (tp->saved_syn) {
3315 			if (len < tp->saved_syn[0]) {
3316 				if (put_user(tp->saved_syn[0], optlen)) {
3317 					release_sock(sk);
3318 					return -EFAULT;
3319 				}
3320 				release_sock(sk);
3321 				return -EINVAL;
3322 			}
3323 			len = tp->saved_syn[0];
3324 			if (put_user(len, optlen)) {
3325 				release_sock(sk);
3326 				return -EFAULT;
3327 			}
3328 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3329 				release_sock(sk);
3330 				return -EFAULT;
3331 			}
3332 			tcp_saved_syn_free(tp);
3333 			release_sock(sk);
3334 		} else {
3335 			release_sock(sk);
3336 			len = 0;
3337 			if (put_user(len, optlen))
3338 				return -EFAULT;
3339 		}
3340 		return 0;
3341 	}
3342 	default:
3343 		return -ENOPROTOOPT;
3344 	}
3345 
3346 	if (put_user(len, optlen))
3347 		return -EFAULT;
3348 	if (copy_to_user(optval, &val, len))
3349 		return -EFAULT;
3350 	return 0;
3351 }
3352 
3353 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3354 		   int __user *optlen)
3355 {
3356 	struct inet_connection_sock *icsk = inet_csk(sk);
3357 
3358 	if (level != SOL_TCP)
3359 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3360 						     optval, optlen);
3361 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3362 }
3363 EXPORT_SYMBOL(tcp_getsockopt);
3364 
3365 #ifdef CONFIG_COMPAT
3366 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3367 			  char __user *optval, int __user *optlen)
3368 {
3369 	if (level != SOL_TCP)
3370 		return inet_csk_compat_getsockopt(sk, level, optname,
3371 						  optval, optlen);
3372 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3373 }
3374 EXPORT_SYMBOL(compat_tcp_getsockopt);
3375 #endif
3376 
3377 #ifdef CONFIG_TCP_MD5SIG
3378 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3379 static DEFINE_MUTEX(tcp_md5sig_mutex);
3380 static bool tcp_md5sig_pool_populated = false;
3381 
3382 static void __tcp_alloc_md5sig_pool(void)
3383 {
3384 	struct crypto_ahash *hash;
3385 	int cpu;
3386 
3387 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3388 	if (IS_ERR(hash))
3389 		return;
3390 
3391 	for_each_possible_cpu(cpu) {
3392 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3393 		struct ahash_request *req;
3394 
3395 		if (!scratch) {
3396 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3397 					       sizeof(struct tcphdr),
3398 					       GFP_KERNEL,
3399 					       cpu_to_node(cpu));
3400 			if (!scratch)
3401 				return;
3402 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3403 		}
3404 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3405 			continue;
3406 
3407 		req = ahash_request_alloc(hash, GFP_KERNEL);
3408 		if (!req)
3409 			return;
3410 
3411 		ahash_request_set_callback(req, 0, NULL, NULL);
3412 
3413 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3414 	}
3415 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3416 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3417 	 */
3418 	smp_wmb();
3419 	tcp_md5sig_pool_populated = true;
3420 }
3421 
3422 bool tcp_alloc_md5sig_pool(void)
3423 {
3424 	if (unlikely(!tcp_md5sig_pool_populated)) {
3425 		mutex_lock(&tcp_md5sig_mutex);
3426 
3427 		if (!tcp_md5sig_pool_populated)
3428 			__tcp_alloc_md5sig_pool();
3429 
3430 		mutex_unlock(&tcp_md5sig_mutex);
3431 	}
3432 	return tcp_md5sig_pool_populated;
3433 }
3434 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3435 
3436 
3437 /**
3438  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3439  *
3440  *	We use percpu structure, so if we succeed, we exit with preemption
3441  *	and BH disabled, to make sure another thread or softirq handling
3442  *	wont try to get same context.
3443  */
3444 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3445 {
3446 	local_bh_disable();
3447 
3448 	if (tcp_md5sig_pool_populated) {
3449 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3450 		smp_rmb();
3451 		return this_cpu_ptr(&tcp_md5sig_pool);
3452 	}
3453 	local_bh_enable();
3454 	return NULL;
3455 }
3456 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3457 
3458 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3459 			  const struct sk_buff *skb, unsigned int header_len)
3460 {
3461 	struct scatterlist sg;
3462 	const struct tcphdr *tp = tcp_hdr(skb);
3463 	struct ahash_request *req = hp->md5_req;
3464 	unsigned int i;
3465 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3466 					   skb_headlen(skb) - header_len : 0;
3467 	const struct skb_shared_info *shi = skb_shinfo(skb);
3468 	struct sk_buff *frag_iter;
3469 
3470 	sg_init_table(&sg, 1);
3471 
3472 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3473 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3474 	if (crypto_ahash_update(req))
3475 		return 1;
3476 
3477 	for (i = 0; i < shi->nr_frags; ++i) {
3478 		const struct skb_frag_struct *f = &shi->frags[i];
3479 		unsigned int offset = f->page_offset;
3480 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3481 
3482 		sg_set_page(&sg, page, skb_frag_size(f),
3483 			    offset_in_page(offset));
3484 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3485 		if (crypto_ahash_update(req))
3486 			return 1;
3487 	}
3488 
3489 	skb_walk_frags(skb, frag_iter)
3490 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3491 			return 1;
3492 
3493 	return 0;
3494 }
3495 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3496 
3497 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3498 {
3499 	struct scatterlist sg;
3500 
3501 	sg_init_one(&sg, key->key, key->keylen);
3502 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3503 	return crypto_ahash_update(hp->md5_req);
3504 }
3505 EXPORT_SYMBOL(tcp_md5_hash_key);
3506 
3507 #endif
3508 
3509 void tcp_done(struct sock *sk)
3510 {
3511 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3512 
3513 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3514 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3515 
3516 	tcp_set_state(sk, TCP_CLOSE);
3517 	tcp_clear_xmit_timers(sk);
3518 	if (req)
3519 		reqsk_fastopen_remove(sk, req, false);
3520 
3521 	sk->sk_shutdown = SHUTDOWN_MASK;
3522 
3523 	if (!sock_flag(sk, SOCK_DEAD))
3524 		sk->sk_state_change(sk);
3525 	else
3526 		inet_csk_destroy_sock(sk);
3527 }
3528 EXPORT_SYMBOL_GPL(tcp_done);
3529 
3530 int tcp_abort(struct sock *sk, int err)
3531 {
3532 	if (!sk_fullsock(sk)) {
3533 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3534 			struct request_sock *req = inet_reqsk(sk);
3535 
3536 			local_bh_disable();
3537 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3538 							  req);
3539 			local_bh_enable();
3540 			return 0;
3541 		}
3542 		return -EOPNOTSUPP;
3543 	}
3544 
3545 	/* Don't race with userspace socket closes such as tcp_close. */
3546 	lock_sock(sk);
3547 
3548 	if (sk->sk_state == TCP_LISTEN) {
3549 		tcp_set_state(sk, TCP_CLOSE);
3550 		inet_csk_listen_stop(sk);
3551 	}
3552 
3553 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3554 	local_bh_disable();
3555 	bh_lock_sock(sk);
3556 
3557 	if (!sock_flag(sk, SOCK_DEAD)) {
3558 		sk->sk_err = err;
3559 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3560 		smp_wmb();
3561 		sk->sk_error_report(sk);
3562 		if (tcp_need_reset(sk->sk_state))
3563 			tcp_send_active_reset(sk, GFP_ATOMIC);
3564 		tcp_done(sk);
3565 	}
3566 
3567 	bh_unlock_sock(sk);
3568 	local_bh_enable();
3569 	release_sock(sk);
3570 	return 0;
3571 }
3572 EXPORT_SYMBOL_GPL(tcp_abort);
3573 
3574 extern struct tcp_congestion_ops tcp_reno;
3575 
3576 static __initdata unsigned long thash_entries;
3577 static int __init set_thash_entries(char *str)
3578 {
3579 	ssize_t ret;
3580 
3581 	if (!str)
3582 		return 0;
3583 
3584 	ret = kstrtoul(str, 0, &thash_entries);
3585 	if (ret)
3586 		return 0;
3587 
3588 	return 1;
3589 }
3590 __setup("thash_entries=", set_thash_entries);
3591 
3592 static void __init tcp_init_mem(void)
3593 {
3594 	unsigned long limit = nr_free_buffer_pages() / 16;
3595 
3596 	limit = max(limit, 128UL);
3597 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3598 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3599 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3600 }
3601 
3602 void __init tcp_init(void)
3603 {
3604 	int max_rshare, max_wshare, cnt;
3605 	unsigned long limit;
3606 	unsigned int i;
3607 
3608 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3609 		     FIELD_SIZEOF(struct sk_buff, cb));
3610 
3611 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3612 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3613 	inet_hashinfo_init(&tcp_hashinfo);
3614 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3615 			    thash_entries, 21,  /* one slot per 2 MB*/
3616 			    0, 64 * 1024);
3617 	tcp_hashinfo.bind_bucket_cachep =
3618 		kmem_cache_create("tcp_bind_bucket",
3619 				  sizeof(struct inet_bind_bucket), 0,
3620 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3621 
3622 	/* Size and allocate the main established and bind bucket
3623 	 * hash tables.
3624 	 *
3625 	 * The methodology is similar to that of the buffer cache.
3626 	 */
3627 	tcp_hashinfo.ehash =
3628 		alloc_large_system_hash("TCP established",
3629 					sizeof(struct inet_ehash_bucket),
3630 					thash_entries,
3631 					17, /* one slot per 128 KB of memory */
3632 					0,
3633 					NULL,
3634 					&tcp_hashinfo.ehash_mask,
3635 					0,
3636 					thash_entries ? 0 : 512 * 1024);
3637 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3638 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3639 
3640 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3641 		panic("TCP: failed to alloc ehash_locks");
3642 	tcp_hashinfo.bhash =
3643 		alloc_large_system_hash("TCP bind",
3644 					sizeof(struct inet_bind_hashbucket),
3645 					tcp_hashinfo.ehash_mask + 1,
3646 					17, /* one slot per 128 KB of memory */
3647 					0,
3648 					&tcp_hashinfo.bhash_size,
3649 					NULL,
3650 					0,
3651 					64 * 1024);
3652 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3653 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3654 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3655 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3656 	}
3657 
3658 
3659 	cnt = tcp_hashinfo.ehash_mask + 1;
3660 	sysctl_tcp_max_orphans = cnt / 2;
3661 
3662 	tcp_init_mem();
3663 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3664 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3665 	max_wshare = min(4UL*1024*1024, limit);
3666 	max_rshare = min(6UL*1024*1024, limit);
3667 
3668 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3669 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3670 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3671 
3672 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3673 	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3674 	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3675 
3676 	pr_info("Hash tables configured (established %u bind %u)\n",
3677 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3678 
3679 	tcp_v4_init();
3680 	tcp_metrics_init();
3681 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3682 	tcp_tasklet_init();
3683 }
3684