1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 } 457 EXPORT_SYMBOL(tcp_init_sock); 458 459 void tcp_init_transfer(struct sock *sk, int bpf_op) 460 { 461 struct inet_connection_sock *icsk = inet_csk(sk); 462 463 tcp_mtup_init(sk); 464 icsk->icsk_af_ops->rebuild_header(sk); 465 tcp_init_metrics(sk); 466 tcp_call_bpf(sk, bpf_op, 0, NULL); 467 tcp_init_congestion_control(sk); 468 tcp_init_buffer_space(sk); 469 } 470 471 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 472 { 473 struct sk_buff *skb = tcp_write_queue_tail(sk); 474 475 if (tsflags && skb) { 476 struct skb_shared_info *shinfo = skb_shinfo(skb); 477 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 478 479 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 480 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 481 tcb->txstamp_ack = 1; 482 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 483 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 484 } 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sk_sleep(sk), wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 551 if (tp->urg_seq == tp->copied_seq && 552 !sock_flag(sk, SOCK_URGINLINE) && 553 tp->urg_data) 554 target++; 555 556 if (tp->rcv_nxt - tp->copied_seq >= target) 557 mask |= EPOLLIN | EPOLLRDNORM; 558 559 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 560 if (sk_stream_is_writeable(sk)) { 561 mask |= EPOLLOUT | EPOLLWRNORM; 562 } else { /* send SIGIO later */ 563 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 564 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 565 566 /* Race breaker. If space is freed after 567 * wspace test but before the flags are set, 568 * IO signal will be lost. Memory barrier 569 * pairs with the input side. 570 */ 571 smp_mb__after_atomic(); 572 if (sk_stream_is_writeable(sk)) 573 mask |= EPOLLOUT | EPOLLWRNORM; 574 } 575 } else 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 578 if (tp->urg_data & TCP_URG_VALID) 579 mask |= EPOLLPRI; 580 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 581 /* Active TCP fastopen socket with defer_connect 582 * Return EPOLLOUT so application can call write() 583 * in order for kernel to generate SYN+data 584 */ 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 } 587 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 588 smp_rmb(); 589 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 590 mask |= EPOLLERR; 591 592 return mask; 593 } 594 EXPORT_SYMBOL(tcp_poll); 595 596 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 597 { 598 struct tcp_sock *tp = tcp_sk(sk); 599 int answ; 600 bool slow; 601 602 switch (cmd) { 603 case SIOCINQ: 604 if (sk->sk_state == TCP_LISTEN) 605 return -EINVAL; 606 607 slow = lock_sock_fast(sk); 608 answ = tcp_inq(sk); 609 unlock_sock_fast(sk, slow); 610 break; 611 case SIOCATMARK: 612 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = tp->write_seq - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_nxt; 631 break; 632 default: 633 return -ENOIOCTLCMD; 634 } 635 636 return put_user(answ, (int __user *)arg); 637 } 638 EXPORT_SYMBOL(tcp_ioctl); 639 640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 641 { 642 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 643 tp->pushed_seq = tp->write_seq; 644 } 645 646 static inline bool forced_push(const struct tcp_sock *tp) 647 { 648 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 649 } 650 651 static void skb_entail(struct sock *sk, struct sk_buff *skb) 652 { 653 struct tcp_sock *tp = tcp_sk(sk); 654 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 655 656 skb->csum = 0; 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 tcb->sacked = 0; 660 __skb_header_release(skb); 661 tcp_add_write_queue_tail(sk, skb); 662 sk->sk_wmem_queued += skb->truesize; 663 sk_mem_charge(sk, skb->truesize); 664 if (tp->nonagle & TCP_NAGLE_PUSH) 665 tp->nonagle &= ~TCP_NAGLE_PUSH; 666 667 tcp_slow_start_after_idle_check(sk); 668 } 669 670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 671 { 672 if (flags & MSG_OOB) 673 tp->snd_up = tp->write_seq; 674 } 675 676 /* If a not yet filled skb is pushed, do not send it if 677 * we have data packets in Qdisc or NIC queues : 678 * Because TX completion will happen shortly, it gives a chance 679 * to coalesce future sendmsg() payload into this skb, without 680 * need for a timer, and with no latency trade off. 681 * As packets containing data payload have a bigger truesize 682 * than pure acks (dataless) packets, the last checks prevent 683 * autocorking if we only have an ACK in Qdisc/NIC queues, 684 * or if TX completion was delayed after we processed ACK packet. 685 */ 686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 687 int size_goal) 688 { 689 return skb->len < size_goal && 690 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 691 skb != tcp_write_queue_head(sk) && 692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 693 } 694 695 static void tcp_push(struct sock *sk, int flags, int mss_now, 696 int nonagle, int size_goal) 697 { 698 struct tcp_sock *tp = tcp_sk(sk); 699 struct sk_buff *skb; 700 701 skb = tcp_write_queue_tail(sk); 702 if (!skb) 703 return; 704 if (!(flags & MSG_MORE) || forced_push(tp)) 705 tcp_mark_push(tp, skb); 706 707 tcp_mark_urg(tp, flags); 708 709 if (tcp_should_autocork(sk, skb, size_goal)) { 710 711 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 715 } 716 /* It is possible TX completion already happened 717 * before we set TSQ_THROTTLED. 718 */ 719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 720 return; 721 } 722 723 if (flags & MSG_MORE) 724 nonagle = TCP_NAGLE_CORK; 725 726 __tcp_push_pending_frames(sk, mss_now, nonagle); 727 } 728 729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 730 unsigned int offset, size_t len) 731 { 732 struct tcp_splice_state *tss = rd_desc->arg.data; 733 int ret; 734 735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 736 min(rd_desc->count, len), tss->flags); 737 if (ret > 0) 738 rd_desc->count -= ret; 739 return ret; 740 } 741 742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 743 { 744 /* Store TCP splice context information in read_descriptor_t. */ 745 read_descriptor_t rd_desc = { 746 .arg.data = tss, 747 .count = tss->len, 748 }; 749 750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 751 } 752 753 /** 754 * tcp_splice_read - splice data from TCP socket to a pipe 755 * @sock: socket to splice from 756 * @ppos: position (not valid) 757 * @pipe: pipe to splice to 758 * @len: number of bytes to splice 759 * @flags: splice modifier flags 760 * 761 * Description: 762 * Will read pages from given socket and fill them into a pipe. 763 * 764 **/ 765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 766 struct pipe_inode_info *pipe, size_t len, 767 unsigned int flags) 768 { 769 struct sock *sk = sock->sk; 770 struct tcp_splice_state tss = { 771 .pipe = pipe, 772 .len = len, 773 .flags = flags, 774 }; 775 long timeo; 776 ssize_t spliced; 777 int ret; 778 779 sock_rps_record_flow(sk); 780 /* 781 * We can't seek on a socket input 782 */ 783 if (unlikely(*ppos)) 784 return -ESPIPE; 785 786 ret = spliced = 0; 787 788 lock_sock(sk); 789 790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 791 while (tss.len) { 792 ret = __tcp_splice_read(sk, &tss); 793 if (ret < 0) 794 break; 795 else if (!ret) { 796 if (spliced) 797 break; 798 if (sock_flag(sk, SOCK_DONE)) 799 break; 800 if (sk->sk_err) { 801 ret = sock_error(sk); 802 break; 803 } 804 if (sk->sk_shutdown & RCV_SHUTDOWN) 805 break; 806 if (sk->sk_state == TCP_CLOSE) { 807 /* 808 * This occurs when user tries to read 809 * from never connected socket. 810 */ 811 if (!sock_flag(sk, SOCK_DONE)) 812 ret = -ENOTCONN; 813 break; 814 } 815 if (!timeo) { 816 ret = -EAGAIN; 817 break; 818 } 819 /* if __tcp_splice_read() got nothing while we have 820 * an skb in receive queue, we do not want to loop. 821 * This might happen with URG data. 822 */ 823 if (!skb_queue_empty(&sk->sk_receive_queue)) 824 break; 825 sk_wait_data(sk, &timeo, NULL); 826 if (signal_pending(current)) { 827 ret = sock_intr_errno(timeo); 828 break; 829 } 830 continue; 831 } 832 tss.len -= ret; 833 spliced += ret; 834 835 if (!timeo) 836 break; 837 release_sock(sk); 838 lock_sock(sk); 839 840 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 841 (sk->sk_shutdown & RCV_SHUTDOWN) || 842 signal_pending(current)) 843 break; 844 } 845 846 release_sock(sk); 847 848 if (spliced) 849 return spliced; 850 851 return ret; 852 } 853 EXPORT_SYMBOL(tcp_splice_read); 854 855 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 856 bool force_schedule) 857 { 858 struct sk_buff *skb; 859 860 /* The TCP header must be at least 32-bit aligned. */ 861 size = ALIGN(size, 4); 862 863 if (unlikely(tcp_under_memory_pressure(sk))) 864 sk_mem_reclaim_partial(sk); 865 866 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 867 if (likely(skb)) { 868 bool mem_scheduled; 869 870 if (force_schedule) { 871 mem_scheduled = true; 872 sk_forced_mem_schedule(sk, skb->truesize); 873 } else { 874 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 875 } 876 if (likely(mem_scheduled)) { 877 skb_reserve(skb, sk->sk_prot->max_header); 878 /* 879 * Make sure that we have exactly size bytes 880 * available to the caller, no more, no less. 881 */ 882 skb->reserved_tailroom = skb->end - skb->tail - size; 883 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 884 return skb; 885 } 886 __kfree_skb(skb); 887 } else { 888 sk->sk_prot->enter_memory_pressure(sk); 889 sk_stream_moderate_sndbuf(sk); 890 } 891 return NULL; 892 } 893 894 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 895 int large_allowed) 896 { 897 struct tcp_sock *tp = tcp_sk(sk); 898 u32 new_size_goal, size_goal; 899 900 if (!large_allowed || !sk_can_gso(sk)) 901 return mss_now; 902 903 /* Note : tcp_tso_autosize() will eventually split this later */ 904 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 905 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 906 907 /* We try hard to avoid divides here */ 908 size_goal = tp->gso_segs * mss_now; 909 if (unlikely(new_size_goal < size_goal || 910 new_size_goal >= size_goal + mss_now)) { 911 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 912 sk->sk_gso_max_segs); 913 size_goal = tp->gso_segs * mss_now; 914 } 915 916 return max(size_goal, mss_now); 917 } 918 919 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 920 { 921 int mss_now; 922 923 mss_now = tcp_current_mss(sk); 924 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 925 926 return mss_now; 927 } 928 929 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 930 size_t size, int flags) 931 { 932 struct tcp_sock *tp = tcp_sk(sk); 933 int mss_now, size_goal; 934 int err; 935 ssize_t copied; 936 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 937 938 /* Wait for a connection to finish. One exception is TCP Fast Open 939 * (passive side) where data is allowed to be sent before a connection 940 * is fully established. 941 */ 942 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 943 !tcp_passive_fastopen(sk)) { 944 err = sk_stream_wait_connect(sk, &timeo); 945 if (err != 0) 946 goto out_err; 947 } 948 949 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 950 951 mss_now = tcp_send_mss(sk, &size_goal, flags); 952 copied = 0; 953 954 err = -EPIPE; 955 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 956 goto out_err; 957 958 while (size > 0) { 959 struct sk_buff *skb = tcp_write_queue_tail(sk); 960 int copy, i; 961 bool can_coalesce; 962 963 if (!skb || (copy = size_goal - skb->len) <= 0 || 964 !tcp_skb_can_collapse_to(skb)) { 965 new_segment: 966 if (!sk_stream_memory_free(sk)) 967 goto wait_for_sndbuf; 968 969 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 970 tcp_rtx_and_write_queues_empty(sk)); 971 if (!skb) 972 goto wait_for_memory; 973 974 skb_entail(sk, skb); 975 copy = size_goal; 976 } 977 978 if (copy > size) 979 copy = size; 980 981 i = skb_shinfo(skb)->nr_frags; 982 can_coalesce = skb_can_coalesce(skb, i, page, offset); 983 if (!can_coalesce && i >= sysctl_max_skb_frags) { 984 tcp_mark_push(tp, skb); 985 goto new_segment; 986 } 987 if (!sk_wmem_schedule(sk, copy)) 988 goto wait_for_memory; 989 990 if (can_coalesce) { 991 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 992 } else { 993 get_page(page); 994 skb_fill_page_desc(skb, i, page, offset, copy); 995 } 996 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 997 998 skb->len += copy; 999 skb->data_len += copy; 1000 skb->truesize += copy; 1001 sk->sk_wmem_queued += copy; 1002 sk_mem_charge(sk, copy); 1003 skb->ip_summed = CHECKSUM_PARTIAL; 1004 tp->write_seq += copy; 1005 TCP_SKB_CB(skb)->end_seq += copy; 1006 tcp_skb_pcount_set(skb, 0); 1007 1008 if (!copied) 1009 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1010 1011 copied += copy; 1012 offset += copy; 1013 size -= copy; 1014 if (!size) 1015 goto out; 1016 1017 if (skb->len < size_goal || (flags & MSG_OOB)) 1018 continue; 1019 1020 if (forced_push(tp)) { 1021 tcp_mark_push(tp, skb); 1022 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1023 } else if (skb == tcp_send_head(sk)) 1024 tcp_push_one(sk, mss_now); 1025 continue; 1026 1027 wait_for_sndbuf: 1028 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1029 wait_for_memory: 1030 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1031 TCP_NAGLE_PUSH, size_goal); 1032 1033 err = sk_stream_wait_memory(sk, &timeo); 1034 if (err != 0) 1035 goto do_error; 1036 1037 mss_now = tcp_send_mss(sk, &size_goal, flags); 1038 } 1039 1040 out: 1041 if (copied) { 1042 tcp_tx_timestamp(sk, sk->sk_tsflags); 1043 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1044 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1045 } 1046 return copied; 1047 1048 do_error: 1049 if (copied) 1050 goto out; 1051 out_err: 1052 /* make sure we wake any epoll edge trigger waiter */ 1053 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1054 err == -EAGAIN)) { 1055 sk->sk_write_space(sk); 1056 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1057 } 1058 return sk_stream_error(sk, flags, err); 1059 } 1060 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1061 1062 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1063 size_t size, int flags) 1064 { 1065 if (!(sk->sk_route_caps & NETIF_F_SG) || 1066 !sk_check_csum_caps(sk)) 1067 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1068 1069 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1070 1071 return do_tcp_sendpages(sk, page, offset, size, flags); 1072 } 1073 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1074 1075 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1076 size_t size, int flags) 1077 { 1078 int ret; 1079 1080 lock_sock(sk); 1081 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1082 release_sock(sk); 1083 1084 return ret; 1085 } 1086 EXPORT_SYMBOL(tcp_sendpage); 1087 1088 /* Do not bother using a page frag for very small frames. 1089 * But use this heuristic only for the first skb in write queue. 1090 * 1091 * Having no payload in skb->head allows better SACK shifting 1092 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1093 * write queue has less skbs. 1094 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1095 * This also speeds up tso_fragment(), since it wont fallback 1096 * to tcp_fragment(). 1097 */ 1098 static int linear_payload_sz(bool first_skb) 1099 { 1100 if (first_skb) 1101 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1102 return 0; 1103 } 1104 1105 static int select_size(const struct sock *sk, bool sg, bool first_skb, bool zc) 1106 { 1107 const struct tcp_sock *tp = tcp_sk(sk); 1108 int tmp = tp->mss_cache; 1109 1110 if (sg) { 1111 if (zc) 1112 return 0; 1113 1114 if (sk_can_gso(sk)) { 1115 tmp = linear_payload_sz(first_skb); 1116 } else { 1117 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1118 1119 if (tmp >= pgbreak && 1120 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1121 tmp = pgbreak; 1122 } 1123 } 1124 1125 return tmp; 1126 } 1127 1128 void tcp_free_fastopen_req(struct tcp_sock *tp) 1129 { 1130 if (tp->fastopen_req) { 1131 kfree(tp->fastopen_req); 1132 tp->fastopen_req = NULL; 1133 } 1134 } 1135 1136 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1137 int *copied, size_t size) 1138 { 1139 struct tcp_sock *tp = tcp_sk(sk); 1140 struct inet_sock *inet = inet_sk(sk); 1141 struct sockaddr *uaddr = msg->msg_name; 1142 int err, flags; 1143 1144 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1145 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1146 uaddr->sa_family == AF_UNSPEC)) 1147 return -EOPNOTSUPP; 1148 if (tp->fastopen_req) 1149 return -EALREADY; /* Another Fast Open is in progress */ 1150 1151 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1152 sk->sk_allocation); 1153 if (unlikely(!tp->fastopen_req)) 1154 return -ENOBUFS; 1155 tp->fastopen_req->data = msg; 1156 tp->fastopen_req->size = size; 1157 1158 if (inet->defer_connect) { 1159 err = tcp_connect(sk); 1160 /* Same failure procedure as in tcp_v4/6_connect */ 1161 if (err) { 1162 tcp_set_state(sk, TCP_CLOSE); 1163 inet->inet_dport = 0; 1164 sk->sk_route_caps = 0; 1165 } 1166 } 1167 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1168 err = __inet_stream_connect(sk->sk_socket, uaddr, 1169 msg->msg_namelen, flags, 1); 1170 /* fastopen_req could already be freed in __inet_stream_connect 1171 * if the connection times out or gets rst 1172 */ 1173 if (tp->fastopen_req) { 1174 *copied = tp->fastopen_req->copied; 1175 tcp_free_fastopen_req(tp); 1176 inet->defer_connect = 0; 1177 } 1178 return err; 1179 } 1180 1181 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1182 { 1183 struct tcp_sock *tp = tcp_sk(sk); 1184 struct ubuf_info *uarg = NULL; 1185 struct sk_buff *skb; 1186 struct sockcm_cookie sockc; 1187 int flags, err, copied = 0; 1188 int mss_now = 0, size_goal, copied_syn = 0; 1189 bool process_backlog = false; 1190 bool sg, zc = false; 1191 long timeo; 1192 1193 flags = msg->msg_flags; 1194 1195 if (flags & MSG_ZEROCOPY && size) { 1196 if (sk->sk_state != TCP_ESTABLISHED) { 1197 err = -EINVAL; 1198 goto out_err; 1199 } 1200 1201 skb = tcp_write_queue_tail(sk); 1202 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1203 if (!uarg) { 1204 err = -ENOBUFS; 1205 goto out_err; 1206 } 1207 1208 zc = sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG; 1209 if (!zc) 1210 uarg->zerocopy = 0; 1211 } 1212 1213 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1214 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1215 if (err == -EINPROGRESS && copied_syn > 0) 1216 goto out; 1217 else if (err) 1218 goto out_err; 1219 } 1220 1221 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1222 1223 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1224 1225 /* Wait for a connection to finish. One exception is TCP Fast Open 1226 * (passive side) where data is allowed to be sent before a connection 1227 * is fully established. 1228 */ 1229 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1230 !tcp_passive_fastopen(sk)) { 1231 err = sk_stream_wait_connect(sk, &timeo); 1232 if (err != 0) 1233 goto do_error; 1234 } 1235 1236 if (unlikely(tp->repair)) { 1237 if (tp->repair_queue == TCP_RECV_QUEUE) { 1238 copied = tcp_send_rcvq(sk, msg, size); 1239 goto out_nopush; 1240 } 1241 1242 err = -EINVAL; 1243 if (tp->repair_queue == TCP_NO_QUEUE) 1244 goto out_err; 1245 1246 /* 'common' sending to sendq */ 1247 } 1248 1249 sockc.tsflags = sk->sk_tsflags; 1250 if (msg->msg_controllen) { 1251 err = sock_cmsg_send(sk, msg, &sockc); 1252 if (unlikely(err)) { 1253 err = -EINVAL; 1254 goto out_err; 1255 } 1256 } 1257 1258 /* This should be in poll */ 1259 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1260 1261 /* Ok commence sending. */ 1262 copied = 0; 1263 1264 restart: 1265 mss_now = tcp_send_mss(sk, &size_goal, flags); 1266 1267 err = -EPIPE; 1268 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1269 goto do_error; 1270 1271 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1272 1273 while (msg_data_left(msg)) { 1274 int copy = 0; 1275 int max = size_goal; 1276 1277 skb = tcp_write_queue_tail(sk); 1278 if (skb) { 1279 if (skb->ip_summed == CHECKSUM_NONE) 1280 max = mss_now; 1281 copy = max - skb->len; 1282 } 1283 1284 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1285 bool first_skb; 1286 int linear; 1287 1288 new_segment: 1289 /* Allocate new segment. If the interface is SG, 1290 * allocate skb fitting to single page. 1291 */ 1292 if (!sk_stream_memory_free(sk)) 1293 goto wait_for_sndbuf; 1294 1295 if (process_backlog && sk_flush_backlog(sk)) { 1296 process_backlog = false; 1297 goto restart; 1298 } 1299 first_skb = tcp_rtx_and_write_queues_empty(sk); 1300 linear = select_size(sk, sg, first_skb, zc); 1301 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1302 first_skb); 1303 if (!skb) 1304 goto wait_for_memory; 1305 1306 process_backlog = true; 1307 /* 1308 * Check whether we can use HW checksum. 1309 */ 1310 if (sk_check_csum_caps(sk)) 1311 skb->ip_summed = CHECKSUM_PARTIAL; 1312 1313 skb_entail(sk, skb); 1314 copy = size_goal; 1315 max = size_goal; 1316 1317 /* All packets are restored as if they have 1318 * already been sent. skb_mstamp isn't set to 1319 * avoid wrong rtt estimation. 1320 */ 1321 if (tp->repair) 1322 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1323 } 1324 1325 /* Try to append data to the end of skb. */ 1326 if (copy > msg_data_left(msg)) 1327 copy = msg_data_left(msg); 1328 1329 /* Where to copy to? */ 1330 if (skb_availroom(skb) > 0 && !zc) { 1331 /* We have some space in skb head. Superb! */ 1332 copy = min_t(int, copy, skb_availroom(skb)); 1333 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1334 if (err) 1335 goto do_fault; 1336 } else if (!zc) { 1337 bool merge = true; 1338 int i = skb_shinfo(skb)->nr_frags; 1339 struct page_frag *pfrag = sk_page_frag(sk); 1340 1341 if (!sk_page_frag_refill(sk, pfrag)) 1342 goto wait_for_memory; 1343 1344 if (!skb_can_coalesce(skb, i, pfrag->page, 1345 pfrag->offset)) { 1346 if (i >= sysctl_max_skb_frags || !sg) { 1347 tcp_mark_push(tp, skb); 1348 goto new_segment; 1349 } 1350 merge = false; 1351 } 1352 1353 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1354 1355 if (!sk_wmem_schedule(sk, copy)) 1356 goto wait_for_memory; 1357 1358 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1359 pfrag->page, 1360 pfrag->offset, 1361 copy); 1362 if (err) 1363 goto do_error; 1364 1365 /* Update the skb. */ 1366 if (merge) { 1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1368 } else { 1369 skb_fill_page_desc(skb, i, pfrag->page, 1370 pfrag->offset, copy); 1371 page_ref_inc(pfrag->page); 1372 } 1373 pfrag->offset += copy; 1374 } else { 1375 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1376 if (err == -EMSGSIZE || err == -EEXIST) { 1377 tcp_mark_push(tp, skb); 1378 goto new_segment; 1379 } 1380 if (err < 0) 1381 goto do_error; 1382 copy = err; 1383 } 1384 1385 if (!copied) 1386 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1387 1388 tp->write_seq += copy; 1389 TCP_SKB_CB(skb)->end_seq += copy; 1390 tcp_skb_pcount_set(skb, 0); 1391 1392 copied += copy; 1393 if (!msg_data_left(msg)) { 1394 if (unlikely(flags & MSG_EOR)) 1395 TCP_SKB_CB(skb)->eor = 1; 1396 goto out; 1397 } 1398 1399 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1400 continue; 1401 1402 if (forced_push(tp)) { 1403 tcp_mark_push(tp, skb); 1404 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1405 } else if (skb == tcp_send_head(sk)) 1406 tcp_push_one(sk, mss_now); 1407 continue; 1408 1409 wait_for_sndbuf: 1410 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1411 wait_for_memory: 1412 if (copied) 1413 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1414 TCP_NAGLE_PUSH, size_goal); 1415 1416 err = sk_stream_wait_memory(sk, &timeo); 1417 if (err != 0) 1418 goto do_error; 1419 1420 mss_now = tcp_send_mss(sk, &size_goal, flags); 1421 } 1422 1423 out: 1424 if (copied) { 1425 tcp_tx_timestamp(sk, sockc.tsflags); 1426 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1427 } 1428 out_nopush: 1429 sock_zerocopy_put(uarg); 1430 return copied + copied_syn; 1431 1432 do_fault: 1433 if (!skb->len) { 1434 tcp_unlink_write_queue(skb, sk); 1435 /* It is the one place in all of TCP, except connection 1436 * reset, where we can be unlinking the send_head. 1437 */ 1438 tcp_check_send_head(sk, skb); 1439 sk_wmem_free_skb(sk, skb); 1440 } 1441 1442 do_error: 1443 if (copied + copied_syn) 1444 goto out; 1445 out_err: 1446 sock_zerocopy_put_abort(uarg); 1447 err = sk_stream_error(sk, flags, err); 1448 /* make sure we wake any epoll edge trigger waiter */ 1449 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1450 err == -EAGAIN)) { 1451 sk->sk_write_space(sk); 1452 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1453 } 1454 return err; 1455 } 1456 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1457 1458 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1459 { 1460 int ret; 1461 1462 lock_sock(sk); 1463 ret = tcp_sendmsg_locked(sk, msg, size); 1464 release_sock(sk); 1465 1466 return ret; 1467 } 1468 EXPORT_SYMBOL(tcp_sendmsg); 1469 1470 /* 1471 * Handle reading urgent data. BSD has very simple semantics for 1472 * this, no blocking and very strange errors 8) 1473 */ 1474 1475 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 1479 /* No URG data to read. */ 1480 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1481 tp->urg_data == TCP_URG_READ) 1482 return -EINVAL; /* Yes this is right ! */ 1483 1484 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1485 return -ENOTCONN; 1486 1487 if (tp->urg_data & TCP_URG_VALID) { 1488 int err = 0; 1489 char c = tp->urg_data; 1490 1491 if (!(flags & MSG_PEEK)) 1492 tp->urg_data = TCP_URG_READ; 1493 1494 /* Read urgent data. */ 1495 msg->msg_flags |= MSG_OOB; 1496 1497 if (len > 0) { 1498 if (!(flags & MSG_TRUNC)) 1499 err = memcpy_to_msg(msg, &c, 1); 1500 len = 1; 1501 } else 1502 msg->msg_flags |= MSG_TRUNC; 1503 1504 return err ? -EFAULT : len; 1505 } 1506 1507 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1508 return 0; 1509 1510 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1511 * the available implementations agree in this case: 1512 * this call should never block, independent of the 1513 * blocking state of the socket. 1514 * Mike <pall@rz.uni-karlsruhe.de> 1515 */ 1516 return -EAGAIN; 1517 } 1518 1519 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1520 { 1521 struct sk_buff *skb; 1522 int copied = 0, err = 0; 1523 1524 /* XXX -- need to support SO_PEEK_OFF */ 1525 1526 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1527 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1528 if (err) 1529 return err; 1530 copied += skb->len; 1531 } 1532 1533 skb_queue_walk(&sk->sk_write_queue, skb) { 1534 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1535 if (err) 1536 break; 1537 1538 copied += skb->len; 1539 } 1540 1541 return err ?: copied; 1542 } 1543 1544 /* Clean up the receive buffer for full frames taken by the user, 1545 * then send an ACK if necessary. COPIED is the number of bytes 1546 * tcp_recvmsg has given to the user so far, it speeds up the 1547 * calculation of whether or not we must ACK for the sake of 1548 * a window update. 1549 */ 1550 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1551 { 1552 struct tcp_sock *tp = tcp_sk(sk); 1553 bool time_to_ack = false; 1554 1555 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1556 1557 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1558 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1559 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1560 1561 if (inet_csk_ack_scheduled(sk)) { 1562 const struct inet_connection_sock *icsk = inet_csk(sk); 1563 /* Delayed ACKs frequently hit locked sockets during bulk 1564 * receive. */ 1565 if (icsk->icsk_ack.blocked || 1566 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1567 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1568 /* 1569 * If this read emptied read buffer, we send ACK, if 1570 * connection is not bidirectional, user drained 1571 * receive buffer and there was a small segment 1572 * in queue. 1573 */ 1574 (copied > 0 && 1575 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1576 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1577 !icsk->icsk_ack.pingpong)) && 1578 !atomic_read(&sk->sk_rmem_alloc))) 1579 time_to_ack = true; 1580 } 1581 1582 /* We send an ACK if we can now advertise a non-zero window 1583 * which has been raised "significantly". 1584 * 1585 * Even if window raised up to infinity, do not send window open ACK 1586 * in states, where we will not receive more. It is useless. 1587 */ 1588 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1589 __u32 rcv_window_now = tcp_receive_window(tp); 1590 1591 /* Optimize, __tcp_select_window() is not cheap. */ 1592 if (2*rcv_window_now <= tp->window_clamp) { 1593 __u32 new_window = __tcp_select_window(sk); 1594 1595 /* Send ACK now, if this read freed lots of space 1596 * in our buffer. Certainly, new_window is new window. 1597 * We can advertise it now, if it is not less than current one. 1598 * "Lots" means "at least twice" here. 1599 */ 1600 if (new_window && new_window >= 2 * rcv_window_now) 1601 time_to_ack = true; 1602 } 1603 } 1604 if (time_to_ack) 1605 tcp_send_ack(sk); 1606 } 1607 1608 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1609 { 1610 struct sk_buff *skb; 1611 u32 offset; 1612 1613 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1614 offset = seq - TCP_SKB_CB(skb)->seq; 1615 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1616 pr_err_once("%s: found a SYN, please report !\n", __func__); 1617 offset--; 1618 } 1619 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1620 *off = offset; 1621 return skb; 1622 } 1623 /* This looks weird, but this can happen if TCP collapsing 1624 * splitted a fat GRO packet, while we released socket lock 1625 * in skb_splice_bits() 1626 */ 1627 sk_eat_skb(sk, skb); 1628 } 1629 return NULL; 1630 } 1631 1632 /* 1633 * This routine provides an alternative to tcp_recvmsg() for routines 1634 * that would like to handle copying from skbuffs directly in 'sendfile' 1635 * fashion. 1636 * Note: 1637 * - It is assumed that the socket was locked by the caller. 1638 * - The routine does not block. 1639 * - At present, there is no support for reading OOB data 1640 * or for 'peeking' the socket using this routine 1641 * (although both would be easy to implement). 1642 */ 1643 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1644 sk_read_actor_t recv_actor) 1645 { 1646 struct sk_buff *skb; 1647 struct tcp_sock *tp = tcp_sk(sk); 1648 u32 seq = tp->copied_seq; 1649 u32 offset; 1650 int copied = 0; 1651 1652 if (sk->sk_state == TCP_LISTEN) 1653 return -ENOTCONN; 1654 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1655 if (offset < skb->len) { 1656 int used; 1657 size_t len; 1658 1659 len = skb->len - offset; 1660 /* Stop reading if we hit a patch of urgent data */ 1661 if (tp->urg_data) { 1662 u32 urg_offset = tp->urg_seq - seq; 1663 if (urg_offset < len) 1664 len = urg_offset; 1665 if (!len) 1666 break; 1667 } 1668 used = recv_actor(desc, skb, offset, len); 1669 if (used <= 0) { 1670 if (!copied) 1671 copied = used; 1672 break; 1673 } else if (used <= len) { 1674 seq += used; 1675 copied += used; 1676 offset += used; 1677 } 1678 /* If recv_actor drops the lock (e.g. TCP splice 1679 * receive) the skb pointer might be invalid when 1680 * getting here: tcp_collapse might have deleted it 1681 * while aggregating skbs from the socket queue. 1682 */ 1683 skb = tcp_recv_skb(sk, seq - 1, &offset); 1684 if (!skb) 1685 break; 1686 /* TCP coalescing might have appended data to the skb. 1687 * Try to splice more frags 1688 */ 1689 if (offset + 1 != skb->len) 1690 continue; 1691 } 1692 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1693 sk_eat_skb(sk, skb); 1694 ++seq; 1695 break; 1696 } 1697 sk_eat_skb(sk, skb); 1698 if (!desc->count) 1699 break; 1700 tp->copied_seq = seq; 1701 } 1702 tp->copied_seq = seq; 1703 1704 tcp_rcv_space_adjust(sk); 1705 1706 /* Clean up data we have read: This will do ACK frames. */ 1707 if (copied > 0) { 1708 tcp_recv_skb(sk, seq, &offset); 1709 tcp_cleanup_rbuf(sk, copied); 1710 } 1711 return copied; 1712 } 1713 EXPORT_SYMBOL(tcp_read_sock); 1714 1715 int tcp_peek_len(struct socket *sock) 1716 { 1717 return tcp_inq(sock->sk); 1718 } 1719 EXPORT_SYMBOL(tcp_peek_len); 1720 1721 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1722 struct scm_timestamping *tss) 1723 { 1724 if (skb->tstamp) 1725 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1726 else 1727 tss->ts[0] = (struct timespec) {0}; 1728 1729 if (skb_hwtstamps(skb)->hwtstamp) 1730 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1731 else 1732 tss->ts[2] = (struct timespec) {0}; 1733 } 1734 1735 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1736 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1737 struct scm_timestamping *tss) 1738 { 1739 struct timeval tv; 1740 bool has_timestamping = false; 1741 1742 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1743 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1744 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1745 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1746 sizeof(tss->ts[0]), &tss->ts[0]); 1747 } else { 1748 tv.tv_sec = tss->ts[0].tv_sec; 1749 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1750 1751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1752 sizeof(tv), &tv); 1753 } 1754 } 1755 1756 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1757 has_timestamping = true; 1758 else 1759 tss->ts[0] = (struct timespec) {0}; 1760 } 1761 1762 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1763 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1764 has_timestamping = true; 1765 else 1766 tss->ts[2] = (struct timespec) {0}; 1767 } 1768 1769 if (has_timestamping) { 1770 tss->ts[1] = (struct timespec) {0}; 1771 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1772 sizeof(*tss), tss); 1773 } 1774 } 1775 1776 /* 1777 * This routine copies from a sock struct into the user buffer. 1778 * 1779 * Technical note: in 2.3 we work on _locked_ socket, so that 1780 * tricks with *seq access order and skb->users are not required. 1781 * Probably, code can be easily improved even more. 1782 */ 1783 1784 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1785 int flags, int *addr_len) 1786 { 1787 struct tcp_sock *tp = tcp_sk(sk); 1788 int copied = 0; 1789 u32 peek_seq; 1790 u32 *seq; 1791 unsigned long used; 1792 int err; 1793 int target; /* Read at least this many bytes */ 1794 long timeo; 1795 struct sk_buff *skb, *last; 1796 u32 urg_hole = 0; 1797 struct scm_timestamping tss; 1798 bool has_tss = false; 1799 1800 if (unlikely(flags & MSG_ERRQUEUE)) 1801 return inet_recv_error(sk, msg, len, addr_len); 1802 1803 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1804 (sk->sk_state == TCP_ESTABLISHED)) 1805 sk_busy_loop(sk, nonblock); 1806 1807 lock_sock(sk); 1808 1809 err = -ENOTCONN; 1810 if (sk->sk_state == TCP_LISTEN) 1811 goto out; 1812 1813 timeo = sock_rcvtimeo(sk, nonblock); 1814 1815 /* Urgent data needs to be handled specially. */ 1816 if (flags & MSG_OOB) 1817 goto recv_urg; 1818 1819 if (unlikely(tp->repair)) { 1820 err = -EPERM; 1821 if (!(flags & MSG_PEEK)) 1822 goto out; 1823 1824 if (tp->repair_queue == TCP_SEND_QUEUE) 1825 goto recv_sndq; 1826 1827 err = -EINVAL; 1828 if (tp->repair_queue == TCP_NO_QUEUE) 1829 goto out; 1830 1831 /* 'common' recv queue MSG_PEEK-ing */ 1832 } 1833 1834 seq = &tp->copied_seq; 1835 if (flags & MSG_PEEK) { 1836 peek_seq = tp->copied_seq; 1837 seq = &peek_seq; 1838 } 1839 1840 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1841 1842 do { 1843 u32 offset; 1844 1845 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1846 if (tp->urg_data && tp->urg_seq == *seq) { 1847 if (copied) 1848 break; 1849 if (signal_pending(current)) { 1850 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1851 break; 1852 } 1853 } 1854 1855 /* Next get a buffer. */ 1856 1857 last = skb_peek_tail(&sk->sk_receive_queue); 1858 skb_queue_walk(&sk->sk_receive_queue, skb) { 1859 last = skb; 1860 /* Now that we have two receive queues this 1861 * shouldn't happen. 1862 */ 1863 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1864 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1865 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1866 flags)) 1867 break; 1868 1869 offset = *seq - TCP_SKB_CB(skb)->seq; 1870 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1871 pr_err_once("%s: found a SYN, please report !\n", __func__); 1872 offset--; 1873 } 1874 if (offset < skb->len) 1875 goto found_ok_skb; 1876 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1877 goto found_fin_ok; 1878 WARN(!(flags & MSG_PEEK), 1879 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1880 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1881 } 1882 1883 /* Well, if we have backlog, try to process it now yet. */ 1884 1885 if (copied >= target && !sk->sk_backlog.tail) 1886 break; 1887 1888 if (copied) { 1889 if (sk->sk_err || 1890 sk->sk_state == TCP_CLOSE || 1891 (sk->sk_shutdown & RCV_SHUTDOWN) || 1892 !timeo || 1893 signal_pending(current)) 1894 break; 1895 } else { 1896 if (sock_flag(sk, SOCK_DONE)) 1897 break; 1898 1899 if (sk->sk_err) { 1900 copied = sock_error(sk); 1901 break; 1902 } 1903 1904 if (sk->sk_shutdown & RCV_SHUTDOWN) 1905 break; 1906 1907 if (sk->sk_state == TCP_CLOSE) { 1908 if (!sock_flag(sk, SOCK_DONE)) { 1909 /* This occurs when user tries to read 1910 * from never connected socket. 1911 */ 1912 copied = -ENOTCONN; 1913 break; 1914 } 1915 break; 1916 } 1917 1918 if (!timeo) { 1919 copied = -EAGAIN; 1920 break; 1921 } 1922 1923 if (signal_pending(current)) { 1924 copied = sock_intr_errno(timeo); 1925 break; 1926 } 1927 } 1928 1929 tcp_cleanup_rbuf(sk, copied); 1930 1931 if (copied >= target) { 1932 /* Do not sleep, just process backlog. */ 1933 release_sock(sk); 1934 lock_sock(sk); 1935 } else { 1936 sk_wait_data(sk, &timeo, last); 1937 } 1938 1939 if ((flags & MSG_PEEK) && 1940 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1941 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1942 current->comm, 1943 task_pid_nr(current)); 1944 peek_seq = tp->copied_seq; 1945 } 1946 continue; 1947 1948 found_ok_skb: 1949 /* Ok so how much can we use? */ 1950 used = skb->len - offset; 1951 if (len < used) 1952 used = len; 1953 1954 /* Do we have urgent data here? */ 1955 if (tp->urg_data) { 1956 u32 urg_offset = tp->urg_seq - *seq; 1957 if (urg_offset < used) { 1958 if (!urg_offset) { 1959 if (!sock_flag(sk, SOCK_URGINLINE)) { 1960 ++*seq; 1961 urg_hole++; 1962 offset++; 1963 used--; 1964 if (!used) 1965 goto skip_copy; 1966 } 1967 } else 1968 used = urg_offset; 1969 } 1970 } 1971 1972 if (!(flags & MSG_TRUNC)) { 1973 err = skb_copy_datagram_msg(skb, offset, msg, used); 1974 if (err) { 1975 /* Exception. Bailout! */ 1976 if (!copied) 1977 copied = -EFAULT; 1978 break; 1979 } 1980 } 1981 1982 *seq += used; 1983 copied += used; 1984 len -= used; 1985 1986 tcp_rcv_space_adjust(sk); 1987 1988 skip_copy: 1989 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1990 tp->urg_data = 0; 1991 tcp_fast_path_check(sk); 1992 } 1993 if (used + offset < skb->len) 1994 continue; 1995 1996 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1997 tcp_update_recv_tstamps(skb, &tss); 1998 has_tss = true; 1999 } 2000 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2001 goto found_fin_ok; 2002 if (!(flags & MSG_PEEK)) 2003 sk_eat_skb(sk, skb); 2004 continue; 2005 2006 found_fin_ok: 2007 /* Process the FIN. */ 2008 ++*seq; 2009 if (!(flags & MSG_PEEK)) 2010 sk_eat_skb(sk, skb); 2011 break; 2012 } while (len > 0); 2013 2014 /* According to UNIX98, msg_name/msg_namelen are ignored 2015 * on connected socket. I was just happy when found this 8) --ANK 2016 */ 2017 2018 if (has_tss) 2019 tcp_recv_timestamp(msg, sk, &tss); 2020 2021 /* Clean up data we have read: This will do ACK frames. */ 2022 tcp_cleanup_rbuf(sk, copied); 2023 2024 release_sock(sk); 2025 return copied; 2026 2027 out: 2028 release_sock(sk); 2029 return err; 2030 2031 recv_urg: 2032 err = tcp_recv_urg(sk, msg, len, flags); 2033 goto out; 2034 2035 recv_sndq: 2036 err = tcp_peek_sndq(sk, msg, len); 2037 goto out; 2038 } 2039 EXPORT_SYMBOL(tcp_recvmsg); 2040 2041 void tcp_set_state(struct sock *sk, int state) 2042 { 2043 int oldstate = sk->sk_state; 2044 2045 /* We defined a new enum for TCP states that are exported in BPF 2046 * so as not force the internal TCP states to be frozen. The 2047 * following checks will detect if an internal state value ever 2048 * differs from the BPF value. If this ever happens, then we will 2049 * need to remap the internal value to the BPF value before calling 2050 * tcp_call_bpf_2arg. 2051 */ 2052 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2053 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2054 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2055 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2056 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2057 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2058 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2059 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2060 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2061 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2062 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2063 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2064 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2065 2066 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2067 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2068 2069 switch (state) { 2070 case TCP_ESTABLISHED: 2071 if (oldstate != TCP_ESTABLISHED) 2072 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2073 break; 2074 2075 case TCP_CLOSE: 2076 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2077 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2078 2079 sk->sk_prot->unhash(sk); 2080 if (inet_csk(sk)->icsk_bind_hash && 2081 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2082 inet_put_port(sk); 2083 /* fall through */ 2084 default: 2085 if (oldstate == TCP_ESTABLISHED) 2086 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2087 } 2088 2089 /* Change state AFTER socket is unhashed to avoid closed 2090 * socket sitting in hash tables. 2091 */ 2092 inet_sk_state_store(sk, state); 2093 2094 #ifdef STATE_TRACE 2095 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2096 #endif 2097 } 2098 EXPORT_SYMBOL_GPL(tcp_set_state); 2099 2100 /* 2101 * State processing on a close. This implements the state shift for 2102 * sending our FIN frame. Note that we only send a FIN for some 2103 * states. A shutdown() may have already sent the FIN, or we may be 2104 * closed. 2105 */ 2106 2107 static const unsigned char new_state[16] = { 2108 /* current state: new state: action: */ 2109 [0 /* (Invalid) */] = TCP_CLOSE, 2110 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2111 [TCP_SYN_SENT] = TCP_CLOSE, 2112 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2113 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2114 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2115 [TCP_TIME_WAIT] = TCP_CLOSE, 2116 [TCP_CLOSE] = TCP_CLOSE, 2117 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2118 [TCP_LAST_ACK] = TCP_LAST_ACK, 2119 [TCP_LISTEN] = TCP_CLOSE, 2120 [TCP_CLOSING] = TCP_CLOSING, 2121 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2122 }; 2123 2124 static int tcp_close_state(struct sock *sk) 2125 { 2126 int next = (int)new_state[sk->sk_state]; 2127 int ns = next & TCP_STATE_MASK; 2128 2129 tcp_set_state(sk, ns); 2130 2131 return next & TCP_ACTION_FIN; 2132 } 2133 2134 /* 2135 * Shutdown the sending side of a connection. Much like close except 2136 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2137 */ 2138 2139 void tcp_shutdown(struct sock *sk, int how) 2140 { 2141 /* We need to grab some memory, and put together a FIN, 2142 * and then put it into the queue to be sent. 2143 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2144 */ 2145 if (!(how & SEND_SHUTDOWN)) 2146 return; 2147 2148 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2149 if ((1 << sk->sk_state) & 2150 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2151 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2152 /* Clear out any half completed packets. FIN if needed. */ 2153 if (tcp_close_state(sk)) 2154 tcp_send_fin(sk); 2155 } 2156 } 2157 EXPORT_SYMBOL(tcp_shutdown); 2158 2159 bool tcp_check_oom(struct sock *sk, int shift) 2160 { 2161 bool too_many_orphans, out_of_socket_memory; 2162 2163 too_many_orphans = tcp_too_many_orphans(sk, shift); 2164 out_of_socket_memory = tcp_out_of_memory(sk); 2165 2166 if (too_many_orphans) 2167 net_info_ratelimited("too many orphaned sockets\n"); 2168 if (out_of_socket_memory) 2169 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2170 return too_many_orphans || out_of_socket_memory; 2171 } 2172 2173 void tcp_close(struct sock *sk, long timeout) 2174 { 2175 struct sk_buff *skb; 2176 int data_was_unread = 0; 2177 int state; 2178 2179 lock_sock(sk); 2180 sk->sk_shutdown = SHUTDOWN_MASK; 2181 2182 if (sk->sk_state == TCP_LISTEN) { 2183 tcp_set_state(sk, TCP_CLOSE); 2184 2185 /* Special case. */ 2186 inet_csk_listen_stop(sk); 2187 2188 goto adjudge_to_death; 2189 } 2190 2191 /* We need to flush the recv. buffs. We do this only on the 2192 * descriptor close, not protocol-sourced closes, because the 2193 * reader process may not have drained the data yet! 2194 */ 2195 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2196 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2197 2198 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2199 len--; 2200 data_was_unread += len; 2201 __kfree_skb(skb); 2202 } 2203 2204 sk_mem_reclaim(sk); 2205 2206 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2207 if (sk->sk_state == TCP_CLOSE) 2208 goto adjudge_to_death; 2209 2210 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2211 * data was lost. To witness the awful effects of the old behavior of 2212 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2213 * GET in an FTP client, suspend the process, wait for the client to 2214 * advertise a zero window, then kill -9 the FTP client, wheee... 2215 * Note: timeout is always zero in such a case. 2216 */ 2217 if (unlikely(tcp_sk(sk)->repair)) { 2218 sk->sk_prot->disconnect(sk, 0); 2219 } else if (data_was_unread) { 2220 /* Unread data was tossed, zap the connection. */ 2221 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2222 tcp_set_state(sk, TCP_CLOSE); 2223 tcp_send_active_reset(sk, sk->sk_allocation); 2224 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2225 /* Check zero linger _after_ checking for unread data. */ 2226 sk->sk_prot->disconnect(sk, 0); 2227 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2228 } else if (tcp_close_state(sk)) { 2229 /* We FIN if the application ate all the data before 2230 * zapping the connection. 2231 */ 2232 2233 /* RED-PEN. Formally speaking, we have broken TCP state 2234 * machine. State transitions: 2235 * 2236 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2237 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2238 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2239 * 2240 * are legal only when FIN has been sent (i.e. in window), 2241 * rather than queued out of window. Purists blame. 2242 * 2243 * F.e. "RFC state" is ESTABLISHED, 2244 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2245 * 2246 * The visible declinations are that sometimes 2247 * we enter time-wait state, when it is not required really 2248 * (harmless), do not send active resets, when they are 2249 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2250 * they look as CLOSING or LAST_ACK for Linux) 2251 * Probably, I missed some more holelets. 2252 * --ANK 2253 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2254 * in a single packet! (May consider it later but will 2255 * probably need API support or TCP_CORK SYN-ACK until 2256 * data is written and socket is closed.) 2257 */ 2258 tcp_send_fin(sk); 2259 } 2260 2261 sk_stream_wait_close(sk, timeout); 2262 2263 adjudge_to_death: 2264 state = sk->sk_state; 2265 sock_hold(sk); 2266 sock_orphan(sk); 2267 2268 /* It is the last release_sock in its life. It will remove backlog. */ 2269 release_sock(sk); 2270 2271 2272 /* Now socket is owned by kernel and we acquire BH lock 2273 * to finish close. No need to check for user refs. 2274 */ 2275 local_bh_disable(); 2276 bh_lock_sock(sk); 2277 WARN_ON(sock_owned_by_user(sk)); 2278 2279 percpu_counter_inc(sk->sk_prot->orphan_count); 2280 2281 /* Have we already been destroyed by a softirq or backlog? */ 2282 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2283 goto out; 2284 2285 /* This is a (useful) BSD violating of the RFC. There is a 2286 * problem with TCP as specified in that the other end could 2287 * keep a socket open forever with no application left this end. 2288 * We use a 1 minute timeout (about the same as BSD) then kill 2289 * our end. If they send after that then tough - BUT: long enough 2290 * that we won't make the old 4*rto = almost no time - whoops 2291 * reset mistake. 2292 * 2293 * Nope, it was not mistake. It is really desired behaviour 2294 * f.e. on http servers, when such sockets are useless, but 2295 * consume significant resources. Let's do it with special 2296 * linger2 option. --ANK 2297 */ 2298 2299 if (sk->sk_state == TCP_FIN_WAIT2) { 2300 struct tcp_sock *tp = tcp_sk(sk); 2301 if (tp->linger2 < 0) { 2302 tcp_set_state(sk, TCP_CLOSE); 2303 tcp_send_active_reset(sk, GFP_ATOMIC); 2304 __NET_INC_STATS(sock_net(sk), 2305 LINUX_MIB_TCPABORTONLINGER); 2306 } else { 2307 const int tmo = tcp_fin_time(sk); 2308 2309 if (tmo > TCP_TIMEWAIT_LEN) { 2310 inet_csk_reset_keepalive_timer(sk, 2311 tmo - TCP_TIMEWAIT_LEN); 2312 } else { 2313 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2314 goto out; 2315 } 2316 } 2317 } 2318 if (sk->sk_state != TCP_CLOSE) { 2319 sk_mem_reclaim(sk); 2320 if (tcp_check_oom(sk, 0)) { 2321 tcp_set_state(sk, TCP_CLOSE); 2322 tcp_send_active_reset(sk, GFP_ATOMIC); 2323 __NET_INC_STATS(sock_net(sk), 2324 LINUX_MIB_TCPABORTONMEMORY); 2325 } else if (!check_net(sock_net(sk))) { 2326 /* Not possible to send reset; just close */ 2327 tcp_set_state(sk, TCP_CLOSE); 2328 } 2329 } 2330 2331 if (sk->sk_state == TCP_CLOSE) { 2332 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2333 /* We could get here with a non-NULL req if the socket is 2334 * aborted (e.g., closed with unread data) before 3WHS 2335 * finishes. 2336 */ 2337 if (req) 2338 reqsk_fastopen_remove(sk, req, false); 2339 inet_csk_destroy_sock(sk); 2340 } 2341 /* Otherwise, socket is reprieved until protocol close. */ 2342 2343 out: 2344 bh_unlock_sock(sk); 2345 local_bh_enable(); 2346 sock_put(sk); 2347 } 2348 EXPORT_SYMBOL(tcp_close); 2349 2350 /* These states need RST on ABORT according to RFC793 */ 2351 2352 static inline bool tcp_need_reset(int state) 2353 { 2354 return (1 << state) & 2355 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2356 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2357 } 2358 2359 static void tcp_rtx_queue_purge(struct sock *sk) 2360 { 2361 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2362 2363 while (p) { 2364 struct sk_buff *skb = rb_to_skb(p); 2365 2366 p = rb_next(p); 2367 /* Since we are deleting whole queue, no need to 2368 * list_del(&skb->tcp_tsorted_anchor) 2369 */ 2370 tcp_rtx_queue_unlink(skb, sk); 2371 sk_wmem_free_skb(sk, skb); 2372 } 2373 } 2374 2375 void tcp_write_queue_purge(struct sock *sk) 2376 { 2377 struct sk_buff *skb; 2378 2379 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2380 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2381 tcp_skb_tsorted_anchor_cleanup(skb); 2382 sk_wmem_free_skb(sk, skb); 2383 } 2384 tcp_rtx_queue_purge(sk); 2385 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2386 sk_mem_reclaim(sk); 2387 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2388 } 2389 2390 int tcp_disconnect(struct sock *sk, int flags) 2391 { 2392 struct inet_sock *inet = inet_sk(sk); 2393 struct inet_connection_sock *icsk = inet_csk(sk); 2394 struct tcp_sock *tp = tcp_sk(sk); 2395 int err = 0; 2396 int old_state = sk->sk_state; 2397 2398 if (old_state != TCP_CLOSE) 2399 tcp_set_state(sk, TCP_CLOSE); 2400 2401 /* ABORT function of RFC793 */ 2402 if (old_state == TCP_LISTEN) { 2403 inet_csk_listen_stop(sk); 2404 } else if (unlikely(tp->repair)) { 2405 sk->sk_err = ECONNABORTED; 2406 } else if (tcp_need_reset(old_state) || 2407 (tp->snd_nxt != tp->write_seq && 2408 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2409 /* The last check adjusts for discrepancy of Linux wrt. RFC 2410 * states 2411 */ 2412 tcp_send_active_reset(sk, gfp_any()); 2413 sk->sk_err = ECONNRESET; 2414 } else if (old_state == TCP_SYN_SENT) 2415 sk->sk_err = ECONNRESET; 2416 2417 tcp_clear_xmit_timers(sk); 2418 __skb_queue_purge(&sk->sk_receive_queue); 2419 tcp_write_queue_purge(sk); 2420 tcp_fastopen_active_disable_ofo_check(sk); 2421 skb_rbtree_purge(&tp->out_of_order_queue); 2422 2423 inet->inet_dport = 0; 2424 2425 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2426 inet_reset_saddr(sk); 2427 2428 sk->sk_shutdown = 0; 2429 sock_reset_flag(sk, SOCK_DONE); 2430 tp->srtt_us = 0; 2431 tp->write_seq += tp->max_window + 2; 2432 if (tp->write_seq == 0) 2433 tp->write_seq = 1; 2434 icsk->icsk_backoff = 0; 2435 tp->snd_cwnd = 2; 2436 icsk->icsk_probes_out = 0; 2437 tp->packets_out = 0; 2438 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2439 tp->snd_cwnd_cnt = 0; 2440 tp->window_clamp = 0; 2441 tcp_set_ca_state(sk, TCP_CA_Open); 2442 tp->is_sack_reneg = 0; 2443 tcp_clear_retrans(tp); 2444 inet_csk_delack_init(sk); 2445 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2446 * issue in __tcp_select_window() 2447 */ 2448 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2449 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2450 __sk_dst_reset(sk); 2451 dst_release(sk->sk_rx_dst); 2452 sk->sk_rx_dst = NULL; 2453 tcp_saved_syn_free(tp); 2454 2455 /* Clean up fastopen related fields */ 2456 tcp_free_fastopen_req(tp); 2457 inet->defer_connect = 0; 2458 2459 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2460 2461 if (sk->sk_frag.page) { 2462 put_page(sk->sk_frag.page); 2463 sk->sk_frag.page = NULL; 2464 sk->sk_frag.offset = 0; 2465 } 2466 2467 sk->sk_error_report(sk); 2468 return err; 2469 } 2470 EXPORT_SYMBOL(tcp_disconnect); 2471 2472 static inline bool tcp_can_repair_sock(const struct sock *sk) 2473 { 2474 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2475 (sk->sk_state != TCP_LISTEN); 2476 } 2477 2478 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2479 { 2480 struct tcp_repair_window opt; 2481 2482 if (!tp->repair) 2483 return -EPERM; 2484 2485 if (len != sizeof(opt)) 2486 return -EINVAL; 2487 2488 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2489 return -EFAULT; 2490 2491 if (opt.max_window < opt.snd_wnd) 2492 return -EINVAL; 2493 2494 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2495 return -EINVAL; 2496 2497 if (after(opt.rcv_wup, tp->rcv_nxt)) 2498 return -EINVAL; 2499 2500 tp->snd_wl1 = opt.snd_wl1; 2501 tp->snd_wnd = opt.snd_wnd; 2502 tp->max_window = opt.max_window; 2503 2504 tp->rcv_wnd = opt.rcv_wnd; 2505 tp->rcv_wup = opt.rcv_wup; 2506 2507 return 0; 2508 } 2509 2510 static int tcp_repair_options_est(struct sock *sk, 2511 struct tcp_repair_opt __user *optbuf, unsigned int len) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 struct tcp_repair_opt opt; 2515 2516 while (len >= sizeof(opt)) { 2517 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2518 return -EFAULT; 2519 2520 optbuf++; 2521 len -= sizeof(opt); 2522 2523 switch (opt.opt_code) { 2524 case TCPOPT_MSS: 2525 tp->rx_opt.mss_clamp = opt.opt_val; 2526 tcp_mtup_init(sk); 2527 break; 2528 case TCPOPT_WINDOW: 2529 { 2530 u16 snd_wscale = opt.opt_val & 0xFFFF; 2531 u16 rcv_wscale = opt.opt_val >> 16; 2532 2533 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2534 return -EFBIG; 2535 2536 tp->rx_opt.snd_wscale = snd_wscale; 2537 tp->rx_opt.rcv_wscale = rcv_wscale; 2538 tp->rx_opt.wscale_ok = 1; 2539 } 2540 break; 2541 case TCPOPT_SACK_PERM: 2542 if (opt.opt_val != 0) 2543 return -EINVAL; 2544 2545 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2546 break; 2547 case TCPOPT_TIMESTAMP: 2548 if (opt.opt_val != 0) 2549 return -EINVAL; 2550 2551 tp->rx_opt.tstamp_ok = 1; 2552 break; 2553 } 2554 } 2555 2556 return 0; 2557 } 2558 2559 /* 2560 * Socket option code for TCP. 2561 */ 2562 static int do_tcp_setsockopt(struct sock *sk, int level, 2563 int optname, char __user *optval, unsigned int optlen) 2564 { 2565 struct tcp_sock *tp = tcp_sk(sk); 2566 struct inet_connection_sock *icsk = inet_csk(sk); 2567 struct net *net = sock_net(sk); 2568 int val; 2569 int err = 0; 2570 2571 /* These are data/string values, all the others are ints */ 2572 switch (optname) { 2573 case TCP_CONGESTION: { 2574 char name[TCP_CA_NAME_MAX]; 2575 2576 if (optlen < 1) 2577 return -EINVAL; 2578 2579 val = strncpy_from_user(name, optval, 2580 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2581 if (val < 0) 2582 return -EFAULT; 2583 name[val] = 0; 2584 2585 lock_sock(sk); 2586 err = tcp_set_congestion_control(sk, name, true, true); 2587 release_sock(sk); 2588 return err; 2589 } 2590 case TCP_ULP: { 2591 char name[TCP_ULP_NAME_MAX]; 2592 2593 if (optlen < 1) 2594 return -EINVAL; 2595 2596 val = strncpy_from_user(name, optval, 2597 min_t(long, TCP_ULP_NAME_MAX - 1, 2598 optlen)); 2599 if (val < 0) 2600 return -EFAULT; 2601 name[val] = 0; 2602 2603 lock_sock(sk); 2604 err = tcp_set_ulp(sk, name); 2605 release_sock(sk); 2606 return err; 2607 } 2608 case TCP_FASTOPEN_KEY: { 2609 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2610 2611 if (optlen != sizeof(key)) 2612 return -EINVAL; 2613 2614 if (copy_from_user(key, optval, optlen)) 2615 return -EFAULT; 2616 2617 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2618 } 2619 default: 2620 /* fallthru */ 2621 break; 2622 } 2623 2624 if (optlen < sizeof(int)) 2625 return -EINVAL; 2626 2627 if (get_user(val, (int __user *)optval)) 2628 return -EFAULT; 2629 2630 lock_sock(sk); 2631 2632 switch (optname) { 2633 case TCP_MAXSEG: 2634 /* Values greater than interface MTU won't take effect. However 2635 * at the point when this call is done we typically don't yet 2636 * know which interface is going to be used 2637 */ 2638 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2639 err = -EINVAL; 2640 break; 2641 } 2642 tp->rx_opt.user_mss = val; 2643 break; 2644 2645 case TCP_NODELAY: 2646 if (val) { 2647 /* TCP_NODELAY is weaker than TCP_CORK, so that 2648 * this option on corked socket is remembered, but 2649 * it is not activated until cork is cleared. 2650 * 2651 * However, when TCP_NODELAY is set we make 2652 * an explicit push, which overrides even TCP_CORK 2653 * for currently queued segments. 2654 */ 2655 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2656 tcp_push_pending_frames(sk); 2657 } else { 2658 tp->nonagle &= ~TCP_NAGLE_OFF; 2659 } 2660 break; 2661 2662 case TCP_THIN_LINEAR_TIMEOUTS: 2663 if (val < 0 || val > 1) 2664 err = -EINVAL; 2665 else 2666 tp->thin_lto = val; 2667 break; 2668 2669 case TCP_THIN_DUPACK: 2670 if (val < 0 || val > 1) 2671 err = -EINVAL; 2672 break; 2673 2674 case TCP_REPAIR: 2675 if (!tcp_can_repair_sock(sk)) 2676 err = -EPERM; 2677 else if (val == 1) { 2678 tp->repair = 1; 2679 sk->sk_reuse = SK_FORCE_REUSE; 2680 tp->repair_queue = TCP_NO_QUEUE; 2681 } else if (val == 0) { 2682 tp->repair = 0; 2683 sk->sk_reuse = SK_NO_REUSE; 2684 tcp_send_window_probe(sk); 2685 } else 2686 err = -EINVAL; 2687 2688 break; 2689 2690 case TCP_REPAIR_QUEUE: 2691 if (!tp->repair) 2692 err = -EPERM; 2693 else if (val < TCP_QUEUES_NR) 2694 tp->repair_queue = val; 2695 else 2696 err = -EINVAL; 2697 break; 2698 2699 case TCP_QUEUE_SEQ: 2700 if (sk->sk_state != TCP_CLOSE) 2701 err = -EPERM; 2702 else if (tp->repair_queue == TCP_SEND_QUEUE) 2703 tp->write_seq = val; 2704 else if (tp->repair_queue == TCP_RECV_QUEUE) 2705 tp->rcv_nxt = val; 2706 else 2707 err = -EINVAL; 2708 break; 2709 2710 case TCP_REPAIR_OPTIONS: 2711 if (!tp->repair) 2712 err = -EINVAL; 2713 else if (sk->sk_state == TCP_ESTABLISHED) 2714 err = tcp_repair_options_est(sk, 2715 (struct tcp_repair_opt __user *)optval, 2716 optlen); 2717 else 2718 err = -EPERM; 2719 break; 2720 2721 case TCP_CORK: 2722 /* When set indicates to always queue non-full frames. 2723 * Later the user clears this option and we transmit 2724 * any pending partial frames in the queue. This is 2725 * meant to be used alongside sendfile() to get properly 2726 * filled frames when the user (for example) must write 2727 * out headers with a write() call first and then use 2728 * sendfile to send out the data parts. 2729 * 2730 * TCP_CORK can be set together with TCP_NODELAY and it is 2731 * stronger than TCP_NODELAY. 2732 */ 2733 if (val) { 2734 tp->nonagle |= TCP_NAGLE_CORK; 2735 } else { 2736 tp->nonagle &= ~TCP_NAGLE_CORK; 2737 if (tp->nonagle&TCP_NAGLE_OFF) 2738 tp->nonagle |= TCP_NAGLE_PUSH; 2739 tcp_push_pending_frames(sk); 2740 } 2741 break; 2742 2743 case TCP_KEEPIDLE: 2744 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2745 err = -EINVAL; 2746 else { 2747 tp->keepalive_time = val * HZ; 2748 if (sock_flag(sk, SOCK_KEEPOPEN) && 2749 !((1 << sk->sk_state) & 2750 (TCPF_CLOSE | TCPF_LISTEN))) { 2751 u32 elapsed = keepalive_time_elapsed(tp); 2752 if (tp->keepalive_time > elapsed) 2753 elapsed = tp->keepalive_time - elapsed; 2754 else 2755 elapsed = 0; 2756 inet_csk_reset_keepalive_timer(sk, elapsed); 2757 } 2758 } 2759 break; 2760 case TCP_KEEPINTVL: 2761 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2762 err = -EINVAL; 2763 else 2764 tp->keepalive_intvl = val * HZ; 2765 break; 2766 case TCP_KEEPCNT: 2767 if (val < 1 || val > MAX_TCP_KEEPCNT) 2768 err = -EINVAL; 2769 else 2770 tp->keepalive_probes = val; 2771 break; 2772 case TCP_SYNCNT: 2773 if (val < 1 || val > MAX_TCP_SYNCNT) 2774 err = -EINVAL; 2775 else 2776 icsk->icsk_syn_retries = val; 2777 break; 2778 2779 case TCP_SAVE_SYN: 2780 if (val < 0 || val > 1) 2781 err = -EINVAL; 2782 else 2783 tp->save_syn = val; 2784 break; 2785 2786 case TCP_LINGER2: 2787 if (val < 0) 2788 tp->linger2 = -1; 2789 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2790 tp->linger2 = 0; 2791 else 2792 tp->linger2 = val * HZ; 2793 break; 2794 2795 case TCP_DEFER_ACCEPT: 2796 /* Translate value in seconds to number of retransmits */ 2797 icsk->icsk_accept_queue.rskq_defer_accept = 2798 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2799 TCP_RTO_MAX / HZ); 2800 break; 2801 2802 case TCP_WINDOW_CLAMP: 2803 if (!val) { 2804 if (sk->sk_state != TCP_CLOSE) { 2805 err = -EINVAL; 2806 break; 2807 } 2808 tp->window_clamp = 0; 2809 } else 2810 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2811 SOCK_MIN_RCVBUF / 2 : val; 2812 break; 2813 2814 case TCP_QUICKACK: 2815 if (!val) { 2816 icsk->icsk_ack.pingpong = 1; 2817 } else { 2818 icsk->icsk_ack.pingpong = 0; 2819 if ((1 << sk->sk_state) & 2820 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2821 inet_csk_ack_scheduled(sk)) { 2822 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2823 tcp_cleanup_rbuf(sk, 1); 2824 if (!(val & 1)) 2825 icsk->icsk_ack.pingpong = 1; 2826 } 2827 } 2828 break; 2829 2830 #ifdef CONFIG_TCP_MD5SIG 2831 case TCP_MD5SIG: 2832 case TCP_MD5SIG_EXT: 2833 /* Read the IP->Key mappings from userspace */ 2834 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2835 break; 2836 #endif 2837 case TCP_USER_TIMEOUT: 2838 /* Cap the max time in ms TCP will retry or probe the window 2839 * before giving up and aborting (ETIMEDOUT) a connection. 2840 */ 2841 if (val < 0) 2842 err = -EINVAL; 2843 else 2844 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2845 break; 2846 2847 case TCP_FASTOPEN: 2848 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2849 TCPF_LISTEN))) { 2850 tcp_fastopen_init_key_once(net); 2851 2852 fastopen_queue_tune(sk, val); 2853 } else { 2854 err = -EINVAL; 2855 } 2856 break; 2857 case TCP_FASTOPEN_CONNECT: 2858 if (val > 1 || val < 0) { 2859 err = -EINVAL; 2860 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2861 if (sk->sk_state == TCP_CLOSE) 2862 tp->fastopen_connect = val; 2863 else 2864 err = -EINVAL; 2865 } else { 2866 err = -EOPNOTSUPP; 2867 } 2868 break; 2869 case TCP_FASTOPEN_NO_COOKIE: 2870 if (val > 1 || val < 0) 2871 err = -EINVAL; 2872 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2873 err = -EINVAL; 2874 else 2875 tp->fastopen_no_cookie = val; 2876 break; 2877 case TCP_TIMESTAMP: 2878 if (!tp->repair) 2879 err = -EPERM; 2880 else 2881 tp->tsoffset = val - tcp_time_stamp_raw(); 2882 break; 2883 case TCP_REPAIR_WINDOW: 2884 err = tcp_repair_set_window(tp, optval, optlen); 2885 break; 2886 case TCP_NOTSENT_LOWAT: 2887 tp->notsent_lowat = val; 2888 sk->sk_write_space(sk); 2889 break; 2890 default: 2891 err = -ENOPROTOOPT; 2892 break; 2893 } 2894 2895 release_sock(sk); 2896 return err; 2897 } 2898 2899 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2900 unsigned int optlen) 2901 { 2902 const struct inet_connection_sock *icsk = inet_csk(sk); 2903 2904 if (level != SOL_TCP) 2905 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2906 optval, optlen); 2907 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2908 } 2909 EXPORT_SYMBOL(tcp_setsockopt); 2910 2911 #ifdef CONFIG_COMPAT 2912 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2913 char __user *optval, unsigned int optlen) 2914 { 2915 if (level != SOL_TCP) 2916 return inet_csk_compat_setsockopt(sk, level, optname, 2917 optval, optlen); 2918 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2919 } 2920 EXPORT_SYMBOL(compat_tcp_setsockopt); 2921 #endif 2922 2923 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2924 struct tcp_info *info) 2925 { 2926 u64 stats[__TCP_CHRONO_MAX], total = 0; 2927 enum tcp_chrono i; 2928 2929 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2930 stats[i] = tp->chrono_stat[i - 1]; 2931 if (i == tp->chrono_type) 2932 stats[i] += tcp_jiffies32 - tp->chrono_start; 2933 stats[i] *= USEC_PER_SEC / HZ; 2934 total += stats[i]; 2935 } 2936 2937 info->tcpi_busy_time = total; 2938 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2939 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2940 } 2941 2942 /* Return information about state of tcp endpoint in API format. */ 2943 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2944 { 2945 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2946 const struct inet_connection_sock *icsk = inet_csk(sk); 2947 u32 now; 2948 u64 rate64; 2949 bool slow; 2950 u32 rate; 2951 2952 memset(info, 0, sizeof(*info)); 2953 if (sk->sk_type != SOCK_STREAM) 2954 return; 2955 2956 info->tcpi_state = inet_sk_state_load(sk); 2957 2958 /* Report meaningful fields for all TCP states, including listeners */ 2959 rate = READ_ONCE(sk->sk_pacing_rate); 2960 rate64 = rate != ~0U ? rate : ~0ULL; 2961 info->tcpi_pacing_rate = rate64; 2962 2963 rate = READ_ONCE(sk->sk_max_pacing_rate); 2964 rate64 = rate != ~0U ? rate : ~0ULL; 2965 info->tcpi_max_pacing_rate = rate64; 2966 2967 info->tcpi_reordering = tp->reordering; 2968 info->tcpi_snd_cwnd = tp->snd_cwnd; 2969 2970 if (info->tcpi_state == TCP_LISTEN) { 2971 /* listeners aliased fields : 2972 * tcpi_unacked -> Number of children ready for accept() 2973 * tcpi_sacked -> max backlog 2974 */ 2975 info->tcpi_unacked = sk->sk_ack_backlog; 2976 info->tcpi_sacked = sk->sk_max_ack_backlog; 2977 return; 2978 } 2979 2980 slow = lock_sock_fast(sk); 2981 2982 info->tcpi_ca_state = icsk->icsk_ca_state; 2983 info->tcpi_retransmits = icsk->icsk_retransmits; 2984 info->tcpi_probes = icsk->icsk_probes_out; 2985 info->tcpi_backoff = icsk->icsk_backoff; 2986 2987 if (tp->rx_opt.tstamp_ok) 2988 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2989 if (tcp_is_sack(tp)) 2990 info->tcpi_options |= TCPI_OPT_SACK; 2991 if (tp->rx_opt.wscale_ok) { 2992 info->tcpi_options |= TCPI_OPT_WSCALE; 2993 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2994 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2995 } 2996 2997 if (tp->ecn_flags & TCP_ECN_OK) 2998 info->tcpi_options |= TCPI_OPT_ECN; 2999 if (tp->ecn_flags & TCP_ECN_SEEN) 3000 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3001 if (tp->syn_data_acked) 3002 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3003 3004 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3005 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3006 info->tcpi_snd_mss = tp->mss_cache; 3007 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3008 3009 info->tcpi_unacked = tp->packets_out; 3010 info->tcpi_sacked = tp->sacked_out; 3011 3012 info->tcpi_lost = tp->lost_out; 3013 info->tcpi_retrans = tp->retrans_out; 3014 3015 now = tcp_jiffies32; 3016 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3017 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3018 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3019 3020 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3021 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3022 info->tcpi_rtt = tp->srtt_us >> 3; 3023 info->tcpi_rttvar = tp->mdev_us >> 2; 3024 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3025 info->tcpi_advmss = tp->advmss; 3026 3027 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3028 info->tcpi_rcv_space = tp->rcvq_space.space; 3029 3030 info->tcpi_total_retrans = tp->total_retrans; 3031 3032 info->tcpi_bytes_acked = tp->bytes_acked; 3033 info->tcpi_bytes_received = tp->bytes_received; 3034 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3035 tcp_get_info_chrono_stats(tp, info); 3036 3037 info->tcpi_segs_out = tp->segs_out; 3038 info->tcpi_segs_in = tp->segs_in; 3039 3040 info->tcpi_min_rtt = tcp_min_rtt(tp); 3041 info->tcpi_data_segs_in = tp->data_segs_in; 3042 info->tcpi_data_segs_out = tp->data_segs_out; 3043 3044 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3045 rate64 = tcp_compute_delivery_rate(tp); 3046 if (rate64) 3047 info->tcpi_delivery_rate = rate64; 3048 unlock_sock_fast(sk, slow); 3049 } 3050 EXPORT_SYMBOL_GPL(tcp_get_info); 3051 3052 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3053 { 3054 const struct tcp_sock *tp = tcp_sk(sk); 3055 struct sk_buff *stats; 3056 struct tcp_info info; 3057 u64 rate64; 3058 u32 rate; 3059 3060 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3061 3 * nla_total_size(sizeof(u32)) + 3062 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3063 if (!stats) 3064 return NULL; 3065 3066 tcp_get_info_chrono_stats(tp, &info); 3067 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3068 info.tcpi_busy_time, TCP_NLA_PAD); 3069 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3070 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3071 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3072 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3073 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3074 tp->data_segs_out, TCP_NLA_PAD); 3075 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3076 tp->total_retrans, TCP_NLA_PAD); 3077 3078 rate = READ_ONCE(sk->sk_pacing_rate); 3079 rate64 = rate != ~0U ? rate : ~0ULL; 3080 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3081 3082 rate64 = tcp_compute_delivery_rate(tp); 3083 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3084 3085 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3086 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3087 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3088 3089 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3090 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3091 return stats; 3092 } 3093 3094 static int do_tcp_getsockopt(struct sock *sk, int level, 3095 int optname, char __user *optval, int __user *optlen) 3096 { 3097 struct inet_connection_sock *icsk = inet_csk(sk); 3098 struct tcp_sock *tp = tcp_sk(sk); 3099 struct net *net = sock_net(sk); 3100 int val, len; 3101 3102 if (get_user(len, optlen)) 3103 return -EFAULT; 3104 3105 len = min_t(unsigned int, len, sizeof(int)); 3106 3107 if (len < 0) 3108 return -EINVAL; 3109 3110 switch (optname) { 3111 case TCP_MAXSEG: 3112 val = tp->mss_cache; 3113 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3114 val = tp->rx_opt.user_mss; 3115 if (tp->repair) 3116 val = tp->rx_opt.mss_clamp; 3117 break; 3118 case TCP_NODELAY: 3119 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3120 break; 3121 case TCP_CORK: 3122 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3123 break; 3124 case TCP_KEEPIDLE: 3125 val = keepalive_time_when(tp) / HZ; 3126 break; 3127 case TCP_KEEPINTVL: 3128 val = keepalive_intvl_when(tp) / HZ; 3129 break; 3130 case TCP_KEEPCNT: 3131 val = keepalive_probes(tp); 3132 break; 3133 case TCP_SYNCNT: 3134 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3135 break; 3136 case TCP_LINGER2: 3137 val = tp->linger2; 3138 if (val >= 0) 3139 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3140 break; 3141 case TCP_DEFER_ACCEPT: 3142 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3143 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3144 break; 3145 case TCP_WINDOW_CLAMP: 3146 val = tp->window_clamp; 3147 break; 3148 case TCP_INFO: { 3149 struct tcp_info info; 3150 3151 if (get_user(len, optlen)) 3152 return -EFAULT; 3153 3154 tcp_get_info(sk, &info); 3155 3156 len = min_t(unsigned int, len, sizeof(info)); 3157 if (put_user(len, optlen)) 3158 return -EFAULT; 3159 if (copy_to_user(optval, &info, len)) 3160 return -EFAULT; 3161 return 0; 3162 } 3163 case TCP_CC_INFO: { 3164 const struct tcp_congestion_ops *ca_ops; 3165 union tcp_cc_info info; 3166 size_t sz = 0; 3167 int attr; 3168 3169 if (get_user(len, optlen)) 3170 return -EFAULT; 3171 3172 ca_ops = icsk->icsk_ca_ops; 3173 if (ca_ops && ca_ops->get_info) 3174 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3175 3176 len = min_t(unsigned int, len, sz); 3177 if (put_user(len, optlen)) 3178 return -EFAULT; 3179 if (copy_to_user(optval, &info, len)) 3180 return -EFAULT; 3181 return 0; 3182 } 3183 case TCP_QUICKACK: 3184 val = !icsk->icsk_ack.pingpong; 3185 break; 3186 3187 case TCP_CONGESTION: 3188 if (get_user(len, optlen)) 3189 return -EFAULT; 3190 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3191 if (put_user(len, optlen)) 3192 return -EFAULT; 3193 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3194 return -EFAULT; 3195 return 0; 3196 3197 case TCP_ULP: 3198 if (get_user(len, optlen)) 3199 return -EFAULT; 3200 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3201 if (!icsk->icsk_ulp_ops) { 3202 if (put_user(0, optlen)) 3203 return -EFAULT; 3204 return 0; 3205 } 3206 if (put_user(len, optlen)) 3207 return -EFAULT; 3208 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3209 return -EFAULT; 3210 return 0; 3211 3212 case TCP_FASTOPEN_KEY: { 3213 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3214 struct tcp_fastopen_context *ctx; 3215 3216 if (get_user(len, optlen)) 3217 return -EFAULT; 3218 3219 rcu_read_lock(); 3220 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3221 if (ctx) 3222 memcpy(key, ctx->key, sizeof(key)); 3223 else 3224 len = 0; 3225 rcu_read_unlock(); 3226 3227 len = min_t(unsigned int, len, sizeof(key)); 3228 if (put_user(len, optlen)) 3229 return -EFAULT; 3230 if (copy_to_user(optval, key, len)) 3231 return -EFAULT; 3232 return 0; 3233 } 3234 case TCP_THIN_LINEAR_TIMEOUTS: 3235 val = tp->thin_lto; 3236 break; 3237 3238 case TCP_THIN_DUPACK: 3239 val = 0; 3240 break; 3241 3242 case TCP_REPAIR: 3243 val = tp->repair; 3244 break; 3245 3246 case TCP_REPAIR_QUEUE: 3247 if (tp->repair) 3248 val = tp->repair_queue; 3249 else 3250 return -EINVAL; 3251 break; 3252 3253 case TCP_REPAIR_WINDOW: { 3254 struct tcp_repair_window opt; 3255 3256 if (get_user(len, optlen)) 3257 return -EFAULT; 3258 3259 if (len != sizeof(opt)) 3260 return -EINVAL; 3261 3262 if (!tp->repair) 3263 return -EPERM; 3264 3265 opt.snd_wl1 = tp->snd_wl1; 3266 opt.snd_wnd = tp->snd_wnd; 3267 opt.max_window = tp->max_window; 3268 opt.rcv_wnd = tp->rcv_wnd; 3269 opt.rcv_wup = tp->rcv_wup; 3270 3271 if (copy_to_user(optval, &opt, len)) 3272 return -EFAULT; 3273 return 0; 3274 } 3275 case TCP_QUEUE_SEQ: 3276 if (tp->repair_queue == TCP_SEND_QUEUE) 3277 val = tp->write_seq; 3278 else if (tp->repair_queue == TCP_RECV_QUEUE) 3279 val = tp->rcv_nxt; 3280 else 3281 return -EINVAL; 3282 break; 3283 3284 case TCP_USER_TIMEOUT: 3285 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3286 break; 3287 3288 case TCP_FASTOPEN: 3289 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3290 break; 3291 3292 case TCP_FASTOPEN_CONNECT: 3293 val = tp->fastopen_connect; 3294 break; 3295 3296 case TCP_FASTOPEN_NO_COOKIE: 3297 val = tp->fastopen_no_cookie; 3298 break; 3299 3300 case TCP_TIMESTAMP: 3301 val = tcp_time_stamp_raw() + tp->tsoffset; 3302 break; 3303 case TCP_NOTSENT_LOWAT: 3304 val = tp->notsent_lowat; 3305 break; 3306 case TCP_SAVE_SYN: 3307 val = tp->save_syn; 3308 break; 3309 case TCP_SAVED_SYN: { 3310 if (get_user(len, optlen)) 3311 return -EFAULT; 3312 3313 lock_sock(sk); 3314 if (tp->saved_syn) { 3315 if (len < tp->saved_syn[0]) { 3316 if (put_user(tp->saved_syn[0], optlen)) { 3317 release_sock(sk); 3318 return -EFAULT; 3319 } 3320 release_sock(sk); 3321 return -EINVAL; 3322 } 3323 len = tp->saved_syn[0]; 3324 if (put_user(len, optlen)) { 3325 release_sock(sk); 3326 return -EFAULT; 3327 } 3328 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3329 release_sock(sk); 3330 return -EFAULT; 3331 } 3332 tcp_saved_syn_free(tp); 3333 release_sock(sk); 3334 } else { 3335 release_sock(sk); 3336 len = 0; 3337 if (put_user(len, optlen)) 3338 return -EFAULT; 3339 } 3340 return 0; 3341 } 3342 default: 3343 return -ENOPROTOOPT; 3344 } 3345 3346 if (put_user(len, optlen)) 3347 return -EFAULT; 3348 if (copy_to_user(optval, &val, len)) 3349 return -EFAULT; 3350 return 0; 3351 } 3352 3353 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3354 int __user *optlen) 3355 { 3356 struct inet_connection_sock *icsk = inet_csk(sk); 3357 3358 if (level != SOL_TCP) 3359 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3360 optval, optlen); 3361 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3362 } 3363 EXPORT_SYMBOL(tcp_getsockopt); 3364 3365 #ifdef CONFIG_COMPAT 3366 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3367 char __user *optval, int __user *optlen) 3368 { 3369 if (level != SOL_TCP) 3370 return inet_csk_compat_getsockopt(sk, level, optname, 3371 optval, optlen); 3372 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3373 } 3374 EXPORT_SYMBOL(compat_tcp_getsockopt); 3375 #endif 3376 3377 #ifdef CONFIG_TCP_MD5SIG 3378 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3379 static DEFINE_MUTEX(tcp_md5sig_mutex); 3380 static bool tcp_md5sig_pool_populated = false; 3381 3382 static void __tcp_alloc_md5sig_pool(void) 3383 { 3384 struct crypto_ahash *hash; 3385 int cpu; 3386 3387 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3388 if (IS_ERR(hash)) 3389 return; 3390 3391 for_each_possible_cpu(cpu) { 3392 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3393 struct ahash_request *req; 3394 3395 if (!scratch) { 3396 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3397 sizeof(struct tcphdr), 3398 GFP_KERNEL, 3399 cpu_to_node(cpu)); 3400 if (!scratch) 3401 return; 3402 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3403 } 3404 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3405 continue; 3406 3407 req = ahash_request_alloc(hash, GFP_KERNEL); 3408 if (!req) 3409 return; 3410 3411 ahash_request_set_callback(req, 0, NULL, NULL); 3412 3413 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3414 } 3415 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3416 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3417 */ 3418 smp_wmb(); 3419 tcp_md5sig_pool_populated = true; 3420 } 3421 3422 bool tcp_alloc_md5sig_pool(void) 3423 { 3424 if (unlikely(!tcp_md5sig_pool_populated)) { 3425 mutex_lock(&tcp_md5sig_mutex); 3426 3427 if (!tcp_md5sig_pool_populated) 3428 __tcp_alloc_md5sig_pool(); 3429 3430 mutex_unlock(&tcp_md5sig_mutex); 3431 } 3432 return tcp_md5sig_pool_populated; 3433 } 3434 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3435 3436 3437 /** 3438 * tcp_get_md5sig_pool - get md5sig_pool for this user 3439 * 3440 * We use percpu structure, so if we succeed, we exit with preemption 3441 * and BH disabled, to make sure another thread or softirq handling 3442 * wont try to get same context. 3443 */ 3444 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3445 { 3446 local_bh_disable(); 3447 3448 if (tcp_md5sig_pool_populated) { 3449 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3450 smp_rmb(); 3451 return this_cpu_ptr(&tcp_md5sig_pool); 3452 } 3453 local_bh_enable(); 3454 return NULL; 3455 } 3456 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3457 3458 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3459 const struct sk_buff *skb, unsigned int header_len) 3460 { 3461 struct scatterlist sg; 3462 const struct tcphdr *tp = tcp_hdr(skb); 3463 struct ahash_request *req = hp->md5_req; 3464 unsigned int i; 3465 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3466 skb_headlen(skb) - header_len : 0; 3467 const struct skb_shared_info *shi = skb_shinfo(skb); 3468 struct sk_buff *frag_iter; 3469 3470 sg_init_table(&sg, 1); 3471 3472 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3473 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3474 if (crypto_ahash_update(req)) 3475 return 1; 3476 3477 for (i = 0; i < shi->nr_frags; ++i) { 3478 const struct skb_frag_struct *f = &shi->frags[i]; 3479 unsigned int offset = f->page_offset; 3480 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3481 3482 sg_set_page(&sg, page, skb_frag_size(f), 3483 offset_in_page(offset)); 3484 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3485 if (crypto_ahash_update(req)) 3486 return 1; 3487 } 3488 3489 skb_walk_frags(skb, frag_iter) 3490 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3491 return 1; 3492 3493 return 0; 3494 } 3495 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3496 3497 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3498 { 3499 struct scatterlist sg; 3500 3501 sg_init_one(&sg, key->key, key->keylen); 3502 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3503 return crypto_ahash_update(hp->md5_req); 3504 } 3505 EXPORT_SYMBOL(tcp_md5_hash_key); 3506 3507 #endif 3508 3509 void tcp_done(struct sock *sk) 3510 { 3511 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3512 3513 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3514 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3515 3516 tcp_set_state(sk, TCP_CLOSE); 3517 tcp_clear_xmit_timers(sk); 3518 if (req) 3519 reqsk_fastopen_remove(sk, req, false); 3520 3521 sk->sk_shutdown = SHUTDOWN_MASK; 3522 3523 if (!sock_flag(sk, SOCK_DEAD)) 3524 sk->sk_state_change(sk); 3525 else 3526 inet_csk_destroy_sock(sk); 3527 } 3528 EXPORT_SYMBOL_GPL(tcp_done); 3529 3530 int tcp_abort(struct sock *sk, int err) 3531 { 3532 if (!sk_fullsock(sk)) { 3533 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3534 struct request_sock *req = inet_reqsk(sk); 3535 3536 local_bh_disable(); 3537 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3538 req); 3539 local_bh_enable(); 3540 return 0; 3541 } 3542 return -EOPNOTSUPP; 3543 } 3544 3545 /* Don't race with userspace socket closes such as tcp_close. */ 3546 lock_sock(sk); 3547 3548 if (sk->sk_state == TCP_LISTEN) { 3549 tcp_set_state(sk, TCP_CLOSE); 3550 inet_csk_listen_stop(sk); 3551 } 3552 3553 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3554 local_bh_disable(); 3555 bh_lock_sock(sk); 3556 3557 if (!sock_flag(sk, SOCK_DEAD)) { 3558 sk->sk_err = err; 3559 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3560 smp_wmb(); 3561 sk->sk_error_report(sk); 3562 if (tcp_need_reset(sk->sk_state)) 3563 tcp_send_active_reset(sk, GFP_ATOMIC); 3564 tcp_done(sk); 3565 } 3566 3567 bh_unlock_sock(sk); 3568 local_bh_enable(); 3569 release_sock(sk); 3570 return 0; 3571 } 3572 EXPORT_SYMBOL_GPL(tcp_abort); 3573 3574 extern struct tcp_congestion_ops tcp_reno; 3575 3576 static __initdata unsigned long thash_entries; 3577 static int __init set_thash_entries(char *str) 3578 { 3579 ssize_t ret; 3580 3581 if (!str) 3582 return 0; 3583 3584 ret = kstrtoul(str, 0, &thash_entries); 3585 if (ret) 3586 return 0; 3587 3588 return 1; 3589 } 3590 __setup("thash_entries=", set_thash_entries); 3591 3592 static void __init tcp_init_mem(void) 3593 { 3594 unsigned long limit = nr_free_buffer_pages() / 16; 3595 3596 limit = max(limit, 128UL); 3597 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3598 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3599 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3600 } 3601 3602 void __init tcp_init(void) 3603 { 3604 int max_rshare, max_wshare, cnt; 3605 unsigned long limit; 3606 unsigned int i; 3607 3608 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3609 FIELD_SIZEOF(struct sk_buff, cb)); 3610 3611 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3612 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3613 inet_hashinfo_init(&tcp_hashinfo); 3614 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3615 thash_entries, 21, /* one slot per 2 MB*/ 3616 0, 64 * 1024); 3617 tcp_hashinfo.bind_bucket_cachep = 3618 kmem_cache_create("tcp_bind_bucket", 3619 sizeof(struct inet_bind_bucket), 0, 3620 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3621 3622 /* Size and allocate the main established and bind bucket 3623 * hash tables. 3624 * 3625 * The methodology is similar to that of the buffer cache. 3626 */ 3627 tcp_hashinfo.ehash = 3628 alloc_large_system_hash("TCP established", 3629 sizeof(struct inet_ehash_bucket), 3630 thash_entries, 3631 17, /* one slot per 128 KB of memory */ 3632 0, 3633 NULL, 3634 &tcp_hashinfo.ehash_mask, 3635 0, 3636 thash_entries ? 0 : 512 * 1024); 3637 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3638 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3639 3640 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3641 panic("TCP: failed to alloc ehash_locks"); 3642 tcp_hashinfo.bhash = 3643 alloc_large_system_hash("TCP bind", 3644 sizeof(struct inet_bind_hashbucket), 3645 tcp_hashinfo.ehash_mask + 1, 3646 17, /* one slot per 128 KB of memory */ 3647 0, 3648 &tcp_hashinfo.bhash_size, 3649 NULL, 3650 0, 3651 64 * 1024); 3652 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3653 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3654 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3655 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3656 } 3657 3658 3659 cnt = tcp_hashinfo.ehash_mask + 1; 3660 sysctl_tcp_max_orphans = cnt / 2; 3661 3662 tcp_init_mem(); 3663 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3664 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3665 max_wshare = min(4UL*1024*1024, limit); 3666 max_rshare = min(6UL*1024*1024, limit); 3667 3668 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3669 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3670 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3671 3672 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3673 init_net.ipv4.sysctl_tcp_rmem[1] = 87380; 3674 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare); 3675 3676 pr_info("Hash tables configured (established %u bind %u)\n", 3677 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3678 3679 tcp_v4_init(); 3680 tcp_metrics_init(); 3681 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3682 tcp_tasklet_init(); 3683 } 3684