1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/memblock.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sock, wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 if (likely(!size)) { 869 skb = sk->sk_tx_skb_cache; 870 if (skb && !skb_cloned(skb)) { 871 skb->truesize -= skb->data_len; 872 sk->sk_tx_skb_cache = NULL; 873 pskb_trim(skb, 0); 874 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 875 skb_shinfo(skb)->tx_flags = 0; 876 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 877 return skb; 878 } 879 } 880 /* The TCP header must be at least 32-bit aligned. */ 881 size = ALIGN(size, 4); 882 883 if (unlikely(tcp_under_memory_pressure(sk))) 884 sk_mem_reclaim_partial(sk); 885 886 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 887 if (likely(skb)) { 888 bool mem_scheduled; 889 890 if (force_schedule) { 891 mem_scheduled = true; 892 sk_forced_mem_schedule(sk, skb->truesize); 893 } else { 894 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 895 } 896 if (likely(mem_scheduled)) { 897 skb_reserve(skb, sk->sk_prot->max_header); 898 /* 899 * Make sure that we have exactly size bytes 900 * available to the caller, no more, no less. 901 */ 902 skb->reserved_tailroom = skb->end - skb->tail - size; 903 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 904 return skb; 905 } 906 __kfree_skb(skb); 907 } else { 908 sk->sk_prot->enter_memory_pressure(sk); 909 sk_stream_moderate_sndbuf(sk); 910 } 911 return NULL; 912 } 913 914 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 915 int large_allowed) 916 { 917 struct tcp_sock *tp = tcp_sk(sk); 918 u32 new_size_goal, size_goal; 919 920 if (!large_allowed) 921 return mss_now; 922 923 /* Note : tcp_tso_autosize() will eventually split this later */ 924 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 925 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 926 927 /* We try hard to avoid divides here */ 928 size_goal = tp->gso_segs * mss_now; 929 if (unlikely(new_size_goal < size_goal || 930 new_size_goal >= size_goal + mss_now)) { 931 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 932 sk->sk_gso_max_segs); 933 size_goal = tp->gso_segs * mss_now; 934 } 935 936 return max(size_goal, mss_now); 937 } 938 939 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 940 { 941 int mss_now; 942 943 mss_now = tcp_current_mss(sk); 944 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 945 946 return mss_now; 947 } 948 949 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 950 size_t size, int flags) 951 { 952 struct tcp_sock *tp = tcp_sk(sk); 953 int mss_now, size_goal; 954 int err; 955 ssize_t copied; 956 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 957 958 if (IS_ENABLED(CONFIG_DEBUG_VM) && 959 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 960 return -EINVAL; 961 962 /* Wait for a connection to finish. One exception is TCP Fast Open 963 * (passive side) where data is allowed to be sent before a connection 964 * is fully established. 965 */ 966 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 967 !tcp_passive_fastopen(sk)) { 968 err = sk_stream_wait_connect(sk, &timeo); 969 if (err != 0) 970 goto out_err; 971 } 972 973 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 974 975 mss_now = tcp_send_mss(sk, &size_goal, flags); 976 copied = 0; 977 978 err = -EPIPE; 979 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 980 goto out_err; 981 982 while (size > 0) { 983 struct sk_buff *skb = tcp_write_queue_tail(sk); 984 int copy, i; 985 bool can_coalesce; 986 987 if (!skb || (copy = size_goal - skb->len) <= 0 || 988 !tcp_skb_can_collapse_to(skb)) { 989 new_segment: 990 if (!sk_stream_memory_free(sk)) 991 goto wait_for_sndbuf; 992 993 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 994 tcp_rtx_and_write_queues_empty(sk)); 995 if (!skb) 996 goto wait_for_memory; 997 998 skb_entail(sk, skb); 999 copy = size_goal; 1000 } 1001 1002 if (copy > size) 1003 copy = size; 1004 1005 i = skb_shinfo(skb)->nr_frags; 1006 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1007 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1008 tcp_mark_push(tp, skb); 1009 goto new_segment; 1010 } 1011 if (!sk_wmem_schedule(sk, copy)) 1012 goto wait_for_memory; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk->sk_wmem_queued += copy; 1028 sk_mem_charge(sk, copy); 1029 skb->ip_summed = CHECKSUM_PARTIAL; 1030 tp->write_seq += copy; 1031 TCP_SKB_CB(skb)->end_seq += copy; 1032 tcp_skb_pcount_set(skb, 0); 1033 1034 if (!copied) 1035 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1036 1037 copied += copy; 1038 offset += copy; 1039 size -= copy; 1040 if (!size) 1041 goto out; 1042 1043 if (skb->len < size_goal || (flags & MSG_OOB)) 1044 continue; 1045 1046 if (forced_push(tp)) { 1047 tcp_mark_push(tp, skb); 1048 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1049 } else if (skb == tcp_send_head(sk)) 1050 tcp_push_one(sk, mss_now); 1051 continue; 1052 1053 wait_for_sndbuf: 1054 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1055 wait_for_memory: 1056 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1057 TCP_NAGLE_PUSH, size_goal); 1058 1059 err = sk_stream_wait_memory(sk, &timeo); 1060 if (err != 0) 1061 goto do_error; 1062 1063 mss_now = tcp_send_mss(sk, &size_goal, flags); 1064 } 1065 1066 out: 1067 if (copied) { 1068 tcp_tx_timestamp(sk, sk->sk_tsflags); 1069 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1070 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1071 } 1072 return copied; 1073 1074 do_error: 1075 if (copied) 1076 goto out; 1077 out_err: 1078 /* make sure we wake any epoll edge trigger waiter */ 1079 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1080 err == -EAGAIN)) { 1081 sk->sk_write_space(sk); 1082 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1083 } 1084 return sk_stream_error(sk, flags, err); 1085 } 1086 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1087 1088 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1089 size_t size, int flags) 1090 { 1091 if (!(sk->sk_route_caps & NETIF_F_SG)) 1092 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1093 1094 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1095 1096 return do_tcp_sendpages(sk, page, offset, size, flags); 1097 } 1098 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1099 1100 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1101 size_t size, int flags) 1102 { 1103 int ret; 1104 1105 lock_sock(sk); 1106 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1107 release_sock(sk); 1108 1109 return ret; 1110 } 1111 EXPORT_SYMBOL(tcp_sendpage); 1112 1113 void tcp_free_fastopen_req(struct tcp_sock *tp) 1114 { 1115 if (tp->fastopen_req) { 1116 kfree(tp->fastopen_req); 1117 tp->fastopen_req = NULL; 1118 } 1119 } 1120 1121 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1122 int *copied, size_t size, 1123 struct ubuf_info *uarg) 1124 { 1125 struct tcp_sock *tp = tcp_sk(sk); 1126 struct inet_sock *inet = inet_sk(sk); 1127 struct sockaddr *uaddr = msg->msg_name; 1128 int err, flags; 1129 1130 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1131 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1132 uaddr->sa_family == AF_UNSPEC)) 1133 return -EOPNOTSUPP; 1134 if (tp->fastopen_req) 1135 return -EALREADY; /* Another Fast Open is in progress */ 1136 1137 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1138 sk->sk_allocation); 1139 if (unlikely(!tp->fastopen_req)) 1140 return -ENOBUFS; 1141 tp->fastopen_req->data = msg; 1142 tp->fastopen_req->size = size; 1143 tp->fastopen_req->uarg = uarg; 1144 1145 if (inet->defer_connect) { 1146 err = tcp_connect(sk); 1147 /* Same failure procedure as in tcp_v4/6_connect */ 1148 if (err) { 1149 tcp_set_state(sk, TCP_CLOSE); 1150 inet->inet_dport = 0; 1151 sk->sk_route_caps = 0; 1152 } 1153 } 1154 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1155 err = __inet_stream_connect(sk->sk_socket, uaddr, 1156 msg->msg_namelen, flags, 1); 1157 /* fastopen_req could already be freed in __inet_stream_connect 1158 * if the connection times out or gets rst 1159 */ 1160 if (tp->fastopen_req) { 1161 *copied = tp->fastopen_req->copied; 1162 tcp_free_fastopen_req(tp); 1163 inet->defer_connect = 0; 1164 } 1165 return err; 1166 } 1167 1168 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1169 { 1170 struct tcp_sock *tp = tcp_sk(sk); 1171 struct ubuf_info *uarg = NULL; 1172 struct sk_buff *skb; 1173 struct sockcm_cookie sockc; 1174 int flags, err, copied = 0; 1175 int mss_now = 0, size_goal, copied_syn = 0; 1176 bool process_backlog = false; 1177 bool zc = false; 1178 long timeo; 1179 1180 flags = msg->msg_flags; 1181 1182 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1183 skb = tcp_write_queue_tail(sk); 1184 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1185 if (!uarg) { 1186 err = -ENOBUFS; 1187 goto out_err; 1188 } 1189 1190 zc = sk->sk_route_caps & NETIF_F_SG; 1191 if (!zc) 1192 uarg->zerocopy = 0; 1193 } 1194 1195 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1196 !tp->repair) { 1197 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1198 if (err == -EINPROGRESS && copied_syn > 0) 1199 goto out; 1200 else if (err) 1201 goto out_err; 1202 } 1203 1204 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1205 1206 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1207 1208 /* Wait for a connection to finish. One exception is TCP Fast Open 1209 * (passive side) where data is allowed to be sent before a connection 1210 * is fully established. 1211 */ 1212 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1213 !tcp_passive_fastopen(sk)) { 1214 err = sk_stream_wait_connect(sk, &timeo); 1215 if (err != 0) 1216 goto do_error; 1217 } 1218 1219 if (unlikely(tp->repair)) { 1220 if (tp->repair_queue == TCP_RECV_QUEUE) { 1221 copied = tcp_send_rcvq(sk, msg, size); 1222 goto out_nopush; 1223 } 1224 1225 err = -EINVAL; 1226 if (tp->repair_queue == TCP_NO_QUEUE) 1227 goto out_err; 1228 1229 /* 'common' sending to sendq */ 1230 } 1231 1232 sockcm_init(&sockc, sk); 1233 if (msg->msg_controllen) { 1234 err = sock_cmsg_send(sk, msg, &sockc); 1235 if (unlikely(err)) { 1236 err = -EINVAL; 1237 goto out_err; 1238 } 1239 } 1240 1241 /* This should be in poll */ 1242 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1243 1244 /* Ok commence sending. */ 1245 copied = 0; 1246 1247 restart: 1248 mss_now = tcp_send_mss(sk, &size_goal, flags); 1249 1250 err = -EPIPE; 1251 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1252 goto do_error; 1253 1254 while (msg_data_left(msg)) { 1255 int copy = 0; 1256 1257 skb = tcp_write_queue_tail(sk); 1258 if (skb) 1259 copy = size_goal - skb->len; 1260 1261 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1262 bool first_skb; 1263 1264 new_segment: 1265 if (!sk_stream_memory_free(sk)) 1266 goto wait_for_sndbuf; 1267 1268 if (process_backlog && sk_flush_backlog(sk)) { 1269 process_backlog = false; 1270 goto restart; 1271 } 1272 first_skb = tcp_rtx_and_write_queues_empty(sk); 1273 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1274 first_skb); 1275 if (!skb) 1276 goto wait_for_memory; 1277 1278 process_backlog = true; 1279 skb->ip_summed = CHECKSUM_PARTIAL; 1280 1281 skb_entail(sk, skb); 1282 copy = size_goal; 1283 1284 /* All packets are restored as if they have 1285 * already been sent. skb_mstamp_ns isn't set to 1286 * avoid wrong rtt estimation. 1287 */ 1288 if (tp->repair) 1289 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1290 } 1291 1292 /* Try to append data to the end of skb. */ 1293 if (copy > msg_data_left(msg)) 1294 copy = msg_data_left(msg); 1295 1296 /* Where to copy to? */ 1297 if (skb_availroom(skb) > 0 && !zc) { 1298 /* We have some space in skb head. Superb! */ 1299 copy = min_t(int, copy, skb_availroom(skb)); 1300 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1301 if (err) 1302 goto do_fault; 1303 } else if (!zc) { 1304 bool merge = true; 1305 int i = skb_shinfo(skb)->nr_frags; 1306 struct page_frag *pfrag = sk_page_frag(sk); 1307 1308 if (!sk_page_frag_refill(sk, pfrag)) 1309 goto wait_for_memory; 1310 1311 if (!skb_can_coalesce(skb, i, pfrag->page, 1312 pfrag->offset)) { 1313 if (i >= sysctl_max_skb_frags) { 1314 tcp_mark_push(tp, skb); 1315 goto new_segment; 1316 } 1317 merge = false; 1318 } 1319 1320 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1321 1322 if (!sk_wmem_schedule(sk, copy)) 1323 goto wait_for_memory; 1324 1325 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1326 pfrag->page, 1327 pfrag->offset, 1328 copy); 1329 if (err) 1330 goto do_error; 1331 1332 /* Update the skb. */ 1333 if (merge) { 1334 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1335 } else { 1336 skb_fill_page_desc(skb, i, pfrag->page, 1337 pfrag->offset, copy); 1338 page_ref_inc(pfrag->page); 1339 } 1340 pfrag->offset += copy; 1341 } else { 1342 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1343 if (err == -EMSGSIZE || err == -EEXIST) { 1344 tcp_mark_push(tp, skb); 1345 goto new_segment; 1346 } 1347 if (err < 0) 1348 goto do_error; 1349 copy = err; 1350 } 1351 1352 if (!copied) 1353 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1354 1355 tp->write_seq += copy; 1356 TCP_SKB_CB(skb)->end_seq += copy; 1357 tcp_skb_pcount_set(skb, 0); 1358 1359 copied += copy; 1360 if (!msg_data_left(msg)) { 1361 if (unlikely(flags & MSG_EOR)) 1362 TCP_SKB_CB(skb)->eor = 1; 1363 goto out; 1364 } 1365 1366 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1367 continue; 1368 1369 if (forced_push(tp)) { 1370 tcp_mark_push(tp, skb); 1371 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1372 } else if (skb == tcp_send_head(sk)) 1373 tcp_push_one(sk, mss_now); 1374 continue; 1375 1376 wait_for_sndbuf: 1377 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1378 wait_for_memory: 1379 if (copied) 1380 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1381 TCP_NAGLE_PUSH, size_goal); 1382 1383 err = sk_stream_wait_memory(sk, &timeo); 1384 if (err != 0) 1385 goto do_error; 1386 1387 mss_now = tcp_send_mss(sk, &size_goal, flags); 1388 } 1389 1390 out: 1391 if (copied) { 1392 tcp_tx_timestamp(sk, sockc.tsflags); 1393 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1394 } 1395 out_nopush: 1396 sock_zerocopy_put(uarg); 1397 return copied + copied_syn; 1398 1399 do_fault: 1400 if (!skb->len) { 1401 tcp_unlink_write_queue(skb, sk); 1402 /* It is the one place in all of TCP, except connection 1403 * reset, where we can be unlinking the send_head. 1404 */ 1405 if (tcp_write_queue_empty(sk)) 1406 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 1407 sk_wmem_free_skb(sk, skb); 1408 } 1409 1410 do_error: 1411 if (copied + copied_syn) 1412 goto out; 1413 out_err: 1414 sock_zerocopy_put_abort(uarg, true); 1415 err = sk_stream_error(sk, flags, err); 1416 /* make sure we wake any epoll edge trigger waiter */ 1417 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1418 err == -EAGAIN)) { 1419 sk->sk_write_space(sk); 1420 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1421 } 1422 return err; 1423 } 1424 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1425 1426 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1427 { 1428 int ret; 1429 1430 lock_sock(sk); 1431 ret = tcp_sendmsg_locked(sk, msg, size); 1432 release_sock(sk); 1433 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(tcp_sendmsg); 1437 1438 /* 1439 * Handle reading urgent data. BSD has very simple semantics for 1440 * this, no blocking and very strange errors 8) 1441 */ 1442 1443 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1444 { 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 1447 /* No URG data to read. */ 1448 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1449 tp->urg_data == TCP_URG_READ) 1450 return -EINVAL; /* Yes this is right ! */ 1451 1452 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1453 return -ENOTCONN; 1454 1455 if (tp->urg_data & TCP_URG_VALID) { 1456 int err = 0; 1457 char c = tp->urg_data; 1458 1459 if (!(flags & MSG_PEEK)) 1460 tp->urg_data = TCP_URG_READ; 1461 1462 /* Read urgent data. */ 1463 msg->msg_flags |= MSG_OOB; 1464 1465 if (len > 0) { 1466 if (!(flags & MSG_TRUNC)) 1467 err = memcpy_to_msg(msg, &c, 1); 1468 len = 1; 1469 } else 1470 msg->msg_flags |= MSG_TRUNC; 1471 1472 return err ? -EFAULT : len; 1473 } 1474 1475 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1476 return 0; 1477 1478 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1479 * the available implementations agree in this case: 1480 * this call should never block, independent of the 1481 * blocking state of the socket. 1482 * Mike <pall@rz.uni-karlsruhe.de> 1483 */ 1484 return -EAGAIN; 1485 } 1486 1487 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1488 { 1489 struct sk_buff *skb; 1490 int copied = 0, err = 0; 1491 1492 /* XXX -- need to support SO_PEEK_OFF */ 1493 1494 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1495 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1496 if (err) 1497 return err; 1498 copied += skb->len; 1499 } 1500 1501 skb_queue_walk(&sk->sk_write_queue, skb) { 1502 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1503 if (err) 1504 break; 1505 1506 copied += skb->len; 1507 } 1508 1509 return err ?: copied; 1510 } 1511 1512 /* Clean up the receive buffer for full frames taken by the user, 1513 * then send an ACK if necessary. COPIED is the number of bytes 1514 * tcp_recvmsg has given to the user so far, it speeds up the 1515 * calculation of whether or not we must ACK for the sake of 1516 * a window update. 1517 */ 1518 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1519 { 1520 struct tcp_sock *tp = tcp_sk(sk); 1521 bool time_to_ack = false; 1522 1523 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1524 1525 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1526 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1527 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1528 1529 if (inet_csk_ack_scheduled(sk)) { 1530 const struct inet_connection_sock *icsk = inet_csk(sk); 1531 /* Delayed ACKs frequently hit locked sockets during bulk 1532 * receive. */ 1533 if (icsk->icsk_ack.blocked || 1534 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1535 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1536 /* 1537 * If this read emptied read buffer, we send ACK, if 1538 * connection is not bidirectional, user drained 1539 * receive buffer and there was a small segment 1540 * in queue. 1541 */ 1542 (copied > 0 && 1543 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1544 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1545 !inet_csk_in_pingpong_mode(sk))) && 1546 !atomic_read(&sk->sk_rmem_alloc))) 1547 time_to_ack = true; 1548 } 1549 1550 /* We send an ACK if we can now advertise a non-zero window 1551 * which has been raised "significantly". 1552 * 1553 * Even if window raised up to infinity, do not send window open ACK 1554 * in states, where we will not receive more. It is useless. 1555 */ 1556 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1557 __u32 rcv_window_now = tcp_receive_window(tp); 1558 1559 /* Optimize, __tcp_select_window() is not cheap. */ 1560 if (2*rcv_window_now <= tp->window_clamp) { 1561 __u32 new_window = __tcp_select_window(sk); 1562 1563 /* Send ACK now, if this read freed lots of space 1564 * in our buffer. Certainly, new_window is new window. 1565 * We can advertise it now, if it is not less than current one. 1566 * "Lots" means "at least twice" here. 1567 */ 1568 if (new_window && new_window >= 2 * rcv_window_now) 1569 time_to_ack = true; 1570 } 1571 } 1572 if (time_to_ack) 1573 tcp_send_ack(sk); 1574 } 1575 1576 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1577 { 1578 struct sk_buff *skb; 1579 u32 offset; 1580 1581 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1582 offset = seq - TCP_SKB_CB(skb)->seq; 1583 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1584 pr_err_once("%s: found a SYN, please report !\n", __func__); 1585 offset--; 1586 } 1587 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1588 *off = offset; 1589 return skb; 1590 } 1591 /* This looks weird, but this can happen if TCP collapsing 1592 * splitted a fat GRO packet, while we released socket lock 1593 * in skb_splice_bits() 1594 */ 1595 sk_eat_skb(sk, skb); 1596 } 1597 return NULL; 1598 } 1599 1600 /* 1601 * This routine provides an alternative to tcp_recvmsg() for routines 1602 * that would like to handle copying from skbuffs directly in 'sendfile' 1603 * fashion. 1604 * Note: 1605 * - It is assumed that the socket was locked by the caller. 1606 * - The routine does not block. 1607 * - At present, there is no support for reading OOB data 1608 * or for 'peeking' the socket using this routine 1609 * (although both would be easy to implement). 1610 */ 1611 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1612 sk_read_actor_t recv_actor) 1613 { 1614 struct sk_buff *skb; 1615 struct tcp_sock *tp = tcp_sk(sk); 1616 u32 seq = tp->copied_seq; 1617 u32 offset; 1618 int copied = 0; 1619 1620 if (sk->sk_state == TCP_LISTEN) 1621 return -ENOTCONN; 1622 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1623 if (offset < skb->len) { 1624 int used; 1625 size_t len; 1626 1627 len = skb->len - offset; 1628 /* Stop reading if we hit a patch of urgent data */ 1629 if (tp->urg_data) { 1630 u32 urg_offset = tp->urg_seq - seq; 1631 if (urg_offset < len) 1632 len = urg_offset; 1633 if (!len) 1634 break; 1635 } 1636 used = recv_actor(desc, skb, offset, len); 1637 if (used <= 0) { 1638 if (!copied) 1639 copied = used; 1640 break; 1641 } else if (used <= len) { 1642 seq += used; 1643 copied += used; 1644 offset += used; 1645 } 1646 /* If recv_actor drops the lock (e.g. TCP splice 1647 * receive) the skb pointer might be invalid when 1648 * getting here: tcp_collapse might have deleted it 1649 * while aggregating skbs from the socket queue. 1650 */ 1651 skb = tcp_recv_skb(sk, seq - 1, &offset); 1652 if (!skb) 1653 break; 1654 /* TCP coalescing might have appended data to the skb. 1655 * Try to splice more frags 1656 */ 1657 if (offset + 1 != skb->len) 1658 continue; 1659 } 1660 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1661 sk_eat_skb(sk, skb); 1662 ++seq; 1663 break; 1664 } 1665 sk_eat_skb(sk, skb); 1666 if (!desc->count) 1667 break; 1668 tp->copied_seq = seq; 1669 } 1670 tp->copied_seq = seq; 1671 1672 tcp_rcv_space_adjust(sk); 1673 1674 /* Clean up data we have read: This will do ACK frames. */ 1675 if (copied > 0) { 1676 tcp_recv_skb(sk, seq, &offset); 1677 tcp_cleanup_rbuf(sk, copied); 1678 } 1679 return copied; 1680 } 1681 EXPORT_SYMBOL(tcp_read_sock); 1682 1683 int tcp_peek_len(struct socket *sock) 1684 { 1685 return tcp_inq(sock->sk); 1686 } 1687 EXPORT_SYMBOL(tcp_peek_len); 1688 1689 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1690 int tcp_set_rcvlowat(struct sock *sk, int val) 1691 { 1692 int cap; 1693 1694 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1695 cap = sk->sk_rcvbuf >> 1; 1696 else 1697 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1698 val = min(val, cap); 1699 sk->sk_rcvlowat = val ? : 1; 1700 1701 /* Check if we need to signal EPOLLIN right now */ 1702 tcp_data_ready(sk); 1703 1704 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1705 return 0; 1706 1707 val <<= 1; 1708 if (val > sk->sk_rcvbuf) { 1709 sk->sk_rcvbuf = val; 1710 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1711 } 1712 return 0; 1713 } 1714 EXPORT_SYMBOL(tcp_set_rcvlowat); 1715 1716 #ifdef CONFIG_MMU 1717 static const struct vm_operations_struct tcp_vm_ops = { 1718 }; 1719 1720 int tcp_mmap(struct file *file, struct socket *sock, 1721 struct vm_area_struct *vma) 1722 { 1723 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1724 return -EPERM; 1725 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1726 1727 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1728 vma->vm_flags |= VM_MIXEDMAP; 1729 1730 vma->vm_ops = &tcp_vm_ops; 1731 return 0; 1732 } 1733 EXPORT_SYMBOL(tcp_mmap); 1734 1735 static int tcp_zerocopy_receive(struct sock *sk, 1736 struct tcp_zerocopy_receive *zc) 1737 { 1738 unsigned long address = (unsigned long)zc->address; 1739 const skb_frag_t *frags = NULL; 1740 u32 length = 0, seq, offset; 1741 struct vm_area_struct *vma; 1742 struct sk_buff *skb = NULL; 1743 struct tcp_sock *tp; 1744 int inq; 1745 int ret; 1746 1747 if (address & (PAGE_SIZE - 1) || address != zc->address) 1748 return -EINVAL; 1749 1750 if (sk->sk_state == TCP_LISTEN) 1751 return -ENOTCONN; 1752 1753 sock_rps_record_flow(sk); 1754 1755 down_read(¤t->mm->mmap_sem); 1756 1757 ret = -EINVAL; 1758 vma = find_vma(current->mm, address); 1759 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1760 goto out; 1761 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1762 1763 tp = tcp_sk(sk); 1764 seq = tp->copied_seq; 1765 inq = tcp_inq(sk); 1766 zc->length = min_t(u32, zc->length, inq); 1767 zc->length &= ~(PAGE_SIZE - 1); 1768 if (zc->length) { 1769 zap_page_range(vma, address, zc->length); 1770 zc->recv_skip_hint = 0; 1771 } else { 1772 zc->recv_skip_hint = inq; 1773 } 1774 ret = 0; 1775 while (length + PAGE_SIZE <= zc->length) { 1776 if (zc->recv_skip_hint < PAGE_SIZE) { 1777 if (skb) { 1778 skb = skb->next; 1779 offset = seq - TCP_SKB_CB(skb)->seq; 1780 } else { 1781 skb = tcp_recv_skb(sk, seq, &offset); 1782 } 1783 1784 zc->recv_skip_hint = skb->len - offset; 1785 offset -= skb_headlen(skb); 1786 if ((int)offset < 0 || skb_has_frag_list(skb)) 1787 break; 1788 frags = skb_shinfo(skb)->frags; 1789 while (offset) { 1790 if (frags->size > offset) 1791 goto out; 1792 offset -= frags->size; 1793 frags++; 1794 } 1795 } 1796 if (frags->size != PAGE_SIZE || frags->page_offset) { 1797 int remaining = zc->recv_skip_hint; 1798 1799 while (remaining && (frags->size != PAGE_SIZE || 1800 frags->page_offset)) { 1801 remaining -= frags->size; 1802 frags++; 1803 } 1804 zc->recv_skip_hint -= remaining; 1805 break; 1806 } 1807 ret = vm_insert_page(vma, address + length, 1808 skb_frag_page(frags)); 1809 if (ret) 1810 break; 1811 length += PAGE_SIZE; 1812 seq += PAGE_SIZE; 1813 zc->recv_skip_hint -= PAGE_SIZE; 1814 frags++; 1815 } 1816 out: 1817 up_read(¤t->mm->mmap_sem); 1818 if (length) { 1819 tp->copied_seq = seq; 1820 tcp_rcv_space_adjust(sk); 1821 1822 /* Clean up data we have read: This will do ACK frames. */ 1823 tcp_recv_skb(sk, seq, &offset); 1824 tcp_cleanup_rbuf(sk, length); 1825 ret = 0; 1826 if (length == zc->length) 1827 zc->recv_skip_hint = 0; 1828 } else { 1829 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1830 ret = -EIO; 1831 } 1832 zc->length = length; 1833 return ret; 1834 } 1835 #endif 1836 1837 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1838 struct scm_timestamping_internal *tss) 1839 { 1840 if (skb->tstamp) 1841 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1842 else 1843 tss->ts[0] = (struct timespec64) {0}; 1844 1845 if (skb_hwtstamps(skb)->hwtstamp) 1846 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1847 else 1848 tss->ts[2] = (struct timespec64) {0}; 1849 } 1850 1851 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1852 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1853 struct scm_timestamping_internal *tss) 1854 { 1855 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1856 bool has_timestamping = false; 1857 1858 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1859 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1860 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1861 if (new_tstamp) { 1862 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1863 1864 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1865 sizeof(kts), &kts); 1866 } else { 1867 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1868 1869 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1870 sizeof(ts_old), &ts_old); 1871 } 1872 } else { 1873 if (new_tstamp) { 1874 struct __kernel_sock_timeval stv; 1875 1876 stv.tv_sec = tss->ts[0].tv_sec; 1877 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1878 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1879 sizeof(stv), &stv); 1880 } else { 1881 struct __kernel_old_timeval tv; 1882 1883 tv.tv_sec = tss->ts[0].tv_sec; 1884 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1885 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1886 sizeof(tv), &tv); 1887 } 1888 } 1889 } 1890 1891 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1892 has_timestamping = true; 1893 else 1894 tss->ts[0] = (struct timespec64) {0}; 1895 } 1896 1897 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1898 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1899 has_timestamping = true; 1900 else 1901 tss->ts[2] = (struct timespec64) {0}; 1902 } 1903 1904 if (has_timestamping) { 1905 tss->ts[1] = (struct timespec64) {0}; 1906 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1907 put_cmsg_scm_timestamping64(msg, tss); 1908 else 1909 put_cmsg_scm_timestamping(msg, tss); 1910 } 1911 } 1912 1913 static int tcp_inq_hint(struct sock *sk) 1914 { 1915 const struct tcp_sock *tp = tcp_sk(sk); 1916 u32 copied_seq = READ_ONCE(tp->copied_seq); 1917 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1918 int inq; 1919 1920 inq = rcv_nxt - copied_seq; 1921 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1922 lock_sock(sk); 1923 inq = tp->rcv_nxt - tp->copied_seq; 1924 release_sock(sk); 1925 } 1926 /* After receiving a FIN, tell the user-space to continue reading 1927 * by returning a non-zero inq. 1928 */ 1929 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1930 inq = 1; 1931 return inq; 1932 } 1933 1934 /* 1935 * This routine copies from a sock struct into the user buffer. 1936 * 1937 * Technical note: in 2.3 we work on _locked_ socket, so that 1938 * tricks with *seq access order and skb->users are not required. 1939 * Probably, code can be easily improved even more. 1940 */ 1941 1942 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1943 int flags, int *addr_len) 1944 { 1945 struct tcp_sock *tp = tcp_sk(sk); 1946 int copied = 0; 1947 u32 peek_seq; 1948 u32 *seq; 1949 unsigned long used; 1950 int err, inq; 1951 int target; /* Read at least this many bytes */ 1952 long timeo; 1953 struct sk_buff *skb, *last; 1954 u32 urg_hole = 0; 1955 struct scm_timestamping_internal tss; 1956 bool has_tss = false; 1957 bool has_cmsg; 1958 1959 if (unlikely(flags & MSG_ERRQUEUE)) 1960 return inet_recv_error(sk, msg, len, addr_len); 1961 1962 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1963 (sk->sk_state == TCP_ESTABLISHED)) 1964 sk_busy_loop(sk, nonblock); 1965 1966 lock_sock(sk); 1967 1968 err = -ENOTCONN; 1969 if (sk->sk_state == TCP_LISTEN) 1970 goto out; 1971 1972 has_cmsg = tp->recvmsg_inq; 1973 timeo = sock_rcvtimeo(sk, nonblock); 1974 1975 /* Urgent data needs to be handled specially. */ 1976 if (flags & MSG_OOB) 1977 goto recv_urg; 1978 1979 if (unlikely(tp->repair)) { 1980 err = -EPERM; 1981 if (!(flags & MSG_PEEK)) 1982 goto out; 1983 1984 if (tp->repair_queue == TCP_SEND_QUEUE) 1985 goto recv_sndq; 1986 1987 err = -EINVAL; 1988 if (tp->repair_queue == TCP_NO_QUEUE) 1989 goto out; 1990 1991 /* 'common' recv queue MSG_PEEK-ing */ 1992 } 1993 1994 seq = &tp->copied_seq; 1995 if (flags & MSG_PEEK) { 1996 peek_seq = tp->copied_seq; 1997 seq = &peek_seq; 1998 } 1999 2000 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2001 2002 do { 2003 u32 offset; 2004 2005 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2006 if (tp->urg_data && tp->urg_seq == *seq) { 2007 if (copied) 2008 break; 2009 if (signal_pending(current)) { 2010 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2011 break; 2012 } 2013 } 2014 2015 /* Next get a buffer. */ 2016 2017 last = skb_peek_tail(&sk->sk_receive_queue); 2018 skb_queue_walk(&sk->sk_receive_queue, skb) { 2019 last = skb; 2020 /* Now that we have two receive queues this 2021 * shouldn't happen. 2022 */ 2023 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2024 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2025 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2026 flags)) 2027 break; 2028 2029 offset = *seq - TCP_SKB_CB(skb)->seq; 2030 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2031 pr_err_once("%s: found a SYN, please report !\n", __func__); 2032 offset--; 2033 } 2034 if (offset < skb->len) 2035 goto found_ok_skb; 2036 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2037 goto found_fin_ok; 2038 WARN(!(flags & MSG_PEEK), 2039 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2040 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2041 } 2042 2043 /* Well, if we have backlog, try to process it now yet. */ 2044 2045 if (copied >= target && !sk->sk_backlog.tail) 2046 break; 2047 2048 if (copied) { 2049 if (sk->sk_err || 2050 sk->sk_state == TCP_CLOSE || 2051 (sk->sk_shutdown & RCV_SHUTDOWN) || 2052 !timeo || 2053 signal_pending(current)) 2054 break; 2055 } else { 2056 if (sock_flag(sk, SOCK_DONE)) 2057 break; 2058 2059 if (sk->sk_err) { 2060 copied = sock_error(sk); 2061 break; 2062 } 2063 2064 if (sk->sk_shutdown & RCV_SHUTDOWN) 2065 break; 2066 2067 if (sk->sk_state == TCP_CLOSE) { 2068 /* This occurs when user tries to read 2069 * from never connected socket. 2070 */ 2071 copied = -ENOTCONN; 2072 break; 2073 } 2074 2075 if (!timeo) { 2076 copied = -EAGAIN; 2077 break; 2078 } 2079 2080 if (signal_pending(current)) { 2081 copied = sock_intr_errno(timeo); 2082 break; 2083 } 2084 } 2085 2086 tcp_cleanup_rbuf(sk, copied); 2087 2088 if (copied >= target) { 2089 /* Do not sleep, just process backlog. */ 2090 release_sock(sk); 2091 lock_sock(sk); 2092 } else { 2093 sk_wait_data(sk, &timeo, last); 2094 } 2095 2096 if ((flags & MSG_PEEK) && 2097 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2098 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2099 current->comm, 2100 task_pid_nr(current)); 2101 peek_seq = tp->copied_seq; 2102 } 2103 continue; 2104 2105 found_ok_skb: 2106 /* Ok so how much can we use? */ 2107 used = skb->len - offset; 2108 if (len < used) 2109 used = len; 2110 2111 /* Do we have urgent data here? */ 2112 if (tp->urg_data) { 2113 u32 urg_offset = tp->urg_seq - *seq; 2114 if (urg_offset < used) { 2115 if (!urg_offset) { 2116 if (!sock_flag(sk, SOCK_URGINLINE)) { 2117 ++*seq; 2118 urg_hole++; 2119 offset++; 2120 used--; 2121 if (!used) 2122 goto skip_copy; 2123 } 2124 } else 2125 used = urg_offset; 2126 } 2127 } 2128 2129 if (!(flags & MSG_TRUNC)) { 2130 err = skb_copy_datagram_msg(skb, offset, msg, used); 2131 if (err) { 2132 /* Exception. Bailout! */ 2133 if (!copied) 2134 copied = -EFAULT; 2135 break; 2136 } 2137 } 2138 2139 *seq += used; 2140 copied += used; 2141 len -= used; 2142 2143 tcp_rcv_space_adjust(sk); 2144 2145 skip_copy: 2146 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2147 tp->urg_data = 0; 2148 tcp_fast_path_check(sk); 2149 } 2150 if (used + offset < skb->len) 2151 continue; 2152 2153 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2154 tcp_update_recv_tstamps(skb, &tss); 2155 has_tss = true; 2156 has_cmsg = true; 2157 } 2158 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2159 goto found_fin_ok; 2160 if (!(flags & MSG_PEEK)) 2161 sk_eat_skb(sk, skb); 2162 continue; 2163 2164 found_fin_ok: 2165 /* Process the FIN. */ 2166 ++*seq; 2167 if (!(flags & MSG_PEEK)) 2168 sk_eat_skb(sk, skb); 2169 break; 2170 } while (len > 0); 2171 2172 /* According to UNIX98, msg_name/msg_namelen are ignored 2173 * on connected socket. I was just happy when found this 8) --ANK 2174 */ 2175 2176 /* Clean up data we have read: This will do ACK frames. */ 2177 tcp_cleanup_rbuf(sk, copied); 2178 2179 release_sock(sk); 2180 2181 if (has_cmsg) { 2182 if (has_tss) 2183 tcp_recv_timestamp(msg, sk, &tss); 2184 if (tp->recvmsg_inq) { 2185 inq = tcp_inq_hint(sk); 2186 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2187 } 2188 } 2189 2190 return copied; 2191 2192 out: 2193 release_sock(sk); 2194 return err; 2195 2196 recv_urg: 2197 err = tcp_recv_urg(sk, msg, len, flags); 2198 goto out; 2199 2200 recv_sndq: 2201 err = tcp_peek_sndq(sk, msg, len); 2202 goto out; 2203 } 2204 EXPORT_SYMBOL(tcp_recvmsg); 2205 2206 void tcp_set_state(struct sock *sk, int state) 2207 { 2208 int oldstate = sk->sk_state; 2209 2210 /* We defined a new enum for TCP states that are exported in BPF 2211 * so as not force the internal TCP states to be frozen. The 2212 * following checks will detect if an internal state value ever 2213 * differs from the BPF value. If this ever happens, then we will 2214 * need to remap the internal value to the BPF value before calling 2215 * tcp_call_bpf_2arg. 2216 */ 2217 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2218 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2219 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2220 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2221 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2222 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2223 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2224 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2225 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2226 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2227 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2228 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2229 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2230 2231 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2232 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2233 2234 switch (state) { 2235 case TCP_ESTABLISHED: 2236 if (oldstate != TCP_ESTABLISHED) 2237 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2238 break; 2239 2240 case TCP_CLOSE: 2241 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2242 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2243 2244 sk->sk_prot->unhash(sk); 2245 if (inet_csk(sk)->icsk_bind_hash && 2246 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2247 inet_put_port(sk); 2248 /* fall through */ 2249 default: 2250 if (oldstate == TCP_ESTABLISHED) 2251 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2252 } 2253 2254 /* Change state AFTER socket is unhashed to avoid closed 2255 * socket sitting in hash tables. 2256 */ 2257 inet_sk_state_store(sk, state); 2258 } 2259 EXPORT_SYMBOL_GPL(tcp_set_state); 2260 2261 /* 2262 * State processing on a close. This implements the state shift for 2263 * sending our FIN frame. Note that we only send a FIN for some 2264 * states. A shutdown() may have already sent the FIN, or we may be 2265 * closed. 2266 */ 2267 2268 static const unsigned char new_state[16] = { 2269 /* current state: new state: action: */ 2270 [0 /* (Invalid) */] = TCP_CLOSE, 2271 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2272 [TCP_SYN_SENT] = TCP_CLOSE, 2273 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2274 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2275 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2276 [TCP_TIME_WAIT] = TCP_CLOSE, 2277 [TCP_CLOSE] = TCP_CLOSE, 2278 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2279 [TCP_LAST_ACK] = TCP_LAST_ACK, 2280 [TCP_LISTEN] = TCP_CLOSE, 2281 [TCP_CLOSING] = TCP_CLOSING, 2282 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2283 }; 2284 2285 static int tcp_close_state(struct sock *sk) 2286 { 2287 int next = (int)new_state[sk->sk_state]; 2288 int ns = next & TCP_STATE_MASK; 2289 2290 tcp_set_state(sk, ns); 2291 2292 return next & TCP_ACTION_FIN; 2293 } 2294 2295 /* 2296 * Shutdown the sending side of a connection. Much like close except 2297 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2298 */ 2299 2300 void tcp_shutdown(struct sock *sk, int how) 2301 { 2302 /* We need to grab some memory, and put together a FIN, 2303 * and then put it into the queue to be sent. 2304 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2305 */ 2306 if (!(how & SEND_SHUTDOWN)) 2307 return; 2308 2309 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2310 if ((1 << sk->sk_state) & 2311 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2312 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2313 /* Clear out any half completed packets. FIN if needed. */ 2314 if (tcp_close_state(sk)) 2315 tcp_send_fin(sk); 2316 } 2317 } 2318 EXPORT_SYMBOL(tcp_shutdown); 2319 2320 bool tcp_check_oom(struct sock *sk, int shift) 2321 { 2322 bool too_many_orphans, out_of_socket_memory; 2323 2324 too_many_orphans = tcp_too_many_orphans(sk, shift); 2325 out_of_socket_memory = tcp_out_of_memory(sk); 2326 2327 if (too_many_orphans) 2328 net_info_ratelimited("too many orphaned sockets\n"); 2329 if (out_of_socket_memory) 2330 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2331 return too_many_orphans || out_of_socket_memory; 2332 } 2333 2334 void tcp_close(struct sock *sk, long timeout) 2335 { 2336 struct sk_buff *skb; 2337 int data_was_unread = 0; 2338 int state; 2339 2340 lock_sock(sk); 2341 sk->sk_shutdown = SHUTDOWN_MASK; 2342 2343 if (sk->sk_state == TCP_LISTEN) { 2344 tcp_set_state(sk, TCP_CLOSE); 2345 2346 /* Special case. */ 2347 inet_csk_listen_stop(sk); 2348 2349 goto adjudge_to_death; 2350 } 2351 2352 /* We need to flush the recv. buffs. We do this only on the 2353 * descriptor close, not protocol-sourced closes, because the 2354 * reader process may not have drained the data yet! 2355 */ 2356 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2357 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2358 2359 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2360 len--; 2361 data_was_unread += len; 2362 __kfree_skb(skb); 2363 } 2364 2365 sk_mem_reclaim(sk); 2366 2367 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2368 if (sk->sk_state == TCP_CLOSE) 2369 goto adjudge_to_death; 2370 2371 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2372 * data was lost. To witness the awful effects of the old behavior of 2373 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2374 * GET in an FTP client, suspend the process, wait for the client to 2375 * advertise a zero window, then kill -9 the FTP client, wheee... 2376 * Note: timeout is always zero in such a case. 2377 */ 2378 if (unlikely(tcp_sk(sk)->repair)) { 2379 sk->sk_prot->disconnect(sk, 0); 2380 } else if (data_was_unread) { 2381 /* Unread data was tossed, zap the connection. */ 2382 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2383 tcp_set_state(sk, TCP_CLOSE); 2384 tcp_send_active_reset(sk, sk->sk_allocation); 2385 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2386 /* Check zero linger _after_ checking for unread data. */ 2387 sk->sk_prot->disconnect(sk, 0); 2388 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2389 } else if (tcp_close_state(sk)) { 2390 /* We FIN if the application ate all the data before 2391 * zapping the connection. 2392 */ 2393 2394 /* RED-PEN. Formally speaking, we have broken TCP state 2395 * machine. State transitions: 2396 * 2397 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2398 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2399 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2400 * 2401 * are legal only when FIN has been sent (i.e. in window), 2402 * rather than queued out of window. Purists blame. 2403 * 2404 * F.e. "RFC state" is ESTABLISHED, 2405 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2406 * 2407 * The visible declinations are that sometimes 2408 * we enter time-wait state, when it is not required really 2409 * (harmless), do not send active resets, when they are 2410 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2411 * they look as CLOSING or LAST_ACK for Linux) 2412 * Probably, I missed some more holelets. 2413 * --ANK 2414 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2415 * in a single packet! (May consider it later but will 2416 * probably need API support or TCP_CORK SYN-ACK until 2417 * data is written and socket is closed.) 2418 */ 2419 tcp_send_fin(sk); 2420 } 2421 2422 sk_stream_wait_close(sk, timeout); 2423 2424 adjudge_to_death: 2425 state = sk->sk_state; 2426 sock_hold(sk); 2427 sock_orphan(sk); 2428 2429 local_bh_disable(); 2430 bh_lock_sock(sk); 2431 /* remove backlog if any, without releasing ownership. */ 2432 __release_sock(sk); 2433 2434 percpu_counter_inc(sk->sk_prot->orphan_count); 2435 2436 /* Have we already been destroyed by a softirq or backlog? */ 2437 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2438 goto out; 2439 2440 /* This is a (useful) BSD violating of the RFC. There is a 2441 * problem with TCP as specified in that the other end could 2442 * keep a socket open forever with no application left this end. 2443 * We use a 1 minute timeout (about the same as BSD) then kill 2444 * our end. If they send after that then tough - BUT: long enough 2445 * that we won't make the old 4*rto = almost no time - whoops 2446 * reset mistake. 2447 * 2448 * Nope, it was not mistake. It is really desired behaviour 2449 * f.e. on http servers, when such sockets are useless, but 2450 * consume significant resources. Let's do it with special 2451 * linger2 option. --ANK 2452 */ 2453 2454 if (sk->sk_state == TCP_FIN_WAIT2) { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 if (tp->linger2 < 0) { 2457 tcp_set_state(sk, TCP_CLOSE); 2458 tcp_send_active_reset(sk, GFP_ATOMIC); 2459 __NET_INC_STATS(sock_net(sk), 2460 LINUX_MIB_TCPABORTONLINGER); 2461 } else { 2462 const int tmo = tcp_fin_time(sk); 2463 2464 if (tmo > TCP_TIMEWAIT_LEN) { 2465 inet_csk_reset_keepalive_timer(sk, 2466 tmo - TCP_TIMEWAIT_LEN); 2467 } else { 2468 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2469 goto out; 2470 } 2471 } 2472 } 2473 if (sk->sk_state != TCP_CLOSE) { 2474 sk_mem_reclaim(sk); 2475 if (tcp_check_oom(sk, 0)) { 2476 tcp_set_state(sk, TCP_CLOSE); 2477 tcp_send_active_reset(sk, GFP_ATOMIC); 2478 __NET_INC_STATS(sock_net(sk), 2479 LINUX_MIB_TCPABORTONMEMORY); 2480 } else if (!check_net(sock_net(sk))) { 2481 /* Not possible to send reset; just close */ 2482 tcp_set_state(sk, TCP_CLOSE); 2483 } 2484 } 2485 2486 if (sk->sk_state == TCP_CLOSE) { 2487 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2488 /* We could get here with a non-NULL req if the socket is 2489 * aborted (e.g., closed with unread data) before 3WHS 2490 * finishes. 2491 */ 2492 if (req) 2493 reqsk_fastopen_remove(sk, req, false); 2494 inet_csk_destroy_sock(sk); 2495 } 2496 /* Otherwise, socket is reprieved until protocol close. */ 2497 2498 out: 2499 bh_unlock_sock(sk); 2500 local_bh_enable(); 2501 release_sock(sk); 2502 sock_put(sk); 2503 } 2504 EXPORT_SYMBOL(tcp_close); 2505 2506 /* These states need RST on ABORT according to RFC793 */ 2507 2508 static inline bool tcp_need_reset(int state) 2509 { 2510 return (1 << state) & 2511 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2512 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2513 } 2514 2515 static void tcp_rtx_queue_purge(struct sock *sk) 2516 { 2517 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2518 2519 while (p) { 2520 struct sk_buff *skb = rb_to_skb(p); 2521 2522 p = rb_next(p); 2523 /* Since we are deleting whole queue, no need to 2524 * list_del(&skb->tcp_tsorted_anchor) 2525 */ 2526 tcp_rtx_queue_unlink(skb, sk); 2527 sk_wmem_free_skb(sk, skb); 2528 } 2529 } 2530 2531 void tcp_write_queue_purge(struct sock *sk) 2532 { 2533 struct sk_buff *skb; 2534 2535 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2536 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2537 tcp_skb_tsorted_anchor_cleanup(skb); 2538 sk_wmem_free_skb(sk, skb); 2539 } 2540 tcp_rtx_queue_purge(sk); 2541 skb = sk->sk_tx_skb_cache; 2542 if (skb) { 2543 __kfree_skb(skb); 2544 sk->sk_tx_skb_cache = NULL; 2545 } 2546 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2547 sk_mem_reclaim(sk); 2548 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2549 tcp_sk(sk)->packets_out = 0; 2550 inet_csk(sk)->icsk_backoff = 0; 2551 } 2552 2553 int tcp_disconnect(struct sock *sk, int flags) 2554 { 2555 struct inet_sock *inet = inet_sk(sk); 2556 struct inet_connection_sock *icsk = inet_csk(sk); 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 int old_state = sk->sk_state; 2559 2560 if (old_state != TCP_CLOSE) 2561 tcp_set_state(sk, TCP_CLOSE); 2562 2563 /* ABORT function of RFC793 */ 2564 if (old_state == TCP_LISTEN) { 2565 inet_csk_listen_stop(sk); 2566 } else if (unlikely(tp->repair)) { 2567 sk->sk_err = ECONNABORTED; 2568 } else if (tcp_need_reset(old_state) || 2569 (tp->snd_nxt != tp->write_seq && 2570 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2571 /* The last check adjusts for discrepancy of Linux wrt. RFC 2572 * states 2573 */ 2574 tcp_send_active_reset(sk, gfp_any()); 2575 sk->sk_err = ECONNRESET; 2576 } else if (old_state == TCP_SYN_SENT) 2577 sk->sk_err = ECONNRESET; 2578 2579 tcp_clear_xmit_timers(sk); 2580 __skb_queue_purge(&sk->sk_receive_queue); 2581 if (sk->sk_rx_skb_cache) { 2582 __kfree_skb(sk->sk_rx_skb_cache); 2583 sk->sk_rx_skb_cache = NULL; 2584 } 2585 tp->copied_seq = tp->rcv_nxt; 2586 tp->urg_data = 0; 2587 tcp_write_queue_purge(sk); 2588 tcp_fastopen_active_disable_ofo_check(sk); 2589 skb_rbtree_purge(&tp->out_of_order_queue); 2590 2591 inet->inet_dport = 0; 2592 2593 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2594 inet_reset_saddr(sk); 2595 2596 sk->sk_shutdown = 0; 2597 sock_reset_flag(sk, SOCK_DONE); 2598 tp->srtt_us = 0; 2599 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2600 tp->rcv_rtt_last_tsecr = 0; 2601 tp->write_seq += tp->max_window + 2; 2602 if (tp->write_seq == 0) 2603 tp->write_seq = 1; 2604 icsk->icsk_backoff = 0; 2605 tp->snd_cwnd = 2; 2606 icsk->icsk_probes_out = 0; 2607 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2608 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2609 tp->snd_cwnd = TCP_INIT_CWND; 2610 tp->snd_cwnd_cnt = 0; 2611 tp->window_clamp = 0; 2612 tp->delivered_ce = 0; 2613 tcp_set_ca_state(sk, TCP_CA_Open); 2614 tp->is_sack_reneg = 0; 2615 tcp_clear_retrans(tp); 2616 inet_csk_delack_init(sk); 2617 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2618 * issue in __tcp_select_window() 2619 */ 2620 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2621 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2622 __sk_dst_reset(sk); 2623 dst_release(sk->sk_rx_dst); 2624 sk->sk_rx_dst = NULL; 2625 tcp_saved_syn_free(tp); 2626 tp->compressed_ack = 0; 2627 tp->bytes_sent = 0; 2628 tp->bytes_retrans = 0; 2629 tp->duplicate_sack[0].start_seq = 0; 2630 tp->duplicate_sack[0].end_seq = 0; 2631 tp->dsack_dups = 0; 2632 tp->reord_seen = 0; 2633 tp->retrans_out = 0; 2634 tp->sacked_out = 0; 2635 tp->tlp_high_seq = 0; 2636 tp->last_oow_ack_time = 0; 2637 /* There's a bubble in the pipe until at least the first ACK. */ 2638 tp->app_limited = ~0U; 2639 tp->rack.mstamp = 0; 2640 tp->rack.advanced = 0; 2641 tp->rack.reo_wnd_steps = 1; 2642 tp->rack.last_delivered = 0; 2643 tp->rack.reo_wnd_persist = 0; 2644 tp->rack.dsack_seen = 0; 2645 tp->syn_data_acked = 0; 2646 tp->rx_opt.saw_tstamp = 0; 2647 tp->rx_opt.dsack = 0; 2648 tp->rx_opt.num_sacks = 0; 2649 2650 2651 /* Clean up fastopen related fields */ 2652 tcp_free_fastopen_req(tp); 2653 inet->defer_connect = 0; 2654 2655 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2656 2657 if (sk->sk_frag.page) { 2658 put_page(sk->sk_frag.page); 2659 sk->sk_frag.page = NULL; 2660 sk->sk_frag.offset = 0; 2661 } 2662 2663 sk->sk_error_report(sk); 2664 return 0; 2665 } 2666 EXPORT_SYMBOL(tcp_disconnect); 2667 2668 static inline bool tcp_can_repair_sock(const struct sock *sk) 2669 { 2670 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2671 (sk->sk_state != TCP_LISTEN); 2672 } 2673 2674 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2675 { 2676 struct tcp_repair_window opt; 2677 2678 if (!tp->repair) 2679 return -EPERM; 2680 2681 if (len != sizeof(opt)) 2682 return -EINVAL; 2683 2684 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2685 return -EFAULT; 2686 2687 if (opt.max_window < opt.snd_wnd) 2688 return -EINVAL; 2689 2690 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2691 return -EINVAL; 2692 2693 if (after(opt.rcv_wup, tp->rcv_nxt)) 2694 return -EINVAL; 2695 2696 tp->snd_wl1 = opt.snd_wl1; 2697 tp->snd_wnd = opt.snd_wnd; 2698 tp->max_window = opt.max_window; 2699 2700 tp->rcv_wnd = opt.rcv_wnd; 2701 tp->rcv_wup = opt.rcv_wup; 2702 2703 return 0; 2704 } 2705 2706 static int tcp_repair_options_est(struct sock *sk, 2707 struct tcp_repair_opt __user *optbuf, unsigned int len) 2708 { 2709 struct tcp_sock *tp = tcp_sk(sk); 2710 struct tcp_repair_opt opt; 2711 2712 while (len >= sizeof(opt)) { 2713 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2714 return -EFAULT; 2715 2716 optbuf++; 2717 len -= sizeof(opt); 2718 2719 switch (opt.opt_code) { 2720 case TCPOPT_MSS: 2721 tp->rx_opt.mss_clamp = opt.opt_val; 2722 tcp_mtup_init(sk); 2723 break; 2724 case TCPOPT_WINDOW: 2725 { 2726 u16 snd_wscale = opt.opt_val & 0xFFFF; 2727 u16 rcv_wscale = opt.opt_val >> 16; 2728 2729 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2730 return -EFBIG; 2731 2732 tp->rx_opt.snd_wscale = snd_wscale; 2733 tp->rx_opt.rcv_wscale = rcv_wscale; 2734 tp->rx_opt.wscale_ok = 1; 2735 } 2736 break; 2737 case TCPOPT_SACK_PERM: 2738 if (opt.opt_val != 0) 2739 return -EINVAL; 2740 2741 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2742 break; 2743 case TCPOPT_TIMESTAMP: 2744 if (opt.opt_val != 0) 2745 return -EINVAL; 2746 2747 tp->rx_opt.tstamp_ok = 1; 2748 break; 2749 } 2750 } 2751 2752 return 0; 2753 } 2754 2755 /* 2756 * Socket option code for TCP. 2757 */ 2758 static int do_tcp_setsockopt(struct sock *sk, int level, 2759 int optname, char __user *optval, unsigned int optlen) 2760 { 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 struct inet_connection_sock *icsk = inet_csk(sk); 2763 struct net *net = sock_net(sk); 2764 int val; 2765 int err = 0; 2766 2767 /* These are data/string values, all the others are ints */ 2768 switch (optname) { 2769 case TCP_CONGESTION: { 2770 char name[TCP_CA_NAME_MAX]; 2771 2772 if (optlen < 1) 2773 return -EINVAL; 2774 2775 val = strncpy_from_user(name, optval, 2776 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2777 if (val < 0) 2778 return -EFAULT; 2779 name[val] = 0; 2780 2781 lock_sock(sk); 2782 err = tcp_set_congestion_control(sk, name, true, true); 2783 release_sock(sk); 2784 return err; 2785 } 2786 case TCP_ULP: { 2787 char name[TCP_ULP_NAME_MAX]; 2788 2789 if (optlen < 1) 2790 return -EINVAL; 2791 2792 val = strncpy_from_user(name, optval, 2793 min_t(long, TCP_ULP_NAME_MAX - 1, 2794 optlen)); 2795 if (val < 0) 2796 return -EFAULT; 2797 name[val] = 0; 2798 2799 lock_sock(sk); 2800 err = tcp_set_ulp(sk, name); 2801 release_sock(sk); 2802 return err; 2803 } 2804 case TCP_FASTOPEN_KEY: { 2805 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2806 2807 if (optlen != sizeof(key)) 2808 return -EINVAL; 2809 2810 if (copy_from_user(key, optval, optlen)) 2811 return -EFAULT; 2812 2813 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2814 } 2815 default: 2816 /* fallthru */ 2817 break; 2818 } 2819 2820 if (optlen < sizeof(int)) 2821 return -EINVAL; 2822 2823 if (get_user(val, (int __user *)optval)) 2824 return -EFAULT; 2825 2826 lock_sock(sk); 2827 2828 switch (optname) { 2829 case TCP_MAXSEG: 2830 /* Values greater than interface MTU won't take effect. However 2831 * at the point when this call is done we typically don't yet 2832 * know which interface is going to be used 2833 */ 2834 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2835 err = -EINVAL; 2836 break; 2837 } 2838 tp->rx_opt.user_mss = val; 2839 break; 2840 2841 case TCP_NODELAY: 2842 if (val) { 2843 /* TCP_NODELAY is weaker than TCP_CORK, so that 2844 * this option on corked socket is remembered, but 2845 * it is not activated until cork is cleared. 2846 * 2847 * However, when TCP_NODELAY is set we make 2848 * an explicit push, which overrides even TCP_CORK 2849 * for currently queued segments. 2850 */ 2851 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2852 tcp_push_pending_frames(sk); 2853 } else { 2854 tp->nonagle &= ~TCP_NAGLE_OFF; 2855 } 2856 break; 2857 2858 case TCP_THIN_LINEAR_TIMEOUTS: 2859 if (val < 0 || val > 1) 2860 err = -EINVAL; 2861 else 2862 tp->thin_lto = val; 2863 break; 2864 2865 case TCP_THIN_DUPACK: 2866 if (val < 0 || val > 1) 2867 err = -EINVAL; 2868 break; 2869 2870 case TCP_REPAIR: 2871 if (!tcp_can_repair_sock(sk)) 2872 err = -EPERM; 2873 else if (val == TCP_REPAIR_ON) { 2874 tp->repair = 1; 2875 sk->sk_reuse = SK_FORCE_REUSE; 2876 tp->repair_queue = TCP_NO_QUEUE; 2877 } else if (val == TCP_REPAIR_OFF) { 2878 tp->repair = 0; 2879 sk->sk_reuse = SK_NO_REUSE; 2880 tcp_send_window_probe(sk); 2881 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2882 tp->repair = 0; 2883 sk->sk_reuse = SK_NO_REUSE; 2884 } else 2885 err = -EINVAL; 2886 2887 break; 2888 2889 case TCP_REPAIR_QUEUE: 2890 if (!tp->repair) 2891 err = -EPERM; 2892 else if ((unsigned int)val < TCP_QUEUES_NR) 2893 tp->repair_queue = val; 2894 else 2895 err = -EINVAL; 2896 break; 2897 2898 case TCP_QUEUE_SEQ: 2899 if (sk->sk_state != TCP_CLOSE) 2900 err = -EPERM; 2901 else if (tp->repair_queue == TCP_SEND_QUEUE) 2902 tp->write_seq = val; 2903 else if (tp->repair_queue == TCP_RECV_QUEUE) 2904 tp->rcv_nxt = val; 2905 else 2906 err = -EINVAL; 2907 break; 2908 2909 case TCP_REPAIR_OPTIONS: 2910 if (!tp->repair) 2911 err = -EINVAL; 2912 else if (sk->sk_state == TCP_ESTABLISHED) 2913 err = tcp_repair_options_est(sk, 2914 (struct tcp_repair_opt __user *)optval, 2915 optlen); 2916 else 2917 err = -EPERM; 2918 break; 2919 2920 case TCP_CORK: 2921 /* When set indicates to always queue non-full frames. 2922 * Later the user clears this option and we transmit 2923 * any pending partial frames in the queue. This is 2924 * meant to be used alongside sendfile() to get properly 2925 * filled frames when the user (for example) must write 2926 * out headers with a write() call first and then use 2927 * sendfile to send out the data parts. 2928 * 2929 * TCP_CORK can be set together with TCP_NODELAY and it is 2930 * stronger than TCP_NODELAY. 2931 */ 2932 if (val) { 2933 tp->nonagle |= TCP_NAGLE_CORK; 2934 } else { 2935 tp->nonagle &= ~TCP_NAGLE_CORK; 2936 if (tp->nonagle&TCP_NAGLE_OFF) 2937 tp->nonagle |= TCP_NAGLE_PUSH; 2938 tcp_push_pending_frames(sk); 2939 } 2940 break; 2941 2942 case TCP_KEEPIDLE: 2943 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2944 err = -EINVAL; 2945 else { 2946 tp->keepalive_time = val * HZ; 2947 if (sock_flag(sk, SOCK_KEEPOPEN) && 2948 !((1 << sk->sk_state) & 2949 (TCPF_CLOSE | TCPF_LISTEN))) { 2950 u32 elapsed = keepalive_time_elapsed(tp); 2951 if (tp->keepalive_time > elapsed) 2952 elapsed = tp->keepalive_time - elapsed; 2953 else 2954 elapsed = 0; 2955 inet_csk_reset_keepalive_timer(sk, elapsed); 2956 } 2957 } 2958 break; 2959 case TCP_KEEPINTVL: 2960 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2961 err = -EINVAL; 2962 else 2963 tp->keepalive_intvl = val * HZ; 2964 break; 2965 case TCP_KEEPCNT: 2966 if (val < 1 || val > MAX_TCP_KEEPCNT) 2967 err = -EINVAL; 2968 else 2969 tp->keepalive_probes = val; 2970 break; 2971 case TCP_SYNCNT: 2972 if (val < 1 || val > MAX_TCP_SYNCNT) 2973 err = -EINVAL; 2974 else 2975 icsk->icsk_syn_retries = val; 2976 break; 2977 2978 case TCP_SAVE_SYN: 2979 if (val < 0 || val > 1) 2980 err = -EINVAL; 2981 else 2982 tp->save_syn = val; 2983 break; 2984 2985 case TCP_LINGER2: 2986 if (val < 0) 2987 tp->linger2 = -1; 2988 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2989 tp->linger2 = 0; 2990 else 2991 tp->linger2 = val * HZ; 2992 break; 2993 2994 case TCP_DEFER_ACCEPT: 2995 /* Translate value in seconds to number of retransmits */ 2996 icsk->icsk_accept_queue.rskq_defer_accept = 2997 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2998 TCP_RTO_MAX / HZ); 2999 break; 3000 3001 case TCP_WINDOW_CLAMP: 3002 if (!val) { 3003 if (sk->sk_state != TCP_CLOSE) { 3004 err = -EINVAL; 3005 break; 3006 } 3007 tp->window_clamp = 0; 3008 } else 3009 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3010 SOCK_MIN_RCVBUF / 2 : val; 3011 break; 3012 3013 case TCP_QUICKACK: 3014 if (!val) { 3015 inet_csk_enter_pingpong_mode(sk); 3016 } else { 3017 inet_csk_exit_pingpong_mode(sk); 3018 if ((1 << sk->sk_state) & 3019 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3020 inet_csk_ack_scheduled(sk)) { 3021 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3022 tcp_cleanup_rbuf(sk, 1); 3023 if (!(val & 1)) 3024 inet_csk_enter_pingpong_mode(sk); 3025 } 3026 } 3027 break; 3028 3029 #ifdef CONFIG_TCP_MD5SIG 3030 case TCP_MD5SIG: 3031 case TCP_MD5SIG_EXT: 3032 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3033 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3034 else 3035 err = -EINVAL; 3036 break; 3037 #endif 3038 case TCP_USER_TIMEOUT: 3039 /* Cap the max time in ms TCP will retry or probe the window 3040 * before giving up and aborting (ETIMEDOUT) a connection. 3041 */ 3042 if (val < 0) 3043 err = -EINVAL; 3044 else 3045 icsk->icsk_user_timeout = val; 3046 break; 3047 3048 case TCP_FASTOPEN: 3049 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3050 TCPF_LISTEN))) { 3051 tcp_fastopen_init_key_once(net); 3052 3053 fastopen_queue_tune(sk, val); 3054 } else { 3055 err = -EINVAL; 3056 } 3057 break; 3058 case TCP_FASTOPEN_CONNECT: 3059 if (val > 1 || val < 0) { 3060 err = -EINVAL; 3061 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3062 if (sk->sk_state == TCP_CLOSE) 3063 tp->fastopen_connect = val; 3064 else 3065 err = -EINVAL; 3066 } else { 3067 err = -EOPNOTSUPP; 3068 } 3069 break; 3070 case TCP_FASTOPEN_NO_COOKIE: 3071 if (val > 1 || val < 0) 3072 err = -EINVAL; 3073 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3074 err = -EINVAL; 3075 else 3076 tp->fastopen_no_cookie = val; 3077 break; 3078 case TCP_TIMESTAMP: 3079 if (!tp->repair) 3080 err = -EPERM; 3081 else 3082 tp->tsoffset = val - tcp_time_stamp_raw(); 3083 break; 3084 case TCP_REPAIR_WINDOW: 3085 err = tcp_repair_set_window(tp, optval, optlen); 3086 break; 3087 case TCP_NOTSENT_LOWAT: 3088 tp->notsent_lowat = val; 3089 sk->sk_write_space(sk); 3090 break; 3091 case TCP_INQ: 3092 if (val > 1 || val < 0) 3093 err = -EINVAL; 3094 else 3095 tp->recvmsg_inq = val; 3096 break; 3097 default: 3098 err = -ENOPROTOOPT; 3099 break; 3100 } 3101 3102 release_sock(sk); 3103 return err; 3104 } 3105 3106 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3107 unsigned int optlen) 3108 { 3109 const struct inet_connection_sock *icsk = inet_csk(sk); 3110 3111 if (level != SOL_TCP) 3112 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3113 optval, optlen); 3114 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3115 } 3116 EXPORT_SYMBOL(tcp_setsockopt); 3117 3118 #ifdef CONFIG_COMPAT 3119 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3120 char __user *optval, unsigned int optlen) 3121 { 3122 if (level != SOL_TCP) 3123 return inet_csk_compat_setsockopt(sk, level, optname, 3124 optval, optlen); 3125 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3126 } 3127 EXPORT_SYMBOL(compat_tcp_setsockopt); 3128 #endif 3129 3130 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3131 struct tcp_info *info) 3132 { 3133 u64 stats[__TCP_CHRONO_MAX], total = 0; 3134 enum tcp_chrono i; 3135 3136 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3137 stats[i] = tp->chrono_stat[i - 1]; 3138 if (i == tp->chrono_type) 3139 stats[i] += tcp_jiffies32 - tp->chrono_start; 3140 stats[i] *= USEC_PER_SEC / HZ; 3141 total += stats[i]; 3142 } 3143 3144 info->tcpi_busy_time = total; 3145 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3146 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3147 } 3148 3149 /* Return information about state of tcp endpoint in API format. */ 3150 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3151 { 3152 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3153 const struct inet_connection_sock *icsk = inet_csk(sk); 3154 unsigned long rate; 3155 u32 now; 3156 u64 rate64; 3157 bool slow; 3158 3159 memset(info, 0, sizeof(*info)); 3160 if (sk->sk_type != SOCK_STREAM) 3161 return; 3162 3163 info->tcpi_state = inet_sk_state_load(sk); 3164 3165 /* Report meaningful fields for all TCP states, including listeners */ 3166 rate = READ_ONCE(sk->sk_pacing_rate); 3167 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3168 info->tcpi_pacing_rate = rate64; 3169 3170 rate = READ_ONCE(sk->sk_max_pacing_rate); 3171 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3172 info->tcpi_max_pacing_rate = rate64; 3173 3174 info->tcpi_reordering = tp->reordering; 3175 info->tcpi_snd_cwnd = tp->snd_cwnd; 3176 3177 if (info->tcpi_state == TCP_LISTEN) { 3178 /* listeners aliased fields : 3179 * tcpi_unacked -> Number of children ready for accept() 3180 * tcpi_sacked -> max backlog 3181 */ 3182 info->tcpi_unacked = sk->sk_ack_backlog; 3183 info->tcpi_sacked = sk->sk_max_ack_backlog; 3184 return; 3185 } 3186 3187 slow = lock_sock_fast(sk); 3188 3189 info->tcpi_ca_state = icsk->icsk_ca_state; 3190 info->tcpi_retransmits = icsk->icsk_retransmits; 3191 info->tcpi_probes = icsk->icsk_probes_out; 3192 info->tcpi_backoff = icsk->icsk_backoff; 3193 3194 if (tp->rx_opt.tstamp_ok) 3195 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3196 if (tcp_is_sack(tp)) 3197 info->tcpi_options |= TCPI_OPT_SACK; 3198 if (tp->rx_opt.wscale_ok) { 3199 info->tcpi_options |= TCPI_OPT_WSCALE; 3200 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3201 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3202 } 3203 3204 if (tp->ecn_flags & TCP_ECN_OK) 3205 info->tcpi_options |= TCPI_OPT_ECN; 3206 if (tp->ecn_flags & TCP_ECN_SEEN) 3207 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3208 if (tp->syn_data_acked) 3209 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3210 3211 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3212 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3213 info->tcpi_snd_mss = tp->mss_cache; 3214 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3215 3216 info->tcpi_unacked = tp->packets_out; 3217 info->tcpi_sacked = tp->sacked_out; 3218 3219 info->tcpi_lost = tp->lost_out; 3220 info->tcpi_retrans = tp->retrans_out; 3221 3222 now = tcp_jiffies32; 3223 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3224 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3225 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3226 3227 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3228 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3229 info->tcpi_rtt = tp->srtt_us >> 3; 3230 info->tcpi_rttvar = tp->mdev_us >> 2; 3231 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3232 info->tcpi_advmss = tp->advmss; 3233 3234 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3235 info->tcpi_rcv_space = tp->rcvq_space.space; 3236 3237 info->tcpi_total_retrans = tp->total_retrans; 3238 3239 info->tcpi_bytes_acked = tp->bytes_acked; 3240 info->tcpi_bytes_received = tp->bytes_received; 3241 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3242 tcp_get_info_chrono_stats(tp, info); 3243 3244 info->tcpi_segs_out = tp->segs_out; 3245 info->tcpi_segs_in = tp->segs_in; 3246 3247 info->tcpi_min_rtt = tcp_min_rtt(tp); 3248 info->tcpi_data_segs_in = tp->data_segs_in; 3249 info->tcpi_data_segs_out = tp->data_segs_out; 3250 3251 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3252 rate64 = tcp_compute_delivery_rate(tp); 3253 if (rate64) 3254 info->tcpi_delivery_rate = rate64; 3255 info->tcpi_delivered = tp->delivered; 3256 info->tcpi_delivered_ce = tp->delivered_ce; 3257 info->tcpi_bytes_sent = tp->bytes_sent; 3258 info->tcpi_bytes_retrans = tp->bytes_retrans; 3259 info->tcpi_dsack_dups = tp->dsack_dups; 3260 info->tcpi_reord_seen = tp->reord_seen; 3261 unlock_sock_fast(sk, slow); 3262 } 3263 EXPORT_SYMBOL_GPL(tcp_get_info); 3264 3265 static size_t tcp_opt_stats_get_size(void) 3266 { 3267 return 3268 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3269 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3270 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3271 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3272 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3273 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3275 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3276 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3277 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3278 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3279 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3280 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3281 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3282 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3283 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3284 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3285 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3286 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3287 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3288 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3289 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3290 0; 3291 } 3292 3293 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3294 { 3295 const struct tcp_sock *tp = tcp_sk(sk); 3296 struct sk_buff *stats; 3297 struct tcp_info info; 3298 unsigned long rate; 3299 u64 rate64; 3300 3301 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3302 if (!stats) 3303 return NULL; 3304 3305 tcp_get_info_chrono_stats(tp, &info); 3306 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3307 info.tcpi_busy_time, TCP_NLA_PAD); 3308 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3309 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3310 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3311 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3312 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3313 tp->data_segs_out, TCP_NLA_PAD); 3314 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3315 tp->total_retrans, TCP_NLA_PAD); 3316 3317 rate = READ_ONCE(sk->sk_pacing_rate); 3318 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3319 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3320 3321 rate64 = tcp_compute_delivery_rate(tp); 3322 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3323 3324 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3325 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3326 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3327 3328 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3329 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3330 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3331 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3332 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3333 3334 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3335 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3336 3337 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3338 TCP_NLA_PAD); 3339 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3340 TCP_NLA_PAD); 3341 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3342 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3343 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3344 3345 return stats; 3346 } 3347 3348 static int do_tcp_getsockopt(struct sock *sk, int level, 3349 int optname, char __user *optval, int __user *optlen) 3350 { 3351 struct inet_connection_sock *icsk = inet_csk(sk); 3352 struct tcp_sock *tp = tcp_sk(sk); 3353 struct net *net = sock_net(sk); 3354 int val, len; 3355 3356 if (get_user(len, optlen)) 3357 return -EFAULT; 3358 3359 len = min_t(unsigned int, len, sizeof(int)); 3360 3361 if (len < 0) 3362 return -EINVAL; 3363 3364 switch (optname) { 3365 case TCP_MAXSEG: 3366 val = tp->mss_cache; 3367 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3368 val = tp->rx_opt.user_mss; 3369 if (tp->repair) 3370 val = tp->rx_opt.mss_clamp; 3371 break; 3372 case TCP_NODELAY: 3373 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3374 break; 3375 case TCP_CORK: 3376 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3377 break; 3378 case TCP_KEEPIDLE: 3379 val = keepalive_time_when(tp) / HZ; 3380 break; 3381 case TCP_KEEPINTVL: 3382 val = keepalive_intvl_when(tp) / HZ; 3383 break; 3384 case TCP_KEEPCNT: 3385 val = keepalive_probes(tp); 3386 break; 3387 case TCP_SYNCNT: 3388 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3389 break; 3390 case TCP_LINGER2: 3391 val = tp->linger2; 3392 if (val >= 0) 3393 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3394 break; 3395 case TCP_DEFER_ACCEPT: 3396 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3397 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3398 break; 3399 case TCP_WINDOW_CLAMP: 3400 val = tp->window_clamp; 3401 break; 3402 case TCP_INFO: { 3403 struct tcp_info info; 3404 3405 if (get_user(len, optlen)) 3406 return -EFAULT; 3407 3408 tcp_get_info(sk, &info); 3409 3410 len = min_t(unsigned int, len, sizeof(info)); 3411 if (put_user(len, optlen)) 3412 return -EFAULT; 3413 if (copy_to_user(optval, &info, len)) 3414 return -EFAULT; 3415 return 0; 3416 } 3417 case TCP_CC_INFO: { 3418 const struct tcp_congestion_ops *ca_ops; 3419 union tcp_cc_info info; 3420 size_t sz = 0; 3421 int attr; 3422 3423 if (get_user(len, optlen)) 3424 return -EFAULT; 3425 3426 ca_ops = icsk->icsk_ca_ops; 3427 if (ca_ops && ca_ops->get_info) 3428 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3429 3430 len = min_t(unsigned int, len, sz); 3431 if (put_user(len, optlen)) 3432 return -EFAULT; 3433 if (copy_to_user(optval, &info, len)) 3434 return -EFAULT; 3435 return 0; 3436 } 3437 case TCP_QUICKACK: 3438 val = !inet_csk_in_pingpong_mode(sk); 3439 break; 3440 3441 case TCP_CONGESTION: 3442 if (get_user(len, optlen)) 3443 return -EFAULT; 3444 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3445 if (put_user(len, optlen)) 3446 return -EFAULT; 3447 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3448 return -EFAULT; 3449 return 0; 3450 3451 case TCP_ULP: 3452 if (get_user(len, optlen)) 3453 return -EFAULT; 3454 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3455 if (!icsk->icsk_ulp_ops) { 3456 if (put_user(0, optlen)) 3457 return -EFAULT; 3458 return 0; 3459 } 3460 if (put_user(len, optlen)) 3461 return -EFAULT; 3462 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3463 return -EFAULT; 3464 return 0; 3465 3466 case TCP_FASTOPEN_KEY: { 3467 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3468 struct tcp_fastopen_context *ctx; 3469 3470 if (get_user(len, optlen)) 3471 return -EFAULT; 3472 3473 rcu_read_lock(); 3474 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3475 if (ctx) 3476 memcpy(key, ctx->key, sizeof(key)); 3477 else 3478 len = 0; 3479 rcu_read_unlock(); 3480 3481 len = min_t(unsigned int, len, sizeof(key)); 3482 if (put_user(len, optlen)) 3483 return -EFAULT; 3484 if (copy_to_user(optval, key, len)) 3485 return -EFAULT; 3486 return 0; 3487 } 3488 case TCP_THIN_LINEAR_TIMEOUTS: 3489 val = tp->thin_lto; 3490 break; 3491 3492 case TCP_THIN_DUPACK: 3493 val = 0; 3494 break; 3495 3496 case TCP_REPAIR: 3497 val = tp->repair; 3498 break; 3499 3500 case TCP_REPAIR_QUEUE: 3501 if (tp->repair) 3502 val = tp->repair_queue; 3503 else 3504 return -EINVAL; 3505 break; 3506 3507 case TCP_REPAIR_WINDOW: { 3508 struct tcp_repair_window opt; 3509 3510 if (get_user(len, optlen)) 3511 return -EFAULT; 3512 3513 if (len != sizeof(opt)) 3514 return -EINVAL; 3515 3516 if (!tp->repair) 3517 return -EPERM; 3518 3519 opt.snd_wl1 = tp->snd_wl1; 3520 opt.snd_wnd = tp->snd_wnd; 3521 opt.max_window = tp->max_window; 3522 opt.rcv_wnd = tp->rcv_wnd; 3523 opt.rcv_wup = tp->rcv_wup; 3524 3525 if (copy_to_user(optval, &opt, len)) 3526 return -EFAULT; 3527 return 0; 3528 } 3529 case TCP_QUEUE_SEQ: 3530 if (tp->repair_queue == TCP_SEND_QUEUE) 3531 val = tp->write_seq; 3532 else if (tp->repair_queue == TCP_RECV_QUEUE) 3533 val = tp->rcv_nxt; 3534 else 3535 return -EINVAL; 3536 break; 3537 3538 case TCP_USER_TIMEOUT: 3539 val = icsk->icsk_user_timeout; 3540 break; 3541 3542 case TCP_FASTOPEN: 3543 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3544 break; 3545 3546 case TCP_FASTOPEN_CONNECT: 3547 val = tp->fastopen_connect; 3548 break; 3549 3550 case TCP_FASTOPEN_NO_COOKIE: 3551 val = tp->fastopen_no_cookie; 3552 break; 3553 3554 case TCP_TIMESTAMP: 3555 val = tcp_time_stamp_raw() + tp->tsoffset; 3556 break; 3557 case TCP_NOTSENT_LOWAT: 3558 val = tp->notsent_lowat; 3559 break; 3560 case TCP_INQ: 3561 val = tp->recvmsg_inq; 3562 break; 3563 case TCP_SAVE_SYN: 3564 val = tp->save_syn; 3565 break; 3566 case TCP_SAVED_SYN: { 3567 if (get_user(len, optlen)) 3568 return -EFAULT; 3569 3570 lock_sock(sk); 3571 if (tp->saved_syn) { 3572 if (len < tp->saved_syn[0]) { 3573 if (put_user(tp->saved_syn[0], optlen)) { 3574 release_sock(sk); 3575 return -EFAULT; 3576 } 3577 release_sock(sk); 3578 return -EINVAL; 3579 } 3580 len = tp->saved_syn[0]; 3581 if (put_user(len, optlen)) { 3582 release_sock(sk); 3583 return -EFAULT; 3584 } 3585 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3586 release_sock(sk); 3587 return -EFAULT; 3588 } 3589 tcp_saved_syn_free(tp); 3590 release_sock(sk); 3591 } else { 3592 release_sock(sk); 3593 len = 0; 3594 if (put_user(len, optlen)) 3595 return -EFAULT; 3596 } 3597 return 0; 3598 } 3599 #ifdef CONFIG_MMU 3600 case TCP_ZEROCOPY_RECEIVE: { 3601 struct tcp_zerocopy_receive zc; 3602 int err; 3603 3604 if (get_user(len, optlen)) 3605 return -EFAULT; 3606 if (len != sizeof(zc)) 3607 return -EINVAL; 3608 if (copy_from_user(&zc, optval, len)) 3609 return -EFAULT; 3610 lock_sock(sk); 3611 err = tcp_zerocopy_receive(sk, &zc); 3612 release_sock(sk); 3613 if (!err && copy_to_user(optval, &zc, len)) 3614 err = -EFAULT; 3615 return err; 3616 } 3617 #endif 3618 default: 3619 return -ENOPROTOOPT; 3620 } 3621 3622 if (put_user(len, optlen)) 3623 return -EFAULT; 3624 if (copy_to_user(optval, &val, len)) 3625 return -EFAULT; 3626 return 0; 3627 } 3628 3629 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3630 int __user *optlen) 3631 { 3632 struct inet_connection_sock *icsk = inet_csk(sk); 3633 3634 if (level != SOL_TCP) 3635 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3636 optval, optlen); 3637 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3638 } 3639 EXPORT_SYMBOL(tcp_getsockopt); 3640 3641 #ifdef CONFIG_COMPAT 3642 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3643 char __user *optval, int __user *optlen) 3644 { 3645 if (level != SOL_TCP) 3646 return inet_csk_compat_getsockopt(sk, level, optname, 3647 optval, optlen); 3648 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3649 } 3650 EXPORT_SYMBOL(compat_tcp_getsockopt); 3651 #endif 3652 3653 #ifdef CONFIG_TCP_MD5SIG 3654 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3655 static DEFINE_MUTEX(tcp_md5sig_mutex); 3656 static bool tcp_md5sig_pool_populated = false; 3657 3658 static void __tcp_alloc_md5sig_pool(void) 3659 { 3660 struct crypto_ahash *hash; 3661 int cpu; 3662 3663 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3664 if (IS_ERR(hash)) 3665 return; 3666 3667 for_each_possible_cpu(cpu) { 3668 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3669 struct ahash_request *req; 3670 3671 if (!scratch) { 3672 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3673 sizeof(struct tcphdr), 3674 GFP_KERNEL, 3675 cpu_to_node(cpu)); 3676 if (!scratch) 3677 return; 3678 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3679 } 3680 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3681 continue; 3682 3683 req = ahash_request_alloc(hash, GFP_KERNEL); 3684 if (!req) 3685 return; 3686 3687 ahash_request_set_callback(req, 0, NULL, NULL); 3688 3689 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3690 } 3691 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3692 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3693 */ 3694 smp_wmb(); 3695 tcp_md5sig_pool_populated = true; 3696 } 3697 3698 bool tcp_alloc_md5sig_pool(void) 3699 { 3700 if (unlikely(!tcp_md5sig_pool_populated)) { 3701 mutex_lock(&tcp_md5sig_mutex); 3702 3703 if (!tcp_md5sig_pool_populated) { 3704 __tcp_alloc_md5sig_pool(); 3705 if (tcp_md5sig_pool_populated) 3706 static_branch_inc(&tcp_md5_needed); 3707 } 3708 3709 mutex_unlock(&tcp_md5sig_mutex); 3710 } 3711 return tcp_md5sig_pool_populated; 3712 } 3713 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3714 3715 3716 /** 3717 * tcp_get_md5sig_pool - get md5sig_pool for this user 3718 * 3719 * We use percpu structure, so if we succeed, we exit with preemption 3720 * and BH disabled, to make sure another thread or softirq handling 3721 * wont try to get same context. 3722 */ 3723 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3724 { 3725 local_bh_disable(); 3726 3727 if (tcp_md5sig_pool_populated) { 3728 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3729 smp_rmb(); 3730 return this_cpu_ptr(&tcp_md5sig_pool); 3731 } 3732 local_bh_enable(); 3733 return NULL; 3734 } 3735 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3736 3737 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3738 const struct sk_buff *skb, unsigned int header_len) 3739 { 3740 struct scatterlist sg; 3741 const struct tcphdr *tp = tcp_hdr(skb); 3742 struct ahash_request *req = hp->md5_req; 3743 unsigned int i; 3744 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3745 skb_headlen(skb) - header_len : 0; 3746 const struct skb_shared_info *shi = skb_shinfo(skb); 3747 struct sk_buff *frag_iter; 3748 3749 sg_init_table(&sg, 1); 3750 3751 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3752 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3753 if (crypto_ahash_update(req)) 3754 return 1; 3755 3756 for (i = 0; i < shi->nr_frags; ++i) { 3757 const struct skb_frag_struct *f = &shi->frags[i]; 3758 unsigned int offset = f->page_offset; 3759 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3760 3761 sg_set_page(&sg, page, skb_frag_size(f), 3762 offset_in_page(offset)); 3763 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3764 if (crypto_ahash_update(req)) 3765 return 1; 3766 } 3767 3768 skb_walk_frags(skb, frag_iter) 3769 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3770 return 1; 3771 3772 return 0; 3773 } 3774 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3775 3776 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3777 { 3778 struct scatterlist sg; 3779 3780 sg_init_one(&sg, key->key, key->keylen); 3781 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3782 return crypto_ahash_update(hp->md5_req); 3783 } 3784 EXPORT_SYMBOL(tcp_md5_hash_key); 3785 3786 #endif 3787 3788 void tcp_done(struct sock *sk) 3789 { 3790 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3791 3792 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3793 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3794 3795 tcp_set_state(sk, TCP_CLOSE); 3796 tcp_clear_xmit_timers(sk); 3797 if (req) 3798 reqsk_fastopen_remove(sk, req, false); 3799 3800 sk->sk_shutdown = SHUTDOWN_MASK; 3801 3802 if (!sock_flag(sk, SOCK_DEAD)) 3803 sk->sk_state_change(sk); 3804 else 3805 inet_csk_destroy_sock(sk); 3806 } 3807 EXPORT_SYMBOL_GPL(tcp_done); 3808 3809 int tcp_abort(struct sock *sk, int err) 3810 { 3811 if (!sk_fullsock(sk)) { 3812 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3813 struct request_sock *req = inet_reqsk(sk); 3814 3815 local_bh_disable(); 3816 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3817 local_bh_enable(); 3818 return 0; 3819 } 3820 return -EOPNOTSUPP; 3821 } 3822 3823 /* Don't race with userspace socket closes such as tcp_close. */ 3824 lock_sock(sk); 3825 3826 if (sk->sk_state == TCP_LISTEN) { 3827 tcp_set_state(sk, TCP_CLOSE); 3828 inet_csk_listen_stop(sk); 3829 } 3830 3831 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3832 local_bh_disable(); 3833 bh_lock_sock(sk); 3834 3835 if (!sock_flag(sk, SOCK_DEAD)) { 3836 sk->sk_err = err; 3837 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3838 smp_wmb(); 3839 sk->sk_error_report(sk); 3840 if (tcp_need_reset(sk->sk_state)) 3841 tcp_send_active_reset(sk, GFP_ATOMIC); 3842 tcp_done(sk); 3843 } 3844 3845 bh_unlock_sock(sk); 3846 local_bh_enable(); 3847 tcp_write_queue_purge(sk); 3848 release_sock(sk); 3849 return 0; 3850 } 3851 EXPORT_SYMBOL_GPL(tcp_abort); 3852 3853 extern struct tcp_congestion_ops tcp_reno; 3854 3855 static __initdata unsigned long thash_entries; 3856 static int __init set_thash_entries(char *str) 3857 { 3858 ssize_t ret; 3859 3860 if (!str) 3861 return 0; 3862 3863 ret = kstrtoul(str, 0, &thash_entries); 3864 if (ret) 3865 return 0; 3866 3867 return 1; 3868 } 3869 __setup("thash_entries=", set_thash_entries); 3870 3871 static void __init tcp_init_mem(void) 3872 { 3873 unsigned long limit = nr_free_buffer_pages() / 16; 3874 3875 limit = max(limit, 128UL); 3876 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3877 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3878 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3879 } 3880 3881 void __init tcp_init(void) 3882 { 3883 int max_rshare, max_wshare, cnt; 3884 unsigned long limit; 3885 unsigned int i; 3886 3887 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3888 FIELD_SIZEOF(struct sk_buff, cb)); 3889 3890 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3891 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3892 inet_hashinfo_init(&tcp_hashinfo); 3893 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3894 thash_entries, 21, /* one slot per 2 MB*/ 3895 0, 64 * 1024); 3896 tcp_hashinfo.bind_bucket_cachep = 3897 kmem_cache_create("tcp_bind_bucket", 3898 sizeof(struct inet_bind_bucket), 0, 3899 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3900 3901 /* Size and allocate the main established and bind bucket 3902 * hash tables. 3903 * 3904 * The methodology is similar to that of the buffer cache. 3905 */ 3906 tcp_hashinfo.ehash = 3907 alloc_large_system_hash("TCP established", 3908 sizeof(struct inet_ehash_bucket), 3909 thash_entries, 3910 17, /* one slot per 128 KB of memory */ 3911 0, 3912 NULL, 3913 &tcp_hashinfo.ehash_mask, 3914 0, 3915 thash_entries ? 0 : 512 * 1024); 3916 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3917 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3918 3919 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3920 panic("TCP: failed to alloc ehash_locks"); 3921 tcp_hashinfo.bhash = 3922 alloc_large_system_hash("TCP bind", 3923 sizeof(struct inet_bind_hashbucket), 3924 tcp_hashinfo.ehash_mask + 1, 3925 17, /* one slot per 128 KB of memory */ 3926 0, 3927 &tcp_hashinfo.bhash_size, 3928 NULL, 3929 0, 3930 64 * 1024); 3931 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3932 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3933 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3934 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3935 } 3936 3937 3938 cnt = tcp_hashinfo.ehash_mask + 1; 3939 sysctl_tcp_max_orphans = cnt / 2; 3940 3941 tcp_init_mem(); 3942 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3943 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3944 max_wshare = min(4UL*1024*1024, limit); 3945 max_rshare = min(6UL*1024*1024, limit); 3946 3947 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3948 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3949 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3950 3951 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3952 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3953 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3954 3955 pr_info("Hash tables configured (established %u bind %u)\n", 3956 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3957 3958 tcp_v4_init(); 3959 tcp_metrics_init(); 3960 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3961 tcp_tasklet_init(); 3962 } 3963