xref: /openbmc/linux/net/ipv4/tcp.c (revision dd5b2498)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/memblock.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274 
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281 
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285 
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291 
292 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294 
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299 
300 /*
301  * Current number of TCP sockets.
302  */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305 
306 /*
307  * TCP splice context
308  */
309 struct tcp_splice_state {
310 	struct pipe_inode_info *pipe;
311 	size_t len;
312 	unsigned int flags;
313 };
314 
315 /*
316  * Pressure flag: try to collapse.
317  * Technical note: it is used by multiple contexts non atomically.
318  * All the __sk_mem_schedule() is of this nature: accounting
319  * is strict, actions are advisory and have some latency.
320  */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323 
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 	unsigned long val;
327 
328 	if (tcp_memory_pressure)
329 		return;
330 	val = jiffies;
331 
332 	if (!val)
333 		val--;
334 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338 
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (!tcp_memory_pressure)
344 		return;
345 	val = xchg(&tcp_memory_pressure, 0);
346 	if (val)
347 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 			      jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351 
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 	u8 res = 0;
356 
357 	if (seconds > 0) {
358 		int period = timeout;
359 
360 		res = 1;
361 		while (seconds > period && res < 255) {
362 			res++;
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return res;
370 }
371 
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 	int period = 0;
376 
377 	if (retrans > 0) {
378 		period = timeout;
379 		while (--retrans) {
380 			timeout <<= 1;
381 			if (timeout > rto_max)
382 				timeout = rto_max;
383 			period += timeout;
384 		}
385 	}
386 	return period;
387 }
388 
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 	u32 rate = READ_ONCE(tp->rate_delivered);
392 	u32 intv = READ_ONCE(tp->rate_interval_us);
393 	u64 rate64 = 0;
394 
395 	if (rate && intv) {
396 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 		do_div(rate64, intv);
398 	}
399 	return rate64;
400 }
401 
402 /* Address-family independent initialization for a tcp_sock.
403  *
404  * NOTE: A lot of things set to zero explicitly by call to
405  *       sk_alloc() so need not be done here.
406  */
407 void tcp_init_sock(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	struct tcp_sock *tp = tcp_sk(sk);
411 
412 	tp->out_of_order_queue = RB_ROOT;
413 	sk->tcp_rtx_queue = RB_ROOT;
414 	tcp_init_xmit_timers(sk);
415 	INIT_LIST_HEAD(&tp->tsq_node);
416 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417 
418 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421 
422 	/* So many TCP implementations out there (incorrectly) count the
423 	 * initial SYN frame in their delayed-ACK and congestion control
424 	 * algorithms that we must have the following bandaid to talk
425 	 * efficiently to them.  -DaveM
426 	 */
427 	tp->snd_cwnd = TCP_INIT_CWND;
428 
429 	/* There's a bubble in the pipe until at least the first ACK. */
430 	tp->app_limited = ~0U;
431 
432 	/* See draft-stevens-tcpca-spec-01 for discussion of the
433 	 * initialization of these values.
434 	 */
435 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 	tp->snd_cwnd_clamp = ~0;
437 	tp->mss_cache = TCP_MSS_DEFAULT;
438 
439 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 	tcp_assign_congestion_control(sk);
441 
442 	tp->tsoffset = 0;
443 	tp->rack.reo_wnd_steps = 1;
444 
445 	sk->sk_state = TCP_CLOSE;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454 
455 	sk_sockets_allocated_inc(sk);
456 	sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459 
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
461 {
462 	struct inet_connection_sock *icsk = inet_csk(sk);
463 
464 	tcp_mtup_init(sk);
465 	icsk->icsk_af_ops->rebuild_header(sk);
466 	tcp_init_metrics(sk);
467 	tcp_call_bpf(sk, bpf_op, 0, NULL);
468 	tcp_init_congestion_control(sk);
469 	tcp_init_buffer_space(sk);
470 }
471 
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 	struct sk_buff *skb = tcp_write_queue_tail(sk);
475 
476 	if (tsflags && skb) {
477 		struct skb_shared_info *shinfo = skb_shinfo(skb);
478 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479 
480 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 			tcb->txstamp_ack = 1;
483 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 	}
486 }
487 
488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 					  int target, struct sock *sk)
490 {
491 	return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 		(sk->sk_prot->stream_memory_read ?
493 		sk->sk_prot->stream_memory_read(sk) : false);
494 }
495 
496 /*
497  *	Wait for a TCP event.
498  *
499  *	Note that we don't need to lock the socket, as the upper poll layers
500  *	take care of normal races (between the test and the event) and we don't
501  *	go look at any of the socket buffers directly.
502  */
503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 	__poll_t mask;
506 	struct sock *sk = sock->sk;
507 	const struct tcp_sock *tp = tcp_sk(sk);
508 	int state;
509 
510 	sock_poll_wait(file, sock, wait);
511 
512 	state = inet_sk_state_load(sk);
513 	if (state == TCP_LISTEN)
514 		return inet_csk_listen_poll(sk);
515 
516 	/* Socket is not locked. We are protected from async events
517 	 * by poll logic and correct handling of state changes
518 	 * made by other threads is impossible in any case.
519 	 */
520 
521 	mask = 0;
522 
523 	/*
524 	 * EPOLLHUP is certainly not done right. But poll() doesn't
525 	 * have a notion of HUP in just one direction, and for a
526 	 * socket the read side is more interesting.
527 	 *
528 	 * Some poll() documentation says that EPOLLHUP is incompatible
529 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 	 * all. But careful, it tends to be safer to return too many
531 	 * bits than too few, and you can easily break real applications
532 	 * if you don't tell them that something has hung up!
533 	 *
534 	 * Check-me.
535 	 *
536 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 	 * our fs/select.c). It means that after we received EOF,
538 	 * poll always returns immediately, making impossible poll() on write()
539 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 	 * if and only if shutdown has been made in both directions.
541 	 * Actually, it is interesting to look how Solaris and DUX
542 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 	 * then we could set it on SND_SHUTDOWN. BTW examples given
544 	 * in Stevens' books assume exactly this behaviour, it explains
545 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
546 	 *
547 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 	 * blocking on fresh not-connected or disconnected socket. --ANK
549 	 */
550 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 		mask |= EPOLLHUP;
552 	if (sk->sk_shutdown & RCV_SHUTDOWN)
553 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554 
555 	/* Connected or passive Fast Open socket? */
556 	if (state != TCP_SYN_SENT &&
557 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 		int target = sock_rcvlowat(sk, 0, INT_MAX);
559 
560 		if (tp->urg_seq == tp->copied_seq &&
561 		    !sock_flag(sk, SOCK_URGINLINE) &&
562 		    tp->urg_data)
563 			target++;
564 
565 		if (tcp_stream_is_readable(tp, target, sk))
566 			mask |= EPOLLIN | EPOLLRDNORM;
567 
568 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 			if (sk_stream_is_writeable(sk)) {
570 				mask |= EPOLLOUT | EPOLLWRNORM;
571 			} else {  /* send SIGIO later */
572 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574 
575 				/* Race breaker. If space is freed after
576 				 * wspace test but before the flags are set,
577 				 * IO signal will be lost. Memory barrier
578 				 * pairs with the input side.
579 				 */
580 				smp_mb__after_atomic();
581 				if (sk_stream_is_writeable(sk))
582 					mask |= EPOLLOUT | EPOLLWRNORM;
583 			}
584 		} else
585 			mask |= EPOLLOUT | EPOLLWRNORM;
586 
587 		if (tp->urg_data & TCP_URG_VALID)
588 			mask |= EPOLLPRI;
589 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 		/* Active TCP fastopen socket with defer_connect
591 		 * Return EPOLLOUT so application can call write()
592 		 * in order for kernel to generate SYN+data
593 		 */
594 		mask |= EPOLLOUT | EPOLLWRNORM;
595 	}
596 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
597 	smp_rmb();
598 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 		mask |= EPOLLERR;
600 
601 	return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604 
605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	int answ;
609 	bool slow;
610 
611 	switch (cmd) {
612 	case SIOCINQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		slow = lock_sock_fast(sk);
617 		answ = tcp_inq(sk);
618 		unlock_sock_fast(sk, slow);
619 		break;
620 	case SIOCATMARK:
621 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = tp->write_seq - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = tp->write_seq - tp->snd_nxt;
640 		break;
641 	default:
642 		return -ENOIOCTLCMD;
643 	}
644 
645 	return put_user(answ, (int __user *)arg);
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	skb->csum    = 0;
666 	tcb->seq     = tcb->end_seq = tp->write_seq;
667 	tcb->tcp_flags = TCPHDR_ACK;
668 	tcb->sacked  = 0;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk->sk_wmem_queued += skb->truesize;
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702 }
703 
704 static void tcp_push(struct sock *sk, int flags, int mss_now,
705 		     int nonagle, int size_goal)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	struct sk_buff *skb;
709 
710 	skb = tcp_write_queue_tail(sk);
711 	if (!skb)
712 		return;
713 	if (!(flags & MSG_MORE) || forced_push(tp))
714 		tcp_mark_push(tp, skb);
715 
716 	tcp_mark_urg(tp, flags);
717 
718 	if (tcp_should_autocork(sk, skb, size_goal)) {
719 
720 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
721 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 		}
725 		/* It is possible TX completion already happened
726 		 * before we set TSQ_THROTTLED.
727 		 */
728 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 			return;
730 	}
731 
732 	if (flags & MSG_MORE)
733 		nonagle = TCP_NAGLE_CORK;
734 
735 	__tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737 
738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 				unsigned int offset, size_t len)
740 {
741 	struct tcp_splice_state *tss = rd_desc->arg.data;
742 	int ret;
743 
744 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 			      min(rd_desc->count, len), tss->flags);
746 	if (ret > 0)
747 		rd_desc->count -= ret;
748 	return ret;
749 }
750 
751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 	/* Store TCP splice context information in read_descriptor_t. */
754 	read_descriptor_t rd_desc = {
755 		.arg.data = tss,
756 		.count	  = tss->len,
757 	};
758 
759 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761 
762 /**
763  *  tcp_splice_read - splice data from TCP socket to a pipe
764  * @sock:	socket to splice from
765  * @ppos:	position (not valid)
766  * @pipe:	pipe to splice to
767  * @len:	number of bytes to splice
768  * @flags:	splice modifier flags
769  *
770  * Description:
771  *    Will read pages from given socket and fill them into a pipe.
772  *
773  **/
774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 			struct pipe_inode_info *pipe, size_t len,
776 			unsigned int flags)
777 {
778 	struct sock *sk = sock->sk;
779 	struct tcp_splice_state tss = {
780 		.pipe = pipe,
781 		.len = len,
782 		.flags = flags,
783 	};
784 	long timeo;
785 	ssize_t spliced;
786 	int ret;
787 
788 	sock_rps_record_flow(sk);
789 	/*
790 	 * We can't seek on a socket input
791 	 */
792 	if (unlikely(*ppos))
793 		return -ESPIPE;
794 
795 	ret = spliced = 0;
796 
797 	lock_sock(sk);
798 
799 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 	while (tss.len) {
801 		ret = __tcp_splice_read(sk, &tss);
802 		if (ret < 0)
803 			break;
804 		else if (!ret) {
805 			if (spliced)
806 				break;
807 			if (sock_flag(sk, SOCK_DONE))
808 				break;
809 			if (sk->sk_err) {
810 				ret = sock_error(sk);
811 				break;
812 			}
813 			if (sk->sk_shutdown & RCV_SHUTDOWN)
814 				break;
815 			if (sk->sk_state == TCP_CLOSE) {
816 				/*
817 				 * This occurs when user tries to read
818 				 * from never connected socket.
819 				 */
820 				ret = -ENOTCONN;
821 				break;
822 			}
823 			if (!timeo) {
824 				ret = -EAGAIN;
825 				break;
826 			}
827 			/* if __tcp_splice_read() got nothing while we have
828 			 * an skb in receive queue, we do not want to loop.
829 			 * This might happen with URG data.
830 			 */
831 			if (!skb_queue_empty(&sk->sk_receive_queue))
832 				break;
833 			sk_wait_data(sk, &timeo, NULL);
834 			if (signal_pending(current)) {
835 				ret = sock_intr_errno(timeo);
836 				break;
837 			}
838 			continue;
839 		}
840 		tss.len -= ret;
841 		spliced += ret;
842 
843 		if (!timeo)
844 			break;
845 		release_sock(sk);
846 		lock_sock(sk);
847 
848 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 		    signal_pending(current))
851 			break;
852 	}
853 
854 	release_sock(sk);
855 
856 	if (spliced)
857 		return spliced;
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL(tcp_splice_read);
862 
863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
864 				    bool force_schedule)
865 {
866 	struct sk_buff *skb;
867 
868 	if (likely(!size)) {
869 		skb = sk->sk_tx_skb_cache;
870 		if (skb && !skb_cloned(skb)) {
871 			skb->truesize -= skb->data_len;
872 			sk->sk_tx_skb_cache = NULL;
873 			pskb_trim(skb, 0);
874 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
875 			skb_shinfo(skb)->tx_flags = 0;
876 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
877 			return skb;
878 		}
879 	}
880 	/* The TCP header must be at least 32-bit aligned.  */
881 	size = ALIGN(size, 4);
882 
883 	if (unlikely(tcp_under_memory_pressure(sk)))
884 		sk_mem_reclaim_partial(sk);
885 
886 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
887 	if (likely(skb)) {
888 		bool mem_scheduled;
889 
890 		if (force_schedule) {
891 			mem_scheduled = true;
892 			sk_forced_mem_schedule(sk, skb->truesize);
893 		} else {
894 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
895 		}
896 		if (likely(mem_scheduled)) {
897 			skb_reserve(skb, sk->sk_prot->max_header);
898 			/*
899 			 * Make sure that we have exactly size bytes
900 			 * available to the caller, no more, no less.
901 			 */
902 			skb->reserved_tailroom = skb->end - skb->tail - size;
903 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
904 			return skb;
905 		}
906 		__kfree_skb(skb);
907 	} else {
908 		sk->sk_prot->enter_memory_pressure(sk);
909 		sk_stream_moderate_sndbuf(sk);
910 	}
911 	return NULL;
912 }
913 
914 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
915 				       int large_allowed)
916 {
917 	struct tcp_sock *tp = tcp_sk(sk);
918 	u32 new_size_goal, size_goal;
919 
920 	if (!large_allowed)
921 		return mss_now;
922 
923 	/* Note : tcp_tso_autosize() will eventually split this later */
924 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
925 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
926 
927 	/* We try hard to avoid divides here */
928 	size_goal = tp->gso_segs * mss_now;
929 	if (unlikely(new_size_goal < size_goal ||
930 		     new_size_goal >= size_goal + mss_now)) {
931 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
932 				     sk->sk_gso_max_segs);
933 		size_goal = tp->gso_segs * mss_now;
934 	}
935 
936 	return max(size_goal, mss_now);
937 }
938 
939 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
940 {
941 	int mss_now;
942 
943 	mss_now = tcp_current_mss(sk);
944 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
945 
946 	return mss_now;
947 }
948 
949 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
950 			 size_t size, int flags)
951 {
952 	struct tcp_sock *tp = tcp_sk(sk);
953 	int mss_now, size_goal;
954 	int err;
955 	ssize_t copied;
956 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
957 
958 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
959 	    WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
960 		return -EINVAL;
961 
962 	/* Wait for a connection to finish. One exception is TCP Fast Open
963 	 * (passive side) where data is allowed to be sent before a connection
964 	 * is fully established.
965 	 */
966 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
967 	    !tcp_passive_fastopen(sk)) {
968 		err = sk_stream_wait_connect(sk, &timeo);
969 		if (err != 0)
970 			goto out_err;
971 	}
972 
973 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
974 
975 	mss_now = tcp_send_mss(sk, &size_goal, flags);
976 	copied = 0;
977 
978 	err = -EPIPE;
979 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
980 		goto out_err;
981 
982 	while (size > 0) {
983 		struct sk_buff *skb = tcp_write_queue_tail(sk);
984 		int copy, i;
985 		bool can_coalesce;
986 
987 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
988 		    !tcp_skb_can_collapse_to(skb)) {
989 new_segment:
990 			if (!sk_stream_memory_free(sk))
991 				goto wait_for_sndbuf;
992 
993 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
994 					tcp_rtx_and_write_queues_empty(sk));
995 			if (!skb)
996 				goto wait_for_memory;
997 
998 			skb_entail(sk, skb);
999 			copy = size_goal;
1000 		}
1001 
1002 		if (copy > size)
1003 			copy = size;
1004 
1005 		i = skb_shinfo(skb)->nr_frags;
1006 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1007 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1008 			tcp_mark_push(tp, skb);
1009 			goto new_segment;
1010 		}
1011 		if (!sk_wmem_schedule(sk, copy))
1012 			goto wait_for_memory;
1013 
1014 		if (can_coalesce) {
1015 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 		} else {
1017 			get_page(page);
1018 			skb_fill_page_desc(skb, i, page, offset, copy);
1019 		}
1020 
1021 		if (!(flags & MSG_NO_SHARED_FRAGS))
1022 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1023 
1024 		skb->len += copy;
1025 		skb->data_len += copy;
1026 		skb->truesize += copy;
1027 		sk->sk_wmem_queued += copy;
1028 		sk_mem_charge(sk, copy);
1029 		skb->ip_summed = CHECKSUM_PARTIAL;
1030 		tp->write_seq += copy;
1031 		TCP_SKB_CB(skb)->end_seq += copy;
1032 		tcp_skb_pcount_set(skb, 0);
1033 
1034 		if (!copied)
1035 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1036 
1037 		copied += copy;
1038 		offset += copy;
1039 		size -= copy;
1040 		if (!size)
1041 			goto out;
1042 
1043 		if (skb->len < size_goal || (flags & MSG_OOB))
1044 			continue;
1045 
1046 		if (forced_push(tp)) {
1047 			tcp_mark_push(tp, skb);
1048 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1049 		} else if (skb == tcp_send_head(sk))
1050 			tcp_push_one(sk, mss_now);
1051 		continue;
1052 
1053 wait_for_sndbuf:
1054 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1055 wait_for_memory:
1056 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1057 			 TCP_NAGLE_PUSH, size_goal);
1058 
1059 		err = sk_stream_wait_memory(sk, &timeo);
1060 		if (err != 0)
1061 			goto do_error;
1062 
1063 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1064 	}
1065 
1066 out:
1067 	if (copied) {
1068 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1069 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1070 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1071 	}
1072 	return copied;
1073 
1074 do_error:
1075 	if (copied)
1076 		goto out;
1077 out_err:
1078 	/* make sure we wake any epoll edge trigger waiter */
1079 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1080 		     err == -EAGAIN)) {
1081 		sk->sk_write_space(sk);
1082 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1083 	}
1084 	return sk_stream_error(sk, flags, err);
1085 }
1086 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1087 
1088 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1089 			size_t size, int flags)
1090 {
1091 	if (!(sk->sk_route_caps & NETIF_F_SG))
1092 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1093 
1094 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1095 
1096 	return do_tcp_sendpages(sk, page, offset, size, flags);
1097 }
1098 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1099 
1100 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1101 		 size_t size, int flags)
1102 {
1103 	int ret;
1104 
1105 	lock_sock(sk);
1106 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1107 	release_sock(sk);
1108 
1109 	return ret;
1110 }
1111 EXPORT_SYMBOL(tcp_sendpage);
1112 
1113 void tcp_free_fastopen_req(struct tcp_sock *tp)
1114 {
1115 	if (tp->fastopen_req) {
1116 		kfree(tp->fastopen_req);
1117 		tp->fastopen_req = NULL;
1118 	}
1119 }
1120 
1121 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1122 				int *copied, size_t size,
1123 				struct ubuf_info *uarg)
1124 {
1125 	struct tcp_sock *tp = tcp_sk(sk);
1126 	struct inet_sock *inet = inet_sk(sk);
1127 	struct sockaddr *uaddr = msg->msg_name;
1128 	int err, flags;
1129 
1130 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1131 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1132 	     uaddr->sa_family == AF_UNSPEC))
1133 		return -EOPNOTSUPP;
1134 	if (tp->fastopen_req)
1135 		return -EALREADY; /* Another Fast Open is in progress */
1136 
1137 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1138 				   sk->sk_allocation);
1139 	if (unlikely(!tp->fastopen_req))
1140 		return -ENOBUFS;
1141 	tp->fastopen_req->data = msg;
1142 	tp->fastopen_req->size = size;
1143 	tp->fastopen_req->uarg = uarg;
1144 
1145 	if (inet->defer_connect) {
1146 		err = tcp_connect(sk);
1147 		/* Same failure procedure as in tcp_v4/6_connect */
1148 		if (err) {
1149 			tcp_set_state(sk, TCP_CLOSE);
1150 			inet->inet_dport = 0;
1151 			sk->sk_route_caps = 0;
1152 		}
1153 	}
1154 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1155 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1156 				    msg->msg_namelen, flags, 1);
1157 	/* fastopen_req could already be freed in __inet_stream_connect
1158 	 * if the connection times out or gets rst
1159 	 */
1160 	if (tp->fastopen_req) {
1161 		*copied = tp->fastopen_req->copied;
1162 		tcp_free_fastopen_req(tp);
1163 		inet->defer_connect = 0;
1164 	}
1165 	return err;
1166 }
1167 
1168 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1169 {
1170 	struct tcp_sock *tp = tcp_sk(sk);
1171 	struct ubuf_info *uarg = NULL;
1172 	struct sk_buff *skb;
1173 	struct sockcm_cookie sockc;
1174 	int flags, err, copied = 0;
1175 	int mss_now = 0, size_goal, copied_syn = 0;
1176 	bool process_backlog = false;
1177 	bool zc = false;
1178 	long timeo;
1179 
1180 	flags = msg->msg_flags;
1181 
1182 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1183 		skb = tcp_write_queue_tail(sk);
1184 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1185 		if (!uarg) {
1186 			err = -ENOBUFS;
1187 			goto out_err;
1188 		}
1189 
1190 		zc = sk->sk_route_caps & NETIF_F_SG;
1191 		if (!zc)
1192 			uarg->zerocopy = 0;
1193 	}
1194 
1195 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1196 	    !tp->repair) {
1197 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1198 		if (err == -EINPROGRESS && copied_syn > 0)
1199 			goto out;
1200 		else if (err)
1201 			goto out_err;
1202 	}
1203 
1204 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1205 
1206 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1207 
1208 	/* Wait for a connection to finish. One exception is TCP Fast Open
1209 	 * (passive side) where data is allowed to be sent before a connection
1210 	 * is fully established.
1211 	 */
1212 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1213 	    !tcp_passive_fastopen(sk)) {
1214 		err = sk_stream_wait_connect(sk, &timeo);
1215 		if (err != 0)
1216 			goto do_error;
1217 	}
1218 
1219 	if (unlikely(tp->repair)) {
1220 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1221 			copied = tcp_send_rcvq(sk, msg, size);
1222 			goto out_nopush;
1223 		}
1224 
1225 		err = -EINVAL;
1226 		if (tp->repair_queue == TCP_NO_QUEUE)
1227 			goto out_err;
1228 
1229 		/* 'common' sending to sendq */
1230 	}
1231 
1232 	sockcm_init(&sockc, sk);
1233 	if (msg->msg_controllen) {
1234 		err = sock_cmsg_send(sk, msg, &sockc);
1235 		if (unlikely(err)) {
1236 			err = -EINVAL;
1237 			goto out_err;
1238 		}
1239 	}
1240 
1241 	/* This should be in poll */
1242 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1243 
1244 	/* Ok commence sending. */
1245 	copied = 0;
1246 
1247 restart:
1248 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1249 
1250 	err = -EPIPE;
1251 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1252 		goto do_error;
1253 
1254 	while (msg_data_left(msg)) {
1255 		int copy = 0;
1256 
1257 		skb = tcp_write_queue_tail(sk);
1258 		if (skb)
1259 			copy = size_goal - skb->len;
1260 
1261 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1262 			bool first_skb;
1263 
1264 new_segment:
1265 			if (!sk_stream_memory_free(sk))
1266 				goto wait_for_sndbuf;
1267 
1268 			if (process_backlog && sk_flush_backlog(sk)) {
1269 				process_backlog = false;
1270 				goto restart;
1271 			}
1272 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1273 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1274 						  first_skb);
1275 			if (!skb)
1276 				goto wait_for_memory;
1277 
1278 			process_backlog = true;
1279 			skb->ip_summed = CHECKSUM_PARTIAL;
1280 
1281 			skb_entail(sk, skb);
1282 			copy = size_goal;
1283 
1284 			/* All packets are restored as if they have
1285 			 * already been sent. skb_mstamp_ns isn't set to
1286 			 * avoid wrong rtt estimation.
1287 			 */
1288 			if (tp->repair)
1289 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1290 		}
1291 
1292 		/* Try to append data to the end of skb. */
1293 		if (copy > msg_data_left(msg))
1294 			copy = msg_data_left(msg);
1295 
1296 		/* Where to copy to? */
1297 		if (skb_availroom(skb) > 0 && !zc) {
1298 			/* We have some space in skb head. Superb! */
1299 			copy = min_t(int, copy, skb_availroom(skb));
1300 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1301 			if (err)
1302 				goto do_fault;
1303 		} else if (!zc) {
1304 			bool merge = true;
1305 			int i = skb_shinfo(skb)->nr_frags;
1306 			struct page_frag *pfrag = sk_page_frag(sk);
1307 
1308 			if (!sk_page_frag_refill(sk, pfrag))
1309 				goto wait_for_memory;
1310 
1311 			if (!skb_can_coalesce(skb, i, pfrag->page,
1312 					      pfrag->offset)) {
1313 				if (i >= sysctl_max_skb_frags) {
1314 					tcp_mark_push(tp, skb);
1315 					goto new_segment;
1316 				}
1317 				merge = false;
1318 			}
1319 
1320 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1321 
1322 			if (!sk_wmem_schedule(sk, copy))
1323 				goto wait_for_memory;
1324 
1325 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1326 						       pfrag->page,
1327 						       pfrag->offset,
1328 						       copy);
1329 			if (err)
1330 				goto do_error;
1331 
1332 			/* Update the skb. */
1333 			if (merge) {
1334 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1335 			} else {
1336 				skb_fill_page_desc(skb, i, pfrag->page,
1337 						   pfrag->offset, copy);
1338 				page_ref_inc(pfrag->page);
1339 			}
1340 			pfrag->offset += copy;
1341 		} else {
1342 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1343 			if (err == -EMSGSIZE || err == -EEXIST) {
1344 				tcp_mark_push(tp, skb);
1345 				goto new_segment;
1346 			}
1347 			if (err < 0)
1348 				goto do_error;
1349 			copy = err;
1350 		}
1351 
1352 		if (!copied)
1353 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1354 
1355 		tp->write_seq += copy;
1356 		TCP_SKB_CB(skb)->end_seq += copy;
1357 		tcp_skb_pcount_set(skb, 0);
1358 
1359 		copied += copy;
1360 		if (!msg_data_left(msg)) {
1361 			if (unlikely(flags & MSG_EOR))
1362 				TCP_SKB_CB(skb)->eor = 1;
1363 			goto out;
1364 		}
1365 
1366 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1367 			continue;
1368 
1369 		if (forced_push(tp)) {
1370 			tcp_mark_push(tp, skb);
1371 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1372 		} else if (skb == tcp_send_head(sk))
1373 			tcp_push_one(sk, mss_now);
1374 		continue;
1375 
1376 wait_for_sndbuf:
1377 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1378 wait_for_memory:
1379 		if (copied)
1380 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1381 				 TCP_NAGLE_PUSH, size_goal);
1382 
1383 		err = sk_stream_wait_memory(sk, &timeo);
1384 		if (err != 0)
1385 			goto do_error;
1386 
1387 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1388 	}
1389 
1390 out:
1391 	if (copied) {
1392 		tcp_tx_timestamp(sk, sockc.tsflags);
1393 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1394 	}
1395 out_nopush:
1396 	sock_zerocopy_put(uarg);
1397 	return copied + copied_syn;
1398 
1399 do_fault:
1400 	if (!skb->len) {
1401 		tcp_unlink_write_queue(skb, sk);
1402 		/* It is the one place in all of TCP, except connection
1403 		 * reset, where we can be unlinking the send_head.
1404 		 */
1405 		if (tcp_write_queue_empty(sk))
1406 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1407 		sk_wmem_free_skb(sk, skb);
1408 	}
1409 
1410 do_error:
1411 	if (copied + copied_syn)
1412 		goto out;
1413 out_err:
1414 	sock_zerocopy_put_abort(uarg, true);
1415 	err = sk_stream_error(sk, flags, err);
1416 	/* make sure we wake any epoll edge trigger waiter */
1417 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1418 		     err == -EAGAIN)) {
1419 		sk->sk_write_space(sk);
1420 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1421 	}
1422 	return err;
1423 }
1424 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1425 
1426 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1427 {
1428 	int ret;
1429 
1430 	lock_sock(sk);
1431 	ret = tcp_sendmsg_locked(sk, msg, size);
1432 	release_sock(sk);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(tcp_sendmsg);
1437 
1438 /*
1439  *	Handle reading urgent data. BSD has very simple semantics for
1440  *	this, no blocking and very strange errors 8)
1441  */
1442 
1443 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1444 {
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 
1447 	/* No URG data to read. */
1448 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1449 	    tp->urg_data == TCP_URG_READ)
1450 		return -EINVAL;	/* Yes this is right ! */
1451 
1452 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1453 		return -ENOTCONN;
1454 
1455 	if (tp->urg_data & TCP_URG_VALID) {
1456 		int err = 0;
1457 		char c = tp->urg_data;
1458 
1459 		if (!(flags & MSG_PEEK))
1460 			tp->urg_data = TCP_URG_READ;
1461 
1462 		/* Read urgent data. */
1463 		msg->msg_flags |= MSG_OOB;
1464 
1465 		if (len > 0) {
1466 			if (!(flags & MSG_TRUNC))
1467 				err = memcpy_to_msg(msg, &c, 1);
1468 			len = 1;
1469 		} else
1470 			msg->msg_flags |= MSG_TRUNC;
1471 
1472 		return err ? -EFAULT : len;
1473 	}
1474 
1475 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1476 		return 0;
1477 
1478 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1479 	 * the available implementations agree in this case:
1480 	 * this call should never block, independent of the
1481 	 * blocking state of the socket.
1482 	 * Mike <pall@rz.uni-karlsruhe.de>
1483 	 */
1484 	return -EAGAIN;
1485 }
1486 
1487 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1488 {
1489 	struct sk_buff *skb;
1490 	int copied = 0, err = 0;
1491 
1492 	/* XXX -- need to support SO_PEEK_OFF */
1493 
1494 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1495 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1496 		if (err)
1497 			return err;
1498 		copied += skb->len;
1499 	}
1500 
1501 	skb_queue_walk(&sk->sk_write_queue, skb) {
1502 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1503 		if (err)
1504 			break;
1505 
1506 		copied += skb->len;
1507 	}
1508 
1509 	return err ?: copied;
1510 }
1511 
1512 /* Clean up the receive buffer for full frames taken by the user,
1513  * then send an ACK if necessary.  COPIED is the number of bytes
1514  * tcp_recvmsg has given to the user so far, it speeds up the
1515  * calculation of whether or not we must ACK for the sake of
1516  * a window update.
1517  */
1518 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1519 {
1520 	struct tcp_sock *tp = tcp_sk(sk);
1521 	bool time_to_ack = false;
1522 
1523 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1524 
1525 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1526 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1527 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1528 
1529 	if (inet_csk_ack_scheduled(sk)) {
1530 		const struct inet_connection_sock *icsk = inet_csk(sk);
1531 		   /* Delayed ACKs frequently hit locked sockets during bulk
1532 		    * receive. */
1533 		if (icsk->icsk_ack.blocked ||
1534 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1535 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1536 		    /*
1537 		     * If this read emptied read buffer, we send ACK, if
1538 		     * connection is not bidirectional, user drained
1539 		     * receive buffer and there was a small segment
1540 		     * in queue.
1541 		     */
1542 		    (copied > 0 &&
1543 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1544 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1545 		       !inet_csk_in_pingpong_mode(sk))) &&
1546 		      !atomic_read(&sk->sk_rmem_alloc)))
1547 			time_to_ack = true;
1548 	}
1549 
1550 	/* We send an ACK if we can now advertise a non-zero window
1551 	 * which has been raised "significantly".
1552 	 *
1553 	 * Even if window raised up to infinity, do not send window open ACK
1554 	 * in states, where we will not receive more. It is useless.
1555 	 */
1556 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1557 		__u32 rcv_window_now = tcp_receive_window(tp);
1558 
1559 		/* Optimize, __tcp_select_window() is not cheap. */
1560 		if (2*rcv_window_now <= tp->window_clamp) {
1561 			__u32 new_window = __tcp_select_window(sk);
1562 
1563 			/* Send ACK now, if this read freed lots of space
1564 			 * in our buffer. Certainly, new_window is new window.
1565 			 * We can advertise it now, if it is not less than current one.
1566 			 * "Lots" means "at least twice" here.
1567 			 */
1568 			if (new_window && new_window >= 2 * rcv_window_now)
1569 				time_to_ack = true;
1570 		}
1571 	}
1572 	if (time_to_ack)
1573 		tcp_send_ack(sk);
1574 }
1575 
1576 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1577 {
1578 	struct sk_buff *skb;
1579 	u32 offset;
1580 
1581 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1582 		offset = seq - TCP_SKB_CB(skb)->seq;
1583 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1584 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1585 			offset--;
1586 		}
1587 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1588 			*off = offset;
1589 			return skb;
1590 		}
1591 		/* This looks weird, but this can happen if TCP collapsing
1592 		 * splitted a fat GRO packet, while we released socket lock
1593 		 * in skb_splice_bits()
1594 		 */
1595 		sk_eat_skb(sk, skb);
1596 	}
1597 	return NULL;
1598 }
1599 
1600 /*
1601  * This routine provides an alternative to tcp_recvmsg() for routines
1602  * that would like to handle copying from skbuffs directly in 'sendfile'
1603  * fashion.
1604  * Note:
1605  *	- It is assumed that the socket was locked by the caller.
1606  *	- The routine does not block.
1607  *	- At present, there is no support for reading OOB data
1608  *	  or for 'peeking' the socket using this routine
1609  *	  (although both would be easy to implement).
1610  */
1611 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1612 		  sk_read_actor_t recv_actor)
1613 {
1614 	struct sk_buff *skb;
1615 	struct tcp_sock *tp = tcp_sk(sk);
1616 	u32 seq = tp->copied_seq;
1617 	u32 offset;
1618 	int copied = 0;
1619 
1620 	if (sk->sk_state == TCP_LISTEN)
1621 		return -ENOTCONN;
1622 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1623 		if (offset < skb->len) {
1624 			int used;
1625 			size_t len;
1626 
1627 			len = skb->len - offset;
1628 			/* Stop reading if we hit a patch of urgent data */
1629 			if (tp->urg_data) {
1630 				u32 urg_offset = tp->urg_seq - seq;
1631 				if (urg_offset < len)
1632 					len = urg_offset;
1633 				if (!len)
1634 					break;
1635 			}
1636 			used = recv_actor(desc, skb, offset, len);
1637 			if (used <= 0) {
1638 				if (!copied)
1639 					copied = used;
1640 				break;
1641 			} else if (used <= len) {
1642 				seq += used;
1643 				copied += used;
1644 				offset += used;
1645 			}
1646 			/* If recv_actor drops the lock (e.g. TCP splice
1647 			 * receive) the skb pointer might be invalid when
1648 			 * getting here: tcp_collapse might have deleted it
1649 			 * while aggregating skbs from the socket queue.
1650 			 */
1651 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1652 			if (!skb)
1653 				break;
1654 			/* TCP coalescing might have appended data to the skb.
1655 			 * Try to splice more frags
1656 			 */
1657 			if (offset + 1 != skb->len)
1658 				continue;
1659 		}
1660 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1661 			sk_eat_skb(sk, skb);
1662 			++seq;
1663 			break;
1664 		}
1665 		sk_eat_skb(sk, skb);
1666 		if (!desc->count)
1667 			break;
1668 		tp->copied_seq = seq;
1669 	}
1670 	tp->copied_seq = seq;
1671 
1672 	tcp_rcv_space_adjust(sk);
1673 
1674 	/* Clean up data we have read: This will do ACK frames. */
1675 	if (copied > 0) {
1676 		tcp_recv_skb(sk, seq, &offset);
1677 		tcp_cleanup_rbuf(sk, copied);
1678 	}
1679 	return copied;
1680 }
1681 EXPORT_SYMBOL(tcp_read_sock);
1682 
1683 int tcp_peek_len(struct socket *sock)
1684 {
1685 	return tcp_inq(sock->sk);
1686 }
1687 EXPORT_SYMBOL(tcp_peek_len);
1688 
1689 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1690 int tcp_set_rcvlowat(struct sock *sk, int val)
1691 {
1692 	int cap;
1693 
1694 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1695 		cap = sk->sk_rcvbuf >> 1;
1696 	else
1697 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1698 	val = min(val, cap);
1699 	sk->sk_rcvlowat = val ? : 1;
1700 
1701 	/* Check if we need to signal EPOLLIN right now */
1702 	tcp_data_ready(sk);
1703 
1704 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1705 		return 0;
1706 
1707 	val <<= 1;
1708 	if (val > sk->sk_rcvbuf) {
1709 		sk->sk_rcvbuf = val;
1710 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1711 	}
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL(tcp_set_rcvlowat);
1715 
1716 #ifdef CONFIG_MMU
1717 static const struct vm_operations_struct tcp_vm_ops = {
1718 };
1719 
1720 int tcp_mmap(struct file *file, struct socket *sock,
1721 	     struct vm_area_struct *vma)
1722 {
1723 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1724 		return -EPERM;
1725 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1726 
1727 	/* Instruct vm_insert_page() to not down_read(mmap_sem) */
1728 	vma->vm_flags |= VM_MIXEDMAP;
1729 
1730 	vma->vm_ops = &tcp_vm_ops;
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL(tcp_mmap);
1734 
1735 static int tcp_zerocopy_receive(struct sock *sk,
1736 				struct tcp_zerocopy_receive *zc)
1737 {
1738 	unsigned long address = (unsigned long)zc->address;
1739 	const skb_frag_t *frags = NULL;
1740 	u32 length = 0, seq, offset;
1741 	struct vm_area_struct *vma;
1742 	struct sk_buff *skb = NULL;
1743 	struct tcp_sock *tp;
1744 	int inq;
1745 	int ret;
1746 
1747 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1748 		return -EINVAL;
1749 
1750 	if (sk->sk_state == TCP_LISTEN)
1751 		return -ENOTCONN;
1752 
1753 	sock_rps_record_flow(sk);
1754 
1755 	down_read(&current->mm->mmap_sem);
1756 
1757 	ret = -EINVAL;
1758 	vma = find_vma(current->mm, address);
1759 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1760 		goto out;
1761 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1762 
1763 	tp = tcp_sk(sk);
1764 	seq = tp->copied_seq;
1765 	inq = tcp_inq(sk);
1766 	zc->length = min_t(u32, zc->length, inq);
1767 	zc->length &= ~(PAGE_SIZE - 1);
1768 	if (zc->length) {
1769 		zap_page_range(vma, address, zc->length);
1770 		zc->recv_skip_hint = 0;
1771 	} else {
1772 		zc->recv_skip_hint = inq;
1773 	}
1774 	ret = 0;
1775 	while (length + PAGE_SIZE <= zc->length) {
1776 		if (zc->recv_skip_hint < PAGE_SIZE) {
1777 			if (skb) {
1778 				skb = skb->next;
1779 				offset = seq - TCP_SKB_CB(skb)->seq;
1780 			} else {
1781 				skb = tcp_recv_skb(sk, seq, &offset);
1782 			}
1783 
1784 			zc->recv_skip_hint = skb->len - offset;
1785 			offset -= skb_headlen(skb);
1786 			if ((int)offset < 0 || skb_has_frag_list(skb))
1787 				break;
1788 			frags = skb_shinfo(skb)->frags;
1789 			while (offset) {
1790 				if (frags->size > offset)
1791 					goto out;
1792 				offset -= frags->size;
1793 				frags++;
1794 			}
1795 		}
1796 		if (frags->size != PAGE_SIZE || frags->page_offset) {
1797 			int remaining = zc->recv_skip_hint;
1798 
1799 			while (remaining && (frags->size != PAGE_SIZE ||
1800 					     frags->page_offset)) {
1801 				remaining -= frags->size;
1802 				frags++;
1803 			}
1804 			zc->recv_skip_hint -= remaining;
1805 			break;
1806 		}
1807 		ret = vm_insert_page(vma, address + length,
1808 				     skb_frag_page(frags));
1809 		if (ret)
1810 			break;
1811 		length += PAGE_SIZE;
1812 		seq += PAGE_SIZE;
1813 		zc->recv_skip_hint -= PAGE_SIZE;
1814 		frags++;
1815 	}
1816 out:
1817 	up_read(&current->mm->mmap_sem);
1818 	if (length) {
1819 		tp->copied_seq = seq;
1820 		tcp_rcv_space_adjust(sk);
1821 
1822 		/* Clean up data we have read: This will do ACK frames. */
1823 		tcp_recv_skb(sk, seq, &offset);
1824 		tcp_cleanup_rbuf(sk, length);
1825 		ret = 0;
1826 		if (length == zc->length)
1827 			zc->recv_skip_hint = 0;
1828 	} else {
1829 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1830 			ret = -EIO;
1831 	}
1832 	zc->length = length;
1833 	return ret;
1834 }
1835 #endif
1836 
1837 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1838 				    struct scm_timestamping_internal *tss)
1839 {
1840 	if (skb->tstamp)
1841 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1842 	else
1843 		tss->ts[0] = (struct timespec64) {0};
1844 
1845 	if (skb_hwtstamps(skb)->hwtstamp)
1846 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1847 	else
1848 		tss->ts[2] = (struct timespec64) {0};
1849 }
1850 
1851 /* Similar to __sock_recv_timestamp, but does not require an skb */
1852 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1853 			       struct scm_timestamping_internal *tss)
1854 {
1855 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1856 	bool has_timestamping = false;
1857 
1858 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1859 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1860 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1861 				if (new_tstamp) {
1862 					struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec};
1863 
1864 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1865 						 sizeof(kts), &kts);
1866 				} else {
1867 					struct timespec ts_old = timespec64_to_timespec(tss->ts[0]);
1868 
1869 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1870 						 sizeof(ts_old), &ts_old);
1871 				}
1872 			} else {
1873 				if (new_tstamp) {
1874 					struct __kernel_sock_timeval stv;
1875 
1876 					stv.tv_sec = tss->ts[0].tv_sec;
1877 					stv.tv_usec = tss->ts[0].tv_nsec / 1000;
1878 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1879 						 sizeof(stv), &stv);
1880 				} else {
1881 					struct __kernel_old_timeval tv;
1882 
1883 					tv.tv_sec = tss->ts[0].tv_sec;
1884 					tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1885 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1886 						 sizeof(tv), &tv);
1887 				}
1888 			}
1889 		}
1890 
1891 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1892 			has_timestamping = true;
1893 		else
1894 			tss->ts[0] = (struct timespec64) {0};
1895 	}
1896 
1897 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1898 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1899 			has_timestamping = true;
1900 		else
1901 			tss->ts[2] = (struct timespec64) {0};
1902 	}
1903 
1904 	if (has_timestamping) {
1905 		tss->ts[1] = (struct timespec64) {0};
1906 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1907 			put_cmsg_scm_timestamping64(msg, tss);
1908 		else
1909 			put_cmsg_scm_timestamping(msg, tss);
1910 	}
1911 }
1912 
1913 static int tcp_inq_hint(struct sock *sk)
1914 {
1915 	const struct tcp_sock *tp = tcp_sk(sk);
1916 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1917 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1918 	int inq;
1919 
1920 	inq = rcv_nxt - copied_seq;
1921 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1922 		lock_sock(sk);
1923 		inq = tp->rcv_nxt - tp->copied_seq;
1924 		release_sock(sk);
1925 	}
1926 	/* After receiving a FIN, tell the user-space to continue reading
1927 	 * by returning a non-zero inq.
1928 	 */
1929 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
1930 		inq = 1;
1931 	return inq;
1932 }
1933 
1934 /*
1935  *	This routine copies from a sock struct into the user buffer.
1936  *
1937  *	Technical note: in 2.3 we work on _locked_ socket, so that
1938  *	tricks with *seq access order and skb->users are not required.
1939  *	Probably, code can be easily improved even more.
1940  */
1941 
1942 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1943 		int flags, int *addr_len)
1944 {
1945 	struct tcp_sock *tp = tcp_sk(sk);
1946 	int copied = 0;
1947 	u32 peek_seq;
1948 	u32 *seq;
1949 	unsigned long used;
1950 	int err, inq;
1951 	int target;		/* Read at least this many bytes */
1952 	long timeo;
1953 	struct sk_buff *skb, *last;
1954 	u32 urg_hole = 0;
1955 	struct scm_timestamping_internal tss;
1956 	bool has_tss = false;
1957 	bool has_cmsg;
1958 
1959 	if (unlikely(flags & MSG_ERRQUEUE))
1960 		return inet_recv_error(sk, msg, len, addr_len);
1961 
1962 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1963 	    (sk->sk_state == TCP_ESTABLISHED))
1964 		sk_busy_loop(sk, nonblock);
1965 
1966 	lock_sock(sk);
1967 
1968 	err = -ENOTCONN;
1969 	if (sk->sk_state == TCP_LISTEN)
1970 		goto out;
1971 
1972 	has_cmsg = tp->recvmsg_inq;
1973 	timeo = sock_rcvtimeo(sk, nonblock);
1974 
1975 	/* Urgent data needs to be handled specially. */
1976 	if (flags & MSG_OOB)
1977 		goto recv_urg;
1978 
1979 	if (unlikely(tp->repair)) {
1980 		err = -EPERM;
1981 		if (!(flags & MSG_PEEK))
1982 			goto out;
1983 
1984 		if (tp->repair_queue == TCP_SEND_QUEUE)
1985 			goto recv_sndq;
1986 
1987 		err = -EINVAL;
1988 		if (tp->repair_queue == TCP_NO_QUEUE)
1989 			goto out;
1990 
1991 		/* 'common' recv queue MSG_PEEK-ing */
1992 	}
1993 
1994 	seq = &tp->copied_seq;
1995 	if (flags & MSG_PEEK) {
1996 		peek_seq = tp->copied_seq;
1997 		seq = &peek_seq;
1998 	}
1999 
2000 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2001 
2002 	do {
2003 		u32 offset;
2004 
2005 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2006 		if (tp->urg_data && tp->urg_seq == *seq) {
2007 			if (copied)
2008 				break;
2009 			if (signal_pending(current)) {
2010 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2011 				break;
2012 			}
2013 		}
2014 
2015 		/* Next get a buffer. */
2016 
2017 		last = skb_peek_tail(&sk->sk_receive_queue);
2018 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2019 			last = skb;
2020 			/* Now that we have two receive queues this
2021 			 * shouldn't happen.
2022 			 */
2023 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2024 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2025 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2026 				 flags))
2027 				break;
2028 
2029 			offset = *seq - TCP_SKB_CB(skb)->seq;
2030 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2031 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2032 				offset--;
2033 			}
2034 			if (offset < skb->len)
2035 				goto found_ok_skb;
2036 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2037 				goto found_fin_ok;
2038 			WARN(!(flags & MSG_PEEK),
2039 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2040 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2041 		}
2042 
2043 		/* Well, if we have backlog, try to process it now yet. */
2044 
2045 		if (copied >= target && !sk->sk_backlog.tail)
2046 			break;
2047 
2048 		if (copied) {
2049 			if (sk->sk_err ||
2050 			    sk->sk_state == TCP_CLOSE ||
2051 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2052 			    !timeo ||
2053 			    signal_pending(current))
2054 				break;
2055 		} else {
2056 			if (sock_flag(sk, SOCK_DONE))
2057 				break;
2058 
2059 			if (sk->sk_err) {
2060 				copied = sock_error(sk);
2061 				break;
2062 			}
2063 
2064 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2065 				break;
2066 
2067 			if (sk->sk_state == TCP_CLOSE) {
2068 				/* This occurs when user tries to read
2069 				 * from never connected socket.
2070 				 */
2071 				copied = -ENOTCONN;
2072 				break;
2073 			}
2074 
2075 			if (!timeo) {
2076 				copied = -EAGAIN;
2077 				break;
2078 			}
2079 
2080 			if (signal_pending(current)) {
2081 				copied = sock_intr_errno(timeo);
2082 				break;
2083 			}
2084 		}
2085 
2086 		tcp_cleanup_rbuf(sk, copied);
2087 
2088 		if (copied >= target) {
2089 			/* Do not sleep, just process backlog. */
2090 			release_sock(sk);
2091 			lock_sock(sk);
2092 		} else {
2093 			sk_wait_data(sk, &timeo, last);
2094 		}
2095 
2096 		if ((flags & MSG_PEEK) &&
2097 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2098 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2099 					    current->comm,
2100 					    task_pid_nr(current));
2101 			peek_seq = tp->copied_seq;
2102 		}
2103 		continue;
2104 
2105 found_ok_skb:
2106 		/* Ok so how much can we use? */
2107 		used = skb->len - offset;
2108 		if (len < used)
2109 			used = len;
2110 
2111 		/* Do we have urgent data here? */
2112 		if (tp->urg_data) {
2113 			u32 urg_offset = tp->urg_seq - *seq;
2114 			if (urg_offset < used) {
2115 				if (!urg_offset) {
2116 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2117 						++*seq;
2118 						urg_hole++;
2119 						offset++;
2120 						used--;
2121 						if (!used)
2122 							goto skip_copy;
2123 					}
2124 				} else
2125 					used = urg_offset;
2126 			}
2127 		}
2128 
2129 		if (!(flags & MSG_TRUNC)) {
2130 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2131 			if (err) {
2132 				/* Exception. Bailout! */
2133 				if (!copied)
2134 					copied = -EFAULT;
2135 				break;
2136 			}
2137 		}
2138 
2139 		*seq += used;
2140 		copied += used;
2141 		len -= used;
2142 
2143 		tcp_rcv_space_adjust(sk);
2144 
2145 skip_copy:
2146 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2147 			tp->urg_data = 0;
2148 			tcp_fast_path_check(sk);
2149 		}
2150 		if (used + offset < skb->len)
2151 			continue;
2152 
2153 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2154 			tcp_update_recv_tstamps(skb, &tss);
2155 			has_tss = true;
2156 			has_cmsg = true;
2157 		}
2158 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2159 			goto found_fin_ok;
2160 		if (!(flags & MSG_PEEK))
2161 			sk_eat_skb(sk, skb);
2162 		continue;
2163 
2164 found_fin_ok:
2165 		/* Process the FIN. */
2166 		++*seq;
2167 		if (!(flags & MSG_PEEK))
2168 			sk_eat_skb(sk, skb);
2169 		break;
2170 	} while (len > 0);
2171 
2172 	/* According to UNIX98, msg_name/msg_namelen are ignored
2173 	 * on connected socket. I was just happy when found this 8) --ANK
2174 	 */
2175 
2176 	/* Clean up data we have read: This will do ACK frames. */
2177 	tcp_cleanup_rbuf(sk, copied);
2178 
2179 	release_sock(sk);
2180 
2181 	if (has_cmsg) {
2182 		if (has_tss)
2183 			tcp_recv_timestamp(msg, sk, &tss);
2184 		if (tp->recvmsg_inq) {
2185 			inq = tcp_inq_hint(sk);
2186 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2187 		}
2188 	}
2189 
2190 	return copied;
2191 
2192 out:
2193 	release_sock(sk);
2194 	return err;
2195 
2196 recv_urg:
2197 	err = tcp_recv_urg(sk, msg, len, flags);
2198 	goto out;
2199 
2200 recv_sndq:
2201 	err = tcp_peek_sndq(sk, msg, len);
2202 	goto out;
2203 }
2204 EXPORT_SYMBOL(tcp_recvmsg);
2205 
2206 void tcp_set_state(struct sock *sk, int state)
2207 {
2208 	int oldstate = sk->sk_state;
2209 
2210 	/* We defined a new enum for TCP states that are exported in BPF
2211 	 * so as not force the internal TCP states to be frozen. The
2212 	 * following checks will detect if an internal state value ever
2213 	 * differs from the BPF value. If this ever happens, then we will
2214 	 * need to remap the internal value to the BPF value before calling
2215 	 * tcp_call_bpf_2arg.
2216 	 */
2217 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2218 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2219 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2220 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2221 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2222 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2223 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2224 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2225 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2226 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2227 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2228 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2229 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2230 
2231 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2232 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2233 
2234 	switch (state) {
2235 	case TCP_ESTABLISHED:
2236 		if (oldstate != TCP_ESTABLISHED)
2237 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2238 		break;
2239 
2240 	case TCP_CLOSE:
2241 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2242 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2243 
2244 		sk->sk_prot->unhash(sk);
2245 		if (inet_csk(sk)->icsk_bind_hash &&
2246 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2247 			inet_put_port(sk);
2248 		/* fall through */
2249 	default:
2250 		if (oldstate == TCP_ESTABLISHED)
2251 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2252 	}
2253 
2254 	/* Change state AFTER socket is unhashed to avoid closed
2255 	 * socket sitting in hash tables.
2256 	 */
2257 	inet_sk_state_store(sk, state);
2258 }
2259 EXPORT_SYMBOL_GPL(tcp_set_state);
2260 
2261 /*
2262  *	State processing on a close. This implements the state shift for
2263  *	sending our FIN frame. Note that we only send a FIN for some
2264  *	states. A shutdown() may have already sent the FIN, or we may be
2265  *	closed.
2266  */
2267 
2268 static const unsigned char new_state[16] = {
2269   /* current state:        new state:      action:	*/
2270   [0 /* (Invalid) */]	= TCP_CLOSE,
2271   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2272   [TCP_SYN_SENT]	= TCP_CLOSE,
2273   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2274   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2275   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2276   [TCP_TIME_WAIT]	= TCP_CLOSE,
2277   [TCP_CLOSE]		= TCP_CLOSE,
2278   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2279   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2280   [TCP_LISTEN]		= TCP_CLOSE,
2281   [TCP_CLOSING]		= TCP_CLOSING,
2282   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2283 };
2284 
2285 static int tcp_close_state(struct sock *sk)
2286 {
2287 	int next = (int)new_state[sk->sk_state];
2288 	int ns = next & TCP_STATE_MASK;
2289 
2290 	tcp_set_state(sk, ns);
2291 
2292 	return next & TCP_ACTION_FIN;
2293 }
2294 
2295 /*
2296  *	Shutdown the sending side of a connection. Much like close except
2297  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2298  */
2299 
2300 void tcp_shutdown(struct sock *sk, int how)
2301 {
2302 	/*	We need to grab some memory, and put together a FIN,
2303 	 *	and then put it into the queue to be sent.
2304 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2305 	 */
2306 	if (!(how & SEND_SHUTDOWN))
2307 		return;
2308 
2309 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2310 	if ((1 << sk->sk_state) &
2311 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2312 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2313 		/* Clear out any half completed packets.  FIN if needed. */
2314 		if (tcp_close_state(sk))
2315 			tcp_send_fin(sk);
2316 	}
2317 }
2318 EXPORT_SYMBOL(tcp_shutdown);
2319 
2320 bool tcp_check_oom(struct sock *sk, int shift)
2321 {
2322 	bool too_many_orphans, out_of_socket_memory;
2323 
2324 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2325 	out_of_socket_memory = tcp_out_of_memory(sk);
2326 
2327 	if (too_many_orphans)
2328 		net_info_ratelimited("too many orphaned sockets\n");
2329 	if (out_of_socket_memory)
2330 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2331 	return too_many_orphans || out_of_socket_memory;
2332 }
2333 
2334 void tcp_close(struct sock *sk, long timeout)
2335 {
2336 	struct sk_buff *skb;
2337 	int data_was_unread = 0;
2338 	int state;
2339 
2340 	lock_sock(sk);
2341 	sk->sk_shutdown = SHUTDOWN_MASK;
2342 
2343 	if (sk->sk_state == TCP_LISTEN) {
2344 		tcp_set_state(sk, TCP_CLOSE);
2345 
2346 		/* Special case. */
2347 		inet_csk_listen_stop(sk);
2348 
2349 		goto adjudge_to_death;
2350 	}
2351 
2352 	/*  We need to flush the recv. buffs.  We do this only on the
2353 	 *  descriptor close, not protocol-sourced closes, because the
2354 	 *  reader process may not have drained the data yet!
2355 	 */
2356 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2357 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2358 
2359 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2360 			len--;
2361 		data_was_unread += len;
2362 		__kfree_skb(skb);
2363 	}
2364 
2365 	sk_mem_reclaim(sk);
2366 
2367 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2368 	if (sk->sk_state == TCP_CLOSE)
2369 		goto adjudge_to_death;
2370 
2371 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2372 	 * data was lost. To witness the awful effects of the old behavior of
2373 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2374 	 * GET in an FTP client, suspend the process, wait for the client to
2375 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2376 	 * Note: timeout is always zero in such a case.
2377 	 */
2378 	if (unlikely(tcp_sk(sk)->repair)) {
2379 		sk->sk_prot->disconnect(sk, 0);
2380 	} else if (data_was_unread) {
2381 		/* Unread data was tossed, zap the connection. */
2382 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2383 		tcp_set_state(sk, TCP_CLOSE);
2384 		tcp_send_active_reset(sk, sk->sk_allocation);
2385 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2386 		/* Check zero linger _after_ checking for unread data. */
2387 		sk->sk_prot->disconnect(sk, 0);
2388 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2389 	} else if (tcp_close_state(sk)) {
2390 		/* We FIN if the application ate all the data before
2391 		 * zapping the connection.
2392 		 */
2393 
2394 		/* RED-PEN. Formally speaking, we have broken TCP state
2395 		 * machine. State transitions:
2396 		 *
2397 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2398 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2399 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2400 		 *
2401 		 * are legal only when FIN has been sent (i.e. in window),
2402 		 * rather than queued out of window. Purists blame.
2403 		 *
2404 		 * F.e. "RFC state" is ESTABLISHED,
2405 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2406 		 *
2407 		 * The visible declinations are that sometimes
2408 		 * we enter time-wait state, when it is not required really
2409 		 * (harmless), do not send active resets, when they are
2410 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2411 		 * they look as CLOSING or LAST_ACK for Linux)
2412 		 * Probably, I missed some more holelets.
2413 		 * 						--ANK
2414 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2415 		 * in a single packet! (May consider it later but will
2416 		 * probably need API support or TCP_CORK SYN-ACK until
2417 		 * data is written and socket is closed.)
2418 		 */
2419 		tcp_send_fin(sk);
2420 	}
2421 
2422 	sk_stream_wait_close(sk, timeout);
2423 
2424 adjudge_to_death:
2425 	state = sk->sk_state;
2426 	sock_hold(sk);
2427 	sock_orphan(sk);
2428 
2429 	local_bh_disable();
2430 	bh_lock_sock(sk);
2431 	/* remove backlog if any, without releasing ownership. */
2432 	__release_sock(sk);
2433 
2434 	percpu_counter_inc(sk->sk_prot->orphan_count);
2435 
2436 	/* Have we already been destroyed by a softirq or backlog? */
2437 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2438 		goto out;
2439 
2440 	/*	This is a (useful) BSD violating of the RFC. There is a
2441 	 *	problem with TCP as specified in that the other end could
2442 	 *	keep a socket open forever with no application left this end.
2443 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2444 	 *	our end. If they send after that then tough - BUT: long enough
2445 	 *	that we won't make the old 4*rto = almost no time - whoops
2446 	 *	reset mistake.
2447 	 *
2448 	 *	Nope, it was not mistake. It is really desired behaviour
2449 	 *	f.e. on http servers, when such sockets are useless, but
2450 	 *	consume significant resources. Let's do it with special
2451 	 *	linger2	option.					--ANK
2452 	 */
2453 
2454 	if (sk->sk_state == TCP_FIN_WAIT2) {
2455 		struct tcp_sock *tp = tcp_sk(sk);
2456 		if (tp->linger2 < 0) {
2457 			tcp_set_state(sk, TCP_CLOSE);
2458 			tcp_send_active_reset(sk, GFP_ATOMIC);
2459 			__NET_INC_STATS(sock_net(sk),
2460 					LINUX_MIB_TCPABORTONLINGER);
2461 		} else {
2462 			const int tmo = tcp_fin_time(sk);
2463 
2464 			if (tmo > TCP_TIMEWAIT_LEN) {
2465 				inet_csk_reset_keepalive_timer(sk,
2466 						tmo - TCP_TIMEWAIT_LEN);
2467 			} else {
2468 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2469 				goto out;
2470 			}
2471 		}
2472 	}
2473 	if (sk->sk_state != TCP_CLOSE) {
2474 		sk_mem_reclaim(sk);
2475 		if (tcp_check_oom(sk, 0)) {
2476 			tcp_set_state(sk, TCP_CLOSE);
2477 			tcp_send_active_reset(sk, GFP_ATOMIC);
2478 			__NET_INC_STATS(sock_net(sk),
2479 					LINUX_MIB_TCPABORTONMEMORY);
2480 		} else if (!check_net(sock_net(sk))) {
2481 			/* Not possible to send reset; just close */
2482 			tcp_set_state(sk, TCP_CLOSE);
2483 		}
2484 	}
2485 
2486 	if (sk->sk_state == TCP_CLOSE) {
2487 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2488 		/* We could get here with a non-NULL req if the socket is
2489 		 * aborted (e.g., closed with unread data) before 3WHS
2490 		 * finishes.
2491 		 */
2492 		if (req)
2493 			reqsk_fastopen_remove(sk, req, false);
2494 		inet_csk_destroy_sock(sk);
2495 	}
2496 	/* Otherwise, socket is reprieved until protocol close. */
2497 
2498 out:
2499 	bh_unlock_sock(sk);
2500 	local_bh_enable();
2501 	release_sock(sk);
2502 	sock_put(sk);
2503 }
2504 EXPORT_SYMBOL(tcp_close);
2505 
2506 /* These states need RST on ABORT according to RFC793 */
2507 
2508 static inline bool tcp_need_reset(int state)
2509 {
2510 	return (1 << state) &
2511 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2512 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2513 }
2514 
2515 static void tcp_rtx_queue_purge(struct sock *sk)
2516 {
2517 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2518 
2519 	while (p) {
2520 		struct sk_buff *skb = rb_to_skb(p);
2521 
2522 		p = rb_next(p);
2523 		/* Since we are deleting whole queue, no need to
2524 		 * list_del(&skb->tcp_tsorted_anchor)
2525 		 */
2526 		tcp_rtx_queue_unlink(skb, sk);
2527 		sk_wmem_free_skb(sk, skb);
2528 	}
2529 }
2530 
2531 void tcp_write_queue_purge(struct sock *sk)
2532 {
2533 	struct sk_buff *skb;
2534 
2535 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2536 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2537 		tcp_skb_tsorted_anchor_cleanup(skb);
2538 		sk_wmem_free_skb(sk, skb);
2539 	}
2540 	tcp_rtx_queue_purge(sk);
2541 	skb = sk->sk_tx_skb_cache;
2542 	if (skb) {
2543 		__kfree_skb(skb);
2544 		sk->sk_tx_skb_cache = NULL;
2545 	}
2546 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2547 	sk_mem_reclaim(sk);
2548 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2549 	tcp_sk(sk)->packets_out = 0;
2550 	inet_csk(sk)->icsk_backoff = 0;
2551 }
2552 
2553 int tcp_disconnect(struct sock *sk, int flags)
2554 {
2555 	struct inet_sock *inet = inet_sk(sk);
2556 	struct inet_connection_sock *icsk = inet_csk(sk);
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 	int old_state = sk->sk_state;
2559 
2560 	if (old_state != TCP_CLOSE)
2561 		tcp_set_state(sk, TCP_CLOSE);
2562 
2563 	/* ABORT function of RFC793 */
2564 	if (old_state == TCP_LISTEN) {
2565 		inet_csk_listen_stop(sk);
2566 	} else if (unlikely(tp->repair)) {
2567 		sk->sk_err = ECONNABORTED;
2568 	} else if (tcp_need_reset(old_state) ||
2569 		   (tp->snd_nxt != tp->write_seq &&
2570 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2571 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2572 		 * states
2573 		 */
2574 		tcp_send_active_reset(sk, gfp_any());
2575 		sk->sk_err = ECONNRESET;
2576 	} else if (old_state == TCP_SYN_SENT)
2577 		sk->sk_err = ECONNRESET;
2578 
2579 	tcp_clear_xmit_timers(sk);
2580 	__skb_queue_purge(&sk->sk_receive_queue);
2581 	if (sk->sk_rx_skb_cache) {
2582 		__kfree_skb(sk->sk_rx_skb_cache);
2583 		sk->sk_rx_skb_cache = NULL;
2584 	}
2585 	tp->copied_seq = tp->rcv_nxt;
2586 	tp->urg_data = 0;
2587 	tcp_write_queue_purge(sk);
2588 	tcp_fastopen_active_disable_ofo_check(sk);
2589 	skb_rbtree_purge(&tp->out_of_order_queue);
2590 
2591 	inet->inet_dport = 0;
2592 
2593 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2594 		inet_reset_saddr(sk);
2595 
2596 	sk->sk_shutdown = 0;
2597 	sock_reset_flag(sk, SOCK_DONE);
2598 	tp->srtt_us = 0;
2599 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2600 	tp->rcv_rtt_last_tsecr = 0;
2601 	tp->write_seq += tp->max_window + 2;
2602 	if (tp->write_seq == 0)
2603 		tp->write_seq = 1;
2604 	icsk->icsk_backoff = 0;
2605 	tp->snd_cwnd = 2;
2606 	icsk->icsk_probes_out = 0;
2607 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2608 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2609 	tp->snd_cwnd = TCP_INIT_CWND;
2610 	tp->snd_cwnd_cnt = 0;
2611 	tp->window_clamp = 0;
2612 	tp->delivered_ce = 0;
2613 	tcp_set_ca_state(sk, TCP_CA_Open);
2614 	tp->is_sack_reneg = 0;
2615 	tcp_clear_retrans(tp);
2616 	inet_csk_delack_init(sk);
2617 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2618 	 * issue in __tcp_select_window()
2619 	 */
2620 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2621 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2622 	__sk_dst_reset(sk);
2623 	dst_release(sk->sk_rx_dst);
2624 	sk->sk_rx_dst = NULL;
2625 	tcp_saved_syn_free(tp);
2626 	tp->compressed_ack = 0;
2627 	tp->bytes_sent = 0;
2628 	tp->bytes_retrans = 0;
2629 	tp->duplicate_sack[0].start_seq = 0;
2630 	tp->duplicate_sack[0].end_seq = 0;
2631 	tp->dsack_dups = 0;
2632 	tp->reord_seen = 0;
2633 	tp->retrans_out = 0;
2634 	tp->sacked_out = 0;
2635 	tp->tlp_high_seq = 0;
2636 	tp->last_oow_ack_time = 0;
2637 	/* There's a bubble in the pipe until at least the first ACK. */
2638 	tp->app_limited = ~0U;
2639 	tp->rack.mstamp = 0;
2640 	tp->rack.advanced = 0;
2641 	tp->rack.reo_wnd_steps = 1;
2642 	tp->rack.last_delivered = 0;
2643 	tp->rack.reo_wnd_persist = 0;
2644 	tp->rack.dsack_seen = 0;
2645 	tp->syn_data_acked = 0;
2646 	tp->rx_opt.saw_tstamp = 0;
2647 	tp->rx_opt.dsack = 0;
2648 	tp->rx_opt.num_sacks = 0;
2649 
2650 
2651 	/* Clean up fastopen related fields */
2652 	tcp_free_fastopen_req(tp);
2653 	inet->defer_connect = 0;
2654 
2655 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2656 
2657 	if (sk->sk_frag.page) {
2658 		put_page(sk->sk_frag.page);
2659 		sk->sk_frag.page = NULL;
2660 		sk->sk_frag.offset = 0;
2661 	}
2662 
2663 	sk->sk_error_report(sk);
2664 	return 0;
2665 }
2666 EXPORT_SYMBOL(tcp_disconnect);
2667 
2668 static inline bool tcp_can_repair_sock(const struct sock *sk)
2669 {
2670 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2671 		(sk->sk_state != TCP_LISTEN);
2672 }
2673 
2674 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2675 {
2676 	struct tcp_repair_window opt;
2677 
2678 	if (!tp->repair)
2679 		return -EPERM;
2680 
2681 	if (len != sizeof(opt))
2682 		return -EINVAL;
2683 
2684 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2685 		return -EFAULT;
2686 
2687 	if (opt.max_window < opt.snd_wnd)
2688 		return -EINVAL;
2689 
2690 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2691 		return -EINVAL;
2692 
2693 	if (after(opt.rcv_wup, tp->rcv_nxt))
2694 		return -EINVAL;
2695 
2696 	tp->snd_wl1	= opt.snd_wl1;
2697 	tp->snd_wnd	= opt.snd_wnd;
2698 	tp->max_window	= opt.max_window;
2699 
2700 	tp->rcv_wnd	= opt.rcv_wnd;
2701 	tp->rcv_wup	= opt.rcv_wup;
2702 
2703 	return 0;
2704 }
2705 
2706 static int tcp_repair_options_est(struct sock *sk,
2707 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2708 {
2709 	struct tcp_sock *tp = tcp_sk(sk);
2710 	struct tcp_repair_opt opt;
2711 
2712 	while (len >= sizeof(opt)) {
2713 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2714 			return -EFAULT;
2715 
2716 		optbuf++;
2717 		len -= sizeof(opt);
2718 
2719 		switch (opt.opt_code) {
2720 		case TCPOPT_MSS:
2721 			tp->rx_opt.mss_clamp = opt.opt_val;
2722 			tcp_mtup_init(sk);
2723 			break;
2724 		case TCPOPT_WINDOW:
2725 			{
2726 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2727 				u16 rcv_wscale = opt.opt_val >> 16;
2728 
2729 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2730 					return -EFBIG;
2731 
2732 				tp->rx_opt.snd_wscale = snd_wscale;
2733 				tp->rx_opt.rcv_wscale = rcv_wscale;
2734 				tp->rx_opt.wscale_ok = 1;
2735 			}
2736 			break;
2737 		case TCPOPT_SACK_PERM:
2738 			if (opt.opt_val != 0)
2739 				return -EINVAL;
2740 
2741 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2742 			break;
2743 		case TCPOPT_TIMESTAMP:
2744 			if (opt.opt_val != 0)
2745 				return -EINVAL;
2746 
2747 			tp->rx_opt.tstamp_ok = 1;
2748 			break;
2749 		}
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 /*
2756  *	Socket option code for TCP.
2757  */
2758 static int do_tcp_setsockopt(struct sock *sk, int level,
2759 		int optname, char __user *optval, unsigned int optlen)
2760 {
2761 	struct tcp_sock *tp = tcp_sk(sk);
2762 	struct inet_connection_sock *icsk = inet_csk(sk);
2763 	struct net *net = sock_net(sk);
2764 	int val;
2765 	int err = 0;
2766 
2767 	/* These are data/string values, all the others are ints */
2768 	switch (optname) {
2769 	case TCP_CONGESTION: {
2770 		char name[TCP_CA_NAME_MAX];
2771 
2772 		if (optlen < 1)
2773 			return -EINVAL;
2774 
2775 		val = strncpy_from_user(name, optval,
2776 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2777 		if (val < 0)
2778 			return -EFAULT;
2779 		name[val] = 0;
2780 
2781 		lock_sock(sk);
2782 		err = tcp_set_congestion_control(sk, name, true, true);
2783 		release_sock(sk);
2784 		return err;
2785 	}
2786 	case TCP_ULP: {
2787 		char name[TCP_ULP_NAME_MAX];
2788 
2789 		if (optlen < 1)
2790 			return -EINVAL;
2791 
2792 		val = strncpy_from_user(name, optval,
2793 					min_t(long, TCP_ULP_NAME_MAX - 1,
2794 					      optlen));
2795 		if (val < 0)
2796 			return -EFAULT;
2797 		name[val] = 0;
2798 
2799 		lock_sock(sk);
2800 		err = tcp_set_ulp(sk, name);
2801 		release_sock(sk);
2802 		return err;
2803 	}
2804 	case TCP_FASTOPEN_KEY: {
2805 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2806 
2807 		if (optlen != sizeof(key))
2808 			return -EINVAL;
2809 
2810 		if (copy_from_user(key, optval, optlen))
2811 			return -EFAULT;
2812 
2813 		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2814 	}
2815 	default:
2816 		/* fallthru */
2817 		break;
2818 	}
2819 
2820 	if (optlen < sizeof(int))
2821 		return -EINVAL;
2822 
2823 	if (get_user(val, (int __user *)optval))
2824 		return -EFAULT;
2825 
2826 	lock_sock(sk);
2827 
2828 	switch (optname) {
2829 	case TCP_MAXSEG:
2830 		/* Values greater than interface MTU won't take effect. However
2831 		 * at the point when this call is done we typically don't yet
2832 		 * know which interface is going to be used
2833 		 */
2834 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2835 			err = -EINVAL;
2836 			break;
2837 		}
2838 		tp->rx_opt.user_mss = val;
2839 		break;
2840 
2841 	case TCP_NODELAY:
2842 		if (val) {
2843 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2844 			 * this option on corked socket is remembered, but
2845 			 * it is not activated until cork is cleared.
2846 			 *
2847 			 * However, when TCP_NODELAY is set we make
2848 			 * an explicit push, which overrides even TCP_CORK
2849 			 * for currently queued segments.
2850 			 */
2851 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2852 			tcp_push_pending_frames(sk);
2853 		} else {
2854 			tp->nonagle &= ~TCP_NAGLE_OFF;
2855 		}
2856 		break;
2857 
2858 	case TCP_THIN_LINEAR_TIMEOUTS:
2859 		if (val < 0 || val > 1)
2860 			err = -EINVAL;
2861 		else
2862 			tp->thin_lto = val;
2863 		break;
2864 
2865 	case TCP_THIN_DUPACK:
2866 		if (val < 0 || val > 1)
2867 			err = -EINVAL;
2868 		break;
2869 
2870 	case TCP_REPAIR:
2871 		if (!tcp_can_repair_sock(sk))
2872 			err = -EPERM;
2873 		else if (val == TCP_REPAIR_ON) {
2874 			tp->repair = 1;
2875 			sk->sk_reuse = SK_FORCE_REUSE;
2876 			tp->repair_queue = TCP_NO_QUEUE;
2877 		} else if (val == TCP_REPAIR_OFF) {
2878 			tp->repair = 0;
2879 			sk->sk_reuse = SK_NO_REUSE;
2880 			tcp_send_window_probe(sk);
2881 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
2882 			tp->repair = 0;
2883 			sk->sk_reuse = SK_NO_REUSE;
2884 		} else
2885 			err = -EINVAL;
2886 
2887 		break;
2888 
2889 	case TCP_REPAIR_QUEUE:
2890 		if (!tp->repair)
2891 			err = -EPERM;
2892 		else if ((unsigned int)val < TCP_QUEUES_NR)
2893 			tp->repair_queue = val;
2894 		else
2895 			err = -EINVAL;
2896 		break;
2897 
2898 	case TCP_QUEUE_SEQ:
2899 		if (sk->sk_state != TCP_CLOSE)
2900 			err = -EPERM;
2901 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2902 			tp->write_seq = val;
2903 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2904 			tp->rcv_nxt = val;
2905 		else
2906 			err = -EINVAL;
2907 		break;
2908 
2909 	case TCP_REPAIR_OPTIONS:
2910 		if (!tp->repair)
2911 			err = -EINVAL;
2912 		else if (sk->sk_state == TCP_ESTABLISHED)
2913 			err = tcp_repair_options_est(sk,
2914 					(struct tcp_repair_opt __user *)optval,
2915 					optlen);
2916 		else
2917 			err = -EPERM;
2918 		break;
2919 
2920 	case TCP_CORK:
2921 		/* When set indicates to always queue non-full frames.
2922 		 * Later the user clears this option and we transmit
2923 		 * any pending partial frames in the queue.  This is
2924 		 * meant to be used alongside sendfile() to get properly
2925 		 * filled frames when the user (for example) must write
2926 		 * out headers with a write() call first and then use
2927 		 * sendfile to send out the data parts.
2928 		 *
2929 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2930 		 * stronger than TCP_NODELAY.
2931 		 */
2932 		if (val) {
2933 			tp->nonagle |= TCP_NAGLE_CORK;
2934 		} else {
2935 			tp->nonagle &= ~TCP_NAGLE_CORK;
2936 			if (tp->nonagle&TCP_NAGLE_OFF)
2937 				tp->nonagle |= TCP_NAGLE_PUSH;
2938 			tcp_push_pending_frames(sk);
2939 		}
2940 		break;
2941 
2942 	case TCP_KEEPIDLE:
2943 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2944 			err = -EINVAL;
2945 		else {
2946 			tp->keepalive_time = val * HZ;
2947 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2948 			    !((1 << sk->sk_state) &
2949 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2950 				u32 elapsed = keepalive_time_elapsed(tp);
2951 				if (tp->keepalive_time > elapsed)
2952 					elapsed = tp->keepalive_time - elapsed;
2953 				else
2954 					elapsed = 0;
2955 				inet_csk_reset_keepalive_timer(sk, elapsed);
2956 			}
2957 		}
2958 		break;
2959 	case TCP_KEEPINTVL:
2960 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2961 			err = -EINVAL;
2962 		else
2963 			tp->keepalive_intvl = val * HZ;
2964 		break;
2965 	case TCP_KEEPCNT:
2966 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2967 			err = -EINVAL;
2968 		else
2969 			tp->keepalive_probes = val;
2970 		break;
2971 	case TCP_SYNCNT:
2972 		if (val < 1 || val > MAX_TCP_SYNCNT)
2973 			err = -EINVAL;
2974 		else
2975 			icsk->icsk_syn_retries = val;
2976 		break;
2977 
2978 	case TCP_SAVE_SYN:
2979 		if (val < 0 || val > 1)
2980 			err = -EINVAL;
2981 		else
2982 			tp->save_syn = val;
2983 		break;
2984 
2985 	case TCP_LINGER2:
2986 		if (val < 0)
2987 			tp->linger2 = -1;
2988 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2989 			tp->linger2 = 0;
2990 		else
2991 			tp->linger2 = val * HZ;
2992 		break;
2993 
2994 	case TCP_DEFER_ACCEPT:
2995 		/* Translate value in seconds to number of retransmits */
2996 		icsk->icsk_accept_queue.rskq_defer_accept =
2997 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2998 					TCP_RTO_MAX / HZ);
2999 		break;
3000 
3001 	case TCP_WINDOW_CLAMP:
3002 		if (!val) {
3003 			if (sk->sk_state != TCP_CLOSE) {
3004 				err = -EINVAL;
3005 				break;
3006 			}
3007 			tp->window_clamp = 0;
3008 		} else
3009 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3010 						SOCK_MIN_RCVBUF / 2 : val;
3011 		break;
3012 
3013 	case TCP_QUICKACK:
3014 		if (!val) {
3015 			inet_csk_enter_pingpong_mode(sk);
3016 		} else {
3017 			inet_csk_exit_pingpong_mode(sk);
3018 			if ((1 << sk->sk_state) &
3019 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3020 			    inet_csk_ack_scheduled(sk)) {
3021 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3022 				tcp_cleanup_rbuf(sk, 1);
3023 				if (!(val & 1))
3024 					inet_csk_enter_pingpong_mode(sk);
3025 			}
3026 		}
3027 		break;
3028 
3029 #ifdef CONFIG_TCP_MD5SIG
3030 	case TCP_MD5SIG:
3031 	case TCP_MD5SIG_EXT:
3032 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3033 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3034 		else
3035 			err = -EINVAL;
3036 		break;
3037 #endif
3038 	case TCP_USER_TIMEOUT:
3039 		/* Cap the max time in ms TCP will retry or probe the window
3040 		 * before giving up and aborting (ETIMEDOUT) a connection.
3041 		 */
3042 		if (val < 0)
3043 			err = -EINVAL;
3044 		else
3045 			icsk->icsk_user_timeout = val;
3046 		break;
3047 
3048 	case TCP_FASTOPEN:
3049 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3050 		    TCPF_LISTEN))) {
3051 			tcp_fastopen_init_key_once(net);
3052 
3053 			fastopen_queue_tune(sk, val);
3054 		} else {
3055 			err = -EINVAL;
3056 		}
3057 		break;
3058 	case TCP_FASTOPEN_CONNECT:
3059 		if (val > 1 || val < 0) {
3060 			err = -EINVAL;
3061 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3062 			if (sk->sk_state == TCP_CLOSE)
3063 				tp->fastopen_connect = val;
3064 			else
3065 				err = -EINVAL;
3066 		} else {
3067 			err = -EOPNOTSUPP;
3068 		}
3069 		break;
3070 	case TCP_FASTOPEN_NO_COOKIE:
3071 		if (val > 1 || val < 0)
3072 			err = -EINVAL;
3073 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3074 			err = -EINVAL;
3075 		else
3076 			tp->fastopen_no_cookie = val;
3077 		break;
3078 	case TCP_TIMESTAMP:
3079 		if (!tp->repair)
3080 			err = -EPERM;
3081 		else
3082 			tp->tsoffset = val - tcp_time_stamp_raw();
3083 		break;
3084 	case TCP_REPAIR_WINDOW:
3085 		err = tcp_repair_set_window(tp, optval, optlen);
3086 		break;
3087 	case TCP_NOTSENT_LOWAT:
3088 		tp->notsent_lowat = val;
3089 		sk->sk_write_space(sk);
3090 		break;
3091 	case TCP_INQ:
3092 		if (val > 1 || val < 0)
3093 			err = -EINVAL;
3094 		else
3095 			tp->recvmsg_inq = val;
3096 		break;
3097 	default:
3098 		err = -ENOPROTOOPT;
3099 		break;
3100 	}
3101 
3102 	release_sock(sk);
3103 	return err;
3104 }
3105 
3106 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3107 		   unsigned int optlen)
3108 {
3109 	const struct inet_connection_sock *icsk = inet_csk(sk);
3110 
3111 	if (level != SOL_TCP)
3112 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3113 						     optval, optlen);
3114 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3115 }
3116 EXPORT_SYMBOL(tcp_setsockopt);
3117 
3118 #ifdef CONFIG_COMPAT
3119 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3120 			  char __user *optval, unsigned int optlen)
3121 {
3122 	if (level != SOL_TCP)
3123 		return inet_csk_compat_setsockopt(sk, level, optname,
3124 						  optval, optlen);
3125 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3126 }
3127 EXPORT_SYMBOL(compat_tcp_setsockopt);
3128 #endif
3129 
3130 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3131 				      struct tcp_info *info)
3132 {
3133 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3134 	enum tcp_chrono i;
3135 
3136 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3137 		stats[i] = tp->chrono_stat[i - 1];
3138 		if (i == tp->chrono_type)
3139 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3140 		stats[i] *= USEC_PER_SEC / HZ;
3141 		total += stats[i];
3142 	}
3143 
3144 	info->tcpi_busy_time = total;
3145 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3146 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3147 }
3148 
3149 /* Return information about state of tcp endpoint in API format. */
3150 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3151 {
3152 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3153 	const struct inet_connection_sock *icsk = inet_csk(sk);
3154 	unsigned long rate;
3155 	u32 now;
3156 	u64 rate64;
3157 	bool slow;
3158 
3159 	memset(info, 0, sizeof(*info));
3160 	if (sk->sk_type != SOCK_STREAM)
3161 		return;
3162 
3163 	info->tcpi_state = inet_sk_state_load(sk);
3164 
3165 	/* Report meaningful fields for all TCP states, including listeners */
3166 	rate = READ_ONCE(sk->sk_pacing_rate);
3167 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3168 	info->tcpi_pacing_rate = rate64;
3169 
3170 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3171 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3172 	info->tcpi_max_pacing_rate = rate64;
3173 
3174 	info->tcpi_reordering = tp->reordering;
3175 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3176 
3177 	if (info->tcpi_state == TCP_LISTEN) {
3178 		/* listeners aliased fields :
3179 		 * tcpi_unacked -> Number of children ready for accept()
3180 		 * tcpi_sacked  -> max backlog
3181 		 */
3182 		info->tcpi_unacked = sk->sk_ack_backlog;
3183 		info->tcpi_sacked = sk->sk_max_ack_backlog;
3184 		return;
3185 	}
3186 
3187 	slow = lock_sock_fast(sk);
3188 
3189 	info->tcpi_ca_state = icsk->icsk_ca_state;
3190 	info->tcpi_retransmits = icsk->icsk_retransmits;
3191 	info->tcpi_probes = icsk->icsk_probes_out;
3192 	info->tcpi_backoff = icsk->icsk_backoff;
3193 
3194 	if (tp->rx_opt.tstamp_ok)
3195 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3196 	if (tcp_is_sack(tp))
3197 		info->tcpi_options |= TCPI_OPT_SACK;
3198 	if (tp->rx_opt.wscale_ok) {
3199 		info->tcpi_options |= TCPI_OPT_WSCALE;
3200 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3201 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3202 	}
3203 
3204 	if (tp->ecn_flags & TCP_ECN_OK)
3205 		info->tcpi_options |= TCPI_OPT_ECN;
3206 	if (tp->ecn_flags & TCP_ECN_SEEN)
3207 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3208 	if (tp->syn_data_acked)
3209 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3210 
3211 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3212 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3213 	info->tcpi_snd_mss = tp->mss_cache;
3214 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3215 
3216 	info->tcpi_unacked = tp->packets_out;
3217 	info->tcpi_sacked = tp->sacked_out;
3218 
3219 	info->tcpi_lost = tp->lost_out;
3220 	info->tcpi_retrans = tp->retrans_out;
3221 
3222 	now = tcp_jiffies32;
3223 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3224 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3225 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3226 
3227 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3228 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3229 	info->tcpi_rtt = tp->srtt_us >> 3;
3230 	info->tcpi_rttvar = tp->mdev_us >> 2;
3231 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3232 	info->tcpi_advmss = tp->advmss;
3233 
3234 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3235 	info->tcpi_rcv_space = tp->rcvq_space.space;
3236 
3237 	info->tcpi_total_retrans = tp->total_retrans;
3238 
3239 	info->tcpi_bytes_acked = tp->bytes_acked;
3240 	info->tcpi_bytes_received = tp->bytes_received;
3241 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3242 	tcp_get_info_chrono_stats(tp, info);
3243 
3244 	info->tcpi_segs_out = tp->segs_out;
3245 	info->tcpi_segs_in = tp->segs_in;
3246 
3247 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3248 	info->tcpi_data_segs_in = tp->data_segs_in;
3249 	info->tcpi_data_segs_out = tp->data_segs_out;
3250 
3251 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3252 	rate64 = tcp_compute_delivery_rate(tp);
3253 	if (rate64)
3254 		info->tcpi_delivery_rate = rate64;
3255 	info->tcpi_delivered = tp->delivered;
3256 	info->tcpi_delivered_ce = tp->delivered_ce;
3257 	info->tcpi_bytes_sent = tp->bytes_sent;
3258 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3259 	info->tcpi_dsack_dups = tp->dsack_dups;
3260 	info->tcpi_reord_seen = tp->reord_seen;
3261 	unlock_sock_fast(sk, slow);
3262 }
3263 EXPORT_SYMBOL_GPL(tcp_get_info);
3264 
3265 static size_t tcp_opt_stats_get_size(void)
3266 {
3267 	return
3268 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3269 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3270 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3271 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3272 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3273 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3274 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3275 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3276 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3277 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3278 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3279 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3280 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3281 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3282 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3283 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3284 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3285 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3286 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3287 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3288 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3289 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3290 		0;
3291 }
3292 
3293 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3294 {
3295 	const struct tcp_sock *tp = tcp_sk(sk);
3296 	struct sk_buff *stats;
3297 	struct tcp_info info;
3298 	unsigned long rate;
3299 	u64 rate64;
3300 
3301 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3302 	if (!stats)
3303 		return NULL;
3304 
3305 	tcp_get_info_chrono_stats(tp, &info);
3306 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3307 			  info.tcpi_busy_time, TCP_NLA_PAD);
3308 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3309 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3310 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3311 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3312 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3313 			  tp->data_segs_out, TCP_NLA_PAD);
3314 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3315 			  tp->total_retrans, TCP_NLA_PAD);
3316 
3317 	rate = READ_ONCE(sk->sk_pacing_rate);
3318 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3319 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3320 
3321 	rate64 = tcp_compute_delivery_rate(tp);
3322 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3323 
3324 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3325 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3326 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3327 
3328 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3329 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3330 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3331 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3332 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3333 
3334 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3335 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3336 
3337 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3338 			  TCP_NLA_PAD);
3339 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3340 			  TCP_NLA_PAD);
3341 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3342 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3343 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3344 
3345 	return stats;
3346 }
3347 
3348 static int do_tcp_getsockopt(struct sock *sk, int level,
3349 		int optname, char __user *optval, int __user *optlen)
3350 {
3351 	struct inet_connection_sock *icsk = inet_csk(sk);
3352 	struct tcp_sock *tp = tcp_sk(sk);
3353 	struct net *net = sock_net(sk);
3354 	int val, len;
3355 
3356 	if (get_user(len, optlen))
3357 		return -EFAULT;
3358 
3359 	len = min_t(unsigned int, len, sizeof(int));
3360 
3361 	if (len < 0)
3362 		return -EINVAL;
3363 
3364 	switch (optname) {
3365 	case TCP_MAXSEG:
3366 		val = tp->mss_cache;
3367 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3368 			val = tp->rx_opt.user_mss;
3369 		if (tp->repair)
3370 			val = tp->rx_opt.mss_clamp;
3371 		break;
3372 	case TCP_NODELAY:
3373 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3374 		break;
3375 	case TCP_CORK:
3376 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3377 		break;
3378 	case TCP_KEEPIDLE:
3379 		val = keepalive_time_when(tp) / HZ;
3380 		break;
3381 	case TCP_KEEPINTVL:
3382 		val = keepalive_intvl_when(tp) / HZ;
3383 		break;
3384 	case TCP_KEEPCNT:
3385 		val = keepalive_probes(tp);
3386 		break;
3387 	case TCP_SYNCNT:
3388 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3389 		break;
3390 	case TCP_LINGER2:
3391 		val = tp->linger2;
3392 		if (val >= 0)
3393 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3394 		break;
3395 	case TCP_DEFER_ACCEPT:
3396 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3397 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3398 		break;
3399 	case TCP_WINDOW_CLAMP:
3400 		val = tp->window_clamp;
3401 		break;
3402 	case TCP_INFO: {
3403 		struct tcp_info info;
3404 
3405 		if (get_user(len, optlen))
3406 			return -EFAULT;
3407 
3408 		tcp_get_info(sk, &info);
3409 
3410 		len = min_t(unsigned int, len, sizeof(info));
3411 		if (put_user(len, optlen))
3412 			return -EFAULT;
3413 		if (copy_to_user(optval, &info, len))
3414 			return -EFAULT;
3415 		return 0;
3416 	}
3417 	case TCP_CC_INFO: {
3418 		const struct tcp_congestion_ops *ca_ops;
3419 		union tcp_cc_info info;
3420 		size_t sz = 0;
3421 		int attr;
3422 
3423 		if (get_user(len, optlen))
3424 			return -EFAULT;
3425 
3426 		ca_ops = icsk->icsk_ca_ops;
3427 		if (ca_ops && ca_ops->get_info)
3428 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3429 
3430 		len = min_t(unsigned int, len, sz);
3431 		if (put_user(len, optlen))
3432 			return -EFAULT;
3433 		if (copy_to_user(optval, &info, len))
3434 			return -EFAULT;
3435 		return 0;
3436 	}
3437 	case TCP_QUICKACK:
3438 		val = !inet_csk_in_pingpong_mode(sk);
3439 		break;
3440 
3441 	case TCP_CONGESTION:
3442 		if (get_user(len, optlen))
3443 			return -EFAULT;
3444 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3445 		if (put_user(len, optlen))
3446 			return -EFAULT;
3447 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3448 			return -EFAULT;
3449 		return 0;
3450 
3451 	case TCP_ULP:
3452 		if (get_user(len, optlen))
3453 			return -EFAULT;
3454 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3455 		if (!icsk->icsk_ulp_ops) {
3456 			if (put_user(0, optlen))
3457 				return -EFAULT;
3458 			return 0;
3459 		}
3460 		if (put_user(len, optlen))
3461 			return -EFAULT;
3462 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3463 			return -EFAULT;
3464 		return 0;
3465 
3466 	case TCP_FASTOPEN_KEY: {
3467 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3468 		struct tcp_fastopen_context *ctx;
3469 
3470 		if (get_user(len, optlen))
3471 			return -EFAULT;
3472 
3473 		rcu_read_lock();
3474 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3475 		if (ctx)
3476 			memcpy(key, ctx->key, sizeof(key));
3477 		else
3478 			len = 0;
3479 		rcu_read_unlock();
3480 
3481 		len = min_t(unsigned int, len, sizeof(key));
3482 		if (put_user(len, optlen))
3483 			return -EFAULT;
3484 		if (copy_to_user(optval, key, len))
3485 			return -EFAULT;
3486 		return 0;
3487 	}
3488 	case TCP_THIN_LINEAR_TIMEOUTS:
3489 		val = tp->thin_lto;
3490 		break;
3491 
3492 	case TCP_THIN_DUPACK:
3493 		val = 0;
3494 		break;
3495 
3496 	case TCP_REPAIR:
3497 		val = tp->repair;
3498 		break;
3499 
3500 	case TCP_REPAIR_QUEUE:
3501 		if (tp->repair)
3502 			val = tp->repair_queue;
3503 		else
3504 			return -EINVAL;
3505 		break;
3506 
3507 	case TCP_REPAIR_WINDOW: {
3508 		struct tcp_repair_window opt;
3509 
3510 		if (get_user(len, optlen))
3511 			return -EFAULT;
3512 
3513 		if (len != sizeof(opt))
3514 			return -EINVAL;
3515 
3516 		if (!tp->repair)
3517 			return -EPERM;
3518 
3519 		opt.snd_wl1	= tp->snd_wl1;
3520 		opt.snd_wnd	= tp->snd_wnd;
3521 		opt.max_window	= tp->max_window;
3522 		opt.rcv_wnd	= tp->rcv_wnd;
3523 		opt.rcv_wup	= tp->rcv_wup;
3524 
3525 		if (copy_to_user(optval, &opt, len))
3526 			return -EFAULT;
3527 		return 0;
3528 	}
3529 	case TCP_QUEUE_SEQ:
3530 		if (tp->repair_queue == TCP_SEND_QUEUE)
3531 			val = tp->write_seq;
3532 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3533 			val = tp->rcv_nxt;
3534 		else
3535 			return -EINVAL;
3536 		break;
3537 
3538 	case TCP_USER_TIMEOUT:
3539 		val = icsk->icsk_user_timeout;
3540 		break;
3541 
3542 	case TCP_FASTOPEN:
3543 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3544 		break;
3545 
3546 	case TCP_FASTOPEN_CONNECT:
3547 		val = tp->fastopen_connect;
3548 		break;
3549 
3550 	case TCP_FASTOPEN_NO_COOKIE:
3551 		val = tp->fastopen_no_cookie;
3552 		break;
3553 
3554 	case TCP_TIMESTAMP:
3555 		val = tcp_time_stamp_raw() + tp->tsoffset;
3556 		break;
3557 	case TCP_NOTSENT_LOWAT:
3558 		val = tp->notsent_lowat;
3559 		break;
3560 	case TCP_INQ:
3561 		val = tp->recvmsg_inq;
3562 		break;
3563 	case TCP_SAVE_SYN:
3564 		val = tp->save_syn;
3565 		break;
3566 	case TCP_SAVED_SYN: {
3567 		if (get_user(len, optlen))
3568 			return -EFAULT;
3569 
3570 		lock_sock(sk);
3571 		if (tp->saved_syn) {
3572 			if (len < tp->saved_syn[0]) {
3573 				if (put_user(tp->saved_syn[0], optlen)) {
3574 					release_sock(sk);
3575 					return -EFAULT;
3576 				}
3577 				release_sock(sk);
3578 				return -EINVAL;
3579 			}
3580 			len = tp->saved_syn[0];
3581 			if (put_user(len, optlen)) {
3582 				release_sock(sk);
3583 				return -EFAULT;
3584 			}
3585 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3586 				release_sock(sk);
3587 				return -EFAULT;
3588 			}
3589 			tcp_saved_syn_free(tp);
3590 			release_sock(sk);
3591 		} else {
3592 			release_sock(sk);
3593 			len = 0;
3594 			if (put_user(len, optlen))
3595 				return -EFAULT;
3596 		}
3597 		return 0;
3598 	}
3599 #ifdef CONFIG_MMU
3600 	case TCP_ZEROCOPY_RECEIVE: {
3601 		struct tcp_zerocopy_receive zc;
3602 		int err;
3603 
3604 		if (get_user(len, optlen))
3605 			return -EFAULT;
3606 		if (len != sizeof(zc))
3607 			return -EINVAL;
3608 		if (copy_from_user(&zc, optval, len))
3609 			return -EFAULT;
3610 		lock_sock(sk);
3611 		err = tcp_zerocopy_receive(sk, &zc);
3612 		release_sock(sk);
3613 		if (!err && copy_to_user(optval, &zc, len))
3614 			err = -EFAULT;
3615 		return err;
3616 	}
3617 #endif
3618 	default:
3619 		return -ENOPROTOOPT;
3620 	}
3621 
3622 	if (put_user(len, optlen))
3623 		return -EFAULT;
3624 	if (copy_to_user(optval, &val, len))
3625 		return -EFAULT;
3626 	return 0;
3627 }
3628 
3629 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3630 		   int __user *optlen)
3631 {
3632 	struct inet_connection_sock *icsk = inet_csk(sk);
3633 
3634 	if (level != SOL_TCP)
3635 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3636 						     optval, optlen);
3637 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3638 }
3639 EXPORT_SYMBOL(tcp_getsockopt);
3640 
3641 #ifdef CONFIG_COMPAT
3642 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3643 			  char __user *optval, int __user *optlen)
3644 {
3645 	if (level != SOL_TCP)
3646 		return inet_csk_compat_getsockopt(sk, level, optname,
3647 						  optval, optlen);
3648 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3649 }
3650 EXPORT_SYMBOL(compat_tcp_getsockopt);
3651 #endif
3652 
3653 #ifdef CONFIG_TCP_MD5SIG
3654 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3655 static DEFINE_MUTEX(tcp_md5sig_mutex);
3656 static bool tcp_md5sig_pool_populated = false;
3657 
3658 static void __tcp_alloc_md5sig_pool(void)
3659 {
3660 	struct crypto_ahash *hash;
3661 	int cpu;
3662 
3663 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3664 	if (IS_ERR(hash))
3665 		return;
3666 
3667 	for_each_possible_cpu(cpu) {
3668 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3669 		struct ahash_request *req;
3670 
3671 		if (!scratch) {
3672 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3673 					       sizeof(struct tcphdr),
3674 					       GFP_KERNEL,
3675 					       cpu_to_node(cpu));
3676 			if (!scratch)
3677 				return;
3678 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3679 		}
3680 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3681 			continue;
3682 
3683 		req = ahash_request_alloc(hash, GFP_KERNEL);
3684 		if (!req)
3685 			return;
3686 
3687 		ahash_request_set_callback(req, 0, NULL, NULL);
3688 
3689 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3690 	}
3691 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3692 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3693 	 */
3694 	smp_wmb();
3695 	tcp_md5sig_pool_populated = true;
3696 }
3697 
3698 bool tcp_alloc_md5sig_pool(void)
3699 {
3700 	if (unlikely(!tcp_md5sig_pool_populated)) {
3701 		mutex_lock(&tcp_md5sig_mutex);
3702 
3703 		if (!tcp_md5sig_pool_populated) {
3704 			__tcp_alloc_md5sig_pool();
3705 			if (tcp_md5sig_pool_populated)
3706 				static_branch_inc(&tcp_md5_needed);
3707 		}
3708 
3709 		mutex_unlock(&tcp_md5sig_mutex);
3710 	}
3711 	return tcp_md5sig_pool_populated;
3712 }
3713 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3714 
3715 
3716 /**
3717  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3718  *
3719  *	We use percpu structure, so if we succeed, we exit with preemption
3720  *	and BH disabled, to make sure another thread or softirq handling
3721  *	wont try to get same context.
3722  */
3723 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3724 {
3725 	local_bh_disable();
3726 
3727 	if (tcp_md5sig_pool_populated) {
3728 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3729 		smp_rmb();
3730 		return this_cpu_ptr(&tcp_md5sig_pool);
3731 	}
3732 	local_bh_enable();
3733 	return NULL;
3734 }
3735 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3736 
3737 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3738 			  const struct sk_buff *skb, unsigned int header_len)
3739 {
3740 	struct scatterlist sg;
3741 	const struct tcphdr *tp = tcp_hdr(skb);
3742 	struct ahash_request *req = hp->md5_req;
3743 	unsigned int i;
3744 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3745 					   skb_headlen(skb) - header_len : 0;
3746 	const struct skb_shared_info *shi = skb_shinfo(skb);
3747 	struct sk_buff *frag_iter;
3748 
3749 	sg_init_table(&sg, 1);
3750 
3751 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3752 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3753 	if (crypto_ahash_update(req))
3754 		return 1;
3755 
3756 	for (i = 0; i < shi->nr_frags; ++i) {
3757 		const struct skb_frag_struct *f = &shi->frags[i];
3758 		unsigned int offset = f->page_offset;
3759 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3760 
3761 		sg_set_page(&sg, page, skb_frag_size(f),
3762 			    offset_in_page(offset));
3763 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3764 		if (crypto_ahash_update(req))
3765 			return 1;
3766 	}
3767 
3768 	skb_walk_frags(skb, frag_iter)
3769 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3770 			return 1;
3771 
3772 	return 0;
3773 }
3774 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3775 
3776 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3777 {
3778 	struct scatterlist sg;
3779 
3780 	sg_init_one(&sg, key->key, key->keylen);
3781 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3782 	return crypto_ahash_update(hp->md5_req);
3783 }
3784 EXPORT_SYMBOL(tcp_md5_hash_key);
3785 
3786 #endif
3787 
3788 void tcp_done(struct sock *sk)
3789 {
3790 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3791 
3792 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3793 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3794 
3795 	tcp_set_state(sk, TCP_CLOSE);
3796 	tcp_clear_xmit_timers(sk);
3797 	if (req)
3798 		reqsk_fastopen_remove(sk, req, false);
3799 
3800 	sk->sk_shutdown = SHUTDOWN_MASK;
3801 
3802 	if (!sock_flag(sk, SOCK_DEAD))
3803 		sk->sk_state_change(sk);
3804 	else
3805 		inet_csk_destroy_sock(sk);
3806 }
3807 EXPORT_SYMBOL_GPL(tcp_done);
3808 
3809 int tcp_abort(struct sock *sk, int err)
3810 {
3811 	if (!sk_fullsock(sk)) {
3812 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3813 			struct request_sock *req = inet_reqsk(sk);
3814 
3815 			local_bh_disable();
3816 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3817 			local_bh_enable();
3818 			return 0;
3819 		}
3820 		return -EOPNOTSUPP;
3821 	}
3822 
3823 	/* Don't race with userspace socket closes such as tcp_close. */
3824 	lock_sock(sk);
3825 
3826 	if (sk->sk_state == TCP_LISTEN) {
3827 		tcp_set_state(sk, TCP_CLOSE);
3828 		inet_csk_listen_stop(sk);
3829 	}
3830 
3831 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3832 	local_bh_disable();
3833 	bh_lock_sock(sk);
3834 
3835 	if (!sock_flag(sk, SOCK_DEAD)) {
3836 		sk->sk_err = err;
3837 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3838 		smp_wmb();
3839 		sk->sk_error_report(sk);
3840 		if (tcp_need_reset(sk->sk_state))
3841 			tcp_send_active_reset(sk, GFP_ATOMIC);
3842 		tcp_done(sk);
3843 	}
3844 
3845 	bh_unlock_sock(sk);
3846 	local_bh_enable();
3847 	tcp_write_queue_purge(sk);
3848 	release_sock(sk);
3849 	return 0;
3850 }
3851 EXPORT_SYMBOL_GPL(tcp_abort);
3852 
3853 extern struct tcp_congestion_ops tcp_reno;
3854 
3855 static __initdata unsigned long thash_entries;
3856 static int __init set_thash_entries(char *str)
3857 {
3858 	ssize_t ret;
3859 
3860 	if (!str)
3861 		return 0;
3862 
3863 	ret = kstrtoul(str, 0, &thash_entries);
3864 	if (ret)
3865 		return 0;
3866 
3867 	return 1;
3868 }
3869 __setup("thash_entries=", set_thash_entries);
3870 
3871 static void __init tcp_init_mem(void)
3872 {
3873 	unsigned long limit = nr_free_buffer_pages() / 16;
3874 
3875 	limit = max(limit, 128UL);
3876 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3877 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3878 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3879 }
3880 
3881 void __init tcp_init(void)
3882 {
3883 	int max_rshare, max_wshare, cnt;
3884 	unsigned long limit;
3885 	unsigned int i;
3886 
3887 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3888 		     FIELD_SIZEOF(struct sk_buff, cb));
3889 
3890 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3891 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3892 	inet_hashinfo_init(&tcp_hashinfo);
3893 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3894 			    thash_entries, 21,  /* one slot per 2 MB*/
3895 			    0, 64 * 1024);
3896 	tcp_hashinfo.bind_bucket_cachep =
3897 		kmem_cache_create("tcp_bind_bucket",
3898 				  sizeof(struct inet_bind_bucket), 0,
3899 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3900 
3901 	/* Size and allocate the main established and bind bucket
3902 	 * hash tables.
3903 	 *
3904 	 * The methodology is similar to that of the buffer cache.
3905 	 */
3906 	tcp_hashinfo.ehash =
3907 		alloc_large_system_hash("TCP established",
3908 					sizeof(struct inet_ehash_bucket),
3909 					thash_entries,
3910 					17, /* one slot per 128 KB of memory */
3911 					0,
3912 					NULL,
3913 					&tcp_hashinfo.ehash_mask,
3914 					0,
3915 					thash_entries ? 0 : 512 * 1024);
3916 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3917 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3918 
3919 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3920 		panic("TCP: failed to alloc ehash_locks");
3921 	tcp_hashinfo.bhash =
3922 		alloc_large_system_hash("TCP bind",
3923 					sizeof(struct inet_bind_hashbucket),
3924 					tcp_hashinfo.ehash_mask + 1,
3925 					17, /* one slot per 128 KB of memory */
3926 					0,
3927 					&tcp_hashinfo.bhash_size,
3928 					NULL,
3929 					0,
3930 					64 * 1024);
3931 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3932 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3933 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3934 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3935 	}
3936 
3937 
3938 	cnt = tcp_hashinfo.ehash_mask + 1;
3939 	sysctl_tcp_max_orphans = cnt / 2;
3940 
3941 	tcp_init_mem();
3942 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3943 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3944 	max_wshare = min(4UL*1024*1024, limit);
3945 	max_rshare = min(6UL*1024*1024, limit);
3946 
3947 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3948 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3949 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3950 
3951 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3952 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
3953 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
3954 
3955 	pr_info("Hash tables configured (established %u bind %u)\n",
3956 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3957 
3958 	tcp_v4_init();
3959 	tcp_metrics_init();
3960 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3961 	tcp_tasklet_init();
3962 }
3963