1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 458 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc_noacc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1166 size_t size, struct ubuf_info *uarg) 1167 { 1168 struct tcp_sock *tp = tcp_sk(sk); 1169 struct inet_sock *inet = inet_sk(sk); 1170 struct sockaddr *uaddr = msg->msg_name; 1171 int err, flags; 1172 1173 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1174 TFO_CLIENT_ENABLE) || 1175 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1176 uaddr->sa_family == AF_UNSPEC)) 1177 return -EOPNOTSUPP; 1178 if (tp->fastopen_req) 1179 return -EALREADY; /* Another Fast Open is in progress */ 1180 1181 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1182 sk->sk_allocation); 1183 if (unlikely(!tp->fastopen_req)) 1184 return -ENOBUFS; 1185 tp->fastopen_req->data = msg; 1186 tp->fastopen_req->size = size; 1187 tp->fastopen_req->uarg = uarg; 1188 1189 if (inet->defer_connect) { 1190 err = tcp_connect(sk); 1191 /* Same failure procedure as in tcp_v4/6_connect */ 1192 if (err) { 1193 tcp_set_state(sk, TCP_CLOSE); 1194 inet->inet_dport = 0; 1195 sk->sk_route_caps = 0; 1196 } 1197 } 1198 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1199 err = __inet_stream_connect(sk->sk_socket, uaddr, 1200 msg->msg_namelen, flags, 1); 1201 /* fastopen_req could already be freed in __inet_stream_connect 1202 * if the connection times out or gets rst 1203 */ 1204 if (tp->fastopen_req) { 1205 *copied = tp->fastopen_req->copied; 1206 tcp_free_fastopen_req(tp); 1207 inet->defer_connect = 0; 1208 } 1209 return err; 1210 } 1211 1212 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1213 { 1214 struct tcp_sock *tp = tcp_sk(sk); 1215 struct ubuf_info *uarg = NULL; 1216 struct sk_buff *skb; 1217 struct sockcm_cookie sockc; 1218 int flags, err, copied = 0; 1219 int mss_now = 0, size_goal, copied_syn = 0; 1220 int process_backlog = 0; 1221 bool zc = false; 1222 long timeo; 1223 1224 flags = msg->msg_flags; 1225 1226 if ((flags & MSG_ZEROCOPY) && size) { 1227 skb = tcp_write_queue_tail(sk); 1228 1229 if (msg->msg_ubuf) { 1230 uarg = msg->msg_ubuf; 1231 net_zcopy_get(uarg); 1232 zc = sk->sk_route_caps & NETIF_F_SG; 1233 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1234 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1235 if (!uarg) { 1236 err = -ENOBUFS; 1237 goto out_err; 1238 } 1239 zc = sk->sk_route_caps & NETIF_F_SG; 1240 if (!zc) 1241 uarg_to_msgzc(uarg)->zerocopy = 0; 1242 } 1243 } 1244 1245 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1246 !tp->repair) { 1247 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1248 if (err == -EINPROGRESS && copied_syn > 0) 1249 goto out; 1250 else if (err) 1251 goto out_err; 1252 } 1253 1254 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1255 1256 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1257 1258 /* Wait for a connection to finish. One exception is TCP Fast Open 1259 * (passive side) where data is allowed to be sent before a connection 1260 * is fully established. 1261 */ 1262 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1263 !tcp_passive_fastopen(sk)) { 1264 err = sk_stream_wait_connect(sk, &timeo); 1265 if (err != 0) 1266 goto do_error; 1267 } 1268 1269 if (unlikely(tp->repair)) { 1270 if (tp->repair_queue == TCP_RECV_QUEUE) { 1271 copied = tcp_send_rcvq(sk, msg, size); 1272 goto out_nopush; 1273 } 1274 1275 err = -EINVAL; 1276 if (tp->repair_queue == TCP_NO_QUEUE) 1277 goto out_err; 1278 1279 /* 'common' sending to sendq */ 1280 } 1281 1282 sockcm_init(&sockc, sk); 1283 if (msg->msg_controllen) { 1284 err = sock_cmsg_send(sk, msg, &sockc); 1285 if (unlikely(err)) { 1286 err = -EINVAL; 1287 goto out_err; 1288 } 1289 } 1290 1291 /* This should be in poll */ 1292 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1293 1294 /* Ok commence sending. */ 1295 copied = 0; 1296 1297 restart: 1298 mss_now = tcp_send_mss(sk, &size_goal, flags); 1299 1300 err = -EPIPE; 1301 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1302 goto do_error; 1303 1304 while (msg_data_left(msg)) { 1305 int copy = 0; 1306 1307 skb = tcp_write_queue_tail(sk); 1308 if (skb) 1309 copy = size_goal - skb->len; 1310 1311 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1312 bool first_skb; 1313 1314 new_segment: 1315 if (!sk_stream_memory_free(sk)) 1316 goto wait_for_space; 1317 1318 if (unlikely(process_backlog >= 16)) { 1319 process_backlog = 0; 1320 if (sk_flush_backlog(sk)) 1321 goto restart; 1322 } 1323 first_skb = tcp_rtx_and_write_queues_empty(sk); 1324 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1325 first_skb); 1326 if (!skb) 1327 goto wait_for_space; 1328 1329 process_backlog++; 1330 1331 tcp_skb_entail(sk, skb); 1332 copy = size_goal; 1333 1334 /* All packets are restored as if they have 1335 * already been sent. skb_mstamp_ns isn't set to 1336 * avoid wrong rtt estimation. 1337 */ 1338 if (tp->repair) 1339 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1340 } 1341 1342 /* Try to append data to the end of skb. */ 1343 if (copy > msg_data_left(msg)) 1344 copy = msg_data_left(msg); 1345 1346 if (!zc) { 1347 bool merge = true; 1348 int i = skb_shinfo(skb)->nr_frags; 1349 struct page_frag *pfrag = sk_page_frag(sk); 1350 1351 if (!sk_page_frag_refill(sk, pfrag)) 1352 goto wait_for_space; 1353 1354 if (!skb_can_coalesce(skb, i, pfrag->page, 1355 pfrag->offset)) { 1356 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1357 tcp_mark_push(tp, skb); 1358 goto new_segment; 1359 } 1360 merge = false; 1361 } 1362 1363 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1364 1365 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1366 if (tcp_downgrade_zcopy_pure(sk, skb)) 1367 goto wait_for_space; 1368 skb_zcopy_downgrade_managed(skb); 1369 } 1370 1371 copy = tcp_wmem_schedule(sk, copy); 1372 if (!copy) 1373 goto wait_for_space; 1374 1375 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1376 pfrag->page, 1377 pfrag->offset, 1378 copy); 1379 if (err) 1380 goto do_error; 1381 1382 /* Update the skb. */ 1383 if (merge) { 1384 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1385 } else { 1386 skb_fill_page_desc(skb, i, pfrag->page, 1387 pfrag->offset, copy); 1388 page_ref_inc(pfrag->page); 1389 } 1390 pfrag->offset += copy; 1391 } else { 1392 /* First append to a fragless skb builds initial 1393 * pure zerocopy skb 1394 */ 1395 if (!skb->len) 1396 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1397 1398 if (!skb_zcopy_pure(skb)) { 1399 copy = tcp_wmem_schedule(sk, copy); 1400 if (!copy) 1401 goto wait_for_space; 1402 } 1403 1404 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1405 if (err == -EMSGSIZE || err == -EEXIST) { 1406 tcp_mark_push(tp, skb); 1407 goto new_segment; 1408 } 1409 if (err < 0) 1410 goto do_error; 1411 copy = err; 1412 } 1413 1414 if (!copied) 1415 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1416 1417 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1418 TCP_SKB_CB(skb)->end_seq += copy; 1419 tcp_skb_pcount_set(skb, 0); 1420 1421 copied += copy; 1422 if (!msg_data_left(msg)) { 1423 if (unlikely(flags & MSG_EOR)) 1424 TCP_SKB_CB(skb)->eor = 1; 1425 goto out; 1426 } 1427 1428 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1429 continue; 1430 1431 if (forced_push(tp)) { 1432 tcp_mark_push(tp, skb); 1433 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1434 } else if (skb == tcp_send_head(sk)) 1435 tcp_push_one(sk, mss_now); 1436 continue; 1437 1438 wait_for_space: 1439 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1440 if (copied) 1441 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1442 TCP_NAGLE_PUSH, size_goal); 1443 1444 err = sk_stream_wait_memory(sk, &timeo); 1445 if (err != 0) 1446 goto do_error; 1447 1448 mss_now = tcp_send_mss(sk, &size_goal, flags); 1449 } 1450 1451 out: 1452 if (copied) { 1453 tcp_tx_timestamp(sk, sockc.tsflags); 1454 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1455 } 1456 out_nopush: 1457 net_zcopy_put(uarg); 1458 return copied + copied_syn; 1459 1460 do_error: 1461 tcp_remove_empty_skb(sk); 1462 1463 if (copied + copied_syn) 1464 goto out; 1465 out_err: 1466 net_zcopy_put_abort(uarg, true); 1467 err = sk_stream_error(sk, flags, err); 1468 /* make sure we wake any epoll edge trigger waiter */ 1469 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1470 sk->sk_write_space(sk); 1471 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1472 } 1473 return err; 1474 } 1475 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1476 1477 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1478 { 1479 int ret; 1480 1481 lock_sock(sk); 1482 ret = tcp_sendmsg_locked(sk, msg, size); 1483 release_sock(sk); 1484 1485 return ret; 1486 } 1487 EXPORT_SYMBOL(tcp_sendmsg); 1488 1489 /* 1490 * Handle reading urgent data. BSD has very simple semantics for 1491 * this, no blocking and very strange errors 8) 1492 */ 1493 1494 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1495 { 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 1498 /* No URG data to read. */ 1499 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1500 tp->urg_data == TCP_URG_READ) 1501 return -EINVAL; /* Yes this is right ! */ 1502 1503 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1504 return -ENOTCONN; 1505 1506 if (tp->urg_data & TCP_URG_VALID) { 1507 int err = 0; 1508 char c = tp->urg_data; 1509 1510 if (!(flags & MSG_PEEK)) 1511 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1512 1513 /* Read urgent data. */ 1514 msg->msg_flags |= MSG_OOB; 1515 1516 if (len > 0) { 1517 if (!(flags & MSG_TRUNC)) 1518 err = memcpy_to_msg(msg, &c, 1); 1519 len = 1; 1520 } else 1521 msg->msg_flags |= MSG_TRUNC; 1522 1523 return err ? -EFAULT : len; 1524 } 1525 1526 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1527 return 0; 1528 1529 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1530 * the available implementations agree in this case: 1531 * this call should never block, independent of the 1532 * blocking state of the socket. 1533 * Mike <pall@rz.uni-karlsruhe.de> 1534 */ 1535 return -EAGAIN; 1536 } 1537 1538 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1539 { 1540 struct sk_buff *skb; 1541 int copied = 0, err = 0; 1542 1543 /* XXX -- need to support SO_PEEK_OFF */ 1544 1545 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1546 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1547 if (err) 1548 return err; 1549 copied += skb->len; 1550 } 1551 1552 skb_queue_walk(&sk->sk_write_queue, skb) { 1553 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1554 if (err) 1555 break; 1556 1557 copied += skb->len; 1558 } 1559 1560 return err ?: copied; 1561 } 1562 1563 /* Clean up the receive buffer for full frames taken by the user, 1564 * then send an ACK if necessary. COPIED is the number of bytes 1565 * tcp_recvmsg has given to the user so far, it speeds up the 1566 * calculation of whether or not we must ACK for the sake of 1567 * a window update. 1568 */ 1569 static void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1570 { 1571 struct tcp_sock *tp = tcp_sk(sk); 1572 bool time_to_ack = false; 1573 1574 if (inet_csk_ack_scheduled(sk)) { 1575 const struct inet_connection_sock *icsk = inet_csk(sk); 1576 1577 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1578 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1579 /* 1580 * If this read emptied read buffer, we send ACK, if 1581 * connection is not bidirectional, user drained 1582 * receive buffer and there was a small segment 1583 * in queue. 1584 */ 1585 (copied > 0 && 1586 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1587 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1588 !inet_csk_in_pingpong_mode(sk))) && 1589 !atomic_read(&sk->sk_rmem_alloc))) 1590 time_to_ack = true; 1591 } 1592 1593 /* We send an ACK if we can now advertise a non-zero window 1594 * which has been raised "significantly". 1595 * 1596 * Even if window raised up to infinity, do not send window open ACK 1597 * in states, where we will not receive more. It is useless. 1598 */ 1599 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1600 __u32 rcv_window_now = tcp_receive_window(tp); 1601 1602 /* Optimize, __tcp_select_window() is not cheap. */ 1603 if (2*rcv_window_now <= tp->window_clamp) { 1604 __u32 new_window = __tcp_select_window(sk); 1605 1606 /* Send ACK now, if this read freed lots of space 1607 * in our buffer. Certainly, new_window is new window. 1608 * We can advertise it now, if it is not less than current one. 1609 * "Lots" means "at least twice" here. 1610 */ 1611 if (new_window && new_window >= 2 * rcv_window_now) 1612 time_to_ack = true; 1613 } 1614 } 1615 if (time_to_ack) 1616 tcp_send_ack(sk); 1617 } 1618 1619 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1620 { 1621 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 1624 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1625 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1626 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1627 __tcp_cleanup_rbuf(sk, copied); 1628 } 1629 1630 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1631 { 1632 __skb_unlink(skb, &sk->sk_receive_queue); 1633 if (likely(skb->destructor == sock_rfree)) { 1634 sock_rfree(skb); 1635 skb->destructor = NULL; 1636 skb->sk = NULL; 1637 return skb_attempt_defer_free(skb); 1638 } 1639 __kfree_skb(skb); 1640 } 1641 1642 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1643 { 1644 struct sk_buff *skb; 1645 u32 offset; 1646 1647 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1648 offset = seq - TCP_SKB_CB(skb)->seq; 1649 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1650 pr_err_once("%s: found a SYN, please report !\n", __func__); 1651 offset--; 1652 } 1653 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1654 *off = offset; 1655 return skb; 1656 } 1657 /* This looks weird, but this can happen if TCP collapsing 1658 * splitted a fat GRO packet, while we released socket lock 1659 * in skb_splice_bits() 1660 */ 1661 tcp_eat_recv_skb(sk, skb); 1662 } 1663 return NULL; 1664 } 1665 EXPORT_SYMBOL(tcp_recv_skb); 1666 1667 /* 1668 * This routine provides an alternative to tcp_recvmsg() for routines 1669 * that would like to handle copying from skbuffs directly in 'sendfile' 1670 * fashion. 1671 * Note: 1672 * - It is assumed that the socket was locked by the caller. 1673 * - The routine does not block. 1674 * - At present, there is no support for reading OOB data 1675 * or for 'peeking' the socket using this routine 1676 * (although both would be easy to implement). 1677 */ 1678 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1679 sk_read_actor_t recv_actor) 1680 { 1681 struct sk_buff *skb; 1682 struct tcp_sock *tp = tcp_sk(sk); 1683 u32 seq = tp->copied_seq; 1684 u32 offset; 1685 int copied = 0; 1686 1687 if (sk->sk_state == TCP_LISTEN) 1688 return -ENOTCONN; 1689 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1690 if (offset < skb->len) { 1691 int used; 1692 size_t len; 1693 1694 len = skb->len - offset; 1695 /* Stop reading if we hit a patch of urgent data */ 1696 if (unlikely(tp->urg_data)) { 1697 u32 urg_offset = tp->urg_seq - seq; 1698 if (urg_offset < len) 1699 len = urg_offset; 1700 if (!len) 1701 break; 1702 } 1703 used = recv_actor(desc, skb, offset, len); 1704 if (used <= 0) { 1705 if (!copied) 1706 copied = used; 1707 break; 1708 } 1709 if (WARN_ON_ONCE(used > len)) 1710 used = len; 1711 seq += used; 1712 copied += used; 1713 offset += used; 1714 1715 /* If recv_actor drops the lock (e.g. TCP splice 1716 * receive) the skb pointer might be invalid when 1717 * getting here: tcp_collapse might have deleted it 1718 * while aggregating skbs from the socket queue. 1719 */ 1720 skb = tcp_recv_skb(sk, seq - 1, &offset); 1721 if (!skb) 1722 break; 1723 /* TCP coalescing might have appended data to the skb. 1724 * Try to splice more frags 1725 */ 1726 if (offset + 1 != skb->len) 1727 continue; 1728 } 1729 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1730 tcp_eat_recv_skb(sk, skb); 1731 ++seq; 1732 break; 1733 } 1734 tcp_eat_recv_skb(sk, skb); 1735 if (!desc->count) 1736 break; 1737 WRITE_ONCE(tp->copied_seq, seq); 1738 } 1739 WRITE_ONCE(tp->copied_seq, seq); 1740 1741 tcp_rcv_space_adjust(sk); 1742 1743 /* Clean up data we have read: This will do ACK frames. */ 1744 if (copied > 0) { 1745 tcp_recv_skb(sk, seq, &offset); 1746 tcp_cleanup_rbuf(sk, copied); 1747 } 1748 return copied; 1749 } 1750 EXPORT_SYMBOL(tcp_read_sock); 1751 1752 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1753 { 1754 struct tcp_sock *tp = tcp_sk(sk); 1755 u32 seq = tp->copied_seq; 1756 struct sk_buff *skb; 1757 int copied = 0; 1758 u32 offset; 1759 1760 if (sk->sk_state == TCP_LISTEN) 1761 return -ENOTCONN; 1762 1763 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1764 u8 tcp_flags; 1765 int used; 1766 1767 __skb_unlink(skb, &sk->sk_receive_queue); 1768 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1769 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1770 used = recv_actor(sk, skb); 1771 consume_skb(skb); 1772 if (used < 0) { 1773 if (!copied) 1774 copied = used; 1775 break; 1776 } 1777 seq += used; 1778 copied += used; 1779 1780 if (tcp_flags & TCPHDR_FIN) { 1781 ++seq; 1782 break; 1783 } 1784 } 1785 WRITE_ONCE(tp->copied_seq, seq); 1786 1787 tcp_rcv_space_adjust(sk); 1788 1789 /* Clean up data we have read: This will do ACK frames. */ 1790 if (copied > 0) 1791 __tcp_cleanup_rbuf(sk, copied); 1792 1793 return copied; 1794 } 1795 EXPORT_SYMBOL(tcp_read_skb); 1796 1797 void tcp_read_done(struct sock *sk, size_t len) 1798 { 1799 struct tcp_sock *tp = tcp_sk(sk); 1800 u32 seq = tp->copied_seq; 1801 struct sk_buff *skb; 1802 size_t left; 1803 u32 offset; 1804 1805 if (sk->sk_state == TCP_LISTEN) 1806 return; 1807 1808 left = len; 1809 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1810 int used; 1811 1812 used = min_t(size_t, skb->len - offset, left); 1813 seq += used; 1814 left -= used; 1815 1816 if (skb->len > offset + used) 1817 break; 1818 1819 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1820 tcp_eat_recv_skb(sk, skb); 1821 ++seq; 1822 break; 1823 } 1824 tcp_eat_recv_skb(sk, skb); 1825 } 1826 WRITE_ONCE(tp->copied_seq, seq); 1827 1828 tcp_rcv_space_adjust(sk); 1829 1830 /* Clean up data we have read: This will do ACK frames. */ 1831 if (left != len) 1832 tcp_cleanup_rbuf(sk, len - left); 1833 } 1834 EXPORT_SYMBOL(tcp_read_done); 1835 1836 int tcp_peek_len(struct socket *sock) 1837 { 1838 return tcp_inq(sock->sk); 1839 } 1840 EXPORT_SYMBOL(tcp_peek_len); 1841 1842 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1843 int tcp_set_rcvlowat(struct sock *sk, int val) 1844 { 1845 int cap; 1846 1847 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1848 cap = sk->sk_rcvbuf >> 1; 1849 else 1850 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1851 val = min(val, cap); 1852 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1853 1854 /* Check if we need to signal EPOLLIN right now */ 1855 tcp_data_ready(sk); 1856 1857 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1858 return 0; 1859 1860 val <<= 1; 1861 if (val > sk->sk_rcvbuf) { 1862 WRITE_ONCE(sk->sk_rcvbuf, val); 1863 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1864 } 1865 return 0; 1866 } 1867 EXPORT_SYMBOL(tcp_set_rcvlowat); 1868 1869 void tcp_update_recv_tstamps(struct sk_buff *skb, 1870 struct scm_timestamping_internal *tss) 1871 { 1872 if (skb->tstamp) 1873 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1874 else 1875 tss->ts[0] = (struct timespec64) {0}; 1876 1877 if (skb_hwtstamps(skb)->hwtstamp) 1878 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1879 else 1880 tss->ts[2] = (struct timespec64) {0}; 1881 } 1882 1883 #ifdef CONFIG_MMU 1884 static const struct vm_operations_struct tcp_vm_ops = { 1885 }; 1886 1887 int tcp_mmap(struct file *file, struct socket *sock, 1888 struct vm_area_struct *vma) 1889 { 1890 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1891 return -EPERM; 1892 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1893 1894 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1895 vma->vm_flags |= VM_MIXEDMAP; 1896 1897 vma->vm_ops = &tcp_vm_ops; 1898 return 0; 1899 } 1900 EXPORT_SYMBOL(tcp_mmap); 1901 1902 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1903 u32 *offset_frag) 1904 { 1905 skb_frag_t *frag; 1906 1907 if (unlikely(offset_skb >= skb->len)) 1908 return NULL; 1909 1910 offset_skb -= skb_headlen(skb); 1911 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1912 return NULL; 1913 1914 frag = skb_shinfo(skb)->frags; 1915 while (offset_skb) { 1916 if (skb_frag_size(frag) > offset_skb) { 1917 *offset_frag = offset_skb; 1918 return frag; 1919 } 1920 offset_skb -= skb_frag_size(frag); 1921 ++frag; 1922 } 1923 *offset_frag = 0; 1924 return frag; 1925 } 1926 1927 static bool can_map_frag(const skb_frag_t *frag) 1928 { 1929 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1930 } 1931 1932 static int find_next_mappable_frag(const skb_frag_t *frag, 1933 int remaining_in_skb) 1934 { 1935 int offset = 0; 1936 1937 if (likely(can_map_frag(frag))) 1938 return 0; 1939 1940 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1941 offset += skb_frag_size(frag); 1942 ++frag; 1943 } 1944 return offset; 1945 } 1946 1947 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1948 struct tcp_zerocopy_receive *zc, 1949 struct sk_buff *skb, u32 offset) 1950 { 1951 u32 frag_offset, partial_frag_remainder = 0; 1952 int mappable_offset; 1953 skb_frag_t *frag; 1954 1955 /* worst case: skip to next skb. try to improve on this case below */ 1956 zc->recv_skip_hint = skb->len - offset; 1957 1958 /* Find the frag containing this offset (and how far into that frag) */ 1959 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1960 if (!frag) 1961 return; 1962 1963 if (frag_offset) { 1964 struct skb_shared_info *info = skb_shinfo(skb); 1965 1966 /* We read part of the last frag, must recvmsg() rest of skb. */ 1967 if (frag == &info->frags[info->nr_frags - 1]) 1968 return; 1969 1970 /* Else, we must at least read the remainder in this frag. */ 1971 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1972 zc->recv_skip_hint -= partial_frag_remainder; 1973 ++frag; 1974 } 1975 1976 /* partial_frag_remainder: If part way through a frag, must read rest. 1977 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1978 * in partial_frag_remainder. 1979 */ 1980 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1981 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1982 } 1983 1984 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1985 int flags, struct scm_timestamping_internal *tss, 1986 int *cmsg_flags); 1987 static int receive_fallback_to_copy(struct sock *sk, 1988 struct tcp_zerocopy_receive *zc, int inq, 1989 struct scm_timestamping_internal *tss) 1990 { 1991 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1992 struct msghdr msg = {}; 1993 struct iovec iov; 1994 int err; 1995 1996 zc->length = 0; 1997 zc->recv_skip_hint = 0; 1998 1999 if (copy_address != zc->copybuf_address) 2000 return -EINVAL; 2001 2002 err = import_single_range(READ, (void __user *)copy_address, 2003 inq, &iov, &msg.msg_iter); 2004 if (err) 2005 return err; 2006 2007 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 2008 tss, &zc->msg_flags); 2009 if (err < 0) 2010 return err; 2011 2012 zc->copybuf_len = err; 2013 if (likely(zc->copybuf_len)) { 2014 struct sk_buff *skb; 2015 u32 offset; 2016 2017 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 2018 if (skb) 2019 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 2020 } 2021 return 0; 2022 } 2023 2024 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 2025 struct sk_buff *skb, u32 copylen, 2026 u32 *offset, u32 *seq) 2027 { 2028 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2029 struct msghdr msg = {}; 2030 struct iovec iov; 2031 int err; 2032 2033 if (copy_address != zc->copybuf_address) 2034 return -EINVAL; 2035 2036 err = import_single_range(READ, (void __user *)copy_address, 2037 copylen, &iov, &msg.msg_iter); 2038 if (err) 2039 return err; 2040 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 2041 if (err) 2042 return err; 2043 zc->recv_skip_hint -= copylen; 2044 *offset += copylen; 2045 *seq += copylen; 2046 return (__s32)copylen; 2047 } 2048 2049 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2050 struct sock *sk, 2051 struct sk_buff *skb, 2052 u32 *seq, 2053 s32 copybuf_len, 2054 struct scm_timestamping_internal *tss) 2055 { 2056 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2057 2058 if (!copylen) 2059 return 0; 2060 /* skb is null if inq < PAGE_SIZE. */ 2061 if (skb) { 2062 offset = *seq - TCP_SKB_CB(skb)->seq; 2063 } else { 2064 skb = tcp_recv_skb(sk, *seq, &offset); 2065 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2066 tcp_update_recv_tstamps(skb, tss); 2067 zc->msg_flags |= TCP_CMSG_TS; 2068 } 2069 } 2070 2071 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2072 seq); 2073 return zc->copybuf_len < 0 ? 0 : copylen; 2074 } 2075 2076 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2077 struct page **pending_pages, 2078 unsigned long pages_remaining, 2079 unsigned long *address, 2080 u32 *length, 2081 u32 *seq, 2082 struct tcp_zerocopy_receive *zc, 2083 u32 total_bytes_to_map, 2084 int err) 2085 { 2086 /* At least one page did not map. Try zapping if we skipped earlier. */ 2087 if (err == -EBUSY && 2088 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2089 u32 maybe_zap_len; 2090 2091 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2092 *length + /* Mapped or pending */ 2093 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2094 zap_page_range(vma, *address, maybe_zap_len); 2095 err = 0; 2096 } 2097 2098 if (!err) { 2099 unsigned long leftover_pages = pages_remaining; 2100 int bytes_mapped; 2101 2102 /* We called zap_page_range, try to reinsert. */ 2103 err = vm_insert_pages(vma, *address, 2104 pending_pages, 2105 &pages_remaining); 2106 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2107 *seq += bytes_mapped; 2108 *address += bytes_mapped; 2109 } 2110 if (err) { 2111 /* Either we were unable to zap, OR we zapped, retried an 2112 * insert, and still had an issue. Either ways, pages_remaining 2113 * is the number of pages we were unable to map, and we unroll 2114 * some state we speculatively touched before. 2115 */ 2116 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2117 2118 *length -= bytes_not_mapped; 2119 zc->recv_skip_hint += bytes_not_mapped; 2120 } 2121 return err; 2122 } 2123 2124 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2125 struct page **pages, 2126 unsigned int pages_to_map, 2127 unsigned long *address, 2128 u32 *length, 2129 u32 *seq, 2130 struct tcp_zerocopy_receive *zc, 2131 u32 total_bytes_to_map) 2132 { 2133 unsigned long pages_remaining = pages_to_map; 2134 unsigned int pages_mapped; 2135 unsigned int bytes_mapped; 2136 int err; 2137 2138 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2139 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2140 bytes_mapped = PAGE_SIZE * pages_mapped; 2141 /* Even if vm_insert_pages fails, it may have partially succeeded in 2142 * mapping (some but not all of the pages). 2143 */ 2144 *seq += bytes_mapped; 2145 *address += bytes_mapped; 2146 2147 if (likely(!err)) 2148 return 0; 2149 2150 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2151 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2152 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2153 err); 2154 } 2155 2156 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2157 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2158 struct tcp_zerocopy_receive *zc, 2159 struct scm_timestamping_internal *tss) 2160 { 2161 unsigned long msg_control_addr; 2162 struct msghdr cmsg_dummy; 2163 2164 msg_control_addr = (unsigned long)zc->msg_control; 2165 cmsg_dummy.msg_control = (void *)msg_control_addr; 2166 cmsg_dummy.msg_controllen = 2167 (__kernel_size_t)zc->msg_controllen; 2168 cmsg_dummy.msg_flags = in_compat_syscall() 2169 ? MSG_CMSG_COMPAT : 0; 2170 cmsg_dummy.msg_control_is_user = true; 2171 zc->msg_flags = 0; 2172 if (zc->msg_control == msg_control_addr && 2173 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2174 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2175 zc->msg_control = (__u64) 2176 ((uintptr_t)cmsg_dummy.msg_control); 2177 zc->msg_controllen = 2178 (__u64)cmsg_dummy.msg_controllen; 2179 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2180 } 2181 } 2182 2183 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2184 static int tcp_zerocopy_receive(struct sock *sk, 2185 struct tcp_zerocopy_receive *zc, 2186 struct scm_timestamping_internal *tss) 2187 { 2188 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2189 unsigned long address = (unsigned long)zc->address; 2190 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2191 s32 copybuf_len = zc->copybuf_len; 2192 struct tcp_sock *tp = tcp_sk(sk); 2193 const skb_frag_t *frags = NULL; 2194 unsigned int pages_to_map = 0; 2195 struct vm_area_struct *vma; 2196 struct sk_buff *skb = NULL; 2197 u32 seq = tp->copied_seq; 2198 u32 total_bytes_to_map; 2199 int inq = tcp_inq(sk); 2200 int ret; 2201 2202 zc->copybuf_len = 0; 2203 zc->msg_flags = 0; 2204 2205 if (address & (PAGE_SIZE - 1) || address != zc->address) 2206 return -EINVAL; 2207 2208 if (sk->sk_state == TCP_LISTEN) 2209 return -ENOTCONN; 2210 2211 sock_rps_record_flow(sk); 2212 2213 if (inq && inq <= copybuf_len) 2214 return receive_fallback_to_copy(sk, zc, inq, tss); 2215 2216 if (inq < PAGE_SIZE) { 2217 zc->length = 0; 2218 zc->recv_skip_hint = inq; 2219 if (!inq && sock_flag(sk, SOCK_DONE)) 2220 return -EIO; 2221 return 0; 2222 } 2223 2224 mmap_read_lock(current->mm); 2225 2226 vma = vma_lookup(current->mm, address); 2227 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2228 mmap_read_unlock(current->mm); 2229 return -EINVAL; 2230 } 2231 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2232 avail_len = min_t(u32, vma_len, inq); 2233 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2234 if (total_bytes_to_map) { 2235 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2236 zap_page_range(vma, address, total_bytes_to_map); 2237 zc->length = total_bytes_to_map; 2238 zc->recv_skip_hint = 0; 2239 } else { 2240 zc->length = avail_len; 2241 zc->recv_skip_hint = avail_len; 2242 } 2243 ret = 0; 2244 while (length + PAGE_SIZE <= zc->length) { 2245 int mappable_offset; 2246 struct page *page; 2247 2248 if (zc->recv_skip_hint < PAGE_SIZE) { 2249 u32 offset_frag; 2250 2251 if (skb) { 2252 if (zc->recv_skip_hint > 0) 2253 break; 2254 skb = skb->next; 2255 offset = seq - TCP_SKB_CB(skb)->seq; 2256 } else { 2257 skb = tcp_recv_skb(sk, seq, &offset); 2258 } 2259 2260 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2261 tcp_update_recv_tstamps(skb, tss); 2262 zc->msg_flags |= TCP_CMSG_TS; 2263 } 2264 zc->recv_skip_hint = skb->len - offset; 2265 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2266 if (!frags || offset_frag) 2267 break; 2268 } 2269 2270 mappable_offset = find_next_mappable_frag(frags, 2271 zc->recv_skip_hint); 2272 if (mappable_offset) { 2273 zc->recv_skip_hint = mappable_offset; 2274 break; 2275 } 2276 page = skb_frag_page(frags); 2277 prefetchw(page); 2278 pages[pages_to_map++] = page; 2279 length += PAGE_SIZE; 2280 zc->recv_skip_hint -= PAGE_SIZE; 2281 frags++; 2282 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2283 zc->recv_skip_hint < PAGE_SIZE) { 2284 /* Either full batch, or we're about to go to next skb 2285 * (and we cannot unroll failed ops across skbs). 2286 */ 2287 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2288 pages_to_map, 2289 &address, &length, 2290 &seq, zc, 2291 total_bytes_to_map); 2292 if (ret) 2293 goto out; 2294 pages_to_map = 0; 2295 } 2296 } 2297 if (pages_to_map) { 2298 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2299 &address, &length, &seq, 2300 zc, total_bytes_to_map); 2301 } 2302 out: 2303 mmap_read_unlock(current->mm); 2304 /* Try to copy straggler data. */ 2305 if (!ret) 2306 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2307 2308 if (length + copylen) { 2309 WRITE_ONCE(tp->copied_seq, seq); 2310 tcp_rcv_space_adjust(sk); 2311 2312 /* Clean up data we have read: This will do ACK frames. */ 2313 tcp_recv_skb(sk, seq, &offset); 2314 tcp_cleanup_rbuf(sk, length + copylen); 2315 ret = 0; 2316 if (length == zc->length) 2317 zc->recv_skip_hint = 0; 2318 } else { 2319 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2320 ret = -EIO; 2321 } 2322 zc->length = length; 2323 return ret; 2324 } 2325 #endif 2326 2327 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2328 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2329 struct scm_timestamping_internal *tss) 2330 { 2331 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2332 bool has_timestamping = false; 2333 2334 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2335 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2336 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2337 if (new_tstamp) { 2338 struct __kernel_timespec kts = { 2339 .tv_sec = tss->ts[0].tv_sec, 2340 .tv_nsec = tss->ts[0].tv_nsec, 2341 }; 2342 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2343 sizeof(kts), &kts); 2344 } else { 2345 struct __kernel_old_timespec ts_old = { 2346 .tv_sec = tss->ts[0].tv_sec, 2347 .tv_nsec = tss->ts[0].tv_nsec, 2348 }; 2349 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2350 sizeof(ts_old), &ts_old); 2351 } 2352 } else { 2353 if (new_tstamp) { 2354 struct __kernel_sock_timeval stv = { 2355 .tv_sec = tss->ts[0].tv_sec, 2356 .tv_usec = tss->ts[0].tv_nsec / 1000, 2357 }; 2358 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2359 sizeof(stv), &stv); 2360 } else { 2361 struct __kernel_old_timeval tv = { 2362 .tv_sec = tss->ts[0].tv_sec, 2363 .tv_usec = tss->ts[0].tv_nsec / 1000, 2364 }; 2365 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2366 sizeof(tv), &tv); 2367 } 2368 } 2369 } 2370 2371 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2372 has_timestamping = true; 2373 else 2374 tss->ts[0] = (struct timespec64) {0}; 2375 } 2376 2377 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2378 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2379 has_timestamping = true; 2380 else 2381 tss->ts[2] = (struct timespec64) {0}; 2382 } 2383 2384 if (has_timestamping) { 2385 tss->ts[1] = (struct timespec64) {0}; 2386 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2387 put_cmsg_scm_timestamping64(msg, tss); 2388 else 2389 put_cmsg_scm_timestamping(msg, tss); 2390 } 2391 } 2392 2393 static int tcp_inq_hint(struct sock *sk) 2394 { 2395 const struct tcp_sock *tp = tcp_sk(sk); 2396 u32 copied_seq = READ_ONCE(tp->copied_seq); 2397 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2398 int inq; 2399 2400 inq = rcv_nxt - copied_seq; 2401 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2402 lock_sock(sk); 2403 inq = tp->rcv_nxt - tp->copied_seq; 2404 release_sock(sk); 2405 } 2406 /* After receiving a FIN, tell the user-space to continue reading 2407 * by returning a non-zero inq. 2408 */ 2409 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2410 inq = 1; 2411 return inq; 2412 } 2413 2414 /* 2415 * This routine copies from a sock struct into the user buffer. 2416 * 2417 * Technical note: in 2.3 we work on _locked_ socket, so that 2418 * tricks with *seq access order and skb->users are not required. 2419 * Probably, code can be easily improved even more. 2420 */ 2421 2422 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2423 int flags, struct scm_timestamping_internal *tss, 2424 int *cmsg_flags) 2425 { 2426 struct tcp_sock *tp = tcp_sk(sk); 2427 int copied = 0; 2428 u32 peek_seq; 2429 u32 *seq; 2430 unsigned long used; 2431 int err; 2432 int target; /* Read at least this many bytes */ 2433 long timeo; 2434 struct sk_buff *skb, *last; 2435 u32 urg_hole = 0; 2436 2437 err = -ENOTCONN; 2438 if (sk->sk_state == TCP_LISTEN) 2439 goto out; 2440 2441 if (tp->recvmsg_inq) { 2442 *cmsg_flags = TCP_CMSG_INQ; 2443 msg->msg_get_inq = 1; 2444 } 2445 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2446 2447 /* Urgent data needs to be handled specially. */ 2448 if (flags & MSG_OOB) 2449 goto recv_urg; 2450 2451 if (unlikely(tp->repair)) { 2452 err = -EPERM; 2453 if (!(flags & MSG_PEEK)) 2454 goto out; 2455 2456 if (tp->repair_queue == TCP_SEND_QUEUE) 2457 goto recv_sndq; 2458 2459 err = -EINVAL; 2460 if (tp->repair_queue == TCP_NO_QUEUE) 2461 goto out; 2462 2463 /* 'common' recv queue MSG_PEEK-ing */ 2464 } 2465 2466 seq = &tp->copied_seq; 2467 if (flags & MSG_PEEK) { 2468 peek_seq = tp->copied_seq; 2469 seq = &peek_seq; 2470 } 2471 2472 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2473 2474 do { 2475 u32 offset; 2476 2477 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2478 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2479 if (copied) 2480 break; 2481 if (signal_pending(current)) { 2482 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2483 break; 2484 } 2485 } 2486 2487 /* Next get a buffer. */ 2488 2489 last = skb_peek_tail(&sk->sk_receive_queue); 2490 skb_queue_walk(&sk->sk_receive_queue, skb) { 2491 last = skb; 2492 /* Now that we have two receive queues this 2493 * shouldn't happen. 2494 */ 2495 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2496 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2497 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2498 flags)) 2499 break; 2500 2501 offset = *seq - TCP_SKB_CB(skb)->seq; 2502 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2503 pr_err_once("%s: found a SYN, please report !\n", __func__); 2504 offset--; 2505 } 2506 if (offset < skb->len) 2507 goto found_ok_skb; 2508 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2509 goto found_fin_ok; 2510 WARN(!(flags & MSG_PEEK), 2511 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2512 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2513 } 2514 2515 /* Well, if we have backlog, try to process it now yet. */ 2516 2517 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2518 break; 2519 2520 if (copied) { 2521 if (!timeo || 2522 sk->sk_err || 2523 sk->sk_state == TCP_CLOSE || 2524 (sk->sk_shutdown & RCV_SHUTDOWN) || 2525 signal_pending(current)) 2526 break; 2527 } else { 2528 if (sock_flag(sk, SOCK_DONE)) 2529 break; 2530 2531 if (sk->sk_err) { 2532 copied = sock_error(sk); 2533 break; 2534 } 2535 2536 if (sk->sk_shutdown & RCV_SHUTDOWN) 2537 break; 2538 2539 if (sk->sk_state == TCP_CLOSE) { 2540 /* This occurs when user tries to read 2541 * from never connected socket. 2542 */ 2543 copied = -ENOTCONN; 2544 break; 2545 } 2546 2547 if (!timeo) { 2548 copied = -EAGAIN; 2549 break; 2550 } 2551 2552 if (signal_pending(current)) { 2553 copied = sock_intr_errno(timeo); 2554 break; 2555 } 2556 } 2557 2558 if (copied >= target) { 2559 /* Do not sleep, just process backlog. */ 2560 __sk_flush_backlog(sk); 2561 } else { 2562 tcp_cleanup_rbuf(sk, copied); 2563 sk_wait_data(sk, &timeo, last); 2564 } 2565 2566 if ((flags & MSG_PEEK) && 2567 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2568 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2569 current->comm, 2570 task_pid_nr(current)); 2571 peek_seq = tp->copied_seq; 2572 } 2573 continue; 2574 2575 found_ok_skb: 2576 /* Ok so how much can we use? */ 2577 used = skb->len - offset; 2578 if (len < used) 2579 used = len; 2580 2581 /* Do we have urgent data here? */ 2582 if (unlikely(tp->urg_data)) { 2583 u32 urg_offset = tp->urg_seq - *seq; 2584 if (urg_offset < used) { 2585 if (!urg_offset) { 2586 if (!sock_flag(sk, SOCK_URGINLINE)) { 2587 WRITE_ONCE(*seq, *seq + 1); 2588 urg_hole++; 2589 offset++; 2590 used--; 2591 if (!used) 2592 goto skip_copy; 2593 } 2594 } else 2595 used = urg_offset; 2596 } 2597 } 2598 2599 if (!(flags & MSG_TRUNC)) { 2600 err = skb_copy_datagram_msg(skb, offset, msg, used); 2601 if (err) { 2602 /* Exception. Bailout! */ 2603 if (!copied) 2604 copied = -EFAULT; 2605 break; 2606 } 2607 } 2608 2609 WRITE_ONCE(*seq, *seq + used); 2610 copied += used; 2611 len -= used; 2612 2613 tcp_rcv_space_adjust(sk); 2614 2615 skip_copy: 2616 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2617 WRITE_ONCE(tp->urg_data, 0); 2618 tcp_fast_path_check(sk); 2619 } 2620 2621 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2622 tcp_update_recv_tstamps(skb, tss); 2623 *cmsg_flags |= TCP_CMSG_TS; 2624 } 2625 2626 if (used + offset < skb->len) 2627 continue; 2628 2629 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2630 goto found_fin_ok; 2631 if (!(flags & MSG_PEEK)) 2632 tcp_eat_recv_skb(sk, skb); 2633 continue; 2634 2635 found_fin_ok: 2636 /* Process the FIN. */ 2637 WRITE_ONCE(*seq, *seq + 1); 2638 if (!(flags & MSG_PEEK)) 2639 tcp_eat_recv_skb(sk, skb); 2640 break; 2641 } while (len > 0); 2642 2643 /* According to UNIX98, msg_name/msg_namelen are ignored 2644 * on connected socket. I was just happy when found this 8) --ANK 2645 */ 2646 2647 /* Clean up data we have read: This will do ACK frames. */ 2648 tcp_cleanup_rbuf(sk, copied); 2649 return copied; 2650 2651 out: 2652 return err; 2653 2654 recv_urg: 2655 err = tcp_recv_urg(sk, msg, len, flags); 2656 goto out; 2657 2658 recv_sndq: 2659 err = tcp_peek_sndq(sk, msg, len); 2660 goto out; 2661 } 2662 2663 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2664 int *addr_len) 2665 { 2666 int cmsg_flags = 0, ret; 2667 struct scm_timestamping_internal tss; 2668 2669 if (unlikely(flags & MSG_ERRQUEUE)) 2670 return inet_recv_error(sk, msg, len, addr_len); 2671 2672 if (sk_can_busy_loop(sk) && 2673 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2674 sk->sk_state == TCP_ESTABLISHED) 2675 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2676 2677 lock_sock(sk); 2678 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2679 release_sock(sk); 2680 2681 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2682 if (cmsg_flags & TCP_CMSG_TS) 2683 tcp_recv_timestamp(msg, sk, &tss); 2684 if (msg->msg_get_inq) { 2685 msg->msg_inq = tcp_inq_hint(sk); 2686 if (cmsg_flags & TCP_CMSG_INQ) 2687 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2688 sizeof(msg->msg_inq), &msg->msg_inq); 2689 } 2690 } 2691 return ret; 2692 } 2693 EXPORT_SYMBOL(tcp_recvmsg); 2694 2695 void tcp_set_state(struct sock *sk, int state) 2696 { 2697 int oldstate = sk->sk_state; 2698 2699 /* We defined a new enum for TCP states that are exported in BPF 2700 * so as not force the internal TCP states to be frozen. The 2701 * following checks will detect if an internal state value ever 2702 * differs from the BPF value. If this ever happens, then we will 2703 * need to remap the internal value to the BPF value before calling 2704 * tcp_call_bpf_2arg. 2705 */ 2706 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2707 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2708 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2709 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2710 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2711 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2712 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2713 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2714 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2715 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2716 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2717 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2718 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2719 2720 /* bpf uapi header bpf.h defines an anonymous enum with values 2721 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2722 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2723 * But clang built vmlinux does not have this enum in DWARF 2724 * since clang removes the above code before generating IR/debuginfo. 2725 * Let us explicitly emit the type debuginfo to ensure the 2726 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2727 * regardless of which compiler is used. 2728 */ 2729 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2730 2731 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2732 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2733 2734 switch (state) { 2735 case TCP_ESTABLISHED: 2736 if (oldstate != TCP_ESTABLISHED) 2737 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2738 break; 2739 2740 case TCP_CLOSE: 2741 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2742 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2743 2744 sk->sk_prot->unhash(sk); 2745 if (inet_csk(sk)->icsk_bind_hash && 2746 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2747 inet_put_port(sk); 2748 fallthrough; 2749 default: 2750 if (oldstate == TCP_ESTABLISHED) 2751 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2752 } 2753 2754 /* Change state AFTER socket is unhashed to avoid closed 2755 * socket sitting in hash tables. 2756 */ 2757 inet_sk_state_store(sk, state); 2758 } 2759 EXPORT_SYMBOL_GPL(tcp_set_state); 2760 2761 /* 2762 * State processing on a close. This implements the state shift for 2763 * sending our FIN frame. Note that we only send a FIN for some 2764 * states. A shutdown() may have already sent the FIN, or we may be 2765 * closed. 2766 */ 2767 2768 static const unsigned char new_state[16] = { 2769 /* current state: new state: action: */ 2770 [0 /* (Invalid) */] = TCP_CLOSE, 2771 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2772 [TCP_SYN_SENT] = TCP_CLOSE, 2773 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2774 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2775 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2776 [TCP_TIME_WAIT] = TCP_CLOSE, 2777 [TCP_CLOSE] = TCP_CLOSE, 2778 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2779 [TCP_LAST_ACK] = TCP_LAST_ACK, 2780 [TCP_LISTEN] = TCP_CLOSE, 2781 [TCP_CLOSING] = TCP_CLOSING, 2782 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2783 }; 2784 2785 static int tcp_close_state(struct sock *sk) 2786 { 2787 int next = (int)new_state[sk->sk_state]; 2788 int ns = next & TCP_STATE_MASK; 2789 2790 tcp_set_state(sk, ns); 2791 2792 return next & TCP_ACTION_FIN; 2793 } 2794 2795 /* 2796 * Shutdown the sending side of a connection. Much like close except 2797 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2798 */ 2799 2800 void tcp_shutdown(struct sock *sk, int how) 2801 { 2802 /* We need to grab some memory, and put together a FIN, 2803 * and then put it into the queue to be sent. 2804 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2805 */ 2806 if (!(how & SEND_SHUTDOWN)) 2807 return; 2808 2809 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2810 if ((1 << sk->sk_state) & 2811 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2812 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2813 /* Clear out any half completed packets. FIN if needed. */ 2814 if (tcp_close_state(sk)) 2815 tcp_send_fin(sk); 2816 } 2817 } 2818 EXPORT_SYMBOL(tcp_shutdown); 2819 2820 int tcp_orphan_count_sum(void) 2821 { 2822 int i, total = 0; 2823 2824 for_each_possible_cpu(i) 2825 total += per_cpu(tcp_orphan_count, i); 2826 2827 return max(total, 0); 2828 } 2829 2830 static int tcp_orphan_cache; 2831 static struct timer_list tcp_orphan_timer; 2832 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2833 2834 static void tcp_orphan_update(struct timer_list *unused) 2835 { 2836 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2837 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2838 } 2839 2840 static bool tcp_too_many_orphans(int shift) 2841 { 2842 return READ_ONCE(tcp_orphan_cache) << shift > 2843 READ_ONCE(sysctl_tcp_max_orphans); 2844 } 2845 2846 bool tcp_check_oom(struct sock *sk, int shift) 2847 { 2848 bool too_many_orphans, out_of_socket_memory; 2849 2850 too_many_orphans = tcp_too_many_orphans(shift); 2851 out_of_socket_memory = tcp_out_of_memory(sk); 2852 2853 if (too_many_orphans) 2854 net_info_ratelimited("too many orphaned sockets\n"); 2855 if (out_of_socket_memory) 2856 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2857 return too_many_orphans || out_of_socket_memory; 2858 } 2859 2860 void __tcp_close(struct sock *sk, long timeout) 2861 { 2862 struct sk_buff *skb; 2863 int data_was_unread = 0; 2864 int state; 2865 2866 sk->sk_shutdown = SHUTDOWN_MASK; 2867 2868 if (sk->sk_state == TCP_LISTEN) { 2869 tcp_set_state(sk, TCP_CLOSE); 2870 2871 /* Special case. */ 2872 inet_csk_listen_stop(sk); 2873 2874 goto adjudge_to_death; 2875 } 2876 2877 /* We need to flush the recv. buffs. We do this only on the 2878 * descriptor close, not protocol-sourced closes, because the 2879 * reader process may not have drained the data yet! 2880 */ 2881 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2882 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2883 2884 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2885 len--; 2886 data_was_unread += len; 2887 __kfree_skb(skb); 2888 } 2889 2890 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2891 if (sk->sk_state == TCP_CLOSE) 2892 goto adjudge_to_death; 2893 2894 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2895 * data was lost. To witness the awful effects of the old behavior of 2896 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2897 * GET in an FTP client, suspend the process, wait for the client to 2898 * advertise a zero window, then kill -9 the FTP client, wheee... 2899 * Note: timeout is always zero in such a case. 2900 */ 2901 if (unlikely(tcp_sk(sk)->repair)) { 2902 sk->sk_prot->disconnect(sk, 0); 2903 } else if (data_was_unread) { 2904 /* Unread data was tossed, zap the connection. */ 2905 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2906 tcp_set_state(sk, TCP_CLOSE); 2907 tcp_send_active_reset(sk, sk->sk_allocation); 2908 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2909 /* Check zero linger _after_ checking for unread data. */ 2910 sk->sk_prot->disconnect(sk, 0); 2911 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2912 } else if (tcp_close_state(sk)) { 2913 /* We FIN if the application ate all the data before 2914 * zapping the connection. 2915 */ 2916 2917 /* RED-PEN. Formally speaking, we have broken TCP state 2918 * machine. State transitions: 2919 * 2920 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2921 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2922 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2923 * 2924 * are legal only when FIN has been sent (i.e. in window), 2925 * rather than queued out of window. Purists blame. 2926 * 2927 * F.e. "RFC state" is ESTABLISHED, 2928 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2929 * 2930 * The visible declinations are that sometimes 2931 * we enter time-wait state, when it is not required really 2932 * (harmless), do not send active resets, when they are 2933 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2934 * they look as CLOSING or LAST_ACK for Linux) 2935 * Probably, I missed some more holelets. 2936 * --ANK 2937 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2938 * in a single packet! (May consider it later but will 2939 * probably need API support or TCP_CORK SYN-ACK until 2940 * data is written and socket is closed.) 2941 */ 2942 tcp_send_fin(sk); 2943 } 2944 2945 sk_stream_wait_close(sk, timeout); 2946 2947 adjudge_to_death: 2948 state = sk->sk_state; 2949 sock_hold(sk); 2950 sock_orphan(sk); 2951 2952 local_bh_disable(); 2953 bh_lock_sock(sk); 2954 /* remove backlog if any, without releasing ownership. */ 2955 __release_sock(sk); 2956 2957 this_cpu_inc(tcp_orphan_count); 2958 2959 /* Have we already been destroyed by a softirq or backlog? */ 2960 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2961 goto out; 2962 2963 /* This is a (useful) BSD violating of the RFC. There is a 2964 * problem with TCP as specified in that the other end could 2965 * keep a socket open forever with no application left this end. 2966 * We use a 1 minute timeout (about the same as BSD) then kill 2967 * our end. If they send after that then tough - BUT: long enough 2968 * that we won't make the old 4*rto = almost no time - whoops 2969 * reset mistake. 2970 * 2971 * Nope, it was not mistake. It is really desired behaviour 2972 * f.e. on http servers, when such sockets are useless, but 2973 * consume significant resources. Let's do it with special 2974 * linger2 option. --ANK 2975 */ 2976 2977 if (sk->sk_state == TCP_FIN_WAIT2) { 2978 struct tcp_sock *tp = tcp_sk(sk); 2979 if (tp->linger2 < 0) { 2980 tcp_set_state(sk, TCP_CLOSE); 2981 tcp_send_active_reset(sk, GFP_ATOMIC); 2982 __NET_INC_STATS(sock_net(sk), 2983 LINUX_MIB_TCPABORTONLINGER); 2984 } else { 2985 const int tmo = tcp_fin_time(sk); 2986 2987 if (tmo > TCP_TIMEWAIT_LEN) { 2988 inet_csk_reset_keepalive_timer(sk, 2989 tmo - TCP_TIMEWAIT_LEN); 2990 } else { 2991 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2992 goto out; 2993 } 2994 } 2995 } 2996 if (sk->sk_state != TCP_CLOSE) { 2997 if (tcp_check_oom(sk, 0)) { 2998 tcp_set_state(sk, TCP_CLOSE); 2999 tcp_send_active_reset(sk, GFP_ATOMIC); 3000 __NET_INC_STATS(sock_net(sk), 3001 LINUX_MIB_TCPABORTONMEMORY); 3002 } else if (!check_net(sock_net(sk))) { 3003 /* Not possible to send reset; just close */ 3004 tcp_set_state(sk, TCP_CLOSE); 3005 } 3006 } 3007 3008 if (sk->sk_state == TCP_CLOSE) { 3009 struct request_sock *req; 3010 3011 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3012 lockdep_sock_is_held(sk)); 3013 /* We could get here with a non-NULL req if the socket is 3014 * aborted (e.g., closed with unread data) before 3WHS 3015 * finishes. 3016 */ 3017 if (req) 3018 reqsk_fastopen_remove(sk, req, false); 3019 inet_csk_destroy_sock(sk); 3020 } 3021 /* Otherwise, socket is reprieved until protocol close. */ 3022 3023 out: 3024 bh_unlock_sock(sk); 3025 local_bh_enable(); 3026 } 3027 3028 void tcp_close(struct sock *sk, long timeout) 3029 { 3030 lock_sock(sk); 3031 __tcp_close(sk, timeout); 3032 release_sock(sk); 3033 sock_put(sk); 3034 } 3035 EXPORT_SYMBOL(tcp_close); 3036 3037 /* These states need RST on ABORT according to RFC793 */ 3038 3039 static inline bool tcp_need_reset(int state) 3040 { 3041 return (1 << state) & 3042 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3043 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3044 } 3045 3046 static void tcp_rtx_queue_purge(struct sock *sk) 3047 { 3048 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3049 3050 tcp_sk(sk)->highest_sack = NULL; 3051 while (p) { 3052 struct sk_buff *skb = rb_to_skb(p); 3053 3054 p = rb_next(p); 3055 /* Since we are deleting whole queue, no need to 3056 * list_del(&skb->tcp_tsorted_anchor) 3057 */ 3058 tcp_rtx_queue_unlink(skb, sk); 3059 tcp_wmem_free_skb(sk, skb); 3060 } 3061 } 3062 3063 void tcp_write_queue_purge(struct sock *sk) 3064 { 3065 struct sk_buff *skb; 3066 3067 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3068 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3069 tcp_skb_tsorted_anchor_cleanup(skb); 3070 tcp_wmem_free_skb(sk, skb); 3071 } 3072 tcp_rtx_queue_purge(sk); 3073 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3074 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3075 tcp_sk(sk)->packets_out = 0; 3076 inet_csk(sk)->icsk_backoff = 0; 3077 } 3078 3079 int tcp_disconnect(struct sock *sk, int flags) 3080 { 3081 struct inet_sock *inet = inet_sk(sk); 3082 struct inet_connection_sock *icsk = inet_csk(sk); 3083 struct tcp_sock *tp = tcp_sk(sk); 3084 int old_state = sk->sk_state; 3085 u32 seq; 3086 3087 if (old_state != TCP_CLOSE) 3088 tcp_set_state(sk, TCP_CLOSE); 3089 3090 /* ABORT function of RFC793 */ 3091 if (old_state == TCP_LISTEN) { 3092 inet_csk_listen_stop(sk); 3093 } else if (unlikely(tp->repair)) { 3094 sk->sk_err = ECONNABORTED; 3095 } else if (tcp_need_reset(old_state) || 3096 (tp->snd_nxt != tp->write_seq && 3097 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3098 /* The last check adjusts for discrepancy of Linux wrt. RFC 3099 * states 3100 */ 3101 tcp_send_active_reset(sk, gfp_any()); 3102 sk->sk_err = ECONNRESET; 3103 } else if (old_state == TCP_SYN_SENT) 3104 sk->sk_err = ECONNRESET; 3105 3106 tcp_clear_xmit_timers(sk); 3107 __skb_queue_purge(&sk->sk_receive_queue); 3108 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3109 WRITE_ONCE(tp->urg_data, 0); 3110 tcp_write_queue_purge(sk); 3111 tcp_fastopen_active_disable_ofo_check(sk); 3112 skb_rbtree_purge(&tp->out_of_order_queue); 3113 3114 inet->inet_dport = 0; 3115 3116 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3117 inet_reset_saddr(sk); 3118 3119 sk->sk_shutdown = 0; 3120 sock_reset_flag(sk, SOCK_DONE); 3121 tp->srtt_us = 0; 3122 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3123 tp->rcv_rtt_last_tsecr = 0; 3124 3125 seq = tp->write_seq + tp->max_window + 2; 3126 if (!seq) 3127 seq = 1; 3128 WRITE_ONCE(tp->write_seq, seq); 3129 3130 icsk->icsk_backoff = 0; 3131 icsk->icsk_probes_out = 0; 3132 icsk->icsk_probes_tstamp = 0; 3133 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3134 icsk->icsk_rto_min = TCP_RTO_MIN; 3135 icsk->icsk_delack_max = TCP_DELACK_MAX; 3136 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3137 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3138 tp->snd_cwnd_cnt = 0; 3139 tp->is_cwnd_limited = 0; 3140 tp->max_packets_out = 0; 3141 tp->window_clamp = 0; 3142 tp->delivered = 0; 3143 tp->delivered_ce = 0; 3144 if (icsk->icsk_ca_ops->release) 3145 icsk->icsk_ca_ops->release(sk); 3146 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3147 icsk->icsk_ca_initialized = 0; 3148 tcp_set_ca_state(sk, TCP_CA_Open); 3149 tp->is_sack_reneg = 0; 3150 tcp_clear_retrans(tp); 3151 tp->total_retrans = 0; 3152 inet_csk_delack_init(sk); 3153 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3154 * issue in __tcp_select_window() 3155 */ 3156 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3157 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3158 __sk_dst_reset(sk); 3159 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3160 tcp_saved_syn_free(tp); 3161 tp->compressed_ack = 0; 3162 tp->segs_in = 0; 3163 tp->segs_out = 0; 3164 tp->bytes_sent = 0; 3165 tp->bytes_acked = 0; 3166 tp->bytes_received = 0; 3167 tp->bytes_retrans = 0; 3168 tp->data_segs_in = 0; 3169 tp->data_segs_out = 0; 3170 tp->duplicate_sack[0].start_seq = 0; 3171 tp->duplicate_sack[0].end_seq = 0; 3172 tp->dsack_dups = 0; 3173 tp->reord_seen = 0; 3174 tp->retrans_out = 0; 3175 tp->sacked_out = 0; 3176 tp->tlp_high_seq = 0; 3177 tp->last_oow_ack_time = 0; 3178 /* There's a bubble in the pipe until at least the first ACK. */ 3179 tp->app_limited = ~0U; 3180 tp->rack.mstamp = 0; 3181 tp->rack.advanced = 0; 3182 tp->rack.reo_wnd_steps = 1; 3183 tp->rack.last_delivered = 0; 3184 tp->rack.reo_wnd_persist = 0; 3185 tp->rack.dsack_seen = 0; 3186 tp->syn_data_acked = 0; 3187 tp->rx_opt.saw_tstamp = 0; 3188 tp->rx_opt.dsack = 0; 3189 tp->rx_opt.num_sacks = 0; 3190 tp->rcv_ooopack = 0; 3191 3192 3193 /* Clean up fastopen related fields */ 3194 tcp_free_fastopen_req(tp); 3195 inet->defer_connect = 0; 3196 tp->fastopen_client_fail = 0; 3197 3198 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3199 3200 if (sk->sk_frag.page) { 3201 put_page(sk->sk_frag.page); 3202 sk->sk_frag.page = NULL; 3203 sk->sk_frag.offset = 0; 3204 } 3205 sk_error_report(sk); 3206 return 0; 3207 } 3208 EXPORT_SYMBOL(tcp_disconnect); 3209 3210 static inline bool tcp_can_repair_sock(const struct sock *sk) 3211 { 3212 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3213 (sk->sk_state != TCP_LISTEN); 3214 } 3215 3216 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3217 { 3218 struct tcp_repair_window opt; 3219 3220 if (!tp->repair) 3221 return -EPERM; 3222 3223 if (len != sizeof(opt)) 3224 return -EINVAL; 3225 3226 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3227 return -EFAULT; 3228 3229 if (opt.max_window < opt.snd_wnd) 3230 return -EINVAL; 3231 3232 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3233 return -EINVAL; 3234 3235 if (after(opt.rcv_wup, tp->rcv_nxt)) 3236 return -EINVAL; 3237 3238 tp->snd_wl1 = opt.snd_wl1; 3239 tp->snd_wnd = opt.snd_wnd; 3240 tp->max_window = opt.max_window; 3241 3242 tp->rcv_wnd = opt.rcv_wnd; 3243 tp->rcv_wup = opt.rcv_wup; 3244 3245 return 0; 3246 } 3247 3248 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3249 unsigned int len) 3250 { 3251 struct tcp_sock *tp = tcp_sk(sk); 3252 struct tcp_repair_opt opt; 3253 size_t offset = 0; 3254 3255 while (len >= sizeof(opt)) { 3256 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3257 return -EFAULT; 3258 3259 offset += sizeof(opt); 3260 len -= sizeof(opt); 3261 3262 switch (opt.opt_code) { 3263 case TCPOPT_MSS: 3264 tp->rx_opt.mss_clamp = opt.opt_val; 3265 tcp_mtup_init(sk); 3266 break; 3267 case TCPOPT_WINDOW: 3268 { 3269 u16 snd_wscale = opt.opt_val & 0xFFFF; 3270 u16 rcv_wscale = opt.opt_val >> 16; 3271 3272 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3273 return -EFBIG; 3274 3275 tp->rx_opt.snd_wscale = snd_wscale; 3276 tp->rx_opt.rcv_wscale = rcv_wscale; 3277 tp->rx_opt.wscale_ok = 1; 3278 } 3279 break; 3280 case TCPOPT_SACK_PERM: 3281 if (opt.opt_val != 0) 3282 return -EINVAL; 3283 3284 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3285 break; 3286 case TCPOPT_TIMESTAMP: 3287 if (opt.opt_val != 0) 3288 return -EINVAL; 3289 3290 tp->rx_opt.tstamp_ok = 1; 3291 break; 3292 } 3293 } 3294 3295 return 0; 3296 } 3297 3298 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3299 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3300 3301 static void tcp_enable_tx_delay(void) 3302 { 3303 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3304 static int __tcp_tx_delay_enabled = 0; 3305 3306 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3307 static_branch_enable(&tcp_tx_delay_enabled); 3308 pr_info("TCP_TX_DELAY enabled\n"); 3309 } 3310 } 3311 } 3312 3313 /* When set indicates to always queue non-full frames. Later the user clears 3314 * this option and we transmit any pending partial frames in the queue. This is 3315 * meant to be used alongside sendfile() to get properly filled frames when the 3316 * user (for example) must write out headers with a write() call first and then 3317 * use sendfile to send out the data parts. 3318 * 3319 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3320 * TCP_NODELAY. 3321 */ 3322 void __tcp_sock_set_cork(struct sock *sk, bool on) 3323 { 3324 struct tcp_sock *tp = tcp_sk(sk); 3325 3326 if (on) { 3327 tp->nonagle |= TCP_NAGLE_CORK; 3328 } else { 3329 tp->nonagle &= ~TCP_NAGLE_CORK; 3330 if (tp->nonagle & TCP_NAGLE_OFF) 3331 tp->nonagle |= TCP_NAGLE_PUSH; 3332 tcp_push_pending_frames(sk); 3333 } 3334 } 3335 3336 void tcp_sock_set_cork(struct sock *sk, bool on) 3337 { 3338 lock_sock(sk); 3339 __tcp_sock_set_cork(sk, on); 3340 release_sock(sk); 3341 } 3342 EXPORT_SYMBOL(tcp_sock_set_cork); 3343 3344 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3345 * remembered, but it is not activated until cork is cleared. 3346 * 3347 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3348 * even TCP_CORK for currently queued segments. 3349 */ 3350 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3351 { 3352 if (on) { 3353 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3354 tcp_push_pending_frames(sk); 3355 } else { 3356 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3357 } 3358 } 3359 3360 void tcp_sock_set_nodelay(struct sock *sk) 3361 { 3362 lock_sock(sk); 3363 __tcp_sock_set_nodelay(sk, true); 3364 release_sock(sk); 3365 } 3366 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3367 3368 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3369 { 3370 if (!val) { 3371 inet_csk_enter_pingpong_mode(sk); 3372 return; 3373 } 3374 3375 inet_csk_exit_pingpong_mode(sk); 3376 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3377 inet_csk_ack_scheduled(sk)) { 3378 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3379 tcp_cleanup_rbuf(sk, 1); 3380 if (!(val & 1)) 3381 inet_csk_enter_pingpong_mode(sk); 3382 } 3383 } 3384 3385 void tcp_sock_set_quickack(struct sock *sk, int val) 3386 { 3387 lock_sock(sk); 3388 __tcp_sock_set_quickack(sk, val); 3389 release_sock(sk); 3390 } 3391 EXPORT_SYMBOL(tcp_sock_set_quickack); 3392 3393 int tcp_sock_set_syncnt(struct sock *sk, int val) 3394 { 3395 if (val < 1 || val > MAX_TCP_SYNCNT) 3396 return -EINVAL; 3397 3398 lock_sock(sk); 3399 inet_csk(sk)->icsk_syn_retries = val; 3400 release_sock(sk); 3401 return 0; 3402 } 3403 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3404 3405 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3406 { 3407 lock_sock(sk); 3408 inet_csk(sk)->icsk_user_timeout = val; 3409 release_sock(sk); 3410 } 3411 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3412 3413 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3414 { 3415 struct tcp_sock *tp = tcp_sk(sk); 3416 3417 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3418 return -EINVAL; 3419 3420 tp->keepalive_time = val * HZ; 3421 if (sock_flag(sk, SOCK_KEEPOPEN) && 3422 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3423 u32 elapsed = keepalive_time_elapsed(tp); 3424 3425 if (tp->keepalive_time > elapsed) 3426 elapsed = tp->keepalive_time - elapsed; 3427 else 3428 elapsed = 0; 3429 inet_csk_reset_keepalive_timer(sk, elapsed); 3430 } 3431 3432 return 0; 3433 } 3434 3435 int tcp_sock_set_keepidle(struct sock *sk, int val) 3436 { 3437 int err; 3438 3439 lock_sock(sk); 3440 err = tcp_sock_set_keepidle_locked(sk, val); 3441 release_sock(sk); 3442 return err; 3443 } 3444 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3445 3446 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3447 { 3448 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3449 return -EINVAL; 3450 3451 lock_sock(sk); 3452 tcp_sk(sk)->keepalive_intvl = val * HZ; 3453 release_sock(sk); 3454 return 0; 3455 } 3456 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3457 3458 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3459 { 3460 if (val < 1 || val > MAX_TCP_KEEPCNT) 3461 return -EINVAL; 3462 3463 lock_sock(sk); 3464 tcp_sk(sk)->keepalive_probes = val; 3465 release_sock(sk); 3466 return 0; 3467 } 3468 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3469 3470 int tcp_set_window_clamp(struct sock *sk, int val) 3471 { 3472 struct tcp_sock *tp = tcp_sk(sk); 3473 3474 if (!val) { 3475 if (sk->sk_state != TCP_CLOSE) 3476 return -EINVAL; 3477 tp->window_clamp = 0; 3478 } else { 3479 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3480 SOCK_MIN_RCVBUF / 2 : val; 3481 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3482 } 3483 return 0; 3484 } 3485 3486 /* 3487 * Socket option code for TCP. 3488 */ 3489 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3490 sockptr_t optval, unsigned int optlen) 3491 { 3492 struct tcp_sock *tp = tcp_sk(sk); 3493 struct inet_connection_sock *icsk = inet_csk(sk); 3494 struct net *net = sock_net(sk); 3495 int val; 3496 int err = 0; 3497 3498 /* These are data/string values, all the others are ints */ 3499 switch (optname) { 3500 case TCP_CONGESTION: { 3501 char name[TCP_CA_NAME_MAX]; 3502 3503 if (optlen < 1) 3504 return -EINVAL; 3505 3506 val = strncpy_from_sockptr(name, optval, 3507 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3508 if (val < 0) 3509 return -EFAULT; 3510 name[val] = 0; 3511 3512 sockopt_lock_sock(sk); 3513 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3514 sockopt_ns_capable(sock_net(sk)->user_ns, 3515 CAP_NET_ADMIN)); 3516 sockopt_release_sock(sk); 3517 return err; 3518 } 3519 case TCP_ULP: { 3520 char name[TCP_ULP_NAME_MAX]; 3521 3522 if (optlen < 1) 3523 return -EINVAL; 3524 3525 val = strncpy_from_sockptr(name, optval, 3526 min_t(long, TCP_ULP_NAME_MAX - 1, 3527 optlen)); 3528 if (val < 0) 3529 return -EFAULT; 3530 name[val] = 0; 3531 3532 sockopt_lock_sock(sk); 3533 err = tcp_set_ulp(sk, name); 3534 sockopt_release_sock(sk); 3535 return err; 3536 } 3537 case TCP_FASTOPEN_KEY: { 3538 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3539 __u8 *backup_key = NULL; 3540 3541 /* Allow a backup key as well to facilitate key rotation 3542 * First key is the active one. 3543 */ 3544 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3545 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3546 return -EINVAL; 3547 3548 if (copy_from_sockptr(key, optval, optlen)) 3549 return -EFAULT; 3550 3551 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3552 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3553 3554 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3555 } 3556 default: 3557 /* fallthru */ 3558 break; 3559 } 3560 3561 if (optlen < sizeof(int)) 3562 return -EINVAL; 3563 3564 if (copy_from_sockptr(&val, optval, sizeof(val))) 3565 return -EFAULT; 3566 3567 sockopt_lock_sock(sk); 3568 3569 switch (optname) { 3570 case TCP_MAXSEG: 3571 /* Values greater than interface MTU won't take effect. However 3572 * at the point when this call is done we typically don't yet 3573 * know which interface is going to be used 3574 */ 3575 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3576 err = -EINVAL; 3577 break; 3578 } 3579 tp->rx_opt.user_mss = val; 3580 break; 3581 3582 case TCP_NODELAY: 3583 __tcp_sock_set_nodelay(sk, val); 3584 break; 3585 3586 case TCP_THIN_LINEAR_TIMEOUTS: 3587 if (val < 0 || val > 1) 3588 err = -EINVAL; 3589 else 3590 tp->thin_lto = val; 3591 break; 3592 3593 case TCP_THIN_DUPACK: 3594 if (val < 0 || val > 1) 3595 err = -EINVAL; 3596 break; 3597 3598 case TCP_REPAIR: 3599 if (!tcp_can_repair_sock(sk)) 3600 err = -EPERM; 3601 else if (val == TCP_REPAIR_ON) { 3602 tp->repair = 1; 3603 sk->sk_reuse = SK_FORCE_REUSE; 3604 tp->repair_queue = TCP_NO_QUEUE; 3605 } else if (val == TCP_REPAIR_OFF) { 3606 tp->repair = 0; 3607 sk->sk_reuse = SK_NO_REUSE; 3608 tcp_send_window_probe(sk); 3609 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3610 tp->repair = 0; 3611 sk->sk_reuse = SK_NO_REUSE; 3612 } else 3613 err = -EINVAL; 3614 3615 break; 3616 3617 case TCP_REPAIR_QUEUE: 3618 if (!tp->repair) 3619 err = -EPERM; 3620 else if ((unsigned int)val < TCP_QUEUES_NR) 3621 tp->repair_queue = val; 3622 else 3623 err = -EINVAL; 3624 break; 3625 3626 case TCP_QUEUE_SEQ: 3627 if (sk->sk_state != TCP_CLOSE) { 3628 err = -EPERM; 3629 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3630 if (!tcp_rtx_queue_empty(sk)) 3631 err = -EPERM; 3632 else 3633 WRITE_ONCE(tp->write_seq, val); 3634 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3635 if (tp->rcv_nxt != tp->copied_seq) { 3636 err = -EPERM; 3637 } else { 3638 WRITE_ONCE(tp->rcv_nxt, val); 3639 WRITE_ONCE(tp->copied_seq, val); 3640 } 3641 } else { 3642 err = -EINVAL; 3643 } 3644 break; 3645 3646 case TCP_REPAIR_OPTIONS: 3647 if (!tp->repair) 3648 err = -EINVAL; 3649 else if (sk->sk_state == TCP_ESTABLISHED) 3650 err = tcp_repair_options_est(sk, optval, optlen); 3651 else 3652 err = -EPERM; 3653 break; 3654 3655 case TCP_CORK: 3656 __tcp_sock_set_cork(sk, val); 3657 break; 3658 3659 case TCP_KEEPIDLE: 3660 err = tcp_sock_set_keepidle_locked(sk, val); 3661 break; 3662 case TCP_KEEPINTVL: 3663 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3664 err = -EINVAL; 3665 else 3666 tp->keepalive_intvl = val * HZ; 3667 break; 3668 case TCP_KEEPCNT: 3669 if (val < 1 || val > MAX_TCP_KEEPCNT) 3670 err = -EINVAL; 3671 else 3672 tp->keepalive_probes = val; 3673 break; 3674 case TCP_SYNCNT: 3675 if (val < 1 || val > MAX_TCP_SYNCNT) 3676 err = -EINVAL; 3677 else 3678 icsk->icsk_syn_retries = val; 3679 break; 3680 3681 case TCP_SAVE_SYN: 3682 /* 0: disable, 1: enable, 2: start from ether_header */ 3683 if (val < 0 || val > 2) 3684 err = -EINVAL; 3685 else 3686 tp->save_syn = val; 3687 break; 3688 3689 case TCP_LINGER2: 3690 if (val < 0) 3691 tp->linger2 = -1; 3692 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3693 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3694 else 3695 tp->linger2 = val * HZ; 3696 break; 3697 3698 case TCP_DEFER_ACCEPT: 3699 /* Translate value in seconds to number of retransmits */ 3700 icsk->icsk_accept_queue.rskq_defer_accept = 3701 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3702 TCP_RTO_MAX / HZ); 3703 break; 3704 3705 case TCP_WINDOW_CLAMP: 3706 err = tcp_set_window_clamp(sk, val); 3707 break; 3708 3709 case TCP_QUICKACK: 3710 __tcp_sock_set_quickack(sk, val); 3711 break; 3712 3713 #ifdef CONFIG_TCP_MD5SIG 3714 case TCP_MD5SIG: 3715 case TCP_MD5SIG_EXT: 3716 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3717 break; 3718 #endif 3719 case TCP_USER_TIMEOUT: 3720 /* Cap the max time in ms TCP will retry or probe the window 3721 * before giving up and aborting (ETIMEDOUT) a connection. 3722 */ 3723 if (val < 0) 3724 err = -EINVAL; 3725 else 3726 icsk->icsk_user_timeout = val; 3727 break; 3728 3729 case TCP_FASTOPEN: 3730 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3731 TCPF_LISTEN))) { 3732 tcp_fastopen_init_key_once(net); 3733 3734 fastopen_queue_tune(sk, val); 3735 } else { 3736 err = -EINVAL; 3737 } 3738 break; 3739 case TCP_FASTOPEN_CONNECT: 3740 if (val > 1 || val < 0) { 3741 err = -EINVAL; 3742 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3743 TFO_CLIENT_ENABLE) { 3744 if (sk->sk_state == TCP_CLOSE) 3745 tp->fastopen_connect = val; 3746 else 3747 err = -EINVAL; 3748 } else { 3749 err = -EOPNOTSUPP; 3750 } 3751 break; 3752 case TCP_FASTOPEN_NO_COOKIE: 3753 if (val > 1 || val < 0) 3754 err = -EINVAL; 3755 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3756 err = -EINVAL; 3757 else 3758 tp->fastopen_no_cookie = val; 3759 break; 3760 case TCP_TIMESTAMP: 3761 if (!tp->repair) 3762 err = -EPERM; 3763 else 3764 tp->tsoffset = val - tcp_time_stamp_raw(); 3765 break; 3766 case TCP_REPAIR_WINDOW: 3767 err = tcp_repair_set_window(tp, optval, optlen); 3768 break; 3769 case TCP_NOTSENT_LOWAT: 3770 tp->notsent_lowat = val; 3771 sk->sk_write_space(sk); 3772 break; 3773 case TCP_INQ: 3774 if (val > 1 || val < 0) 3775 err = -EINVAL; 3776 else 3777 tp->recvmsg_inq = val; 3778 break; 3779 case TCP_TX_DELAY: 3780 if (val) 3781 tcp_enable_tx_delay(); 3782 tp->tcp_tx_delay = val; 3783 break; 3784 default: 3785 err = -ENOPROTOOPT; 3786 break; 3787 } 3788 3789 sockopt_release_sock(sk); 3790 return err; 3791 } 3792 3793 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3794 unsigned int optlen) 3795 { 3796 const struct inet_connection_sock *icsk = inet_csk(sk); 3797 3798 if (level != SOL_TCP) 3799 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3800 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3801 optval, optlen); 3802 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3803 } 3804 EXPORT_SYMBOL(tcp_setsockopt); 3805 3806 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3807 struct tcp_info *info) 3808 { 3809 u64 stats[__TCP_CHRONO_MAX], total = 0; 3810 enum tcp_chrono i; 3811 3812 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3813 stats[i] = tp->chrono_stat[i - 1]; 3814 if (i == tp->chrono_type) 3815 stats[i] += tcp_jiffies32 - tp->chrono_start; 3816 stats[i] *= USEC_PER_SEC / HZ; 3817 total += stats[i]; 3818 } 3819 3820 info->tcpi_busy_time = total; 3821 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3822 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3823 } 3824 3825 /* Return information about state of tcp endpoint in API format. */ 3826 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3827 { 3828 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3829 const struct inet_connection_sock *icsk = inet_csk(sk); 3830 unsigned long rate; 3831 u32 now; 3832 u64 rate64; 3833 bool slow; 3834 3835 memset(info, 0, sizeof(*info)); 3836 if (sk->sk_type != SOCK_STREAM) 3837 return; 3838 3839 info->tcpi_state = inet_sk_state_load(sk); 3840 3841 /* Report meaningful fields for all TCP states, including listeners */ 3842 rate = READ_ONCE(sk->sk_pacing_rate); 3843 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3844 info->tcpi_pacing_rate = rate64; 3845 3846 rate = READ_ONCE(sk->sk_max_pacing_rate); 3847 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3848 info->tcpi_max_pacing_rate = rate64; 3849 3850 info->tcpi_reordering = tp->reordering; 3851 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3852 3853 if (info->tcpi_state == TCP_LISTEN) { 3854 /* listeners aliased fields : 3855 * tcpi_unacked -> Number of children ready for accept() 3856 * tcpi_sacked -> max backlog 3857 */ 3858 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3859 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3860 return; 3861 } 3862 3863 slow = lock_sock_fast(sk); 3864 3865 info->tcpi_ca_state = icsk->icsk_ca_state; 3866 info->tcpi_retransmits = icsk->icsk_retransmits; 3867 info->tcpi_probes = icsk->icsk_probes_out; 3868 info->tcpi_backoff = icsk->icsk_backoff; 3869 3870 if (tp->rx_opt.tstamp_ok) 3871 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3872 if (tcp_is_sack(tp)) 3873 info->tcpi_options |= TCPI_OPT_SACK; 3874 if (tp->rx_opt.wscale_ok) { 3875 info->tcpi_options |= TCPI_OPT_WSCALE; 3876 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3877 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3878 } 3879 3880 if (tp->ecn_flags & TCP_ECN_OK) 3881 info->tcpi_options |= TCPI_OPT_ECN; 3882 if (tp->ecn_flags & TCP_ECN_SEEN) 3883 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3884 if (tp->syn_data_acked) 3885 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3886 3887 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3888 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3889 info->tcpi_snd_mss = tp->mss_cache; 3890 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3891 3892 info->tcpi_unacked = tp->packets_out; 3893 info->tcpi_sacked = tp->sacked_out; 3894 3895 info->tcpi_lost = tp->lost_out; 3896 info->tcpi_retrans = tp->retrans_out; 3897 3898 now = tcp_jiffies32; 3899 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3900 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3901 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3902 3903 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3904 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3905 info->tcpi_rtt = tp->srtt_us >> 3; 3906 info->tcpi_rttvar = tp->mdev_us >> 2; 3907 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3908 info->tcpi_advmss = tp->advmss; 3909 3910 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3911 info->tcpi_rcv_space = tp->rcvq_space.space; 3912 3913 info->tcpi_total_retrans = tp->total_retrans; 3914 3915 info->tcpi_bytes_acked = tp->bytes_acked; 3916 info->tcpi_bytes_received = tp->bytes_received; 3917 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3918 tcp_get_info_chrono_stats(tp, info); 3919 3920 info->tcpi_segs_out = tp->segs_out; 3921 3922 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3923 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3924 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3925 3926 info->tcpi_min_rtt = tcp_min_rtt(tp); 3927 info->tcpi_data_segs_out = tp->data_segs_out; 3928 3929 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3930 rate64 = tcp_compute_delivery_rate(tp); 3931 if (rate64) 3932 info->tcpi_delivery_rate = rate64; 3933 info->tcpi_delivered = tp->delivered; 3934 info->tcpi_delivered_ce = tp->delivered_ce; 3935 info->tcpi_bytes_sent = tp->bytes_sent; 3936 info->tcpi_bytes_retrans = tp->bytes_retrans; 3937 info->tcpi_dsack_dups = tp->dsack_dups; 3938 info->tcpi_reord_seen = tp->reord_seen; 3939 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3940 info->tcpi_snd_wnd = tp->snd_wnd; 3941 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3942 unlock_sock_fast(sk, slow); 3943 } 3944 EXPORT_SYMBOL_GPL(tcp_get_info); 3945 3946 static size_t tcp_opt_stats_get_size(void) 3947 { 3948 return 3949 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3950 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3951 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3952 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3953 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3954 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3955 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3956 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3957 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3958 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3959 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3960 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3961 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3962 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3963 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3964 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3965 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3966 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3967 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3968 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3969 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3970 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3971 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3972 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3973 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3974 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3975 0; 3976 } 3977 3978 /* Returns TTL or hop limit of an incoming packet from skb. */ 3979 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3980 { 3981 if (skb->protocol == htons(ETH_P_IP)) 3982 return ip_hdr(skb)->ttl; 3983 else if (skb->protocol == htons(ETH_P_IPV6)) 3984 return ipv6_hdr(skb)->hop_limit; 3985 else 3986 return 0; 3987 } 3988 3989 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3990 const struct sk_buff *orig_skb, 3991 const struct sk_buff *ack_skb) 3992 { 3993 const struct tcp_sock *tp = tcp_sk(sk); 3994 struct sk_buff *stats; 3995 struct tcp_info info; 3996 unsigned long rate; 3997 u64 rate64; 3998 3999 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4000 if (!stats) 4001 return NULL; 4002 4003 tcp_get_info_chrono_stats(tp, &info); 4004 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4005 info.tcpi_busy_time, TCP_NLA_PAD); 4006 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4007 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4008 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4009 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4010 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4011 tp->data_segs_out, TCP_NLA_PAD); 4012 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4013 tp->total_retrans, TCP_NLA_PAD); 4014 4015 rate = READ_ONCE(sk->sk_pacing_rate); 4016 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4017 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4018 4019 rate64 = tcp_compute_delivery_rate(tp); 4020 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4021 4022 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4023 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4024 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4025 4026 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4027 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4028 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4029 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4030 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4031 4032 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4033 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4034 4035 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4036 TCP_NLA_PAD); 4037 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4038 TCP_NLA_PAD); 4039 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4040 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4041 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4042 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4043 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4044 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4045 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4046 TCP_NLA_PAD); 4047 if (ack_skb) 4048 nla_put_u8(stats, TCP_NLA_TTL, 4049 tcp_skb_ttl_or_hop_limit(ack_skb)); 4050 4051 return stats; 4052 } 4053 4054 int do_tcp_getsockopt(struct sock *sk, int level, 4055 int optname, sockptr_t optval, sockptr_t optlen) 4056 { 4057 struct inet_connection_sock *icsk = inet_csk(sk); 4058 struct tcp_sock *tp = tcp_sk(sk); 4059 struct net *net = sock_net(sk); 4060 int val, len; 4061 4062 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4063 return -EFAULT; 4064 4065 len = min_t(unsigned int, len, sizeof(int)); 4066 4067 if (len < 0) 4068 return -EINVAL; 4069 4070 switch (optname) { 4071 case TCP_MAXSEG: 4072 val = tp->mss_cache; 4073 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4074 val = tp->rx_opt.user_mss; 4075 if (tp->repair) 4076 val = tp->rx_opt.mss_clamp; 4077 break; 4078 case TCP_NODELAY: 4079 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4080 break; 4081 case TCP_CORK: 4082 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4083 break; 4084 case TCP_KEEPIDLE: 4085 val = keepalive_time_when(tp) / HZ; 4086 break; 4087 case TCP_KEEPINTVL: 4088 val = keepalive_intvl_when(tp) / HZ; 4089 break; 4090 case TCP_KEEPCNT: 4091 val = keepalive_probes(tp); 4092 break; 4093 case TCP_SYNCNT: 4094 val = icsk->icsk_syn_retries ? : 4095 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4096 break; 4097 case TCP_LINGER2: 4098 val = tp->linger2; 4099 if (val >= 0) 4100 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4101 break; 4102 case TCP_DEFER_ACCEPT: 4103 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4104 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4105 break; 4106 case TCP_WINDOW_CLAMP: 4107 val = tp->window_clamp; 4108 break; 4109 case TCP_INFO: { 4110 struct tcp_info info; 4111 4112 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4113 return -EFAULT; 4114 4115 tcp_get_info(sk, &info); 4116 4117 len = min_t(unsigned int, len, sizeof(info)); 4118 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4119 return -EFAULT; 4120 if (copy_to_sockptr(optval, &info, len)) 4121 return -EFAULT; 4122 return 0; 4123 } 4124 case TCP_CC_INFO: { 4125 const struct tcp_congestion_ops *ca_ops; 4126 union tcp_cc_info info; 4127 size_t sz = 0; 4128 int attr; 4129 4130 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4131 return -EFAULT; 4132 4133 ca_ops = icsk->icsk_ca_ops; 4134 if (ca_ops && ca_ops->get_info) 4135 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4136 4137 len = min_t(unsigned int, len, sz); 4138 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4139 return -EFAULT; 4140 if (copy_to_sockptr(optval, &info, len)) 4141 return -EFAULT; 4142 return 0; 4143 } 4144 case TCP_QUICKACK: 4145 val = !inet_csk_in_pingpong_mode(sk); 4146 break; 4147 4148 case TCP_CONGESTION: 4149 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4150 return -EFAULT; 4151 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4152 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4153 return -EFAULT; 4154 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4155 return -EFAULT; 4156 return 0; 4157 4158 case TCP_ULP: 4159 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4160 return -EFAULT; 4161 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4162 if (!icsk->icsk_ulp_ops) { 4163 len = 0; 4164 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4165 return -EFAULT; 4166 return 0; 4167 } 4168 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4169 return -EFAULT; 4170 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4171 return -EFAULT; 4172 return 0; 4173 4174 case TCP_FASTOPEN_KEY: { 4175 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4176 unsigned int key_len; 4177 4178 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4179 return -EFAULT; 4180 4181 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4182 TCP_FASTOPEN_KEY_LENGTH; 4183 len = min_t(unsigned int, len, key_len); 4184 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4185 return -EFAULT; 4186 if (copy_to_sockptr(optval, key, len)) 4187 return -EFAULT; 4188 return 0; 4189 } 4190 case TCP_THIN_LINEAR_TIMEOUTS: 4191 val = tp->thin_lto; 4192 break; 4193 4194 case TCP_THIN_DUPACK: 4195 val = 0; 4196 break; 4197 4198 case TCP_REPAIR: 4199 val = tp->repair; 4200 break; 4201 4202 case TCP_REPAIR_QUEUE: 4203 if (tp->repair) 4204 val = tp->repair_queue; 4205 else 4206 return -EINVAL; 4207 break; 4208 4209 case TCP_REPAIR_WINDOW: { 4210 struct tcp_repair_window opt; 4211 4212 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4213 return -EFAULT; 4214 4215 if (len != sizeof(opt)) 4216 return -EINVAL; 4217 4218 if (!tp->repair) 4219 return -EPERM; 4220 4221 opt.snd_wl1 = tp->snd_wl1; 4222 opt.snd_wnd = tp->snd_wnd; 4223 opt.max_window = tp->max_window; 4224 opt.rcv_wnd = tp->rcv_wnd; 4225 opt.rcv_wup = tp->rcv_wup; 4226 4227 if (copy_to_sockptr(optval, &opt, len)) 4228 return -EFAULT; 4229 return 0; 4230 } 4231 case TCP_QUEUE_SEQ: 4232 if (tp->repair_queue == TCP_SEND_QUEUE) 4233 val = tp->write_seq; 4234 else if (tp->repair_queue == TCP_RECV_QUEUE) 4235 val = tp->rcv_nxt; 4236 else 4237 return -EINVAL; 4238 break; 4239 4240 case TCP_USER_TIMEOUT: 4241 val = icsk->icsk_user_timeout; 4242 break; 4243 4244 case TCP_FASTOPEN: 4245 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4246 break; 4247 4248 case TCP_FASTOPEN_CONNECT: 4249 val = tp->fastopen_connect; 4250 break; 4251 4252 case TCP_FASTOPEN_NO_COOKIE: 4253 val = tp->fastopen_no_cookie; 4254 break; 4255 4256 case TCP_TX_DELAY: 4257 val = tp->tcp_tx_delay; 4258 break; 4259 4260 case TCP_TIMESTAMP: 4261 val = tcp_time_stamp_raw() + tp->tsoffset; 4262 break; 4263 case TCP_NOTSENT_LOWAT: 4264 val = tp->notsent_lowat; 4265 break; 4266 case TCP_INQ: 4267 val = tp->recvmsg_inq; 4268 break; 4269 case TCP_SAVE_SYN: 4270 val = tp->save_syn; 4271 break; 4272 case TCP_SAVED_SYN: { 4273 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4274 return -EFAULT; 4275 4276 sockopt_lock_sock(sk); 4277 if (tp->saved_syn) { 4278 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4279 len = tcp_saved_syn_len(tp->saved_syn); 4280 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4281 sockopt_release_sock(sk); 4282 return -EFAULT; 4283 } 4284 sockopt_release_sock(sk); 4285 return -EINVAL; 4286 } 4287 len = tcp_saved_syn_len(tp->saved_syn); 4288 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4289 sockopt_release_sock(sk); 4290 return -EFAULT; 4291 } 4292 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4293 sockopt_release_sock(sk); 4294 return -EFAULT; 4295 } 4296 tcp_saved_syn_free(tp); 4297 sockopt_release_sock(sk); 4298 } else { 4299 sockopt_release_sock(sk); 4300 len = 0; 4301 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4302 return -EFAULT; 4303 } 4304 return 0; 4305 } 4306 #ifdef CONFIG_MMU 4307 case TCP_ZEROCOPY_RECEIVE: { 4308 struct scm_timestamping_internal tss; 4309 struct tcp_zerocopy_receive zc = {}; 4310 int err; 4311 4312 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4313 return -EFAULT; 4314 if (len < 0 || 4315 len < offsetofend(struct tcp_zerocopy_receive, length)) 4316 return -EINVAL; 4317 if (unlikely(len > sizeof(zc))) { 4318 err = check_zeroed_sockptr(optval, sizeof(zc), 4319 len - sizeof(zc)); 4320 if (err < 1) 4321 return err == 0 ? -EINVAL : err; 4322 len = sizeof(zc); 4323 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4324 return -EFAULT; 4325 } 4326 if (copy_from_sockptr(&zc, optval, len)) 4327 return -EFAULT; 4328 if (zc.reserved) 4329 return -EINVAL; 4330 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4331 return -EINVAL; 4332 sockopt_lock_sock(sk); 4333 err = tcp_zerocopy_receive(sk, &zc, &tss); 4334 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4335 &zc, &len, err); 4336 sockopt_release_sock(sk); 4337 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4338 goto zerocopy_rcv_cmsg; 4339 switch (len) { 4340 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4341 goto zerocopy_rcv_cmsg; 4342 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4343 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4344 case offsetofend(struct tcp_zerocopy_receive, flags): 4345 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4346 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4347 case offsetofend(struct tcp_zerocopy_receive, err): 4348 goto zerocopy_rcv_sk_err; 4349 case offsetofend(struct tcp_zerocopy_receive, inq): 4350 goto zerocopy_rcv_inq; 4351 case offsetofend(struct tcp_zerocopy_receive, length): 4352 default: 4353 goto zerocopy_rcv_out; 4354 } 4355 zerocopy_rcv_cmsg: 4356 if (zc.msg_flags & TCP_CMSG_TS) 4357 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4358 else 4359 zc.msg_flags = 0; 4360 zerocopy_rcv_sk_err: 4361 if (!err) 4362 zc.err = sock_error(sk); 4363 zerocopy_rcv_inq: 4364 zc.inq = tcp_inq_hint(sk); 4365 zerocopy_rcv_out: 4366 if (!err && copy_to_sockptr(optval, &zc, len)) 4367 err = -EFAULT; 4368 return err; 4369 } 4370 #endif 4371 default: 4372 return -ENOPROTOOPT; 4373 } 4374 4375 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4376 return -EFAULT; 4377 if (copy_to_sockptr(optval, &val, len)) 4378 return -EFAULT; 4379 return 0; 4380 } 4381 4382 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4383 { 4384 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4385 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4386 */ 4387 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4388 return true; 4389 4390 return false; 4391 } 4392 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4393 4394 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4395 int __user *optlen) 4396 { 4397 struct inet_connection_sock *icsk = inet_csk(sk); 4398 4399 if (level != SOL_TCP) 4400 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4401 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4402 optval, optlen); 4403 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4404 USER_SOCKPTR(optlen)); 4405 } 4406 EXPORT_SYMBOL(tcp_getsockopt); 4407 4408 #ifdef CONFIG_TCP_MD5SIG 4409 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4410 static DEFINE_MUTEX(tcp_md5sig_mutex); 4411 static bool tcp_md5sig_pool_populated = false; 4412 4413 static void __tcp_alloc_md5sig_pool(void) 4414 { 4415 struct crypto_ahash *hash; 4416 int cpu; 4417 4418 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4419 if (IS_ERR(hash)) 4420 return; 4421 4422 for_each_possible_cpu(cpu) { 4423 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4424 struct ahash_request *req; 4425 4426 if (!scratch) { 4427 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4428 sizeof(struct tcphdr), 4429 GFP_KERNEL, 4430 cpu_to_node(cpu)); 4431 if (!scratch) 4432 return; 4433 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4434 } 4435 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4436 continue; 4437 4438 req = ahash_request_alloc(hash, GFP_KERNEL); 4439 if (!req) 4440 return; 4441 4442 ahash_request_set_callback(req, 0, NULL, NULL); 4443 4444 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4445 } 4446 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4447 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4448 */ 4449 smp_wmb(); 4450 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4451 * and tcp_get_md5sig_pool(). 4452 */ 4453 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4454 } 4455 4456 bool tcp_alloc_md5sig_pool(void) 4457 { 4458 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4459 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4460 mutex_lock(&tcp_md5sig_mutex); 4461 4462 if (!tcp_md5sig_pool_populated) { 4463 __tcp_alloc_md5sig_pool(); 4464 if (tcp_md5sig_pool_populated) 4465 static_branch_inc(&tcp_md5_needed); 4466 } 4467 4468 mutex_unlock(&tcp_md5sig_mutex); 4469 } 4470 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4471 return READ_ONCE(tcp_md5sig_pool_populated); 4472 } 4473 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4474 4475 4476 /** 4477 * tcp_get_md5sig_pool - get md5sig_pool for this user 4478 * 4479 * We use percpu structure, so if we succeed, we exit with preemption 4480 * and BH disabled, to make sure another thread or softirq handling 4481 * wont try to get same context. 4482 */ 4483 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4484 { 4485 local_bh_disable(); 4486 4487 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4488 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4489 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4490 smp_rmb(); 4491 return this_cpu_ptr(&tcp_md5sig_pool); 4492 } 4493 local_bh_enable(); 4494 return NULL; 4495 } 4496 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4497 4498 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4499 const struct sk_buff *skb, unsigned int header_len) 4500 { 4501 struct scatterlist sg; 4502 const struct tcphdr *tp = tcp_hdr(skb); 4503 struct ahash_request *req = hp->md5_req; 4504 unsigned int i; 4505 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4506 skb_headlen(skb) - header_len : 0; 4507 const struct skb_shared_info *shi = skb_shinfo(skb); 4508 struct sk_buff *frag_iter; 4509 4510 sg_init_table(&sg, 1); 4511 4512 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4513 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4514 if (crypto_ahash_update(req)) 4515 return 1; 4516 4517 for (i = 0; i < shi->nr_frags; ++i) { 4518 const skb_frag_t *f = &shi->frags[i]; 4519 unsigned int offset = skb_frag_off(f); 4520 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4521 4522 sg_set_page(&sg, page, skb_frag_size(f), 4523 offset_in_page(offset)); 4524 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4525 if (crypto_ahash_update(req)) 4526 return 1; 4527 } 4528 4529 skb_walk_frags(skb, frag_iter) 4530 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4531 return 1; 4532 4533 return 0; 4534 } 4535 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4536 4537 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4538 { 4539 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4540 struct scatterlist sg; 4541 4542 sg_init_one(&sg, key->key, keylen); 4543 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4544 4545 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4546 return data_race(crypto_ahash_update(hp->md5_req)); 4547 } 4548 EXPORT_SYMBOL(tcp_md5_hash_key); 4549 4550 /* Called with rcu_read_lock() */ 4551 enum skb_drop_reason 4552 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4553 const void *saddr, const void *daddr, 4554 int family, int dif, int sdif) 4555 { 4556 /* 4557 * This gets called for each TCP segment that arrives 4558 * so we want to be efficient. 4559 * We have 3 drop cases: 4560 * o No MD5 hash and one expected. 4561 * o MD5 hash and we're not expecting one. 4562 * o MD5 hash and its wrong. 4563 */ 4564 const __u8 *hash_location = NULL; 4565 struct tcp_md5sig_key *hash_expected; 4566 const struct tcphdr *th = tcp_hdr(skb); 4567 struct tcp_sock *tp = tcp_sk(sk); 4568 int genhash, l3index; 4569 u8 newhash[16]; 4570 4571 /* sdif set, means packet ingressed via a device 4572 * in an L3 domain and dif is set to the l3mdev 4573 */ 4574 l3index = sdif ? dif : 0; 4575 4576 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4577 hash_location = tcp_parse_md5sig_option(th); 4578 4579 /* We've parsed the options - do we have a hash? */ 4580 if (!hash_expected && !hash_location) 4581 return SKB_NOT_DROPPED_YET; 4582 4583 if (hash_expected && !hash_location) { 4584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4585 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4586 } 4587 4588 if (!hash_expected && hash_location) { 4589 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4590 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4591 } 4592 4593 /* Check the signature. 4594 * To support dual stack listeners, we need to handle 4595 * IPv4-mapped case. 4596 */ 4597 if (family == AF_INET) 4598 genhash = tcp_v4_md5_hash_skb(newhash, 4599 hash_expected, 4600 NULL, skb); 4601 else 4602 genhash = tp->af_specific->calc_md5_hash(newhash, 4603 hash_expected, 4604 NULL, skb); 4605 4606 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4608 if (family == AF_INET) { 4609 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4610 saddr, ntohs(th->source), 4611 daddr, ntohs(th->dest), 4612 genhash ? " tcp_v4_calc_md5_hash failed" 4613 : "", l3index); 4614 } else { 4615 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4616 genhash ? "failed" : "mismatch", 4617 saddr, ntohs(th->source), 4618 daddr, ntohs(th->dest), l3index); 4619 } 4620 return SKB_DROP_REASON_TCP_MD5FAILURE; 4621 } 4622 return SKB_NOT_DROPPED_YET; 4623 } 4624 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4625 4626 #endif 4627 4628 void tcp_done(struct sock *sk) 4629 { 4630 struct request_sock *req; 4631 4632 /* We might be called with a new socket, after 4633 * inet_csk_prepare_forced_close() has been called 4634 * so we can not use lockdep_sock_is_held(sk) 4635 */ 4636 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4637 4638 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4639 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4640 4641 tcp_set_state(sk, TCP_CLOSE); 4642 tcp_clear_xmit_timers(sk); 4643 if (req) 4644 reqsk_fastopen_remove(sk, req, false); 4645 4646 sk->sk_shutdown = SHUTDOWN_MASK; 4647 4648 if (!sock_flag(sk, SOCK_DEAD)) 4649 sk->sk_state_change(sk); 4650 else 4651 inet_csk_destroy_sock(sk); 4652 } 4653 EXPORT_SYMBOL_GPL(tcp_done); 4654 4655 int tcp_abort(struct sock *sk, int err) 4656 { 4657 int state = inet_sk_state_load(sk); 4658 4659 if (state == TCP_NEW_SYN_RECV) { 4660 struct request_sock *req = inet_reqsk(sk); 4661 4662 local_bh_disable(); 4663 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4664 local_bh_enable(); 4665 return 0; 4666 } 4667 if (state == TCP_TIME_WAIT) { 4668 struct inet_timewait_sock *tw = inet_twsk(sk); 4669 4670 refcount_inc(&tw->tw_refcnt); 4671 local_bh_disable(); 4672 inet_twsk_deschedule_put(tw); 4673 local_bh_enable(); 4674 return 0; 4675 } 4676 4677 /* Don't race with userspace socket closes such as tcp_close. */ 4678 lock_sock(sk); 4679 4680 if (sk->sk_state == TCP_LISTEN) { 4681 tcp_set_state(sk, TCP_CLOSE); 4682 inet_csk_listen_stop(sk); 4683 } 4684 4685 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4686 local_bh_disable(); 4687 bh_lock_sock(sk); 4688 4689 if (!sock_flag(sk, SOCK_DEAD)) { 4690 sk->sk_err = err; 4691 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4692 smp_wmb(); 4693 sk_error_report(sk); 4694 if (tcp_need_reset(sk->sk_state)) 4695 tcp_send_active_reset(sk, GFP_ATOMIC); 4696 tcp_done(sk); 4697 } 4698 4699 bh_unlock_sock(sk); 4700 local_bh_enable(); 4701 tcp_write_queue_purge(sk); 4702 release_sock(sk); 4703 return 0; 4704 } 4705 EXPORT_SYMBOL_GPL(tcp_abort); 4706 4707 extern struct tcp_congestion_ops tcp_reno; 4708 4709 static __initdata unsigned long thash_entries; 4710 static int __init set_thash_entries(char *str) 4711 { 4712 ssize_t ret; 4713 4714 if (!str) 4715 return 0; 4716 4717 ret = kstrtoul(str, 0, &thash_entries); 4718 if (ret) 4719 return 0; 4720 4721 return 1; 4722 } 4723 __setup("thash_entries=", set_thash_entries); 4724 4725 static void __init tcp_init_mem(void) 4726 { 4727 unsigned long limit = nr_free_buffer_pages() / 16; 4728 4729 limit = max(limit, 128UL); 4730 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4731 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4732 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4733 } 4734 4735 void __init tcp_init(void) 4736 { 4737 int max_rshare, max_wshare, cnt; 4738 unsigned long limit; 4739 unsigned int i; 4740 4741 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4742 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4743 sizeof_field(struct sk_buff, cb)); 4744 4745 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4746 4747 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4748 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4749 4750 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4751 thash_entries, 21, /* one slot per 2 MB*/ 4752 0, 64 * 1024); 4753 tcp_hashinfo.bind_bucket_cachep = 4754 kmem_cache_create("tcp_bind_bucket", 4755 sizeof(struct inet_bind_bucket), 0, 4756 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4757 SLAB_ACCOUNT, 4758 NULL); 4759 tcp_hashinfo.bind2_bucket_cachep = 4760 kmem_cache_create("tcp_bind2_bucket", 4761 sizeof(struct inet_bind2_bucket), 0, 4762 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4763 SLAB_ACCOUNT, 4764 NULL); 4765 4766 /* Size and allocate the main established and bind bucket 4767 * hash tables. 4768 * 4769 * The methodology is similar to that of the buffer cache. 4770 */ 4771 tcp_hashinfo.ehash = 4772 alloc_large_system_hash("TCP established", 4773 sizeof(struct inet_ehash_bucket), 4774 thash_entries, 4775 17, /* one slot per 128 KB of memory */ 4776 0, 4777 NULL, 4778 &tcp_hashinfo.ehash_mask, 4779 0, 4780 thash_entries ? 0 : 512 * 1024); 4781 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4782 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4783 4784 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4785 panic("TCP: failed to alloc ehash_locks"); 4786 tcp_hashinfo.bhash = 4787 alloc_large_system_hash("TCP bind", 4788 2 * sizeof(struct inet_bind_hashbucket), 4789 tcp_hashinfo.ehash_mask + 1, 4790 17, /* one slot per 128 KB of memory */ 4791 0, 4792 &tcp_hashinfo.bhash_size, 4793 NULL, 4794 0, 4795 64 * 1024); 4796 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4797 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4798 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4799 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4800 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4801 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4802 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4803 } 4804 4805 tcp_hashinfo.pernet = false; 4806 4807 cnt = tcp_hashinfo.ehash_mask + 1; 4808 sysctl_tcp_max_orphans = cnt / 2; 4809 4810 tcp_init_mem(); 4811 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4812 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4813 max_wshare = min(4UL*1024*1024, limit); 4814 max_rshare = min(6UL*1024*1024, limit); 4815 4816 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4817 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4818 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4819 4820 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4821 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4822 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4823 4824 pr_info("Hash tables configured (established %u bind %u)\n", 4825 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4826 4827 tcp_v4_init(); 4828 tcp_metrics_init(); 4829 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4830 tcp_tasklet_init(); 4831 mptcp_init(); 4832 } 4833