1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static bool tcp_stream_is_readable(struct sock *sk, int target) 479 { 480 if (tcp_epollin_ready(sk, target)) 481 return true; 482 return sk_is_readable(sk); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 u16 urg_data = READ_ONCE(tp->urg_data); 549 550 if (unlikely(urg_data) && 551 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE)) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = READ_ONCE(tp->urg_data) && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 sk_defer_free_flush(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (unlikely(tcp_under_memory_pressure(sk))) 860 sk_mem_reclaim_partial(sk); 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 867 if (force_schedule) { 868 mem_scheduled = true; 869 sk_forced_mem_schedule(sk, skb->truesize); 870 } else { 871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 872 } 873 if (likely(mem_scheduled)) { 874 skb_reserve(skb, MAX_TCP_HEADER); 875 skb->ip_summed = CHECKSUM_PARTIAL; 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 return skb; 878 } 879 __kfree_skb(skb); 880 } else { 881 sk->sk_prot->enter_memory_pressure(sk); 882 sk_stream_moderate_sndbuf(sk); 883 } 884 return NULL; 885 } 886 887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 888 int large_allowed) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 u32 new_size_goal, size_goal; 892 893 if (!large_allowed) 894 return mss_now; 895 896 /* Note : tcp_tso_autosize() will eventually split this later */ 897 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 898 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 899 900 /* We try hard to avoid divides here */ 901 size_goal = tp->gso_segs * mss_now; 902 if (unlikely(new_size_goal < size_goal || 903 new_size_goal >= size_goal + mss_now)) { 904 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 905 sk->sk_gso_max_segs); 906 size_goal = tp->gso_segs * mss_now; 907 } 908 909 return max(size_goal, mss_now); 910 } 911 912 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 913 { 914 int mss_now; 915 916 mss_now = tcp_current_mss(sk); 917 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 918 919 return mss_now; 920 } 921 922 /* In some cases, both sendpage() and sendmsg() could have added 923 * an skb to the write queue, but failed adding payload on it. 924 * We need to remove it to consume less memory, but more 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 926 * users. 927 */ 928 void tcp_remove_empty_skb(struct sock *sk) 929 { 930 struct sk_buff *skb = tcp_write_queue_tail(sk); 931 932 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 933 tcp_unlink_write_queue(skb, sk); 934 if (tcp_write_queue_empty(sk)) 935 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 936 tcp_wmem_free_skb(sk, skb); 937 } 938 } 939 940 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 941 struct page *page, int offset, size_t *size) 942 { 943 struct sk_buff *skb = tcp_write_queue_tail(sk); 944 struct tcp_sock *tp = tcp_sk(sk); 945 bool can_coalesce; 946 int copy, i; 947 948 if (!skb || (copy = size_goal - skb->len) <= 0 || 949 !tcp_skb_can_collapse_to(skb)) { 950 new_segment: 951 if (!sk_stream_memory_free(sk)) 952 return NULL; 953 954 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 955 tcp_rtx_and_write_queues_empty(sk)); 956 if (!skb) 957 return NULL; 958 959 #ifdef CONFIG_TLS_DEVICE 960 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 961 #endif 962 tcp_skb_entail(sk, skb); 963 copy = size_goal; 964 } 965 966 if (copy > *size) 967 copy = *size; 968 969 i = skb_shinfo(skb)->nr_frags; 970 can_coalesce = skb_can_coalesce(skb, i, page, offset); 971 if (!can_coalesce && i >= sysctl_max_skb_frags) { 972 tcp_mark_push(tp, skb); 973 goto new_segment; 974 } 975 if (!sk_wmem_schedule(sk, copy)) 976 return NULL; 977 978 if (can_coalesce) { 979 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 980 } else { 981 get_page(page); 982 skb_fill_page_desc(skb, i, page, offset, copy); 983 } 984 985 if (!(flags & MSG_NO_SHARED_FRAGS)) 986 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 987 988 skb->len += copy; 989 skb->data_len += copy; 990 skb->truesize += copy; 991 sk_wmem_queued_add(sk, copy); 992 sk_mem_charge(sk, copy); 993 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 994 TCP_SKB_CB(skb)->end_seq += copy; 995 tcp_skb_pcount_set(skb, 0); 996 997 *size = copy; 998 return skb; 999 } 1000 1001 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1002 size_t size, int flags) 1003 { 1004 struct tcp_sock *tp = tcp_sk(sk); 1005 int mss_now, size_goal; 1006 int err; 1007 ssize_t copied; 1008 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1009 1010 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1011 WARN_ONCE(!sendpage_ok(page), 1012 "page must not be a Slab one and have page_count > 0")) 1013 return -EINVAL; 1014 1015 /* Wait for a connection to finish. One exception is TCP Fast Open 1016 * (passive side) where data is allowed to be sent before a connection 1017 * is fully established. 1018 */ 1019 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1020 !tcp_passive_fastopen(sk)) { 1021 err = sk_stream_wait_connect(sk, &timeo); 1022 if (err != 0) 1023 goto out_err; 1024 } 1025 1026 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1027 1028 mss_now = tcp_send_mss(sk, &size_goal, flags); 1029 copied = 0; 1030 1031 err = -EPIPE; 1032 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1033 goto out_err; 1034 1035 while (size > 0) { 1036 struct sk_buff *skb; 1037 size_t copy = size; 1038 1039 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1040 if (!skb) 1041 goto wait_for_space; 1042 1043 if (!copied) 1044 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1045 1046 copied += copy; 1047 offset += copy; 1048 size -= copy; 1049 if (!size) 1050 goto out; 1051 1052 if (skb->len < size_goal || (flags & MSG_OOB)) 1053 continue; 1054 1055 if (forced_push(tp)) { 1056 tcp_mark_push(tp, skb); 1057 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1058 } else if (skb == tcp_send_head(sk)) 1059 tcp_push_one(sk, mss_now); 1060 continue; 1061 1062 wait_for_space: 1063 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1064 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1065 TCP_NAGLE_PUSH, size_goal); 1066 1067 err = sk_stream_wait_memory(sk, &timeo); 1068 if (err != 0) 1069 goto do_error; 1070 1071 mss_now = tcp_send_mss(sk, &size_goal, flags); 1072 } 1073 1074 out: 1075 if (copied) { 1076 tcp_tx_timestamp(sk, sk->sk_tsflags); 1077 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1078 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1079 } 1080 return copied; 1081 1082 do_error: 1083 tcp_remove_empty_skb(sk); 1084 if (copied) 1085 goto out; 1086 out_err: 1087 /* make sure we wake any epoll edge trigger waiter */ 1088 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1089 sk->sk_write_space(sk); 1090 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1091 } 1092 return sk_stream_error(sk, flags, err); 1093 } 1094 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1095 1096 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1097 size_t size, int flags) 1098 { 1099 if (!(sk->sk_route_caps & NETIF_F_SG)) 1100 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1101 1102 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1103 1104 return do_tcp_sendpages(sk, page, offset, size, flags); 1105 } 1106 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1107 1108 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1109 size_t size, int flags) 1110 { 1111 int ret; 1112 1113 lock_sock(sk); 1114 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1115 release_sock(sk); 1116 1117 return ret; 1118 } 1119 EXPORT_SYMBOL(tcp_sendpage); 1120 1121 void tcp_free_fastopen_req(struct tcp_sock *tp) 1122 { 1123 if (tp->fastopen_req) { 1124 kfree(tp->fastopen_req); 1125 tp->fastopen_req = NULL; 1126 } 1127 } 1128 1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1130 int *copied, size_t size, 1131 struct ubuf_info *uarg) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct inet_sock *inet = inet_sk(sk); 1135 struct sockaddr *uaddr = msg->msg_name; 1136 int err, flags; 1137 1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1140 uaddr->sa_family == AF_UNSPEC)) 1141 return -EOPNOTSUPP; 1142 if (tp->fastopen_req) 1143 return -EALREADY; /* Another Fast Open is in progress */ 1144 1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1146 sk->sk_allocation); 1147 if (unlikely(!tp->fastopen_req)) 1148 return -ENOBUFS; 1149 tp->fastopen_req->data = msg; 1150 tp->fastopen_req->size = size; 1151 tp->fastopen_req->uarg = uarg; 1152 1153 if (inet->defer_connect) { 1154 err = tcp_connect(sk); 1155 /* Same failure procedure as in tcp_v4/6_connect */ 1156 if (err) { 1157 tcp_set_state(sk, TCP_CLOSE); 1158 inet->inet_dport = 0; 1159 sk->sk_route_caps = 0; 1160 } 1161 } 1162 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1163 err = __inet_stream_connect(sk->sk_socket, uaddr, 1164 msg->msg_namelen, flags, 1); 1165 /* fastopen_req could already be freed in __inet_stream_connect 1166 * if the connection times out or gets rst 1167 */ 1168 if (tp->fastopen_req) { 1169 *copied = tp->fastopen_req->copied; 1170 tcp_free_fastopen_req(tp); 1171 inet->defer_connect = 0; 1172 } 1173 return err; 1174 } 1175 1176 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1177 { 1178 struct tcp_sock *tp = tcp_sk(sk); 1179 struct ubuf_info *uarg = NULL; 1180 struct sk_buff *skb; 1181 struct sockcm_cookie sockc; 1182 int flags, err, copied = 0; 1183 int mss_now = 0, size_goal, copied_syn = 0; 1184 int process_backlog = 0; 1185 bool zc = false; 1186 long timeo; 1187 1188 flags = msg->msg_flags; 1189 1190 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1191 skb = tcp_write_queue_tail(sk); 1192 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1193 if (!uarg) { 1194 err = -ENOBUFS; 1195 goto out_err; 1196 } 1197 1198 zc = sk->sk_route_caps & NETIF_F_SG; 1199 if (!zc) 1200 uarg->zerocopy = 0; 1201 } 1202 1203 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1204 !tp->repair) { 1205 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1206 if (err == -EINPROGRESS && copied_syn > 0) 1207 goto out; 1208 else if (err) 1209 goto out_err; 1210 } 1211 1212 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1213 1214 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1215 1216 /* Wait for a connection to finish. One exception is TCP Fast Open 1217 * (passive side) where data is allowed to be sent before a connection 1218 * is fully established. 1219 */ 1220 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1221 !tcp_passive_fastopen(sk)) { 1222 err = sk_stream_wait_connect(sk, &timeo); 1223 if (err != 0) 1224 goto do_error; 1225 } 1226 1227 if (unlikely(tp->repair)) { 1228 if (tp->repair_queue == TCP_RECV_QUEUE) { 1229 copied = tcp_send_rcvq(sk, msg, size); 1230 goto out_nopush; 1231 } 1232 1233 err = -EINVAL; 1234 if (tp->repair_queue == TCP_NO_QUEUE) 1235 goto out_err; 1236 1237 /* 'common' sending to sendq */ 1238 } 1239 1240 sockcm_init(&sockc, sk); 1241 if (msg->msg_controllen) { 1242 err = sock_cmsg_send(sk, msg, &sockc); 1243 if (unlikely(err)) { 1244 err = -EINVAL; 1245 goto out_err; 1246 } 1247 } 1248 1249 /* This should be in poll */ 1250 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1251 1252 /* Ok commence sending. */ 1253 copied = 0; 1254 1255 restart: 1256 mss_now = tcp_send_mss(sk, &size_goal, flags); 1257 1258 err = -EPIPE; 1259 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1260 goto do_error; 1261 1262 while (msg_data_left(msg)) { 1263 int copy = 0; 1264 1265 skb = tcp_write_queue_tail(sk); 1266 if (skb) 1267 copy = size_goal - skb->len; 1268 1269 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1270 bool first_skb; 1271 1272 new_segment: 1273 if (!sk_stream_memory_free(sk)) 1274 goto wait_for_space; 1275 1276 if (unlikely(process_backlog >= 16)) { 1277 process_backlog = 0; 1278 if (sk_flush_backlog(sk)) 1279 goto restart; 1280 } 1281 first_skb = tcp_rtx_and_write_queues_empty(sk); 1282 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1283 first_skb); 1284 if (!skb) 1285 goto wait_for_space; 1286 1287 process_backlog++; 1288 1289 tcp_skb_entail(sk, skb); 1290 copy = size_goal; 1291 1292 /* All packets are restored as if they have 1293 * already been sent. skb_mstamp_ns isn't set to 1294 * avoid wrong rtt estimation. 1295 */ 1296 if (tp->repair) 1297 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1298 } 1299 1300 /* Try to append data to the end of skb. */ 1301 if (copy > msg_data_left(msg)) 1302 copy = msg_data_left(msg); 1303 1304 if (!zc) { 1305 bool merge = true; 1306 int i = skb_shinfo(skb)->nr_frags; 1307 struct page_frag *pfrag = sk_page_frag(sk); 1308 1309 if (!sk_page_frag_refill(sk, pfrag)) 1310 goto wait_for_space; 1311 1312 if (!skb_can_coalesce(skb, i, pfrag->page, 1313 pfrag->offset)) { 1314 if (i >= sysctl_max_skb_frags) { 1315 tcp_mark_push(tp, skb); 1316 goto new_segment; 1317 } 1318 merge = false; 1319 } 1320 1321 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1322 1323 /* skb changing from pure zc to mixed, must charge zc */ 1324 if (unlikely(skb_zcopy_pure(skb))) { 1325 u32 extra = skb->truesize - 1326 SKB_TRUESIZE(skb_end_offset(skb)); 1327 1328 if (!sk_wmem_schedule(sk, extra)) 1329 goto wait_for_space; 1330 1331 sk_mem_charge(sk, extra); 1332 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 1333 } 1334 1335 if (!sk_wmem_schedule(sk, copy)) 1336 goto wait_for_space; 1337 1338 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1339 pfrag->page, 1340 pfrag->offset, 1341 copy); 1342 if (err) 1343 goto do_error; 1344 1345 /* Update the skb. */ 1346 if (merge) { 1347 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1348 } else { 1349 skb_fill_page_desc(skb, i, pfrag->page, 1350 pfrag->offset, copy); 1351 page_ref_inc(pfrag->page); 1352 } 1353 pfrag->offset += copy; 1354 } else { 1355 /* First append to a fragless skb builds initial 1356 * pure zerocopy skb 1357 */ 1358 if (!skb->len) 1359 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1360 1361 if (!skb_zcopy_pure(skb)) { 1362 if (!sk_wmem_schedule(sk, copy)) 1363 goto wait_for_space; 1364 } 1365 1366 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1367 if (err == -EMSGSIZE || err == -EEXIST) { 1368 tcp_mark_push(tp, skb); 1369 goto new_segment; 1370 } 1371 if (err < 0) 1372 goto do_error; 1373 copy = err; 1374 } 1375 1376 if (!copied) 1377 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1378 1379 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1380 TCP_SKB_CB(skb)->end_seq += copy; 1381 tcp_skb_pcount_set(skb, 0); 1382 1383 copied += copy; 1384 if (!msg_data_left(msg)) { 1385 if (unlikely(flags & MSG_EOR)) 1386 TCP_SKB_CB(skb)->eor = 1; 1387 goto out; 1388 } 1389 1390 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1391 continue; 1392 1393 if (forced_push(tp)) { 1394 tcp_mark_push(tp, skb); 1395 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1396 } else if (skb == tcp_send_head(sk)) 1397 tcp_push_one(sk, mss_now); 1398 continue; 1399 1400 wait_for_space: 1401 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1402 if (copied) 1403 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1404 TCP_NAGLE_PUSH, size_goal); 1405 1406 err = sk_stream_wait_memory(sk, &timeo); 1407 if (err != 0) 1408 goto do_error; 1409 1410 mss_now = tcp_send_mss(sk, &size_goal, flags); 1411 } 1412 1413 out: 1414 if (copied) { 1415 tcp_tx_timestamp(sk, sockc.tsflags); 1416 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1417 } 1418 out_nopush: 1419 net_zcopy_put(uarg); 1420 return copied + copied_syn; 1421 1422 do_error: 1423 tcp_remove_empty_skb(sk); 1424 1425 if (copied + copied_syn) 1426 goto out; 1427 out_err: 1428 net_zcopy_put_abort(uarg, true); 1429 err = sk_stream_error(sk, flags, err); 1430 /* make sure we wake any epoll edge trigger waiter */ 1431 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1432 sk->sk_write_space(sk); 1433 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1434 } 1435 return err; 1436 } 1437 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1438 1439 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1440 { 1441 int ret; 1442 1443 lock_sock(sk); 1444 ret = tcp_sendmsg_locked(sk, msg, size); 1445 release_sock(sk); 1446 1447 return ret; 1448 } 1449 EXPORT_SYMBOL(tcp_sendmsg); 1450 1451 /* 1452 * Handle reading urgent data. BSD has very simple semantics for 1453 * this, no blocking and very strange errors 8) 1454 */ 1455 1456 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1457 { 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 1460 /* No URG data to read. */ 1461 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1462 tp->urg_data == TCP_URG_READ) 1463 return -EINVAL; /* Yes this is right ! */ 1464 1465 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1466 return -ENOTCONN; 1467 1468 if (tp->urg_data & TCP_URG_VALID) { 1469 int err = 0; 1470 char c = tp->urg_data; 1471 1472 if (!(flags & MSG_PEEK)) 1473 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1474 1475 /* Read urgent data. */ 1476 msg->msg_flags |= MSG_OOB; 1477 1478 if (len > 0) { 1479 if (!(flags & MSG_TRUNC)) 1480 err = memcpy_to_msg(msg, &c, 1); 1481 len = 1; 1482 } else 1483 msg->msg_flags |= MSG_TRUNC; 1484 1485 return err ? -EFAULT : len; 1486 } 1487 1488 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1489 return 0; 1490 1491 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1492 * the available implementations agree in this case: 1493 * this call should never block, independent of the 1494 * blocking state of the socket. 1495 * Mike <pall@rz.uni-karlsruhe.de> 1496 */ 1497 return -EAGAIN; 1498 } 1499 1500 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1501 { 1502 struct sk_buff *skb; 1503 int copied = 0, err = 0; 1504 1505 /* XXX -- need to support SO_PEEK_OFF */ 1506 1507 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1508 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1509 if (err) 1510 return err; 1511 copied += skb->len; 1512 } 1513 1514 skb_queue_walk(&sk->sk_write_queue, skb) { 1515 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1516 if (err) 1517 break; 1518 1519 copied += skb->len; 1520 } 1521 1522 return err ?: copied; 1523 } 1524 1525 /* Clean up the receive buffer for full frames taken by the user, 1526 * then send an ACK if necessary. COPIED is the number of bytes 1527 * tcp_recvmsg has given to the user so far, it speeds up the 1528 * calculation of whether or not we must ACK for the sake of 1529 * a window update. 1530 */ 1531 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1532 { 1533 struct tcp_sock *tp = tcp_sk(sk); 1534 bool time_to_ack = false; 1535 1536 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1537 1538 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1539 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1540 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1541 1542 if (inet_csk_ack_scheduled(sk)) { 1543 const struct inet_connection_sock *icsk = inet_csk(sk); 1544 1545 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1546 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1547 /* 1548 * If this read emptied read buffer, we send ACK, if 1549 * connection is not bidirectional, user drained 1550 * receive buffer and there was a small segment 1551 * in queue. 1552 */ 1553 (copied > 0 && 1554 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1555 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1556 !inet_csk_in_pingpong_mode(sk))) && 1557 !atomic_read(&sk->sk_rmem_alloc))) 1558 time_to_ack = true; 1559 } 1560 1561 /* We send an ACK if we can now advertise a non-zero window 1562 * which has been raised "significantly". 1563 * 1564 * Even if window raised up to infinity, do not send window open ACK 1565 * in states, where we will not receive more. It is useless. 1566 */ 1567 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1568 __u32 rcv_window_now = tcp_receive_window(tp); 1569 1570 /* Optimize, __tcp_select_window() is not cheap. */ 1571 if (2*rcv_window_now <= tp->window_clamp) { 1572 __u32 new_window = __tcp_select_window(sk); 1573 1574 /* Send ACK now, if this read freed lots of space 1575 * in our buffer. Certainly, new_window is new window. 1576 * We can advertise it now, if it is not less than current one. 1577 * "Lots" means "at least twice" here. 1578 */ 1579 if (new_window && new_window >= 2 * rcv_window_now) 1580 time_to_ack = true; 1581 } 1582 } 1583 if (time_to_ack) 1584 tcp_send_ack(sk); 1585 } 1586 1587 void __sk_defer_free_flush(struct sock *sk) 1588 { 1589 struct llist_node *head; 1590 struct sk_buff *skb, *n; 1591 1592 head = llist_del_all(&sk->defer_list); 1593 llist_for_each_entry_safe(skb, n, head, ll_node) { 1594 prefetch(n); 1595 skb_mark_not_on_list(skb); 1596 __kfree_skb(skb); 1597 } 1598 } 1599 EXPORT_SYMBOL(__sk_defer_free_flush); 1600 1601 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1602 { 1603 __skb_unlink(skb, &sk->sk_receive_queue); 1604 if (likely(skb->destructor == sock_rfree)) { 1605 sock_rfree(skb); 1606 skb->destructor = NULL; 1607 skb->sk = NULL; 1608 if (!skb_queue_empty(&sk->sk_receive_queue) || 1609 !llist_empty(&sk->defer_list)) { 1610 llist_add(&skb->ll_node, &sk->defer_list); 1611 return; 1612 } 1613 } 1614 __kfree_skb(skb); 1615 } 1616 1617 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1618 { 1619 struct sk_buff *skb; 1620 u32 offset; 1621 1622 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1623 offset = seq - TCP_SKB_CB(skb)->seq; 1624 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1625 pr_err_once("%s: found a SYN, please report !\n", __func__); 1626 offset--; 1627 } 1628 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1629 *off = offset; 1630 return skb; 1631 } 1632 /* This looks weird, but this can happen if TCP collapsing 1633 * splitted a fat GRO packet, while we released socket lock 1634 * in skb_splice_bits() 1635 */ 1636 tcp_eat_recv_skb(sk, skb); 1637 } 1638 return NULL; 1639 } 1640 1641 /* 1642 * This routine provides an alternative to tcp_recvmsg() for routines 1643 * that would like to handle copying from skbuffs directly in 'sendfile' 1644 * fashion. 1645 * Note: 1646 * - It is assumed that the socket was locked by the caller. 1647 * - The routine does not block. 1648 * - At present, there is no support for reading OOB data 1649 * or for 'peeking' the socket using this routine 1650 * (although both would be easy to implement). 1651 */ 1652 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1653 sk_read_actor_t recv_actor) 1654 { 1655 struct sk_buff *skb; 1656 struct tcp_sock *tp = tcp_sk(sk); 1657 u32 seq = tp->copied_seq; 1658 u32 offset; 1659 int copied = 0; 1660 1661 if (sk->sk_state == TCP_LISTEN) 1662 return -ENOTCONN; 1663 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1664 if (offset < skb->len) { 1665 int used; 1666 size_t len; 1667 1668 len = skb->len - offset; 1669 /* Stop reading if we hit a patch of urgent data */ 1670 if (unlikely(tp->urg_data)) { 1671 u32 urg_offset = tp->urg_seq - seq; 1672 if (urg_offset < len) 1673 len = urg_offset; 1674 if (!len) 1675 break; 1676 } 1677 used = recv_actor(desc, skb, offset, len); 1678 if (used <= 0) { 1679 if (!copied) 1680 copied = used; 1681 break; 1682 } else if (used <= len) { 1683 seq += used; 1684 copied += used; 1685 offset += used; 1686 } 1687 /* If recv_actor drops the lock (e.g. TCP splice 1688 * receive) the skb pointer might be invalid when 1689 * getting here: tcp_collapse might have deleted it 1690 * while aggregating skbs from the socket queue. 1691 */ 1692 skb = tcp_recv_skb(sk, seq - 1, &offset); 1693 if (!skb) 1694 break; 1695 /* TCP coalescing might have appended data to the skb. 1696 * Try to splice more frags 1697 */ 1698 if (offset + 1 != skb->len) 1699 continue; 1700 } 1701 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1702 tcp_eat_recv_skb(sk, skb); 1703 ++seq; 1704 break; 1705 } 1706 tcp_eat_recv_skb(sk, skb); 1707 if (!desc->count) 1708 break; 1709 WRITE_ONCE(tp->copied_seq, seq); 1710 } 1711 WRITE_ONCE(tp->copied_seq, seq); 1712 1713 tcp_rcv_space_adjust(sk); 1714 1715 /* Clean up data we have read: This will do ACK frames. */ 1716 if (copied > 0) { 1717 tcp_recv_skb(sk, seq, &offset); 1718 tcp_cleanup_rbuf(sk, copied); 1719 } 1720 return copied; 1721 } 1722 EXPORT_SYMBOL(tcp_read_sock); 1723 1724 int tcp_peek_len(struct socket *sock) 1725 { 1726 return tcp_inq(sock->sk); 1727 } 1728 EXPORT_SYMBOL(tcp_peek_len); 1729 1730 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1731 int tcp_set_rcvlowat(struct sock *sk, int val) 1732 { 1733 int cap; 1734 1735 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1736 cap = sk->sk_rcvbuf >> 1; 1737 else 1738 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1739 val = min(val, cap); 1740 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1741 1742 /* Check if we need to signal EPOLLIN right now */ 1743 tcp_data_ready(sk); 1744 1745 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1746 return 0; 1747 1748 val <<= 1; 1749 if (val > sk->sk_rcvbuf) { 1750 WRITE_ONCE(sk->sk_rcvbuf, val); 1751 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1752 } 1753 return 0; 1754 } 1755 EXPORT_SYMBOL(tcp_set_rcvlowat); 1756 1757 void tcp_update_recv_tstamps(struct sk_buff *skb, 1758 struct scm_timestamping_internal *tss) 1759 { 1760 if (skb->tstamp) 1761 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1762 else 1763 tss->ts[0] = (struct timespec64) {0}; 1764 1765 if (skb_hwtstamps(skb)->hwtstamp) 1766 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1767 else 1768 tss->ts[2] = (struct timespec64) {0}; 1769 } 1770 1771 #ifdef CONFIG_MMU 1772 static const struct vm_operations_struct tcp_vm_ops = { 1773 }; 1774 1775 int tcp_mmap(struct file *file, struct socket *sock, 1776 struct vm_area_struct *vma) 1777 { 1778 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1779 return -EPERM; 1780 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1781 1782 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1783 vma->vm_flags |= VM_MIXEDMAP; 1784 1785 vma->vm_ops = &tcp_vm_ops; 1786 return 0; 1787 } 1788 EXPORT_SYMBOL(tcp_mmap); 1789 1790 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1791 u32 *offset_frag) 1792 { 1793 skb_frag_t *frag; 1794 1795 if (unlikely(offset_skb >= skb->len)) 1796 return NULL; 1797 1798 offset_skb -= skb_headlen(skb); 1799 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1800 return NULL; 1801 1802 frag = skb_shinfo(skb)->frags; 1803 while (offset_skb) { 1804 if (skb_frag_size(frag) > offset_skb) { 1805 *offset_frag = offset_skb; 1806 return frag; 1807 } 1808 offset_skb -= skb_frag_size(frag); 1809 ++frag; 1810 } 1811 *offset_frag = 0; 1812 return frag; 1813 } 1814 1815 static bool can_map_frag(const skb_frag_t *frag) 1816 { 1817 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1818 } 1819 1820 static int find_next_mappable_frag(const skb_frag_t *frag, 1821 int remaining_in_skb) 1822 { 1823 int offset = 0; 1824 1825 if (likely(can_map_frag(frag))) 1826 return 0; 1827 1828 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1829 offset += skb_frag_size(frag); 1830 ++frag; 1831 } 1832 return offset; 1833 } 1834 1835 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1836 struct tcp_zerocopy_receive *zc, 1837 struct sk_buff *skb, u32 offset) 1838 { 1839 u32 frag_offset, partial_frag_remainder = 0; 1840 int mappable_offset; 1841 skb_frag_t *frag; 1842 1843 /* worst case: skip to next skb. try to improve on this case below */ 1844 zc->recv_skip_hint = skb->len - offset; 1845 1846 /* Find the frag containing this offset (and how far into that frag) */ 1847 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1848 if (!frag) 1849 return; 1850 1851 if (frag_offset) { 1852 struct skb_shared_info *info = skb_shinfo(skb); 1853 1854 /* We read part of the last frag, must recvmsg() rest of skb. */ 1855 if (frag == &info->frags[info->nr_frags - 1]) 1856 return; 1857 1858 /* Else, we must at least read the remainder in this frag. */ 1859 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1860 zc->recv_skip_hint -= partial_frag_remainder; 1861 ++frag; 1862 } 1863 1864 /* partial_frag_remainder: If part way through a frag, must read rest. 1865 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1866 * in partial_frag_remainder. 1867 */ 1868 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1869 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1870 } 1871 1872 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1873 int nonblock, int flags, 1874 struct scm_timestamping_internal *tss, 1875 int *cmsg_flags); 1876 static int receive_fallback_to_copy(struct sock *sk, 1877 struct tcp_zerocopy_receive *zc, int inq, 1878 struct scm_timestamping_internal *tss) 1879 { 1880 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1881 struct msghdr msg = {}; 1882 struct iovec iov; 1883 int err; 1884 1885 zc->length = 0; 1886 zc->recv_skip_hint = 0; 1887 1888 if (copy_address != zc->copybuf_address) 1889 return -EINVAL; 1890 1891 err = import_single_range(READ, (void __user *)copy_address, 1892 inq, &iov, &msg.msg_iter); 1893 if (err) 1894 return err; 1895 1896 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1897 tss, &zc->msg_flags); 1898 if (err < 0) 1899 return err; 1900 1901 zc->copybuf_len = err; 1902 if (likely(zc->copybuf_len)) { 1903 struct sk_buff *skb; 1904 u32 offset; 1905 1906 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1907 if (skb) 1908 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1909 } 1910 return 0; 1911 } 1912 1913 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1914 struct sk_buff *skb, u32 copylen, 1915 u32 *offset, u32 *seq) 1916 { 1917 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1918 struct msghdr msg = {}; 1919 struct iovec iov; 1920 int err; 1921 1922 if (copy_address != zc->copybuf_address) 1923 return -EINVAL; 1924 1925 err = import_single_range(READ, (void __user *)copy_address, 1926 copylen, &iov, &msg.msg_iter); 1927 if (err) 1928 return err; 1929 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1930 if (err) 1931 return err; 1932 zc->recv_skip_hint -= copylen; 1933 *offset += copylen; 1934 *seq += copylen; 1935 return (__s32)copylen; 1936 } 1937 1938 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1939 struct sock *sk, 1940 struct sk_buff *skb, 1941 u32 *seq, 1942 s32 copybuf_len, 1943 struct scm_timestamping_internal *tss) 1944 { 1945 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1946 1947 if (!copylen) 1948 return 0; 1949 /* skb is null if inq < PAGE_SIZE. */ 1950 if (skb) { 1951 offset = *seq - TCP_SKB_CB(skb)->seq; 1952 } else { 1953 skb = tcp_recv_skb(sk, *seq, &offset); 1954 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1955 tcp_update_recv_tstamps(skb, tss); 1956 zc->msg_flags |= TCP_CMSG_TS; 1957 } 1958 } 1959 1960 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1961 seq); 1962 return zc->copybuf_len < 0 ? 0 : copylen; 1963 } 1964 1965 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1966 struct page **pending_pages, 1967 unsigned long pages_remaining, 1968 unsigned long *address, 1969 u32 *length, 1970 u32 *seq, 1971 struct tcp_zerocopy_receive *zc, 1972 u32 total_bytes_to_map, 1973 int err) 1974 { 1975 /* At least one page did not map. Try zapping if we skipped earlier. */ 1976 if (err == -EBUSY && 1977 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1978 u32 maybe_zap_len; 1979 1980 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1981 *length + /* Mapped or pending */ 1982 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1983 zap_page_range(vma, *address, maybe_zap_len); 1984 err = 0; 1985 } 1986 1987 if (!err) { 1988 unsigned long leftover_pages = pages_remaining; 1989 int bytes_mapped; 1990 1991 /* We called zap_page_range, try to reinsert. */ 1992 err = vm_insert_pages(vma, *address, 1993 pending_pages, 1994 &pages_remaining); 1995 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1996 *seq += bytes_mapped; 1997 *address += bytes_mapped; 1998 } 1999 if (err) { 2000 /* Either we were unable to zap, OR we zapped, retried an 2001 * insert, and still had an issue. Either ways, pages_remaining 2002 * is the number of pages we were unable to map, and we unroll 2003 * some state we speculatively touched before. 2004 */ 2005 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2006 2007 *length -= bytes_not_mapped; 2008 zc->recv_skip_hint += bytes_not_mapped; 2009 } 2010 return err; 2011 } 2012 2013 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2014 struct page **pages, 2015 unsigned int pages_to_map, 2016 unsigned long *address, 2017 u32 *length, 2018 u32 *seq, 2019 struct tcp_zerocopy_receive *zc, 2020 u32 total_bytes_to_map) 2021 { 2022 unsigned long pages_remaining = pages_to_map; 2023 unsigned int pages_mapped; 2024 unsigned int bytes_mapped; 2025 int err; 2026 2027 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2028 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2029 bytes_mapped = PAGE_SIZE * pages_mapped; 2030 /* Even if vm_insert_pages fails, it may have partially succeeded in 2031 * mapping (some but not all of the pages). 2032 */ 2033 *seq += bytes_mapped; 2034 *address += bytes_mapped; 2035 2036 if (likely(!err)) 2037 return 0; 2038 2039 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2040 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2041 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2042 err); 2043 } 2044 2045 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2046 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2047 struct tcp_zerocopy_receive *zc, 2048 struct scm_timestamping_internal *tss) 2049 { 2050 unsigned long msg_control_addr; 2051 struct msghdr cmsg_dummy; 2052 2053 msg_control_addr = (unsigned long)zc->msg_control; 2054 cmsg_dummy.msg_control = (void *)msg_control_addr; 2055 cmsg_dummy.msg_controllen = 2056 (__kernel_size_t)zc->msg_controllen; 2057 cmsg_dummy.msg_flags = in_compat_syscall() 2058 ? MSG_CMSG_COMPAT : 0; 2059 cmsg_dummy.msg_control_is_user = true; 2060 zc->msg_flags = 0; 2061 if (zc->msg_control == msg_control_addr && 2062 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2063 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2064 zc->msg_control = (__u64) 2065 ((uintptr_t)cmsg_dummy.msg_control); 2066 zc->msg_controllen = 2067 (__u64)cmsg_dummy.msg_controllen; 2068 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2069 } 2070 } 2071 2072 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2073 static int tcp_zerocopy_receive(struct sock *sk, 2074 struct tcp_zerocopy_receive *zc, 2075 struct scm_timestamping_internal *tss) 2076 { 2077 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2078 unsigned long address = (unsigned long)zc->address; 2079 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2080 s32 copybuf_len = zc->copybuf_len; 2081 struct tcp_sock *tp = tcp_sk(sk); 2082 const skb_frag_t *frags = NULL; 2083 unsigned int pages_to_map = 0; 2084 struct vm_area_struct *vma; 2085 struct sk_buff *skb = NULL; 2086 u32 seq = tp->copied_seq; 2087 u32 total_bytes_to_map; 2088 int inq = tcp_inq(sk); 2089 int ret; 2090 2091 zc->copybuf_len = 0; 2092 zc->msg_flags = 0; 2093 2094 if (address & (PAGE_SIZE - 1) || address != zc->address) 2095 return -EINVAL; 2096 2097 if (sk->sk_state == TCP_LISTEN) 2098 return -ENOTCONN; 2099 2100 sock_rps_record_flow(sk); 2101 2102 if (inq && inq <= copybuf_len) 2103 return receive_fallback_to_copy(sk, zc, inq, tss); 2104 2105 if (inq < PAGE_SIZE) { 2106 zc->length = 0; 2107 zc->recv_skip_hint = inq; 2108 if (!inq && sock_flag(sk, SOCK_DONE)) 2109 return -EIO; 2110 return 0; 2111 } 2112 2113 mmap_read_lock(current->mm); 2114 2115 vma = vma_lookup(current->mm, address); 2116 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2117 mmap_read_unlock(current->mm); 2118 return -EINVAL; 2119 } 2120 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2121 avail_len = min_t(u32, vma_len, inq); 2122 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2123 if (total_bytes_to_map) { 2124 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2125 zap_page_range(vma, address, total_bytes_to_map); 2126 zc->length = total_bytes_to_map; 2127 zc->recv_skip_hint = 0; 2128 } else { 2129 zc->length = avail_len; 2130 zc->recv_skip_hint = avail_len; 2131 } 2132 ret = 0; 2133 while (length + PAGE_SIZE <= zc->length) { 2134 int mappable_offset; 2135 struct page *page; 2136 2137 if (zc->recv_skip_hint < PAGE_SIZE) { 2138 u32 offset_frag; 2139 2140 if (skb) { 2141 if (zc->recv_skip_hint > 0) 2142 break; 2143 skb = skb->next; 2144 offset = seq - TCP_SKB_CB(skb)->seq; 2145 } else { 2146 skb = tcp_recv_skb(sk, seq, &offset); 2147 } 2148 2149 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2150 tcp_update_recv_tstamps(skb, tss); 2151 zc->msg_flags |= TCP_CMSG_TS; 2152 } 2153 zc->recv_skip_hint = skb->len - offset; 2154 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2155 if (!frags || offset_frag) 2156 break; 2157 } 2158 2159 mappable_offset = find_next_mappable_frag(frags, 2160 zc->recv_skip_hint); 2161 if (mappable_offset) { 2162 zc->recv_skip_hint = mappable_offset; 2163 break; 2164 } 2165 page = skb_frag_page(frags); 2166 prefetchw(page); 2167 pages[pages_to_map++] = page; 2168 length += PAGE_SIZE; 2169 zc->recv_skip_hint -= PAGE_SIZE; 2170 frags++; 2171 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2172 zc->recv_skip_hint < PAGE_SIZE) { 2173 /* Either full batch, or we're about to go to next skb 2174 * (and we cannot unroll failed ops across skbs). 2175 */ 2176 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2177 pages_to_map, 2178 &address, &length, 2179 &seq, zc, 2180 total_bytes_to_map); 2181 if (ret) 2182 goto out; 2183 pages_to_map = 0; 2184 } 2185 } 2186 if (pages_to_map) { 2187 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2188 &address, &length, &seq, 2189 zc, total_bytes_to_map); 2190 } 2191 out: 2192 mmap_read_unlock(current->mm); 2193 /* Try to copy straggler data. */ 2194 if (!ret) 2195 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2196 2197 if (length + copylen) { 2198 WRITE_ONCE(tp->copied_seq, seq); 2199 tcp_rcv_space_adjust(sk); 2200 2201 /* Clean up data we have read: This will do ACK frames. */ 2202 tcp_recv_skb(sk, seq, &offset); 2203 tcp_cleanup_rbuf(sk, length + copylen); 2204 ret = 0; 2205 if (length == zc->length) 2206 zc->recv_skip_hint = 0; 2207 } else { 2208 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2209 ret = -EIO; 2210 } 2211 zc->length = length; 2212 return ret; 2213 } 2214 #endif 2215 2216 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2217 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2218 struct scm_timestamping_internal *tss) 2219 { 2220 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2221 bool has_timestamping = false; 2222 2223 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2224 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2225 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2226 if (new_tstamp) { 2227 struct __kernel_timespec kts = { 2228 .tv_sec = tss->ts[0].tv_sec, 2229 .tv_nsec = tss->ts[0].tv_nsec, 2230 }; 2231 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2232 sizeof(kts), &kts); 2233 } else { 2234 struct __kernel_old_timespec ts_old = { 2235 .tv_sec = tss->ts[0].tv_sec, 2236 .tv_nsec = tss->ts[0].tv_nsec, 2237 }; 2238 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2239 sizeof(ts_old), &ts_old); 2240 } 2241 } else { 2242 if (new_tstamp) { 2243 struct __kernel_sock_timeval stv = { 2244 .tv_sec = tss->ts[0].tv_sec, 2245 .tv_usec = tss->ts[0].tv_nsec / 1000, 2246 }; 2247 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2248 sizeof(stv), &stv); 2249 } else { 2250 struct __kernel_old_timeval tv = { 2251 .tv_sec = tss->ts[0].tv_sec, 2252 .tv_usec = tss->ts[0].tv_nsec / 1000, 2253 }; 2254 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2255 sizeof(tv), &tv); 2256 } 2257 } 2258 } 2259 2260 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2261 has_timestamping = true; 2262 else 2263 tss->ts[0] = (struct timespec64) {0}; 2264 } 2265 2266 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2267 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2268 has_timestamping = true; 2269 else 2270 tss->ts[2] = (struct timespec64) {0}; 2271 } 2272 2273 if (has_timestamping) { 2274 tss->ts[1] = (struct timespec64) {0}; 2275 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2276 put_cmsg_scm_timestamping64(msg, tss); 2277 else 2278 put_cmsg_scm_timestamping(msg, tss); 2279 } 2280 } 2281 2282 static int tcp_inq_hint(struct sock *sk) 2283 { 2284 const struct tcp_sock *tp = tcp_sk(sk); 2285 u32 copied_seq = READ_ONCE(tp->copied_seq); 2286 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2287 int inq; 2288 2289 inq = rcv_nxt - copied_seq; 2290 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2291 lock_sock(sk); 2292 inq = tp->rcv_nxt - tp->copied_seq; 2293 release_sock(sk); 2294 } 2295 /* After receiving a FIN, tell the user-space to continue reading 2296 * by returning a non-zero inq. 2297 */ 2298 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2299 inq = 1; 2300 return inq; 2301 } 2302 2303 /* 2304 * This routine copies from a sock struct into the user buffer. 2305 * 2306 * Technical note: in 2.3 we work on _locked_ socket, so that 2307 * tricks with *seq access order and skb->users are not required. 2308 * Probably, code can be easily improved even more. 2309 */ 2310 2311 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2312 int nonblock, int flags, 2313 struct scm_timestamping_internal *tss, 2314 int *cmsg_flags) 2315 { 2316 struct tcp_sock *tp = tcp_sk(sk); 2317 int copied = 0; 2318 u32 peek_seq; 2319 u32 *seq; 2320 unsigned long used; 2321 int err; 2322 int target; /* Read at least this many bytes */ 2323 long timeo; 2324 struct sk_buff *skb, *last; 2325 u32 urg_hole = 0; 2326 2327 err = -ENOTCONN; 2328 if (sk->sk_state == TCP_LISTEN) 2329 goto out; 2330 2331 if (tp->recvmsg_inq) 2332 *cmsg_flags = TCP_CMSG_INQ; 2333 timeo = sock_rcvtimeo(sk, nonblock); 2334 2335 /* Urgent data needs to be handled specially. */ 2336 if (flags & MSG_OOB) 2337 goto recv_urg; 2338 2339 if (unlikely(tp->repair)) { 2340 err = -EPERM; 2341 if (!(flags & MSG_PEEK)) 2342 goto out; 2343 2344 if (tp->repair_queue == TCP_SEND_QUEUE) 2345 goto recv_sndq; 2346 2347 err = -EINVAL; 2348 if (tp->repair_queue == TCP_NO_QUEUE) 2349 goto out; 2350 2351 /* 'common' recv queue MSG_PEEK-ing */ 2352 } 2353 2354 seq = &tp->copied_seq; 2355 if (flags & MSG_PEEK) { 2356 peek_seq = tp->copied_seq; 2357 seq = &peek_seq; 2358 } 2359 2360 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2361 2362 do { 2363 u32 offset; 2364 2365 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2366 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2367 if (copied) 2368 break; 2369 if (signal_pending(current)) { 2370 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2371 break; 2372 } 2373 } 2374 2375 /* Next get a buffer. */ 2376 2377 last = skb_peek_tail(&sk->sk_receive_queue); 2378 skb_queue_walk(&sk->sk_receive_queue, skb) { 2379 last = skb; 2380 /* Now that we have two receive queues this 2381 * shouldn't happen. 2382 */ 2383 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2384 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2385 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2386 flags)) 2387 break; 2388 2389 offset = *seq - TCP_SKB_CB(skb)->seq; 2390 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2391 pr_err_once("%s: found a SYN, please report !\n", __func__); 2392 offset--; 2393 } 2394 if (offset < skb->len) 2395 goto found_ok_skb; 2396 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2397 goto found_fin_ok; 2398 WARN(!(flags & MSG_PEEK), 2399 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2400 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2401 } 2402 2403 /* Well, if we have backlog, try to process it now yet. */ 2404 2405 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2406 break; 2407 2408 if (copied) { 2409 if (!timeo || 2410 sk->sk_err || 2411 sk->sk_state == TCP_CLOSE || 2412 (sk->sk_shutdown & RCV_SHUTDOWN) || 2413 signal_pending(current)) 2414 break; 2415 } else { 2416 if (sock_flag(sk, SOCK_DONE)) 2417 break; 2418 2419 if (sk->sk_err) { 2420 copied = sock_error(sk); 2421 break; 2422 } 2423 2424 if (sk->sk_shutdown & RCV_SHUTDOWN) 2425 break; 2426 2427 if (sk->sk_state == TCP_CLOSE) { 2428 /* This occurs when user tries to read 2429 * from never connected socket. 2430 */ 2431 copied = -ENOTCONN; 2432 break; 2433 } 2434 2435 if (!timeo) { 2436 copied = -EAGAIN; 2437 break; 2438 } 2439 2440 if (signal_pending(current)) { 2441 copied = sock_intr_errno(timeo); 2442 break; 2443 } 2444 } 2445 2446 if (copied >= target) { 2447 /* Do not sleep, just process backlog. */ 2448 __sk_flush_backlog(sk); 2449 } else { 2450 tcp_cleanup_rbuf(sk, copied); 2451 sk_defer_free_flush(sk); 2452 sk_wait_data(sk, &timeo, last); 2453 } 2454 2455 if ((flags & MSG_PEEK) && 2456 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2457 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2458 current->comm, 2459 task_pid_nr(current)); 2460 peek_seq = tp->copied_seq; 2461 } 2462 continue; 2463 2464 found_ok_skb: 2465 /* Ok so how much can we use? */ 2466 used = skb->len - offset; 2467 if (len < used) 2468 used = len; 2469 2470 /* Do we have urgent data here? */ 2471 if (unlikely(tp->urg_data)) { 2472 u32 urg_offset = tp->urg_seq - *seq; 2473 if (urg_offset < used) { 2474 if (!urg_offset) { 2475 if (!sock_flag(sk, SOCK_URGINLINE)) { 2476 WRITE_ONCE(*seq, *seq + 1); 2477 urg_hole++; 2478 offset++; 2479 used--; 2480 if (!used) 2481 goto skip_copy; 2482 } 2483 } else 2484 used = urg_offset; 2485 } 2486 } 2487 2488 if (!(flags & MSG_TRUNC)) { 2489 err = skb_copy_datagram_msg(skb, offset, msg, used); 2490 if (err) { 2491 /* Exception. Bailout! */ 2492 if (!copied) 2493 copied = -EFAULT; 2494 break; 2495 } 2496 } 2497 2498 WRITE_ONCE(*seq, *seq + used); 2499 copied += used; 2500 len -= used; 2501 2502 tcp_rcv_space_adjust(sk); 2503 2504 skip_copy: 2505 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2506 WRITE_ONCE(tp->urg_data, 0); 2507 tcp_fast_path_check(sk); 2508 } 2509 2510 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2511 tcp_update_recv_tstamps(skb, tss); 2512 *cmsg_flags |= TCP_CMSG_TS; 2513 } 2514 2515 if (used + offset < skb->len) 2516 continue; 2517 2518 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2519 goto found_fin_ok; 2520 if (!(flags & MSG_PEEK)) 2521 tcp_eat_recv_skb(sk, skb); 2522 continue; 2523 2524 found_fin_ok: 2525 /* Process the FIN. */ 2526 WRITE_ONCE(*seq, *seq + 1); 2527 if (!(flags & MSG_PEEK)) 2528 tcp_eat_recv_skb(sk, skb); 2529 break; 2530 } while (len > 0); 2531 2532 /* According to UNIX98, msg_name/msg_namelen are ignored 2533 * on connected socket. I was just happy when found this 8) --ANK 2534 */ 2535 2536 /* Clean up data we have read: This will do ACK frames. */ 2537 tcp_cleanup_rbuf(sk, copied); 2538 return copied; 2539 2540 out: 2541 return err; 2542 2543 recv_urg: 2544 err = tcp_recv_urg(sk, msg, len, flags); 2545 goto out; 2546 2547 recv_sndq: 2548 err = tcp_peek_sndq(sk, msg, len); 2549 goto out; 2550 } 2551 2552 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2553 int flags, int *addr_len) 2554 { 2555 int cmsg_flags = 0, ret, inq; 2556 struct scm_timestamping_internal tss; 2557 2558 if (unlikely(flags & MSG_ERRQUEUE)) 2559 return inet_recv_error(sk, msg, len, addr_len); 2560 2561 if (sk_can_busy_loop(sk) && 2562 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2563 sk->sk_state == TCP_ESTABLISHED) 2564 sk_busy_loop(sk, nonblock); 2565 2566 lock_sock(sk); 2567 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2568 &cmsg_flags); 2569 release_sock(sk); 2570 sk_defer_free_flush(sk); 2571 2572 if (cmsg_flags && ret >= 0) { 2573 if (cmsg_flags & TCP_CMSG_TS) 2574 tcp_recv_timestamp(msg, sk, &tss); 2575 if (cmsg_flags & TCP_CMSG_INQ) { 2576 inq = tcp_inq_hint(sk); 2577 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2578 } 2579 } 2580 return ret; 2581 } 2582 EXPORT_SYMBOL(tcp_recvmsg); 2583 2584 void tcp_set_state(struct sock *sk, int state) 2585 { 2586 int oldstate = sk->sk_state; 2587 2588 /* We defined a new enum for TCP states that are exported in BPF 2589 * so as not force the internal TCP states to be frozen. The 2590 * following checks will detect if an internal state value ever 2591 * differs from the BPF value. If this ever happens, then we will 2592 * need to remap the internal value to the BPF value before calling 2593 * tcp_call_bpf_2arg. 2594 */ 2595 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2596 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2597 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2598 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2599 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2600 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2601 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2602 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2603 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2604 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2605 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2606 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2607 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2608 2609 /* bpf uapi header bpf.h defines an anonymous enum with values 2610 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2611 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2612 * But clang built vmlinux does not have this enum in DWARF 2613 * since clang removes the above code before generating IR/debuginfo. 2614 * Let us explicitly emit the type debuginfo to ensure the 2615 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2616 * regardless of which compiler is used. 2617 */ 2618 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2619 2620 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2621 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2622 2623 switch (state) { 2624 case TCP_ESTABLISHED: 2625 if (oldstate != TCP_ESTABLISHED) 2626 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2627 break; 2628 2629 case TCP_CLOSE: 2630 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2631 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2632 2633 sk->sk_prot->unhash(sk); 2634 if (inet_csk(sk)->icsk_bind_hash && 2635 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2636 inet_put_port(sk); 2637 fallthrough; 2638 default: 2639 if (oldstate == TCP_ESTABLISHED) 2640 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2641 } 2642 2643 /* Change state AFTER socket is unhashed to avoid closed 2644 * socket sitting in hash tables. 2645 */ 2646 inet_sk_state_store(sk, state); 2647 } 2648 EXPORT_SYMBOL_GPL(tcp_set_state); 2649 2650 /* 2651 * State processing on a close. This implements the state shift for 2652 * sending our FIN frame. Note that we only send a FIN for some 2653 * states. A shutdown() may have already sent the FIN, or we may be 2654 * closed. 2655 */ 2656 2657 static const unsigned char new_state[16] = { 2658 /* current state: new state: action: */ 2659 [0 /* (Invalid) */] = TCP_CLOSE, 2660 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2661 [TCP_SYN_SENT] = TCP_CLOSE, 2662 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2663 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2664 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2665 [TCP_TIME_WAIT] = TCP_CLOSE, 2666 [TCP_CLOSE] = TCP_CLOSE, 2667 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2668 [TCP_LAST_ACK] = TCP_LAST_ACK, 2669 [TCP_LISTEN] = TCP_CLOSE, 2670 [TCP_CLOSING] = TCP_CLOSING, 2671 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2672 }; 2673 2674 static int tcp_close_state(struct sock *sk) 2675 { 2676 int next = (int)new_state[sk->sk_state]; 2677 int ns = next & TCP_STATE_MASK; 2678 2679 tcp_set_state(sk, ns); 2680 2681 return next & TCP_ACTION_FIN; 2682 } 2683 2684 /* 2685 * Shutdown the sending side of a connection. Much like close except 2686 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2687 */ 2688 2689 void tcp_shutdown(struct sock *sk, int how) 2690 { 2691 /* We need to grab some memory, and put together a FIN, 2692 * and then put it into the queue to be sent. 2693 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2694 */ 2695 if (!(how & SEND_SHUTDOWN)) 2696 return; 2697 2698 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2699 if ((1 << sk->sk_state) & 2700 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2701 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2702 /* Clear out any half completed packets. FIN if needed. */ 2703 if (tcp_close_state(sk)) 2704 tcp_send_fin(sk); 2705 } 2706 } 2707 EXPORT_SYMBOL(tcp_shutdown); 2708 2709 int tcp_orphan_count_sum(void) 2710 { 2711 int i, total = 0; 2712 2713 for_each_possible_cpu(i) 2714 total += per_cpu(tcp_orphan_count, i); 2715 2716 return max(total, 0); 2717 } 2718 2719 static int tcp_orphan_cache; 2720 static struct timer_list tcp_orphan_timer; 2721 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2722 2723 static void tcp_orphan_update(struct timer_list *unused) 2724 { 2725 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2726 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2727 } 2728 2729 static bool tcp_too_many_orphans(int shift) 2730 { 2731 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2732 } 2733 2734 bool tcp_check_oom(struct sock *sk, int shift) 2735 { 2736 bool too_many_orphans, out_of_socket_memory; 2737 2738 too_many_orphans = tcp_too_many_orphans(shift); 2739 out_of_socket_memory = tcp_out_of_memory(sk); 2740 2741 if (too_many_orphans) 2742 net_info_ratelimited("too many orphaned sockets\n"); 2743 if (out_of_socket_memory) 2744 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2745 return too_many_orphans || out_of_socket_memory; 2746 } 2747 2748 void __tcp_close(struct sock *sk, long timeout) 2749 { 2750 struct sk_buff *skb; 2751 int data_was_unread = 0; 2752 int state; 2753 2754 sk->sk_shutdown = SHUTDOWN_MASK; 2755 2756 if (sk->sk_state == TCP_LISTEN) { 2757 tcp_set_state(sk, TCP_CLOSE); 2758 2759 /* Special case. */ 2760 inet_csk_listen_stop(sk); 2761 2762 goto adjudge_to_death; 2763 } 2764 2765 /* We need to flush the recv. buffs. We do this only on the 2766 * descriptor close, not protocol-sourced closes, because the 2767 * reader process may not have drained the data yet! 2768 */ 2769 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2770 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2771 2772 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2773 len--; 2774 data_was_unread += len; 2775 __kfree_skb(skb); 2776 } 2777 2778 sk_mem_reclaim(sk); 2779 2780 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2781 if (sk->sk_state == TCP_CLOSE) 2782 goto adjudge_to_death; 2783 2784 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2785 * data was lost. To witness the awful effects of the old behavior of 2786 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2787 * GET in an FTP client, suspend the process, wait for the client to 2788 * advertise a zero window, then kill -9 the FTP client, wheee... 2789 * Note: timeout is always zero in such a case. 2790 */ 2791 if (unlikely(tcp_sk(sk)->repair)) { 2792 sk->sk_prot->disconnect(sk, 0); 2793 } else if (data_was_unread) { 2794 /* Unread data was tossed, zap the connection. */ 2795 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2796 tcp_set_state(sk, TCP_CLOSE); 2797 tcp_send_active_reset(sk, sk->sk_allocation); 2798 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2799 /* Check zero linger _after_ checking for unread data. */ 2800 sk->sk_prot->disconnect(sk, 0); 2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2802 } else if (tcp_close_state(sk)) { 2803 /* We FIN if the application ate all the data before 2804 * zapping the connection. 2805 */ 2806 2807 /* RED-PEN. Formally speaking, we have broken TCP state 2808 * machine. State transitions: 2809 * 2810 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2811 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2812 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2813 * 2814 * are legal only when FIN has been sent (i.e. in window), 2815 * rather than queued out of window. Purists blame. 2816 * 2817 * F.e. "RFC state" is ESTABLISHED, 2818 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2819 * 2820 * The visible declinations are that sometimes 2821 * we enter time-wait state, when it is not required really 2822 * (harmless), do not send active resets, when they are 2823 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2824 * they look as CLOSING or LAST_ACK for Linux) 2825 * Probably, I missed some more holelets. 2826 * --ANK 2827 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2828 * in a single packet! (May consider it later but will 2829 * probably need API support or TCP_CORK SYN-ACK until 2830 * data is written and socket is closed.) 2831 */ 2832 tcp_send_fin(sk); 2833 } 2834 2835 sk_stream_wait_close(sk, timeout); 2836 2837 adjudge_to_death: 2838 state = sk->sk_state; 2839 sock_hold(sk); 2840 sock_orphan(sk); 2841 2842 local_bh_disable(); 2843 bh_lock_sock(sk); 2844 /* remove backlog if any, without releasing ownership. */ 2845 __release_sock(sk); 2846 2847 this_cpu_inc(tcp_orphan_count); 2848 2849 /* Have we already been destroyed by a softirq or backlog? */ 2850 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2851 goto out; 2852 2853 /* This is a (useful) BSD violating of the RFC. There is a 2854 * problem with TCP as specified in that the other end could 2855 * keep a socket open forever with no application left this end. 2856 * We use a 1 minute timeout (about the same as BSD) then kill 2857 * our end. If they send after that then tough - BUT: long enough 2858 * that we won't make the old 4*rto = almost no time - whoops 2859 * reset mistake. 2860 * 2861 * Nope, it was not mistake. It is really desired behaviour 2862 * f.e. on http servers, when such sockets are useless, but 2863 * consume significant resources. Let's do it with special 2864 * linger2 option. --ANK 2865 */ 2866 2867 if (sk->sk_state == TCP_FIN_WAIT2) { 2868 struct tcp_sock *tp = tcp_sk(sk); 2869 if (tp->linger2 < 0) { 2870 tcp_set_state(sk, TCP_CLOSE); 2871 tcp_send_active_reset(sk, GFP_ATOMIC); 2872 __NET_INC_STATS(sock_net(sk), 2873 LINUX_MIB_TCPABORTONLINGER); 2874 } else { 2875 const int tmo = tcp_fin_time(sk); 2876 2877 if (tmo > TCP_TIMEWAIT_LEN) { 2878 inet_csk_reset_keepalive_timer(sk, 2879 tmo - TCP_TIMEWAIT_LEN); 2880 } else { 2881 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2882 goto out; 2883 } 2884 } 2885 } 2886 if (sk->sk_state != TCP_CLOSE) { 2887 sk_mem_reclaim(sk); 2888 if (tcp_check_oom(sk, 0)) { 2889 tcp_set_state(sk, TCP_CLOSE); 2890 tcp_send_active_reset(sk, GFP_ATOMIC); 2891 __NET_INC_STATS(sock_net(sk), 2892 LINUX_MIB_TCPABORTONMEMORY); 2893 } else if (!check_net(sock_net(sk))) { 2894 /* Not possible to send reset; just close */ 2895 tcp_set_state(sk, TCP_CLOSE); 2896 } 2897 } 2898 2899 if (sk->sk_state == TCP_CLOSE) { 2900 struct request_sock *req; 2901 2902 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2903 lockdep_sock_is_held(sk)); 2904 /* We could get here with a non-NULL req if the socket is 2905 * aborted (e.g., closed with unread data) before 3WHS 2906 * finishes. 2907 */ 2908 if (req) 2909 reqsk_fastopen_remove(sk, req, false); 2910 inet_csk_destroy_sock(sk); 2911 } 2912 /* Otherwise, socket is reprieved until protocol close. */ 2913 2914 out: 2915 bh_unlock_sock(sk); 2916 local_bh_enable(); 2917 } 2918 2919 void tcp_close(struct sock *sk, long timeout) 2920 { 2921 lock_sock(sk); 2922 __tcp_close(sk, timeout); 2923 release_sock(sk); 2924 sock_put(sk); 2925 } 2926 EXPORT_SYMBOL(tcp_close); 2927 2928 /* These states need RST on ABORT according to RFC793 */ 2929 2930 static inline bool tcp_need_reset(int state) 2931 { 2932 return (1 << state) & 2933 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2934 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2935 } 2936 2937 static void tcp_rtx_queue_purge(struct sock *sk) 2938 { 2939 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2940 2941 tcp_sk(sk)->highest_sack = NULL; 2942 while (p) { 2943 struct sk_buff *skb = rb_to_skb(p); 2944 2945 p = rb_next(p); 2946 /* Since we are deleting whole queue, no need to 2947 * list_del(&skb->tcp_tsorted_anchor) 2948 */ 2949 tcp_rtx_queue_unlink(skb, sk); 2950 tcp_wmem_free_skb(sk, skb); 2951 } 2952 } 2953 2954 void tcp_write_queue_purge(struct sock *sk) 2955 { 2956 struct sk_buff *skb; 2957 2958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2959 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2960 tcp_skb_tsorted_anchor_cleanup(skb); 2961 tcp_wmem_free_skb(sk, skb); 2962 } 2963 tcp_rtx_queue_purge(sk); 2964 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2965 sk_mem_reclaim(sk); 2966 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2967 tcp_sk(sk)->packets_out = 0; 2968 inet_csk(sk)->icsk_backoff = 0; 2969 } 2970 2971 int tcp_disconnect(struct sock *sk, int flags) 2972 { 2973 struct inet_sock *inet = inet_sk(sk); 2974 struct inet_connection_sock *icsk = inet_csk(sk); 2975 struct tcp_sock *tp = tcp_sk(sk); 2976 int old_state = sk->sk_state; 2977 u32 seq; 2978 2979 if (old_state != TCP_CLOSE) 2980 tcp_set_state(sk, TCP_CLOSE); 2981 2982 /* ABORT function of RFC793 */ 2983 if (old_state == TCP_LISTEN) { 2984 inet_csk_listen_stop(sk); 2985 } else if (unlikely(tp->repair)) { 2986 sk->sk_err = ECONNABORTED; 2987 } else if (tcp_need_reset(old_state) || 2988 (tp->snd_nxt != tp->write_seq && 2989 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2990 /* The last check adjusts for discrepancy of Linux wrt. RFC 2991 * states 2992 */ 2993 tcp_send_active_reset(sk, gfp_any()); 2994 sk->sk_err = ECONNRESET; 2995 } else if (old_state == TCP_SYN_SENT) 2996 sk->sk_err = ECONNRESET; 2997 2998 tcp_clear_xmit_timers(sk); 2999 __skb_queue_purge(&sk->sk_receive_queue); 3000 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3001 WRITE_ONCE(tp->urg_data, 0); 3002 tcp_write_queue_purge(sk); 3003 tcp_fastopen_active_disable_ofo_check(sk); 3004 skb_rbtree_purge(&tp->out_of_order_queue); 3005 3006 inet->inet_dport = 0; 3007 3008 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3009 inet_reset_saddr(sk); 3010 3011 sk->sk_shutdown = 0; 3012 sock_reset_flag(sk, SOCK_DONE); 3013 tp->srtt_us = 0; 3014 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3015 tp->rcv_rtt_last_tsecr = 0; 3016 3017 seq = tp->write_seq + tp->max_window + 2; 3018 if (!seq) 3019 seq = 1; 3020 WRITE_ONCE(tp->write_seq, seq); 3021 3022 icsk->icsk_backoff = 0; 3023 icsk->icsk_probes_out = 0; 3024 icsk->icsk_probes_tstamp = 0; 3025 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3026 icsk->icsk_rto_min = TCP_RTO_MIN; 3027 icsk->icsk_delack_max = TCP_DELACK_MAX; 3028 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3029 tp->snd_cwnd = TCP_INIT_CWND; 3030 tp->snd_cwnd_cnt = 0; 3031 tp->window_clamp = 0; 3032 tp->delivered = 0; 3033 tp->delivered_ce = 0; 3034 if (icsk->icsk_ca_ops->release) 3035 icsk->icsk_ca_ops->release(sk); 3036 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3037 icsk->icsk_ca_initialized = 0; 3038 tcp_set_ca_state(sk, TCP_CA_Open); 3039 tp->is_sack_reneg = 0; 3040 tcp_clear_retrans(tp); 3041 tp->total_retrans = 0; 3042 inet_csk_delack_init(sk); 3043 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3044 * issue in __tcp_select_window() 3045 */ 3046 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3047 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3048 __sk_dst_reset(sk); 3049 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3050 tcp_saved_syn_free(tp); 3051 tp->compressed_ack = 0; 3052 tp->segs_in = 0; 3053 tp->segs_out = 0; 3054 tp->bytes_sent = 0; 3055 tp->bytes_acked = 0; 3056 tp->bytes_received = 0; 3057 tp->bytes_retrans = 0; 3058 tp->data_segs_in = 0; 3059 tp->data_segs_out = 0; 3060 tp->duplicate_sack[0].start_seq = 0; 3061 tp->duplicate_sack[0].end_seq = 0; 3062 tp->dsack_dups = 0; 3063 tp->reord_seen = 0; 3064 tp->retrans_out = 0; 3065 tp->sacked_out = 0; 3066 tp->tlp_high_seq = 0; 3067 tp->last_oow_ack_time = 0; 3068 /* There's a bubble in the pipe until at least the first ACK. */ 3069 tp->app_limited = ~0U; 3070 tp->rack.mstamp = 0; 3071 tp->rack.advanced = 0; 3072 tp->rack.reo_wnd_steps = 1; 3073 tp->rack.last_delivered = 0; 3074 tp->rack.reo_wnd_persist = 0; 3075 tp->rack.dsack_seen = 0; 3076 tp->syn_data_acked = 0; 3077 tp->rx_opt.saw_tstamp = 0; 3078 tp->rx_opt.dsack = 0; 3079 tp->rx_opt.num_sacks = 0; 3080 tp->rcv_ooopack = 0; 3081 3082 3083 /* Clean up fastopen related fields */ 3084 tcp_free_fastopen_req(tp); 3085 inet->defer_connect = 0; 3086 tp->fastopen_client_fail = 0; 3087 3088 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3089 3090 if (sk->sk_frag.page) { 3091 put_page(sk->sk_frag.page); 3092 sk->sk_frag.page = NULL; 3093 sk->sk_frag.offset = 0; 3094 } 3095 sk_defer_free_flush(sk); 3096 sk_error_report(sk); 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(tcp_disconnect); 3100 3101 static inline bool tcp_can_repair_sock(const struct sock *sk) 3102 { 3103 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3104 (sk->sk_state != TCP_LISTEN); 3105 } 3106 3107 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3108 { 3109 struct tcp_repair_window opt; 3110 3111 if (!tp->repair) 3112 return -EPERM; 3113 3114 if (len != sizeof(opt)) 3115 return -EINVAL; 3116 3117 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3118 return -EFAULT; 3119 3120 if (opt.max_window < opt.snd_wnd) 3121 return -EINVAL; 3122 3123 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3124 return -EINVAL; 3125 3126 if (after(opt.rcv_wup, tp->rcv_nxt)) 3127 return -EINVAL; 3128 3129 tp->snd_wl1 = opt.snd_wl1; 3130 tp->snd_wnd = opt.snd_wnd; 3131 tp->max_window = opt.max_window; 3132 3133 tp->rcv_wnd = opt.rcv_wnd; 3134 tp->rcv_wup = opt.rcv_wup; 3135 3136 return 0; 3137 } 3138 3139 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3140 unsigned int len) 3141 { 3142 struct tcp_sock *tp = tcp_sk(sk); 3143 struct tcp_repair_opt opt; 3144 size_t offset = 0; 3145 3146 while (len >= sizeof(opt)) { 3147 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3148 return -EFAULT; 3149 3150 offset += sizeof(opt); 3151 len -= sizeof(opt); 3152 3153 switch (opt.opt_code) { 3154 case TCPOPT_MSS: 3155 tp->rx_opt.mss_clamp = opt.opt_val; 3156 tcp_mtup_init(sk); 3157 break; 3158 case TCPOPT_WINDOW: 3159 { 3160 u16 snd_wscale = opt.opt_val & 0xFFFF; 3161 u16 rcv_wscale = opt.opt_val >> 16; 3162 3163 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3164 return -EFBIG; 3165 3166 tp->rx_opt.snd_wscale = snd_wscale; 3167 tp->rx_opt.rcv_wscale = rcv_wscale; 3168 tp->rx_opt.wscale_ok = 1; 3169 } 3170 break; 3171 case TCPOPT_SACK_PERM: 3172 if (opt.opt_val != 0) 3173 return -EINVAL; 3174 3175 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3176 break; 3177 case TCPOPT_TIMESTAMP: 3178 if (opt.opt_val != 0) 3179 return -EINVAL; 3180 3181 tp->rx_opt.tstamp_ok = 1; 3182 break; 3183 } 3184 } 3185 3186 return 0; 3187 } 3188 3189 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3190 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3191 3192 static void tcp_enable_tx_delay(void) 3193 { 3194 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3195 static int __tcp_tx_delay_enabled = 0; 3196 3197 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3198 static_branch_enable(&tcp_tx_delay_enabled); 3199 pr_info("TCP_TX_DELAY enabled\n"); 3200 } 3201 } 3202 } 3203 3204 /* When set indicates to always queue non-full frames. Later the user clears 3205 * this option and we transmit any pending partial frames in the queue. This is 3206 * meant to be used alongside sendfile() to get properly filled frames when the 3207 * user (for example) must write out headers with a write() call first and then 3208 * use sendfile to send out the data parts. 3209 * 3210 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3211 * TCP_NODELAY. 3212 */ 3213 void __tcp_sock_set_cork(struct sock *sk, bool on) 3214 { 3215 struct tcp_sock *tp = tcp_sk(sk); 3216 3217 if (on) { 3218 tp->nonagle |= TCP_NAGLE_CORK; 3219 } else { 3220 tp->nonagle &= ~TCP_NAGLE_CORK; 3221 if (tp->nonagle & TCP_NAGLE_OFF) 3222 tp->nonagle |= TCP_NAGLE_PUSH; 3223 tcp_push_pending_frames(sk); 3224 } 3225 } 3226 3227 void tcp_sock_set_cork(struct sock *sk, bool on) 3228 { 3229 lock_sock(sk); 3230 __tcp_sock_set_cork(sk, on); 3231 release_sock(sk); 3232 } 3233 EXPORT_SYMBOL(tcp_sock_set_cork); 3234 3235 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3236 * remembered, but it is not activated until cork is cleared. 3237 * 3238 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3239 * even TCP_CORK for currently queued segments. 3240 */ 3241 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3242 { 3243 if (on) { 3244 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3245 tcp_push_pending_frames(sk); 3246 } else { 3247 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3248 } 3249 } 3250 3251 void tcp_sock_set_nodelay(struct sock *sk) 3252 { 3253 lock_sock(sk); 3254 __tcp_sock_set_nodelay(sk, true); 3255 release_sock(sk); 3256 } 3257 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3258 3259 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3260 { 3261 if (!val) { 3262 inet_csk_enter_pingpong_mode(sk); 3263 return; 3264 } 3265 3266 inet_csk_exit_pingpong_mode(sk); 3267 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3268 inet_csk_ack_scheduled(sk)) { 3269 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3270 tcp_cleanup_rbuf(sk, 1); 3271 if (!(val & 1)) 3272 inet_csk_enter_pingpong_mode(sk); 3273 } 3274 } 3275 3276 void tcp_sock_set_quickack(struct sock *sk, int val) 3277 { 3278 lock_sock(sk); 3279 __tcp_sock_set_quickack(sk, val); 3280 release_sock(sk); 3281 } 3282 EXPORT_SYMBOL(tcp_sock_set_quickack); 3283 3284 int tcp_sock_set_syncnt(struct sock *sk, int val) 3285 { 3286 if (val < 1 || val > MAX_TCP_SYNCNT) 3287 return -EINVAL; 3288 3289 lock_sock(sk); 3290 inet_csk(sk)->icsk_syn_retries = val; 3291 release_sock(sk); 3292 return 0; 3293 } 3294 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3295 3296 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3297 { 3298 lock_sock(sk); 3299 inet_csk(sk)->icsk_user_timeout = val; 3300 release_sock(sk); 3301 } 3302 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3303 3304 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3305 { 3306 struct tcp_sock *tp = tcp_sk(sk); 3307 3308 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3309 return -EINVAL; 3310 3311 tp->keepalive_time = val * HZ; 3312 if (sock_flag(sk, SOCK_KEEPOPEN) && 3313 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3314 u32 elapsed = keepalive_time_elapsed(tp); 3315 3316 if (tp->keepalive_time > elapsed) 3317 elapsed = tp->keepalive_time - elapsed; 3318 else 3319 elapsed = 0; 3320 inet_csk_reset_keepalive_timer(sk, elapsed); 3321 } 3322 3323 return 0; 3324 } 3325 3326 int tcp_sock_set_keepidle(struct sock *sk, int val) 3327 { 3328 int err; 3329 3330 lock_sock(sk); 3331 err = tcp_sock_set_keepidle_locked(sk, val); 3332 release_sock(sk); 3333 return err; 3334 } 3335 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3336 3337 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3338 { 3339 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3340 return -EINVAL; 3341 3342 lock_sock(sk); 3343 tcp_sk(sk)->keepalive_intvl = val * HZ; 3344 release_sock(sk); 3345 return 0; 3346 } 3347 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3348 3349 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3350 { 3351 if (val < 1 || val > MAX_TCP_KEEPCNT) 3352 return -EINVAL; 3353 3354 lock_sock(sk); 3355 tcp_sk(sk)->keepalive_probes = val; 3356 release_sock(sk); 3357 return 0; 3358 } 3359 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3360 3361 int tcp_set_window_clamp(struct sock *sk, int val) 3362 { 3363 struct tcp_sock *tp = tcp_sk(sk); 3364 3365 if (!val) { 3366 if (sk->sk_state != TCP_CLOSE) 3367 return -EINVAL; 3368 tp->window_clamp = 0; 3369 } else { 3370 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3371 SOCK_MIN_RCVBUF / 2 : val; 3372 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3373 } 3374 return 0; 3375 } 3376 3377 /* 3378 * Socket option code for TCP. 3379 */ 3380 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3381 sockptr_t optval, unsigned int optlen) 3382 { 3383 struct tcp_sock *tp = tcp_sk(sk); 3384 struct inet_connection_sock *icsk = inet_csk(sk); 3385 struct net *net = sock_net(sk); 3386 int val; 3387 int err = 0; 3388 3389 /* These are data/string values, all the others are ints */ 3390 switch (optname) { 3391 case TCP_CONGESTION: { 3392 char name[TCP_CA_NAME_MAX]; 3393 3394 if (optlen < 1) 3395 return -EINVAL; 3396 3397 val = strncpy_from_sockptr(name, optval, 3398 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3399 if (val < 0) 3400 return -EFAULT; 3401 name[val] = 0; 3402 3403 lock_sock(sk); 3404 err = tcp_set_congestion_control(sk, name, true, 3405 ns_capable(sock_net(sk)->user_ns, 3406 CAP_NET_ADMIN)); 3407 release_sock(sk); 3408 return err; 3409 } 3410 case TCP_ULP: { 3411 char name[TCP_ULP_NAME_MAX]; 3412 3413 if (optlen < 1) 3414 return -EINVAL; 3415 3416 val = strncpy_from_sockptr(name, optval, 3417 min_t(long, TCP_ULP_NAME_MAX - 1, 3418 optlen)); 3419 if (val < 0) 3420 return -EFAULT; 3421 name[val] = 0; 3422 3423 lock_sock(sk); 3424 err = tcp_set_ulp(sk, name); 3425 release_sock(sk); 3426 return err; 3427 } 3428 case TCP_FASTOPEN_KEY: { 3429 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3430 __u8 *backup_key = NULL; 3431 3432 /* Allow a backup key as well to facilitate key rotation 3433 * First key is the active one. 3434 */ 3435 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3436 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3437 return -EINVAL; 3438 3439 if (copy_from_sockptr(key, optval, optlen)) 3440 return -EFAULT; 3441 3442 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3443 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3444 3445 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3446 } 3447 default: 3448 /* fallthru */ 3449 break; 3450 } 3451 3452 if (optlen < sizeof(int)) 3453 return -EINVAL; 3454 3455 if (copy_from_sockptr(&val, optval, sizeof(val))) 3456 return -EFAULT; 3457 3458 lock_sock(sk); 3459 3460 switch (optname) { 3461 case TCP_MAXSEG: 3462 /* Values greater than interface MTU won't take effect. However 3463 * at the point when this call is done we typically don't yet 3464 * know which interface is going to be used 3465 */ 3466 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3467 err = -EINVAL; 3468 break; 3469 } 3470 tp->rx_opt.user_mss = val; 3471 break; 3472 3473 case TCP_NODELAY: 3474 __tcp_sock_set_nodelay(sk, val); 3475 break; 3476 3477 case TCP_THIN_LINEAR_TIMEOUTS: 3478 if (val < 0 || val > 1) 3479 err = -EINVAL; 3480 else 3481 tp->thin_lto = val; 3482 break; 3483 3484 case TCP_THIN_DUPACK: 3485 if (val < 0 || val > 1) 3486 err = -EINVAL; 3487 break; 3488 3489 case TCP_REPAIR: 3490 if (!tcp_can_repair_sock(sk)) 3491 err = -EPERM; 3492 else if (val == TCP_REPAIR_ON) { 3493 tp->repair = 1; 3494 sk->sk_reuse = SK_FORCE_REUSE; 3495 tp->repair_queue = TCP_NO_QUEUE; 3496 } else if (val == TCP_REPAIR_OFF) { 3497 tp->repair = 0; 3498 sk->sk_reuse = SK_NO_REUSE; 3499 tcp_send_window_probe(sk); 3500 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3501 tp->repair = 0; 3502 sk->sk_reuse = SK_NO_REUSE; 3503 } else 3504 err = -EINVAL; 3505 3506 break; 3507 3508 case TCP_REPAIR_QUEUE: 3509 if (!tp->repair) 3510 err = -EPERM; 3511 else if ((unsigned int)val < TCP_QUEUES_NR) 3512 tp->repair_queue = val; 3513 else 3514 err = -EINVAL; 3515 break; 3516 3517 case TCP_QUEUE_SEQ: 3518 if (sk->sk_state != TCP_CLOSE) { 3519 err = -EPERM; 3520 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3521 if (!tcp_rtx_queue_empty(sk)) 3522 err = -EPERM; 3523 else 3524 WRITE_ONCE(tp->write_seq, val); 3525 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3526 if (tp->rcv_nxt != tp->copied_seq) { 3527 err = -EPERM; 3528 } else { 3529 WRITE_ONCE(tp->rcv_nxt, val); 3530 WRITE_ONCE(tp->copied_seq, val); 3531 } 3532 } else { 3533 err = -EINVAL; 3534 } 3535 break; 3536 3537 case TCP_REPAIR_OPTIONS: 3538 if (!tp->repair) 3539 err = -EINVAL; 3540 else if (sk->sk_state == TCP_ESTABLISHED) 3541 err = tcp_repair_options_est(sk, optval, optlen); 3542 else 3543 err = -EPERM; 3544 break; 3545 3546 case TCP_CORK: 3547 __tcp_sock_set_cork(sk, val); 3548 break; 3549 3550 case TCP_KEEPIDLE: 3551 err = tcp_sock_set_keepidle_locked(sk, val); 3552 break; 3553 case TCP_KEEPINTVL: 3554 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3555 err = -EINVAL; 3556 else 3557 tp->keepalive_intvl = val * HZ; 3558 break; 3559 case TCP_KEEPCNT: 3560 if (val < 1 || val > MAX_TCP_KEEPCNT) 3561 err = -EINVAL; 3562 else 3563 tp->keepalive_probes = val; 3564 break; 3565 case TCP_SYNCNT: 3566 if (val < 1 || val > MAX_TCP_SYNCNT) 3567 err = -EINVAL; 3568 else 3569 icsk->icsk_syn_retries = val; 3570 break; 3571 3572 case TCP_SAVE_SYN: 3573 /* 0: disable, 1: enable, 2: start from ether_header */ 3574 if (val < 0 || val > 2) 3575 err = -EINVAL; 3576 else 3577 tp->save_syn = val; 3578 break; 3579 3580 case TCP_LINGER2: 3581 if (val < 0) 3582 tp->linger2 = -1; 3583 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3584 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3585 else 3586 tp->linger2 = val * HZ; 3587 break; 3588 3589 case TCP_DEFER_ACCEPT: 3590 /* Translate value in seconds to number of retransmits */ 3591 icsk->icsk_accept_queue.rskq_defer_accept = 3592 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3593 TCP_RTO_MAX / HZ); 3594 break; 3595 3596 case TCP_WINDOW_CLAMP: 3597 err = tcp_set_window_clamp(sk, val); 3598 break; 3599 3600 case TCP_QUICKACK: 3601 __tcp_sock_set_quickack(sk, val); 3602 break; 3603 3604 #ifdef CONFIG_TCP_MD5SIG 3605 case TCP_MD5SIG: 3606 case TCP_MD5SIG_EXT: 3607 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3608 break; 3609 #endif 3610 case TCP_USER_TIMEOUT: 3611 /* Cap the max time in ms TCP will retry or probe the window 3612 * before giving up and aborting (ETIMEDOUT) a connection. 3613 */ 3614 if (val < 0) 3615 err = -EINVAL; 3616 else 3617 icsk->icsk_user_timeout = val; 3618 break; 3619 3620 case TCP_FASTOPEN: 3621 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3622 TCPF_LISTEN))) { 3623 tcp_fastopen_init_key_once(net); 3624 3625 fastopen_queue_tune(sk, val); 3626 } else { 3627 err = -EINVAL; 3628 } 3629 break; 3630 case TCP_FASTOPEN_CONNECT: 3631 if (val > 1 || val < 0) { 3632 err = -EINVAL; 3633 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3634 if (sk->sk_state == TCP_CLOSE) 3635 tp->fastopen_connect = val; 3636 else 3637 err = -EINVAL; 3638 } else { 3639 err = -EOPNOTSUPP; 3640 } 3641 break; 3642 case TCP_FASTOPEN_NO_COOKIE: 3643 if (val > 1 || val < 0) 3644 err = -EINVAL; 3645 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3646 err = -EINVAL; 3647 else 3648 tp->fastopen_no_cookie = val; 3649 break; 3650 case TCP_TIMESTAMP: 3651 if (!tp->repair) 3652 err = -EPERM; 3653 else 3654 tp->tsoffset = val - tcp_time_stamp_raw(); 3655 break; 3656 case TCP_REPAIR_WINDOW: 3657 err = tcp_repair_set_window(tp, optval, optlen); 3658 break; 3659 case TCP_NOTSENT_LOWAT: 3660 tp->notsent_lowat = val; 3661 sk->sk_write_space(sk); 3662 break; 3663 case TCP_INQ: 3664 if (val > 1 || val < 0) 3665 err = -EINVAL; 3666 else 3667 tp->recvmsg_inq = val; 3668 break; 3669 case TCP_TX_DELAY: 3670 if (val) 3671 tcp_enable_tx_delay(); 3672 tp->tcp_tx_delay = val; 3673 break; 3674 default: 3675 err = -ENOPROTOOPT; 3676 break; 3677 } 3678 3679 release_sock(sk); 3680 return err; 3681 } 3682 3683 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3684 unsigned int optlen) 3685 { 3686 const struct inet_connection_sock *icsk = inet_csk(sk); 3687 3688 if (level != SOL_TCP) 3689 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3690 optval, optlen); 3691 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3692 } 3693 EXPORT_SYMBOL(tcp_setsockopt); 3694 3695 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3696 struct tcp_info *info) 3697 { 3698 u64 stats[__TCP_CHRONO_MAX], total = 0; 3699 enum tcp_chrono i; 3700 3701 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3702 stats[i] = tp->chrono_stat[i - 1]; 3703 if (i == tp->chrono_type) 3704 stats[i] += tcp_jiffies32 - tp->chrono_start; 3705 stats[i] *= USEC_PER_SEC / HZ; 3706 total += stats[i]; 3707 } 3708 3709 info->tcpi_busy_time = total; 3710 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3711 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3712 } 3713 3714 /* Return information about state of tcp endpoint in API format. */ 3715 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3716 { 3717 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3718 const struct inet_connection_sock *icsk = inet_csk(sk); 3719 unsigned long rate; 3720 u32 now; 3721 u64 rate64; 3722 bool slow; 3723 3724 memset(info, 0, sizeof(*info)); 3725 if (sk->sk_type != SOCK_STREAM) 3726 return; 3727 3728 info->tcpi_state = inet_sk_state_load(sk); 3729 3730 /* Report meaningful fields for all TCP states, including listeners */ 3731 rate = READ_ONCE(sk->sk_pacing_rate); 3732 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3733 info->tcpi_pacing_rate = rate64; 3734 3735 rate = READ_ONCE(sk->sk_max_pacing_rate); 3736 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3737 info->tcpi_max_pacing_rate = rate64; 3738 3739 info->tcpi_reordering = tp->reordering; 3740 info->tcpi_snd_cwnd = tp->snd_cwnd; 3741 3742 if (info->tcpi_state == TCP_LISTEN) { 3743 /* listeners aliased fields : 3744 * tcpi_unacked -> Number of children ready for accept() 3745 * tcpi_sacked -> max backlog 3746 */ 3747 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3748 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3749 return; 3750 } 3751 3752 slow = lock_sock_fast(sk); 3753 3754 info->tcpi_ca_state = icsk->icsk_ca_state; 3755 info->tcpi_retransmits = icsk->icsk_retransmits; 3756 info->tcpi_probes = icsk->icsk_probes_out; 3757 info->tcpi_backoff = icsk->icsk_backoff; 3758 3759 if (tp->rx_opt.tstamp_ok) 3760 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3761 if (tcp_is_sack(tp)) 3762 info->tcpi_options |= TCPI_OPT_SACK; 3763 if (tp->rx_opt.wscale_ok) { 3764 info->tcpi_options |= TCPI_OPT_WSCALE; 3765 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3766 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3767 } 3768 3769 if (tp->ecn_flags & TCP_ECN_OK) 3770 info->tcpi_options |= TCPI_OPT_ECN; 3771 if (tp->ecn_flags & TCP_ECN_SEEN) 3772 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3773 if (tp->syn_data_acked) 3774 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3775 3776 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3777 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3778 info->tcpi_snd_mss = tp->mss_cache; 3779 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3780 3781 info->tcpi_unacked = tp->packets_out; 3782 info->tcpi_sacked = tp->sacked_out; 3783 3784 info->tcpi_lost = tp->lost_out; 3785 info->tcpi_retrans = tp->retrans_out; 3786 3787 now = tcp_jiffies32; 3788 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3789 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3790 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3791 3792 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3793 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3794 info->tcpi_rtt = tp->srtt_us >> 3; 3795 info->tcpi_rttvar = tp->mdev_us >> 2; 3796 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3797 info->tcpi_advmss = tp->advmss; 3798 3799 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3800 info->tcpi_rcv_space = tp->rcvq_space.space; 3801 3802 info->tcpi_total_retrans = tp->total_retrans; 3803 3804 info->tcpi_bytes_acked = tp->bytes_acked; 3805 info->tcpi_bytes_received = tp->bytes_received; 3806 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3807 tcp_get_info_chrono_stats(tp, info); 3808 3809 info->tcpi_segs_out = tp->segs_out; 3810 3811 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3812 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3813 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3814 3815 info->tcpi_min_rtt = tcp_min_rtt(tp); 3816 info->tcpi_data_segs_out = tp->data_segs_out; 3817 3818 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3819 rate64 = tcp_compute_delivery_rate(tp); 3820 if (rate64) 3821 info->tcpi_delivery_rate = rate64; 3822 info->tcpi_delivered = tp->delivered; 3823 info->tcpi_delivered_ce = tp->delivered_ce; 3824 info->tcpi_bytes_sent = tp->bytes_sent; 3825 info->tcpi_bytes_retrans = tp->bytes_retrans; 3826 info->tcpi_dsack_dups = tp->dsack_dups; 3827 info->tcpi_reord_seen = tp->reord_seen; 3828 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3829 info->tcpi_snd_wnd = tp->snd_wnd; 3830 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3831 unlock_sock_fast(sk, slow); 3832 } 3833 EXPORT_SYMBOL_GPL(tcp_get_info); 3834 3835 static size_t tcp_opt_stats_get_size(void) 3836 { 3837 return 3838 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3839 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3840 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3841 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3842 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3843 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3844 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3845 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3846 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3847 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3848 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3849 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3851 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3852 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3853 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3855 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3856 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3859 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3860 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3862 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3863 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3864 0; 3865 } 3866 3867 /* Returns TTL or hop limit of an incoming packet from skb. */ 3868 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3869 { 3870 if (skb->protocol == htons(ETH_P_IP)) 3871 return ip_hdr(skb)->ttl; 3872 else if (skb->protocol == htons(ETH_P_IPV6)) 3873 return ipv6_hdr(skb)->hop_limit; 3874 else 3875 return 0; 3876 } 3877 3878 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3879 const struct sk_buff *orig_skb, 3880 const struct sk_buff *ack_skb) 3881 { 3882 const struct tcp_sock *tp = tcp_sk(sk); 3883 struct sk_buff *stats; 3884 struct tcp_info info; 3885 unsigned long rate; 3886 u64 rate64; 3887 3888 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3889 if (!stats) 3890 return NULL; 3891 3892 tcp_get_info_chrono_stats(tp, &info); 3893 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3894 info.tcpi_busy_time, TCP_NLA_PAD); 3895 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3896 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3897 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3898 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3899 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3900 tp->data_segs_out, TCP_NLA_PAD); 3901 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3902 tp->total_retrans, TCP_NLA_PAD); 3903 3904 rate = READ_ONCE(sk->sk_pacing_rate); 3905 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3906 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3907 3908 rate64 = tcp_compute_delivery_rate(tp); 3909 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3910 3911 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3912 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3913 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3914 3915 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3916 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3917 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3918 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3919 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3920 3921 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3922 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3923 3924 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3925 TCP_NLA_PAD); 3926 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3927 TCP_NLA_PAD); 3928 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3929 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3930 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3931 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3932 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3933 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3934 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3935 TCP_NLA_PAD); 3936 if (ack_skb) 3937 nla_put_u8(stats, TCP_NLA_TTL, 3938 tcp_skb_ttl_or_hop_limit(ack_skb)); 3939 3940 return stats; 3941 } 3942 3943 static int do_tcp_getsockopt(struct sock *sk, int level, 3944 int optname, char __user *optval, int __user *optlen) 3945 { 3946 struct inet_connection_sock *icsk = inet_csk(sk); 3947 struct tcp_sock *tp = tcp_sk(sk); 3948 struct net *net = sock_net(sk); 3949 int val, len; 3950 3951 if (get_user(len, optlen)) 3952 return -EFAULT; 3953 3954 len = min_t(unsigned int, len, sizeof(int)); 3955 3956 if (len < 0) 3957 return -EINVAL; 3958 3959 switch (optname) { 3960 case TCP_MAXSEG: 3961 val = tp->mss_cache; 3962 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3963 val = tp->rx_opt.user_mss; 3964 if (tp->repair) 3965 val = tp->rx_opt.mss_clamp; 3966 break; 3967 case TCP_NODELAY: 3968 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3969 break; 3970 case TCP_CORK: 3971 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3972 break; 3973 case TCP_KEEPIDLE: 3974 val = keepalive_time_when(tp) / HZ; 3975 break; 3976 case TCP_KEEPINTVL: 3977 val = keepalive_intvl_when(tp) / HZ; 3978 break; 3979 case TCP_KEEPCNT: 3980 val = keepalive_probes(tp); 3981 break; 3982 case TCP_SYNCNT: 3983 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3984 break; 3985 case TCP_LINGER2: 3986 val = tp->linger2; 3987 if (val >= 0) 3988 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3989 break; 3990 case TCP_DEFER_ACCEPT: 3991 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3992 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3993 break; 3994 case TCP_WINDOW_CLAMP: 3995 val = tp->window_clamp; 3996 break; 3997 case TCP_INFO: { 3998 struct tcp_info info; 3999 4000 if (get_user(len, optlen)) 4001 return -EFAULT; 4002 4003 tcp_get_info(sk, &info); 4004 4005 len = min_t(unsigned int, len, sizeof(info)); 4006 if (put_user(len, optlen)) 4007 return -EFAULT; 4008 if (copy_to_user(optval, &info, len)) 4009 return -EFAULT; 4010 return 0; 4011 } 4012 case TCP_CC_INFO: { 4013 const struct tcp_congestion_ops *ca_ops; 4014 union tcp_cc_info info; 4015 size_t sz = 0; 4016 int attr; 4017 4018 if (get_user(len, optlen)) 4019 return -EFAULT; 4020 4021 ca_ops = icsk->icsk_ca_ops; 4022 if (ca_ops && ca_ops->get_info) 4023 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4024 4025 len = min_t(unsigned int, len, sz); 4026 if (put_user(len, optlen)) 4027 return -EFAULT; 4028 if (copy_to_user(optval, &info, len)) 4029 return -EFAULT; 4030 return 0; 4031 } 4032 case TCP_QUICKACK: 4033 val = !inet_csk_in_pingpong_mode(sk); 4034 break; 4035 4036 case TCP_CONGESTION: 4037 if (get_user(len, optlen)) 4038 return -EFAULT; 4039 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4040 if (put_user(len, optlen)) 4041 return -EFAULT; 4042 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4043 return -EFAULT; 4044 return 0; 4045 4046 case TCP_ULP: 4047 if (get_user(len, optlen)) 4048 return -EFAULT; 4049 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4050 if (!icsk->icsk_ulp_ops) { 4051 if (put_user(0, optlen)) 4052 return -EFAULT; 4053 return 0; 4054 } 4055 if (put_user(len, optlen)) 4056 return -EFAULT; 4057 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4058 return -EFAULT; 4059 return 0; 4060 4061 case TCP_FASTOPEN_KEY: { 4062 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4063 unsigned int key_len; 4064 4065 if (get_user(len, optlen)) 4066 return -EFAULT; 4067 4068 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4069 TCP_FASTOPEN_KEY_LENGTH; 4070 len = min_t(unsigned int, len, key_len); 4071 if (put_user(len, optlen)) 4072 return -EFAULT; 4073 if (copy_to_user(optval, key, len)) 4074 return -EFAULT; 4075 return 0; 4076 } 4077 case TCP_THIN_LINEAR_TIMEOUTS: 4078 val = tp->thin_lto; 4079 break; 4080 4081 case TCP_THIN_DUPACK: 4082 val = 0; 4083 break; 4084 4085 case TCP_REPAIR: 4086 val = tp->repair; 4087 break; 4088 4089 case TCP_REPAIR_QUEUE: 4090 if (tp->repair) 4091 val = tp->repair_queue; 4092 else 4093 return -EINVAL; 4094 break; 4095 4096 case TCP_REPAIR_WINDOW: { 4097 struct tcp_repair_window opt; 4098 4099 if (get_user(len, optlen)) 4100 return -EFAULT; 4101 4102 if (len != sizeof(opt)) 4103 return -EINVAL; 4104 4105 if (!tp->repair) 4106 return -EPERM; 4107 4108 opt.snd_wl1 = tp->snd_wl1; 4109 opt.snd_wnd = tp->snd_wnd; 4110 opt.max_window = tp->max_window; 4111 opt.rcv_wnd = tp->rcv_wnd; 4112 opt.rcv_wup = tp->rcv_wup; 4113 4114 if (copy_to_user(optval, &opt, len)) 4115 return -EFAULT; 4116 return 0; 4117 } 4118 case TCP_QUEUE_SEQ: 4119 if (tp->repair_queue == TCP_SEND_QUEUE) 4120 val = tp->write_seq; 4121 else if (tp->repair_queue == TCP_RECV_QUEUE) 4122 val = tp->rcv_nxt; 4123 else 4124 return -EINVAL; 4125 break; 4126 4127 case TCP_USER_TIMEOUT: 4128 val = icsk->icsk_user_timeout; 4129 break; 4130 4131 case TCP_FASTOPEN: 4132 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4133 break; 4134 4135 case TCP_FASTOPEN_CONNECT: 4136 val = tp->fastopen_connect; 4137 break; 4138 4139 case TCP_FASTOPEN_NO_COOKIE: 4140 val = tp->fastopen_no_cookie; 4141 break; 4142 4143 case TCP_TX_DELAY: 4144 val = tp->tcp_tx_delay; 4145 break; 4146 4147 case TCP_TIMESTAMP: 4148 val = tcp_time_stamp_raw() + tp->tsoffset; 4149 break; 4150 case TCP_NOTSENT_LOWAT: 4151 val = tp->notsent_lowat; 4152 break; 4153 case TCP_INQ: 4154 val = tp->recvmsg_inq; 4155 break; 4156 case TCP_SAVE_SYN: 4157 val = tp->save_syn; 4158 break; 4159 case TCP_SAVED_SYN: { 4160 if (get_user(len, optlen)) 4161 return -EFAULT; 4162 4163 lock_sock(sk); 4164 if (tp->saved_syn) { 4165 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4166 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4167 optlen)) { 4168 release_sock(sk); 4169 return -EFAULT; 4170 } 4171 release_sock(sk); 4172 return -EINVAL; 4173 } 4174 len = tcp_saved_syn_len(tp->saved_syn); 4175 if (put_user(len, optlen)) { 4176 release_sock(sk); 4177 return -EFAULT; 4178 } 4179 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4180 release_sock(sk); 4181 return -EFAULT; 4182 } 4183 tcp_saved_syn_free(tp); 4184 release_sock(sk); 4185 } else { 4186 release_sock(sk); 4187 len = 0; 4188 if (put_user(len, optlen)) 4189 return -EFAULT; 4190 } 4191 return 0; 4192 } 4193 #ifdef CONFIG_MMU 4194 case TCP_ZEROCOPY_RECEIVE: { 4195 struct scm_timestamping_internal tss; 4196 struct tcp_zerocopy_receive zc = {}; 4197 int err; 4198 4199 if (get_user(len, optlen)) 4200 return -EFAULT; 4201 if (len < 0 || 4202 len < offsetofend(struct tcp_zerocopy_receive, length)) 4203 return -EINVAL; 4204 if (unlikely(len > sizeof(zc))) { 4205 err = check_zeroed_user(optval + sizeof(zc), 4206 len - sizeof(zc)); 4207 if (err < 1) 4208 return err == 0 ? -EINVAL : err; 4209 len = sizeof(zc); 4210 if (put_user(len, optlen)) 4211 return -EFAULT; 4212 } 4213 if (copy_from_user(&zc, optval, len)) 4214 return -EFAULT; 4215 if (zc.reserved) 4216 return -EINVAL; 4217 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4218 return -EINVAL; 4219 lock_sock(sk); 4220 err = tcp_zerocopy_receive(sk, &zc, &tss); 4221 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4222 &zc, &len, err); 4223 release_sock(sk); 4224 sk_defer_free_flush(sk); 4225 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4226 goto zerocopy_rcv_cmsg; 4227 switch (len) { 4228 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4229 goto zerocopy_rcv_cmsg; 4230 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4231 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4232 case offsetofend(struct tcp_zerocopy_receive, flags): 4233 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4234 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4235 case offsetofend(struct tcp_zerocopy_receive, err): 4236 goto zerocopy_rcv_sk_err; 4237 case offsetofend(struct tcp_zerocopy_receive, inq): 4238 goto zerocopy_rcv_inq; 4239 case offsetofend(struct tcp_zerocopy_receive, length): 4240 default: 4241 goto zerocopy_rcv_out; 4242 } 4243 zerocopy_rcv_cmsg: 4244 if (zc.msg_flags & TCP_CMSG_TS) 4245 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4246 else 4247 zc.msg_flags = 0; 4248 zerocopy_rcv_sk_err: 4249 if (!err) 4250 zc.err = sock_error(sk); 4251 zerocopy_rcv_inq: 4252 zc.inq = tcp_inq_hint(sk); 4253 zerocopy_rcv_out: 4254 if (!err && copy_to_user(optval, &zc, len)) 4255 err = -EFAULT; 4256 return err; 4257 } 4258 #endif 4259 default: 4260 return -ENOPROTOOPT; 4261 } 4262 4263 if (put_user(len, optlen)) 4264 return -EFAULT; 4265 if (copy_to_user(optval, &val, len)) 4266 return -EFAULT; 4267 return 0; 4268 } 4269 4270 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4271 { 4272 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4273 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4274 */ 4275 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4276 return true; 4277 4278 return false; 4279 } 4280 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4281 4282 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4283 int __user *optlen) 4284 { 4285 struct inet_connection_sock *icsk = inet_csk(sk); 4286 4287 if (level != SOL_TCP) 4288 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4289 optval, optlen); 4290 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4291 } 4292 EXPORT_SYMBOL(tcp_getsockopt); 4293 4294 #ifdef CONFIG_TCP_MD5SIG 4295 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4296 static DEFINE_MUTEX(tcp_md5sig_mutex); 4297 static bool tcp_md5sig_pool_populated = false; 4298 4299 static void __tcp_alloc_md5sig_pool(void) 4300 { 4301 struct crypto_ahash *hash; 4302 int cpu; 4303 4304 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4305 if (IS_ERR(hash)) 4306 return; 4307 4308 for_each_possible_cpu(cpu) { 4309 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4310 struct ahash_request *req; 4311 4312 if (!scratch) { 4313 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4314 sizeof(struct tcphdr), 4315 GFP_KERNEL, 4316 cpu_to_node(cpu)); 4317 if (!scratch) 4318 return; 4319 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4320 } 4321 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4322 continue; 4323 4324 req = ahash_request_alloc(hash, GFP_KERNEL); 4325 if (!req) 4326 return; 4327 4328 ahash_request_set_callback(req, 0, NULL, NULL); 4329 4330 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4331 } 4332 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4333 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4334 */ 4335 smp_wmb(); 4336 tcp_md5sig_pool_populated = true; 4337 } 4338 4339 bool tcp_alloc_md5sig_pool(void) 4340 { 4341 if (unlikely(!tcp_md5sig_pool_populated)) { 4342 mutex_lock(&tcp_md5sig_mutex); 4343 4344 if (!tcp_md5sig_pool_populated) { 4345 __tcp_alloc_md5sig_pool(); 4346 if (tcp_md5sig_pool_populated) 4347 static_branch_inc(&tcp_md5_needed); 4348 } 4349 4350 mutex_unlock(&tcp_md5sig_mutex); 4351 } 4352 return tcp_md5sig_pool_populated; 4353 } 4354 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4355 4356 4357 /** 4358 * tcp_get_md5sig_pool - get md5sig_pool for this user 4359 * 4360 * We use percpu structure, so if we succeed, we exit with preemption 4361 * and BH disabled, to make sure another thread or softirq handling 4362 * wont try to get same context. 4363 */ 4364 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4365 { 4366 local_bh_disable(); 4367 4368 if (tcp_md5sig_pool_populated) { 4369 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4370 smp_rmb(); 4371 return this_cpu_ptr(&tcp_md5sig_pool); 4372 } 4373 local_bh_enable(); 4374 return NULL; 4375 } 4376 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4377 4378 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4379 const struct sk_buff *skb, unsigned int header_len) 4380 { 4381 struct scatterlist sg; 4382 const struct tcphdr *tp = tcp_hdr(skb); 4383 struct ahash_request *req = hp->md5_req; 4384 unsigned int i; 4385 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4386 skb_headlen(skb) - header_len : 0; 4387 const struct skb_shared_info *shi = skb_shinfo(skb); 4388 struct sk_buff *frag_iter; 4389 4390 sg_init_table(&sg, 1); 4391 4392 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4393 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4394 if (crypto_ahash_update(req)) 4395 return 1; 4396 4397 for (i = 0; i < shi->nr_frags; ++i) { 4398 const skb_frag_t *f = &shi->frags[i]; 4399 unsigned int offset = skb_frag_off(f); 4400 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4401 4402 sg_set_page(&sg, page, skb_frag_size(f), 4403 offset_in_page(offset)); 4404 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4405 if (crypto_ahash_update(req)) 4406 return 1; 4407 } 4408 4409 skb_walk_frags(skb, frag_iter) 4410 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4411 return 1; 4412 4413 return 0; 4414 } 4415 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4416 4417 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4418 { 4419 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4420 struct scatterlist sg; 4421 4422 sg_init_one(&sg, key->key, keylen); 4423 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4424 4425 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4426 return data_race(crypto_ahash_update(hp->md5_req)); 4427 } 4428 EXPORT_SYMBOL(tcp_md5_hash_key); 4429 4430 #endif 4431 4432 void tcp_done(struct sock *sk) 4433 { 4434 struct request_sock *req; 4435 4436 /* We might be called with a new socket, after 4437 * inet_csk_prepare_forced_close() has been called 4438 * so we can not use lockdep_sock_is_held(sk) 4439 */ 4440 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4441 4442 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4443 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4444 4445 tcp_set_state(sk, TCP_CLOSE); 4446 tcp_clear_xmit_timers(sk); 4447 if (req) 4448 reqsk_fastopen_remove(sk, req, false); 4449 4450 sk->sk_shutdown = SHUTDOWN_MASK; 4451 4452 if (!sock_flag(sk, SOCK_DEAD)) 4453 sk->sk_state_change(sk); 4454 else 4455 inet_csk_destroy_sock(sk); 4456 } 4457 EXPORT_SYMBOL_GPL(tcp_done); 4458 4459 int tcp_abort(struct sock *sk, int err) 4460 { 4461 if (!sk_fullsock(sk)) { 4462 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4463 struct request_sock *req = inet_reqsk(sk); 4464 4465 local_bh_disable(); 4466 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4467 local_bh_enable(); 4468 return 0; 4469 } 4470 return -EOPNOTSUPP; 4471 } 4472 4473 /* Don't race with userspace socket closes such as tcp_close. */ 4474 lock_sock(sk); 4475 4476 if (sk->sk_state == TCP_LISTEN) { 4477 tcp_set_state(sk, TCP_CLOSE); 4478 inet_csk_listen_stop(sk); 4479 } 4480 4481 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4482 local_bh_disable(); 4483 bh_lock_sock(sk); 4484 4485 if (!sock_flag(sk, SOCK_DEAD)) { 4486 sk->sk_err = err; 4487 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4488 smp_wmb(); 4489 sk_error_report(sk); 4490 if (tcp_need_reset(sk->sk_state)) 4491 tcp_send_active_reset(sk, GFP_ATOMIC); 4492 tcp_done(sk); 4493 } 4494 4495 bh_unlock_sock(sk); 4496 local_bh_enable(); 4497 tcp_write_queue_purge(sk); 4498 release_sock(sk); 4499 return 0; 4500 } 4501 EXPORT_SYMBOL_GPL(tcp_abort); 4502 4503 extern struct tcp_congestion_ops tcp_reno; 4504 4505 static __initdata unsigned long thash_entries; 4506 static int __init set_thash_entries(char *str) 4507 { 4508 ssize_t ret; 4509 4510 if (!str) 4511 return 0; 4512 4513 ret = kstrtoul(str, 0, &thash_entries); 4514 if (ret) 4515 return 0; 4516 4517 return 1; 4518 } 4519 __setup("thash_entries=", set_thash_entries); 4520 4521 static void __init tcp_init_mem(void) 4522 { 4523 unsigned long limit = nr_free_buffer_pages() / 16; 4524 4525 limit = max(limit, 128UL); 4526 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4527 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4528 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4529 } 4530 4531 void __init tcp_init(void) 4532 { 4533 int max_rshare, max_wshare, cnt; 4534 unsigned long limit; 4535 unsigned int i; 4536 4537 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4538 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4539 sizeof_field(struct sk_buff, cb)); 4540 4541 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4542 4543 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4544 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4545 4546 inet_hashinfo_init(&tcp_hashinfo); 4547 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4548 thash_entries, 21, /* one slot per 2 MB*/ 4549 0, 64 * 1024); 4550 tcp_hashinfo.bind_bucket_cachep = 4551 kmem_cache_create("tcp_bind_bucket", 4552 sizeof(struct inet_bind_bucket), 0, 4553 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4554 SLAB_ACCOUNT, 4555 NULL); 4556 4557 /* Size and allocate the main established and bind bucket 4558 * hash tables. 4559 * 4560 * The methodology is similar to that of the buffer cache. 4561 */ 4562 tcp_hashinfo.ehash = 4563 alloc_large_system_hash("TCP established", 4564 sizeof(struct inet_ehash_bucket), 4565 thash_entries, 4566 17, /* one slot per 128 KB of memory */ 4567 0, 4568 NULL, 4569 &tcp_hashinfo.ehash_mask, 4570 0, 4571 thash_entries ? 0 : 512 * 1024); 4572 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4573 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4574 4575 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4576 panic("TCP: failed to alloc ehash_locks"); 4577 tcp_hashinfo.bhash = 4578 alloc_large_system_hash("TCP bind", 4579 sizeof(struct inet_bind_hashbucket), 4580 tcp_hashinfo.ehash_mask + 1, 4581 17, /* one slot per 128 KB of memory */ 4582 0, 4583 &tcp_hashinfo.bhash_size, 4584 NULL, 4585 0, 4586 64 * 1024); 4587 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4588 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4589 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4590 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4591 } 4592 4593 4594 cnt = tcp_hashinfo.ehash_mask + 1; 4595 sysctl_tcp_max_orphans = cnt / 2; 4596 4597 tcp_init_mem(); 4598 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4599 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4600 max_wshare = min(4UL*1024*1024, limit); 4601 max_rshare = min(6UL*1024*1024, limit); 4602 4603 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4604 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4605 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4606 4607 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4608 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4609 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4610 4611 pr_info("Hash tables configured (established %u bind %u)\n", 4612 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4613 4614 tcp_v4_init(); 4615 tcp_metrics_init(); 4616 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4617 tcp_tasklet_init(); 4618 mptcp_init(); 4619 } 4620