xref: /openbmc/linux/net/ipv4/tcp.c (revision d78c317f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 #include <linux/slab.h>
269 
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276 
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279 
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 int sysctl_tcp_wmem[3] __read_mostly;
286 int sysctl_tcp_rmem[3] __read_mostly;
287 
288 EXPORT_SYMBOL(sysctl_tcp_rmem);
289 EXPORT_SYMBOL(sysctl_tcp_wmem);
290 
291 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated);
293 
294 /*
295  * Current number of TCP sockets.
296  */
297 struct percpu_counter tcp_sockets_allocated;
298 EXPORT_SYMBOL(tcp_sockets_allocated);
299 
300 /*
301  * TCP splice context
302  */
303 struct tcp_splice_state {
304 	struct pipe_inode_info *pipe;
305 	size_t len;
306 	unsigned int flags;
307 };
308 
309 /*
310  * Pressure flag: try to collapse.
311  * Technical note: it is used by multiple contexts non atomically.
312  * All the __sk_mem_schedule() is of this nature: accounting
313  * is strict, actions are advisory and have some latency.
314  */
315 int tcp_memory_pressure __read_mostly;
316 EXPORT_SYMBOL(tcp_memory_pressure);
317 
318 void tcp_enter_memory_pressure(struct sock *sk)
319 {
320 	if (!tcp_memory_pressure) {
321 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
322 		tcp_memory_pressure = 1;
323 	}
324 }
325 EXPORT_SYMBOL(tcp_enter_memory_pressure);
326 
327 /* Convert seconds to retransmits based on initial and max timeout */
328 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
329 {
330 	u8 res = 0;
331 
332 	if (seconds > 0) {
333 		int period = timeout;
334 
335 		res = 1;
336 		while (seconds > period && res < 255) {
337 			res++;
338 			timeout <<= 1;
339 			if (timeout > rto_max)
340 				timeout = rto_max;
341 			period += timeout;
342 		}
343 	}
344 	return res;
345 }
346 
347 /* Convert retransmits to seconds based on initial and max timeout */
348 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
349 {
350 	int period = 0;
351 
352 	if (retrans > 0) {
353 		period = timeout;
354 		while (--retrans) {
355 			timeout <<= 1;
356 			if (timeout > rto_max)
357 				timeout = rto_max;
358 			period += timeout;
359 		}
360 	}
361 	return period;
362 }
363 
364 /*
365  *	Wait for a TCP event.
366  *
367  *	Note that we don't need to lock the socket, as the upper poll layers
368  *	take care of normal races (between the test and the event) and we don't
369  *	go look at any of the socket buffers directly.
370  */
371 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
372 {
373 	unsigned int mask;
374 	struct sock *sk = sock->sk;
375 	const struct tcp_sock *tp = tcp_sk(sk);
376 
377 	sock_poll_wait(file, sk_sleep(sk), wait);
378 	if (sk->sk_state == TCP_LISTEN)
379 		return inet_csk_listen_poll(sk);
380 
381 	/* Socket is not locked. We are protected from async events
382 	 * by poll logic and correct handling of state changes
383 	 * made by other threads is impossible in any case.
384 	 */
385 
386 	mask = 0;
387 
388 	/*
389 	 * POLLHUP is certainly not done right. But poll() doesn't
390 	 * have a notion of HUP in just one direction, and for a
391 	 * socket the read side is more interesting.
392 	 *
393 	 * Some poll() documentation says that POLLHUP is incompatible
394 	 * with the POLLOUT/POLLWR flags, so somebody should check this
395 	 * all. But careful, it tends to be safer to return too many
396 	 * bits than too few, and you can easily break real applications
397 	 * if you don't tell them that something has hung up!
398 	 *
399 	 * Check-me.
400 	 *
401 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
402 	 * our fs/select.c). It means that after we received EOF,
403 	 * poll always returns immediately, making impossible poll() on write()
404 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
405 	 * if and only if shutdown has been made in both directions.
406 	 * Actually, it is interesting to look how Solaris and DUX
407 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
408 	 * then we could set it on SND_SHUTDOWN. BTW examples given
409 	 * in Stevens' books assume exactly this behaviour, it explains
410 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
411 	 *
412 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
413 	 * blocking on fresh not-connected or disconnected socket. --ANK
414 	 */
415 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
416 		mask |= POLLHUP;
417 	if (sk->sk_shutdown & RCV_SHUTDOWN)
418 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
419 
420 	/* Connected? */
421 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
422 		int target = sock_rcvlowat(sk, 0, INT_MAX);
423 
424 		if (tp->urg_seq == tp->copied_seq &&
425 		    !sock_flag(sk, SOCK_URGINLINE) &&
426 		    tp->urg_data)
427 			target++;
428 
429 		/* Potential race condition. If read of tp below will
430 		 * escape above sk->sk_state, we can be illegally awaken
431 		 * in SYN_* states. */
432 		if (tp->rcv_nxt - tp->copied_seq >= target)
433 			mask |= POLLIN | POLLRDNORM;
434 
435 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
436 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
437 				mask |= POLLOUT | POLLWRNORM;
438 			} else {  /* send SIGIO later */
439 				set_bit(SOCK_ASYNC_NOSPACE,
440 					&sk->sk_socket->flags);
441 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
442 
443 				/* Race breaker. If space is freed after
444 				 * wspace test but before the flags are set,
445 				 * IO signal will be lost.
446 				 */
447 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
448 					mask |= POLLOUT | POLLWRNORM;
449 			}
450 		} else
451 			mask |= POLLOUT | POLLWRNORM;
452 
453 		if (tp->urg_data & TCP_URG_VALID)
454 			mask |= POLLPRI;
455 	}
456 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
457 	smp_rmb();
458 	if (sk->sk_err)
459 		mask |= POLLERR;
460 
461 	return mask;
462 }
463 EXPORT_SYMBOL(tcp_poll);
464 
465 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
466 {
467 	struct tcp_sock *tp = tcp_sk(sk);
468 	int answ;
469 
470 	switch (cmd) {
471 	case SIOCINQ:
472 		if (sk->sk_state == TCP_LISTEN)
473 			return -EINVAL;
474 
475 		lock_sock(sk);
476 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
477 			answ = 0;
478 		else if (sock_flag(sk, SOCK_URGINLINE) ||
479 			 !tp->urg_data ||
480 			 before(tp->urg_seq, tp->copied_seq) ||
481 			 !before(tp->urg_seq, tp->rcv_nxt)) {
482 			struct sk_buff *skb;
483 
484 			answ = tp->rcv_nxt - tp->copied_seq;
485 
486 			/* Subtract 1, if FIN is in queue. */
487 			skb = skb_peek_tail(&sk->sk_receive_queue);
488 			if (answ && skb)
489 				answ -= tcp_hdr(skb)->fin;
490 		} else
491 			answ = tp->urg_seq - tp->copied_seq;
492 		release_sock(sk);
493 		break;
494 	case SIOCATMARK:
495 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
496 		break;
497 	case SIOCOUTQ:
498 		if (sk->sk_state == TCP_LISTEN)
499 			return -EINVAL;
500 
501 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
502 			answ = 0;
503 		else
504 			answ = tp->write_seq - tp->snd_una;
505 		break;
506 	case SIOCOUTQNSD:
507 		if (sk->sk_state == TCP_LISTEN)
508 			return -EINVAL;
509 
510 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
511 			answ = 0;
512 		else
513 			answ = tp->write_seq - tp->snd_nxt;
514 		break;
515 	default:
516 		return -ENOIOCTLCMD;
517 	}
518 
519 	return put_user(answ, (int __user *)arg);
520 }
521 EXPORT_SYMBOL(tcp_ioctl);
522 
523 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
524 {
525 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
526 	tp->pushed_seq = tp->write_seq;
527 }
528 
529 static inline int forced_push(const struct tcp_sock *tp)
530 {
531 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
532 }
533 
534 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
535 {
536 	struct tcp_sock *tp = tcp_sk(sk);
537 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
538 
539 	skb->csum    = 0;
540 	tcb->seq     = tcb->end_seq = tp->write_seq;
541 	tcb->tcp_flags = TCPHDR_ACK;
542 	tcb->sacked  = 0;
543 	skb_header_release(skb);
544 	tcp_add_write_queue_tail(sk, skb);
545 	sk->sk_wmem_queued += skb->truesize;
546 	sk_mem_charge(sk, skb->truesize);
547 	if (tp->nonagle & TCP_NAGLE_PUSH)
548 		tp->nonagle &= ~TCP_NAGLE_PUSH;
549 }
550 
551 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
552 {
553 	if (flags & MSG_OOB)
554 		tp->snd_up = tp->write_seq;
555 }
556 
557 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
558 			    int nonagle)
559 {
560 	if (tcp_send_head(sk)) {
561 		struct tcp_sock *tp = tcp_sk(sk);
562 
563 		if (!(flags & MSG_MORE) || forced_push(tp))
564 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
565 
566 		tcp_mark_urg(tp, flags);
567 		__tcp_push_pending_frames(sk, mss_now,
568 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
569 	}
570 }
571 
572 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
573 				unsigned int offset, size_t len)
574 {
575 	struct tcp_splice_state *tss = rd_desc->arg.data;
576 	int ret;
577 
578 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
579 			      tss->flags);
580 	if (ret > 0)
581 		rd_desc->count -= ret;
582 	return ret;
583 }
584 
585 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
586 {
587 	/* Store TCP splice context information in read_descriptor_t. */
588 	read_descriptor_t rd_desc = {
589 		.arg.data = tss,
590 		.count	  = tss->len,
591 	};
592 
593 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
594 }
595 
596 /**
597  *  tcp_splice_read - splice data from TCP socket to a pipe
598  * @sock:	socket to splice from
599  * @ppos:	position (not valid)
600  * @pipe:	pipe to splice to
601  * @len:	number of bytes to splice
602  * @flags:	splice modifier flags
603  *
604  * Description:
605  *    Will read pages from given socket and fill them into a pipe.
606  *
607  **/
608 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
609 			struct pipe_inode_info *pipe, size_t len,
610 			unsigned int flags)
611 {
612 	struct sock *sk = sock->sk;
613 	struct tcp_splice_state tss = {
614 		.pipe = pipe,
615 		.len = len,
616 		.flags = flags,
617 	};
618 	long timeo;
619 	ssize_t spliced;
620 	int ret;
621 
622 	sock_rps_record_flow(sk);
623 	/*
624 	 * We can't seek on a socket input
625 	 */
626 	if (unlikely(*ppos))
627 		return -ESPIPE;
628 
629 	ret = spliced = 0;
630 
631 	lock_sock(sk);
632 
633 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
634 	while (tss.len) {
635 		ret = __tcp_splice_read(sk, &tss);
636 		if (ret < 0)
637 			break;
638 		else if (!ret) {
639 			if (spliced)
640 				break;
641 			if (sock_flag(sk, SOCK_DONE))
642 				break;
643 			if (sk->sk_err) {
644 				ret = sock_error(sk);
645 				break;
646 			}
647 			if (sk->sk_shutdown & RCV_SHUTDOWN)
648 				break;
649 			if (sk->sk_state == TCP_CLOSE) {
650 				/*
651 				 * This occurs when user tries to read
652 				 * from never connected socket.
653 				 */
654 				if (!sock_flag(sk, SOCK_DONE))
655 					ret = -ENOTCONN;
656 				break;
657 			}
658 			if (!timeo) {
659 				ret = -EAGAIN;
660 				break;
661 			}
662 			sk_wait_data(sk, &timeo);
663 			if (signal_pending(current)) {
664 				ret = sock_intr_errno(timeo);
665 				break;
666 			}
667 			continue;
668 		}
669 		tss.len -= ret;
670 		spliced += ret;
671 
672 		if (!timeo)
673 			break;
674 		release_sock(sk);
675 		lock_sock(sk);
676 
677 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
678 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
679 		    signal_pending(current))
680 			break;
681 	}
682 
683 	release_sock(sk);
684 
685 	if (spliced)
686 		return spliced;
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL(tcp_splice_read);
691 
692 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
693 {
694 	struct sk_buff *skb;
695 
696 	/* The TCP header must be at least 32-bit aligned.  */
697 	size = ALIGN(size, 4);
698 
699 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
700 	if (skb) {
701 		if (sk_wmem_schedule(sk, skb->truesize)) {
702 			/*
703 			 * Make sure that we have exactly size bytes
704 			 * available to the caller, no more, no less.
705 			 */
706 			skb_reserve(skb, skb_tailroom(skb) - size);
707 			return skb;
708 		}
709 		__kfree_skb(skb);
710 	} else {
711 		sk->sk_prot->enter_memory_pressure(sk);
712 		sk_stream_moderate_sndbuf(sk);
713 	}
714 	return NULL;
715 }
716 
717 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
718 				       int large_allowed)
719 {
720 	struct tcp_sock *tp = tcp_sk(sk);
721 	u32 xmit_size_goal, old_size_goal;
722 
723 	xmit_size_goal = mss_now;
724 
725 	if (large_allowed && sk_can_gso(sk)) {
726 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
727 				  inet_csk(sk)->icsk_af_ops->net_header_len -
728 				  inet_csk(sk)->icsk_ext_hdr_len -
729 				  tp->tcp_header_len);
730 
731 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
732 
733 		/* We try hard to avoid divides here */
734 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
735 
736 		if (likely(old_size_goal <= xmit_size_goal &&
737 			   old_size_goal + mss_now > xmit_size_goal)) {
738 			xmit_size_goal = old_size_goal;
739 		} else {
740 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
741 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
742 		}
743 	}
744 
745 	return max(xmit_size_goal, mss_now);
746 }
747 
748 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
749 {
750 	int mss_now;
751 
752 	mss_now = tcp_current_mss(sk);
753 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
754 
755 	return mss_now;
756 }
757 
758 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
759 			 size_t psize, int flags)
760 {
761 	struct tcp_sock *tp = tcp_sk(sk);
762 	int mss_now, size_goal;
763 	int err;
764 	ssize_t copied;
765 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
766 
767 	/* Wait for a connection to finish. */
768 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
769 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
770 			goto out_err;
771 
772 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
773 
774 	mss_now = tcp_send_mss(sk, &size_goal, flags);
775 	copied = 0;
776 
777 	err = -EPIPE;
778 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
779 		goto out_err;
780 
781 	while (psize > 0) {
782 		struct sk_buff *skb = tcp_write_queue_tail(sk);
783 		struct page *page = pages[poffset / PAGE_SIZE];
784 		int copy, i, can_coalesce;
785 		int offset = poffset % PAGE_SIZE;
786 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
787 
788 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
789 new_segment:
790 			if (!sk_stream_memory_free(sk))
791 				goto wait_for_sndbuf;
792 
793 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
794 			if (!skb)
795 				goto wait_for_memory;
796 
797 			skb_entail(sk, skb);
798 			copy = size_goal;
799 		}
800 
801 		if (copy > size)
802 			copy = size;
803 
804 		i = skb_shinfo(skb)->nr_frags;
805 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
806 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
807 			tcp_mark_push(tp, skb);
808 			goto new_segment;
809 		}
810 		if (!sk_wmem_schedule(sk, copy))
811 			goto wait_for_memory;
812 
813 		if (can_coalesce) {
814 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
815 		} else {
816 			get_page(page);
817 			skb_fill_page_desc(skb, i, page, offset, copy);
818 		}
819 
820 		skb->len += copy;
821 		skb->data_len += copy;
822 		skb->truesize += copy;
823 		sk->sk_wmem_queued += copy;
824 		sk_mem_charge(sk, copy);
825 		skb->ip_summed = CHECKSUM_PARTIAL;
826 		tp->write_seq += copy;
827 		TCP_SKB_CB(skb)->end_seq += copy;
828 		skb_shinfo(skb)->gso_segs = 0;
829 
830 		if (!copied)
831 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
832 
833 		copied += copy;
834 		poffset += copy;
835 		if (!(psize -= copy))
836 			goto out;
837 
838 		if (skb->len < size_goal || (flags & MSG_OOB))
839 			continue;
840 
841 		if (forced_push(tp)) {
842 			tcp_mark_push(tp, skb);
843 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
844 		} else if (skb == tcp_send_head(sk))
845 			tcp_push_one(sk, mss_now);
846 		continue;
847 
848 wait_for_sndbuf:
849 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
850 wait_for_memory:
851 		if (copied)
852 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
853 
854 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
855 			goto do_error;
856 
857 		mss_now = tcp_send_mss(sk, &size_goal, flags);
858 	}
859 
860 out:
861 	if (copied)
862 		tcp_push(sk, flags, mss_now, tp->nonagle);
863 	return copied;
864 
865 do_error:
866 	if (copied)
867 		goto out;
868 out_err:
869 	return sk_stream_error(sk, flags, err);
870 }
871 
872 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
873 		 size_t size, int flags)
874 {
875 	ssize_t res;
876 
877 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
878 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
879 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
880 					flags);
881 
882 	lock_sock(sk);
883 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
884 	release_sock(sk);
885 	return res;
886 }
887 EXPORT_SYMBOL(tcp_sendpage);
888 
889 static inline int select_size(const struct sock *sk, bool sg)
890 {
891 	const struct tcp_sock *tp = tcp_sk(sk);
892 	int tmp = tp->mss_cache;
893 
894 	if (sg) {
895 		if (sk_can_gso(sk)) {
896 			/* Small frames wont use a full page:
897 			 * Payload will immediately follow tcp header.
898 			 */
899 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
900 		} else {
901 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
902 
903 			if (tmp >= pgbreak &&
904 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
905 				tmp = pgbreak;
906 		}
907 	}
908 
909 	return tmp;
910 }
911 
912 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
913 		size_t size)
914 {
915 	struct iovec *iov;
916 	struct tcp_sock *tp = tcp_sk(sk);
917 	struct sk_buff *skb;
918 	int iovlen, flags, err, copied;
919 	int mss_now, size_goal;
920 	bool sg;
921 	long timeo;
922 
923 	lock_sock(sk);
924 
925 	flags = msg->msg_flags;
926 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
927 
928 	/* Wait for a connection to finish. */
929 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
930 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
931 			goto out_err;
932 
933 	/* This should be in poll */
934 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
935 
936 	mss_now = tcp_send_mss(sk, &size_goal, flags);
937 
938 	/* Ok commence sending. */
939 	iovlen = msg->msg_iovlen;
940 	iov = msg->msg_iov;
941 	copied = 0;
942 
943 	err = -EPIPE;
944 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
945 		goto out_err;
946 
947 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
948 
949 	while (--iovlen >= 0) {
950 		size_t seglen = iov->iov_len;
951 		unsigned char __user *from = iov->iov_base;
952 
953 		iov++;
954 
955 		while (seglen > 0) {
956 			int copy = 0;
957 			int max = size_goal;
958 
959 			skb = tcp_write_queue_tail(sk);
960 			if (tcp_send_head(sk)) {
961 				if (skb->ip_summed == CHECKSUM_NONE)
962 					max = mss_now;
963 				copy = max - skb->len;
964 			}
965 
966 			if (copy <= 0) {
967 new_segment:
968 				/* Allocate new segment. If the interface is SG,
969 				 * allocate skb fitting to single page.
970 				 */
971 				if (!sk_stream_memory_free(sk))
972 					goto wait_for_sndbuf;
973 
974 				skb = sk_stream_alloc_skb(sk,
975 							  select_size(sk, sg),
976 							  sk->sk_allocation);
977 				if (!skb)
978 					goto wait_for_memory;
979 
980 				/*
981 				 * Check whether we can use HW checksum.
982 				 */
983 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
984 					skb->ip_summed = CHECKSUM_PARTIAL;
985 
986 				skb_entail(sk, skb);
987 				copy = size_goal;
988 				max = size_goal;
989 			}
990 
991 			/* Try to append data to the end of skb. */
992 			if (copy > seglen)
993 				copy = seglen;
994 
995 			/* Where to copy to? */
996 			if (skb_tailroom(skb) > 0) {
997 				/* We have some space in skb head. Superb! */
998 				if (copy > skb_tailroom(skb))
999 					copy = skb_tailroom(skb);
1000 				err = skb_add_data_nocache(sk, skb, from, copy);
1001 				if (err)
1002 					goto do_fault;
1003 			} else {
1004 				int merge = 0;
1005 				int i = skb_shinfo(skb)->nr_frags;
1006 				struct page *page = sk->sk_sndmsg_page;
1007 				int off;
1008 
1009 				if (page && page_count(page) == 1)
1010 					sk->sk_sndmsg_off = 0;
1011 
1012 				off = sk->sk_sndmsg_off;
1013 
1014 				if (skb_can_coalesce(skb, i, page, off) &&
1015 				    off != PAGE_SIZE) {
1016 					/* We can extend the last page
1017 					 * fragment. */
1018 					merge = 1;
1019 				} else if (i == MAX_SKB_FRAGS || !sg) {
1020 					/* Need to add new fragment and cannot
1021 					 * do this because interface is non-SG,
1022 					 * or because all the page slots are
1023 					 * busy. */
1024 					tcp_mark_push(tp, skb);
1025 					goto new_segment;
1026 				} else if (page) {
1027 					if (off == PAGE_SIZE) {
1028 						put_page(page);
1029 						sk->sk_sndmsg_page = page = NULL;
1030 						off = 0;
1031 					}
1032 				} else
1033 					off = 0;
1034 
1035 				if (copy > PAGE_SIZE - off)
1036 					copy = PAGE_SIZE - off;
1037 
1038 				if (!sk_wmem_schedule(sk, copy))
1039 					goto wait_for_memory;
1040 
1041 				if (!page) {
1042 					/* Allocate new cache page. */
1043 					if (!(page = sk_stream_alloc_page(sk)))
1044 						goto wait_for_memory;
1045 				}
1046 
1047 				/* Time to copy data. We are close to
1048 				 * the end! */
1049 				err = skb_copy_to_page_nocache(sk, from, skb,
1050 							       page, off, copy);
1051 				if (err) {
1052 					/* If this page was new, give it to the
1053 					 * socket so it does not get leaked.
1054 					 */
1055 					if (!sk->sk_sndmsg_page) {
1056 						sk->sk_sndmsg_page = page;
1057 						sk->sk_sndmsg_off = 0;
1058 					}
1059 					goto do_error;
1060 				}
1061 
1062 				/* Update the skb. */
1063 				if (merge) {
1064 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1065 				} else {
1066 					skb_fill_page_desc(skb, i, page, off, copy);
1067 					if (sk->sk_sndmsg_page) {
1068 						get_page(page);
1069 					} else if (off + copy < PAGE_SIZE) {
1070 						get_page(page);
1071 						sk->sk_sndmsg_page = page;
1072 					}
1073 				}
1074 
1075 				sk->sk_sndmsg_off = off + copy;
1076 			}
1077 
1078 			if (!copied)
1079 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1080 
1081 			tp->write_seq += copy;
1082 			TCP_SKB_CB(skb)->end_seq += copy;
1083 			skb_shinfo(skb)->gso_segs = 0;
1084 
1085 			from += copy;
1086 			copied += copy;
1087 			if ((seglen -= copy) == 0 && iovlen == 0)
1088 				goto out;
1089 
1090 			if (skb->len < max || (flags & MSG_OOB))
1091 				continue;
1092 
1093 			if (forced_push(tp)) {
1094 				tcp_mark_push(tp, skb);
1095 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1096 			} else if (skb == tcp_send_head(sk))
1097 				tcp_push_one(sk, mss_now);
1098 			continue;
1099 
1100 wait_for_sndbuf:
1101 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1102 wait_for_memory:
1103 			if (copied)
1104 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1105 
1106 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1107 				goto do_error;
1108 
1109 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1110 		}
1111 	}
1112 
1113 out:
1114 	if (copied)
1115 		tcp_push(sk, flags, mss_now, tp->nonagle);
1116 	release_sock(sk);
1117 	return copied;
1118 
1119 do_fault:
1120 	if (!skb->len) {
1121 		tcp_unlink_write_queue(skb, sk);
1122 		/* It is the one place in all of TCP, except connection
1123 		 * reset, where we can be unlinking the send_head.
1124 		 */
1125 		tcp_check_send_head(sk, skb);
1126 		sk_wmem_free_skb(sk, skb);
1127 	}
1128 
1129 do_error:
1130 	if (copied)
1131 		goto out;
1132 out_err:
1133 	err = sk_stream_error(sk, flags, err);
1134 	release_sock(sk);
1135 	return err;
1136 }
1137 EXPORT_SYMBOL(tcp_sendmsg);
1138 
1139 /*
1140  *	Handle reading urgent data. BSD has very simple semantics for
1141  *	this, no blocking and very strange errors 8)
1142  */
1143 
1144 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1145 {
1146 	struct tcp_sock *tp = tcp_sk(sk);
1147 
1148 	/* No URG data to read. */
1149 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1150 	    tp->urg_data == TCP_URG_READ)
1151 		return -EINVAL;	/* Yes this is right ! */
1152 
1153 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1154 		return -ENOTCONN;
1155 
1156 	if (tp->urg_data & TCP_URG_VALID) {
1157 		int err = 0;
1158 		char c = tp->urg_data;
1159 
1160 		if (!(flags & MSG_PEEK))
1161 			tp->urg_data = TCP_URG_READ;
1162 
1163 		/* Read urgent data. */
1164 		msg->msg_flags |= MSG_OOB;
1165 
1166 		if (len > 0) {
1167 			if (!(flags & MSG_TRUNC))
1168 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1169 			len = 1;
1170 		} else
1171 			msg->msg_flags |= MSG_TRUNC;
1172 
1173 		return err ? -EFAULT : len;
1174 	}
1175 
1176 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1177 		return 0;
1178 
1179 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1180 	 * the available implementations agree in this case:
1181 	 * this call should never block, independent of the
1182 	 * blocking state of the socket.
1183 	 * Mike <pall@rz.uni-karlsruhe.de>
1184 	 */
1185 	return -EAGAIN;
1186 }
1187 
1188 /* Clean up the receive buffer for full frames taken by the user,
1189  * then send an ACK if necessary.  COPIED is the number of bytes
1190  * tcp_recvmsg has given to the user so far, it speeds up the
1191  * calculation of whether or not we must ACK for the sake of
1192  * a window update.
1193  */
1194 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1195 {
1196 	struct tcp_sock *tp = tcp_sk(sk);
1197 	int time_to_ack = 0;
1198 
1199 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1200 
1201 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1202 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1203 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1204 
1205 	if (inet_csk_ack_scheduled(sk)) {
1206 		const struct inet_connection_sock *icsk = inet_csk(sk);
1207 		   /* Delayed ACKs frequently hit locked sockets during bulk
1208 		    * receive. */
1209 		if (icsk->icsk_ack.blocked ||
1210 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1211 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1212 		    /*
1213 		     * If this read emptied read buffer, we send ACK, if
1214 		     * connection is not bidirectional, user drained
1215 		     * receive buffer and there was a small segment
1216 		     * in queue.
1217 		     */
1218 		    (copied > 0 &&
1219 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1220 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1221 		       !icsk->icsk_ack.pingpong)) &&
1222 		      !atomic_read(&sk->sk_rmem_alloc)))
1223 			time_to_ack = 1;
1224 	}
1225 
1226 	/* We send an ACK if we can now advertise a non-zero window
1227 	 * which has been raised "significantly".
1228 	 *
1229 	 * Even if window raised up to infinity, do not send window open ACK
1230 	 * in states, where we will not receive more. It is useless.
1231 	 */
1232 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1233 		__u32 rcv_window_now = tcp_receive_window(tp);
1234 
1235 		/* Optimize, __tcp_select_window() is not cheap. */
1236 		if (2*rcv_window_now <= tp->window_clamp) {
1237 			__u32 new_window = __tcp_select_window(sk);
1238 
1239 			/* Send ACK now, if this read freed lots of space
1240 			 * in our buffer. Certainly, new_window is new window.
1241 			 * We can advertise it now, if it is not less than current one.
1242 			 * "Lots" means "at least twice" here.
1243 			 */
1244 			if (new_window && new_window >= 2 * rcv_window_now)
1245 				time_to_ack = 1;
1246 		}
1247 	}
1248 	if (time_to_ack)
1249 		tcp_send_ack(sk);
1250 }
1251 
1252 static void tcp_prequeue_process(struct sock *sk)
1253 {
1254 	struct sk_buff *skb;
1255 	struct tcp_sock *tp = tcp_sk(sk);
1256 
1257 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1258 
1259 	/* RX process wants to run with disabled BHs, though it is not
1260 	 * necessary */
1261 	local_bh_disable();
1262 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1263 		sk_backlog_rcv(sk, skb);
1264 	local_bh_enable();
1265 
1266 	/* Clear memory counter. */
1267 	tp->ucopy.memory = 0;
1268 }
1269 
1270 #ifdef CONFIG_NET_DMA
1271 static void tcp_service_net_dma(struct sock *sk, bool wait)
1272 {
1273 	dma_cookie_t done, used;
1274 	dma_cookie_t last_issued;
1275 	struct tcp_sock *tp = tcp_sk(sk);
1276 
1277 	if (!tp->ucopy.dma_chan)
1278 		return;
1279 
1280 	last_issued = tp->ucopy.dma_cookie;
1281 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1282 
1283 	do {
1284 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1285 					      last_issued, &done,
1286 					      &used) == DMA_SUCCESS) {
1287 			/* Safe to free early-copied skbs now */
1288 			__skb_queue_purge(&sk->sk_async_wait_queue);
1289 			break;
1290 		} else {
1291 			struct sk_buff *skb;
1292 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1293 			       (dma_async_is_complete(skb->dma_cookie, done,
1294 						      used) == DMA_SUCCESS)) {
1295 				__skb_dequeue(&sk->sk_async_wait_queue);
1296 				kfree_skb(skb);
1297 			}
1298 		}
1299 	} while (wait);
1300 }
1301 #endif
1302 
1303 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1304 {
1305 	struct sk_buff *skb;
1306 	u32 offset;
1307 
1308 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1309 		offset = seq - TCP_SKB_CB(skb)->seq;
1310 		if (tcp_hdr(skb)->syn)
1311 			offset--;
1312 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1313 			*off = offset;
1314 			return skb;
1315 		}
1316 	}
1317 	return NULL;
1318 }
1319 
1320 /*
1321  * This routine provides an alternative to tcp_recvmsg() for routines
1322  * that would like to handle copying from skbuffs directly in 'sendfile'
1323  * fashion.
1324  * Note:
1325  *	- It is assumed that the socket was locked by the caller.
1326  *	- The routine does not block.
1327  *	- At present, there is no support for reading OOB data
1328  *	  or for 'peeking' the socket using this routine
1329  *	  (although both would be easy to implement).
1330  */
1331 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1332 		  sk_read_actor_t recv_actor)
1333 {
1334 	struct sk_buff *skb;
1335 	struct tcp_sock *tp = tcp_sk(sk);
1336 	u32 seq = tp->copied_seq;
1337 	u32 offset;
1338 	int copied = 0;
1339 
1340 	if (sk->sk_state == TCP_LISTEN)
1341 		return -ENOTCONN;
1342 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1343 		if (offset < skb->len) {
1344 			int used;
1345 			size_t len;
1346 
1347 			len = skb->len - offset;
1348 			/* Stop reading if we hit a patch of urgent data */
1349 			if (tp->urg_data) {
1350 				u32 urg_offset = tp->urg_seq - seq;
1351 				if (urg_offset < len)
1352 					len = urg_offset;
1353 				if (!len)
1354 					break;
1355 			}
1356 			used = recv_actor(desc, skb, offset, len);
1357 			if (used < 0) {
1358 				if (!copied)
1359 					copied = used;
1360 				break;
1361 			} else if (used <= len) {
1362 				seq += used;
1363 				copied += used;
1364 				offset += used;
1365 			}
1366 			/*
1367 			 * If recv_actor drops the lock (e.g. TCP splice
1368 			 * receive) the skb pointer might be invalid when
1369 			 * getting here: tcp_collapse might have deleted it
1370 			 * while aggregating skbs from the socket queue.
1371 			 */
1372 			skb = tcp_recv_skb(sk, seq-1, &offset);
1373 			if (!skb || (offset+1 != skb->len))
1374 				break;
1375 		}
1376 		if (tcp_hdr(skb)->fin) {
1377 			sk_eat_skb(sk, skb, 0);
1378 			++seq;
1379 			break;
1380 		}
1381 		sk_eat_skb(sk, skb, 0);
1382 		if (!desc->count)
1383 			break;
1384 		tp->copied_seq = seq;
1385 	}
1386 	tp->copied_seq = seq;
1387 
1388 	tcp_rcv_space_adjust(sk);
1389 
1390 	/* Clean up data we have read: This will do ACK frames. */
1391 	if (copied > 0)
1392 		tcp_cleanup_rbuf(sk, copied);
1393 	return copied;
1394 }
1395 EXPORT_SYMBOL(tcp_read_sock);
1396 
1397 /*
1398  *	This routine copies from a sock struct into the user buffer.
1399  *
1400  *	Technical note: in 2.3 we work on _locked_ socket, so that
1401  *	tricks with *seq access order and skb->users are not required.
1402  *	Probably, code can be easily improved even more.
1403  */
1404 
1405 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1406 		size_t len, int nonblock, int flags, int *addr_len)
1407 {
1408 	struct tcp_sock *tp = tcp_sk(sk);
1409 	int copied = 0;
1410 	u32 peek_seq;
1411 	u32 *seq;
1412 	unsigned long used;
1413 	int err;
1414 	int target;		/* Read at least this many bytes */
1415 	long timeo;
1416 	struct task_struct *user_recv = NULL;
1417 	int copied_early = 0;
1418 	struct sk_buff *skb;
1419 	u32 urg_hole = 0;
1420 
1421 	lock_sock(sk);
1422 
1423 	err = -ENOTCONN;
1424 	if (sk->sk_state == TCP_LISTEN)
1425 		goto out;
1426 
1427 	timeo = sock_rcvtimeo(sk, nonblock);
1428 
1429 	/* Urgent data needs to be handled specially. */
1430 	if (flags & MSG_OOB)
1431 		goto recv_urg;
1432 
1433 	seq = &tp->copied_seq;
1434 	if (flags & MSG_PEEK) {
1435 		peek_seq = tp->copied_seq;
1436 		seq = &peek_seq;
1437 	}
1438 
1439 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1440 
1441 #ifdef CONFIG_NET_DMA
1442 	tp->ucopy.dma_chan = NULL;
1443 	preempt_disable();
1444 	skb = skb_peek_tail(&sk->sk_receive_queue);
1445 	{
1446 		int available = 0;
1447 
1448 		if (skb)
1449 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1450 		if ((available < target) &&
1451 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1452 		    !sysctl_tcp_low_latency &&
1453 		    dma_find_channel(DMA_MEMCPY)) {
1454 			preempt_enable_no_resched();
1455 			tp->ucopy.pinned_list =
1456 					dma_pin_iovec_pages(msg->msg_iov, len);
1457 		} else {
1458 			preempt_enable_no_resched();
1459 		}
1460 	}
1461 #endif
1462 
1463 	do {
1464 		u32 offset;
1465 
1466 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1467 		if (tp->urg_data && tp->urg_seq == *seq) {
1468 			if (copied)
1469 				break;
1470 			if (signal_pending(current)) {
1471 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1472 				break;
1473 			}
1474 		}
1475 
1476 		/* Next get a buffer. */
1477 
1478 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1479 			/* Now that we have two receive queues this
1480 			 * shouldn't happen.
1481 			 */
1482 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1483 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1484 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1485 				 flags))
1486 				break;
1487 
1488 			offset = *seq - TCP_SKB_CB(skb)->seq;
1489 			if (tcp_hdr(skb)->syn)
1490 				offset--;
1491 			if (offset < skb->len)
1492 				goto found_ok_skb;
1493 			if (tcp_hdr(skb)->fin)
1494 				goto found_fin_ok;
1495 			WARN(!(flags & MSG_PEEK),
1496 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1497 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1498 		}
1499 
1500 		/* Well, if we have backlog, try to process it now yet. */
1501 
1502 		if (copied >= target && !sk->sk_backlog.tail)
1503 			break;
1504 
1505 		if (copied) {
1506 			if (sk->sk_err ||
1507 			    sk->sk_state == TCP_CLOSE ||
1508 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1509 			    !timeo ||
1510 			    signal_pending(current))
1511 				break;
1512 		} else {
1513 			if (sock_flag(sk, SOCK_DONE))
1514 				break;
1515 
1516 			if (sk->sk_err) {
1517 				copied = sock_error(sk);
1518 				break;
1519 			}
1520 
1521 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1522 				break;
1523 
1524 			if (sk->sk_state == TCP_CLOSE) {
1525 				if (!sock_flag(sk, SOCK_DONE)) {
1526 					/* This occurs when user tries to read
1527 					 * from never connected socket.
1528 					 */
1529 					copied = -ENOTCONN;
1530 					break;
1531 				}
1532 				break;
1533 			}
1534 
1535 			if (!timeo) {
1536 				copied = -EAGAIN;
1537 				break;
1538 			}
1539 
1540 			if (signal_pending(current)) {
1541 				copied = sock_intr_errno(timeo);
1542 				break;
1543 			}
1544 		}
1545 
1546 		tcp_cleanup_rbuf(sk, copied);
1547 
1548 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1549 			/* Install new reader */
1550 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1551 				user_recv = current;
1552 				tp->ucopy.task = user_recv;
1553 				tp->ucopy.iov = msg->msg_iov;
1554 			}
1555 
1556 			tp->ucopy.len = len;
1557 
1558 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1559 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1560 
1561 			/* Ugly... If prequeue is not empty, we have to
1562 			 * process it before releasing socket, otherwise
1563 			 * order will be broken at second iteration.
1564 			 * More elegant solution is required!!!
1565 			 *
1566 			 * Look: we have the following (pseudo)queues:
1567 			 *
1568 			 * 1. packets in flight
1569 			 * 2. backlog
1570 			 * 3. prequeue
1571 			 * 4. receive_queue
1572 			 *
1573 			 * Each queue can be processed only if the next ones
1574 			 * are empty. At this point we have empty receive_queue.
1575 			 * But prequeue _can_ be not empty after 2nd iteration,
1576 			 * when we jumped to start of loop because backlog
1577 			 * processing added something to receive_queue.
1578 			 * We cannot release_sock(), because backlog contains
1579 			 * packets arrived _after_ prequeued ones.
1580 			 *
1581 			 * Shortly, algorithm is clear --- to process all
1582 			 * the queues in order. We could make it more directly,
1583 			 * requeueing packets from backlog to prequeue, if
1584 			 * is not empty. It is more elegant, but eats cycles,
1585 			 * unfortunately.
1586 			 */
1587 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1588 				goto do_prequeue;
1589 
1590 			/* __ Set realtime policy in scheduler __ */
1591 		}
1592 
1593 #ifdef CONFIG_NET_DMA
1594 		if (tp->ucopy.dma_chan)
1595 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1596 #endif
1597 		if (copied >= target) {
1598 			/* Do not sleep, just process backlog. */
1599 			release_sock(sk);
1600 			lock_sock(sk);
1601 		} else
1602 			sk_wait_data(sk, &timeo);
1603 
1604 #ifdef CONFIG_NET_DMA
1605 		tcp_service_net_dma(sk, false);  /* Don't block */
1606 		tp->ucopy.wakeup = 0;
1607 #endif
1608 
1609 		if (user_recv) {
1610 			int chunk;
1611 
1612 			/* __ Restore normal policy in scheduler __ */
1613 
1614 			if ((chunk = len - tp->ucopy.len) != 0) {
1615 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1616 				len -= chunk;
1617 				copied += chunk;
1618 			}
1619 
1620 			if (tp->rcv_nxt == tp->copied_seq &&
1621 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1622 do_prequeue:
1623 				tcp_prequeue_process(sk);
1624 
1625 				if ((chunk = len - tp->ucopy.len) != 0) {
1626 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1627 					len -= chunk;
1628 					copied += chunk;
1629 				}
1630 			}
1631 		}
1632 		if ((flags & MSG_PEEK) &&
1633 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1634 			if (net_ratelimit())
1635 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1636 				       current->comm, task_pid_nr(current));
1637 			peek_seq = tp->copied_seq;
1638 		}
1639 		continue;
1640 
1641 	found_ok_skb:
1642 		/* Ok so how much can we use? */
1643 		used = skb->len - offset;
1644 		if (len < used)
1645 			used = len;
1646 
1647 		/* Do we have urgent data here? */
1648 		if (tp->urg_data) {
1649 			u32 urg_offset = tp->urg_seq - *seq;
1650 			if (urg_offset < used) {
1651 				if (!urg_offset) {
1652 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1653 						++*seq;
1654 						urg_hole++;
1655 						offset++;
1656 						used--;
1657 						if (!used)
1658 							goto skip_copy;
1659 					}
1660 				} else
1661 					used = urg_offset;
1662 			}
1663 		}
1664 
1665 		if (!(flags & MSG_TRUNC)) {
1666 #ifdef CONFIG_NET_DMA
1667 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1668 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1669 
1670 			if (tp->ucopy.dma_chan) {
1671 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1672 					tp->ucopy.dma_chan, skb, offset,
1673 					msg->msg_iov, used,
1674 					tp->ucopy.pinned_list);
1675 
1676 				if (tp->ucopy.dma_cookie < 0) {
1677 
1678 					printk(KERN_ALERT "dma_cookie < 0\n");
1679 
1680 					/* Exception. Bailout! */
1681 					if (!copied)
1682 						copied = -EFAULT;
1683 					break;
1684 				}
1685 
1686 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1687 
1688 				if ((offset + used) == skb->len)
1689 					copied_early = 1;
1690 
1691 			} else
1692 #endif
1693 			{
1694 				err = skb_copy_datagram_iovec(skb, offset,
1695 						msg->msg_iov, used);
1696 				if (err) {
1697 					/* Exception. Bailout! */
1698 					if (!copied)
1699 						copied = -EFAULT;
1700 					break;
1701 				}
1702 			}
1703 		}
1704 
1705 		*seq += used;
1706 		copied += used;
1707 		len -= used;
1708 
1709 		tcp_rcv_space_adjust(sk);
1710 
1711 skip_copy:
1712 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1713 			tp->urg_data = 0;
1714 			tcp_fast_path_check(sk);
1715 		}
1716 		if (used + offset < skb->len)
1717 			continue;
1718 
1719 		if (tcp_hdr(skb)->fin)
1720 			goto found_fin_ok;
1721 		if (!(flags & MSG_PEEK)) {
1722 			sk_eat_skb(sk, skb, copied_early);
1723 			copied_early = 0;
1724 		}
1725 		continue;
1726 
1727 	found_fin_ok:
1728 		/* Process the FIN. */
1729 		++*seq;
1730 		if (!(flags & MSG_PEEK)) {
1731 			sk_eat_skb(sk, skb, copied_early);
1732 			copied_early = 0;
1733 		}
1734 		break;
1735 	} while (len > 0);
1736 
1737 	if (user_recv) {
1738 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1739 			int chunk;
1740 
1741 			tp->ucopy.len = copied > 0 ? len : 0;
1742 
1743 			tcp_prequeue_process(sk);
1744 
1745 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1746 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1747 				len -= chunk;
1748 				copied += chunk;
1749 			}
1750 		}
1751 
1752 		tp->ucopy.task = NULL;
1753 		tp->ucopy.len = 0;
1754 	}
1755 
1756 #ifdef CONFIG_NET_DMA
1757 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1758 	tp->ucopy.dma_chan = NULL;
1759 
1760 	if (tp->ucopy.pinned_list) {
1761 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1762 		tp->ucopy.pinned_list = NULL;
1763 	}
1764 #endif
1765 
1766 	/* According to UNIX98, msg_name/msg_namelen are ignored
1767 	 * on connected socket. I was just happy when found this 8) --ANK
1768 	 */
1769 
1770 	/* Clean up data we have read: This will do ACK frames. */
1771 	tcp_cleanup_rbuf(sk, copied);
1772 
1773 	release_sock(sk);
1774 	return copied;
1775 
1776 out:
1777 	release_sock(sk);
1778 	return err;
1779 
1780 recv_urg:
1781 	err = tcp_recv_urg(sk, msg, len, flags);
1782 	goto out;
1783 }
1784 EXPORT_SYMBOL(tcp_recvmsg);
1785 
1786 void tcp_set_state(struct sock *sk, int state)
1787 {
1788 	int oldstate = sk->sk_state;
1789 
1790 	switch (state) {
1791 	case TCP_ESTABLISHED:
1792 		if (oldstate != TCP_ESTABLISHED)
1793 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1794 		break;
1795 
1796 	case TCP_CLOSE:
1797 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1798 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1799 
1800 		sk->sk_prot->unhash(sk);
1801 		if (inet_csk(sk)->icsk_bind_hash &&
1802 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1803 			inet_put_port(sk);
1804 		/* fall through */
1805 	default:
1806 		if (oldstate == TCP_ESTABLISHED)
1807 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1808 	}
1809 
1810 	/* Change state AFTER socket is unhashed to avoid closed
1811 	 * socket sitting in hash tables.
1812 	 */
1813 	sk->sk_state = state;
1814 
1815 #ifdef STATE_TRACE
1816 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1817 #endif
1818 }
1819 EXPORT_SYMBOL_GPL(tcp_set_state);
1820 
1821 /*
1822  *	State processing on a close. This implements the state shift for
1823  *	sending our FIN frame. Note that we only send a FIN for some
1824  *	states. A shutdown() may have already sent the FIN, or we may be
1825  *	closed.
1826  */
1827 
1828 static const unsigned char new_state[16] = {
1829   /* current state:        new state:      action:	*/
1830   /* (Invalid)		*/ TCP_CLOSE,
1831   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1832   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1833   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1834   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1835   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1836   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1837   /* TCP_CLOSE		*/ TCP_CLOSE,
1838   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1839   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1840   /* TCP_LISTEN		*/ TCP_CLOSE,
1841   /* TCP_CLOSING	*/ TCP_CLOSING,
1842 };
1843 
1844 static int tcp_close_state(struct sock *sk)
1845 {
1846 	int next = (int)new_state[sk->sk_state];
1847 	int ns = next & TCP_STATE_MASK;
1848 
1849 	tcp_set_state(sk, ns);
1850 
1851 	return next & TCP_ACTION_FIN;
1852 }
1853 
1854 /*
1855  *	Shutdown the sending side of a connection. Much like close except
1856  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1857  */
1858 
1859 void tcp_shutdown(struct sock *sk, int how)
1860 {
1861 	/*	We need to grab some memory, and put together a FIN,
1862 	 *	and then put it into the queue to be sent.
1863 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1864 	 */
1865 	if (!(how & SEND_SHUTDOWN))
1866 		return;
1867 
1868 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1869 	if ((1 << sk->sk_state) &
1870 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1871 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1872 		/* Clear out any half completed packets.  FIN if needed. */
1873 		if (tcp_close_state(sk))
1874 			tcp_send_fin(sk);
1875 	}
1876 }
1877 EXPORT_SYMBOL(tcp_shutdown);
1878 
1879 bool tcp_check_oom(struct sock *sk, int shift)
1880 {
1881 	bool too_many_orphans, out_of_socket_memory;
1882 
1883 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1884 	out_of_socket_memory = tcp_out_of_memory(sk);
1885 
1886 	if (too_many_orphans && net_ratelimit())
1887 		pr_info("TCP: too many orphaned sockets\n");
1888 	if (out_of_socket_memory && net_ratelimit())
1889 		pr_info("TCP: out of memory -- consider tuning tcp_mem\n");
1890 	return too_many_orphans || out_of_socket_memory;
1891 }
1892 
1893 void tcp_close(struct sock *sk, long timeout)
1894 {
1895 	struct sk_buff *skb;
1896 	int data_was_unread = 0;
1897 	int state;
1898 
1899 	lock_sock(sk);
1900 	sk->sk_shutdown = SHUTDOWN_MASK;
1901 
1902 	if (sk->sk_state == TCP_LISTEN) {
1903 		tcp_set_state(sk, TCP_CLOSE);
1904 
1905 		/* Special case. */
1906 		inet_csk_listen_stop(sk);
1907 
1908 		goto adjudge_to_death;
1909 	}
1910 
1911 	/*  We need to flush the recv. buffs.  We do this only on the
1912 	 *  descriptor close, not protocol-sourced closes, because the
1913 	 *  reader process may not have drained the data yet!
1914 	 */
1915 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1916 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1917 			  tcp_hdr(skb)->fin;
1918 		data_was_unread += len;
1919 		__kfree_skb(skb);
1920 	}
1921 
1922 	sk_mem_reclaim(sk);
1923 
1924 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1925 	if (sk->sk_state == TCP_CLOSE)
1926 		goto adjudge_to_death;
1927 
1928 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1929 	 * data was lost. To witness the awful effects of the old behavior of
1930 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1931 	 * GET in an FTP client, suspend the process, wait for the client to
1932 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1933 	 * Note: timeout is always zero in such a case.
1934 	 */
1935 	if (data_was_unread) {
1936 		/* Unread data was tossed, zap the connection. */
1937 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1938 		tcp_set_state(sk, TCP_CLOSE);
1939 		tcp_send_active_reset(sk, sk->sk_allocation);
1940 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1941 		/* Check zero linger _after_ checking for unread data. */
1942 		sk->sk_prot->disconnect(sk, 0);
1943 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1944 	} else if (tcp_close_state(sk)) {
1945 		/* We FIN if the application ate all the data before
1946 		 * zapping the connection.
1947 		 */
1948 
1949 		/* RED-PEN. Formally speaking, we have broken TCP state
1950 		 * machine. State transitions:
1951 		 *
1952 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1953 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1954 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1955 		 *
1956 		 * are legal only when FIN has been sent (i.e. in window),
1957 		 * rather than queued out of window. Purists blame.
1958 		 *
1959 		 * F.e. "RFC state" is ESTABLISHED,
1960 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1961 		 *
1962 		 * The visible declinations are that sometimes
1963 		 * we enter time-wait state, when it is not required really
1964 		 * (harmless), do not send active resets, when they are
1965 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1966 		 * they look as CLOSING or LAST_ACK for Linux)
1967 		 * Probably, I missed some more holelets.
1968 		 * 						--ANK
1969 		 */
1970 		tcp_send_fin(sk);
1971 	}
1972 
1973 	sk_stream_wait_close(sk, timeout);
1974 
1975 adjudge_to_death:
1976 	state = sk->sk_state;
1977 	sock_hold(sk);
1978 	sock_orphan(sk);
1979 
1980 	/* It is the last release_sock in its life. It will remove backlog. */
1981 	release_sock(sk);
1982 
1983 
1984 	/* Now socket is owned by kernel and we acquire BH lock
1985 	   to finish close. No need to check for user refs.
1986 	 */
1987 	local_bh_disable();
1988 	bh_lock_sock(sk);
1989 	WARN_ON(sock_owned_by_user(sk));
1990 
1991 	percpu_counter_inc(sk->sk_prot->orphan_count);
1992 
1993 	/* Have we already been destroyed by a softirq or backlog? */
1994 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1995 		goto out;
1996 
1997 	/*	This is a (useful) BSD violating of the RFC. There is a
1998 	 *	problem with TCP as specified in that the other end could
1999 	 *	keep a socket open forever with no application left this end.
2000 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2001 	 *	our end. If they send after that then tough - BUT: long enough
2002 	 *	that we won't make the old 4*rto = almost no time - whoops
2003 	 *	reset mistake.
2004 	 *
2005 	 *	Nope, it was not mistake. It is really desired behaviour
2006 	 *	f.e. on http servers, when such sockets are useless, but
2007 	 *	consume significant resources. Let's do it with special
2008 	 *	linger2	option.					--ANK
2009 	 */
2010 
2011 	if (sk->sk_state == TCP_FIN_WAIT2) {
2012 		struct tcp_sock *tp = tcp_sk(sk);
2013 		if (tp->linger2 < 0) {
2014 			tcp_set_state(sk, TCP_CLOSE);
2015 			tcp_send_active_reset(sk, GFP_ATOMIC);
2016 			NET_INC_STATS_BH(sock_net(sk),
2017 					LINUX_MIB_TCPABORTONLINGER);
2018 		} else {
2019 			const int tmo = tcp_fin_time(sk);
2020 
2021 			if (tmo > TCP_TIMEWAIT_LEN) {
2022 				inet_csk_reset_keepalive_timer(sk,
2023 						tmo - TCP_TIMEWAIT_LEN);
2024 			} else {
2025 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2026 				goto out;
2027 			}
2028 		}
2029 	}
2030 	if (sk->sk_state != TCP_CLOSE) {
2031 		sk_mem_reclaim(sk);
2032 		if (tcp_check_oom(sk, 0)) {
2033 			tcp_set_state(sk, TCP_CLOSE);
2034 			tcp_send_active_reset(sk, GFP_ATOMIC);
2035 			NET_INC_STATS_BH(sock_net(sk),
2036 					LINUX_MIB_TCPABORTONMEMORY);
2037 		}
2038 	}
2039 
2040 	if (sk->sk_state == TCP_CLOSE)
2041 		inet_csk_destroy_sock(sk);
2042 	/* Otherwise, socket is reprieved until protocol close. */
2043 
2044 out:
2045 	bh_unlock_sock(sk);
2046 	local_bh_enable();
2047 	sock_put(sk);
2048 }
2049 EXPORT_SYMBOL(tcp_close);
2050 
2051 /* These states need RST on ABORT according to RFC793 */
2052 
2053 static inline int tcp_need_reset(int state)
2054 {
2055 	return (1 << state) &
2056 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2057 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2058 }
2059 
2060 int tcp_disconnect(struct sock *sk, int flags)
2061 {
2062 	struct inet_sock *inet = inet_sk(sk);
2063 	struct inet_connection_sock *icsk = inet_csk(sk);
2064 	struct tcp_sock *tp = tcp_sk(sk);
2065 	int err = 0;
2066 	int old_state = sk->sk_state;
2067 
2068 	if (old_state != TCP_CLOSE)
2069 		tcp_set_state(sk, TCP_CLOSE);
2070 
2071 	/* ABORT function of RFC793 */
2072 	if (old_state == TCP_LISTEN) {
2073 		inet_csk_listen_stop(sk);
2074 	} else if (tcp_need_reset(old_state) ||
2075 		   (tp->snd_nxt != tp->write_seq &&
2076 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2077 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2078 		 * states
2079 		 */
2080 		tcp_send_active_reset(sk, gfp_any());
2081 		sk->sk_err = ECONNRESET;
2082 	} else if (old_state == TCP_SYN_SENT)
2083 		sk->sk_err = ECONNRESET;
2084 
2085 	tcp_clear_xmit_timers(sk);
2086 	__skb_queue_purge(&sk->sk_receive_queue);
2087 	tcp_write_queue_purge(sk);
2088 	__skb_queue_purge(&tp->out_of_order_queue);
2089 #ifdef CONFIG_NET_DMA
2090 	__skb_queue_purge(&sk->sk_async_wait_queue);
2091 #endif
2092 
2093 	inet->inet_dport = 0;
2094 
2095 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2096 		inet_reset_saddr(sk);
2097 
2098 	sk->sk_shutdown = 0;
2099 	sock_reset_flag(sk, SOCK_DONE);
2100 	tp->srtt = 0;
2101 	if ((tp->write_seq += tp->max_window + 2) == 0)
2102 		tp->write_seq = 1;
2103 	icsk->icsk_backoff = 0;
2104 	tp->snd_cwnd = 2;
2105 	icsk->icsk_probes_out = 0;
2106 	tp->packets_out = 0;
2107 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2108 	tp->snd_cwnd_cnt = 0;
2109 	tp->bytes_acked = 0;
2110 	tp->window_clamp = 0;
2111 	tcp_set_ca_state(sk, TCP_CA_Open);
2112 	tcp_clear_retrans(tp);
2113 	inet_csk_delack_init(sk);
2114 	tcp_init_send_head(sk);
2115 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2116 	__sk_dst_reset(sk);
2117 
2118 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2119 
2120 	sk->sk_error_report(sk);
2121 	return err;
2122 }
2123 EXPORT_SYMBOL(tcp_disconnect);
2124 
2125 /*
2126  *	Socket option code for TCP.
2127  */
2128 static int do_tcp_setsockopt(struct sock *sk, int level,
2129 		int optname, char __user *optval, unsigned int optlen)
2130 {
2131 	struct tcp_sock *tp = tcp_sk(sk);
2132 	struct inet_connection_sock *icsk = inet_csk(sk);
2133 	int val;
2134 	int err = 0;
2135 
2136 	/* These are data/string values, all the others are ints */
2137 	switch (optname) {
2138 	case TCP_CONGESTION: {
2139 		char name[TCP_CA_NAME_MAX];
2140 
2141 		if (optlen < 1)
2142 			return -EINVAL;
2143 
2144 		val = strncpy_from_user(name, optval,
2145 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2146 		if (val < 0)
2147 			return -EFAULT;
2148 		name[val] = 0;
2149 
2150 		lock_sock(sk);
2151 		err = tcp_set_congestion_control(sk, name);
2152 		release_sock(sk);
2153 		return err;
2154 	}
2155 	case TCP_COOKIE_TRANSACTIONS: {
2156 		struct tcp_cookie_transactions ctd;
2157 		struct tcp_cookie_values *cvp = NULL;
2158 
2159 		if (sizeof(ctd) > optlen)
2160 			return -EINVAL;
2161 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2162 			return -EFAULT;
2163 
2164 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2165 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2166 			return -EINVAL;
2167 
2168 		if (ctd.tcpct_cookie_desired == 0) {
2169 			/* default to global value */
2170 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2171 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2172 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2173 			return -EINVAL;
2174 		}
2175 
2176 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2177 			/* Supercedes all other values */
2178 			lock_sock(sk);
2179 			if (tp->cookie_values != NULL) {
2180 				kref_put(&tp->cookie_values->kref,
2181 					 tcp_cookie_values_release);
2182 				tp->cookie_values = NULL;
2183 			}
2184 			tp->rx_opt.cookie_in_always = 0; /* false */
2185 			tp->rx_opt.cookie_out_never = 1; /* true */
2186 			release_sock(sk);
2187 			return err;
2188 		}
2189 
2190 		/* Allocate ancillary memory before locking.
2191 		 */
2192 		if (ctd.tcpct_used > 0 ||
2193 		    (tp->cookie_values == NULL &&
2194 		     (sysctl_tcp_cookie_size > 0 ||
2195 		      ctd.tcpct_cookie_desired > 0 ||
2196 		      ctd.tcpct_s_data_desired > 0))) {
2197 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2198 				      GFP_KERNEL);
2199 			if (cvp == NULL)
2200 				return -ENOMEM;
2201 
2202 			kref_init(&cvp->kref);
2203 		}
2204 		lock_sock(sk);
2205 		tp->rx_opt.cookie_in_always =
2206 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2207 		tp->rx_opt.cookie_out_never = 0; /* false */
2208 
2209 		if (tp->cookie_values != NULL) {
2210 			if (cvp != NULL) {
2211 				/* Changed values are recorded by a changed
2212 				 * pointer, ensuring the cookie will differ,
2213 				 * without separately hashing each value later.
2214 				 */
2215 				kref_put(&tp->cookie_values->kref,
2216 					 tcp_cookie_values_release);
2217 			} else {
2218 				cvp = tp->cookie_values;
2219 			}
2220 		}
2221 
2222 		if (cvp != NULL) {
2223 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2224 
2225 			if (ctd.tcpct_used > 0) {
2226 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2227 				       ctd.tcpct_used);
2228 				cvp->s_data_desired = ctd.tcpct_used;
2229 				cvp->s_data_constant = 1; /* true */
2230 			} else {
2231 				/* No constant payload data. */
2232 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2233 				cvp->s_data_constant = 0; /* false */
2234 			}
2235 
2236 			tp->cookie_values = cvp;
2237 		}
2238 		release_sock(sk);
2239 		return err;
2240 	}
2241 	default:
2242 		/* fallthru */
2243 		break;
2244 	}
2245 
2246 	if (optlen < sizeof(int))
2247 		return -EINVAL;
2248 
2249 	if (get_user(val, (int __user *)optval))
2250 		return -EFAULT;
2251 
2252 	lock_sock(sk);
2253 
2254 	switch (optname) {
2255 	case TCP_MAXSEG:
2256 		/* Values greater than interface MTU won't take effect. However
2257 		 * at the point when this call is done we typically don't yet
2258 		 * know which interface is going to be used */
2259 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2260 			err = -EINVAL;
2261 			break;
2262 		}
2263 		tp->rx_opt.user_mss = val;
2264 		break;
2265 
2266 	case TCP_NODELAY:
2267 		if (val) {
2268 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2269 			 * this option on corked socket is remembered, but
2270 			 * it is not activated until cork is cleared.
2271 			 *
2272 			 * However, when TCP_NODELAY is set we make
2273 			 * an explicit push, which overrides even TCP_CORK
2274 			 * for currently queued segments.
2275 			 */
2276 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2277 			tcp_push_pending_frames(sk);
2278 		} else {
2279 			tp->nonagle &= ~TCP_NAGLE_OFF;
2280 		}
2281 		break;
2282 
2283 	case TCP_THIN_LINEAR_TIMEOUTS:
2284 		if (val < 0 || val > 1)
2285 			err = -EINVAL;
2286 		else
2287 			tp->thin_lto = val;
2288 		break;
2289 
2290 	case TCP_THIN_DUPACK:
2291 		if (val < 0 || val > 1)
2292 			err = -EINVAL;
2293 		else
2294 			tp->thin_dupack = val;
2295 		break;
2296 
2297 	case TCP_CORK:
2298 		/* When set indicates to always queue non-full frames.
2299 		 * Later the user clears this option and we transmit
2300 		 * any pending partial frames in the queue.  This is
2301 		 * meant to be used alongside sendfile() to get properly
2302 		 * filled frames when the user (for example) must write
2303 		 * out headers with a write() call first and then use
2304 		 * sendfile to send out the data parts.
2305 		 *
2306 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2307 		 * stronger than TCP_NODELAY.
2308 		 */
2309 		if (val) {
2310 			tp->nonagle |= TCP_NAGLE_CORK;
2311 		} else {
2312 			tp->nonagle &= ~TCP_NAGLE_CORK;
2313 			if (tp->nonagle&TCP_NAGLE_OFF)
2314 				tp->nonagle |= TCP_NAGLE_PUSH;
2315 			tcp_push_pending_frames(sk);
2316 		}
2317 		break;
2318 
2319 	case TCP_KEEPIDLE:
2320 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2321 			err = -EINVAL;
2322 		else {
2323 			tp->keepalive_time = val * HZ;
2324 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2325 			    !((1 << sk->sk_state) &
2326 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2327 				u32 elapsed = keepalive_time_elapsed(tp);
2328 				if (tp->keepalive_time > elapsed)
2329 					elapsed = tp->keepalive_time - elapsed;
2330 				else
2331 					elapsed = 0;
2332 				inet_csk_reset_keepalive_timer(sk, elapsed);
2333 			}
2334 		}
2335 		break;
2336 	case TCP_KEEPINTVL:
2337 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2338 			err = -EINVAL;
2339 		else
2340 			tp->keepalive_intvl = val * HZ;
2341 		break;
2342 	case TCP_KEEPCNT:
2343 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2344 			err = -EINVAL;
2345 		else
2346 			tp->keepalive_probes = val;
2347 		break;
2348 	case TCP_SYNCNT:
2349 		if (val < 1 || val > MAX_TCP_SYNCNT)
2350 			err = -EINVAL;
2351 		else
2352 			icsk->icsk_syn_retries = val;
2353 		break;
2354 
2355 	case TCP_LINGER2:
2356 		if (val < 0)
2357 			tp->linger2 = -1;
2358 		else if (val > sysctl_tcp_fin_timeout / HZ)
2359 			tp->linger2 = 0;
2360 		else
2361 			tp->linger2 = val * HZ;
2362 		break;
2363 
2364 	case TCP_DEFER_ACCEPT:
2365 		/* Translate value in seconds to number of retransmits */
2366 		icsk->icsk_accept_queue.rskq_defer_accept =
2367 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2368 					TCP_RTO_MAX / HZ);
2369 		break;
2370 
2371 	case TCP_WINDOW_CLAMP:
2372 		if (!val) {
2373 			if (sk->sk_state != TCP_CLOSE) {
2374 				err = -EINVAL;
2375 				break;
2376 			}
2377 			tp->window_clamp = 0;
2378 		} else
2379 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2380 						SOCK_MIN_RCVBUF / 2 : val;
2381 		break;
2382 
2383 	case TCP_QUICKACK:
2384 		if (!val) {
2385 			icsk->icsk_ack.pingpong = 1;
2386 		} else {
2387 			icsk->icsk_ack.pingpong = 0;
2388 			if ((1 << sk->sk_state) &
2389 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2390 			    inet_csk_ack_scheduled(sk)) {
2391 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2392 				tcp_cleanup_rbuf(sk, 1);
2393 				if (!(val & 1))
2394 					icsk->icsk_ack.pingpong = 1;
2395 			}
2396 		}
2397 		break;
2398 
2399 #ifdef CONFIG_TCP_MD5SIG
2400 	case TCP_MD5SIG:
2401 		/* Read the IP->Key mappings from userspace */
2402 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2403 		break;
2404 #endif
2405 	case TCP_USER_TIMEOUT:
2406 		/* Cap the max timeout in ms TCP will retry/retrans
2407 		 * before giving up and aborting (ETIMEDOUT) a connection.
2408 		 */
2409 		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2410 		break;
2411 	default:
2412 		err = -ENOPROTOOPT;
2413 		break;
2414 	}
2415 
2416 	release_sock(sk);
2417 	return err;
2418 }
2419 
2420 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2421 		   unsigned int optlen)
2422 {
2423 	const struct inet_connection_sock *icsk = inet_csk(sk);
2424 
2425 	if (level != SOL_TCP)
2426 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2427 						     optval, optlen);
2428 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2429 }
2430 EXPORT_SYMBOL(tcp_setsockopt);
2431 
2432 #ifdef CONFIG_COMPAT
2433 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2434 			  char __user *optval, unsigned int optlen)
2435 {
2436 	if (level != SOL_TCP)
2437 		return inet_csk_compat_setsockopt(sk, level, optname,
2438 						  optval, optlen);
2439 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2440 }
2441 EXPORT_SYMBOL(compat_tcp_setsockopt);
2442 #endif
2443 
2444 /* Return information about state of tcp endpoint in API format. */
2445 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2446 {
2447 	const struct tcp_sock *tp = tcp_sk(sk);
2448 	const struct inet_connection_sock *icsk = inet_csk(sk);
2449 	u32 now = tcp_time_stamp;
2450 
2451 	memset(info, 0, sizeof(*info));
2452 
2453 	info->tcpi_state = sk->sk_state;
2454 	info->tcpi_ca_state = icsk->icsk_ca_state;
2455 	info->tcpi_retransmits = icsk->icsk_retransmits;
2456 	info->tcpi_probes = icsk->icsk_probes_out;
2457 	info->tcpi_backoff = icsk->icsk_backoff;
2458 
2459 	if (tp->rx_opt.tstamp_ok)
2460 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2461 	if (tcp_is_sack(tp))
2462 		info->tcpi_options |= TCPI_OPT_SACK;
2463 	if (tp->rx_opt.wscale_ok) {
2464 		info->tcpi_options |= TCPI_OPT_WSCALE;
2465 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2466 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2467 	}
2468 
2469 	if (tp->ecn_flags & TCP_ECN_OK)
2470 		info->tcpi_options |= TCPI_OPT_ECN;
2471 	if (tp->ecn_flags & TCP_ECN_SEEN)
2472 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2473 
2474 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2475 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2476 	info->tcpi_snd_mss = tp->mss_cache;
2477 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2478 
2479 	if (sk->sk_state == TCP_LISTEN) {
2480 		info->tcpi_unacked = sk->sk_ack_backlog;
2481 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2482 	} else {
2483 		info->tcpi_unacked = tp->packets_out;
2484 		info->tcpi_sacked = tp->sacked_out;
2485 	}
2486 	info->tcpi_lost = tp->lost_out;
2487 	info->tcpi_retrans = tp->retrans_out;
2488 	info->tcpi_fackets = tp->fackets_out;
2489 
2490 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2491 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2492 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2493 
2494 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2495 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2496 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2497 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2498 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2499 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2500 	info->tcpi_advmss = tp->advmss;
2501 	info->tcpi_reordering = tp->reordering;
2502 
2503 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2504 	info->tcpi_rcv_space = tp->rcvq_space.space;
2505 
2506 	info->tcpi_total_retrans = tp->total_retrans;
2507 }
2508 EXPORT_SYMBOL_GPL(tcp_get_info);
2509 
2510 static int do_tcp_getsockopt(struct sock *sk, int level,
2511 		int optname, char __user *optval, int __user *optlen)
2512 {
2513 	struct inet_connection_sock *icsk = inet_csk(sk);
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 	int val, len;
2516 
2517 	if (get_user(len, optlen))
2518 		return -EFAULT;
2519 
2520 	len = min_t(unsigned int, len, sizeof(int));
2521 
2522 	if (len < 0)
2523 		return -EINVAL;
2524 
2525 	switch (optname) {
2526 	case TCP_MAXSEG:
2527 		val = tp->mss_cache;
2528 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2529 			val = tp->rx_opt.user_mss;
2530 		break;
2531 	case TCP_NODELAY:
2532 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2533 		break;
2534 	case TCP_CORK:
2535 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2536 		break;
2537 	case TCP_KEEPIDLE:
2538 		val = keepalive_time_when(tp) / HZ;
2539 		break;
2540 	case TCP_KEEPINTVL:
2541 		val = keepalive_intvl_when(tp) / HZ;
2542 		break;
2543 	case TCP_KEEPCNT:
2544 		val = keepalive_probes(tp);
2545 		break;
2546 	case TCP_SYNCNT:
2547 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2548 		break;
2549 	case TCP_LINGER2:
2550 		val = tp->linger2;
2551 		if (val >= 0)
2552 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2553 		break;
2554 	case TCP_DEFER_ACCEPT:
2555 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2556 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2557 		break;
2558 	case TCP_WINDOW_CLAMP:
2559 		val = tp->window_clamp;
2560 		break;
2561 	case TCP_INFO: {
2562 		struct tcp_info info;
2563 
2564 		if (get_user(len, optlen))
2565 			return -EFAULT;
2566 
2567 		tcp_get_info(sk, &info);
2568 
2569 		len = min_t(unsigned int, len, sizeof(info));
2570 		if (put_user(len, optlen))
2571 			return -EFAULT;
2572 		if (copy_to_user(optval, &info, len))
2573 			return -EFAULT;
2574 		return 0;
2575 	}
2576 	case TCP_QUICKACK:
2577 		val = !icsk->icsk_ack.pingpong;
2578 		break;
2579 
2580 	case TCP_CONGESTION:
2581 		if (get_user(len, optlen))
2582 			return -EFAULT;
2583 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2584 		if (put_user(len, optlen))
2585 			return -EFAULT;
2586 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2587 			return -EFAULT;
2588 		return 0;
2589 
2590 	case TCP_COOKIE_TRANSACTIONS: {
2591 		struct tcp_cookie_transactions ctd;
2592 		struct tcp_cookie_values *cvp = tp->cookie_values;
2593 
2594 		if (get_user(len, optlen))
2595 			return -EFAULT;
2596 		if (len < sizeof(ctd))
2597 			return -EINVAL;
2598 
2599 		memset(&ctd, 0, sizeof(ctd));
2600 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2601 				   TCP_COOKIE_IN_ALWAYS : 0)
2602 				| (tp->rx_opt.cookie_out_never ?
2603 				   TCP_COOKIE_OUT_NEVER : 0);
2604 
2605 		if (cvp != NULL) {
2606 			ctd.tcpct_flags |= (cvp->s_data_in ?
2607 					    TCP_S_DATA_IN : 0)
2608 					 | (cvp->s_data_out ?
2609 					    TCP_S_DATA_OUT : 0);
2610 
2611 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2612 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2613 
2614 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2615 			       cvp->cookie_pair_size);
2616 			ctd.tcpct_used = cvp->cookie_pair_size;
2617 		}
2618 
2619 		if (put_user(sizeof(ctd), optlen))
2620 			return -EFAULT;
2621 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2622 			return -EFAULT;
2623 		return 0;
2624 	}
2625 	case TCP_THIN_LINEAR_TIMEOUTS:
2626 		val = tp->thin_lto;
2627 		break;
2628 	case TCP_THIN_DUPACK:
2629 		val = tp->thin_dupack;
2630 		break;
2631 
2632 	case TCP_USER_TIMEOUT:
2633 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2634 		break;
2635 	default:
2636 		return -ENOPROTOOPT;
2637 	}
2638 
2639 	if (put_user(len, optlen))
2640 		return -EFAULT;
2641 	if (copy_to_user(optval, &val, len))
2642 		return -EFAULT;
2643 	return 0;
2644 }
2645 
2646 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2647 		   int __user *optlen)
2648 {
2649 	struct inet_connection_sock *icsk = inet_csk(sk);
2650 
2651 	if (level != SOL_TCP)
2652 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2653 						     optval, optlen);
2654 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2655 }
2656 EXPORT_SYMBOL(tcp_getsockopt);
2657 
2658 #ifdef CONFIG_COMPAT
2659 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2660 			  char __user *optval, int __user *optlen)
2661 {
2662 	if (level != SOL_TCP)
2663 		return inet_csk_compat_getsockopt(sk, level, optname,
2664 						  optval, optlen);
2665 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2666 }
2667 EXPORT_SYMBOL(compat_tcp_getsockopt);
2668 #endif
2669 
2670 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2671 	netdev_features_t features)
2672 {
2673 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2674 	struct tcphdr *th;
2675 	unsigned thlen;
2676 	unsigned int seq;
2677 	__be32 delta;
2678 	unsigned int oldlen;
2679 	unsigned int mss;
2680 
2681 	if (!pskb_may_pull(skb, sizeof(*th)))
2682 		goto out;
2683 
2684 	th = tcp_hdr(skb);
2685 	thlen = th->doff * 4;
2686 	if (thlen < sizeof(*th))
2687 		goto out;
2688 
2689 	if (!pskb_may_pull(skb, thlen))
2690 		goto out;
2691 
2692 	oldlen = (u16)~skb->len;
2693 	__skb_pull(skb, thlen);
2694 
2695 	mss = skb_shinfo(skb)->gso_size;
2696 	if (unlikely(skb->len <= mss))
2697 		goto out;
2698 
2699 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2700 		/* Packet is from an untrusted source, reset gso_segs. */
2701 		int type = skb_shinfo(skb)->gso_type;
2702 
2703 		if (unlikely(type &
2704 			     ~(SKB_GSO_TCPV4 |
2705 			       SKB_GSO_DODGY |
2706 			       SKB_GSO_TCP_ECN |
2707 			       SKB_GSO_TCPV6 |
2708 			       0) ||
2709 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2710 			goto out;
2711 
2712 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2713 
2714 		segs = NULL;
2715 		goto out;
2716 	}
2717 
2718 	segs = skb_segment(skb, features);
2719 	if (IS_ERR(segs))
2720 		goto out;
2721 
2722 	delta = htonl(oldlen + (thlen + mss));
2723 
2724 	skb = segs;
2725 	th = tcp_hdr(skb);
2726 	seq = ntohl(th->seq);
2727 
2728 	do {
2729 		th->fin = th->psh = 0;
2730 
2731 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2732 				       (__force u32)delta));
2733 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2734 			th->check =
2735 			     csum_fold(csum_partial(skb_transport_header(skb),
2736 						    thlen, skb->csum));
2737 
2738 		seq += mss;
2739 		skb = skb->next;
2740 		th = tcp_hdr(skb);
2741 
2742 		th->seq = htonl(seq);
2743 		th->cwr = 0;
2744 	} while (skb->next);
2745 
2746 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2747 		      skb->data_len);
2748 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2749 				(__force u32)delta));
2750 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2751 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2752 						   thlen, skb->csum));
2753 
2754 out:
2755 	return segs;
2756 }
2757 EXPORT_SYMBOL(tcp_tso_segment);
2758 
2759 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2760 {
2761 	struct sk_buff **pp = NULL;
2762 	struct sk_buff *p;
2763 	struct tcphdr *th;
2764 	struct tcphdr *th2;
2765 	unsigned int len;
2766 	unsigned int thlen;
2767 	__be32 flags;
2768 	unsigned int mss = 1;
2769 	unsigned int hlen;
2770 	unsigned int off;
2771 	int flush = 1;
2772 	int i;
2773 
2774 	off = skb_gro_offset(skb);
2775 	hlen = off + sizeof(*th);
2776 	th = skb_gro_header_fast(skb, off);
2777 	if (skb_gro_header_hard(skb, hlen)) {
2778 		th = skb_gro_header_slow(skb, hlen, off);
2779 		if (unlikely(!th))
2780 			goto out;
2781 	}
2782 
2783 	thlen = th->doff * 4;
2784 	if (thlen < sizeof(*th))
2785 		goto out;
2786 
2787 	hlen = off + thlen;
2788 	if (skb_gro_header_hard(skb, hlen)) {
2789 		th = skb_gro_header_slow(skb, hlen, off);
2790 		if (unlikely(!th))
2791 			goto out;
2792 	}
2793 
2794 	skb_gro_pull(skb, thlen);
2795 
2796 	len = skb_gro_len(skb);
2797 	flags = tcp_flag_word(th);
2798 
2799 	for (; (p = *head); head = &p->next) {
2800 		if (!NAPI_GRO_CB(p)->same_flow)
2801 			continue;
2802 
2803 		th2 = tcp_hdr(p);
2804 
2805 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2806 			NAPI_GRO_CB(p)->same_flow = 0;
2807 			continue;
2808 		}
2809 
2810 		goto found;
2811 	}
2812 
2813 	goto out_check_final;
2814 
2815 found:
2816 	flush = NAPI_GRO_CB(p)->flush;
2817 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2818 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2819 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2820 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2821 	for (i = sizeof(*th); i < thlen; i += 4)
2822 		flush |= *(u32 *)((u8 *)th + i) ^
2823 			 *(u32 *)((u8 *)th2 + i);
2824 
2825 	mss = skb_shinfo(p)->gso_size;
2826 
2827 	flush |= (len - 1) >= mss;
2828 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2829 
2830 	if (flush || skb_gro_receive(head, skb)) {
2831 		mss = 1;
2832 		goto out_check_final;
2833 	}
2834 
2835 	p = *head;
2836 	th2 = tcp_hdr(p);
2837 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2838 
2839 out_check_final:
2840 	flush = len < mss;
2841 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2842 					TCP_FLAG_RST | TCP_FLAG_SYN |
2843 					TCP_FLAG_FIN));
2844 
2845 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2846 		pp = head;
2847 
2848 out:
2849 	NAPI_GRO_CB(skb)->flush |= flush;
2850 
2851 	return pp;
2852 }
2853 EXPORT_SYMBOL(tcp_gro_receive);
2854 
2855 int tcp_gro_complete(struct sk_buff *skb)
2856 {
2857 	struct tcphdr *th = tcp_hdr(skb);
2858 
2859 	skb->csum_start = skb_transport_header(skb) - skb->head;
2860 	skb->csum_offset = offsetof(struct tcphdr, check);
2861 	skb->ip_summed = CHECKSUM_PARTIAL;
2862 
2863 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2864 
2865 	if (th->cwr)
2866 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2867 
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(tcp_gro_complete);
2871 
2872 #ifdef CONFIG_TCP_MD5SIG
2873 static unsigned long tcp_md5sig_users;
2874 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
2875 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2876 
2877 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2878 {
2879 	int cpu;
2880 
2881 	for_each_possible_cpu(cpu) {
2882 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2883 
2884 		if (p->md5_desc.tfm)
2885 			crypto_free_hash(p->md5_desc.tfm);
2886 	}
2887 	free_percpu(pool);
2888 }
2889 
2890 void tcp_free_md5sig_pool(void)
2891 {
2892 	struct tcp_md5sig_pool __percpu *pool = NULL;
2893 
2894 	spin_lock_bh(&tcp_md5sig_pool_lock);
2895 	if (--tcp_md5sig_users == 0) {
2896 		pool = tcp_md5sig_pool;
2897 		tcp_md5sig_pool = NULL;
2898 	}
2899 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2900 	if (pool)
2901 		__tcp_free_md5sig_pool(pool);
2902 }
2903 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2904 
2905 static struct tcp_md5sig_pool __percpu *
2906 __tcp_alloc_md5sig_pool(struct sock *sk)
2907 {
2908 	int cpu;
2909 	struct tcp_md5sig_pool __percpu *pool;
2910 
2911 	pool = alloc_percpu(struct tcp_md5sig_pool);
2912 	if (!pool)
2913 		return NULL;
2914 
2915 	for_each_possible_cpu(cpu) {
2916 		struct crypto_hash *hash;
2917 
2918 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2919 		if (!hash || IS_ERR(hash))
2920 			goto out_free;
2921 
2922 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2923 	}
2924 	return pool;
2925 out_free:
2926 	__tcp_free_md5sig_pool(pool);
2927 	return NULL;
2928 }
2929 
2930 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2931 {
2932 	struct tcp_md5sig_pool __percpu *pool;
2933 	int alloc = 0;
2934 
2935 retry:
2936 	spin_lock_bh(&tcp_md5sig_pool_lock);
2937 	pool = tcp_md5sig_pool;
2938 	if (tcp_md5sig_users++ == 0) {
2939 		alloc = 1;
2940 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2941 	} else if (!pool) {
2942 		tcp_md5sig_users--;
2943 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2944 		cpu_relax();
2945 		goto retry;
2946 	} else
2947 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2948 
2949 	if (alloc) {
2950 		/* we cannot hold spinlock here because this may sleep. */
2951 		struct tcp_md5sig_pool __percpu *p;
2952 
2953 		p = __tcp_alloc_md5sig_pool(sk);
2954 		spin_lock_bh(&tcp_md5sig_pool_lock);
2955 		if (!p) {
2956 			tcp_md5sig_users--;
2957 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2958 			return NULL;
2959 		}
2960 		pool = tcp_md5sig_pool;
2961 		if (pool) {
2962 			/* oops, it has already been assigned. */
2963 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2964 			__tcp_free_md5sig_pool(p);
2965 		} else {
2966 			tcp_md5sig_pool = pool = p;
2967 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2968 		}
2969 	}
2970 	return pool;
2971 }
2972 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2973 
2974 
2975 /**
2976  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2977  *
2978  *	We use percpu structure, so if we succeed, we exit with preemption
2979  *	and BH disabled, to make sure another thread or softirq handling
2980  *	wont try to get same context.
2981  */
2982 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2983 {
2984 	struct tcp_md5sig_pool __percpu *p;
2985 
2986 	local_bh_disable();
2987 
2988 	spin_lock(&tcp_md5sig_pool_lock);
2989 	p = tcp_md5sig_pool;
2990 	if (p)
2991 		tcp_md5sig_users++;
2992 	spin_unlock(&tcp_md5sig_pool_lock);
2993 
2994 	if (p)
2995 		return this_cpu_ptr(p);
2996 
2997 	local_bh_enable();
2998 	return NULL;
2999 }
3000 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3001 
3002 void tcp_put_md5sig_pool(void)
3003 {
3004 	local_bh_enable();
3005 	tcp_free_md5sig_pool();
3006 }
3007 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3008 
3009 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3010 			const struct tcphdr *th)
3011 {
3012 	struct scatterlist sg;
3013 	struct tcphdr hdr;
3014 	int err;
3015 
3016 	/* We are not allowed to change tcphdr, make a local copy */
3017 	memcpy(&hdr, th, sizeof(hdr));
3018 	hdr.check = 0;
3019 
3020 	/* options aren't included in the hash */
3021 	sg_init_one(&sg, &hdr, sizeof(hdr));
3022 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3023 	return err;
3024 }
3025 EXPORT_SYMBOL(tcp_md5_hash_header);
3026 
3027 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3028 			  const struct sk_buff *skb, unsigned int header_len)
3029 {
3030 	struct scatterlist sg;
3031 	const struct tcphdr *tp = tcp_hdr(skb);
3032 	struct hash_desc *desc = &hp->md5_desc;
3033 	unsigned i;
3034 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3035 				       skb_headlen(skb) - header_len : 0;
3036 	const struct skb_shared_info *shi = skb_shinfo(skb);
3037 	struct sk_buff *frag_iter;
3038 
3039 	sg_init_table(&sg, 1);
3040 
3041 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3042 	if (crypto_hash_update(desc, &sg, head_data_len))
3043 		return 1;
3044 
3045 	for (i = 0; i < shi->nr_frags; ++i) {
3046 		const struct skb_frag_struct *f = &shi->frags[i];
3047 		struct page *page = skb_frag_page(f);
3048 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3049 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3050 			return 1;
3051 	}
3052 
3053 	skb_walk_frags(skb, frag_iter)
3054 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3055 			return 1;
3056 
3057 	return 0;
3058 }
3059 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3060 
3061 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3062 {
3063 	struct scatterlist sg;
3064 
3065 	sg_init_one(&sg, key->key, key->keylen);
3066 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3067 }
3068 EXPORT_SYMBOL(tcp_md5_hash_key);
3069 
3070 #endif
3071 
3072 /**
3073  * Each Responder maintains up to two secret values concurrently for
3074  * efficient secret rollover.  Each secret value has 4 states:
3075  *
3076  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3077  *    Generates new Responder-Cookies, but not yet used for primary
3078  *    verification.  This is a short-term state, typically lasting only
3079  *    one round trip time (RTT).
3080  *
3081  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3082  *    Used both for generation and primary verification.
3083  *
3084  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3085  *    Used for verification, until the first failure that can be
3086  *    verified by the newer Generating secret.  At that time, this
3087  *    cookie's state is changed to Secondary, and the Generating
3088  *    cookie's state is changed to Primary.  This is a short-term state,
3089  *    typically lasting only one round trip time (RTT).
3090  *
3091  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3092  *    Used for secondary verification, after primary verification
3093  *    failures.  This state lasts no more than twice the Maximum Segment
3094  *    Lifetime (2MSL).  Then, the secret is discarded.
3095  */
3096 struct tcp_cookie_secret {
3097 	/* The secret is divided into two parts.  The digest part is the
3098 	 * equivalent of previously hashing a secret and saving the state,
3099 	 * and serves as an initialization vector (IV).  The message part
3100 	 * serves as the trailing secret.
3101 	 */
3102 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3103 	unsigned long			expires;
3104 };
3105 
3106 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3107 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3108 #define TCP_SECRET_LIFE (HZ * 600)
3109 
3110 static struct tcp_cookie_secret tcp_secret_one;
3111 static struct tcp_cookie_secret tcp_secret_two;
3112 
3113 /* Essentially a circular list, without dynamic allocation. */
3114 static struct tcp_cookie_secret *tcp_secret_generating;
3115 static struct tcp_cookie_secret *tcp_secret_primary;
3116 static struct tcp_cookie_secret *tcp_secret_retiring;
3117 static struct tcp_cookie_secret *tcp_secret_secondary;
3118 
3119 static DEFINE_SPINLOCK(tcp_secret_locker);
3120 
3121 /* Select a pseudo-random word in the cookie workspace.
3122  */
3123 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3124 {
3125 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3126 }
3127 
3128 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3129  * Called in softirq context.
3130  * Returns: 0 for success.
3131  */
3132 int tcp_cookie_generator(u32 *bakery)
3133 {
3134 	unsigned long jiffy = jiffies;
3135 
3136 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3137 		spin_lock_bh(&tcp_secret_locker);
3138 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3139 			/* refreshed by another */
3140 			memcpy(bakery,
3141 			       &tcp_secret_generating->secrets[0],
3142 			       COOKIE_WORKSPACE_WORDS);
3143 		} else {
3144 			/* still needs refreshing */
3145 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3146 
3147 			/* The first time, paranoia assumes that the
3148 			 * randomization function isn't as strong.  But,
3149 			 * this secret initialization is delayed until
3150 			 * the last possible moment (packet arrival).
3151 			 * Although that time is observable, it is
3152 			 * unpredictably variable.  Mash in the most
3153 			 * volatile clock bits available, and expire the
3154 			 * secret extra quickly.
3155 			 */
3156 			if (unlikely(tcp_secret_primary->expires ==
3157 				     tcp_secret_secondary->expires)) {
3158 				struct timespec tv;
3159 
3160 				getnstimeofday(&tv);
3161 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3162 					(u32)tv.tv_nsec;
3163 
3164 				tcp_secret_secondary->expires = jiffy
3165 					+ TCP_SECRET_1MSL
3166 					+ (0x0f & tcp_cookie_work(bakery, 0));
3167 			} else {
3168 				tcp_secret_secondary->expires = jiffy
3169 					+ TCP_SECRET_LIFE
3170 					+ (0xff & tcp_cookie_work(bakery, 1));
3171 				tcp_secret_primary->expires = jiffy
3172 					+ TCP_SECRET_2MSL
3173 					+ (0x1f & tcp_cookie_work(bakery, 2));
3174 			}
3175 			memcpy(&tcp_secret_secondary->secrets[0],
3176 			       bakery, COOKIE_WORKSPACE_WORDS);
3177 
3178 			rcu_assign_pointer(tcp_secret_generating,
3179 					   tcp_secret_secondary);
3180 			rcu_assign_pointer(tcp_secret_retiring,
3181 					   tcp_secret_primary);
3182 			/*
3183 			 * Neither call_rcu() nor synchronize_rcu() needed.
3184 			 * Retiring data is not freed.  It is replaced after
3185 			 * further (locked) pointer updates, and a quiet time
3186 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3187 			 */
3188 		}
3189 		spin_unlock_bh(&tcp_secret_locker);
3190 	} else {
3191 		rcu_read_lock_bh();
3192 		memcpy(bakery,
3193 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3194 		       COOKIE_WORKSPACE_WORDS);
3195 		rcu_read_unlock_bh();
3196 	}
3197 	return 0;
3198 }
3199 EXPORT_SYMBOL(tcp_cookie_generator);
3200 
3201 void tcp_done(struct sock *sk)
3202 {
3203 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3204 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3205 
3206 	tcp_set_state(sk, TCP_CLOSE);
3207 	tcp_clear_xmit_timers(sk);
3208 
3209 	sk->sk_shutdown = SHUTDOWN_MASK;
3210 
3211 	if (!sock_flag(sk, SOCK_DEAD))
3212 		sk->sk_state_change(sk);
3213 	else
3214 		inet_csk_destroy_sock(sk);
3215 }
3216 EXPORT_SYMBOL_GPL(tcp_done);
3217 
3218 extern struct tcp_congestion_ops tcp_reno;
3219 
3220 static __initdata unsigned long thash_entries;
3221 static int __init set_thash_entries(char *str)
3222 {
3223 	if (!str)
3224 		return 0;
3225 	thash_entries = simple_strtoul(str, &str, 0);
3226 	return 1;
3227 }
3228 __setup("thash_entries=", set_thash_entries);
3229 
3230 void tcp_init_mem(struct net *net)
3231 {
3232 	unsigned long limit = nr_free_buffer_pages() / 8;
3233 	limit = max(limit, 128UL);
3234 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3235 	net->ipv4.sysctl_tcp_mem[1] = limit;
3236 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3237 }
3238 
3239 void __init tcp_init(void)
3240 {
3241 	struct sk_buff *skb = NULL;
3242 	unsigned long limit;
3243 	int i, max_share, cnt;
3244 	unsigned long jiffy = jiffies;
3245 
3246 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3247 
3248 	percpu_counter_init(&tcp_sockets_allocated, 0);
3249 	percpu_counter_init(&tcp_orphan_count, 0);
3250 	tcp_hashinfo.bind_bucket_cachep =
3251 		kmem_cache_create("tcp_bind_bucket",
3252 				  sizeof(struct inet_bind_bucket), 0,
3253 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3254 
3255 	/* Size and allocate the main established and bind bucket
3256 	 * hash tables.
3257 	 *
3258 	 * The methodology is similar to that of the buffer cache.
3259 	 */
3260 	tcp_hashinfo.ehash =
3261 		alloc_large_system_hash("TCP established",
3262 					sizeof(struct inet_ehash_bucket),
3263 					thash_entries,
3264 					(totalram_pages >= 128 * 1024) ?
3265 					13 : 15,
3266 					0,
3267 					NULL,
3268 					&tcp_hashinfo.ehash_mask,
3269 					thash_entries ? 0 : 512 * 1024);
3270 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3271 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3272 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3273 	}
3274 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3275 		panic("TCP: failed to alloc ehash_locks");
3276 	tcp_hashinfo.bhash =
3277 		alloc_large_system_hash("TCP bind",
3278 					sizeof(struct inet_bind_hashbucket),
3279 					tcp_hashinfo.ehash_mask + 1,
3280 					(totalram_pages >= 128 * 1024) ?
3281 					13 : 15,
3282 					0,
3283 					&tcp_hashinfo.bhash_size,
3284 					NULL,
3285 					64 * 1024);
3286 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3287 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3288 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3289 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3290 	}
3291 
3292 
3293 	cnt = tcp_hashinfo.ehash_mask + 1;
3294 
3295 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3296 	sysctl_tcp_max_orphans = cnt / 2;
3297 	sysctl_max_syn_backlog = max(128, cnt / 256);
3298 
3299 	tcp_init_mem(&init_net);
3300 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3301 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 10);
3302 	limit = max(limit, 128UL);
3303 	max_share = min(4UL*1024*1024, limit);
3304 
3305 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3306 	sysctl_tcp_wmem[1] = 16*1024;
3307 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3308 
3309 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3310 	sysctl_tcp_rmem[1] = 87380;
3311 	sysctl_tcp_rmem[2] = max(87380, max_share);
3312 
3313 	printk(KERN_INFO "TCP: Hash tables configured "
3314 	       "(established %u bind %u)\n",
3315 	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3316 
3317 	tcp_register_congestion_control(&tcp_reno);
3318 
3319 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3320 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3321 	tcp_secret_one.expires = jiffy; /* past due */
3322 	tcp_secret_two.expires = jiffy; /* past due */
3323 	tcp_secret_generating = &tcp_secret_one;
3324 	tcp_secret_primary = &tcp_secret_one;
3325 	tcp_secret_retiring = &tcp_secret_two;
3326 	tcp_secret_secondary = &tcp_secret_two;
3327 }
3328