xref: /openbmc/linux/net/ipv4/tcp.c (revision d40d48e1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	unsigned long val;
330 
331 	if (READ_ONCE(tcp_memory_pressure))
332 		return;
333 	val = jiffies;
334 
335 	if (!val)
336 		val--;
337 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 }
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341 
342 void tcp_leave_memory_pressure(struct sock *sk)
343 {
344 	unsigned long val;
345 
346 	if (!READ_ONCE(tcp_memory_pressure))
347 		return;
348 	val = xchg(&tcp_memory_pressure, 0);
349 	if (val)
350 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 			      jiffies_to_msecs(jiffies - val));
352 }
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354 
355 /* Convert seconds to retransmits based on initial and max timeout */
356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 {
358 	u8 res = 0;
359 
360 	if (seconds > 0) {
361 		int period = timeout;
362 
363 		res = 1;
364 		while (seconds > period && res < 255) {
365 			res++;
366 			timeout <<= 1;
367 			if (timeout > rto_max)
368 				timeout = rto_max;
369 			period += timeout;
370 		}
371 	}
372 	return res;
373 }
374 
375 /* Convert retransmits to seconds based on initial and max timeout */
376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 {
378 	int period = 0;
379 
380 	if (retrans > 0) {
381 		period = timeout;
382 		while (--retrans) {
383 			timeout <<= 1;
384 			if (timeout > rto_max)
385 				timeout = rto_max;
386 			period += timeout;
387 		}
388 	}
389 	return period;
390 }
391 
392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 {
394 	u32 rate = READ_ONCE(tp->rate_delivered);
395 	u32 intv = READ_ONCE(tp->rate_interval_us);
396 	u64 rate64 = 0;
397 
398 	if (rate && intv) {
399 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 		do_div(rate64, intv);
401 	}
402 	return rate64;
403 }
404 
405 /* Address-family independent initialization for a tcp_sock.
406  *
407  * NOTE: A lot of things set to zero explicitly by call to
408  *       sk_alloc() so need not be done here.
409  */
410 void tcp_init_sock(struct sock *sk)
411 {
412 	struct inet_connection_sock *icsk = inet_csk(sk);
413 	struct tcp_sock *tp = tcp_sk(sk);
414 
415 	tp->out_of_order_queue = RB_ROOT;
416 	sk->tcp_rtx_queue = RB_ROOT;
417 	tcp_init_xmit_timers(sk);
418 	INIT_LIST_HEAD(&tp->tsq_node);
419 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
420 
421 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
422 	icsk->icsk_rto_min = TCP_RTO_MIN;
423 	icsk->icsk_delack_max = TCP_DELACK_MAX;
424 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
425 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
426 
427 	/* So many TCP implementations out there (incorrectly) count the
428 	 * initial SYN frame in their delayed-ACK and congestion control
429 	 * algorithms that we must have the following bandaid to talk
430 	 * efficiently to them.  -DaveM
431 	 */
432 	tp->snd_cwnd = TCP_INIT_CWND;
433 
434 	/* There's a bubble in the pipe until at least the first ACK. */
435 	tp->app_limited = ~0U;
436 
437 	/* See draft-stevens-tcpca-spec-01 for discussion of the
438 	 * initialization of these values.
439 	 */
440 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 	tp->snd_cwnd_clamp = ~0;
442 	tp->mss_cache = TCP_MSS_DEFAULT;
443 
444 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
445 	tcp_assign_congestion_control(sk);
446 
447 	tp->tsoffset = 0;
448 	tp->rack.reo_wnd_steps = 1;
449 
450 	sk->sk_write_space = sk_stream_write_space;
451 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452 
453 	icsk->icsk_sync_mss = tcp_sync_mss;
454 
455 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
456 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
457 
458 	sk_sockets_allocated_inc(sk);
459 	sk->sk_route_forced_caps = NETIF_F_GSO;
460 }
461 EXPORT_SYMBOL(tcp_init_sock);
462 
463 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
464 {
465 	struct sk_buff *skb = tcp_write_queue_tail(sk);
466 
467 	if (tsflags && skb) {
468 		struct skb_shared_info *shinfo = skb_shinfo(skb);
469 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
470 
471 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
472 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
473 			tcb->txstamp_ack = 1;
474 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
475 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
476 	}
477 }
478 
479 static bool tcp_stream_is_readable(struct sock *sk, int target)
480 {
481 	if (tcp_epollin_ready(sk, target))
482 		return true;
483 	return sk_is_readable(sk);
484 }
485 
486 /*
487  *	Wait for a TCP event.
488  *
489  *	Note that we don't need to lock the socket, as the upper poll layers
490  *	take care of normal races (between the test and the event) and we don't
491  *	go look at any of the socket buffers directly.
492  */
493 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
494 {
495 	__poll_t mask;
496 	struct sock *sk = sock->sk;
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	int state;
499 
500 	sock_poll_wait(file, sock, wait);
501 
502 	state = inet_sk_state_load(sk);
503 	if (state == TCP_LISTEN)
504 		return inet_csk_listen_poll(sk);
505 
506 	/* Socket is not locked. We are protected from async events
507 	 * by poll logic and correct handling of state changes
508 	 * made by other threads is impossible in any case.
509 	 */
510 
511 	mask = 0;
512 
513 	/*
514 	 * EPOLLHUP is certainly not done right. But poll() doesn't
515 	 * have a notion of HUP in just one direction, and for a
516 	 * socket the read side is more interesting.
517 	 *
518 	 * Some poll() documentation says that EPOLLHUP is incompatible
519 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
520 	 * all. But careful, it tends to be safer to return too many
521 	 * bits than too few, and you can easily break real applications
522 	 * if you don't tell them that something has hung up!
523 	 *
524 	 * Check-me.
525 	 *
526 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
527 	 * our fs/select.c). It means that after we received EOF,
528 	 * poll always returns immediately, making impossible poll() on write()
529 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
530 	 * if and only if shutdown has been made in both directions.
531 	 * Actually, it is interesting to look how Solaris and DUX
532 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
533 	 * then we could set it on SND_SHUTDOWN. BTW examples given
534 	 * in Stevens' books assume exactly this behaviour, it explains
535 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
536 	 *
537 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
538 	 * blocking on fresh not-connected or disconnected socket. --ANK
539 	 */
540 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
541 		mask |= EPOLLHUP;
542 	if (sk->sk_shutdown & RCV_SHUTDOWN)
543 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
544 
545 	/* Connected or passive Fast Open socket? */
546 	if (state != TCP_SYN_SENT &&
547 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
548 		int target = sock_rcvlowat(sk, 0, INT_MAX);
549 
550 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
551 		    !sock_flag(sk, SOCK_URGINLINE) &&
552 		    tp->urg_data)
553 			target++;
554 
555 		if (tcp_stream_is_readable(sk, target))
556 			mask |= EPOLLIN | EPOLLRDNORM;
557 
558 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
559 			if (__sk_stream_is_writeable(sk, 1)) {
560 				mask |= EPOLLOUT | EPOLLWRNORM;
561 			} else {  /* send SIGIO later */
562 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
563 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
564 
565 				/* Race breaker. If space is freed after
566 				 * wspace test but before the flags are set,
567 				 * IO signal will be lost. Memory barrier
568 				 * pairs with the input side.
569 				 */
570 				smp_mb__after_atomic();
571 				if (__sk_stream_is_writeable(sk, 1))
572 					mask |= EPOLLOUT | EPOLLWRNORM;
573 			}
574 		} else
575 			mask |= EPOLLOUT | EPOLLWRNORM;
576 
577 		if (tp->urg_data & TCP_URG_VALID)
578 			mask |= EPOLLPRI;
579 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
580 		/* Active TCP fastopen socket with defer_connect
581 		 * Return EPOLLOUT so application can call write()
582 		 * in order for kernel to generate SYN+data
583 		 */
584 		mask |= EPOLLOUT | EPOLLWRNORM;
585 	}
586 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
587 	smp_rmb();
588 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
589 		mask |= EPOLLERR;
590 
591 	return mask;
592 }
593 EXPORT_SYMBOL(tcp_poll);
594 
595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
596 {
597 	struct tcp_sock *tp = tcp_sk(sk);
598 	int answ;
599 	bool slow;
600 
601 	switch (cmd) {
602 	case SIOCINQ:
603 		if (sk->sk_state == TCP_LISTEN)
604 			return -EINVAL;
605 
606 		slow = lock_sock_fast(sk);
607 		answ = tcp_inq(sk);
608 		unlock_sock_fast(sk, slow);
609 		break;
610 	case SIOCATMARK:
611 		answ = tp->urg_data &&
612 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
613 		break;
614 	case SIOCOUTQ:
615 		if (sk->sk_state == TCP_LISTEN)
616 			return -EINVAL;
617 
618 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 			answ = 0;
620 		else
621 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
622 		break;
623 	case SIOCOUTQNSD:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) -
631 			       READ_ONCE(tp->snd_nxt);
632 		break;
633 	default:
634 		return -ENOIOCTLCMD;
635 	}
636 
637 	return put_user(answ, (int __user *)arg);
638 }
639 EXPORT_SYMBOL(tcp_ioctl);
640 
641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
642 {
643 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
644 	tp->pushed_seq = tp->write_seq;
645 }
646 
647 static inline bool forced_push(const struct tcp_sock *tp)
648 {
649 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
650 }
651 
652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
656 
657 	tcb->seq     = tcb->end_seq = tp->write_seq;
658 	tcb->tcp_flags = TCPHDR_ACK;
659 	__skb_header_release(skb);
660 	tcp_add_write_queue_tail(sk, skb);
661 	sk_wmem_queued_add(sk, skb->truesize);
662 	sk_mem_charge(sk, skb->truesize);
663 	if (tp->nonagle & TCP_NAGLE_PUSH)
664 		tp->nonagle &= ~TCP_NAGLE_PUSH;
665 
666 	tcp_slow_start_after_idle_check(sk);
667 }
668 
669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
670 {
671 	if (flags & MSG_OOB)
672 		tp->snd_up = tp->write_seq;
673 }
674 
675 /* If a not yet filled skb is pushed, do not send it if
676  * we have data packets in Qdisc or NIC queues :
677  * Because TX completion will happen shortly, it gives a chance
678  * to coalesce future sendmsg() payload into this skb, without
679  * need for a timer, and with no latency trade off.
680  * As packets containing data payload have a bigger truesize
681  * than pure acks (dataless) packets, the last checks prevent
682  * autocorking if we only have an ACK in Qdisc/NIC queues,
683  * or if TX completion was delayed after we processed ACK packet.
684  */
685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 				int size_goal)
687 {
688 	return skb->len < size_goal &&
689 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
690 	       !tcp_rtx_queue_empty(sk) &&
691 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
692 }
693 
694 void tcp_push(struct sock *sk, int flags, int mss_now,
695 	      int nonagle, int size_goal)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 	struct sk_buff *skb;
699 
700 	skb = tcp_write_queue_tail(sk);
701 	if (!skb)
702 		return;
703 	if (!(flags & MSG_MORE) || forced_push(tp))
704 		tcp_mark_push(tp, skb);
705 
706 	tcp_mark_urg(tp, flags);
707 
708 	if (tcp_should_autocork(sk, skb, size_goal)) {
709 
710 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
711 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
712 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
713 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
714 		}
715 		/* It is possible TX completion already happened
716 		 * before we set TSQ_THROTTLED.
717 		 */
718 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
719 			return;
720 	}
721 
722 	if (flags & MSG_MORE)
723 		nonagle = TCP_NAGLE_CORK;
724 
725 	__tcp_push_pending_frames(sk, mss_now, nonagle);
726 }
727 
728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
729 				unsigned int offset, size_t len)
730 {
731 	struct tcp_splice_state *tss = rd_desc->arg.data;
732 	int ret;
733 
734 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
735 			      min(rd_desc->count, len), tss->flags);
736 	if (ret > 0)
737 		rd_desc->count -= ret;
738 	return ret;
739 }
740 
741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
742 {
743 	/* Store TCP splice context information in read_descriptor_t. */
744 	read_descriptor_t rd_desc = {
745 		.arg.data = tss,
746 		.count	  = tss->len,
747 	};
748 
749 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
750 }
751 
752 /**
753  *  tcp_splice_read - splice data from TCP socket to a pipe
754  * @sock:	socket to splice from
755  * @ppos:	position (not valid)
756  * @pipe:	pipe to splice to
757  * @len:	number of bytes to splice
758  * @flags:	splice modifier flags
759  *
760  * Description:
761  *    Will read pages from given socket and fill them into a pipe.
762  *
763  **/
764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
765 			struct pipe_inode_info *pipe, size_t len,
766 			unsigned int flags)
767 {
768 	struct sock *sk = sock->sk;
769 	struct tcp_splice_state tss = {
770 		.pipe = pipe,
771 		.len = len,
772 		.flags = flags,
773 	};
774 	long timeo;
775 	ssize_t spliced;
776 	int ret;
777 
778 	sock_rps_record_flow(sk);
779 	/*
780 	 * We can't seek on a socket input
781 	 */
782 	if (unlikely(*ppos))
783 		return -ESPIPE;
784 
785 	ret = spliced = 0;
786 
787 	lock_sock(sk);
788 
789 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
790 	while (tss.len) {
791 		ret = __tcp_splice_read(sk, &tss);
792 		if (ret < 0)
793 			break;
794 		else if (!ret) {
795 			if (spliced)
796 				break;
797 			if (sock_flag(sk, SOCK_DONE))
798 				break;
799 			if (sk->sk_err) {
800 				ret = sock_error(sk);
801 				break;
802 			}
803 			if (sk->sk_shutdown & RCV_SHUTDOWN)
804 				break;
805 			if (sk->sk_state == TCP_CLOSE) {
806 				/*
807 				 * This occurs when user tries to read
808 				 * from never connected socket.
809 				 */
810 				ret = -ENOTCONN;
811 				break;
812 			}
813 			if (!timeo) {
814 				ret = -EAGAIN;
815 				break;
816 			}
817 			/* if __tcp_splice_read() got nothing while we have
818 			 * an skb in receive queue, we do not want to loop.
819 			 * This might happen with URG data.
820 			 */
821 			if (!skb_queue_empty(&sk->sk_receive_queue))
822 				break;
823 			sk_wait_data(sk, &timeo, NULL);
824 			if (signal_pending(current)) {
825 				ret = sock_intr_errno(timeo);
826 				break;
827 			}
828 			continue;
829 		}
830 		tss.len -= ret;
831 		spliced += ret;
832 
833 		if (!timeo)
834 			break;
835 		release_sock(sk);
836 		lock_sock(sk);
837 
838 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
839 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
840 		    signal_pending(current))
841 			break;
842 	}
843 
844 	release_sock(sk);
845 
846 	if (spliced)
847 		return spliced;
848 
849 	return ret;
850 }
851 EXPORT_SYMBOL(tcp_splice_read);
852 
853 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
854 				     bool force_schedule)
855 {
856 	struct sk_buff *skb;
857 
858 	if (unlikely(tcp_under_memory_pressure(sk)))
859 		sk_mem_reclaim_partial(sk);
860 
861 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
862 	if (likely(skb)) {
863 		bool mem_scheduled;
864 
865 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
866 		if (force_schedule) {
867 			mem_scheduled = true;
868 			sk_forced_mem_schedule(sk, skb->truesize);
869 		} else {
870 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 		}
872 		if (likely(mem_scheduled)) {
873 			skb_reserve(skb, MAX_TCP_HEADER);
874 			skb->ip_summed = CHECKSUM_PARTIAL;
875 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 			return skb;
877 		}
878 		__kfree_skb(skb);
879 	} else {
880 		sk->sk_prot->enter_memory_pressure(sk);
881 		sk_stream_moderate_sndbuf(sk);
882 	}
883 	return NULL;
884 }
885 
886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 				       int large_allowed)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	u32 new_size_goal, size_goal;
891 
892 	if (!large_allowed)
893 		return mss_now;
894 
895 	/* Note : tcp_tso_autosize() will eventually split this later */
896 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
897 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
898 
899 	/* We try hard to avoid divides here */
900 	size_goal = tp->gso_segs * mss_now;
901 	if (unlikely(new_size_goal < size_goal ||
902 		     new_size_goal >= size_goal + mss_now)) {
903 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 				     sk->sk_gso_max_segs);
905 		size_goal = tp->gso_segs * mss_now;
906 	}
907 
908 	return max(size_goal, mss_now);
909 }
910 
911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 	int mss_now;
914 
915 	mss_now = tcp_current_mss(sk);
916 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917 
918 	return mss_now;
919 }
920 
921 /* In some cases, both sendpage() and sendmsg() could have added
922  * an skb to the write queue, but failed adding payload on it.
923  * We need to remove it to consume less memory, but more
924  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925  * users.
926  */
927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 	struct sk_buff *skb = tcp_write_queue_tail(sk);
930 
931 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 		tcp_unlink_write_queue(skb, sk);
933 		if (tcp_write_queue_empty(sk))
934 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 		tcp_wmem_free_skb(sk, skb);
936 	}
937 }
938 
939 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
940 				      struct page *page, int offset, size_t *size)
941 {
942 	struct sk_buff *skb = tcp_write_queue_tail(sk);
943 	struct tcp_sock *tp = tcp_sk(sk);
944 	bool can_coalesce;
945 	int copy, i;
946 
947 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
948 	    !tcp_skb_can_collapse_to(skb)) {
949 new_segment:
950 		if (!sk_stream_memory_free(sk))
951 			return NULL;
952 
953 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
954 					   tcp_rtx_and_write_queues_empty(sk));
955 		if (!skb)
956 			return NULL;
957 
958 #ifdef CONFIG_TLS_DEVICE
959 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
960 #endif
961 		tcp_skb_entail(sk, skb);
962 		copy = size_goal;
963 	}
964 
965 	if (copy > *size)
966 		copy = *size;
967 
968 	i = skb_shinfo(skb)->nr_frags;
969 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
970 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
971 		tcp_mark_push(tp, skb);
972 		goto new_segment;
973 	}
974 	if (!sk_wmem_schedule(sk, copy))
975 		return NULL;
976 
977 	if (can_coalesce) {
978 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
979 	} else {
980 		get_page(page);
981 		skb_fill_page_desc(skb, i, page, offset, copy);
982 	}
983 
984 	if (!(flags & MSG_NO_SHARED_FRAGS))
985 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
986 
987 	skb->len += copy;
988 	skb->data_len += copy;
989 	skb->truesize += copy;
990 	sk_wmem_queued_add(sk, copy);
991 	sk_mem_charge(sk, copy);
992 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
993 	TCP_SKB_CB(skb)->end_seq += copy;
994 	tcp_skb_pcount_set(skb, 0);
995 
996 	*size = copy;
997 	return skb;
998 }
999 
1000 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1001 			 size_t size, int flags)
1002 {
1003 	struct tcp_sock *tp = tcp_sk(sk);
1004 	int mss_now, size_goal;
1005 	int err;
1006 	ssize_t copied;
1007 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1008 
1009 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1010 	    WARN_ONCE(!sendpage_ok(page),
1011 		      "page must not be a Slab one and have page_count > 0"))
1012 		return -EINVAL;
1013 
1014 	/* Wait for a connection to finish. One exception is TCP Fast Open
1015 	 * (passive side) where data is allowed to be sent before a connection
1016 	 * is fully established.
1017 	 */
1018 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1019 	    !tcp_passive_fastopen(sk)) {
1020 		err = sk_stream_wait_connect(sk, &timeo);
1021 		if (err != 0)
1022 			goto out_err;
1023 	}
1024 
1025 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1026 
1027 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1028 	copied = 0;
1029 
1030 	err = -EPIPE;
1031 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1032 		goto out_err;
1033 
1034 	while (size > 0) {
1035 		struct sk_buff *skb;
1036 		size_t copy = size;
1037 
1038 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1039 		if (!skb)
1040 			goto wait_for_space;
1041 
1042 		if (!copied)
1043 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1044 
1045 		copied += copy;
1046 		offset += copy;
1047 		size -= copy;
1048 		if (!size)
1049 			goto out;
1050 
1051 		if (skb->len < size_goal || (flags & MSG_OOB))
1052 			continue;
1053 
1054 		if (forced_push(tp)) {
1055 			tcp_mark_push(tp, skb);
1056 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1057 		} else if (skb == tcp_send_head(sk))
1058 			tcp_push_one(sk, mss_now);
1059 		continue;
1060 
1061 wait_for_space:
1062 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1063 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1064 			 TCP_NAGLE_PUSH, size_goal);
1065 
1066 		err = sk_stream_wait_memory(sk, &timeo);
1067 		if (err != 0)
1068 			goto do_error;
1069 
1070 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1071 	}
1072 
1073 out:
1074 	if (copied) {
1075 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1076 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1077 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1078 	}
1079 	return copied;
1080 
1081 do_error:
1082 	tcp_remove_empty_skb(sk);
1083 	if (copied)
1084 		goto out;
1085 out_err:
1086 	/* make sure we wake any epoll edge trigger waiter */
1087 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1088 		sk->sk_write_space(sk);
1089 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1090 	}
1091 	return sk_stream_error(sk, flags, err);
1092 }
1093 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1094 
1095 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1096 			size_t size, int flags)
1097 {
1098 	if (!(sk->sk_route_caps & NETIF_F_SG))
1099 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1100 
1101 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1102 
1103 	return do_tcp_sendpages(sk, page, offset, size, flags);
1104 }
1105 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1106 
1107 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1108 		 size_t size, int flags)
1109 {
1110 	int ret;
1111 
1112 	lock_sock(sk);
1113 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1114 	release_sock(sk);
1115 
1116 	return ret;
1117 }
1118 EXPORT_SYMBOL(tcp_sendpage);
1119 
1120 void tcp_free_fastopen_req(struct tcp_sock *tp)
1121 {
1122 	if (tp->fastopen_req) {
1123 		kfree(tp->fastopen_req);
1124 		tp->fastopen_req = NULL;
1125 	}
1126 }
1127 
1128 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1129 				int *copied, size_t size,
1130 				struct ubuf_info *uarg)
1131 {
1132 	struct tcp_sock *tp = tcp_sk(sk);
1133 	struct inet_sock *inet = inet_sk(sk);
1134 	struct sockaddr *uaddr = msg->msg_name;
1135 	int err, flags;
1136 
1137 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1138 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1139 	     uaddr->sa_family == AF_UNSPEC))
1140 		return -EOPNOTSUPP;
1141 	if (tp->fastopen_req)
1142 		return -EALREADY; /* Another Fast Open is in progress */
1143 
1144 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1145 				   sk->sk_allocation);
1146 	if (unlikely(!tp->fastopen_req))
1147 		return -ENOBUFS;
1148 	tp->fastopen_req->data = msg;
1149 	tp->fastopen_req->size = size;
1150 	tp->fastopen_req->uarg = uarg;
1151 
1152 	if (inet->defer_connect) {
1153 		err = tcp_connect(sk);
1154 		/* Same failure procedure as in tcp_v4/6_connect */
1155 		if (err) {
1156 			tcp_set_state(sk, TCP_CLOSE);
1157 			inet->inet_dport = 0;
1158 			sk->sk_route_caps = 0;
1159 		}
1160 	}
1161 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1163 				    msg->msg_namelen, flags, 1);
1164 	/* fastopen_req could already be freed in __inet_stream_connect
1165 	 * if the connection times out or gets rst
1166 	 */
1167 	if (tp->fastopen_req) {
1168 		*copied = tp->fastopen_req->copied;
1169 		tcp_free_fastopen_req(tp);
1170 		inet->defer_connect = 0;
1171 	}
1172 	return err;
1173 }
1174 
1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176 {
1177 	struct tcp_sock *tp = tcp_sk(sk);
1178 	struct ubuf_info *uarg = NULL;
1179 	struct sk_buff *skb;
1180 	struct sockcm_cookie sockc;
1181 	int flags, err, copied = 0;
1182 	int mss_now = 0, size_goal, copied_syn = 0;
1183 	int process_backlog = 0;
1184 	bool zc = false;
1185 	long timeo;
1186 
1187 	flags = msg->msg_flags;
1188 
1189 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1190 		skb = tcp_write_queue_tail(sk);
1191 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1192 		if (!uarg) {
1193 			err = -ENOBUFS;
1194 			goto out_err;
1195 		}
1196 
1197 		zc = sk->sk_route_caps & NETIF_F_SG;
1198 		if (!zc)
1199 			uarg->zerocopy = 0;
1200 	}
1201 
1202 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1203 	    !tp->repair) {
1204 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1205 		if (err == -EINPROGRESS && copied_syn > 0)
1206 			goto out;
1207 		else if (err)
1208 			goto out_err;
1209 	}
1210 
1211 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1212 
1213 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1214 
1215 	/* Wait for a connection to finish. One exception is TCP Fast Open
1216 	 * (passive side) where data is allowed to be sent before a connection
1217 	 * is fully established.
1218 	 */
1219 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1220 	    !tcp_passive_fastopen(sk)) {
1221 		err = sk_stream_wait_connect(sk, &timeo);
1222 		if (err != 0)
1223 			goto do_error;
1224 	}
1225 
1226 	if (unlikely(tp->repair)) {
1227 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1228 			copied = tcp_send_rcvq(sk, msg, size);
1229 			goto out_nopush;
1230 		}
1231 
1232 		err = -EINVAL;
1233 		if (tp->repair_queue == TCP_NO_QUEUE)
1234 			goto out_err;
1235 
1236 		/* 'common' sending to sendq */
1237 	}
1238 
1239 	sockcm_init(&sockc, sk);
1240 	if (msg->msg_controllen) {
1241 		err = sock_cmsg_send(sk, msg, &sockc);
1242 		if (unlikely(err)) {
1243 			err = -EINVAL;
1244 			goto out_err;
1245 		}
1246 	}
1247 
1248 	/* This should be in poll */
1249 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1250 
1251 	/* Ok commence sending. */
1252 	copied = 0;
1253 
1254 restart:
1255 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1256 
1257 	err = -EPIPE;
1258 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1259 		goto do_error;
1260 
1261 	while (msg_data_left(msg)) {
1262 		int copy = 0;
1263 
1264 		skb = tcp_write_queue_tail(sk);
1265 		if (skb)
1266 			copy = size_goal - skb->len;
1267 
1268 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1269 			bool first_skb;
1270 
1271 new_segment:
1272 			if (!sk_stream_memory_free(sk))
1273 				goto wait_for_space;
1274 
1275 			if (unlikely(process_backlog >= 16)) {
1276 				process_backlog = 0;
1277 				if (sk_flush_backlog(sk))
1278 					goto restart;
1279 			}
1280 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1281 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1282 						   first_skb);
1283 			if (!skb)
1284 				goto wait_for_space;
1285 
1286 			process_backlog++;
1287 
1288 			tcp_skb_entail(sk, skb);
1289 			copy = size_goal;
1290 
1291 			/* All packets are restored as if they have
1292 			 * already been sent. skb_mstamp_ns isn't set to
1293 			 * avoid wrong rtt estimation.
1294 			 */
1295 			if (tp->repair)
1296 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1297 		}
1298 
1299 		/* Try to append data to the end of skb. */
1300 		if (copy > msg_data_left(msg))
1301 			copy = msg_data_left(msg);
1302 
1303 		if (!zc) {
1304 			bool merge = true;
1305 			int i = skb_shinfo(skb)->nr_frags;
1306 			struct page_frag *pfrag = sk_page_frag(sk);
1307 
1308 			if (!sk_page_frag_refill(sk, pfrag))
1309 				goto wait_for_space;
1310 
1311 			if (!skb_can_coalesce(skb, i, pfrag->page,
1312 					      pfrag->offset)) {
1313 				if (i >= sysctl_max_skb_frags) {
1314 					tcp_mark_push(tp, skb);
1315 					goto new_segment;
1316 				}
1317 				merge = false;
1318 			}
1319 
1320 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1321 
1322 			/* skb changing from pure zc to mixed, must charge zc */
1323 			if (unlikely(skb_zcopy_pure(skb))) {
1324 				if (!sk_wmem_schedule(sk, skb->data_len))
1325 					goto wait_for_space;
1326 
1327 				sk_mem_charge(sk, skb->data_len);
1328 				skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
1329 			}
1330 
1331 			if (!sk_wmem_schedule(sk, copy))
1332 				goto wait_for_space;
1333 
1334 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1335 						       pfrag->page,
1336 						       pfrag->offset,
1337 						       copy);
1338 			if (err)
1339 				goto do_error;
1340 
1341 			/* Update the skb. */
1342 			if (merge) {
1343 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1344 			} else {
1345 				skb_fill_page_desc(skb, i, pfrag->page,
1346 						   pfrag->offset, copy);
1347 				page_ref_inc(pfrag->page);
1348 			}
1349 			pfrag->offset += copy;
1350 		} else {
1351 			/* First append to a fragless skb builds initial
1352 			 * pure zerocopy skb
1353 			 */
1354 			if (!skb->len)
1355 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1356 
1357 			if (!skb_zcopy_pure(skb)) {
1358 				if (!sk_wmem_schedule(sk, copy))
1359 					goto wait_for_space;
1360 			}
1361 
1362 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1363 			if (err == -EMSGSIZE || err == -EEXIST) {
1364 				tcp_mark_push(tp, skb);
1365 				goto new_segment;
1366 			}
1367 			if (err < 0)
1368 				goto do_error;
1369 			copy = err;
1370 		}
1371 
1372 		if (!copied)
1373 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1374 
1375 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1376 		TCP_SKB_CB(skb)->end_seq += copy;
1377 		tcp_skb_pcount_set(skb, 0);
1378 
1379 		copied += copy;
1380 		if (!msg_data_left(msg)) {
1381 			if (unlikely(flags & MSG_EOR))
1382 				TCP_SKB_CB(skb)->eor = 1;
1383 			goto out;
1384 		}
1385 
1386 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1387 			continue;
1388 
1389 		if (forced_push(tp)) {
1390 			tcp_mark_push(tp, skb);
1391 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1392 		} else if (skb == tcp_send_head(sk))
1393 			tcp_push_one(sk, mss_now);
1394 		continue;
1395 
1396 wait_for_space:
1397 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1398 		if (copied)
1399 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1400 				 TCP_NAGLE_PUSH, size_goal);
1401 
1402 		err = sk_stream_wait_memory(sk, &timeo);
1403 		if (err != 0)
1404 			goto do_error;
1405 
1406 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1407 	}
1408 
1409 out:
1410 	if (copied) {
1411 		tcp_tx_timestamp(sk, sockc.tsflags);
1412 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1413 	}
1414 out_nopush:
1415 	net_zcopy_put(uarg);
1416 	return copied + copied_syn;
1417 
1418 do_error:
1419 	tcp_remove_empty_skb(sk);
1420 
1421 	if (copied + copied_syn)
1422 		goto out;
1423 out_err:
1424 	net_zcopy_put_abort(uarg, true);
1425 	err = sk_stream_error(sk, flags, err);
1426 	/* make sure we wake any epoll edge trigger waiter */
1427 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1428 		sk->sk_write_space(sk);
1429 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1430 	}
1431 	return err;
1432 }
1433 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1434 
1435 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1436 {
1437 	int ret;
1438 
1439 	lock_sock(sk);
1440 	ret = tcp_sendmsg_locked(sk, msg, size);
1441 	release_sock(sk);
1442 
1443 	return ret;
1444 }
1445 EXPORT_SYMBOL(tcp_sendmsg);
1446 
1447 /*
1448  *	Handle reading urgent data. BSD has very simple semantics for
1449  *	this, no blocking and very strange errors 8)
1450  */
1451 
1452 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1453 {
1454 	struct tcp_sock *tp = tcp_sk(sk);
1455 
1456 	/* No URG data to read. */
1457 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1458 	    tp->urg_data == TCP_URG_READ)
1459 		return -EINVAL;	/* Yes this is right ! */
1460 
1461 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1462 		return -ENOTCONN;
1463 
1464 	if (tp->urg_data & TCP_URG_VALID) {
1465 		int err = 0;
1466 		char c = tp->urg_data;
1467 
1468 		if (!(flags & MSG_PEEK))
1469 			tp->urg_data = TCP_URG_READ;
1470 
1471 		/* Read urgent data. */
1472 		msg->msg_flags |= MSG_OOB;
1473 
1474 		if (len > 0) {
1475 			if (!(flags & MSG_TRUNC))
1476 				err = memcpy_to_msg(msg, &c, 1);
1477 			len = 1;
1478 		} else
1479 			msg->msg_flags |= MSG_TRUNC;
1480 
1481 		return err ? -EFAULT : len;
1482 	}
1483 
1484 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1485 		return 0;
1486 
1487 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1488 	 * the available implementations agree in this case:
1489 	 * this call should never block, independent of the
1490 	 * blocking state of the socket.
1491 	 * Mike <pall@rz.uni-karlsruhe.de>
1492 	 */
1493 	return -EAGAIN;
1494 }
1495 
1496 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1497 {
1498 	struct sk_buff *skb;
1499 	int copied = 0, err = 0;
1500 
1501 	/* XXX -- need to support SO_PEEK_OFF */
1502 
1503 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1504 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1505 		if (err)
1506 			return err;
1507 		copied += skb->len;
1508 	}
1509 
1510 	skb_queue_walk(&sk->sk_write_queue, skb) {
1511 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 		if (err)
1513 			break;
1514 
1515 		copied += skb->len;
1516 	}
1517 
1518 	return err ?: copied;
1519 }
1520 
1521 /* Clean up the receive buffer for full frames taken by the user,
1522  * then send an ACK if necessary.  COPIED is the number of bytes
1523  * tcp_recvmsg has given to the user so far, it speeds up the
1524  * calculation of whether or not we must ACK for the sake of
1525  * a window update.
1526  */
1527 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1528 {
1529 	struct tcp_sock *tp = tcp_sk(sk);
1530 	bool time_to_ack = false;
1531 
1532 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1533 
1534 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1535 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1536 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1537 
1538 	if (inet_csk_ack_scheduled(sk)) {
1539 		const struct inet_connection_sock *icsk = inet_csk(sk);
1540 
1541 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1542 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1543 		    /*
1544 		     * If this read emptied read buffer, we send ACK, if
1545 		     * connection is not bidirectional, user drained
1546 		     * receive buffer and there was a small segment
1547 		     * in queue.
1548 		     */
1549 		    (copied > 0 &&
1550 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1551 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1552 		       !inet_csk_in_pingpong_mode(sk))) &&
1553 		      !atomic_read(&sk->sk_rmem_alloc)))
1554 			time_to_ack = true;
1555 	}
1556 
1557 	/* We send an ACK if we can now advertise a non-zero window
1558 	 * which has been raised "significantly".
1559 	 *
1560 	 * Even if window raised up to infinity, do not send window open ACK
1561 	 * in states, where we will not receive more. It is useless.
1562 	 */
1563 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1564 		__u32 rcv_window_now = tcp_receive_window(tp);
1565 
1566 		/* Optimize, __tcp_select_window() is not cheap. */
1567 		if (2*rcv_window_now <= tp->window_clamp) {
1568 			__u32 new_window = __tcp_select_window(sk);
1569 
1570 			/* Send ACK now, if this read freed lots of space
1571 			 * in our buffer. Certainly, new_window is new window.
1572 			 * We can advertise it now, if it is not less than current one.
1573 			 * "Lots" means "at least twice" here.
1574 			 */
1575 			if (new_window && new_window >= 2 * rcv_window_now)
1576 				time_to_ack = true;
1577 		}
1578 	}
1579 	if (time_to_ack)
1580 		tcp_send_ack(sk);
1581 }
1582 
1583 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1584 {
1585 	struct sk_buff *skb;
1586 	u32 offset;
1587 
1588 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1589 		offset = seq - TCP_SKB_CB(skb)->seq;
1590 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1591 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1592 			offset--;
1593 		}
1594 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1595 			*off = offset;
1596 			return skb;
1597 		}
1598 		/* This looks weird, but this can happen if TCP collapsing
1599 		 * splitted a fat GRO packet, while we released socket lock
1600 		 * in skb_splice_bits()
1601 		 */
1602 		sk_eat_skb(sk, skb);
1603 	}
1604 	return NULL;
1605 }
1606 
1607 /*
1608  * This routine provides an alternative to tcp_recvmsg() for routines
1609  * that would like to handle copying from skbuffs directly in 'sendfile'
1610  * fashion.
1611  * Note:
1612  *	- It is assumed that the socket was locked by the caller.
1613  *	- The routine does not block.
1614  *	- At present, there is no support for reading OOB data
1615  *	  or for 'peeking' the socket using this routine
1616  *	  (although both would be easy to implement).
1617  */
1618 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1619 		  sk_read_actor_t recv_actor)
1620 {
1621 	struct sk_buff *skb;
1622 	struct tcp_sock *tp = tcp_sk(sk);
1623 	u32 seq = tp->copied_seq;
1624 	u32 offset;
1625 	int copied = 0;
1626 
1627 	if (sk->sk_state == TCP_LISTEN)
1628 		return -ENOTCONN;
1629 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1630 		if (offset < skb->len) {
1631 			int used;
1632 			size_t len;
1633 
1634 			len = skb->len - offset;
1635 			/* Stop reading if we hit a patch of urgent data */
1636 			if (tp->urg_data) {
1637 				u32 urg_offset = tp->urg_seq - seq;
1638 				if (urg_offset < len)
1639 					len = urg_offset;
1640 				if (!len)
1641 					break;
1642 			}
1643 			used = recv_actor(desc, skb, offset, len);
1644 			if (used <= 0) {
1645 				if (!copied)
1646 					copied = used;
1647 				break;
1648 			} else if (used <= len) {
1649 				seq += used;
1650 				copied += used;
1651 				offset += used;
1652 			}
1653 			/* If recv_actor drops the lock (e.g. TCP splice
1654 			 * receive) the skb pointer might be invalid when
1655 			 * getting here: tcp_collapse might have deleted it
1656 			 * while aggregating skbs from the socket queue.
1657 			 */
1658 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1659 			if (!skb)
1660 				break;
1661 			/* TCP coalescing might have appended data to the skb.
1662 			 * Try to splice more frags
1663 			 */
1664 			if (offset + 1 != skb->len)
1665 				continue;
1666 		}
1667 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1668 			sk_eat_skb(sk, skb);
1669 			++seq;
1670 			break;
1671 		}
1672 		sk_eat_skb(sk, skb);
1673 		if (!desc->count)
1674 			break;
1675 		WRITE_ONCE(tp->copied_seq, seq);
1676 	}
1677 	WRITE_ONCE(tp->copied_seq, seq);
1678 
1679 	tcp_rcv_space_adjust(sk);
1680 
1681 	/* Clean up data we have read: This will do ACK frames. */
1682 	if (copied > 0) {
1683 		tcp_recv_skb(sk, seq, &offset);
1684 		tcp_cleanup_rbuf(sk, copied);
1685 	}
1686 	return copied;
1687 }
1688 EXPORT_SYMBOL(tcp_read_sock);
1689 
1690 int tcp_peek_len(struct socket *sock)
1691 {
1692 	return tcp_inq(sock->sk);
1693 }
1694 EXPORT_SYMBOL(tcp_peek_len);
1695 
1696 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1697 int tcp_set_rcvlowat(struct sock *sk, int val)
1698 {
1699 	int cap;
1700 
1701 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1702 		cap = sk->sk_rcvbuf >> 1;
1703 	else
1704 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1705 	val = min(val, cap);
1706 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1707 
1708 	/* Check if we need to signal EPOLLIN right now */
1709 	tcp_data_ready(sk);
1710 
1711 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1712 		return 0;
1713 
1714 	val <<= 1;
1715 	if (val > sk->sk_rcvbuf) {
1716 		WRITE_ONCE(sk->sk_rcvbuf, val);
1717 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1718 	}
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL(tcp_set_rcvlowat);
1722 
1723 void tcp_update_recv_tstamps(struct sk_buff *skb,
1724 			     struct scm_timestamping_internal *tss)
1725 {
1726 	if (skb->tstamp)
1727 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1728 	else
1729 		tss->ts[0] = (struct timespec64) {0};
1730 
1731 	if (skb_hwtstamps(skb)->hwtstamp)
1732 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1733 	else
1734 		tss->ts[2] = (struct timespec64) {0};
1735 }
1736 
1737 #ifdef CONFIG_MMU
1738 static const struct vm_operations_struct tcp_vm_ops = {
1739 };
1740 
1741 int tcp_mmap(struct file *file, struct socket *sock,
1742 	     struct vm_area_struct *vma)
1743 {
1744 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1745 		return -EPERM;
1746 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1747 
1748 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1749 	vma->vm_flags |= VM_MIXEDMAP;
1750 
1751 	vma->vm_ops = &tcp_vm_ops;
1752 	return 0;
1753 }
1754 EXPORT_SYMBOL(tcp_mmap);
1755 
1756 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1757 				       u32 *offset_frag)
1758 {
1759 	skb_frag_t *frag;
1760 
1761 	if (unlikely(offset_skb >= skb->len))
1762 		return NULL;
1763 
1764 	offset_skb -= skb_headlen(skb);
1765 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1766 		return NULL;
1767 
1768 	frag = skb_shinfo(skb)->frags;
1769 	while (offset_skb) {
1770 		if (skb_frag_size(frag) > offset_skb) {
1771 			*offset_frag = offset_skb;
1772 			return frag;
1773 		}
1774 		offset_skb -= skb_frag_size(frag);
1775 		++frag;
1776 	}
1777 	*offset_frag = 0;
1778 	return frag;
1779 }
1780 
1781 static bool can_map_frag(const skb_frag_t *frag)
1782 {
1783 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1784 }
1785 
1786 static int find_next_mappable_frag(const skb_frag_t *frag,
1787 				   int remaining_in_skb)
1788 {
1789 	int offset = 0;
1790 
1791 	if (likely(can_map_frag(frag)))
1792 		return 0;
1793 
1794 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1795 		offset += skb_frag_size(frag);
1796 		++frag;
1797 	}
1798 	return offset;
1799 }
1800 
1801 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1802 					  struct tcp_zerocopy_receive *zc,
1803 					  struct sk_buff *skb, u32 offset)
1804 {
1805 	u32 frag_offset, partial_frag_remainder = 0;
1806 	int mappable_offset;
1807 	skb_frag_t *frag;
1808 
1809 	/* worst case: skip to next skb. try to improve on this case below */
1810 	zc->recv_skip_hint = skb->len - offset;
1811 
1812 	/* Find the frag containing this offset (and how far into that frag) */
1813 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1814 	if (!frag)
1815 		return;
1816 
1817 	if (frag_offset) {
1818 		struct skb_shared_info *info = skb_shinfo(skb);
1819 
1820 		/* We read part of the last frag, must recvmsg() rest of skb. */
1821 		if (frag == &info->frags[info->nr_frags - 1])
1822 			return;
1823 
1824 		/* Else, we must at least read the remainder in this frag. */
1825 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1826 		zc->recv_skip_hint -= partial_frag_remainder;
1827 		++frag;
1828 	}
1829 
1830 	/* partial_frag_remainder: If part way through a frag, must read rest.
1831 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1832 	 * in partial_frag_remainder.
1833 	 */
1834 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1835 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1836 }
1837 
1838 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1839 			      int nonblock, int flags,
1840 			      struct scm_timestamping_internal *tss,
1841 			      int *cmsg_flags);
1842 static int receive_fallback_to_copy(struct sock *sk,
1843 				    struct tcp_zerocopy_receive *zc, int inq,
1844 				    struct scm_timestamping_internal *tss)
1845 {
1846 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1847 	struct msghdr msg = {};
1848 	struct iovec iov;
1849 	int err;
1850 
1851 	zc->length = 0;
1852 	zc->recv_skip_hint = 0;
1853 
1854 	if (copy_address != zc->copybuf_address)
1855 		return -EINVAL;
1856 
1857 	err = import_single_range(READ, (void __user *)copy_address,
1858 				  inq, &iov, &msg.msg_iter);
1859 	if (err)
1860 		return err;
1861 
1862 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1863 				 tss, &zc->msg_flags);
1864 	if (err < 0)
1865 		return err;
1866 
1867 	zc->copybuf_len = err;
1868 	if (likely(zc->copybuf_len)) {
1869 		struct sk_buff *skb;
1870 		u32 offset;
1871 
1872 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1873 		if (skb)
1874 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1875 	}
1876 	return 0;
1877 }
1878 
1879 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1880 				   struct sk_buff *skb, u32 copylen,
1881 				   u32 *offset, u32 *seq)
1882 {
1883 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1884 	struct msghdr msg = {};
1885 	struct iovec iov;
1886 	int err;
1887 
1888 	if (copy_address != zc->copybuf_address)
1889 		return -EINVAL;
1890 
1891 	err = import_single_range(READ, (void __user *)copy_address,
1892 				  copylen, &iov, &msg.msg_iter);
1893 	if (err)
1894 		return err;
1895 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1896 	if (err)
1897 		return err;
1898 	zc->recv_skip_hint -= copylen;
1899 	*offset += copylen;
1900 	*seq += copylen;
1901 	return (__s32)copylen;
1902 }
1903 
1904 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1905 				  struct sock *sk,
1906 				  struct sk_buff *skb,
1907 				  u32 *seq,
1908 				  s32 copybuf_len,
1909 				  struct scm_timestamping_internal *tss)
1910 {
1911 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1912 
1913 	if (!copylen)
1914 		return 0;
1915 	/* skb is null if inq < PAGE_SIZE. */
1916 	if (skb) {
1917 		offset = *seq - TCP_SKB_CB(skb)->seq;
1918 	} else {
1919 		skb = tcp_recv_skb(sk, *seq, &offset);
1920 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1921 			tcp_update_recv_tstamps(skb, tss);
1922 			zc->msg_flags |= TCP_CMSG_TS;
1923 		}
1924 	}
1925 
1926 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1927 						  seq);
1928 	return zc->copybuf_len < 0 ? 0 : copylen;
1929 }
1930 
1931 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1932 					      struct page **pending_pages,
1933 					      unsigned long pages_remaining,
1934 					      unsigned long *address,
1935 					      u32 *length,
1936 					      u32 *seq,
1937 					      struct tcp_zerocopy_receive *zc,
1938 					      u32 total_bytes_to_map,
1939 					      int err)
1940 {
1941 	/* At least one page did not map. Try zapping if we skipped earlier. */
1942 	if (err == -EBUSY &&
1943 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1944 		u32 maybe_zap_len;
1945 
1946 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1947 				*length + /* Mapped or pending */
1948 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1949 		zap_page_range(vma, *address, maybe_zap_len);
1950 		err = 0;
1951 	}
1952 
1953 	if (!err) {
1954 		unsigned long leftover_pages = pages_remaining;
1955 		int bytes_mapped;
1956 
1957 		/* We called zap_page_range, try to reinsert. */
1958 		err = vm_insert_pages(vma, *address,
1959 				      pending_pages,
1960 				      &pages_remaining);
1961 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1962 		*seq += bytes_mapped;
1963 		*address += bytes_mapped;
1964 	}
1965 	if (err) {
1966 		/* Either we were unable to zap, OR we zapped, retried an
1967 		 * insert, and still had an issue. Either ways, pages_remaining
1968 		 * is the number of pages we were unable to map, and we unroll
1969 		 * some state we speculatively touched before.
1970 		 */
1971 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1972 
1973 		*length -= bytes_not_mapped;
1974 		zc->recv_skip_hint += bytes_not_mapped;
1975 	}
1976 	return err;
1977 }
1978 
1979 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1980 					struct page **pages,
1981 					unsigned int pages_to_map,
1982 					unsigned long *address,
1983 					u32 *length,
1984 					u32 *seq,
1985 					struct tcp_zerocopy_receive *zc,
1986 					u32 total_bytes_to_map)
1987 {
1988 	unsigned long pages_remaining = pages_to_map;
1989 	unsigned int pages_mapped;
1990 	unsigned int bytes_mapped;
1991 	int err;
1992 
1993 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1994 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1995 	bytes_mapped = PAGE_SIZE * pages_mapped;
1996 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1997 	 * mapping (some but not all of the pages).
1998 	 */
1999 	*seq += bytes_mapped;
2000 	*address += bytes_mapped;
2001 
2002 	if (likely(!err))
2003 		return 0;
2004 
2005 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2006 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2007 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2008 		err);
2009 }
2010 
2011 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2012 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2013 				      struct tcp_zerocopy_receive *zc,
2014 				      struct scm_timestamping_internal *tss)
2015 {
2016 	unsigned long msg_control_addr;
2017 	struct msghdr cmsg_dummy;
2018 
2019 	msg_control_addr = (unsigned long)zc->msg_control;
2020 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2021 	cmsg_dummy.msg_controllen =
2022 		(__kernel_size_t)zc->msg_controllen;
2023 	cmsg_dummy.msg_flags = in_compat_syscall()
2024 		? MSG_CMSG_COMPAT : 0;
2025 	cmsg_dummy.msg_control_is_user = true;
2026 	zc->msg_flags = 0;
2027 	if (zc->msg_control == msg_control_addr &&
2028 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2029 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2030 		zc->msg_control = (__u64)
2031 			((uintptr_t)cmsg_dummy.msg_control);
2032 		zc->msg_controllen =
2033 			(__u64)cmsg_dummy.msg_controllen;
2034 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2035 	}
2036 }
2037 
2038 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2039 static int tcp_zerocopy_receive(struct sock *sk,
2040 				struct tcp_zerocopy_receive *zc,
2041 				struct scm_timestamping_internal *tss)
2042 {
2043 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2044 	unsigned long address = (unsigned long)zc->address;
2045 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2046 	s32 copybuf_len = zc->copybuf_len;
2047 	struct tcp_sock *tp = tcp_sk(sk);
2048 	const skb_frag_t *frags = NULL;
2049 	unsigned int pages_to_map = 0;
2050 	struct vm_area_struct *vma;
2051 	struct sk_buff *skb = NULL;
2052 	u32 seq = tp->copied_seq;
2053 	u32 total_bytes_to_map;
2054 	int inq = tcp_inq(sk);
2055 	int ret;
2056 
2057 	zc->copybuf_len = 0;
2058 	zc->msg_flags = 0;
2059 
2060 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2061 		return -EINVAL;
2062 
2063 	if (sk->sk_state == TCP_LISTEN)
2064 		return -ENOTCONN;
2065 
2066 	sock_rps_record_flow(sk);
2067 
2068 	if (inq && inq <= copybuf_len)
2069 		return receive_fallback_to_copy(sk, zc, inq, tss);
2070 
2071 	if (inq < PAGE_SIZE) {
2072 		zc->length = 0;
2073 		zc->recv_skip_hint = inq;
2074 		if (!inq && sock_flag(sk, SOCK_DONE))
2075 			return -EIO;
2076 		return 0;
2077 	}
2078 
2079 	mmap_read_lock(current->mm);
2080 
2081 	vma = vma_lookup(current->mm, address);
2082 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2083 		mmap_read_unlock(current->mm);
2084 		return -EINVAL;
2085 	}
2086 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2087 	avail_len = min_t(u32, vma_len, inq);
2088 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2089 	if (total_bytes_to_map) {
2090 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2091 			zap_page_range(vma, address, total_bytes_to_map);
2092 		zc->length = total_bytes_to_map;
2093 		zc->recv_skip_hint = 0;
2094 	} else {
2095 		zc->length = avail_len;
2096 		zc->recv_skip_hint = avail_len;
2097 	}
2098 	ret = 0;
2099 	while (length + PAGE_SIZE <= zc->length) {
2100 		int mappable_offset;
2101 		struct page *page;
2102 
2103 		if (zc->recv_skip_hint < PAGE_SIZE) {
2104 			u32 offset_frag;
2105 
2106 			if (skb) {
2107 				if (zc->recv_skip_hint > 0)
2108 					break;
2109 				skb = skb->next;
2110 				offset = seq - TCP_SKB_CB(skb)->seq;
2111 			} else {
2112 				skb = tcp_recv_skb(sk, seq, &offset);
2113 			}
2114 
2115 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2116 				tcp_update_recv_tstamps(skb, tss);
2117 				zc->msg_flags |= TCP_CMSG_TS;
2118 			}
2119 			zc->recv_skip_hint = skb->len - offset;
2120 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2121 			if (!frags || offset_frag)
2122 				break;
2123 		}
2124 
2125 		mappable_offset = find_next_mappable_frag(frags,
2126 							  zc->recv_skip_hint);
2127 		if (mappable_offset) {
2128 			zc->recv_skip_hint = mappable_offset;
2129 			break;
2130 		}
2131 		page = skb_frag_page(frags);
2132 		prefetchw(page);
2133 		pages[pages_to_map++] = page;
2134 		length += PAGE_SIZE;
2135 		zc->recv_skip_hint -= PAGE_SIZE;
2136 		frags++;
2137 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2138 		    zc->recv_skip_hint < PAGE_SIZE) {
2139 			/* Either full batch, or we're about to go to next skb
2140 			 * (and we cannot unroll failed ops across skbs).
2141 			 */
2142 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2143 							   pages_to_map,
2144 							   &address, &length,
2145 							   &seq, zc,
2146 							   total_bytes_to_map);
2147 			if (ret)
2148 				goto out;
2149 			pages_to_map = 0;
2150 		}
2151 	}
2152 	if (pages_to_map) {
2153 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2154 						   &address, &length, &seq,
2155 						   zc, total_bytes_to_map);
2156 	}
2157 out:
2158 	mmap_read_unlock(current->mm);
2159 	/* Try to copy straggler data. */
2160 	if (!ret)
2161 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2162 
2163 	if (length + copylen) {
2164 		WRITE_ONCE(tp->copied_seq, seq);
2165 		tcp_rcv_space_adjust(sk);
2166 
2167 		/* Clean up data we have read: This will do ACK frames. */
2168 		tcp_recv_skb(sk, seq, &offset);
2169 		tcp_cleanup_rbuf(sk, length + copylen);
2170 		ret = 0;
2171 		if (length == zc->length)
2172 			zc->recv_skip_hint = 0;
2173 	} else {
2174 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2175 			ret = -EIO;
2176 	}
2177 	zc->length = length;
2178 	return ret;
2179 }
2180 #endif
2181 
2182 /* Similar to __sock_recv_timestamp, but does not require an skb */
2183 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2184 			struct scm_timestamping_internal *tss)
2185 {
2186 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2187 	bool has_timestamping = false;
2188 
2189 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2190 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2191 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2192 				if (new_tstamp) {
2193 					struct __kernel_timespec kts = {
2194 						.tv_sec = tss->ts[0].tv_sec,
2195 						.tv_nsec = tss->ts[0].tv_nsec,
2196 					};
2197 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2198 						 sizeof(kts), &kts);
2199 				} else {
2200 					struct __kernel_old_timespec ts_old = {
2201 						.tv_sec = tss->ts[0].tv_sec,
2202 						.tv_nsec = tss->ts[0].tv_nsec,
2203 					};
2204 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2205 						 sizeof(ts_old), &ts_old);
2206 				}
2207 			} else {
2208 				if (new_tstamp) {
2209 					struct __kernel_sock_timeval stv = {
2210 						.tv_sec = tss->ts[0].tv_sec,
2211 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2212 					};
2213 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2214 						 sizeof(stv), &stv);
2215 				} else {
2216 					struct __kernel_old_timeval tv = {
2217 						.tv_sec = tss->ts[0].tv_sec,
2218 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2219 					};
2220 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2221 						 sizeof(tv), &tv);
2222 				}
2223 			}
2224 		}
2225 
2226 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2227 			has_timestamping = true;
2228 		else
2229 			tss->ts[0] = (struct timespec64) {0};
2230 	}
2231 
2232 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2233 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2234 			has_timestamping = true;
2235 		else
2236 			tss->ts[2] = (struct timespec64) {0};
2237 	}
2238 
2239 	if (has_timestamping) {
2240 		tss->ts[1] = (struct timespec64) {0};
2241 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2242 			put_cmsg_scm_timestamping64(msg, tss);
2243 		else
2244 			put_cmsg_scm_timestamping(msg, tss);
2245 	}
2246 }
2247 
2248 static int tcp_inq_hint(struct sock *sk)
2249 {
2250 	const struct tcp_sock *tp = tcp_sk(sk);
2251 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2252 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2253 	int inq;
2254 
2255 	inq = rcv_nxt - copied_seq;
2256 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2257 		lock_sock(sk);
2258 		inq = tp->rcv_nxt - tp->copied_seq;
2259 		release_sock(sk);
2260 	}
2261 	/* After receiving a FIN, tell the user-space to continue reading
2262 	 * by returning a non-zero inq.
2263 	 */
2264 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2265 		inq = 1;
2266 	return inq;
2267 }
2268 
2269 /*
2270  *	This routine copies from a sock struct into the user buffer.
2271  *
2272  *	Technical note: in 2.3 we work on _locked_ socket, so that
2273  *	tricks with *seq access order and skb->users are not required.
2274  *	Probably, code can be easily improved even more.
2275  */
2276 
2277 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2278 			      int nonblock, int flags,
2279 			      struct scm_timestamping_internal *tss,
2280 			      int *cmsg_flags)
2281 {
2282 	struct tcp_sock *tp = tcp_sk(sk);
2283 	int copied = 0;
2284 	u32 peek_seq;
2285 	u32 *seq;
2286 	unsigned long used;
2287 	int err;
2288 	int target;		/* Read at least this many bytes */
2289 	long timeo;
2290 	struct sk_buff *skb, *last;
2291 	u32 urg_hole = 0;
2292 
2293 	err = -ENOTCONN;
2294 	if (sk->sk_state == TCP_LISTEN)
2295 		goto out;
2296 
2297 	if (tp->recvmsg_inq)
2298 		*cmsg_flags = TCP_CMSG_INQ;
2299 	timeo = sock_rcvtimeo(sk, nonblock);
2300 
2301 	/* Urgent data needs to be handled specially. */
2302 	if (flags & MSG_OOB)
2303 		goto recv_urg;
2304 
2305 	if (unlikely(tp->repair)) {
2306 		err = -EPERM;
2307 		if (!(flags & MSG_PEEK))
2308 			goto out;
2309 
2310 		if (tp->repair_queue == TCP_SEND_QUEUE)
2311 			goto recv_sndq;
2312 
2313 		err = -EINVAL;
2314 		if (tp->repair_queue == TCP_NO_QUEUE)
2315 			goto out;
2316 
2317 		/* 'common' recv queue MSG_PEEK-ing */
2318 	}
2319 
2320 	seq = &tp->copied_seq;
2321 	if (flags & MSG_PEEK) {
2322 		peek_seq = tp->copied_seq;
2323 		seq = &peek_seq;
2324 	}
2325 
2326 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2327 
2328 	do {
2329 		u32 offset;
2330 
2331 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2332 		if (tp->urg_data && tp->urg_seq == *seq) {
2333 			if (copied)
2334 				break;
2335 			if (signal_pending(current)) {
2336 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2337 				break;
2338 			}
2339 		}
2340 
2341 		/* Next get a buffer. */
2342 
2343 		last = skb_peek_tail(&sk->sk_receive_queue);
2344 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2345 			last = skb;
2346 			/* Now that we have two receive queues this
2347 			 * shouldn't happen.
2348 			 */
2349 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2350 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2351 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2352 				 flags))
2353 				break;
2354 
2355 			offset = *seq - TCP_SKB_CB(skb)->seq;
2356 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2357 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2358 				offset--;
2359 			}
2360 			if (offset < skb->len)
2361 				goto found_ok_skb;
2362 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2363 				goto found_fin_ok;
2364 			WARN(!(flags & MSG_PEEK),
2365 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2366 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2367 		}
2368 
2369 		/* Well, if we have backlog, try to process it now yet. */
2370 
2371 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2372 			break;
2373 
2374 		if (copied) {
2375 			if (sk->sk_err ||
2376 			    sk->sk_state == TCP_CLOSE ||
2377 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2378 			    !timeo ||
2379 			    signal_pending(current))
2380 				break;
2381 		} else {
2382 			if (sock_flag(sk, SOCK_DONE))
2383 				break;
2384 
2385 			if (sk->sk_err) {
2386 				copied = sock_error(sk);
2387 				break;
2388 			}
2389 
2390 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2391 				break;
2392 
2393 			if (sk->sk_state == TCP_CLOSE) {
2394 				/* This occurs when user tries to read
2395 				 * from never connected socket.
2396 				 */
2397 				copied = -ENOTCONN;
2398 				break;
2399 			}
2400 
2401 			if (!timeo) {
2402 				copied = -EAGAIN;
2403 				break;
2404 			}
2405 
2406 			if (signal_pending(current)) {
2407 				copied = sock_intr_errno(timeo);
2408 				break;
2409 			}
2410 		}
2411 
2412 		tcp_cleanup_rbuf(sk, copied);
2413 
2414 		if (copied >= target) {
2415 			/* Do not sleep, just process backlog. */
2416 			release_sock(sk);
2417 			lock_sock(sk);
2418 		} else {
2419 			sk_wait_data(sk, &timeo, last);
2420 		}
2421 
2422 		if ((flags & MSG_PEEK) &&
2423 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2424 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2425 					    current->comm,
2426 					    task_pid_nr(current));
2427 			peek_seq = tp->copied_seq;
2428 		}
2429 		continue;
2430 
2431 found_ok_skb:
2432 		/* Ok so how much can we use? */
2433 		used = skb->len - offset;
2434 		if (len < used)
2435 			used = len;
2436 
2437 		/* Do we have urgent data here? */
2438 		if (tp->urg_data) {
2439 			u32 urg_offset = tp->urg_seq - *seq;
2440 			if (urg_offset < used) {
2441 				if (!urg_offset) {
2442 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2443 						WRITE_ONCE(*seq, *seq + 1);
2444 						urg_hole++;
2445 						offset++;
2446 						used--;
2447 						if (!used)
2448 							goto skip_copy;
2449 					}
2450 				} else
2451 					used = urg_offset;
2452 			}
2453 		}
2454 
2455 		if (!(flags & MSG_TRUNC)) {
2456 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2457 			if (err) {
2458 				/* Exception. Bailout! */
2459 				if (!copied)
2460 					copied = -EFAULT;
2461 				break;
2462 			}
2463 		}
2464 
2465 		WRITE_ONCE(*seq, *seq + used);
2466 		copied += used;
2467 		len -= used;
2468 
2469 		tcp_rcv_space_adjust(sk);
2470 
2471 skip_copy:
2472 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2473 			tp->urg_data = 0;
2474 			tcp_fast_path_check(sk);
2475 		}
2476 
2477 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2478 			tcp_update_recv_tstamps(skb, tss);
2479 			*cmsg_flags |= TCP_CMSG_TS;
2480 		}
2481 
2482 		if (used + offset < skb->len)
2483 			continue;
2484 
2485 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2486 			goto found_fin_ok;
2487 		if (!(flags & MSG_PEEK))
2488 			sk_eat_skb(sk, skb);
2489 		continue;
2490 
2491 found_fin_ok:
2492 		/* Process the FIN. */
2493 		WRITE_ONCE(*seq, *seq + 1);
2494 		if (!(flags & MSG_PEEK))
2495 			sk_eat_skb(sk, skb);
2496 		break;
2497 	} while (len > 0);
2498 
2499 	/* According to UNIX98, msg_name/msg_namelen are ignored
2500 	 * on connected socket. I was just happy when found this 8) --ANK
2501 	 */
2502 
2503 	/* Clean up data we have read: This will do ACK frames. */
2504 	tcp_cleanup_rbuf(sk, copied);
2505 	return copied;
2506 
2507 out:
2508 	return err;
2509 
2510 recv_urg:
2511 	err = tcp_recv_urg(sk, msg, len, flags);
2512 	goto out;
2513 
2514 recv_sndq:
2515 	err = tcp_peek_sndq(sk, msg, len);
2516 	goto out;
2517 }
2518 
2519 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2520 		int flags, int *addr_len)
2521 {
2522 	int cmsg_flags = 0, ret, inq;
2523 	struct scm_timestamping_internal tss;
2524 
2525 	if (unlikely(flags & MSG_ERRQUEUE))
2526 		return inet_recv_error(sk, msg, len, addr_len);
2527 
2528 	if (sk_can_busy_loop(sk) &&
2529 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2530 	    sk->sk_state == TCP_ESTABLISHED)
2531 		sk_busy_loop(sk, nonblock);
2532 
2533 	lock_sock(sk);
2534 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2535 				 &cmsg_flags);
2536 	release_sock(sk);
2537 
2538 	if (cmsg_flags && ret >= 0) {
2539 		if (cmsg_flags & TCP_CMSG_TS)
2540 			tcp_recv_timestamp(msg, sk, &tss);
2541 		if (cmsg_flags & TCP_CMSG_INQ) {
2542 			inq = tcp_inq_hint(sk);
2543 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2544 		}
2545 	}
2546 	return ret;
2547 }
2548 EXPORT_SYMBOL(tcp_recvmsg);
2549 
2550 void tcp_set_state(struct sock *sk, int state)
2551 {
2552 	int oldstate = sk->sk_state;
2553 
2554 	/* We defined a new enum for TCP states that are exported in BPF
2555 	 * so as not force the internal TCP states to be frozen. The
2556 	 * following checks will detect if an internal state value ever
2557 	 * differs from the BPF value. If this ever happens, then we will
2558 	 * need to remap the internal value to the BPF value before calling
2559 	 * tcp_call_bpf_2arg.
2560 	 */
2561 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2562 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2563 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2564 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2565 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2566 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2567 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2568 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2569 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2570 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2571 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2572 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2573 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2574 
2575 	/* bpf uapi header bpf.h defines an anonymous enum with values
2576 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2577 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2578 	 * But clang built vmlinux does not have this enum in DWARF
2579 	 * since clang removes the above code before generating IR/debuginfo.
2580 	 * Let us explicitly emit the type debuginfo to ensure the
2581 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2582 	 * regardless of which compiler is used.
2583 	 */
2584 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2585 
2586 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2587 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2588 
2589 	switch (state) {
2590 	case TCP_ESTABLISHED:
2591 		if (oldstate != TCP_ESTABLISHED)
2592 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2593 		break;
2594 
2595 	case TCP_CLOSE:
2596 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2597 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2598 
2599 		sk->sk_prot->unhash(sk);
2600 		if (inet_csk(sk)->icsk_bind_hash &&
2601 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2602 			inet_put_port(sk);
2603 		fallthrough;
2604 	default:
2605 		if (oldstate == TCP_ESTABLISHED)
2606 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2607 	}
2608 
2609 	/* Change state AFTER socket is unhashed to avoid closed
2610 	 * socket sitting in hash tables.
2611 	 */
2612 	inet_sk_state_store(sk, state);
2613 }
2614 EXPORT_SYMBOL_GPL(tcp_set_state);
2615 
2616 /*
2617  *	State processing on a close. This implements the state shift for
2618  *	sending our FIN frame. Note that we only send a FIN for some
2619  *	states. A shutdown() may have already sent the FIN, or we may be
2620  *	closed.
2621  */
2622 
2623 static const unsigned char new_state[16] = {
2624   /* current state:        new state:      action:	*/
2625   [0 /* (Invalid) */]	= TCP_CLOSE,
2626   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2627   [TCP_SYN_SENT]	= TCP_CLOSE,
2628   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2629   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2630   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2631   [TCP_TIME_WAIT]	= TCP_CLOSE,
2632   [TCP_CLOSE]		= TCP_CLOSE,
2633   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2634   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2635   [TCP_LISTEN]		= TCP_CLOSE,
2636   [TCP_CLOSING]		= TCP_CLOSING,
2637   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2638 };
2639 
2640 static int tcp_close_state(struct sock *sk)
2641 {
2642 	int next = (int)new_state[sk->sk_state];
2643 	int ns = next & TCP_STATE_MASK;
2644 
2645 	tcp_set_state(sk, ns);
2646 
2647 	return next & TCP_ACTION_FIN;
2648 }
2649 
2650 /*
2651  *	Shutdown the sending side of a connection. Much like close except
2652  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2653  */
2654 
2655 void tcp_shutdown(struct sock *sk, int how)
2656 {
2657 	/*	We need to grab some memory, and put together a FIN,
2658 	 *	and then put it into the queue to be sent.
2659 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2660 	 */
2661 	if (!(how & SEND_SHUTDOWN))
2662 		return;
2663 
2664 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2665 	if ((1 << sk->sk_state) &
2666 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2667 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2668 		/* Clear out any half completed packets.  FIN if needed. */
2669 		if (tcp_close_state(sk))
2670 			tcp_send_fin(sk);
2671 	}
2672 }
2673 EXPORT_SYMBOL(tcp_shutdown);
2674 
2675 int tcp_orphan_count_sum(void)
2676 {
2677 	int i, total = 0;
2678 
2679 	for_each_possible_cpu(i)
2680 		total += per_cpu(tcp_orphan_count, i);
2681 
2682 	return max(total, 0);
2683 }
2684 
2685 static int tcp_orphan_cache;
2686 static struct timer_list tcp_orphan_timer;
2687 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2688 
2689 static void tcp_orphan_update(struct timer_list *unused)
2690 {
2691 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2692 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2693 }
2694 
2695 static bool tcp_too_many_orphans(int shift)
2696 {
2697 	return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2698 }
2699 
2700 bool tcp_check_oom(struct sock *sk, int shift)
2701 {
2702 	bool too_many_orphans, out_of_socket_memory;
2703 
2704 	too_many_orphans = tcp_too_many_orphans(shift);
2705 	out_of_socket_memory = tcp_out_of_memory(sk);
2706 
2707 	if (too_many_orphans)
2708 		net_info_ratelimited("too many orphaned sockets\n");
2709 	if (out_of_socket_memory)
2710 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2711 	return too_many_orphans || out_of_socket_memory;
2712 }
2713 
2714 void __tcp_close(struct sock *sk, long timeout)
2715 {
2716 	struct sk_buff *skb;
2717 	int data_was_unread = 0;
2718 	int state;
2719 
2720 	sk->sk_shutdown = SHUTDOWN_MASK;
2721 
2722 	if (sk->sk_state == TCP_LISTEN) {
2723 		tcp_set_state(sk, TCP_CLOSE);
2724 
2725 		/* Special case. */
2726 		inet_csk_listen_stop(sk);
2727 
2728 		goto adjudge_to_death;
2729 	}
2730 
2731 	/*  We need to flush the recv. buffs.  We do this only on the
2732 	 *  descriptor close, not protocol-sourced closes, because the
2733 	 *  reader process may not have drained the data yet!
2734 	 */
2735 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2736 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2737 
2738 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2739 			len--;
2740 		data_was_unread += len;
2741 		__kfree_skb(skb);
2742 	}
2743 
2744 	sk_mem_reclaim(sk);
2745 
2746 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2747 	if (sk->sk_state == TCP_CLOSE)
2748 		goto adjudge_to_death;
2749 
2750 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2751 	 * data was lost. To witness the awful effects of the old behavior of
2752 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2753 	 * GET in an FTP client, suspend the process, wait for the client to
2754 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2755 	 * Note: timeout is always zero in such a case.
2756 	 */
2757 	if (unlikely(tcp_sk(sk)->repair)) {
2758 		sk->sk_prot->disconnect(sk, 0);
2759 	} else if (data_was_unread) {
2760 		/* Unread data was tossed, zap the connection. */
2761 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2762 		tcp_set_state(sk, TCP_CLOSE);
2763 		tcp_send_active_reset(sk, sk->sk_allocation);
2764 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2765 		/* Check zero linger _after_ checking for unread data. */
2766 		sk->sk_prot->disconnect(sk, 0);
2767 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2768 	} else if (tcp_close_state(sk)) {
2769 		/* We FIN if the application ate all the data before
2770 		 * zapping the connection.
2771 		 */
2772 
2773 		/* RED-PEN. Formally speaking, we have broken TCP state
2774 		 * machine. State transitions:
2775 		 *
2776 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2777 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2778 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2779 		 *
2780 		 * are legal only when FIN has been sent (i.e. in window),
2781 		 * rather than queued out of window. Purists blame.
2782 		 *
2783 		 * F.e. "RFC state" is ESTABLISHED,
2784 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2785 		 *
2786 		 * The visible declinations are that sometimes
2787 		 * we enter time-wait state, when it is not required really
2788 		 * (harmless), do not send active resets, when they are
2789 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2790 		 * they look as CLOSING or LAST_ACK for Linux)
2791 		 * Probably, I missed some more holelets.
2792 		 * 						--ANK
2793 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2794 		 * in a single packet! (May consider it later but will
2795 		 * probably need API support or TCP_CORK SYN-ACK until
2796 		 * data is written and socket is closed.)
2797 		 */
2798 		tcp_send_fin(sk);
2799 	}
2800 
2801 	sk_stream_wait_close(sk, timeout);
2802 
2803 adjudge_to_death:
2804 	state = sk->sk_state;
2805 	sock_hold(sk);
2806 	sock_orphan(sk);
2807 
2808 	local_bh_disable();
2809 	bh_lock_sock(sk);
2810 	/* remove backlog if any, without releasing ownership. */
2811 	__release_sock(sk);
2812 
2813 	this_cpu_inc(tcp_orphan_count);
2814 
2815 	/* Have we already been destroyed by a softirq or backlog? */
2816 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2817 		goto out;
2818 
2819 	/*	This is a (useful) BSD violating of the RFC. There is a
2820 	 *	problem with TCP as specified in that the other end could
2821 	 *	keep a socket open forever with no application left this end.
2822 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2823 	 *	our end. If they send after that then tough - BUT: long enough
2824 	 *	that we won't make the old 4*rto = almost no time - whoops
2825 	 *	reset mistake.
2826 	 *
2827 	 *	Nope, it was not mistake. It is really desired behaviour
2828 	 *	f.e. on http servers, when such sockets are useless, but
2829 	 *	consume significant resources. Let's do it with special
2830 	 *	linger2	option.					--ANK
2831 	 */
2832 
2833 	if (sk->sk_state == TCP_FIN_WAIT2) {
2834 		struct tcp_sock *tp = tcp_sk(sk);
2835 		if (tp->linger2 < 0) {
2836 			tcp_set_state(sk, TCP_CLOSE);
2837 			tcp_send_active_reset(sk, GFP_ATOMIC);
2838 			__NET_INC_STATS(sock_net(sk),
2839 					LINUX_MIB_TCPABORTONLINGER);
2840 		} else {
2841 			const int tmo = tcp_fin_time(sk);
2842 
2843 			if (tmo > TCP_TIMEWAIT_LEN) {
2844 				inet_csk_reset_keepalive_timer(sk,
2845 						tmo - TCP_TIMEWAIT_LEN);
2846 			} else {
2847 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2848 				goto out;
2849 			}
2850 		}
2851 	}
2852 	if (sk->sk_state != TCP_CLOSE) {
2853 		sk_mem_reclaim(sk);
2854 		if (tcp_check_oom(sk, 0)) {
2855 			tcp_set_state(sk, TCP_CLOSE);
2856 			tcp_send_active_reset(sk, GFP_ATOMIC);
2857 			__NET_INC_STATS(sock_net(sk),
2858 					LINUX_MIB_TCPABORTONMEMORY);
2859 		} else if (!check_net(sock_net(sk))) {
2860 			/* Not possible to send reset; just close */
2861 			tcp_set_state(sk, TCP_CLOSE);
2862 		}
2863 	}
2864 
2865 	if (sk->sk_state == TCP_CLOSE) {
2866 		struct request_sock *req;
2867 
2868 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2869 						lockdep_sock_is_held(sk));
2870 		/* We could get here with a non-NULL req if the socket is
2871 		 * aborted (e.g., closed with unread data) before 3WHS
2872 		 * finishes.
2873 		 */
2874 		if (req)
2875 			reqsk_fastopen_remove(sk, req, false);
2876 		inet_csk_destroy_sock(sk);
2877 	}
2878 	/* Otherwise, socket is reprieved until protocol close. */
2879 
2880 out:
2881 	bh_unlock_sock(sk);
2882 	local_bh_enable();
2883 }
2884 
2885 void tcp_close(struct sock *sk, long timeout)
2886 {
2887 	lock_sock(sk);
2888 	__tcp_close(sk, timeout);
2889 	release_sock(sk);
2890 	sock_put(sk);
2891 }
2892 EXPORT_SYMBOL(tcp_close);
2893 
2894 /* These states need RST on ABORT according to RFC793 */
2895 
2896 static inline bool tcp_need_reset(int state)
2897 {
2898 	return (1 << state) &
2899 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2900 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2901 }
2902 
2903 static void tcp_rtx_queue_purge(struct sock *sk)
2904 {
2905 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2906 
2907 	tcp_sk(sk)->highest_sack = NULL;
2908 	while (p) {
2909 		struct sk_buff *skb = rb_to_skb(p);
2910 
2911 		p = rb_next(p);
2912 		/* Since we are deleting whole queue, no need to
2913 		 * list_del(&skb->tcp_tsorted_anchor)
2914 		 */
2915 		tcp_rtx_queue_unlink(skb, sk);
2916 		tcp_wmem_free_skb(sk, skb);
2917 	}
2918 }
2919 
2920 void tcp_write_queue_purge(struct sock *sk)
2921 {
2922 	struct sk_buff *skb;
2923 
2924 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2925 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2926 		tcp_skb_tsorted_anchor_cleanup(skb);
2927 		tcp_wmem_free_skb(sk, skb);
2928 	}
2929 	tcp_rtx_queue_purge(sk);
2930 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2931 	sk_mem_reclaim(sk);
2932 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2933 	tcp_sk(sk)->packets_out = 0;
2934 	inet_csk(sk)->icsk_backoff = 0;
2935 }
2936 
2937 int tcp_disconnect(struct sock *sk, int flags)
2938 {
2939 	struct inet_sock *inet = inet_sk(sk);
2940 	struct inet_connection_sock *icsk = inet_csk(sk);
2941 	struct tcp_sock *tp = tcp_sk(sk);
2942 	int old_state = sk->sk_state;
2943 	u32 seq;
2944 
2945 	if (old_state != TCP_CLOSE)
2946 		tcp_set_state(sk, TCP_CLOSE);
2947 
2948 	/* ABORT function of RFC793 */
2949 	if (old_state == TCP_LISTEN) {
2950 		inet_csk_listen_stop(sk);
2951 	} else if (unlikely(tp->repair)) {
2952 		sk->sk_err = ECONNABORTED;
2953 	} else if (tcp_need_reset(old_state) ||
2954 		   (tp->snd_nxt != tp->write_seq &&
2955 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2956 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2957 		 * states
2958 		 */
2959 		tcp_send_active_reset(sk, gfp_any());
2960 		sk->sk_err = ECONNRESET;
2961 	} else if (old_state == TCP_SYN_SENT)
2962 		sk->sk_err = ECONNRESET;
2963 
2964 	tcp_clear_xmit_timers(sk);
2965 	__skb_queue_purge(&sk->sk_receive_queue);
2966 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2967 	tp->urg_data = 0;
2968 	tcp_write_queue_purge(sk);
2969 	tcp_fastopen_active_disable_ofo_check(sk);
2970 	skb_rbtree_purge(&tp->out_of_order_queue);
2971 
2972 	inet->inet_dport = 0;
2973 
2974 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2975 		inet_reset_saddr(sk);
2976 
2977 	sk->sk_shutdown = 0;
2978 	sock_reset_flag(sk, SOCK_DONE);
2979 	tp->srtt_us = 0;
2980 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2981 	tp->rcv_rtt_last_tsecr = 0;
2982 
2983 	seq = tp->write_seq + tp->max_window + 2;
2984 	if (!seq)
2985 		seq = 1;
2986 	WRITE_ONCE(tp->write_seq, seq);
2987 
2988 	icsk->icsk_backoff = 0;
2989 	icsk->icsk_probes_out = 0;
2990 	icsk->icsk_probes_tstamp = 0;
2991 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2992 	icsk->icsk_rto_min = TCP_RTO_MIN;
2993 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2994 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2995 	tp->snd_cwnd = TCP_INIT_CWND;
2996 	tp->snd_cwnd_cnt = 0;
2997 	tp->window_clamp = 0;
2998 	tp->delivered = 0;
2999 	tp->delivered_ce = 0;
3000 	if (icsk->icsk_ca_ops->release)
3001 		icsk->icsk_ca_ops->release(sk);
3002 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3003 	icsk->icsk_ca_initialized = 0;
3004 	tcp_set_ca_state(sk, TCP_CA_Open);
3005 	tp->is_sack_reneg = 0;
3006 	tcp_clear_retrans(tp);
3007 	tp->total_retrans = 0;
3008 	inet_csk_delack_init(sk);
3009 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3010 	 * issue in __tcp_select_window()
3011 	 */
3012 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3013 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3014 	__sk_dst_reset(sk);
3015 	dst_release(sk->sk_rx_dst);
3016 	sk->sk_rx_dst = NULL;
3017 	tcp_saved_syn_free(tp);
3018 	tp->compressed_ack = 0;
3019 	tp->segs_in = 0;
3020 	tp->segs_out = 0;
3021 	tp->bytes_sent = 0;
3022 	tp->bytes_acked = 0;
3023 	tp->bytes_received = 0;
3024 	tp->bytes_retrans = 0;
3025 	tp->data_segs_in = 0;
3026 	tp->data_segs_out = 0;
3027 	tp->duplicate_sack[0].start_seq = 0;
3028 	tp->duplicate_sack[0].end_seq = 0;
3029 	tp->dsack_dups = 0;
3030 	tp->reord_seen = 0;
3031 	tp->retrans_out = 0;
3032 	tp->sacked_out = 0;
3033 	tp->tlp_high_seq = 0;
3034 	tp->last_oow_ack_time = 0;
3035 	/* There's a bubble in the pipe until at least the first ACK. */
3036 	tp->app_limited = ~0U;
3037 	tp->rack.mstamp = 0;
3038 	tp->rack.advanced = 0;
3039 	tp->rack.reo_wnd_steps = 1;
3040 	tp->rack.last_delivered = 0;
3041 	tp->rack.reo_wnd_persist = 0;
3042 	tp->rack.dsack_seen = 0;
3043 	tp->syn_data_acked = 0;
3044 	tp->rx_opt.saw_tstamp = 0;
3045 	tp->rx_opt.dsack = 0;
3046 	tp->rx_opt.num_sacks = 0;
3047 	tp->rcv_ooopack = 0;
3048 
3049 
3050 	/* Clean up fastopen related fields */
3051 	tcp_free_fastopen_req(tp);
3052 	inet->defer_connect = 0;
3053 	tp->fastopen_client_fail = 0;
3054 
3055 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3056 
3057 	if (sk->sk_frag.page) {
3058 		put_page(sk->sk_frag.page);
3059 		sk->sk_frag.page = NULL;
3060 		sk->sk_frag.offset = 0;
3061 	}
3062 
3063 	sk_error_report(sk);
3064 	return 0;
3065 }
3066 EXPORT_SYMBOL(tcp_disconnect);
3067 
3068 static inline bool tcp_can_repair_sock(const struct sock *sk)
3069 {
3070 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3071 		(sk->sk_state != TCP_LISTEN);
3072 }
3073 
3074 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3075 {
3076 	struct tcp_repair_window opt;
3077 
3078 	if (!tp->repair)
3079 		return -EPERM;
3080 
3081 	if (len != sizeof(opt))
3082 		return -EINVAL;
3083 
3084 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3085 		return -EFAULT;
3086 
3087 	if (opt.max_window < opt.snd_wnd)
3088 		return -EINVAL;
3089 
3090 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3091 		return -EINVAL;
3092 
3093 	if (after(opt.rcv_wup, tp->rcv_nxt))
3094 		return -EINVAL;
3095 
3096 	tp->snd_wl1	= opt.snd_wl1;
3097 	tp->snd_wnd	= opt.snd_wnd;
3098 	tp->max_window	= opt.max_window;
3099 
3100 	tp->rcv_wnd	= opt.rcv_wnd;
3101 	tp->rcv_wup	= opt.rcv_wup;
3102 
3103 	return 0;
3104 }
3105 
3106 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3107 		unsigned int len)
3108 {
3109 	struct tcp_sock *tp = tcp_sk(sk);
3110 	struct tcp_repair_opt opt;
3111 	size_t offset = 0;
3112 
3113 	while (len >= sizeof(opt)) {
3114 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3115 			return -EFAULT;
3116 
3117 		offset += sizeof(opt);
3118 		len -= sizeof(opt);
3119 
3120 		switch (opt.opt_code) {
3121 		case TCPOPT_MSS:
3122 			tp->rx_opt.mss_clamp = opt.opt_val;
3123 			tcp_mtup_init(sk);
3124 			break;
3125 		case TCPOPT_WINDOW:
3126 			{
3127 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3128 				u16 rcv_wscale = opt.opt_val >> 16;
3129 
3130 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3131 					return -EFBIG;
3132 
3133 				tp->rx_opt.snd_wscale = snd_wscale;
3134 				tp->rx_opt.rcv_wscale = rcv_wscale;
3135 				tp->rx_opt.wscale_ok = 1;
3136 			}
3137 			break;
3138 		case TCPOPT_SACK_PERM:
3139 			if (opt.opt_val != 0)
3140 				return -EINVAL;
3141 
3142 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3143 			break;
3144 		case TCPOPT_TIMESTAMP:
3145 			if (opt.opt_val != 0)
3146 				return -EINVAL;
3147 
3148 			tp->rx_opt.tstamp_ok = 1;
3149 			break;
3150 		}
3151 	}
3152 
3153 	return 0;
3154 }
3155 
3156 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3157 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3158 
3159 static void tcp_enable_tx_delay(void)
3160 {
3161 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3162 		static int __tcp_tx_delay_enabled = 0;
3163 
3164 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3165 			static_branch_enable(&tcp_tx_delay_enabled);
3166 			pr_info("TCP_TX_DELAY enabled\n");
3167 		}
3168 	}
3169 }
3170 
3171 /* When set indicates to always queue non-full frames.  Later the user clears
3172  * this option and we transmit any pending partial frames in the queue.  This is
3173  * meant to be used alongside sendfile() to get properly filled frames when the
3174  * user (for example) must write out headers with a write() call first and then
3175  * use sendfile to send out the data parts.
3176  *
3177  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3178  * TCP_NODELAY.
3179  */
3180 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3181 {
3182 	struct tcp_sock *tp = tcp_sk(sk);
3183 
3184 	if (on) {
3185 		tp->nonagle |= TCP_NAGLE_CORK;
3186 	} else {
3187 		tp->nonagle &= ~TCP_NAGLE_CORK;
3188 		if (tp->nonagle & TCP_NAGLE_OFF)
3189 			tp->nonagle |= TCP_NAGLE_PUSH;
3190 		tcp_push_pending_frames(sk);
3191 	}
3192 }
3193 
3194 void tcp_sock_set_cork(struct sock *sk, bool on)
3195 {
3196 	lock_sock(sk);
3197 	__tcp_sock_set_cork(sk, on);
3198 	release_sock(sk);
3199 }
3200 EXPORT_SYMBOL(tcp_sock_set_cork);
3201 
3202 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3203  * remembered, but it is not activated until cork is cleared.
3204  *
3205  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3206  * even TCP_CORK for currently queued segments.
3207  */
3208 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3209 {
3210 	if (on) {
3211 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3212 		tcp_push_pending_frames(sk);
3213 	} else {
3214 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3215 	}
3216 }
3217 
3218 void tcp_sock_set_nodelay(struct sock *sk)
3219 {
3220 	lock_sock(sk);
3221 	__tcp_sock_set_nodelay(sk, true);
3222 	release_sock(sk);
3223 }
3224 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3225 
3226 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3227 {
3228 	if (!val) {
3229 		inet_csk_enter_pingpong_mode(sk);
3230 		return;
3231 	}
3232 
3233 	inet_csk_exit_pingpong_mode(sk);
3234 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3235 	    inet_csk_ack_scheduled(sk)) {
3236 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3237 		tcp_cleanup_rbuf(sk, 1);
3238 		if (!(val & 1))
3239 			inet_csk_enter_pingpong_mode(sk);
3240 	}
3241 }
3242 
3243 void tcp_sock_set_quickack(struct sock *sk, int val)
3244 {
3245 	lock_sock(sk);
3246 	__tcp_sock_set_quickack(sk, val);
3247 	release_sock(sk);
3248 }
3249 EXPORT_SYMBOL(tcp_sock_set_quickack);
3250 
3251 int tcp_sock_set_syncnt(struct sock *sk, int val)
3252 {
3253 	if (val < 1 || val > MAX_TCP_SYNCNT)
3254 		return -EINVAL;
3255 
3256 	lock_sock(sk);
3257 	inet_csk(sk)->icsk_syn_retries = val;
3258 	release_sock(sk);
3259 	return 0;
3260 }
3261 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3262 
3263 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3264 {
3265 	lock_sock(sk);
3266 	inet_csk(sk)->icsk_user_timeout = val;
3267 	release_sock(sk);
3268 }
3269 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3270 
3271 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3272 {
3273 	struct tcp_sock *tp = tcp_sk(sk);
3274 
3275 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3276 		return -EINVAL;
3277 
3278 	tp->keepalive_time = val * HZ;
3279 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3280 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3281 		u32 elapsed = keepalive_time_elapsed(tp);
3282 
3283 		if (tp->keepalive_time > elapsed)
3284 			elapsed = tp->keepalive_time - elapsed;
3285 		else
3286 			elapsed = 0;
3287 		inet_csk_reset_keepalive_timer(sk, elapsed);
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 int tcp_sock_set_keepidle(struct sock *sk, int val)
3294 {
3295 	int err;
3296 
3297 	lock_sock(sk);
3298 	err = tcp_sock_set_keepidle_locked(sk, val);
3299 	release_sock(sk);
3300 	return err;
3301 }
3302 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3303 
3304 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3305 {
3306 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3307 		return -EINVAL;
3308 
3309 	lock_sock(sk);
3310 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3311 	release_sock(sk);
3312 	return 0;
3313 }
3314 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3315 
3316 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3317 {
3318 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3319 		return -EINVAL;
3320 
3321 	lock_sock(sk);
3322 	tcp_sk(sk)->keepalive_probes = val;
3323 	release_sock(sk);
3324 	return 0;
3325 }
3326 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3327 
3328 int tcp_set_window_clamp(struct sock *sk, int val)
3329 {
3330 	struct tcp_sock *tp = tcp_sk(sk);
3331 
3332 	if (!val) {
3333 		if (sk->sk_state != TCP_CLOSE)
3334 			return -EINVAL;
3335 		tp->window_clamp = 0;
3336 	} else {
3337 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3338 			SOCK_MIN_RCVBUF / 2 : val;
3339 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3340 	}
3341 	return 0;
3342 }
3343 
3344 /*
3345  *	Socket option code for TCP.
3346  */
3347 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3348 		sockptr_t optval, unsigned int optlen)
3349 {
3350 	struct tcp_sock *tp = tcp_sk(sk);
3351 	struct inet_connection_sock *icsk = inet_csk(sk);
3352 	struct net *net = sock_net(sk);
3353 	int val;
3354 	int err = 0;
3355 
3356 	/* These are data/string values, all the others are ints */
3357 	switch (optname) {
3358 	case TCP_CONGESTION: {
3359 		char name[TCP_CA_NAME_MAX];
3360 
3361 		if (optlen < 1)
3362 			return -EINVAL;
3363 
3364 		val = strncpy_from_sockptr(name, optval,
3365 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3366 		if (val < 0)
3367 			return -EFAULT;
3368 		name[val] = 0;
3369 
3370 		lock_sock(sk);
3371 		err = tcp_set_congestion_control(sk, name, true,
3372 						 ns_capable(sock_net(sk)->user_ns,
3373 							    CAP_NET_ADMIN));
3374 		release_sock(sk);
3375 		return err;
3376 	}
3377 	case TCP_ULP: {
3378 		char name[TCP_ULP_NAME_MAX];
3379 
3380 		if (optlen < 1)
3381 			return -EINVAL;
3382 
3383 		val = strncpy_from_sockptr(name, optval,
3384 					min_t(long, TCP_ULP_NAME_MAX - 1,
3385 					      optlen));
3386 		if (val < 0)
3387 			return -EFAULT;
3388 		name[val] = 0;
3389 
3390 		lock_sock(sk);
3391 		err = tcp_set_ulp(sk, name);
3392 		release_sock(sk);
3393 		return err;
3394 	}
3395 	case TCP_FASTOPEN_KEY: {
3396 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3397 		__u8 *backup_key = NULL;
3398 
3399 		/* Allow a backup key as well to facilitate key rotation
3400 		 * First key is the active one.
3401 		 */
3402 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3403 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3404 			return -EINVAL;
3405 
3406 		if (copy_from_sockptr(key, optval, optlen))
3407 			return -EFAULT;
3408 
3409 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3410 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3411 
3412 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3413 	}
3414 	default:
3415 		/* fallthru */
3416 		break;
3417 	}
3418 
3419 	if (optlen < sizeof(int))
3420 		return -EINVAL;
3421 
3422 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3423 		return -EFAULT;
3424 
3425 	lock_sock(sk);
3426 
3427 	switch (optname) {
3428 	case TCP_MAXSEG:
3429 		/* Values greater than interface MTU won't take effect. However
3430 		 * at the point when this call is done we typically don't yet
3431 		 * know which interface is going to be used
3432 		 */
3433 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3434 			err = -EINVAL;
3435 			break;
3436 		}
3437 		tp->rx_opt.user_mss = val;
3438 		break;
3439 
3440 	case TCP_NODELAY:
3441 		__tcp_sock_set_nodelay(sk, val);
3442 		break;
3443 
3444 	case TCP_THIN_LINEAR_TIMEOUTS:
3445 		if (val < 0 || val > 1)
3446 			err = -EINVAL;
3447 		else
3448 			tp->thin_lto = val;
3449 		break;
3450 
3451 	case TCP_THIN_DUPACK:
3452 		if (val < 0 || val > 1)
3453 			err = -EINVAL;
3454 		break;
3455 
3456 	case TCP_REPAIR:
3457 		if (!tcp_can_repair_sock(sk))
3458 			err = -EPERM;
3459 		else if (val == TCP_REPAIR_ON) {
3460 			tp->repair = 1;
3461 			sk->sk_reuse = SK_FORCE_REUSE;
3462 			tp->repair_queue = TCP_NO_QUEUE;
3463 		} else if (val == TCP_REPAIR_OFF) {
3464 			tp->repair = 0;
3465 			sk->sk_reuse = SK_NO_REUSE;
3466 			tcp_send_window_probe(sk);
3467 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3468 			tp->repair = 0;
3469 			sk->sk_reuse = SK_NO_REUSE;
3470 		} else
3471 			err = -EINVAL;
3472 
3473 		break;
3474 
3475 	case TCP_REPAIR_QUEUE:
3476 		if (!tp->repair)
3477 			err = -EPERM;
3478 		else if ((unsigned int)val < TCP_QUEUES_NR)
3479 			tp->repair_queue = val;
3480 		else
3481 			err = -EINVAL;
3482 		break;
3483 
3484 	case TCP_QUEUE_SEQ:
3485 		if (sk->sk_state != TCP_CLOSE) {
3486 			err = -EPERM;
3487 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3488 			if (!tcp_rtx_queue_empty(sk))
3489 				err = -EPERM;
3490 			else
3491 				WRITE_ONCE(tp->write_seq, val);
3492 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3493 			if (tp->rcv_nxt != tp->copied_seq) {
3494 				err = -EPERM;
3495 			} else {
3496 				WRITE_ONCE(tp->rcv_nxt, val);
3497 				WRITE_ONCE(tp->copied_seq, val);
3498 			}
3499 		} else {
3500 			err = -EINVAL;
3501 		}
3502 		break;
3503 
3504 	case TCP_REPAIR_OPTIONS:
3505 		if (!tp->repair)
3506 			err = -EINVAL;
3507 		else if (sk->sk_state == TCP_ESTABLISHED)
3508 			err = tcp_repair_options_est(sk, optval, optlen);
3509 		else
3510 			err = -EPERM;
3511 		break;
3512 
3513 	case TCP_CORK:
3514 		__tcp_sock_set_cork(sk, val);
3515 		break;
3516 
3517 	case TCP_KEEPIDLE:
3518 		err = tcp_sock_set_keepidle_locked(sk, val);
3519 		break;
3520 	case TCP_KEEPINTVL:
3521 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3522 			err = -EINVAL;
3523 		else
3524 			tp->keepalive_intvl = val * HZ;
3525 		break;
3526 	case TCP_KEEPCNT:
3527 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3528 			err = -EINVAL;
3529 		else
3530 			tp->keepalive_probes = val;
3531 		break;
3532 	case TCP_SYNCNT:
3533 		if (val < 1 || val > MAX_TCP_SYNCNT)
3534 			err = -EINVAL;
3535 		else
3536 			icsk->icsk_syn_retries = val;
3537 		break;
3538 
3539 	case TCP_SAVE_SYN:
3540 		/* 0: disable, 1: enable, 2: start from ether_header */
3541 		if (val < 0 || val > 2)
3542 			err = -EINVAL;
3543 		else
3544 			tp->save_syn = val;
3545 		break;
3546 
3547 	case TCP_LINGER2:
3548 		if (val < 0)
3549 			tp->linger2 = -1;
3550 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3551 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3552 		else
3553 			tp->linger2 = val * HZ;
3554 		break;
3555 
3556 	case TCP_DEFER_ACCEPT:
3557 		/* Translate value in seconds to number of retransmits */
3558 		icsk->icsk_accept_queue.rskq_defer_accept =
3559 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3560 					TCP_RTO_MAX / HZ);
3561 		break;
3562 
3563 	case TCP_WINDOW_CLAMP:
3564 		err = tcp_set_window_clamp(sk, val);
3565 		break;
3566 
3567 	case TCP_QUICKACK:
3568 		__tcp_sock_set_quickack(sk, val);
3569 		break;
3570 
3571 #ifdef CONFIG_TCP_MD5SIG
3572 	case TCP_MD5SIG:
3573 	case TCP_MD5SIG_EXT:
3574 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3575 		break;
3576 #endif
3577 	case TCP_USER_TIMEOUT:
3578 		/* Cap the max time in ms TCP will retry or probe the window
3579 		 * before giving up and aborting (ETIMEDOUT) a connection.
3580 		 */
3581 		if (val < 0)
3582 			err = -EINVAL;
3583 		else
3584 			icsk->icsk_user_timeout = val;
3585 		break;
3586 
3587 	case TCP_FASTOPEN:
3588 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3589 		    TCPF_LISTEN))) {
3590 			tcp_fastopen_init_key_once(net);
3591 
3592 			fastopen_queue_tune(sk, val);
3593 		} else {
3594 			err = -EINVAL;
3595 		}
3596 		break;
3597 	case TCP_FASTOPEN_CONNECT:
3598 		if (val > 1 || val < 0) {
3599 			err = -EINVAL;
3600 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3601 			if (sk->sk_state == TCP_CLOSE)
3602 				tp->fastopen_connect = val;
3603 			else
3604 				err = -EINVAL;
3605 		} else {
3606 			err = -EOPNOTSUPP;
3607 		}
3608 		break;
3609 	case TCP_FASTOPEN_NO_COOKIE:
3610 		if (val > 1 || val < 0)
3611 			err = -EINVAL;
3612 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3613 			err = -EINVAL;
3614 		else
3615 			tp->fastopen_no_cookie = val;
3616 		break;
3617 	case TCP_TIMESTAMP:
3618 		if (!tp->repair)
3619 			err = -EPERM;
3620 		else
3621 			tp->tsoffset = val - tcp_time_stamp_raw();
3622 		break;
3623 	case TCP_REPAIR_WINDOW:
3624 		err = tcp_repair_set_window(tp, optval, optlen);
3625 		break;
3626 	case TCP_NOTSENT_LOWAT:
3627 		tp->notsent_lowat = val;
3628 		sk->sk_write_space(sk);
3629 		break;
3630 	case TCP_INQ:
3631 		if (val > 1 || val < 0)
3632 			err = -EINVAL;
3633 		else
3634 			tp->recvmsg_inq = val;
3635 		break;
3636 	case TCP_TX_DELAY:
3637 		if (val)
3638 			tcp_enable_tx_delay();
3639 		tp->tcp_tx_delay = val;
3640 		break;
3641 	default:
3642 		err = -ENOPROTOOPT;
3643 		break;
3644 	}
3645 
3646 	release_sock(sk);
3647 	return err;
3648 }
3649 
3650 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3651 		   unsigned int optlen)
3652 {
3653 	const struct inet_connection_sock *icsk = inet_csk(sk);
3654 
3655 	if (level != SOL_TCP)
3656 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3657 						     optval, optlen);
3658 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3659 }
3660 EXPORT_SYMBOL(tcp_setsockopt);
3661 
3662 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3663 				      struct tcp_info *info)
3664 {
3665 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3666 	enum tcp_chrono i;
3667 
3668 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3669 		stats[i] = tp->chrono_stat[i - 1];
3670 		if (i == tp->chrono_type)
3671 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3672 		stats[i] *= USEC_PER_SEC / HZ;
3673 		total += stats[i];
3674 	}
3675 
3676 	info->tcpi_busy_time = total;
3677 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3678 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3679 }
3680 
3681 /* Return information about state of tcp endpoint in API format. */
3682 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3683 {
3684 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3685 	const struct inet_connection_sock *icsk = inet_csk(sk);
3686 	unsigned long rate;
3687 	u32 now;
3688 	u64 rate64;
3689 	bool slow;
3690 
3691 	memset(info, 0, sizeof(*info));
3692 	if (sk->sk_type != SOCK_STREAM)
3693 		return;
3694 
3695 	info->tcpi_state = inet_sk_state_load(sk);
3696 
3697 	/* Report meaningful fields for all TCP states, including listeners */
3698 	rate = READ_ONCE(sk->sk_pacing_rate);
3699 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3700 	info->tcpi_pacing_rate = rate64;
3701 
3702 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3703 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3704 	info->tcpi_max_pacing_rate = rate64;
3705 
3706 	info->tcpi_reordering = tp->reordering;
3707 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3708 
3709 	if (info->tcpi_state == TCP_LISTEN) {
3710 		/* listeners aliased fields :
3711 		 * tcpi_unacked -> Number of children ready for accept()
3712 		 * tcpi_sacked  -> max backlog
3713 		 */
3714 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3715 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3716 		return;
3717 	}
3718 
3719 	slow = lock_sock_fast(sk);
3720 
3721 	info->tcpi_ca_state = icsk->icsk_ca_state;
3722 	info->tcpi_retransmits = icsk->icsk_retransmits;
3723 	info->tcpi_probes = icsk->icsk_probes_out;
3724 	info->tcpi_backoff = icsk->icsk_backoff;
3725 
3726 	if (tp->rx_opt.tstamp_ok)
3727 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3728 	if (tcp_is_sack(tp))
3729 		info->tcpi_options |= TCPI_OPT_SACK;
3730 	if (tp->rx_opt.wscale_ok) {
3731 		info->tcpi_options |= TCPI_OPT_WSCALE;
3732 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3733 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3734 	}
3735 
3736 	if (tp->ecn_flags & TCP_ECN_OK)
3737 		info->tcpi_options |= TCPI_OPT_ECN;
3738 	if (tp->ecn_flags & TCP_ECN_SEEN)
3739 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3740 	if (tp->syn_data_acked)
3741 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3742 
3743 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3744 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3745 	info->tcpi_snd_mss = tp->mss_cache;
3746 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3747 
3748 	info->tcpi_unacked = tp->packets_out;
3749 	info->tcpi_sacked = tp->sacked_out;
3750 
3751 	info->tcpi_lost = tp->lost_out;
3752 	info->tcpi_retrans = tp->retrans_out;
3753 
3754 	now = tcp_jiffies32;
3755 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3756 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3757 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3758 
3759 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3760 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3761 	info->tcpi_rtt = tp->srtt_us >> 3;
3762 	info->tcpi_rttvar = tp->mdev_us >> 2;
3763 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3764 	info->tcpi_advmss = tp->advmss;
3765 
3766 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3767 	info->tcpi_rcv_space = tp->rcvq_space.space;
3768 
3769 	info->tcpi_total_retrans = tp->total_retrans;
3770 
3771 	info->tcpi_bytes_acked = tp->bytes_acked;
3772 	info->tcpi_bytes_received = tp->bytes_received;
3773 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3774 	tcp_get_info_chrono_stats(tp, info);
3775 
3776 	info->tcpi_segs_out = tp->segs_out;
3777 	info->tcpi_segs_in = tp->segs_in;
3778 
3779 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3780 	info->tcpi_data_segs_in = tp->data_segs_in;
3781 	info->tcpi_data_segs_out = tp->data_segs_out;
3782 
3783 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3784 	rate64 = tcp_compute_delivery_rate(tp);
3785 	if (rate64)
3786 		info->tcpi_delivery_rate = rate64;
3787 	info->tcpi_delivered = tp->delivered;
3788 	info->tcpi_delivered_ce = tp->delivered_ce;
3789 	info->tcpi_bytes_sent = tp->bytes_sent;
3790 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3791 	info->tcpi_dsack_dups = tp->dsack_dups;
3792 	info->tcpi_reord_seen = tp->reord_seen;
3793 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3794 	info->tcpi_snd_wnd = tp->snd_wnd;
3795 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3796 	unlock_sock_fast(sk, slow);
3797 }
3798 EXPORT_SYMBOL_GPL(tcp_get_info);
3799 
3800 static size_t tcp_opt_stats_get_size(void)
3801 {
3802 	return
3803 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3804 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3805 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3806 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3807 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3808 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3809 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3810 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3811 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3812 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3813 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3814 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3815 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3816 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3817 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3818 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3819 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3820 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3821 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3822 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3823 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3824 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3825 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3826 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3827 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3828 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3829 		0;
3830 }
3831 
3832 /* Returns TTL or hop limit of an incoming packet from skb. */
3833 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3834 {
3835 	if (skb->protocol == htons(ETH_P_IP))
3836 		return ip_hdr(skb)->ttl;
3837 	else if (skb->protocol == htons(ETH_P_IPV6))
3838 		return ipv6_hdr(skb)->hop_limit;
3839 	else
3840 		return 0;
3841 }
3842 
3843 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3844 					       const struct sk_buff *orig_skb,
3845 					       const struct sk_buff *ack_skb)
3846 {
3847 	const struct tcp_sock *tp = tcp_sk(sk);
3848 	struct sk_buff *stats;
3849 	struct tcp_info info;
3850 	unsigned long rate;
3851 	u64 rate64;
3852 
3853 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3854 	if (!stats)
3855 		return NULL;
3856 
3857 	tcp_get_info_chrono_stats(tp, &info);
3858 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3859 			  info.tcpi_busy_time, TCP_NLA_PAD);
3860 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3861 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3862 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3863 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3864 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3865 			  tp->data_segs_out, TCP_NLA_PAD);
3866 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3867 			  tp->total_retrans, TCP_NLA_PAD);
3868 
3869 	rate = READ_ONCE(sk->sk_pacing_rate);
3870 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3871 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3872 
3873 	rate64 = tcp_compute_delivery_rate(tp);
3874 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3875 
3876 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3877 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3878 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3879 
3880 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3881 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3882 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3883 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3884 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3885 
3886 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3887 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3888 
3889 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3890 			  TCP_NLA_PAD);
3891 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3892 			  TCP_NLA_PAD);
3893 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3894 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3895 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3896 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3897 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3898 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3899 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3900 			  TCP_NLA_PAD);
3901 	if (ack_skb)
3902 		nla_put_u8(stats, TCP_NLA_TTL,
3903 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3904 
3905 	return stats;
3906 }
3907 
3908 static int do_tcp_getsockopt(struct sock *sk, int level,
3909 		int optname, char __user *optval, int __user *optlen)
3910 {
3911 	struct inet_connection_sock *icsk = inet_csk(sk);
3912 	struct tcp_sock *tp = tcp_sk(sk);
3913 	struct net *net = sock_net(sk);
3914 	int val, len;
3915 
3916 	if (get_user(len, optlen))
3917 		return -EFAULT;
3918 
3919 	len = min_t(unsigned int, len, sizeof(int));
3920 
3921 	if (len < 0)
3922 		return -EINVAL;
3923 
3924 	switch (optname) {
3925 	case TCP_MAXSEG:
3926 		val = tp->mss_cache;
3927 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3928 			val = tp->rx_opt.user_mss;
3929 		if (tp->repair)
3930 			val = tp->rx_opt.mss_clamp;
3931 		break;
3932 	case TCP_NODELAY:
3933 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3934 		break;
3935 	case TCP_CORK:
3936 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3937 		break;
3938 	case TCP_KEEPIDLE:
3939 		val = keepalive_time_when(tp) / HZ;
3940 		break;
3941 	case TCP_KEEPINTVL:
3942 		val = keepalive_intvl_when(tp) / HZ;
3943 		break;
3944 	case TCP_KEEPCNT:
3945 		val = keepalive_probes(tp);
3946 		break;
3947 	case TCP_SYNCNT:
3948 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3949 		break;
3950 	case TCP_LINGER2:
3951 		val = tp->linger2;
3952 		if (val >= 0)
3953 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3954 		break;
3955 	case TCP_DEFER_ACCEPT:
3956 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3957 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3958 		break;
3959 	case TCP_WINDOW_CLAMP:
3960 		val = tp->window_clamp;
3961 		break;
3962 	case TCP_INFO: {
3963 		struct tcp_info info;
3964 
3965 		if (get_user(len, optlen))
3966 			return -EFAULT;
3967 
3968 		tcp_get_info(sk, &info);
3969 
3970 		len = min_t(unsigned int, len, sizeof(info));
3971 		if (put_user(len, optlen))
3972 			return -EFAULT;
3973 		if (copy_to_user(optval, &info, len))
3974 			return -EFAULT;
3975 		return 0;
3976 	}
3977 	case TCP_CC_INFO: {
3978 		const struct tcp_congestion_ops *ca_ops;
3979 		union tcp_cc_info info;
3980 		size_t sz = 0;
3981 		int attr;
3982 
3983 		if (get_user(len, optlen))
3984 			return -EFAULT;
3985 
3986 		ca_ops = icsk->icsk_ca_ops;
3987 		if (ca_ops && ca_ops->get_info)
3988 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3989 
3990 		len = min_t(unsigned int, len, sz);
3991 		if (put_user(len, optlen))
3992 			return -EFAULT;
3993 		if (copy_to_user(optval, &info, len))
3994 			return -EFAULT;
3995 		return 0;
3996 	}
3997 	case TCP_QUICKACK:
3998 		val = !inet_csk_in_pingpong_mode(sk);
3999 		break;
4000 
4001 	case TCP_CONGESTION:
4002 		if (get_user(len, optlen))
4003 			return -EFAULT;
4004 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4005 		if (put_user(len, optlen))
4006 			return -EFAULT;
4007 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4008 			return -EFAULT;
4009 		return 0;
4010 
4011 	case TCP_ULP:
4012 		if (get_user(len, optlen))
4013 			return -EFAULT;
4014 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4015 		if (!icsk->icsk_ulp_ops) {
4016 			if (put_user(0, optlen))
4017 				return -EFAULT;
4018 			return 0;
4019 		}
4020 		if (put_user(len, optlen))
4021 			return -EFAULT;
4022 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4023 			return -EFAULT;
4024 		return 0;
4025 
4026 	case TCP_FASTOPEN_KEY: {
4027 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4028 		unsigned int key_len;
4029 
4030 		if (get_user(len, optlen))
4031 			return -EFAULT;
4032 
4033 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4034 				TCP_FASTOPEN_KEY_LENGTH;
4035 		len = min_t(unsigned int, len, key_len);
4036 		if (put_user(len, optlen))
4037 			return -EFAULT;
4038 		if (copy_to_user(optval, key, len))
4039 			return -EFAULT;
4040 		return 0;
4041 	}
4042 	case TCP_THIN_LINEAR_TIMEOUTS:
4043 		val = tp->thin_lto;
4044 		break;
4045 
4046 	case TCP_THIN_DUPACK:
4047 		val = 0;
4048 		break;
4049 
4050 	case TCP_REPAIR:
4051 		val = tp->repair;
4052 		break;
4053 
4054 	case TCP_REPAIR_QUEUE:
4055 		if (tp->repair)
4056 			val = tp->repair_queue;
4057 		else
4058 			return -EINVAL;
4059 		break;
4060 
4061 	case TCP_REPAIR_WINDOW: {
4062 		struct tcp_repair_window opt;
4063 
4064 		if (get_user(len, optlen))
4065 			return -EFAULT;
4066 
4067 		if (len != sizeof(opt))
4068 			return -EINVAL;
4069 
4070 		if (!tp->repair)
4071 			return -EPERM;
4072 
4073 		opt.snd_wl1	= tp->snd_wl1;
4074 		opt.snd_wnd	= tp->snd_wnd;
4075 		opt.max_window	= tp->max_window;
4076 		opt.rcv_wnd	= tp->rcv_wnd;
4077 		opt.rcv_wup	= tp->rcv_wup;
4078 
4079 		if (copy_to_user(optval, &opt, len))
4080 			return -EFAULT;
4081 		return 0;
4082 	}
4083 	case TCP_QUEUE_SEQ:
4084 		if (tp->repair_queue == TCP_SEND_QUEUE)
4085 			val = tp->write_seq;
4086 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4087 			val = tp->rcv_nxt;
4088 		else
4089 			return -EINVAL;
4090 		break;
4091 
4092 	case TCP_USER_TIMEOUT:
4093 		val = icsk->icsk_user_timeout;
4094 		break;
4095 
4096 	case TCP_FASTOPEN:
4097 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4098 		break;
4099 
4100 	case TCP_FASTOPEN_CONNECT:
4101 		val = tp->fastopen_connect;
4102 		break;
4103 
4104 	case TCP_FASTOPEN_NO_COOKIE:
4105 		val = tp->fastopen_no_cookie;
4106 		break;
4107 
4108 	case TCP_TX_DELAY:
4109 		val = tp->tcp_tx_delay;
4110 		break;
4111 
4112 	case TCP_TIMESTAMP:
4113 		val = tcp_time_stamp_raw() + tp->tsoffset;
4114 		break;
4115 	case TCP_NOTSENT_LOWAT:
4116 		val = tp->notsent_lowat;
4117 		break;
4118 	case TCP_INQ:
4119 		val = tp->recvmsg_inq;
4120 		break;
4121 	case TCP_SAVE_SYN:
4122 		val = tp->save_syn;
4123 		break;
4124 	case TCP_SAVED_SYN: {
4125 		if (get_user(len, optlen))
4126 			return -EFAULT;
4127 
4128 		lock_sock(sk);
4129 		if (tp->saved_syn) {
4130 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4131 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4132 					     optlen)) {
4133 					release_sock(sk);
4134 					return -EFAULT;
4135 				}
4136 				release_sock(sk);
4137 				return -EINVAL;
4138 			}
4139 			len = tcp_saved_syn_len(tp->saved_syn);
4140 			if (put_user(len, optlen)) {
4141 				release_sock(sk);
4142 				return -EFAULT;
4143 			}
4144 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4145 				release_sock(sk);
4146 				return -EFAULT;
4147 			}
4148 			tcp_saved_syn_free(tp);
4149 			release_sock(sk);
4150 		} else {
4151 			release_sock(sk);
4152 			len = 0;
4153 			if (put_user(len, optlen))
4154 				return -EFAULT;
4155 		}
4156 		return 0;
4157 	}
4158 #ifdef CONFIG_MMU
4159 	case TCP_ZEROCOPY_RECEIVE: {
4160 		struct scm_timestamping_internal tss;
4161 		struct tcp_zerocopy_receive zc = {};
4162 		int err;
4163 
4164 		if (get_user(len, optlen))
4165 			return -EFAULT;
4166 		if (len < 0 ||
4167 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4168 			return -EINVAL;
4169 		if (unlikely(len > sizeof(zc))) {
4170 			err = check_zeroed_user(optval + sizeof(zc),
4171 						len - sizeof(zc));
4172 			if (err < 1)
4173 				return err == 0 ? -EINVAL : err;
4174 			len = sizeof(zc);
4175 			if (put_user(len, optlen))
4176 				return -EFAULT;
4177 		}
4178 		if (copy_from_user(&zc, optval, len))
4179 			return -EFAULT;
4180 		if (zc.reserved)
4181 			return -EINVAL;
4182 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4183 			return -EINVAL;
4184 		lock_sock(sk);
4185 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4186 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4187 							  &zc, &len, err);
4188 		release_sock(sk);
4189 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4190 			goto zerocopy_rcv_cmsg;
4191 		switch (len) {
4192 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4193 			goto zerocopy_rcv_cmsg;
4194 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4195 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4196 		case offsetofend(struct tcp_zerocopy_receive, flags):
4197 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4198 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4199 		case offsetofend(struct tcp_zerocopy_receive, err):
4200 			goto zerocopy_rcv_sk_err;
4201 		case offsetofend(struct tcp_zerocopy_receive, inq):
4202 			goto zerocopy_rcv_inq;
4203 		case offsetofend(struct tcp_zerocopy_receive, length):
4204 		default:
4205 			goto zerocopy_rcv_out;
4206 		}
4207 zerocopy_rcv_cmsg:
4208 		if (zc.msg_flags & TCP_CMSG_TS)
4209 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4210 		else
4211 			zc.msg_flags = 0;
4212 zerocopy_rcv_sk_err:
4213 		if (!err)
4214 			zc.err = sock_error(sk);
4215 zerocopy_rcv_inq:
4216 		zc.inq = tcp_inq_hint(sk);
4217 zerocopy_rcv_out:
4218 		if (!err && copy_to_user(optval, &zc, len))
4219 			err = -EFAULT;
4220 		return err;
4221 	}
4222 #endif
4223 	default:
4224 		return -ENOPROTOOPT;
4225 	}
4226 
4227 	if (put_user(len, optlen))
4228 		return -EFAULT;
4229 	if (copy_to_user(optval, &val, len))
4230 		return -EFAULT;
4231 	return 0;
4232 }
4233 
4234 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4235 {
4236 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4237 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4238 	 */
4239 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4240 		return true;
4241 
4242 	return false;
4243 }
4244 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4245 
4246 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4247 		   int __user *optlen)
4248 {
4249 	struct inet_connection_sock *icsk = inet_csk(sk);
4250 
4251 	if (level != SOL_TCP)
4252 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4253 						     optval, optlen);
4254 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4255 }
4256 EXPORT_SYMBOL(tcp_getsockopt);
4257 
4258 #ifdef CONFIG_TCP_MD5SIG
4259 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4260 static DEFINE_MUTEX(tcp_md5sig_mutex);
4261 static bool tcp_md5sig_pool_populated = false;
4262 
4263 static void __tcp_alloc_md5sig_pool(void)
4264 {
4265 	struct crypto_ahash *hash;
4266 	int cpu;
4267 
4268 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4269 	if (IS_ERR(hash))
4270 		return;
4271 
4272 	for_each_possible_cpu(cpu) {
4273 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4274 		struct ahash_request *req;
4275 
4276 		if (!scratch) {
4277 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4278 					       sizeof(struct tcphdr),
4279 					       GFP_KERNEL,
4280 					       cpu_to_node(cpu));
4281 			if (!scratch)
4282 				return;
4283 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4284 		}
4285 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4286 			continue;
4287 
4288 		req = ahash_request_alloc(hash, GFP_KERNEL);
4289 		if (!req)
4290 			return;
4291 
4292 		ahash_request_set_callback(req, 0, NULL, NULL);
4293 
4294 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4295 	}
4296 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4297 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4298 	 */
4299 	smp_wmb();
4300 	tcp_md5sig_pool_populated = true;
4301 }
4302 
4303 bool tcp_alloc_md5sig_pool(void)
4304 {
4305 	if (unlikely(!tcp_md5sig_pool_populated)) {
4306 		mutex_lock(&tcp_md5sig_mutex);
4307 
4308 		if (!tcp_md5sig_pool_populated) {
4309 			__tcp_alloc_md5sig_pool();
4310 			if (tcp_md5sig_pool_populated)
4311 				static_branch_inc(&tcp_md5_needed);
4312 		}
4313 
4314 		mutex_unlock(&tcp_md5sig_mutex);
4315 	}
4316 	return tcp_md5sig_pool_populated;
4317 }
4318 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4319 
4320 
4321 /**
4322  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4323  *
4324  *	We use percpu structure, so if we succeed, we exit with preemption
4325  *	and BH disabled, to make sure another thread or softirq handling
4326  *	wont try to get same context.
4327  */
4328 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4329 {
4330 	local_bh_disable();
4331 
4332 	if (tcp_md5sig_pool_populated) {
4333 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4334 		smp_rmb();
4335 		return this_cpu_ptr(&tcp_md5sig_pool);
4336 	}
4337 	local_bh_enable();
4338 	return NULL;
4339 }
4340 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4341 
4342 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4343 			  const struct sk_buff *skb, unsigned int header_len)
4344 {
4345 	struct scatterlist sg;
4346 	const struct tcphdr *tp = tcp_hdr(skb);
4347 	struct ahash_request *req = hp->md5_req;
4348 	unsigned int i;
4349 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4350 					   skb_headlen(skb) - header_len : 0;
4351 	const struct skb_shared_info *shi = skb_shinfo(skb);
4352 	struct sk_buff *frag_iter;
4353 
4354 	sg_init_table(&sg, 1);
4355 
4356 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4357 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4358 	if (crypto_ahash_update(req))
4359 		return 1;
4360 
4361 	for (i = 0; i < shi->nr_frags; ++i) {
4362 		const skb_frag_t *f = &shi->frags[i];
4363 		unsigned int offset = skb_frag_off(f);
4364 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4365 
4366 		sg_set_page(&sg, page, skb_frag_size(f),
4367 			    offset_in_page(offset));
4368 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4369 		if (crypto_ahash_update(req))
4370 			return 1;
4371 	}
4372 
4373 	skb_walk_frags(skb, frag_iter)
4374 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4375 			return 1;
4376 
4377 	return 0;
4378 }
4379 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4380 
4381 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4382 {
4383 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4384 	struct scatterlist sg;
4385 
4386 	sg_init_one(&sg, key->key, keylen);
4387 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4388 
4389 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4390 	return data_race(crypto_ahash_update(hp->md5_req));
4391 }
4392 EXPORT_SYMBOL(tcp_md5_hash_key);
4393 
4394 #endif
4395 
4396 void tcp_done(struct sock *sk)
4397 {
4398 	struct request_sock *req;
4399 
4400 	/* We might be called with a new socket, after
4401 	 * inet_csk_prepare_forced_close() has been called
4402 	 * so we can not use lockdep_sock_is_held(sk)
4403 	 */
4404 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4405 
4406 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4407 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4408 
4409 	tcp_set_state(sk, TCP_CLOSE);
4410 	tcp_clear_xmit_timers(sk);
4411 	if (req)
4412 		reqsk_fastopen_remove(sk, req, false);
4413 
4414 	sk->sk_shutdown = SHUTDOWN_MASK;
4415 
4416 	if (!sock_flag(sk, SOCK_DEAD))
4417 		sk->sk_state_change(sk);
4418 	else
4419 		inet_csk_destroy_sock(sk);
4420 }
4421 EXPORT_SYMBOL_GPL(tcp_done);
4422 
4423 int tcp_abort(struct sock *sk, int err)
4424 {
4425 	if (!sk_fullsock(sk)) {
4426 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4427 			struct request_sock *req = inet_reqsk(sk);
4428 
4429 			local_bh_disable();
4430 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4431 			local_bh_enable();
4432 			return 0;
4433 		}
4434 		return -EOPNOTSUPP;
4435 	}
4436 
4437 	/* Don't race with userspace socket closes such as tcp_close. */
4438 	lock_sock(sk);
4439 
4440 	if (sk->sk_state == TCP_LISTEN) {
4441 		tcp_set_state(sk, TCP_CLOSE);
4442 		inet_csk_listen_stop(sk);
4443 	}
4444 
4445 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4446 	local_bh_disable();
4447 	bh_lock_sock(sk);
4448 
4449 	if (!sock_flag(sk, SOCK_DEAD)) {
4450 		sk->sk_err = err;
4451 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4452 		smp_wmb();
4453 		sk_error_report(sk);
4454 		if (tcp_need_reset(sk->sk_state))
4455 			tcp_send_active_reset(sk, GFP_ATOMIC);
4456 		tcp_done(sk);
4457 	}
4458 
4459 	bh_unlock_sock(sk);
4460 	local_bh_enable();
4461 	tcp_write_queue_purge(sk);
4462 	release_sock(sk);
4463 	return 0;
4464 }
4465 EXPORT_SYMBOL_GPL(tcp_abort);
4466 
4467 extern struct tcp_congestion_ops tcp_reno;
4468 
4469 static __initdata unsigned long thash_entries;
4470 static int __init set_thash_entries(char *str)
4471 {
4472 	ssize_t ret;
4473 
4474 	if (!str)
4475 		return 0;
4476 
4477 	ret = kstrtoul(str, 0, &thash_entries);
4478 	if (ret)
4479 		return 0;
4480 
4481 	return 1;
4482 }
4483 __setup("thash_entries=", set_thash_entries);
4484 
4485 static void __init tcp_init_mem(void)
4486 {
4487 	unsigned long limit = nr_free_buffer_pages() / 16;
4488 
4489 	limit = max(limit, 128UL);
4490 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4491 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4492 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4493 }
4494 
4495 void __init tcp_init(void)
4496 {
4497 	int max_rshare, max_wshare, cnt;
4498 	unsigned long limit;
4499 	unsigned int i;
4500 
4501 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4502 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4503 		     sizeof_field(struct sk_buff, cb));
4504 
4505 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4506 
4507 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4508 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4509 
4510 	inet_hashinfo_init(&tcp_hashinfo);
4511 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4512 			    thash_entries, 21,  /* one slot per 2 MB*/
4513 			    0, 64 * 1024);
4514 	tcp_hashinfo.bind_bucket_cachep =
4515 		kmem_cache_create("tcp_bind_bucket",
4516 				  sizeof(struct inet_bind_bucket), 0,
4517 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4518 				  SLAB_ACCOUNT,
4519 				  NULL);
4520 
4521 	/* Size and allocate the main established and bind bucket
4522 	 * hash tables.
4523 	 *
4524 	 * The methodology is similar to that of the buffer cache.
4525 	 */
4526 	tcp_hashinfo.ehash =
4527 		alloc_large_system_hash("TCP established",
4528 					sizeof(struct inet_ehash_bucket),
4529 					thash_entries,
4530 					17, /* one slot per 128 KB of memory */
4531 					0,
4532 					NULL,
4533 					&tcp_hashinfo.ehash_mask,
4534 					0,
4535 					thash_entries ? 0 : 512 * 1024);
4536 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4537 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4538 
4539 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4540 		panic("TCP: failed to alloc ehash_locks");
4541 	tcp_hashinfo.bhash =
4542 		alloc_large_system_hash("TCP bind",
4543 					sizeof(struct inet_bind_hashbucket),
4544 					tcp_hashinfo.ehash_mask + 1,
4545 					17, /* one slot per 128 KB of memory */
4546 					0,
4547 					&tcp_hashinfo.bhash_size,
4548 					NULL,
4549 					0,
4550 					64 * 1024);
4551 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4552 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4553 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4554 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4555 	}
4556 
4557 
4558 	cnt = tcp_hashinfo.ehash_mask + 1;
4559 	sysctl_tcp_max_orphans = cnt / 2;
4560 
4561 	tcp_init_mem();
4562 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4563 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4564 	max_wshare = min(4UL*1024*1024, limit);
4565 	max_rshare = min(6UL*1024*1024, limit);
4566 
4567 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4568 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4569 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4570 
4571 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4572 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4573 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4574 
4575 	pr_info("Hash tables configured (established %u bind %u)\n",
4576 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4577 
4578 	tcp_v4_init();
4579 	tcp_metrics_init();
4580 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4581 	tcp_tasklet_init();
4582 	mptcp_init();
4583 }
4584