xref: /openbmc/linux/net/ipv4/tcp.c (revision d0b73b48)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287 
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290 
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293 
294 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 	if (!tcp_memory_pressure) {
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 		tcp_memory_pressure = 1;
326 	}
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 	u8 res = 0;
334 
335 	if (seconds > 0) {
336 		int period = timeout;
337 
338 		res = 1;
339 		while (seconds > period && res < 255) {
340 			res++;
341 			timeout <<= 1;
342 			if (timeout > rto_max)
343 				timeout = rto_max;
344 			period += timeout;
345 		}
346 	}
347 	return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 	int period = 0;
354 
355 	if (retrans > 0) {
356 		period = timeout;
357 		while (--retrans) {
358 			timeout <<= 1;
359 			if (timeout > rto_max)
360 				timeout = rto_max;
361 			period += timeout;
362 		}
363 	}
364 	return period;
365 }
366 
367 /* Address-family independent initialization for a tcp_sock.
368  *
369  * NOTE: A lot of things set to zero explicitly by call to
370  *       sk_alloc() so need not be done here.
371  */
372 void tcp_init_sock(struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	skb_queue_head_init(&tp->out_of_order_queue);
378 	tcp_init_xmit_timers(sk);
379 	tcp_prequeue_init(tp);
380 	INIT_LIST_HEAD(&tp->tsq_node);
381 
382 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 	tp->mdev = TCP_TIMEOUT_INIT;
384 
385 	/* So many TCP implementations out there (incorrectly) count the
386 	 * initial SYN frame in their delayed-ACK and congestion control
387 	 * algorithms that we must have the following bandaid to talk
388 	 * efficiently to them.  -DaveM
389 	 */
390 	tp->snd_cwnd = TCP_INIT_CWND;
391 
392 	/* See draft-stevens-tcpca-spec-01 for discussion of the
393 	 * initialization of these values.
394 	 */
395 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 	tp->snd_cwnd_clamp = ~0;
397 	tp->mss_cache = TCP_MSS_DEFAULT;
398 
399 	tp->reordering = sysctl_tcp_reordering;
400 	tcp_enable_early_retrans(tp);
401 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402 
403 	sk->sk_state = TCP_CLOSE;
404 
405 	sk->sk_write_space = sk_stream_write_space;
406 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407 
408 	icsk->icsk_sync_mss = tcp_sync_mss;
409 
410 	/* TCP Cookie Transactions */
411 	if (sysctl_tcp_cookie_size > 0) {
412 		/* Default, cookies without s_data_payload. */
413 		tp->cookie_values =
414 			kzalloc(sizeof(*tp->cookie_values),
415 				sk->sk_allocation);
416 		if (tp->cookie_values != NULL)
417 			kref_init(&tp->cookie_values->kref);
418 	}
419 	/* Presumed zeroed, in order of appearance:
420 	 *	cookie_in_always, cookie_out_never,
421 	 *	s_data_constant, s_data_in, s_data_out
422 	 */
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	sock_update_memcg(sk);
428 	sk_sockets_allocated_inc(sk);
429 	local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432 
433 /*
434  *	Wait for a TCP event.
435  *
436  *	Note that we don't need to lock the socket, as the upper poll layers
437  *	take care of normal races (between the test and the event) and we don't
438  *	go look at any of the socket buffers directly.
439  */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442 	unsigned int mask;
443 	struct sock *sk = sock->sk;
444 	const struct tcp_sock *tp = tcp_sk(sk);
445 
446 	sock_poll_wait(file, sk_sleep(sk), wait);
447 	if (sk->sk_state == TCP_LISTEN)
448 		return inet_csk_listen_poll(sk);
449 
450 	/* Socket is not locked. We are protected from async events
451 	 * by poll logic and correct handling of state changes
452 	 * made by other threads is impossible in any case.
453 	 */
454 
455 	mask = 0;
456 
457 	/*
458 	 * POLLHUP is certainly not done right. But poll() doesn't
459 	 * have a notion of HUP in just one direction, and for a
460 	 * socket the read side is more interesting.
461 	 *
462 	 * Some poll() documentation says that POLLHUP is incompatible
463 	 * with the POLLOUT/POLLWR flags, so somebody should check this
464 	 * all. But careful, it tends to be safer to return too many
465 	 * bits than too few, and you can easily break real applications
466 	 * if you don't tell them that something has hung up!
467 	 *
468 	 * Check-me.
469 	 *
470 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 	 * our fs/select.c). It means that after we received EOF,
472 	 * poll always returns immediately, making impossible poll() on write()
473 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 	 * if and only if shutdown has been made in both directions.
475 	 * Actually, it is interesting to look how Solaris and DUX
476 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 	 * then we could set it on SND_SHUTDOWN. BTW examples given
478 	 * in Stevens' books assume exactly this behaviour, it explains
479 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
480 	 *
481 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 	 * blocking on fresh not-connected or disconnected socket. --ANK
483 	 */
484 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 		mask |= POLLHUP;
486 	if (sk->sk_shutdown & RCV_SHUTDOWN)
487 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488 
489 	/* Connected or passive Fast Open socket? */
490 	if (sk->sk_state != TCP_SYN_SENT &&
491 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 		int target = sock_rcvlowat(sk, 0, INT_MAX);
493 
494 		if (tp->urg_seq == tp->copied_seq &&
495 		    !sock_flag(sk, SOCK_URGINLINE) &&
496 		    tp->urg_data)
497 			target++;
498 
499 		/* Potential race condition. If read of tp below will
500 		 * escape above sk->sk_state, we can be illegally awaken
501 		 * in SYN_* states. */
502 		if (tp->rcv_nxt - tp->copied_seq >= target)
503 			mask |= POLLIN | POLLRDNORM;
504 
505 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 				mask |= POLLOUT | POLLWRNORM;
508 			} else {  /* send SIGIO later */
509 				set_bit(SOCK_ASYNC_NOSPACE,
510 					&sk->sk_socket->flags);
511 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
512 
513 				/* Race breaker. If space is freed after
514 				 * wspace test but before the flags are set,
515 				 * IO signal will be lost.
516 				 */
517 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 					mask |= POLLOUT | POLLWRNORM;
519 			}
520 		} else
521 			mask |= POLLOUT | POLLWRNORM;
522 
523 		if (tp->urg_data & TCP_URG_VALID)
524 			mask |= POLLPRI;
525 	}
526 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
527 	smp_rmb();
528 	if (sk->sk_err)
529 		mask |= POLLERR;
530 
531 	return mask;
532 }
533 EXPORT_SYMBOL(tcp_poll);
534 
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
536 {
537 	struct tcp_sock *tp = tcp_sk(sk);
538 	int answ;
539 	bool slow;
540 
541 	switch (cmd) {
542 	case SIOCINQ:
543 		if (sk->sk_state == TCP_LISTEN)
544 			return -EINVAL;
545 
546 		slow = lock_sock_fast(sk);
547 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
548 			answ = 0;
549 		else if (sock_flag(sk, SOCK_URGINLINE) ||
550 			 !tp->urg_data ||
551 			 before(tp->urg_seq, tp->copied_seq) ||
552 			 !before(tp->urg_seq, tp->rcv_nxt)) {
553 
554 			answ = tp->rcv_nxt - tp->copied_seq;
555 
556 			/* Subtract 1, if FIN was received */
557 			if (answ && sock_flag(sk, SOCK_DONE))
558 				answ--;
559 		} else
560 			answ = tp->urg_seq - tp->copied_seq;
561 		unlock_sock_fast(sk, slow);
562 		break;
563 	case SIOCATMARK:
564 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 		break;
566 	case SIOCOUTQ:
567 		if (sk->sk_state == TCP_LISTEN)
568 			return -EINVAL;
569 
570 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 			answ = 0;
572 		else
573 			answ = tp->write_seq - tp->snd_una;
574 		break;
575 	case SIOCOUTQNSD:
576 		if (sk->sk_state == TCP_LISTEN)
577 			return -EINVAL;
578 
579 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 			answ = 0;
581 		else
582 			answ = tp->write_seq - tp->snd_nxt;
583 		break;
584 	default:
585 		return -ENOIOCTLCMD;
586 	}
587 
588 	return put_user(answ, (int __user *)arg);
589 }
590 EXPORT_SYMBOL(tcp_ioctl);
591 
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
593 {
594 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 	tp->pushed_seq = tp->write_seq;
596 }
597 
598 static inline bool forced_push(const struct tcp_sock *tp)
599 {
600 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
601 }
602 
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
607 
608 	skb->csum    = 0;
609 	tcb->seq     = tcb->end_seq = tp->write_seq;
610 	tcb->tcp_flags = TCPHDR_ACK;
611 	tcb->sacked  = 0;
612 	skb_header_release(skb);
613 	tcp_add_write_queue_tail(sk, skb);
614 	sk->sk_wmem_queued += skb->truesize;
615 	sk_mem_charge(sk, skb->truesize);
616 	if (tp->nonagle & TCP_NAGLE_PUSH)
617 		tp->nonagle &= ~TCP_NAGLE_PUSH;
618 }
619 
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
621 {
622 	if (flags & MSG_OOB)
623 		tp->snd_up = tp->write_seq;
624 }
625 
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 			    int nonagle)
628 {
629 	if (tcp_send_head(sk)) {
630 		struct tcp_sock *tp = tcp_sk(sk);
631 
632 		if (!(flags & MSG_MORE) || forced_push(tp))
633 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
634 
635 		tcp_mark_urg(tp, flags);
636 		__tcp_push_pending_frames(sk, mss_now,
637 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
638 	}
639 }
640 
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 				unsigned int offset, size_t len)
643 {
644 	struct tcp_splice_state *tss = rd_desc->arg.data;
645 	int ret;
646 
647 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 			      tss->flags);
649 	if (ret > 0)
650 		rd_desc->count -= ret;
651 	return ret;
652 }
653 
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
655 {
656 	/* Store TCP splice context information in read_descriptor_t. */
657 	read_descriptor_t rd_desc = {
658 		.arg.data = tss,
659 		.count	  = tss->len,
660 	};
661 
662 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
663 }
664 
665 /**
666  *  tcp_splice_read - splice data from TCP socket to a pipe
667  * @sock:	socket to splice from
668  * @ppos:	position (not valid)
669  * @pipe:	pipe to splice to
670  * @len:	number of bytes to splice
671  * @flags:	splice modifier flags
672  *
673  * Description:
674  *    Will read pages from given socket and fill them into a pipe.
675  *
676  **/
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 			struct pipe_inode_info *pipe, size_t len,
679 			unsigned int flags)
680 {
681 	struct sock *sk = sock->sk;
682 	struct tcp_splice_state tss = {
683 		.pipe = pipe,
684 		.len = len,
685 		.flags = flags,
686 	};
687 	long timeo;
688 	ssize_t spliced;
689 	int ret;
690 
691 	sock_rps_record_flow(sk);
692 	/*
693 	 * We can't seek on a socket input
694 	 */
695 	if (unlikely(*ppos))
696 		return -ESPIPE;
697 
698 	ret = spliced = 0;
699 
700 	lock_sock(sk);
701 
702 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 	while (tss.len) {
704 		ret = __tcp_splice_read(sk, &tss);
705 		if (ret < 0)
706 			break;
707 		else if (!ret) {
708 			if (spliced)
709 				break;
710 			if (sock_flag(sk, SOCK_DONE))
711 				break;
712 			if (sk->sk_err) {
713 				ret = sock_error(sk);
714 				break;
715 			}
716 			if (sk->sk_shutdown & RCV_SHUTDOWN)
717 				break;
718 			if (sk->sk_state == TCP_CLOSE) {
719 				/*
720 				 * This occurs when user tries to read
721 				 * from never connected socket.
722 				 */
723 				if (!sock_flag(sk, SOCK_DONE))
724 					ret = -ENOTCONN;
725 				break;
726 			}
727 			if (!timeo) {
728 				ret = -EAGAIN;
729 				break;
730 			}
731 			sk_wait_data(sk, &timeo);
732 			if (signal_pending(current)) {
733 				ret = sock_intr_errno(timeo);
734 				break;
735 			}
736 			continue;
737 		}
738 		tss.len -= ret;
739 		spliced += ret;
740 
741 		if (!timeo)
742 			break;
743 		release_sock(sk);
744 		lock_sock(sk);
745 
746 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 		    signal_pending(current))
749 			break;
750 	}
751 
752 	release_sock(sk);
753 
754 	if (spliced)
755 		return spliced;
756 
757 	return ret;
758 }
759 EXPORT_SYMBOL(tcp_splice_read);
760 
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
762 {
763 	struct sk_buff *skb;
764 
765 	/* The TCP header must be at least 32-bit aligned.  */
766 	size = ALIGN(size, 4);
767 
768 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 	if (skb) {
770 		if (sk_wmem_schedule(sk, skb->truesize)) {
771 			skb_reserve(skb, sk->sk_prot->max_header);
772 			/*
773 			 * Make sure that we have exactly size bytes
774 			 * available to the caller, no more, no less.
775 			 */
776 			skb->avail_size = size;
777 			return skb;
778 		}
779 		__kfree_skb(skb);
780 	} else {
781 		sk->sk_prot->enter_memory_pressure(sk);
782 		sk_stream_moderate_sndbuf(sk);
783 	}
784 	return NULL;
785 }
786 
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 				       int large_allowed)
789 {
790 	struct tcp_sock *tp = tcp_sk(sk);
791 	u32 xmit_size_goal, old_size_goal;
792 
793 	xmit_size_goal = mss_now;
794 
795 	if (large_allowed && sk_can_gso(sk)) {
796 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 				  inet_csk(sk)->icsk_af_ops->net_header_len -
798 				  inet_csk(sk)->icsk_ext_hdr_len -
799 				  tp->tcp_header_len);
800 
801 		/* TSQ : try to have two TSO segments in flight */
802 		xmit_size_goal = min_t(u32, xmit_size_goal,
803 				       sysctl_tcp_limit_output_bytes >> 1);
804 
805 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
806 
807 		/* We try hard to avoid divides here */
808 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
809 
810 		if (likely(old_size_goal <= xmit_size_goal &&
811 			   old_size_goal + mss_now > xmit_size_goal)) {
812 			xmit_size_goal = old_size_goal;
813 		} else {
814 			tp->xmit_size_goal_segs =
815 				min_t(u16, xmit_size_goal / mss_now,
816 				      sk->sk_gso_max_segs);
817 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
818 		}
819 	}
820 
821 	return max(xmit_size_goal, mss_now);
822 }
823 
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
825 {
826 	int mss_now;
827 
828 	mss_now = tcp_current_mss(sk);
829 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
830 
831 	return mss_now;
832 }
833 
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
835 				size_t size, int flags)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	int mss_now, size_goal;
839 	int err;
840 	ssize_t copied;
841 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
842 
843 	/* Wait for a connection to finish. One exception is TCP Fast Open
844 	 * (passive side) where data is allowed to be sent before a connection
845 	 * is fully established.
846 	 */
847 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
848 	    !tcp_passive_fastopen(sk)) {
849 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
850 			goto out_err;
851 	}
852 
853 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
854 
855 	mss_now = tcp_send_mss(sk, &size_goal, flags);
856 	copied = 0;
857 
858 	err = -EPIPE;
859 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
860 		goto out_err;
861 
862 	while (size > 0) {
863 		struct sk_buff *skb = tcp_write_queue_tail(sk);
864 		int copy, i;
865 		bool can_coalesce;
866 
867 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
868 new_segment:
869 			if (!sk_stream_memory_free(sk))
870 				goto wait_for_sndbuf;
871 
872 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
873 			if (!skb)
874 				goto wait_for_memory;
875 
876 			skb_entail(sk, skb);
877 			copy = size_goal;
878 		}
879 
880 		if (copy > size)
881 			copy = size;
882 
883 		i = skb_shinfo(skb)->nr_frags;
884 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
885 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
886 			tcp_mark_push(tp, skb);
887 			goto new_segment;
888 		}
889 		if (!sk_wmem_schedule(sk, copy))
890 			goto wait_for_memory;
891 
892 		if (can_coalesce) {
893 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
894 		} else {
895 			get_page(page);
896 			skb_fill_page_desc(skb, i, page, offset, copy);
897 		}
898 
899 		skb->len += copy;
900 		skb->data_len += copy;
901 		skb->truesize += copy;
902 		sk->sk_wmem_queued += copy;
903 		sk_mem_charge(sk, copy);
904 		skb->ip_summed = CHECKSUM_PARTIAL;
905 		tp->write_seq += copy;
906 		TCP_SKB_CB(skb)->end_seq += copy;
907 		skb_shinfo(skb)->gso_segs = 0;
908 
909 		if (!copied)
910 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
911 
912 		copied += copy;
913 		offset += copy;
914 		if (!(size -= copy))
915 			goto out;
916 
917 		if (skb->len < size_goal || (flags & MSG_OOB))
918 			continue;
919 
920 		if (forced_push(tp)) {
921 			tcp_mark_push(tp, skb);
922 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
923 		} else if (skb == tcp_send_head(sk))
924 			tcp_push_one(sk, mss_now);
925 		continue;
926 
927 wait_for_sndbuf:
928 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
929 wait_for_memory:
930 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
931 
932 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
933 			goto do_error;
934 
935 		mss_now = tcp_send_mss(sk, &size_goal, flags);
936 	}
937 
938 out:
939 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
940 		tcp_push(sk, flags, mss_now, tp->nonagle);
941 	return copied;
942 
943 do_error:
944 	if (copied)
945 		goto out;
946 out_err:
947 	return sk_stream_error(sk, flags, err);
948 }
949 
950 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
951 		 size_t size, int flags)
952 {
953 	ssize_t res;
954 
955 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
956 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
957 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
958 					flags);
959 
960 	lock_sock(sk);
961 	res = do_tcp_sendpages(sk, page, offset, size, flags);
962 	release_sock(sk);
963 	return res;
964 }
965 EXPORT_SYMBOL(tcp_sendpage);
966 
967 static inline int select_size(const struct sock *sk, bool sg)
968 {
969 	const struct tcp_sock *tp = tcp_sk(sk);
970 	int tmp = tp->mss_cache;
971 
972 	if (sg) {
973 		if (sk_can_gso(sk)) {
974 			/* Small frames wont use a full page:
975 			 * Payload will immediately follow tcp header.
976 			 */
977 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
978 		} else {
979 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
980 
981 			if (tmp >= pgbreak &&
982 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
983 				tmp = pgbreak;
984 		}
985 	}
986 
987 	return tmp;
988 }
989 
990 void tcp_free_fastopen_req(struct tcp_sock *tp)
991 {
992 	if (tp->fastopen_req != NULL) {
993 		kfree(tp->fastopen_req);
994 		tp->fastopen_req = NULL;
995 	}
996 }
997 
998 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
999 {
1000 	struct tcp_sock *tp = tcp_sk(sk);
1001 	int err, flags;
1002 
1003 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1004 		return -EOPNOTSUPP;
1005 	if (tp->fastopen_req != NULL)
1006 		return -EALREADY; /* Another Fast Open is in progress */
1007 
1008 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009 				   sk->sk_allocation);
1010 	if (unlikely(tp->fastopen_req == NULL))
1011 		return -ENOBUFS;
1012 	tp->fastopen_req->data = msg;
1013 
1014 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1015 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1016 				    msg->msg_namelen, flags);
1017 	*size = tp->fastopen_req->copied;
1018 	tcp_free_fastopen_req(tp);
1019 	return err;
1020 }
1021 
1022 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1023 		size_t size)
1024 {
1025 	struct iovec *iov;
1026 	struct tcp_sock *tp = tcp_sk(sk);
1027 	struct sk_buff *skb;
1028 	int iovlen, flags, err, copied = 0;
1029 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1030 	bool sg;
1031 	long timeo;
1032 
1033 	lock_sock(sk);
1034 
1035 	flags = msg->msg_flags;
1036 	if (flags & MSG_FASTOPEN) {
1037 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1038 		if (err == -EINPROGRESS && copied_syn > 0)
1039 			goto out;
1040 		else if (err)
1041 			goto out_err;
1042 		offset = copied_syn;
1043 	}
1044 
1045 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1046 
1047 	/* Wait for a connection to finish. One exception is TCP Fast Open
1048 	 * (passive side) where data is allowed to be sent before a connection
1049 	 * is fully established.
1050 	 */
1051 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1052 	    !tcp_passive_fastopen(sk)) {
1053 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1054 			goto do_error;
1055 	}
1056 
1057 	if (unlikely(tp->repair)) {
1058 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1059 			copied = tcp_send_rcvq(sk, msg, size);
1060 			goto out;
1061 		}
1062 
1063 		err = -EINVAL;
1064 		if (tp->repair_queue == TCP_NO_QUEUE)
1065 			goto out_err;
1066 
1067 		/* 'common' sending to sendq */
1068 	}
1069 
1070 	/* This should be in poll */
1071 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1072 
1073 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1074 
1075 	/* Ok commence sending. */
1076 	iovlen = msg->msg_iovlen;
1077 	iov = msg->msg_iov;
1078 	copied = 0;
1079 
1080 	err = -EPIPE;
1081 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1082 		goto out_err;
1083 
1084 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1085 
1086 	while (--iovlen >= 0) {
1087 		size_t seglen = iov->iov_len;
1088 		unsigned char __user *from = iov->iov_base;
1089 
1090 		iov++;
1091 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1092 			if (offset >= seglen) {
1093 				offset -= seglen;
1094 				continue;
1095 			}
1096 			seglen -= offset;
1097 			from += offset;
1098 			offset = 0;
1099 		}
1100 
1101 		while (seglen > 0) {
1102 			int copy = 0;
1103 			int max = size_goal;
1104 
1105 			skb = tcp_write_queue_tail(sk);
1106 			if (tcp_send_head(sk)) {
1107 				if (skb->ip_summed == CHECKSUM_NONE)
1108 					max = mss_now;
1109 				copy = max - skb->len;
1110 			}
1111 
1112 			if (copy <= 0) {
1113 new_segment:
1114 				/* Allocate new segment. If the interface is SG,
1115 				 * allocate skb fitting to single page.
1116 				 */
1117 				if (!sk_stream_memory_free(sk))
1118 					goto wait_for_sndbuf;
1119 
1120 				skb = sk_stream_alloc_skb(sk,
1121 							  select_size(sk, sg),
1122 							  sk->sk_allocation);
1123 				if (!skb)
1124 					goto wait_for_memory;
1125 
1126 				/*
1127 				 * Check whether we can use HW checksum.
1128 				 */
1129 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1130 					skb->ip_summed = CHECKSUM_PARTIAL;
1131 
1132 				skb_entail(sk, skb);
1133 				copy = size_goal;
1134 				max = size_goal;
1135 			}
1136 
1137 			/* Try to append data to the end of skb. */
1138 			if (copy > seglen)
1139 				copy = seglen;
1140 
1141 			/* Where to copy to? */
1142 			if (skb_availroom(skb) > 0) {
1143 				/* We have some space in skb head. Superb! */
1144 				copy = min_t(int, copy, skb_availroom(skb));
1145 				err = skb_add_data_nocache(sk, skb, from, copy);
1146 				if (err)
1147 					goto do_fault;
1148 			} else {
1149 				bool merge = true;
1150 				int i = skb_shinfo(skb)->nr_frags;
1151 				struct page_frag *pfrag = sk_page_frag(sk);
1152 
1153 				if (!sk_page_frag_refill(sk, pfrag))
1154 					goto wait_for_memory;
1155 
1156 				if (!skb_can_coalesce(skb, i, pfrag->page,
1157 						      pfrag->offset)) {
1158 					if (i == MAX_SKB_FRAGS || !sg) {
1159 						tcp_mark_push(tp, skb);
1160 						goto new_segment;
1161 					}
1162 					merge = false;
1163 				}
1164 
1165 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1166 
1167 				if (!sk_wmem_schedule(sk, copy))
1168 					goto wait_for_memory;
1169 
1170 				err = skb_copy_to_page_nocache(sk, from, skb,
1171 							       pfrag->page,
1172 							       pfrag->offset,
1173 							       copy);
1174 				if (err)
1175 					goto do_error;
1176 
1177 				/* Update the skb. */
1178 				if (merge) {
1179 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1180 				} else {
1181 					skb_fill_page_desc(skb, i, pfrag->page,
1182 							   pfrag->offset, copy);
1183 					get_page(pfrag->page);
1184 				}
1185 				pfrag->offset += copy;
1186 			}
1187 
1188 			if (!copied)
1189 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1190 
1191 			tp->write_seq += copy;
1192 			TCP_SKB_CB(skb)->end_seq += copy;
1193 			skb_shinfo(skb)->gso_segs = 0;
1194 
1195 			from += copy;
1196 			copied += copy;
1197 			if ((seglen -= copy) == 0 && iovlen == 0)
1198 				goto out;
1199 
1200 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1201 				continue;
1202 
1203 			if (forced_push(tp)) {
1204 				tcp_mark_push(tp, skb);
1205 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1206 			} else if (skb == tcp_send_head(sk))
1207 				tcp_push_one(sk, mss_now);
1208 			continue;
1209 
1210 wait_for_sndbuf:
1211 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1212 wait_for_memory:
1213 			if (copied)
1214 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1215 
1216 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1217 				goto do_error;
1218 
1219 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1220 		}
1221 	}
1222 
1223 out:
1224 	if (copied)
1225 		tcp_push(sk, flags, mss_now, tp->nonagle);
1226 	release_sock(sk);
1227 	return copied + copied_syn;
1228 
1229 do_fault:
1230 	if (!skb->len) {
1231 		tcp_unlink_write_queue(skb, sk);
1232 		/* It is the one place in all of TCP, except connection
1233 		 * reset, where we can be unlinking the send_head.
1234 		 */
1235 		tcp_check_send_head(sk, skb);
1236 		sk_wmem_free_skb(sk, skb);
1237 	}
1238 
1239 do_error:
1240 	if (copied + copied_syn)
1241 		goto out;
1242 out_err:
1243 	err = sk_stream_error(sk, flags, err);
1244 	release_sock(sk);
1245 	return err;
1246 }
1247 EXPORT_SYMBOL(tcp_sendmsg);
1248 
1249 /*
1250  *	Handle reading urgent data. BSD has very simple semantics for
1251  *	this, no blocking and very strange errors 8)
1252  */
1253 
1254 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1255 {
1256 	struct tcp_sock *tp = tcp_sk(sk);
1257 
1258 	/* No URG data to read. */
1259 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1260 	    tp->urg_data == TCP_URG_READ)
1261 		return -EINVAL;	/* Yes this is right ! */
1262 
1263 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1264 		return -ENOTCONN;
1265 
1266 	if (tp->urg_data & TCP_URG_VALID) {
1267 		int err = 0;
1268 		char c = tp->urg_data;
1269 
1270 		if (!(flags & MSG_PEEK))
1271 			tp->urg_data = TCP_URG_READ;
1272 
1273 		/* Read urgent data. */
1274 		msg->msg_flags |= MSG_OOB;
1275 
1276 		if (len > 0) {
1277 			if (!(flags & MSG_TRUNC))
1278 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1279 			len = 1;
1280 		} else
1281 			msg->msg_flags |= MSG_TRUNC;
1282 
1283 		return err ? -EFAULT : len;
1284 	}
1285 
1286 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1287 		return 0;
1288 
1289 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1290 	 * the available implementations agree in this case:
1291 	 * this call should never block, independent of the
1292 	 * blocking state of the socket.
1293 	 * Mike <pall@rz.uni-karlsruhe.de>
1294 	 */
1295 	return -EAGAIN;
1296 }
1297 
1298 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1299 {
1300 	struct sk_buff *skb;
1301 	int copied = 0, err = 0;
1302 
1303 	/* XXX -- need to support SO_PEEK_OFF */
1304 
1305 	skb_queue_walk(&sk->sk_write_queue, skb) {
1306 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1307 		if (err)
1308 			break;
1309 
1310 		copied += skb->len;
1311 	}
1312 
1313 	return err ?: copied;
1314 }
1315 
1316 /* Clean up the receive buffer for full frames taken by the user,
1317  * then send an ACK if necessary.  COPIED is the number of bytes
1318  * tcp_recvmsg has given to the user so far, it speeds up the
1319  * calculation of whether or not we must ACK for the sake of
1320  * a window update.
1321  */
1322 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1323 {
1324 	struct tcp_sock *tp = tcp_sk(sk);
1325 	bool time_to_ack = false;
1326 
1327 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1328 
1329 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1330 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1331 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1332 
1333 	if (inet_csk_ack_scheduled(sk)) {
1334 		const struct inet_connection_sock *icsk = inet_csk(sk);
1335 		   /* Delayed ACKs frequently hit locked sockets during bulk
1336 		    * receive. */
1337 		if (icsk->icsk_ack.blocked ||
1338 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1339 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1340 		    /*
1341 		     * If this read emptied read buffer, we send ACK, if
1342 		     * connection is not bidirectional, user drained
1343 		     * receive buffer and there was a small segment
1344 		     * in queue.
1345 		     */
1346 		    (copied > 0 &&
1347 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1348 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1349 		       !icsk->icsk_ack.pingpong)) &&
1350 		      !atomic_read(&sk->sk_rmem_alloc)))
1351 			time_to_ack = true;
1352 	}
1353 
1354 	/* We send an ACK if we can now advertise a non-zero window
1355 	 * which has been raised "significantly".
1356 	 *
1357 	 * Even if window raised up to infinity, do not send window open ACK
1358 	 * in states, where we will not receive more. It is useless.
1359 	 */
1360 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1361 		__u32 rcv_window_now = tcp_receive_window(tp);
1362 
1363 		/* Optimize, __tcp_select_window() is not cheap. */
1364 		if (2*rcv_window_now <= tp->window_clamp) {
1365 			__u32 new_window = __tcp_select_window(sk);
1366 
1367 			/* Send ACK now, if this read freed lots of space
1368 			 * in our buffer. Certainly, new_window is new window.
1369 			 * We can advertise it now, if it is not less than current one.
1370 			 * "Lots" means "at least twice" here.
1371 			 */
1372 			if (new_window && new_window >= 2 * rcv_window_now)
1373 				time_to_ack = true;
1374 		}
1375 	}
1376 	if (time_to_ack)
1377 		tcp_send_ack(sk);
1378 }
1379 
1380 static void tcp_prequeue_process(struct sock *sk)
1381 {
1382 	struct sk_buff *skb;
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 
1385 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1386 
1387 	/* RX process wants to run with disabled BHs, though it is not
1388 	 * necessary */
1389 	local_bh_disable();
1390 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1391 		sk_backlog_rcv(sk, skb);
1392 	local_bh_enable();
1393 
1394 	/* Clear memory counter. */
1395 	tp->ucopy.memory = 0;
1396 }
1397 
1398 #ifdef CONFIG_NET_DMA
1399 static void tcp_service_net_dma(struct sock *sk, bool wait)
1400 {
1401 	dma_cookie_t done, used;
1402 	dma_cookie_t last_issued;
1403 	struct tcp_sock *tp = tcp_sk(sk);
1404 
1405 	if (!tp->ucopy.dma_chan)
1406 		return;
1407 
1408 	last_issued = tp->ucopy.dma_cookie;
1409 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1410 
1411 	do {
1412 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1413 					      last_issued, &done,
1414 					      &used) == DMA_SUCCESS) {
1415 			/* Safe to free early-copied skbs now */
1416 			__skb_queue_purge(&sk->sk_async_wait_queue);
1417 			break;
1418 		} else {
1419 			struct sk_buff *skb;
1420 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1421 			       (dma_async_is_complete(skb->dma_cookie, done,
1422 						      used) == DMA_SUCCESS)) {
1423 				__skb_dequeue(&sk->sk_async_wait_queue);
1424 				kfree_skb(skb);
1425 			}
1426 		}
1427 	} while (wait);
1428 }
1429 #endif
1430 
1431 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1432 {
1433 	struct sk_buff *skb;
1434 	u32 offset;
1435 
1436 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1437 		offset = seq - TCP_SKB_CB(skb)->seq;
1438 		if (tcp_hdr(skb)->syn)
1439 			offset--;
1440 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1441 			*off = offset;
1442 			return skb;
1443 		}
1444 		/* This looks weird, but this can happen if TCP collapsing
1445 		 * splitted a fat GRO packet, while we released socket lock
1446 		 * in skb_splice_bits()
1447 		 */
1448 		sk_eat_skb(sk, skb, false);
1449 	}
1450 	return NULL;
1451 }
1452 
1453 /*
1454  * This routine provides an alternative to tcp_recvmsg() for routines
1455  * that would like to handle copying from skbuffs directly in 'sendfile'
1456  * fashion.
1457  * Note:
1458  *	- It is assumed that the socket was locked by the caller.
1459  *	- The routine does not block.
1460  *	- At present, there is no support for reading OOB data
1461  *	  or for 'peeking' the socket using this routine
1462  *	  (although both would be easy to implement).
1463  */
1464 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1465 		  sk_read_actor_t recv_actor)
1466 {
1467 	struct sk_buff *skb;
1468 	struct tcp_sock *tp = tcp_sk(sk);
1469 	u32 seq = tp->copied_seq;
1470 	u32 offset;
1471 	int copied = 0;
1472 
1473 	if (sk->sk_state == TCP_LISTEN)
1474 		return -ENOTCONN;
1475 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1476 		if (offset < skb->len) {
1477 			int used;
1478 			size_t len;
1479 
1480 			len = skb->len - offset;
1481 			/* Stop reading if we hit a patch of urgent data */
1482 			if (tp->urg_data) {
1483 				u32 urg_offset = tp->urg_seq - seq;
1484 				if (urg_offset < len)
1485 					len = urg_offset;
1486 				if (!len)
1487 					break;
1488 			}
1489 			used = recv_actor(desc, skb, offset, len);
1490 			if (used <= 0) {
1491 				if (!copied)
1492 					copied = used;
1493 				break;
1494 			} else if (used <= len) {
1495 				seq += used;
1496 				copied += used;
1497 				offset += used;
1498 			}
1499 			/* If recv_actor drops the lock (e.g. TCP splice
1500 			 * receive) the skb pointer might be invalid when
1501 			 * getting here: tcp_collapse might have deleted it
1502 			 * while aggregating skbs from the socket queue.
1503 			 */
1504 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1505 			if (!skb)
1506 				break;
1507 			/* TCP coalescing might have appended data to the skb.
1508 			 * Try to splice more frags
1509 			 */
1510 			if (offset + 1 != skb->len)
1511 				continue;
1512 		}
1513 		if (tcp_hdr(skb)->fin) {
1514 			sk_eat_skb(sk, skb, false);
1515 			++seq;
1516 			break;
1517 		}
1518 		sk_eat_skb(sk, skb, false);
1519 		if (!desc->count)
1520 			break;
1521 		tp->copied_seq = seq;
1522 	}
1523 	tp->copied_seq = seq;
1524 
1525 	tcp_rcv_space_adjust(sk);
1526 
1527 	/* Clean up data we have read: This will do ACK frames. */
1528 	if (copied > 0) {
1529 		tcp_recv_skb(sk, seq, &offset);
1530 		tcp_cleanup_rbuf(sk, copied);
1531 	}
1532 	return copied;
1533 }
1534 EXPORT_SYMBOL(tcp_read_sock);
1535 
1536 /*
1537  *	This routine copies from a sock struct into the user buffer.
1538  *
1539  *	Technical note: in 2.3 we work on _locked_ socket, so that
1540  *	tricks with *seq access order and skb->users are not required.
1541  *	Probably, code can be easily improved even more.
1542  */
1543 
1544 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1545 		size_t len, int nonblock, int flags, int *addr_len)
1546 {
1547 	struct tcp_sock *tp = tcp_sk(sk);
1548 	int copied = 0;
1549 	u32 peek_seq;
1550 	u32 *seq;
1551 	unsigned long used;
1552 	int err;
1553 	int target;		/* Read at least this many bytes */
1554 	long timeo;
1555 	struct task_struct *user_recv = NULL;
1556 	bool copied_early = false;
1557 	struct sk_buff *skb;
1558 	u32 urg_hole = 0;
1559 
1560 	lock_sock(sk);
1561 
1562 	err = -ENOTCONN;
1563 	if (sk->sk_state == TCP_LISTEN)
1564 		goto out;
1565 
1566 	timeo = sock_rcvtimeo(sk, nonblock);
1567 
1568 	/* Urgent data needs to be handled specially. */
1569 	if (flags & MSG_OOB)
1570 		goto recv_urg;
1571 
1572 	if (unlikely(tp->repair)) {
1573 		err = -EPERM;
1574 		if (!(flags & MSG_PEEK))
1575 			goto out;
1576 
1577 		if (tp->repair_queue == TCP_SEND_QUEUE)
1578 			goto recv_sndq;
1579 
1580 		err = -EINVAL;
1581 		if (tp->repair_queue == TCP_NO_QUEUE)
1582 			goto out;
1583 
1584 		/* 'common' recv queue MSG_PEEK-ing */
1585 	}
1586 
1587 	seq = &tp->copied_seq;
1588 	if (flags & MSG_PEEK) {
1589 		peek_seq = tp->copied_seq;
1590 		seq = &peek_seq;
1591 	}
1592 
1593 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1594 
1595 #ifdef CONFIG_NET_DMA
1596 	tp->ucopy.dma_chan = NULL;
1597 	preempt_disable();
1598 	skb = skb_peek_tail(&sk->sk_receive_queue);
1599 	{
1600 		int available = 0;
1601 
1602 		if (skb)
1603 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1604 		if ((available < target) &&
1605 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1606 		    !sysctl_tcp_low_latency &&
1607 		    net_dma_find_channel()) {
1608 			preempt_enable_no_resched();
1609 			tp->ucopy.pinned_list =
1610 					dma_pin_iovec_pages(msg->msg_iov, len);
1611 		} else {
1612 			preempt_enable_no_resched();
1613 		}
1614 	}
1615 #endif
1616 
1617 	do {
1618 		u32 offset;
1619 
1620 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1621 		if (tp->urg_data && tp->urg_seq == *seq) {
1622 			if (copied)
1623 				break;
1624 			if (signal_pending(current)) {
1625 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1626 				break;
1627 			}
1628 		}
1629 
1630 		/* Next get a buffer. */
1631 
1632 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1633 			/* Now that we have two receive queues this
1634 			 * shouldn't happen.
1635 			 */
1636 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1637 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1638 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1639 				 flags))
1640 				break;
1641 
1642 			offset = *seq - TCP_SKB_CB(skb)->seq;
1643 			if (tcp_hdr(skb)->syn)
1644 				offset--;
1645 			if (offset < skb->len)
1646 				goto found_ok_skb;
1647 			if (tcp_hdr(skb)->fin)
1648 				goto found_fin_ok;
1649 			WARN(!(flags & MSG_PEEK),
1650 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1651 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1652 		}
1653 
1654 		/* Well, if we have backlog, try to process it now yet. */
1655 
1656 		if (copied >= target && !sk->sk_backlog.tail)
1657 			break;
1658 
1659 		if (copied) {
1660 			if (sk->sk_err ||
1661 			    sk->sk_state == TCP_CLOSE ||
1662 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1663 			    !timeo ||
1664 			    signal_pending(current))
1665 				break;
1666 		} else {
1667 			if (sock_flag(sk, SOCK_DONE))
1668 				break;
1669 
1670 			if (sk->sk_err) {
1671 				copied = sock_error(sk);
1672 				break;
1673 			}
1674 
1675 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1676 				break;
1677 
1678 			if (sk->sk_state == TCP_CLOSE) {
1679 				if (!sock_flag(sk, SOCK_DONE)) {
1680 					/* This occurs when user tries to read
1681 					 * from never connected socket.
1682 					 */
1683 					copied = -ENOTCONN;
1684 					break;
1685 				}
1686 				break;
1687 			}
1688 
1689 			if (!timeo) {
1690 				copied = -EAGAIN;
1691 				break;
1692 			}
1693 
1694 			if (signal_pending(current)) {
1695 				copied = sock_intr_errno(timeo);
1696 				break;
1697 			}
1698 		}
1699 
1700 		tcp_cleanup_rbuf(sk, copied);
1701 
1702 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1703 			/* Install new reader */
1704 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1705 				user_recv = current;
1706 				tp->ucopy.task = user_recv;
1707 				tp->ucopy.iov = msg->msg_iov;
1708 			}
1709 
1710 			tp->ucopy.len = len;
1711 
1712 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1713 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1714 
1715 			/* Ugly... If prequeue is not empty, we have to
1716 			 * process it before releasing socket, otherwise
1717 			 * order will be broken at second iteration.
1718 			 * More elegant solution is required!!!
1719 			 *
1720 			 * Look: we have the following (pseudo)queues:
1721 			 *
1722 			 * 1. packets in flight
1723 			 * 2. backlog
1724 			 * 3. prequeue
1725 			 * 4. receive_queue
1726 			 *
1727 			 * Each queue can be processed only if the next ones
1728 			 * are empty. At this point we have empty receive_queue.
1729 			 * But prequeue _can_ be not empty after 2nd iteration,
1730 			 * when we jumped to start of loop because backlog
1731 			 * processing added something to receive_queue.
1732 			 * We cannot release_sock(), because backlog contains
1733 			 * packets arrived _after_ prequeued ones.
1734 			 *
1735 			 * Shortly, algorithm is clear --- to process all
1736 			 * the queues in order. We could make it more directly,
1737 			 * requeueing packets from backlog to prequeue, if
1738 			 * is not empty. It is more elegant, but eats cycles,
1739 			 * unfortunately.
1740 			 */
1741 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1742 				goto do_prequeue;
1743 
1744 			/* __ Set realtime policy in scheduler __ */
1745 		}
1746 
1747 #ifdef CONFIG_NET_DMA
1748 		if (tp->ucopy.dma_chan) {
1749 			if (tp->rcv_wnd == 0 &&
1750 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1751 				tcp_service_net_dma(sk, true);
1752 				tcp_cleanup_rbuf(sk, copied);
1753 			} else
1754 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1755 		}
1756 #endif
1757 		if (copied >= target) {
1758 			/* Do not sleep, just process backlog. */
1759 			release_sock(sk);
1760 			lock_sock(sk);
1761 		} else
1762 			sk_wait_data(sk, &timeo);
1763 
1764 #ifdef CONFIG_NET_DMA
1765 		tcp_service_net_dma(sk, false);  /* Don't block */
1766 		tp->ucopy.wakeup = 0;
1767 #endif
1768 
1769 		if (user_recv) {
1770 			int chunk;
1771 
1772 			/* __ Restore normal policy in scheduler __ */
1773 
1774 			if ((chunk = len - tp->ucopy.len) != 0) {
1775 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1776 				len -= chunk;
1777 				copied += chunk;
1778 			}
1779 
1780 			if (tp->rcv_nxt == tp->copied_seq &&
1781 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1782 do_prequeue:
1783 				tcp_prequeue_process(sk);
1784 
1785 				if ((chunk = len - tp->ucopy.len) != 0) {
1786 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1787 					len -= chunk;
1788 					copied += chunk;
1789 				}
1790 			}
1791 		}
1792 		if ((flags & MSG_PEEK) &&
1793 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1794 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1795 					    current->comm,
1796 					    task_pid_nr(current));
1797 			peek_seq = tp->copied_seq;
1798 		}
1799 		continue;
1800 
1801 	found_ok_skb:
1802 		/* Ok so how much can we use? */
1803 		used = skb->len - offset;
1804 		if (len < used)
1805 			used = len;
1806 
1807 		/* Do we have urgent data here? */
1808 		if (tp->urg_data) {
1809 			u32 urg_offset = tp->urg_seq - *seq;
1810 			if (urg_offset < used) {
1811 				if (!urg_offset) {
1812 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1813 						++*seq;
1814 						urg_hole++;
1815 						offset++;
1816 						used--;
1817 						if (!used)
1818 							goto skip_copy;
1819 					}
1820 				} else
1821 					used = urg_offset;
1822 			}
1823 		}
1824 
1825 		if (!(flags & MSG_TRUNC)) {
1826 #ifdef CONFIG_NET_DMA
1827 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1828 				tp->ucopy.dma_chan = net_dma_find_channel();
1829 
1830 			if (tp->ucopy.dma_chan) {
1831 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1832 					tp->ucopy.dma_chan, skb, offset,
1833 					msg->msg_iov, used,
1834 					tp->ucopy.pinned_list);
1835 
1836 				if (tp->ucopy.dma_cookie < 0) {
1837 
1838 					pr_alert("%s: dma_cookie < 0\n",
1839 						 __func__);
1840 
1841 					/* Exception. Bailout! */
1842 					if (!copied)
1843 						copied = -EFAULT;
1844 					break;
1845 				}
1846 
1847 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1848 
1849 				if ((offset + used) == skb->len)
1850 					copied_early = true;
1851 
1852 			} else
1853 #endif
1854 			{
1855 				err = skb_copy_datagram_iovec(skb, offset,
1856 						msg->msg_iov, used);
1857 				if (err) {
1858 					/* Exception. Bailout! */
1859 					if (!copied)
1860 						copied = -EFAULT;
1861 					break;
1862 				}
1863 			}
1864 		}
1865 
1866 		*seq += used;
1867 		copied += used;
1868 		len -= used;
1869 
1870 		tcp_rcv_space_adjust(sk);
1871 
1872 skip_copy:
1873 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1874 			tp->urg_data = 0;
1875 			tcp_fast_path_check(sk);
1876 		}
1877 		if (used + offset < skb->len)
1878 			continue;
1879 
1880 		if (tcp_hdr(skb)->fin)
1881 			goto found_fin_ok;
1882 		if (!(flags & MSG_PEEK)) {
1883 			sk_eat_skb(sk, skb, copied_early);
1884 			copied_early = false;
1885 		}
1886 		continue;
1887 
1888 	found_fin_ok:
1889 		/* Process the FIN. */
1890 		++*seq;
1891 		if (!(flags & MSG_PEEK)) {
1892 			sk_eat_skb(sk, skb, copied_early);
1893 			copied_early = false;
1894 		}
1895 		break;
1896 	} while (len > 0);
1897 
1898 	if (user_recv) {
1899 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1900 			int chunk;
1901 
1902 			tp->ucopy.len = copied > 0 ? len : 0;
1903 
1904 			tcp_prequeue_process(sk);
1905 
1906 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1907 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1908 				len -= chunk;
1909 				copied += chunk;
1910 			}
1911 		}
1912 
1913 		tp->ucopy.task = NULL;
1914 		tp->ucopy.len = 0;
1915 	}
1916 
1917 #ifdef CONFIG_NET_DMA
1918 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1919 	tp->ucopy.dma_chan = NULL;
1920 
1921 	if (tp->ucopy.pinned_list) {
1922 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1923 		tp->ucopy.pinned_list = NULL;
1924 	}
1925 #endif
1926 
1927 	/* According to UNIX98, msg_name/msg_namelen are ignored
1928 	 * on connected socket. I was just happy when found this 8) --ANK
1929 	 */
1930 
1931 	/* Clean up data we have read: This will do ACK frames. */
1932 	tcp_cleanup_rbuf(sk, copied);
1933 
1934 	release_sock(sk);
1935 	return copied;
1936 
1937 out:
1938 	release_sock(sk);
1939 	return err;
1940 
1941 recv_urg:
1942 	err = tcp_recv_urg(sk, msg, len, flags);
1943 	goto out;
1944 
1945 recv_sndq:
1946 	err = tcp_peek_sndq(sk, msg, len);
1947 	goto out;
1948 }
1949 EXPORT_SYMBOL(tcp_recvmsg);
1950 
1951 void tcp_set_state(struct sock *sk, int state)
1952 {
1953 	int oldstate = sk->sk_state;
1954 
1955 	switch (state) {
1956 	case TCP_ESTABLISHED:
1957 		if (oldstate != TCP_ESTABLISHED)
1958 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1959 		break;
1960 
1961 	case TCP_CLOSE:
1962 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1963 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1964 
1965 		sk->sk_prot->unhash(sk);
1966 		if (inet_csk(sk)->icsk_bind_hash &&
1967 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1968 			inet_put_port(sk);
1969 		/* fall through */
1970 	default:
1971 		if (oldstate == TCP_ESTABLISHED)
1972 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1973 	}
1974 
1975 	/* Change state AFTER socket is unhashed to avoid closed
1976 	 * socket sitting in hash tables.
1977 	 */
1978 	sk->sk_state = state;
1979 
1980 #ifdef STATE_TRACE
1981 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1982 #endif
1983 }
1984 EXPORT_SYMBOL_GPL(tcp_set_state);
1985 
1986 /*
1987  *	State processing on a close. This implements the state shift for
1988  *	sending our FIN frame. Note that we only send a FIN for some
1989  *	states. A shutdown() may have already sent the FIN, or we may be
1990  *	closed.
1991  */
1992 
1993 static const unsigned char new_state[16] = {
1994   /* current state:        new state:      action:	*/
1995   /* (Invalid)		*/ TCP_CLOSE,
1996   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1997   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1998   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1999   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2000   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2001   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2002   /* TCP_CLOSE		*/ TCP_CLOSE,
2003   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2004   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2005   /* TCP_LISTEN		*/ TCP_CLOSE,
2006   /* TCP_CLOSING	*/ TCP_CLOSING,
2007 };
2008 
2009 static int tcp_close_state(struct sock *sk)
2010 {
2011 	int next = (int)new_state[sk->sk_state];
2012 	int ns = next & TCP_STATE_MASK;
2013 
2014 	tcp_set_state(sk, ns);
2015 
2016 	return next & TCP_ACTION_FIN;
2017 }
2018 
2019 /*
2020  *	Shutdown the sending side of a connection. Much like close except
2021  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2022  */
2023 
2024 void tcp_shutdown(struct sock *sk, int how)
2025 {
2026 	/*	We need to grab some memory, and put together a FIN,
2027 	 *	and then put it into the queue to be sent.
2028 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2029 	 */
2030 	if (!(how & SEND_SHUTDOWN))
2031 		return;
2032 
2033 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2034 	if ((1 << sk->sk_state) &
2035 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2036 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2037 		/* Clear out any half completed packets.  FIN if needed. */
2038 		if (tcp_close_state(sk))
2039 			tcp_send_fin(sk);
2040 	}
2041 }
2042 EXPORT_SYMBOL(tcp_shutdown);
2043 
2044 bool tcp_check_oom(struct sock *sk, int shift)
2045 {
2046 	bool too_many_orphans, out_of_socket_memory;
2047 
2048 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2049 	out_of_socket_memory = tcp_out_of_memory(sk);
2050 
2051 	if (too_many_orphans)
2052 		net_info_ratelimited("too many orphaned sockets\n");
2053 	if (out_of_socket_memory)
2054 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2055 	return too_many_orphans || out_of_socket_memory;
2056 }
2057 
2058 void tcp_close(struct sock *sk, long timeout)
2059 {
2060 	struct sk_buff *skb;
2061 	int data_was_unread = 0;
2062 	int state;
2063 
2064 	lock_sock(sk);
2065 	sk->sk_shutdown = SHUTDOWN_MASK;
2066 
2067 	if (sk->sk_state == TCP_LISTEN) {
2068 		tcp_set_state(sk, TCP_CLOSE);
2069 
2070 		/* Special case. */
2071 		inet_csk_listen_stop(sk);
2072 
2073 		goto adjudge_to_death;
2074 	}
2075 
2076 	/*  We need to flush the recv. buffs.  We do this only on the
2077 	 *  descriptor close, not protocol-sourced closes, because the
2078 	 *  reader process may not have drained the data yet!
2079 	 */
2080 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2081 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2082 			  tcp_hdr(skb)->fin;
2083 		data_was_unread += len;
2084 		__kfree_skb(skb);
2085 	}
2086 
2087 	sk_mem_reclaim(sk);
2088 
2089 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2090 	if (sk->sk_state == TCP_CLOSE)
2091 		goto adjudge_to_death;
2092 
2093 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2094 	 * data was lost. To witness the awful effects of the old behavior of
2095 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2096 	 * GET in an FTP client, suspend the process, wait for the client to
2097 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2098 	 * Note: timeout is always zero in such a case.
2099 	 */
2100 	if (unlikely(tcp_sk(sk)->repair)) {
2101 		sk->sk_prot->disconnect(sk, 0);
2102 	} else if (data_was_unread) {
2103 		/* Unread data was tossed, zap the connection. */
2104 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2105 		tcp_set_state(sk, TCP_CLOSE);
2106 		tcp_send_active_reset(sk, sk->sk_allocation);
2107 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2108 		/* Check zero linger _after_ checking for unread data. */
2109 		sk->sk_prot->disconnect(sk, 0);
2110 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2111 	} else if (tcp_close_state(sk)) {
2112 		/* We FIN if the application ate all the data before
2113 		 * zapping the connection.
2114 		 */
2115 
2116 		/* RED-PEN. Formally speaking, we have broken TCP state
2117 		 * machine. State transitions:
2118 		 *
2119 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2120 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2121 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2122 		 *
2123 		 * are legal only when FIN has been sent (i.e. in window),
2124 		 * rather than queued out of window. Purists blame.
2125 		 *
2126 		 * F.e. "RFC state" is ESTABLISHED,
2127 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2128 		 *
2129 		 * The visible declinations are that sometimes
2130 		 * we enter time-wait state, when it is not required really
2131 		 * (harmless), do not send active resets, when they are
2132 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2133 		 * they look as CLOSING or LAST_ACK for Linux)
2134 		 * Probably, I missed some more holelets.
2135 		 * 						--ANK
2136 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2137 		 * in a single packet! (May consider it later but will
2138 		 * probably need API support or TCP_CORK SYN-ACK until
2139 		 * data is written and socket is closed.)
2140 		 */
2141 		tcp_send_fin(sk);
2142 	}
2143 
2144 	sk_stream_wait_close(sk, timeout);
2145 
2146 adjudge_to_death:
2147 	state = sk->sk_state;
2148 	sock_hold(sk);
2149 	sock_orphan(sk);
2150 
2151 	/* It is the last release_sock in its life. It will remove backlog. */
2152 	release_sock(sk);
2153 
2154 
2155 	/* Now socket is owned by kernel and we acquire BH lock
2156 	   to finish close. No need to check for user refs.
2157 	 */
2158 	local_bh_disable();
2159 	bh_lock_sock(sk);
2160 	WARN_ON(sock_owned_by_user(sk));
2161 
2162 	percpu_counter_inc(sk->sk_prot->orphan_count);
2163 
2164 	/* Have we already been destroyed by a softirq or backlog? */
2165 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2166 		goto out;
2167 
2168 	/*	This is a (useful) BSD violating of the RFC. There is a
2169 	 *	problem with TCP as specified in that the other end could
2170 	 *	keep a socket open forever with no application left this end.
2171 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2172 	 *	our end. If they send after that then tough - BUT: long enough
2173 	 *	that we won't make the old 4*rto = almost no time - whoops
2174 	 *	reset mistake.
2175 	 *
2176 	 *	Nope, it was not mistake. It is really desired behaviour
2177 	 *	f.e. on http servers, when such sockets are useless, but
2178 	 *	consume significant resources. Let's do it with special
2179 	 *	linger2	option.					--ANK
2180 	 */
2181 
2182 	if (sk->sk_state == TCP_FIN_WAIT2) {
2183 		struct tcp_sock *tp = tcp_sk(sk);
2184 		if (tp->linger2 < 0) {
2185 			tcp_set_state(sk, TCP_CLOSE);
2186 			tcp_send_active_reset(sk, GFP_ATOMIC);
2187 			NET_INC_STATS_BH(sock_net(sk),
2188 					LINUX_MIB_TCPABORTONLINGER);
2189 		} else {
2190 			const int tmo = tcp_fin_time(sk);
2191 
2192 			if (tmo > TCP_TIMEWAIT_LEN) {
2193 				inet_csk_reset_keepalive_timer(sk,
2194 						tmo - TCP_TIMEWAIT_LEN);
2195 			} else {
2196 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2197 				goto out;
2198 			}
2199 		}
2200 	}
2201 	if (sk->sk_state != TCP_CLOSE) {
2202 		sk_mem_reclaim(sk);
2203 		if (tcp_check_oom(sk, 0)) {
2204 			tcp_set_state(sk, TCP_CLOSE);
2205 			tcp_send_active_reset(sk, GFP_ATOMIC);
2206 			NET_INC_STATS_BH(sock_net(sk),
2207 					LINUX_MIB_TCPABORTONMEMORY);
2208 		}
2209 	}
2210 
2211 	if (sk->sk_state == TCP_CLOSE) {
2212 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2213 		/* We could get here with a non-NULL req if the socket is
2214 		 * aborted (e.g., closed with unread data) before 3WHS
2215 		 * finishes.
2216 		 */
2217 		if (req != NULL)
2218 			reqsk_fastopen_remove(sk, req, false);
2219 		inet_csk_destroy_sock(sk);
2220 	}
2221 	/* Otherwise, socket is reprieved until protocol close. */
2222 
2223 out:
2224 	bh_unlock_sock(sk);
2225 	local_bh_enable();
2226 	sock_put(sk);
2227 }
2228 EXPORT_SYMBOL(tcp_close);
2229 
2230 /* These states need RST on ABORT according to RFC793 */
2231 
2232 static inline bool tcp_need_reset(int state)
2233 {
2234 	return (1 << state) &
2235 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2236 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2237 }
2238 
2239 int tcp_disconnect(struct sock *sk, int flags)
2240 {
2241 	struct inet_sock *inet = inet_sk(sk);
2242 	struct inet_connection_sock *icsk = inet_csk(sk);
2243 	struct tcp_sock *tp = tcp_sk(sk);
2244 	int err = 0;
2245 	int old_state = sk->sk_state;
2246 
2247 	if (old_state != TCP_CLOSE)
2248 		tcp_set_state(sk, TCP_CLOSE);
2249 
2250 	/* ABORT function of RFC793 */
2251 	if (old_state == TCP_LISTEN) {
2252 		inet_csk_listen_stop(sk);
2253 	} else if (unlikely(tp->repair)) {
2254 		sk->sk_err = ECONNABORTED;
2255 	} else if (tcp_need_reset(old_state) ||
2256 		   (tp->snd_nxt != tp->write_seq &&
2257 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2258 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2259 		 * states
2260 		 */
2261 		tcp_send_active_reset(sk, gfp_any());
2262 		sk->sk_err = ECONNRESET;
2263 	} else if (old_state == TCP_SYN_SENT)
2264 		sk->sk_err = ECONNRESET;
2265 
2266 	tcp_clear_xmit_timers(sk);
2267 	__skb_queue_purge(&sk->sk_receive_queue);
2268 	tcp_write_queue_purge(sk);
2269 	__skb_queue_purge(&tp->out_of_order_queue);
2270 #ifdef CONFIG_NET_DMA
2271 	__skb_queue_purge(&sk->sk_async_wait_queue);
2272 #endif
2273 
2274 	inet->inet_dport = 0;
2275 
2276 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2277 		inet_reset_saddr(sk);
2278 
2279 	sk->sk_shutdown = 0;
2280 	sock_reset_flag(sk, SOCK_DONE);
2281 	tp->srtt = 0;
2282 	if ((tp->write_seq += tp->max_window + 2) == 0)
2283 		tp->write_seq = 1;
2284 	icsk->icsk_backoff = 0;
2285 	tp->snd_cwnd = 2;
2286 	icsk->icsk_probes_out = 0;
2287 	tp->packets_out = 0;
2288 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2289 	tp->snd_cwnd_cnt = 0;
2290 	tp->bytes_acked = 0;
2291 	tp->window_clamp = 0;
2292 	tcp_set_ca_state(sk, TCP_CA_Open);
2293 	tcp_clear_retrans(tp);
2294 	inet_csk_delack_init(sk);
2295 	tcp_init_send_head(sk);
2296 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2297 	__sk_dst_reset(sk);
2298 
2299 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2300 
2301 	sk->sk_error_report(sk);
2302 	return err;
2303 }
2304 EXPORT_SYMBOL(tcp_disconnect);
2305 
2306 void tcp_sock_destruct(struct sock *sk)
2307 {
2308 	inet_sock_destruct(sk);
2309 
2310 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2311 }
2312 
2313 static inline bool tcp_can_repair_sock(const struct sock *sk)
2314 {
2315 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2316 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2317 }
2318 
2319 static int tcp_repair_options_est(struct tcp_sock *tp,
2320 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2321 {
2322 	struct tcp_repair_opt opt;
2323 
2324 	while (len >= sizeof(opt)) {
2325 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2326 			return -EFAULT;
2327 
2328 		optbuf++;
2329 		len -= sizeof(opt);
2330 
2331 		switch (opt.opt_code) {
2332 		case TCPOPT_MSS:
2333 			tp->rx_opt.mss_clamp = opt.opt_val;
2334 			break;
2335 		case TCPOPT_WINDOW:
2336 			{
2337 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2338 				u16 rcv_wscale = opt.opt_val >> 16;
2339 
2340 				if (snd_wscale > 14 || rcv_wscale > 14)
2341 					return -EFBIG;
2342 
2343 				tp->rx_opt.snd_wscale = snd_wscale;
2344 				tp->rx_opt.rcv_wscale = rcv_wscale;
2345 				tp->rx_opt.wscale_ok = 1;
2346 			}
2347 			break;
2348 		case TCPOPT_SACK_PERM:
2349 			if (opt.opt_val != 0)
2350 				return -EINVAL;
2351 
2352 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2353 			if (sysctl_tcp_fack)
2354 				tcp_enable_fack(tp);
2355 			break;
2356 		case TCPOPT_TIMESTAMP:
2357 			if (opt.opt_val != 0)
2358 				return -EINVAL;
2359 
2360 			tp->rx_opt.tstamp_ok = 1;
2361 			break;
2362 		}
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 /*
2369  *	Socket option code for TCP.
2370  */
2371 static int do_tcp_setsockopt(struct sock *sk, int level,
2372 		int optname, char __user *optval, unsigned int optlen)
2373 {
2374 	struct tcp_sock *tp = tcp_sk(sk);
2375 	struct inet_connection_sock *icsk = inet_csk(sk);
2376 	int val;
2377 	int err = 0;
2378 
2379 	/* These are data/string values, all the others are ints */
2380 	switch (optname) {
2381 	case TCP_CONGESTION: {
2382 		char name[TCP_CA_NAME_MAX];
2383 
2384 		if (optlen < 1)
2385 			return -EINVAL;
2386 
2387 		val = strncpy_from_user(name, optval,
2388 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2389 		if (val < 0)
2390 			return -EFAULT;
2391 		name[val] = 0;
2392 
2393 		lock_sock(sk);
2394 		err = tcp_set_congestion_control(sk, name);
2395 		release_sock(sk);
2396 		return err;
2397 	}
2398 	case TCP_COOKIE_TRANSACTIONS: {
2399 		struct tcp_cookie_transactions ctd;
2400 		struct tcp_cookie_values *cvp = NULL;
2401 
2402 		if (sizeof(ctd) > optlen)
2403 			return -EINVAL;
2404 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2405 			return -EFAULT;
2406 
2407 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2408 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2409 			return -EINVAL;
2410 
2411 		if (ctd.tcpct_cookie_desired == 0) {
2412 			/* default to global value */
2413 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2414 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2415 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2416 			return -EINVAL;
2417 		}
2418 
2419 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2420 			/* Supercedes all other values */
2421 			lock_sock(sk);
2422 			if (tp->cookie_values != NULL) {
2423 				kref_put(&tp->cookie_values->kref,
2424 					 tcp_cookie_values_release);
2425 				tp->cookie_values = NULL;
2426 			}
2427 			tp->rx_opt.cookie_in_always = 0; /* false */
2428 			tp->rx_opt.cookie_out_never = 1; /* true */
2429 			release_sock(sk);
2430 			return err;
2431 		}
2432 
2433 		/* Allocate ancillary memory before locking.
2434 		 */
2435 		if (ctd.tcpct_used > 0 ||
2436 		    (tp->cookie_values == NULL &&
2437 		     (sysctl_tcp_cookie_size > 0 ||
2438 		      ctd.tcpct_cookie_desired > 0 ||
2439 		      ctd.tcpct_s_data_desired > 0))) {
2440 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2441 				      GFP_KERNEL);
2442 			if (cvp == NULL)
2443 				return -ENOMEM;
2444 
2445 			kref_init(&cvp->kref);
2446 		}
2447 		lock_sock(sk);
2448 		tp->rx_opt.cookie_in_always =
2449 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2450 		tp->rx_opt.cookie_out_never = 0; /* false */
2451 
2452 		if (tp->cookie_values != NULL) {
2453 			if (cvp != NULL) {
2454 				/* Changed values are recorded by a changed
2455 				 * pointer, ensuring the cookie will differ,
2456 				 * without separately hashing each value later.
2457 				 */
2458 				kref_put(&tp->cookie_values->kref,
2459 					 tcp_cookie_values_release);
2460 			} else {
2461 				cvp = tp->cookie_values;
2462 			}
2463 		}
2464 
2465 		if (cvp != NULL) {
2466 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2467 
2468 			if (ctd.tcpct_used > 0) {
2469 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2470 				       ctd.tcpct_used);
2471 				cvp->s_data_desired = ctd.tcpct_used;
2472 				cvp->s_data_constant = 1; /* true */
2473 			} else {
2474 				/* No constant payload data. */
2475 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2476 				cvp->s_data_constant = 0; /* false */
2477 			}
2478 
2479 			tp->cookie_values = cvp;
2480 		}
2481 		release_sock(sk);
2482 		return err;
2483 	}
2484 	default:
2485 		/* fallthru */
2486 		break;
2487 	}
2488 
2489 	if (optlen < sizeof(int))
2490 		return -EINVAL;
2491 
2492 	if (get_user(val, (int __user *)optval))
2493 		return -EFAULT;
2494 
2495 	lock_sock(sk);
2496 
2497 	switch (optname) {
2498 	case TCP_MAXSEG:
2499 		/* Values greater than interface MTU won't take effect. However
2500 		 * at the point when this call is done we typically don't yet
2501 		 * know which interface is going to be used */
2502 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2503 			err = -EINVAL;
2504 			break;
2505 		}
2506 		tp->rx_opt.user_mss = val;
2507 		break;
2508 
2509 	case TCP_NODELAY:
2510 		if (val) {
2511 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2512 			 * this option on corked socket is remembered, but
2513 			 * it is not activated until cork is cleared.
2514 			 *
2515 			 * However, when TCP_NODELAY is set we make
2516 			 * an explicit push, which overrides even TCP_CORK
2517 			 * for currently queued segments.
2518 			 */
2519 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2520 			tcp_push_pending_frames(sk);
2521 		} else {
2522 			tp->nonagle &= ~TCP_NAGLE_OFF;
2523 		}
2524 		break;
2525 
2526 	case TCP_THIN_LINEAR_TIMEOUTS:
2527 		if (val < 0 || val > 1)
2528 			err = -EINVAL;
2529 		else
2530 			tp->thin_lto = val;
2531 		break;
2532 
2533 	case TCP_THIN_DUPACK:
2534 		if (val < 0 || val > 1)
2535 			err = -EINVAL;
2536 		else
2537 			tp->thin_dupack = val;
2538 			if (tp->thin_dupack)
2539 				tcp_disable_early_retrans(tp);
2540 		break;
2541 
2542 	case TCP_REPAIR:
2543 		if (!tcp_can_repair_sock(sk))
2544 			err = -EPERM;
2545 		else if (val == 1) {
2546 			tp->repair = 1;
2547 			sk->sk_reuse = SK_FORCE_REUSE;
2548 			tp->repair_queue = TCP_NO_QUEUE;
2549 		} else if (val == 0) {
2550 			tp->repair = 0;
2551 			sk->sk_reuse = SK_NO_REUSE;
2552 			tcp_send_window_probe(sk);
2553 		} else
2554 			err = -EINVAL;
2555 
2556 		break;
2557 
2558 	case TCP_REPAIR_QUEUE:
2559 		if (!tp->repair)
2560 			err = -EPERM;
2561 		else if (val < TCP_QUEUES_NR)
2562 			tp->repair_queue = val;
2563 		else
2564 			err = -EINVAL;
2565 		break;
2566 
2567 	case TCP_QUEUE_SEQ:
2568 		if (sk->sk_state != TCP_CLOSE)
2569 			err = -EPERM;
2570 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2571 			tp->write_seq = val;
2572 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2573 			tp->rcv_nxt = val;
2574 		else
2575 			err = -EINVAL;
2576 		break;
2577 
2578 	case TCP_REPAIR_OPTIONS:
2579 		if (!tp->repair)
2580 			err = -EINVAL;
2581 		else if (sk->sk_state == TCP_ESTABLISHED)
2582 			err = tcp_repair_options_est(tp,
2583 					(struct tcp_repair_opt __user *)optval,
2584 					optlen);
2585 		else
2586 			err = -EPERM;
2587 		break;
2588 
2589 	case TCP_CORK:
2590 		/* When set indicates to always queue non-full frames.
2591 		 * Later the user clears this option and we transmit
2592 		 * any pending partial frames in the queue.  This is
2593 		 * meant to be used alongside sendfile() to get properly
2594 		 * filled frames when the user (for example) must write
2595 		 * out headers with a write() call first and then use
2596 		 * sendfile to send out the data parts.
2597 		 *
2598 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2599 		 * stronger than TCP_NODELAY.
2600 		 */
2601 		if (val) {
2602 			tp->nonagle |= TCP_NAGLE_CORK;
2603 		} else {
2604 			tp->nonagle &= ~TCP_NAGLE_CORK;
2605 			if (tp->nonagle&TCP_NAGLE_OFF)
2606 				tp->nonagle |= TCP_NAGLE_PUSH;
2607 			tcp_push_pending_frames(sk);
2608 		}
2609 		break;
2610 
2611 	case TCP_KEEPIDLE:
2612 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2613 			err = -EINVAL;
2614 		else {
2615 			tp->keepalive_time = val * HZ;
2616 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2617 			    !((1 << sk->sk_state) &
2618 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2619 				u32 elapsed = keepalive_time_elapsed(tp);
2620 				if (tp->keepalive_time > elapsed)
2621 					elapsed = tp->keepalive_time - elapsed;
2622 				else
2623 					elapsed = 0;
2624 				inet_csk_reset_keepalive_timer(sk, elapsed);
2625 			}
2626 		}
2627 		break;
2628 	case TCP_KEEPINTVL:
2629 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2630 			err = -EINVAL;
2631 		else
2632 			tp->keepalive_intvl = val * HZ;
2633 		break;
2634 	case TCP_KEEPCNT:
2635 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2636 			err = -EINVAL;
2637 		else
2638 			tp->keepalive_probes = val;
2639 		break;
2640 	case TCP_SYNCNT:
2641 		if (val < 1 || val > MAX_TCP_SYNCNT)
2642 			err = -EINVAL;
2643 		else
2644 			icsk->icsk_syn_retries = val;
2645 		break;
2646 
2647 	case TCP_LINGER2:
2648 		if (val < 0)
2649 			tp->linger2 = -1;
2650 		else if (val > sysctl_tcp_fin_timeout / HZ)
2651 			tp->linger2 = 0;
2652 		else
2653 			tp->linger2 = val * HZ;
2654 		break;
2655 
2656 	case TCP_DEFER_ACCEPT:
2657 		/* Translate value in seconds to number of retransmits */
2658 		icsk->icsk_accept_queue.rskq_defer_accept =
2659 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2660 					TCP_RTO_MAX / HZ);
2661 		break;
2662 
2663 	case TCP_WINDOW_CLAMP:
2664 		if (!val) {
2665 			if (sk->sk_state != TCP_CLOSE) {
2666 				err = -EINVAL;
2667 				break;
2668 			}
2669 			tp->window_clamp = 0;
2670 		} else
2671 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2672 						SOCK_MIN_RCVBUF / 2 : val;
2673 		break;
2674 
2675 	case TCP_QUICKACK:
2676 		if (!val) {
2677 			icsk->icsk_ack.pingpong = 1;
2678 		} else {
2679 			icsk->icsk_ack.pingpong = 0;
2680 			if ((1 << sk->sk_state) &
2681 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2682 			    inet_csk_ack_scheduled(sk)) {
2683 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2684 				tcp_cleanup_rbuf(sk, 1);
2685 				if (!(val & 1))
2686 					icsk->icsk_ack.pingpong = 1;
2687 			}
2688 		}
2689 		break;
2690 
2691 #ifdef CONFIG_TCP_MD5SIG
2692 	case TCP_MD5SIG:
2693 		/* Read the IP->Key mappings from userspace */
2694 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2695 		break;
2696 #endif
2697 	case TCP_USER_TIMEOUT:
2698 		/* Cap the max timeout in ms TCP will retry/retrans
2699 		 * before giving up and aborting (ETIMEDOUT) a connection.
2700 		 */
2701 		if (val < 0)
2702 			err = -EINVAL;
2703 		else
2704 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2705 		break;
2706 
2707 	case TCP_FASTOPEN:
2708 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2709 		    TCPF_LISTEN)))
2710 			err = fastopen_init_queue(sk, val);
2711 		else
2712 			err = -EINVAL;
2713 		break;
2714 	default:
2715 		err = -ENOPROTOOPT;
2716 		break;
2717 	}
2718 
2719 	release_sock(sk);
2720 	return err;
2721 }
2722 
2723 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2724 		   unsigned int optlen)
2725 {
2726 	const struct inet_connection_sock *icsk = inet_csk(sk);
2727 
2728 	if (level != SOL_TCP)
2729 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2730 						     optval, optlen);
2731 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2732 }
2733 EXPORT_SYMBOL(tcp_setsockopt);
2734 
2735 #ifdef CONFIG_COMPAT
2736 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2737 			  char __user *optval, unsigned int optlen)
2738 {
2739 	if (level != SOL_TCP)
2740 		return inet_csk_compat_setsockopt(sk, level, optname,
2741 						  optval, optlen);
2742 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2743 }
2744 EXPORT_SYMBOL(compat_tcp_setsockopt);
2745 #endif
2746 
2747 /* Return information about state of tcp endpoint in API format. */
2748 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2749 {
2750 	const struct tcp_sock *tp = tcp_sk(sk);
2751 	const struct inet_connection_sock *icsk = inet_csk(sk);
2752 	u32 now = tcp_time_stamp;
2753 
2754 	memset(info, 0, sizeof(*info));
2755 
2756 	info->tcpi_state = sk->sk_state;
2757 	info->tcpi_ca_state = icsk->icsk_ca_state;
2758 	info->tcpi_retransmits = icsk->icsk_retransmits;
2759 	info->tcpi_probes = icsk->icsk_probes_out;
2760 	info->tcpi_backoff = icsk->icsk_backoff;
2761 
2762 	if (tp->rx_opt.tstamp_ok)
2763 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2764 	if (tcp_is_sack(tp))
2765 		info->tcpi_options |= TCPI_OPT_SACK;
2766 	if (tp->rx_opt.wscale_ok) {
2767 		info->tcpi_options |= TCPI_OPT_WSCALE;
2768 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2769 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2770 	}
2771 
2772 	if (tp->ecn_flags & TCP_ECN_OK)
2773 		info->tcpi_options |= TCPI_OPT_ECN;
2774 	if (tp->ecn_flags & TCP_ECN_SEEN)
2775 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2776 	if (tp->syn_data_acked)
2777 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2778 
2779 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2780 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2781 	info->tcpi_snd_mss = tp->mss_cache;
2782 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2783 
2784 	if (sk->sk_state == TCP_LISTEN) {
2785 		info->tcpi_unacked = sk->sk_ack_backlog;
2786 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2787 	} else {
2788 		info->tcpi_unacked = tp->packets_out;
2789 		info->tcpi_sacked = tp->sacked_out;
2790 	}
2791 	info->tcpi_lost = tp->lost_out;
2792 	info->tcpi_retrans = tp->retrans_out;
2793 	info->tcpi_fackets = tp->fackets_out;
2794 
2795 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2796 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2797 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2798 
2799 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2800 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2801 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2802 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2803 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2804 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2805 	info->tcpi_advmss = tp->advmss;
2806 	info->tcpi_reordering = tp->reordering;
2807 
2808 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2809 	info->tcpi_rcv_space = tp->rcvq_space.space;
2810 
2811 	info->tcpi_total_retrans = tp->total_retrans;
2812 }
2813 EXPORT_SYMBOL_GPL(tcp_get_info);
2814 
2815 static int do_tcp_getsockopt(struct sock *sk, int level,
2816 		int optname, char __user *optval, int __user *optlen)
2817 {
2818 	struct inet_connection_sock *icsk = inet_csk(sk);
2819 	struct tcp_sock *tp = tcp_sk(sk);
2820 	int val, len;
2821 
2822 	if (get_user(len, optlen))
2823 		return -EFAULT;
2824 
2825 	len = min_t(unsigned int, len, sizeof(int));
2826 
2827 	if (len < 0)
2828 		return -EINVAL;
2829 
2830 	switch (optname) {
2831 	case TCP_MAXSEG:
2832 		val = tp->mss_cache;
2833 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2834 			val = tp->rx_opt.user_mss;
2835 		if (tp->repair)
2836 			val = tp->rx_opt.mss_clamp;
2837 		break;
2838 	case TCP_NODELAY:
2839 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2840 		break;
2841 	case TCP_CORK:
2842 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2843 		break;
2844 	case TCP_KEEPIDLE:
2845 		val = keepalive_time_when(tp) / HZ;
2846 		break;
2847 	case TCP_KEEPINTVL:
2848 		val = keepalive_intvl_when(tp) / HZ;
2849 		break;
2850 	case TCP_KEEPCNT:
2851 		val = keepalive_probes(tp);
2852 		break;
2853 	case TCP_SYNCNT:
2854 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2855 		break;
2856 	case TCP_LINGER2:
2857 		val = tp->linger2;
2858 		if (val >= 0)
2859 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2860 		break;
2861 	case TCP_DEFER_ACCEPT:
2862 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2863 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2864 		break;
2865 	case TCP_WINDOW_CLAMP:
2866 		val = tp->window_clamp;
2867 		break;
2868 	case TCP_INFO: {
2869 		struct tcp_info info;
2870 
2871 		if (get_user(len, optlen))
2872 			return -EFAULT;
2873 
2874 		tcp_get_info(sk, &info);
2875 
2876 		len = min_t(unsigned int, len, sizeof(info));
2877 		if (put_user(len, optlen))
2878 			return -EFAULT;
2879 		if (copy_to_user(optval, &info, len))
2880 			return -EFAULT;
2881 		return 0;
2882 	}
2883 	case TCP_QUICKACK:
2884 		val = !icsk->icsk_ack.pingpong;
2885 		break;
2886 
2887 	case TCP_CONGESTION:
2888 		if (get_user(len, optlen))
2889 			return -EFAULT;
2890 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2891 		if (put_user(len, optlen))
2892 			return -EFAULT;
2893 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2894 			return -EFAULT;
2895 		return 0;
2896 
2897 	case TCP_COOKIE_TRANSACTIONS: {
2898 		struct tcp_cookie_transactions ctd;
2899 		struct tcp_cookie_values *cvp = tp->cookie_values;
2900 
2901 		if (get_user(len, optlen))
2902 			return -EFAULT;
2903 		if (len < sizeof(ctd))
2904 			return -EINVAL;
2905 
2906 		memset(&ctd, 0, sizeof(ctd));
2907 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2908 				   TCP_COOKIE_IN_ALWAYS : 0)
2909 				| (tp->rx_opt.cookie_out_never ?
2910 				   TCP_COOKIE_OUT_NEVER : 0);
2911 
2912 		if (cvp != NULL) {
2913 			ctd.tcpct_flags |= (cvp->s_data_in ?
2914 					    TCP_S_DATA_IN : 0)
2915 					 | (cvp->s_data_out ?
2916 					    TCP_S_DATA_OUT : 0);
2917 
2918 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2919 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2920 
2921 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2922 			       cvp->cookie_pair_size);
2923 			ctd.tcpct_used = cvp->cookie_pair_size;
2924 		}
2925 
2926 		if (put_user(sizeof(ctd), optlen))
2927 			return -EFAULT;
2928 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2929 			return -EFAULT;
2930 		return 0;
2931 	}
2932 	case TCP_THIN_LINEAR_TIMEOUTS:
2933 		val = tp->thin_lto;
2934 		break;
2935 	case TCP_THIN_DUPACK:
2936 		val = tp->thin_dupack;
2937 		break;
2938 
2939 	case TCP_REPAIR:
2940 		val = tp->repair;
2941 		break;
2942 
2943 	case TCP_REPAIR_QUEUE:
2944 		if (tp->repair)
2945 			val = tp->repair_queue;
2946 		else
2947 			return -EINVAL;
2948 		break;
2949 
2950 	case TCP_QUEUE_SEQ:
2951 		if (tp->repair_queue == TCP_SEND_QUEUE)
2952 			val = tp->write_seq;
2953 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2954 			val = tp->rcv_nxt;
2955 		else
2956 			return -EINVAL;
2957 		break;
2958 
2959 	case TCP_USER_TIMEOUT:
2960 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2961 		break;
2962 	default:
2963 		return -ENOPROTOOPT;
2964 	}
2965 
2966 	if (put_user(len, optlen))
2967 		return -EFAULT;
2968 	if (copy_to_user(optval, &val, len))
2969 		return -EFAULT;
2970 	return 0;
2971 }
2972 
2973 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2974 		   int __user *optlen)
2975 {
2976 	struct inet_connection_sock *icsk = inet_csk(sk);
2977 
2978 	if (level != SOL_TCP)
2979 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2980 						     optval, optlen);
2981 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2982 }
2983 EXPORT_SYMBOL(tcp_getsockopt);
2984 
2985 #ifdef CONFIG_COMPAT
2986 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2987 			  char __user *optval, int __user *optlen)
2988 {
2989 	if (level != SOL_TCP)
2990 		return inet_csk_compat_getsockopt(sk, level, optname,
2991 						  optval, optlen);
2992 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2993 }
2994 EXPORT_SYMBOL(compat_tcp_getsockopt);
2995 #endif
2996 
2997 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2998 	netdev_features_t features)
2999 {
3000 	struct sk_buff *segs = ERR_PTR(-EINVAL);
3001 	struct tcphdr *th;
3002 	unsigned int thlen;
3003 	unsigned int seq;
3004 	__be32 delta;
3005 	unsigned int oldlen;
3006 	unsigned int mss;
3007 
3008 	if (!pskb_may_pull(skb, sizeof(*th)))
3009 		goto out;
3010 
3011 	th = tcp_hdr(skb);
3012 	thlen = th->doff * 4;
3013 	if (thlen < sizeof(*th))
3014 		goto out;
3015 
3016 	if (!pskb_may_pull(skb, thlen))
3017 		goto out;
3018 
3019 	oldlen = (u16)~skb->len;
3020 	__skb_pull(skb, thlen);
3021 
3022 	mss = skb_shinfo(skb)->gso_size;
3023 	if (unlikely(skb->len <= mss))
3024 		goto out;
3025 
3026 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3027 		/* Packet is from an untrusted source, reset gso_segs. */
3028 		int type = skb_shinfo(skb)->gso_type;
3029 
3030 		if (unlikely(type &
3031 			     ~(SKB_GSO_TCPV4 |
3032 			       SKB_GSO_DODGY |
3033 			       SKB_GSO_TCP_ECN |
3034 			       SKB_GSO_TCPV6 |
3035 			       0) ||
3036 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3037 			goto out;
3038 
3039 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3040 
3041 		segs = NULL;
3042 		goto out;
3043 	}
3044 
3045 	segs = skb_segment(skb, features);
3046 	if (IS_ERR(segs))
3047 		goto out;
3048 
3049 	delta = htonl(oldlen + (thlen + mss));
3050 
3051 	skb = segs;
3052 	th = tcp_hdr(skb);
3053 	seq = ntohl(th->seq);
3054 
3055 	do {
3056 		th->fin = th->psh = 0;
3057 
3058 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3059 				       (__force u32)delta));
3060 		if (skb->ip_summed != CHECKSUM_PARTIAL)
3061 			th->check =
3062 			     csum_fold(csum_partial(skb_transport_header(skb),
3063 						    thlen, skb->csum));
3064 
3065 		seq += mss;
3066 		skb = skb->next;
3067 		th = tcp_hdr(skb);
3068 
3069 		th->seq = htonl(seq);
3070 		th->cwr = 0;
3071 	} while (skb->next);
3072 
3073 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3074 		      skb->data_len);
3075 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3076 				(__force u32)delta));
3077 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3078 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3079 						   thlen, skb->csum));
3080 
3081 out:
3082 	return segs;
3083 }
3084 EXPORT_SYMBOL(tcp_tso_segment);
3085 
3086 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3087 {
3088 	struct sk_buff **pp = NULL;
3089 	struct sk_buff *p;
3090 	struct tcphdr *th;
3091 	struct tcphdr *th2;
3092 	unsigned int len;
3093 	unsigned int thlen;
3094 	__be32 flags;
3095 	unsigned int mss = 1;
3096 	unsigned int hlen;
3097 	unsigned int off;
3098 	int flush = 1;
3099 	int i;
3100 
3101 	off = skb_gro_offset(skb);
3102 	hlen = off + sizeof(*th);
3103 	th = skb_gro_header_fast(skb, off);
3104 	if (skb_gro_header_hard(skb, hlen)) {
3105 		th = skb_gro_header_slow(skb, hlen, off);
3106 		if (unlikely(!th))
3107 			goto out;
3108 	}
3109 
3110 	thlen = th->doff * 4;
3111 	if (thlen < sizeof(*th))
3112 		goto out;
3113 
3114 	hlen = off + thlen;
3115 	if (skb_gro_header_hard(skb, hlen)) {
3116 		th = skb_gro_header_slow(skb, hlen, off);
3117 		if (unlikely(!th))
3118 			goto out;
3119 	}
3120 
3121 	skb_gro_pull(skb, thlen);
3122 
3123 	len = skb_gro_len(skb);
3124 	flags = tcp_flag_word(th);
3125 
3126 	for (; (p = *head); head = &p->next) {
3127 		if (!NAPI_GRO_CB(p)->same_flow)
3128 			continue;
3129 
3130 		th2 = tcp_hdr(p);
3131 
3132 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3133 			NAPI_GRO_CB(p)->same_flow = 0;
3134 			continue;
3135 		}
3136 
3137 		goto found;
3138 	}
3139 
3140 	goto out_check_final;
3141 
3142 found:
3143 	flush = NAPI_GRO_CB(p)->flush;
3144 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3145 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3146 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3147 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3148 	for (i = sizeof(*th); i < thlen; i += 4)
3149 		flush |= *(u32 *)((u8 *)th + i) ^
3150 			 *(u32 *)((u8 *)th2 + i);
3151 
3152 	mss = skb_shinfo(p)->gso_size;
3153 
3154 	flush |= (len - 1) >= mss;
3155 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3156 
3157 	if (flush || skb_gro_receive(head, skb)) {
3158 		mss = 1;
3159 		goto out_check_final;
3160 	}
3161 
3162 	p = *head;
3163 	th2 = tcp_hdr(p);
3164 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3165 
3166 out_check_final:
3167 	flush = len < mss;
3168 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3169 					TCP_FLAG_RST | TCP_FLAG_SYN |
3170 					TCP_FLAG_FIN));
3171 
3172 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3173 		pp = head;
3174 
3175 out:
3176 	NAPI_GRO_CB(skb)->flush |= flush;
3177 
3178 	return pp;
3179 }
3180 EXPORT_SYMBOL(tcp_gro_receive);
3181 
3182 int tcp_gro_complete(struct sk_buff *skb)
3183 {
3184 	struct tcphdr *th = tcp_hdr(skb);
3185 
3186 	skb->csum_start = skb_transport_header(skb) - skb->head;
3187 	skb->csum_offset = offsetof(struct tcphdr, check);
3188 	skb->ip_summed = CHECKSUM_PARTIAL;
3189 
3190 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3191 
3192 	if (th->cwr)
3193 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3194 
3195 	return 0;
3196 }
3197 EXPORT_SYMBOL(tcp_gro_complete);
3198 
3199 #ifdef CONFIG_TCP_MD5SIG
3200 static unsigned long tcp_md5sig_users;
3201 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3202 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3203 
3204 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3205 {
3206 	int cpu;
3207 
3208 	for_each_possible_cpu(cpu) {
3209 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3210 
3211 		if (p->md5_desc.tfm)
3212 			crypto_free_hash(p->md5_desc.tfm);
3213 	}
3214 	free_percpu(pool);
3215 }
3216 
3217 void tcp_free_md5sig_pool(void)
3218 {
3219 	struct tcp_md5sig_pool __percpu *pool = NULL;
3220 
3221 	spin_lock_bh(&tcp_md5sig_pool_lock);
3222 	if (--tcp_md5sig_users == 0) {
3223 		pool = tcp_md5sig_pool;
3224 		tcp_md5sig_pool = NULL;
3225 	}
3226 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3227 	if (pool)
3228 		__tcp_free_md5sig_pool(pool);
3229 }
3230 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3231 
3232 static struct tcp_md5sig_pool __percpu *
3233 __tcp_alloc_md5sig_pool(struct sock *sk)
3234 {
3235 	int cpu;
3236 	struct tcp_md5sig_pool __percpu *pool;
3237 
3238 	pool = alloc_percpu(struct tcp_md5sig_pool);
3239 	if (!pool)
3240 		return NULL;
3241 
3242 	for_each_possible_cpu(cpu) {
3243 		struct crypto_hash *hash;
3244 
3245 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3246 		if (!hash || IS_ERR(hash))
3247 			goto out_free;
3248 
3249 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3250 	}
3251 	return pool;
3252 out_free:
3253 	__tcp_free_md5sig_pool(pool);
3254 	return NULL;
3255 }
3256 
3257 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3258 {
3259 	struct tcp_md5sig_pool __percpu *pool;
3260 	bool alloc = false;
3261 
3262 retry:
3263 	spin_lock_bh(&tcp_md5sig_pool_lock);
3264 	pool = tcp_md5sig_pool;
3265 	if (tcp_md5sig_users++ == 0) {
3266 		alloc = true;
3267 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3268 	} else if (!pool) {
3269 		tcp_md5sig_users--;
3270 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3271 		cpu_relax();
3272 		goto retry;
3273 	} else
3274 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3275 
3276 	if (alloc) {
3277 		/* we cannot hold spinlock here because this may sleep. */
3278 		struct tcp_md5sig_pool __percpu *p;
3279 
3280 		p = __tcp_alloc_md5sig_pool(sk);
3281 		spin_lock_bh(&tcp_md5sig_pool_lock);
3282 		if (!p) {
3283 			tcp_md5sig_users--;
3284 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3285 			return NULL;
3286 		}
3287 		pool = tcp_md5sig_pool;
3288 		if (pool) {
3289 			/* oops, it has already been assigned. */
3290 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3291 			__tcp_free_md5sig_pool(p);
3292 		} else {
3293 			tcp_md5sig_pool = pool = p;
3294 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3295 		}
3296 	}
3297 	return pool;
3298 }
3299 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3300 
3301 
3302 /**
3303  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3304  *
3305  *	We use percpu structure, so if we succeed, we exit with preemption
3306  *	and BH disabled, to make sure another thread or softirq handling
3307  *	wont try to get same context.
3308  */
3309 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3310 {
3311 	struct tcp_md5sig_pool __percpu *p;
3312 
3313 	local_bh_disable();
3314 
3315 	spin_lock(&tcp_md5sig_pool_lock);
3316 	p = tcp_md5sig_pool;
3317 	if (p)
3318 		tcp_md5sig_users++;
3319 	spin_unlock(&tcp_md5sig_pool_lock);
3320 
3321 	if (p)
3322 		return this_cpu_ptr(p);
3323 
3324 	local_bh_enable();
3325 	return NULL;
3326 }
3327 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3328 
3329 void tcp_put_md5sig_pool(void)
3330 {
3331 	local_bh_enable();
3332 	tcp_free_md5sig_pool();
3333 }
3334 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3335 
3336 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3337 			const struct tcphdr *th)
3338 {
3339 	struct scatterlist sg;
3340 	struct tcphdr hdr;
3341 	int err;
3342 
3343 	/* We are not allowed to change tcphdr, make a local copy */
3344 	memcpy(&hdr, th, sizeof(hdr));
3345 	hdr.check = 0;
3346 
3347 	/* options aren't included in the hash */
3348 	sg_init_one(&sg, &hdr, sizeof(hdr));
3349 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3350 	return err;
3351 }
3352 EXPORT_SYMBOL(tcp_md5_hash_header);
3353 
3354 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3355 			  const struct sk_buff *skb, unsigned int header_len)
3356 {
3357 	struct scatterlist sg;
3358 	const struct tcphdr *tp = tcp_hdr(skb);
3359 	struct hash_desc *desc = &hp->md5_desc;
3360 	unsigned int i;
3361 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3362 					   skb_headlen(skb) - header_len : 0;
3363 	const struct skb_shared_info *shi = skb_shinfo(skb);
3364 	struct sk_buff *frag_iter;
3365 
3366 	sg_init_table(&sg, 1);
3367 
3368 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3369 	if (crypto_hash_update(desc, &sg, head_data_len))
3370 		return 1;
3371 
3372 	for (i = 0; i < shi->nr_frags; ++i) {
3373 		const struct skb_frag_struct *f = &shi->frags[i];
3374 		struct page *page = skb_frag_page(f);
3375 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3376 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3377 			return 1;
3378 	}
3379 
3380 	skb_walk_frags(skb, frag_iter)
3381 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3382 			return 1;
3383 
3384 	return 0;
3385 }
3386 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3387 
3388 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3389 {
3390 	struct scatterlist sg;
3391 
3392 	sg_init_one(&sg, key->key, key->keylen);
3393 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3394 }
3395 EXPORT_SYMBOL(tcp_md5_hash_key);
3396 
3397 #endif
3398 
3399 /* Each Responder maintains up to two secret values concurrently for
3400  * efficient secret rollover.  Each secret value has 4 states:
3401  *
3402  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3403  *    Generates new Responder-Cookies, but not yet used for primary
3404  *    verification.  This is a short-term state, typically lasting only
3405  *    one round trip time (RTT).
3406  *
3407  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3408  *    Used both for generation and primary verification.
3409  *
3410  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3411  *    Used for verification, until the first failure that can be
3412  *    verified by the newer Generating secret.  At that time, this
3413  *    cookie's state is changed to Secondary, and the Generating
3414  *    cookie's state is changed to Primary.  This is a short-term state,
3415  *    typically lasting only one round trip time (RTT).
3416  *
3417  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3418  *    Used for secondary verification, after primary verification
3419  *    failures.  This state lasts no more than twice the Maximum Segment
3420  *    Lifetime (2MSL).  Then, the secret is discarded.
3421  */
3422 struct tcp_cookie_secret {
3423 	/* The secret is divided into two parts.  The digest part is the
3424 	 * equivalent of previously hashing a secret and saving the state,
3425 	 * and serves as an initialization vector (IV).  The message part
3426 	 * serves as the trailing secret.
3427 	 */
3428 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3429 	unsigned long			expires;
3430 };
3431 
3432 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3433 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3434 #define TCP_SECRET_LIFE (HZ * 600)
3435 
3436 static struct tcp_cookie_secret tcp_secret_one;
3437 static struct tcp_cookie_secret tcp_secret_two;
3438 
3439 /* Essentially a circular list, without dynamic allocation. */
3440 static struct tcp_cookie_secret *tcp_secret_generating;
3441 static struct tcp_cookie_secret *tcp_secret_primary;
3442 static struct tcp_cookie_secret *tcp_secret_retiring;
3443 static struct tcp_cookie_secret *tcp_secret_secondary;
3444 
3445 static DEFINE_SPINLOCK(tcp_secret_locker);
3446 
3447 /* Select a pseudo-random word in the cookie workspace.
3448  */
3449 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3450 {
3451 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3452 }
3453 
3454 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3455  * Called in softirq context.
3456  * Returns: 0 for success.
3457  */
3458 int tcp_cookie_generator(u32 *bakery)
3459 {
3460 	unsigned long jiffy = jiffies;
3461 
3462 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3463 		spin_lock_bh(&tcp_secret_locker);
3464 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3465 			/* refreshed by another */
3466 			memcpy(bakery,
3467 			       &tcp_secret_generating->secrets[0],
3468 			       COOKIE_WORKSPACE_WORDS);
3469 		} else {
3470 			/* still needs refreshing */
3471 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3472 
3473 			/* The first time, paranoia assumes that the
3474 			 * randomization function isn't as strong.  But,
3475 			 * this secret initialization is delayed until
3476 			 * the last possible moment (packet arrival).
3477 			 * Although that time is observable, it is
3478 			 * unpredictably variable.  Mash in the most
3479 			 * volatile clock bits available, and expire the
3480 			 * secret extra quickly.
3481 			 */
3482 			if (unlikely(tcp_secret_primary->expires ==
3483 				     tcp_secret_secondary->expires)) {
3484 				struct timespec tv;
3485 
3486 				getnstimeofday(&tv);
3487 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3488 					(u32)tv.tv_nsec;
3489 
3490 				tcp_secret_secondary->expires = jiffy
3491 					+ TCP_SECRET_1MSL
3492 					+ (0x0f & tcp_cookie_work(bakery, 0));
3493 			} else {
3494 				tcp_secret_secondary->expires = jiffy
3495 					+ TCP_SECRET_LIFE
3496 					+ (0xff & tcp_cookie_work(bakery, 1));
3497 				tcp_secret_primary->expires = jiffy
3498 					+ TCP_SECRET_2MSL
3499 					+ (0x1f & tcp_cookie_work(bakery, 2));
3500 			}
3501 			memcpy(&tcp_secret_secondary->secrets[0],
3502 			       bakery, COOKIE_WORKSPACE_WORDS);
3503 
3504 			rcu_assign_pointer(tcp_secret_generating,
3505 					   tcp_secret_secondary);
3506 			rcu_assign_pointer(tcp_secret_retiring,
3507 					   tcp_secret_primary);
3508 			/*
3509 			 * Neither call_rcu() nor synchronize_rcu() needed.
3510 			 * Retiring data is not freed.  It is replaced after
3511 			 * further (locked) pointer updates, and a quiet time
3512 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3513 			 */
3514 		}
3515 		spin_unlock_bh(&tcp_secret_locker);
3516 	} else {
3517 		rcu_read_lock_bh();
3518 		memcpy(bakery,
3519 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3520 		       COOKIE_WORKSPACE_WORDS);
3521 		rcu_read_unlock_bh();
3522 	}
3523 	return 0;
3524 }
3525 EXPORT_SYMBOL(tcp_cookie_generator);
3526 
3527 void tcp_done(struct sock *sk)
3528 {
3529 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3530 
3531 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3532 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3533 
3534 	tcp_set_state(sk, TCP_CLOSE);
3535 	tcp_clear_xmit_timers(sk);
3536 	if (req != NULL)
3537 		reqsk_fastopen_remove(sk, req, false);
3538 
3539 	sk->sk_shutdown = SHUTDOWN_MASK;
3540 
3541 	if (!sock_flag(sk, SOCK_DEAD))
3542 		sk->sk_state_change(sk);
3543 	else
3544 		inet_csk_destroy_sock(sk);
3545 }
3546 EXPORT_SYMBOL_GPL(tcp_done);
3547 
3548 extern struct tcp_congestion_ops tcp_reno;
3549 
3550 static __initdata unsigned long thash_entries;
3551 static int __init set_thash_entries(char *str)
3552 {
3553 	ssize_t ret;
3554 
3555 	if (!str)
3556 		return 0;
3557 
3558 	ret = kstrtoul(str, 0, &thash_entries);
3559 	if (ret)
3560 		return 0;
3561 
3562 	return 1;
3563 }
3564 __setup("thash_entries=", set_thash_entries);
3565 
3566 void tcp_init_mem(struct net *net)
3567 {
3568 	unsigned long limit = nr_free_buffer_pages() / 8;
3569 	limit = max(limit, 128UL);
3570 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3571 	net->ipv4.sysctl_tcp_mem[1] = limit;
3572 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3573 }
3574 
3575 void __init tcp_init(void)
3576 {
3577 	struct sk_buff *skb = NULL;
3578 	unsigned long limit;
3579 	int max_rshare, max_wshare, cnt;
3580 	unsigned int i;
3581 	unsigned long jiffy = jiffies;
3582 
3583 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3584 
3585 	percpu_counter_init(&tcp_sockets_allocated, 0);
3586 	percpu_counter_init(&tcp_orphan_count, 0);
3587 	tcp_hashinfo.bind_bucket_cachep =
3588 		kmem_cache_create("tcp_bind_bucket",
3589 				  sizeof(struct inet_bind_bucket), 0,
3590 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3591 
3592 	/* Size and allocate the main established and bind bucket
3593 	 * hash tables.
3594 	 *
3595 	 * The methodology is similar to that of the buffer cache.
3596 	 */
3597 	tcp_hashinfo.ehash =
3598 		alloc_large_system_hash("TCP established",
3599 					sizeof(struct inet_ehash_bucket),
3600 					thash_entries,
3601 					17, /* one slot per 128 KB of memory */
3602 					0,
3603 					NULL,
3604 					&tcp_hashinfo.ehash_mask,
3605 					0,
3606 					thash_entries ? 0 : 512 * 1024);
3607 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3608 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3609 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3610 	}
3611 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3612 		panic("TCP: failed to alloc ehash_locks");
3613 	tcp_hashinfo.bhash =
3614 		alloc_large_system_hash("TCP bind",
3615 					sizeof(struct inet_bind_hashbucket),
3616 					tcp_hashinfo.ehash_mask + 1,
3617 					17, /* one slot per 128 KB of memory */
3618 					0,
3619 					&tcp_hashinfo.bhash_size,
3620 					NULL,
3621 					0,
3622 					64 * 1024);
3623 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3624 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3625 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3626 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3627 	}
3628 
3629 
3630 	cnt = tcp_hashinfo.ehash_mask + 1;
3631 
3632 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3633 	sysctl_tcp_max_orphans = cnt / 2;
3634 	sysctl_max_syn_backlog = max(128, cnt / 256);
3635 
3636 	tcp_init_mem(&init_net);
3637 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3638 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3639 	max_wshare = min(4UL*1024*1024, limit);
3640 	max_rshare = min(6UL*1024*1024, limit);
3641 
3642 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3643 	sysctl_tcp_wmem[1] = 16*1024;
3644 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3645 
3646 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3647 	sysctl_tcp_rmem[1] = 87380;
3648 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3649 
3650 	pr_info("Hash tables configured (established %u bind %u)\n",
3651 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3652 
3653 	tcp_metrics_init();
3654 
3655 	tcp_register_congestion_control(&tcp_reno);
3656 
3657 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3658 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3659 	tcp_secret_one.expires = jiffy; /* past due */
3660 	tcp_secret_two.expires = jiffy; /* past due */
3661 	tcp_secret_generating = &tcp_secret_one;
3662 	tcp_secret_primary = &tcp_secret_one;
3663 	tcp_secret_retiring = &tcp_secret_two;
3664 	tcp_secret_secondary = &tcp_secret_two;
3665 	tcp_tasklet_init();
3666 }
3667