xref: /openbmc/linux/net/ipv4/tcp.c (revision cd5d5810)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290 
291 int sysctl_tcp_wmem[3] __read_mostly;
292 int sysctl_tcp_rmem[3] __read_mostly;
293 
294 EXPORT_SYMBOL(sysctl_tcp_rmem);
295 EXPORT_SYMBOL(sysctl_tcp_wmem);
296 
297 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
298 EXPORT_SYMBOL(tcp_memory_allocated);
299 
300 /*
301  * Current number of TCP sockets.
302  */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305 
306 /*
307  * TCP splice context
308  */
309 struct tcp_splice_state {
310 	struct pipe_inode_info *pipe;
311 	size_t len;
312 	unsigned int flags;
313 };
314 
315 /*
316  * Pressure flag: try to collapse.
317  * Technical note: it is used by multiple contexts non atomically.
318  * All the __sk_mem_schedule() is of this nature: accounting
319  * is strict, actions are advisory and have some latency.
320  */
321 int tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL(tcp_memory_pressure);
323 
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 	if (!tcp_memory_pressure) {
327 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
328 		tcp_memory_pressure = 1;
329 	}
330 }
331 EXPORT_SYMBOL(tcp_enter_memory_pressure);
332 
333 /* Convert seconds to retransmits based on initial and max timeout */
334 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
335 {
336 	u8 res = 0;
337 
338 	if (seconds > 0) {
339 		int period = timeout;
340 
341 		res = 1;
342 		while (seconds > period && res < 255) {
343 			res++;
344 			timeout <<= 1;
345 			if (timeout > rto_max)
346 				timeout = rto_max;
347 			period += timeout;
348 		}
349 	}
350 	return res;
351 }
352 
353 /* Convert retransmits to seconds based on initial and max timeout */
354 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
355 {
356 	int period = 0;
357 
358 	if (retrans > 0) {
359 		period = timeout;
360 		while (--retrans) {
361 			timeout <<= 1;
362 			if (timeout > rto_max)
363 				timeout = rto_max;
364 			period += timeout;
365 		}
366 	}
367 	return period;
368 }
369 
370 /* Address-family independent initialization for a tcp_sock.
371  *
372  * NOTE: A lot of things set to zero explicitly by call to
373  *       sk_alloc() so need not be done here.
374  */
375 void tcp_init_sock(struct sock *sk)
376 {
377 	struct inet_connection_sock *icsk = inet_csk(sk);
378 	struct tcp_sock *tp = tcp_sk(sk);
379 
380 	skb_queue_head_init(&tp->out_of_order_queue);
381 	tcp_init_xmit_timers(sk);
382 	tcp_prequeue_init(tp);
383 	INIT_LIST_HEAD(&tp->tsq_node);
384 
385 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
386 	tp->mdev = TCP_TIMEOUT_INIT;
387 
388 	/* So many TCP implementations out there (incorrectly) count the
389 	 * initial SYN frame in their delayed-ACK and congestion control
390 	 * algorithms that we must have the following bandaid to talk
391 	 * efficiently to them.  -DaveM
392 	 */
393 	tp->snd_cwnd = TCP_INIT_CWND;
394 
395 	/* See draft-stevens-tcpca-spec-01 for discussion of the
396 	 * initialization of these values.
397 	 */
398 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
399 	tp->snd_cwnd_clamp = ~0;
400 	tp->mss_cache = TCP_MSS_DEFAULT;
401 
402 	tp->reordering = sysctl_tcp_reordering;
403 	tcp_enable_early_retrans(tp);
404 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
405 
406 	tp->tsoffset = 0;
407 
408 	sk->sk_state = TCP_CLOSE;
409 
410 	sk->sk_write_space = sk_stream_write_space;
411 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
412 
413 	icsk->icsk_sync_mss = tcp_sync_mss;
414 
415 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
416 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
417 
418 	local_bh_disable();
419 	sock_update_memcg(sk);
420 	sk_sockets_allocated_inc(sk);
421 	local_bh_enable();
422 }
423 EXPORT_SYMBOL(tcp_init_sock);
424 
425 /*
426  *	Wait for a TCP event.
427  *
428  *	Note that we don't need to lock the socket, as the upper poll layers
429  *	take care of normal races (between the test and the event) and we don't
430  *	go look at any of the socket buffers directly.
431  */
432 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
433 {
434 	unsigned int mask;
435 	struct sock *sk = sock->sk;
436 	const struct tcp_sock *tp = tcp_sk(sk);
437 
438 	sock_rps_record_flow(sk);
439 
440 	sock_poll_wait(file, sk_sleep(sk), wait);
441 	if (sk->sk_state == TCP_LISTEN)
442 		return inet_csk_listen_poll(sk);
443 
444 	/* Socket is not locked. We are protected from async events
445 	 * by poll logic and correct handling of state changes
446 	 * made by other threads is impossible in any case.
447 	 */
448 
449 	mask = 0;
450 
451 	/*
452 	 * POLLHUP is certainly not done right. But poll() doesn't
453 	 * have a notion of HUP in just one direction, and for a
454 	 * socket the read side is more interesting.
455 	 *
456 	 * Some poll() documentation says that POLLHUP is incompatible
457 	 * with the POLLOUT/POLLWR flags, so somebody should check this
458 	 * all. But careful, it tends to be safer to return too many
459 	 * bits than too few, and you can easily break real applications
460 	 * if you don't tell them that something has hung up!
461 	 *
462 	 * Check-me.
463 	 *
464 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
465 	 * our fs/select.c). It means that after we received EOF,
466 	 * poll always returns immediately, making impossible poll() on write()
467 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
468 	 * if and only if shutdown has been made in both directions.
469 	 * Actually, it is interesting to look how Solaris and DUX
470 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
471 	 * then we could set it on SND_SHUTDOWN. BTW examples given
472 	 * in Stevens' books assume exactly this behaviour, it explains
473 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
474 	 *
475 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
476 	 * blocking on fresh not-connected or disconnected socket. --ANK
477 	 */
478 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
479 		mask |= POLLHUP;
480 	if (sk->sk_shutdown & RCV_SHUTDOWN)
481 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
482 
483 	/* Connected or passive Fast Open socket? */
484 	if (sk->sk_state != TCP_SYN_SENT &&
485 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
486 		int target = sock_rcvlowat(sk, 0, INT_MAX);
487 
488 		if (tp->urg_seq == tp->copied_seq &&
489 		    !sock_flag(sk, SOCK_URGINLINE) &&
490 		    tp->urg_data)
491 			target++;
492 
493 		/* Potential race condition. If read of tp below will
494 		 * escape above sk->sk_state, we can be illegally awaken
495 		 * in SYN_* states. */
496 		if (tp->rcv_nxt - tp->copied_seq >= target)
497 			mask |= POLLIN | POLLRDNORM;
498 
499 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
500 			if (sk_stream_is_writeable(sk)) {
501 				mask |= POLLOUT | POLLWRNORM;
502 			} else {  /* send SIGIO later */
503 				set_bit(SOCK_ASYNC_NOSPACE,
504 					&sk->sk_socket->flags);
505 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
506 
507 				/* Race breaker. If space is freed after
508 				 * wspace test but before the flags are set,
509 				 * IO signal will be lost.
510 				 */
511 				if (sk_stream_is_writeable(sk))
512 					mask |= POLLOUT | POLLWRNORM;
513 			}
514 		} else
515 			mask |= POLLOUT | POLLWRNORM;
516 
517 		if (tp->urg_data & TCP_URG_VALID)
518 			mask |= POLLPRI;
519 	}
520 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
521 	smp_rmb();
522 	if (sk->sk_err)
523 		mask |= POLLERR;
524 
525 	return mask;
526 }
527 EXPORT_SYMBOL(tcp_poll);
528 
529 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
530 {
531 	struct tcp_sock *tp = tcp_sk(sk);
532 	int answ;
533 	bool slow;
534 
535 	switch (cmd) {
536 	case SIOCINQ:
537 		if (sk->sk_state == TCP_LISTEN)
538 			return -EINVAL;
539 
540 		slow = lock_sock_fast(sk);
541 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
542 			answ = 0;
543 		else if (sock_flag(sk, SOCK_URGINLINE) ||
544 			 !tp->urg_data ||
545 			 before(tp->urg_seq, tp->copied_seq) ||
546 			 !before(tp->urg_seq, tp->rcv_nxt)) {
547 
548 			answ = tp->rcv_nxt - tp->copied_seq;
549 
550 			/* Subtract 1, if FIN was received */
551 			if (answ && sock_flag(sk, SOCK_DONE))
552 				answ--;
553 		} else
554 			answ = tp->urg_seq - tp->copied_seq;
555 		unlock_sock_fast(sk, slow);
556 		break;
557 	case SIOCATMARK:
558 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
559 		break;
560 	case SIOCOUTQ:
561 		if (sk->sk_state == TCP_LISTEN)
562 			return -EINVAL;
563 
564 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
565 			answ = 0;
566 		else
567 			answ = tp->write_seq - tp->snd_una;
568 		break;
569 	case SIOCOUTQNSD:
570 		if (sk->sk_state == TCP_LISTEN)
571 			return -EINVAL;
572 
573 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
574 			answ = 0;
575 		else
576 			answ = tp->write_seq - tp->snd_nxt;
577 		break;
578 	default:
579 		return -ENOIOCTLCMD;
580 	}
581 
582 	return put_user(answ, (int __user *)arg);
583 }
584 EXPORT_SYMBOL(tcp_ioctl);
585 
586 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
587 {
588 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
589 	tp->pushed_seq = tp->write_seq;
590 }
591 
592 static inline bool forced_push(const struct tcp_sock *tp)
593 {
594 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
595 }
596 
597 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
598 {
599 	struct tcp_sock *tp = tcp_sk(sk);
600 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
601 
602 	skb->csum    = 0;
603 	tcb->seq     = tcb->end_seq = tp->write_seq;
604 	tcb->tcp_flags = TCPHDR_ACK;
605 	tcb->sacked  = 0;
606 	skb_header_release(skb);
607 	tcp_add_write_queue_tail(sk, skb);
608 	sk->sk_wmem_queued += skb->truesize;
609 	sk_mem_charge(sk, skb->truesize);
610 	if (tp->nonagle & TCP_NAGLE_PUSH)
611 		tp->nonagle &= ~TCP_NAGLE_PUSH;
612 }
613 
614 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
615 {
616 	if (flags & MSG_OOB)
617 		tp->snd_up = tp->write_seq;
618 }
619 
620 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
621 			    int nonagle)
622 {
623 	if (tcp_send_head(sk)) {
624 		struct tcp_sock *tp = tcp_sk(sk);
625 
626 		if (!(flags & MSG_MORE) || forced_push(tp))
627 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
628 
629 		tcp_mark_urg(tp, flags);
630 		__tcp_push_pending_frames(sk, mss_now,
631 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
632 	}
633 }
634 
635 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
636 				unsigned int offset, size_t len)
637 {
638 	struct tcp_splice_state *tss = rd_desc->arg.data;
639 	int ret;
640 
641 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
642 			      tss->flags);
643 	if (ret > 0)
644 		rd_desc->count -= ret;
645 	return ret;
646 }
647 
648 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
649 {
650 	/* Store TCP splice context information in read_descriptor_t. */
651 	read_descriptor_t rd_desc = {
652 		.arg.data = tss,
653 		.count	  = tss->len,
654 	};
655 
656 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
657 }
658 
659 /**
660  *  tcp_splice_read - splice data from TCP socket to a pipe
661  * @sock:	socket to splice from
662  * @ppos:	position (not valid)
663  * @pipe:	pipe to splice to
664  * @len:	number of bytes to splice
665  * @flags:	splice modifier flags
666  *
667  * Description:
668  *    Will read pages from given socket and fill them into a pipe.
669  *
670  **/
671 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
672 			struct pipe_inode_info *pipe, size_t len,
673 			unsigned int flags)
674 {
675 	struct sock *sk = sock->sk;
676 	struct tcp_splice_state tss = {
677 		.pipe = pipe,
678 		.len = len,
679 		.flags = flags,
680 	};
681 	long timeo;
682 	ssize_t spliced;
683 	int ret;
684 
685 	sock_rps_record_flow(sk);
686 	/*
687 	 * We can't seek on a socket input
688 	 */
689 	if (unlikely(*ppos))
690 		return -ESPIPE;
691 
692 	ret = spliced = 0;
693 
694 	lock_sock(sk);
695 
696 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
697 	while (tss.len) {
698 		ret = __tcp_splice_read(sk, &tss);
699 		if (ret < 0)
700 			break;
701 		else if (!ret) {
702 			if (spliced)
703 				break;
704 			if (sock_flag(sk, SOCK_DONE))
705 				break;
706 			if (sk->sk_err) {
707 				ret = sock_error(sk);
708 				break;
709 			}
710 			if (sk->sk_shutdown & RCV_SHUTDOWN)
711 				break;
712 			if (sk->sk_state == TCP_CLOSE) {
713 				/*
714 				 * This occurs when user tries to read
715 				 * from never connected socket.
716 				 */
717 				if (!sock_flag(sk, SOCK_DONE))
718 					ret = -ENOTCONN;
719 				break;
720 			}
721 			if (!timeo) {
722 				ret = -EAGAIN;
723 				break;
724 			}
725 			sk_wait_data(sk, &timeo);
726 			if (signal_pending(current)) {
727 				ret = sock_intr_errno(timeo);
728 				break;
729 			}
730 			continue;
731 		}
732 		tss.len -= ret;
733 		spliced += ret;
734 
735 		if (!timeo)
736 			break;
737 		release_sock(sk);
738 		lock_sock(sk);
739 
740 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
741 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
742 		    signal_pending(current))
743 			break;
744 	}
745 
746 	release_sock(sk);
747 
748 	if (spliced)
749 		return spliced;
750 
751 	return ret;
752 }
753 EXPORT_SYMBOL(tcp_splice_read);
754 
755 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
756 {
757 	struct sk_buff *skb;
758 
759 	/* The TCP header must be at least 32-bit aligned.  */
760 	size = ALIGN(size, 4);
761 
762 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
763 	if (skb) {
764 		if (sk_wmem_schedule(sk, skb->truesize)) {
765 			skb_reserve(skb, sk->sk_prot->max_header);
766 			/*
767 			 * Make sure that we have exactly size bytes
768 			 * available to the caller, no more, no less.
769 			 */
770 			skb->reserved_tailroom = skb->end - skb->tail - size;
771 			return skb;
772 		}
773 		__kfree_skb(skb);
774 	} else {
775 		sk->sk_prot->enter_memory_pressure(sk);
776 		sk_stream_moderate_sndbuf(sk);
777 	}
778 	return NULL;
779 }
780 
781 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
782 				       int large_allowed)
783 {
784 	struct tcp_sock *tp = tcp_sk(sk);
785 	u32 xmit_size_goal, old_size_goal;
786 
787 	xmit_size_goal = mss_now;
788 
789 	if (large_allowed && sk_can_gso(sk)) {
790 		u32 gso_size, hlen;
791 
792 		/* Maybe we should/could use sk->sk_prot->max_header here ? */
793 		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
794 		       inet_csk(sk)->icsk_ext_hdr_len +
795 		       tp->tcp_header_len;
796 
797 		/* Goal is to send at least one packet per ms,
798 		 * not one big TSO packet every 100 ms.
799 		 * This preserves ACK clocking and is consistent
800 		 * with tcp_tso_should_defer() heuristic.
801 		 */
802 		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
803 		gso_size = max_t(u32, gso_size,
804 				 sysctl_tcp_min_tso_segs * mss_now);
805 
806 		xmit_size_goal = min_t(u32, gso_size,
807 				       sk->sk_gso_max_size - 1 - hlen);
808 
809 		/* TSQ : try to have at least two segments in flight
810 		 * (one in NIC TX ring, another in Qdisc)
811 		 */
812 		xmit_size_goal = min_t(u32, xmit_size_goal,
813 				       sysctl_tcp_limit_output_bytes >> 1);
814 
815 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
816 
817 		/* We try hard to avoid divides here */
818 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
819 
820 		if (likely(old_size_goal <= xmit_size_goal &&
821 			   old_size_goal + mss_now > xmit_size_goal)) {
822 			xmit_size_goal = old_size_goal;
823 		} else {
824 			tp->xmit_size_goal_segs =
825 				min_t(u16, xmit_size_goal / mss_now,
826 				      sk->sk_gso_max_segs);
827 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
828 		}
829 	}
830 
831 	return max(xmit_size_goal, mss_now);
832 }
833 
834 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
835 {
836 	int mss_now;
837 
838 	mss_now = tcp_current_mss(sk);
839 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
840 
841 	return mss_now;
842 }
843 
844 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
845 				size_t size, int flags)
846 {
847 	struct tcp_sock *tp = tcp_sk(sk);
848 	int mss_now, size_goal;
849 	int err;
850 	ssize_t copied;
851 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
852 
853 	/* Wait for a connection to finish. One exception is TCP Fast Open
854 	 * (passive side) where data is allowed to be sent before a connection
855 	 * is fully established.
856 	 */
857 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
858 	    !tcp_passive_fastopen(sk)) {
859 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
860 			goto out_err;
861 	}
862 
863 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
864 
865 	mss_now = tcp_send_mss(sk, &size_goal, flags);
866 	copied = 0;
867 
868 	err = -EPIPE;
869 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
870 		goto out_err;
871 
872 	while (size > 0) {
873 		struct sk_buff *skb = tcp_write_queue_tail(sk);
874 		int copy, i;
875 		bool can_coalesce;
876 
877 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
878 new_segment:
879 			if (!sk_stream_memory_free(sk))
880 				goto wait_for_sndbuf;
881 
882 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
883 			if (!skb)
884 				goto wait_for_memory;
885 
886 			skb_entail(sk, skb);
887 			copy = size_goal;
888 		}
889 
890 		if (copy > size)
891 			copy = size;
892 
893 		i = skb_shinfo(skb)->nr_frags;
894 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
895 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
896 			tcp_mark_push(tp, skb);
897 			goto new_segment;
898 		}
899 		if (!sk_wmem_schedule(sk, copy))
900 			goto wait_for_memory;
901 
902 		if (can_coalesce) {
903 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
904 		} else {
905 			get_page(page);
906 			skb_fill_page_desc(skb, i, page, offset, copy);
907 		}
908 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
909 
910 		skb->len += copy;
911 		skb->data_len += copy;
912 		skb->truesize += copy;
913 		sk->sk_wmem_queued += copy;
914 		sk_mem_charge(sk, copy);
915 		skb->ip_summed = CHECKSUM_PARTIAL;
916 		tp->write_seq += copy;
917 		TCP_SKB_CB(skb)->end_seq += copy;
918 		skb_shinfo(skb)->gso_segs = 0;
919 
920 		if (!copied)
921 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
922 
923 		copied += copy;
924 		offset += copy;
925 		if (!(size -= copy))
926 			goto out;
927 
928 		if (skb->len < size_goal || (flags & MSG_OOB))
929 			continue;
930 
931 		if (forced_push(tp)) {
932 			tcp_mark_push(tp, skb);
933 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
934 		} else if (skb == tcp_send_head(sk))
935 			tcp_push_one(sk, mss_now);
936 		continue;
937 
938 wait_for_sndbuf:
939 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
940 wait_for_memory:
941 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
942 
943 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
944 			goto do_error;
945 
946 		mss_now = tcp_send_mss(sk, &size_goal, flags);
947 	}
948 
949 out:
950 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
951 		tcp_push(sk, flags, mss_now, tp->nonagle);
952 	return copied;
953 
954 do_error:
955 	if (copied)
956 		goto out;
957 out_err:
958 	return sk_stream_error(sk, flags, err);
959 }
960 
961 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
962 		 size_t size, int flags)
963 {
964 	ssize_t res;
965 
966 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
967 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
968 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
969 					flags);
970 
971 	lock_sock(sk);
972 	res = do_tcp_sendpages(sk, page, offset, size, flags);
973 	release_sock(sk);
974 	return res;
975 }
976 EXPORT_SYMBOL(tcp_sendpage);
977 
978 static inline int select_size(const struct sock *sk, bool sg)
979 {
980 	const struct tcp_sock *tp = tcp_sk(sk);
981 	int tmp = tp->mss_cache;
982 
983 	if (sg) {
984 		if (sk_can_gso(sk)) {
985 			/* Small frames wont use a full page:
986 			 * Payload will immediately follow tcp header.
987 			 */
988 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
989 		} else {
990 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
991 
992 			if (tmp >= pgbreak &&
993 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
994 				tmp = pgbreak;
995 		}
996 	}
997 
998 	return tmp;
999 }
1000 
1001 void tcp_free_fastopen_req(struct tcp_sock *tp)
1002 {
1003 	if (tp->fastopen_req != NULL) {
1004 		kfree(tp->fastopen_req);
1005 		tp->fastopen_req = NULL;
1006 	}
1007 }
1008 
1009 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1010 {
1011 	struct tcp_sock *tp = tcp_sk(sk);
1012 	int err, flags;
1013 
1014 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1015 		return -EOPNOTSUPP;
1016 	if (tp->fastopen_req != NULL)
1017 		return -EALREADY; /* Another Fast Open is in progress */
1018 
1019 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1020 				   sk->sk_allocation);
1021 	if (unlikely(tp->fastopen_req == NULL))
1022 		return -ENOBUFS;
1023 	tp->fastopen_req->data = msg;
1024 
1025 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1026 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1027 				    msg->msg_namelen, flags);
1028 	*size = tp->fastopen_req->copied;
1029 	tcp_free_fastopen_req(tp);
1030 	return err;
1031 }
1032 
1033 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1034 		size_t size)
1035 {
1036 	struct iovec *iov;
1037 	struct tcp_sock *tp = tcp_sk(sk);
1038 	struct sk_buff *skb;
1039 	int iovlen, flags, err, copied = 0;
1040 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1041 	bool sg;
1042 	long timeo;
1043 
1044 	lock_sock(sk);
1045 
1046 	flags = msg->msg_flags;
1047 	if (flags & MSG_FASTOPEN) {
1048 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1049 		if (err == -EINPROGRESS && copied_syn > 0)
1050 			goto out;
1051 		else if (err)
1052 			goto out_err;
1053 		offset = copied_syn;
1054 	}
1055 
1056 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1057 
1058 	/* Wait for a connection to finish. One exception is TCP Fast Open
1059 	 * (passive side) where data is allowed to be sent before a connection
1060 	 * is fully established.
1061 	 */
1062 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1063 	    !tcp_passive_fastopen(sk)) {
1064 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1065 			goto do_error;
1066 	}
1067 
1068 	if (unlikely(tp->repair)) {
1069 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1070 			copied = tcp_send_rcvq(sk, msg, size);
1071 			goto out;
1072 		}
1073 
1074 		err = -EINVAL;
1075 		if (tp->repair_queue == TCP_NO_QUEUE)
1076 			goto out_err;
1077 
1078 		/* 'common' sending to sendq */
1079 	}
1080 
1081 	/* This should be in poll */
1082 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1083 
1084 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1085 
1086 	/* Ok commence sending. */
1087 	iovlen = msg->msg_iovlen;
1088 	iov = msg->msg_iov;
1089 	copied = 0;
1090 
1091 	err = -EPIPE;
1092 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1093 		goto out_err;
1094 
1095 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1096 
1097 	while (--iovlen >= 0) {
1098 		size_t seglen = iov->iov_len;
1099 		unsigned char __user *from = iov->iov_base;
1100 
1101 		iov++;
1102 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1103 			if (offset >= seglen) {
1104 				offset -= seglen;
1105 				continue;
1106 			}
1107 			seglen -= offset;
1108 			from += offset;
1109 			offset = 0;
1110 		}
1111 
1112 		while (seglen > 0) {
1113 			int copy = 0;
1114 			int max = size_goal;
1115 
1116 			skb = tcp_write_queue_tail(sk);
1117 			if (tcp_send_head(sk)) {
1118 				if (skb->ip_summed == CHECKSUM_NONE)
1119 					max = mss_now;
1120 				copy = max - skb->len;
1121 			}
1122 
1123 			if (copy <= 0) {
1124 new_segment:
1125 				/* Allocate new segment. If the interface is SG,
1126 				 * allocate skb fitting to single page.
1127 				 */
1128 				if (!sk_stream_memory_free(sk))
1129 					goto wait_for_sndbuf;
1130 
1131 				skb = sk_stream_alloc_skb(sk,
1132 							  select_size(sk, sg),
1133 							  sk->sk_allocation);
1134 				if (!skb)
1135 					goto wait_for_memory;
1136 
1137 				/*
1138 				 * All packets are restored as if they have
1139 				 * already been sent.
1140 				 */
1141 				if (tp->repair)
1142 					TCP_SKB_CB(skb)->when = tcp_time_stamp;
1143 
1144 				/*
1145 				 * Check whether we can use HW checksum.
1146 				 */
1147 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1148 					skb->ip_summed = CHECKSUM_PARTIAL;
1149 
1150 				skb_entail(sk, skb);
1151 				copy = size_goal;
1152 				max = size_goal;
1153 			}
1154 
1155 			/* Try to append data to the end of skb. */
1156 			if (copy > seglen)
1157 				copy = seglen;
1158 
1159 			/* Where to copy to? */
1160 			if (skb_availroom(skb) > 0) {
1161 				/* We have some space in skb head. Superb! */
1162 				copy = min_t(int, copy, skb_availroom(skb));
1163 				err = skb_add_data_nocache(sk, skb, from, copy);
1164 				if (err)
1165 					goto do_fault;
1166 			} else {
1167 				bool merge = true;
1168 				int i = skb_shinfo(skb)->nr_frags;
1169 				struct page_frag *pfrag = sk_page_frag(sk);
1170 
1171 				if (!sk_page_frag_refill(sk, pfrag))
1172 					goto wait_for_memory;
1173 
1174 				if (!skb_can_coalesce(skb, i, pfrag->page,
1175 						      pfrag->offset)) {
1176 					if (i == MAX_SKB_FRAGS || !sg) {
1177 						tcp_mark_push(tp, skb);
1178 						goto new_segment;
1179 					}
1180 					merge = false;
1181 				}
1182 
1183 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1184 
1185 				if (!sk_wmem_schedule(sk, copy))
1186 					goto wait_for_memory;
1187 
1188 				err = skb_copy_to_page_nocache(sk, from, skb,
1189 							       pfrag->page,
1190 							       pfrag->offset,
1191 							       copy);
1192 				if (err)
1193 					goto do_error;
1194 
1195 				/* Update the skb. */
1196 				if (merge) {
1197 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1198 				} else {
1199 					skb_fill_page_desc(skb, i, pfrag->page,
1200 							   pfrag->offset, copy);
1201 					get_page(pfrag->page);
1202 				}
1203 				pfrag->offset += copy;
1204 			}
1205 
1206 			if (!copied)
1207 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1208 
1209 			tp->write_seq += copy;
1210 			TCP_SKB_CB(skb)->end_seq += copy;
1211 			skb_shinfo(skb)->gso_segs = 0;
1212 
1213 			from += copy;
1214 			copied += copy;
1215 			if ((seglen -= copy) == 0 && iovlen == 0)
1216 				goto out;
1217 
1218 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1219 				continue;
1220 
1221 			if (forced_push(tp)) {
1222 				tcp_mark_push(tp, skb);
1223 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1224 			} else if (skb == tcp_send_head(sk))
1225 				tcp_push_one(sk, mss_now);
1226 			continue;
1227 
1228 wait_for_sndbuf:
1229 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1230 wait_for_memory:
1231 			if (copied)
1232 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1233 
1234 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1235 				goto do_error;
1236 
1237 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1238 		}
1239 	}
1240 
1241 out:
1242 	if (copied)
1243 		tcp_push(sk, flags, mss_now, tp->nonagle);
1244 	release_sock(sk);
1245 	return copied + copied_syn;
1246 
1247 do_fault:
1248 	if (!skb->len) {
1249 		tcp_unlink_write_queue(skb, sk);
1250 		/* It is the one place in all of TCP, except connection
1251 		 * reset, where we can be unlinking the send_head.
1252 		 */
1253 		tcp_check_send_head(sk, skb);
1254 		sk_wmem_free_skb(sk, skb);
1255 	}
1256 
1257 do_error:
1258 	if (copied + copied_syn)
1259 		goto out;
1260 out_err:
1261 	err = sk_stream_error(sk, flags, err);
1262 	release_sock(sk);
1263 	return err;
1264 }
1265 EXPORT_SYMBOL(tcp_sendmsg);
1266 
1267 /*
1268  *	Handle reading urgent data. BSD has very simple semantics for
1269  *	this, no blocking and very strange errors 8)
1270  */
1271 
1272 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1273 {
1274 	struct tcp_sock *tp = tcp_sk(sk);
1275 
1276 	/* No URG data to read. */
1277 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1278 	    tp->urg_data == TCP_URG_READ)
1279 		return -EINVAL;	/* Yes this is right ! */
1280 
1281 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1282 		return -ENOTCONN;
1283 
1284 	if (tp->urg_data & TCP_URG_VALID) {
1285 		int err = 0;
1286 		char c = tp->urg_data;
1287 
1288 		if (!(flags & MSG_PEEK))
1289 			tp->urg_data = TCP_URG_READ;
1290 
1291 		/* Read urgent data. */
1292 		msg->msg_flags |= MSG_OOB;
1293 
1294 		if (len > 0) {
1295 			if (!(flags & MSG_TRUNC))
1296 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1297 			len = 1;
1298 		} else
1299 			msg->msg_flags |= MSG_TRUNC;
1300 
1301 		return err ? -EFAULT : len;
1302 	}
1303 
1304 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1305 		return 0;
1306 
1307 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1308 	 * the available implementations agree in this case:
1309 	 * this call should never block, independent of the
1310 	 * blocking state of the socket.
1311 	 * Mike <pall@rz.uni-karlsruhe.de>
1312 	 */
1313 	return -EAGAIN;
1314 }
1315 
1316 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1317 {
1318 	struct sk_buff *skb;
1319 	int copied = 0, err = 0;
1320 
1321 	/* XXX -- need to support SO_PEEK_OFF */
1322 
1323 	skb_queue_walk(&sk->sk_write_queue, skb) {
1324 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1325 		if (err)
1326 			break;
1327 
1328 		copied += skb->len;
1329 	}
1330 
1331 	return err ?: copied;
1332 }
1333 
1334 /* Clean up the receive buffer for full frames taken by the user,
1335  * then send an ACK if necessary.  COPIED is the number of bytes
1336  * tcp_recvmsg has given to the user so far, it speeds up the
1337  * calculation of whether or not we must ACK for the sake of
1338  * a window update.
1339  */
1340 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1341 {
1342 	struct tcp_sock *tp = tcp_sk(sk);
1343 	bool time_to_ack = false;
1344 
1345 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1346 
1347 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1348 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1349 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1350 
1351 	if (inet_csk_ack_scheduled(sk)) {
1352 		const struct inet_connection_sock *icsk = inet_csk(sk);
1353 		   /* Delayed ACKs frequently hit locked sockets during bulk
1354 		    * receive. */
1355 		if (icsk->icsk_ack.blocked ||
1356 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1357 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1358 		    /*
1359 		     * If this read emptied read buffer, we send ACK, if
1360 		     * connection is not bidirectional, user drained
1361 		     * receive buffer and there was a small segment
1362 		     * in queue.
1363 		     */
1364 		    (copied > 0 &&
1365 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1366 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1367 		       !icsk->icsk_ack.pingpong)) &&
1368 		      !atomic_read(&sk->sk_rmem_alloc)))
1369 			time_to_ack = true;
1370 	}
1371 
1372 	/* We send an ACK if we can now advertise a non-zero window
1373 	 * which has been raised "significantly".
1374 	 *
1375 	 * Even if window raised up to infinity, do not send window open ACK
1376 	 * in states, where we will not receive more. It is useless.
1377 	 */
1378 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1379 		__u32 rcv_window_now = tcp_receive_window(tp);
1380 
1381 		/* Optimize, __tcp_select_window() is not cheap. */
1382 		if (2*rcv_window_now <= tp->window_clamp) {
1383 			__u32 new_window = __tcp_select_window(sk);
1384 
1385 			/* Send ACK now, if this read freed lots of space
1386 			 * in our buffer. Certainly, new_window is new window.
1387 			 * We can advertise it now, if it is not less than current one.
1388 			 * "Lots" means "at least twice" here.
1389 			 */
1390 			if (new_window && new_window >= 2 * rcv_window_now)
1391 				time_to_ack = true;
1392 		}
1393 	}
1394 	if (time_to_ack)
1395 		tcp_send_ack(sk);
1396 }
1397 
1398 static void tcp_prequeue_process(struct sock *sk)
1399 {
1400 	struct sk_buff *skb;
1401 	struct tcp_sock *tp = tcp_sk(sk);
1402 
1403 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1404 
1405 	/* RX process wants to run with disabled BHs, though it is not
1406 	 * necessary */
1407 	local_bh_disable();
1408 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1409 		sk_backlog_rcv(sk, skb);
1410 	local_bh_enable();
1411 
1412 	/* Clear memory counter. */
1413 	tp->ucopy.memory = 0;
1414 }
1415 
1416 #ifdef CONFIG_NET_DMA
1417 static void tcp_service_net_dma(struct sock *sk, bool wait)
1418 {
1419 	dma_cookie_t done, used;
1420 	dma_cookie_t last_issued;
1421 	struct tcp_sock *tp = tcp_sk(sk);
1422 
1423 	if (!tp->ucopy.dma_chan)
1424 		return;
1425 
1426 	last_issued = tp->ucopy.dma_cookie;
1427 	dma_async_issue_pending(tp->ucopy.dma_chan);
1428 
1429 	do {
1430 		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1431 					      last_issued, &done,
1432 					      &used) == DMA_SUCCESS) {
1433 			/* Safe to free early-copied skbs now */
1434 			__skb_queue_purge(&sk->sk_async_wait_queue);
1435 			break;
1436 		} else {
1437 			struct sk_buff *skb;
1438 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1439 			       (dma_async_is_complete(skb->dma_cookie, done,
1440 						      used) == DMA_SUCCESS)) {
1441 				__skb_dequeue(&sk->sk_async_wait_queue);
1442 				kfree_skb(skb);
1443 			}
1444 		}
1445 	} while (wait);
1446 }
1447 #endif
1448 
1449 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1450 {
1451 	struct sk_buff *skb;
1452 	u32 offset;
1453 
1454 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1455 		offset = seq - TCP_SKB_CB(skb)->seq;
1456 		if (tcp_hdr(skb)->syn)
1457 			offset--;
1458 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1459 			*off = offset;
1460 			return skb;
1461 		}
1462 		/* This looks weird, but this can happen if TCP collapsing
1463 		 * splitted a fat GRO packet, while we released socket lock
1464 		 * in skb_splice_bits()
1465 		 */
1466 		sk_eat_skb(sk, skb, false);
1467 	}
1468 	return NULL;
1469 }
1470 
1471 /*
1472  * This routine provides an alternative to tcp_recvmsg() for routines
1473  * that would like to handle copying from skbuffs directly in 'sendfile'
1474  * fashion.
1475  * Note:
1476  *	- It is assumed that the socket was locked by the caller.
1477  *	- The routine does not block.
1478  *	- At present, there is no support for reading OOB data
1479  *	  or for 'peeking' the socket using this routine
1480  *	  (although both would be easy to implement).
1481  */
1482 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1483 		  sk_read_actor_t recv_actor)
1484 {
1485 	struct sk_buff *skb;
1486 	struct tcp_sock *tp = tcp_sk(sk);
1487 	u32 seq = tp->copied_seq;
1488 	u32 offset;
1489 	int copied = 0;
1490 
1491 	if (sk->sk_state == TCP_LISTEN)
1492 		return -ENOTCONN;
1493 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1494 		if (offset < skb->len) {
1495 			int used;
1496 			size_t len;
1497 
1498 			len = skb->len - offset;
1499 			/* Stop reading if we hit a patch of urgent data */
1500 			if (tp->urg_data) {
1501 				u32 urg_offset = tp->urg_seq - seq;
1502 				if (urg_offset < len)
1503 					len = urg_offset;
1504 				if (!len)
1505 					break;
1506 			}
1507 			used = recv_actor(desc, skb, offset, len);
1508 			if (used <= 0) {
1509 				if (!copied)
1510 					copied = used;
1511 				break;
1512 			} else if (used <= len) {
1513 				seq += used;
1514 				copied += used;
1515 				offset += used;
1516 			}
1517 			/* If recv_actor drops the lock (e.g. TCP splice
1518 			 * receive) the skb pointer might be invalid when
1519 			 * getting here: tcp_collapse might have deleted it
1520 			 * while aggregating skbs from the socket queue.
1521 			 */
1522 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1523 			if (!skb)
1524 				break;
1525 			/* TCP coalescing might have appended data to the skb.
1526 			 * Try to splice more frags
1527 			 */
1528 			if (offset + 1 != skb->len)
1529 				continue;
1530 		}
1531 		if (tcp_hdr(skb)->fin) {
1532 			sk_eat_skb(sk, skb, false);
1533 			++seq;
1534 			break;
1535 		}
1536 		sk_eat_skb(sk, skb, false);
1537 		if (!desc->count)
1538 			break;
1539 		tp->copied_seq = seq;
1540 	}
1541 	tp->copied_seq = seq;
1542 
1543 	tcp_rcv_space_adjust(sk);
1544 
1545 	/* Clean up data we have read: This will do ACK frames. */
1546 	if (copied > 0) {
1547 		tcp_recv_skb(sk, seq, &offset);
1548 		tcp_cleanup_rbuf(sk, copied);
1549 	}
1550 	return copied;
1551 }
1552 EXPORT_SYMBOL(tcp_read_sock);
1553 
1554 /*
1555  *	This routine copies from a sock struct into the user buffer.
1556  *
1557  *	Technical note: in 2.3 we work on _locked_ socket, so that
1558  *	tricks with *seq access order and skb->users are not required.
1559  *	Probably, code can be easily improved even more.
1560  */
1561 
1562 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1563 		size_t len, int nonblock, int flags, int *addr_len)
1564 {
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 	int copied = 0;
1567 	u32 peek_seq;
1568 	u32 *seq;
1569 	unsigned long used;
1570 	int err;
1571 	int target;		/* Read at least this many bytes */
1572 	long timeo;
1573 	struct task_struct *user_recv = NULL;
1574 	bool copied_early = false;
1575 	struct sk_buff *skb;
1576 	u32 urg_hole = 0;
1577 
1578 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1579 	    (sk->sk_state == TCP_ESTABLISHED))
1580 		sk_busy_loop(sk, nonblock);
1581 
1582 	lock_sock(sk);
1583 
1584 	err = -ENOTCONN;
1585 	if (sk->sk_state == TCP_LISTEN)
1586 		goto out;
1587 
1588 	timeo = sock_rcvtimeo(sk, nonblock);
1589 
1590 	/* Urgent data needs to be handled specially. */
1591 	if (flags & MSG_OOB)
1592 		goto recv_urg;
1593 
1594 	if (unlikely(tp->repair)) {
1595 		err = -EPERM;
1596 		if (!(flags & MSG_PEEK))
1597 			goto out;
1598 
1599 		if (tp->repair_queue == TCP_SEND_QUEUE)
1600 			goto recv_sndq;
1601 
1602 		err = -EINVAL;
1603 		if (tp->repair_queue == TCP_NO_QUEUE)
1604 			goto out;
1605 
1606 		/* 'common' recv queue MSG_PEEK-ing */
1607 	}
1608 
1609 	seq = &tp->copied_seq;
1610 	if (flags & MSG_PEEK) {
1611 		peek_seq = tp->copied_seq;
1612 		seq = &peek_seq;
1613 	}
1614 
1615 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1616 
1617 #ifdef CONFIG_NET_DMA
1618 	tp->ucopy.dma_chan = NULL;
1619 	preempt_disable();
1620 	skb = skb_peek_tail(&sk->sk_receive_queue);
1621 	{
1622 		int available = 0;
1623 
1624 		if (skb)
1625 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1626 		if ((available < target) &&
1627 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1628 		    !sysctl_tcp_low_latency &&
1629 		    net_dma_find_channel()) {
1630 			preempt_enable_no_resched();
1631 			tp->ucopy.pinned_list =
1632 					dma_pin_iovec_pages(msg->msg_iov, len);
1633 		} else {
1634 			preempt_enable_no_resched();
1635 		}
1636 	}
1637 #endif
1638 
1639 	do {
1640 		u32 offset;
1641 
1642 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1643 		if (tp->urg_data && tp->urg_seq == *seq) {
1644 			if (copied)
1645 				break;
1646 			if (signal_pending(current)) {
1647 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1648 				break;
1649 			}
1650 		}
1651 
1652 		/* Next get a buffer. */
1653 
1654 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1655 			/* Now that we have two receive queues this
1656 			 * shouldn't happen.
1657 			 */
1658 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1659 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1660 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1661 				 flags))
1662 				break;
1663 
1664 			offset = *seq - TCP_SKB_CB(skb)->seq;
1665 			if (tcp_hdr(skb)->syn)
1666 				offset--;
1667 			if (offset < skb->len)
1668 				goto found_ok_skb;
1669 			if (tcp_hdr(skb)->fin)
1670 				goto found_fin_ok;
1671 			WARN(!(flags & MSG_PEEK),
1672 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1673 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1674 		}
1675 
1676 		/* Well, if we have backlog, try to process it now yet. */
1677 
1678 		if (copied >= target && !sk->sk_backlog.tail)
1679 			break;
1680 
1681 		if (copied) {
1682 			if (sk->sk_err ||
1683 			    sk->sk_state == TCP_CLOSE ||
1684 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1685 			    !timeo ||
1686 			    signal_pending(current))
1687 				break;
1688 		} else {
1689 			if (sock_flag(sk, SOCK_DONE))
1690 				break;
1691 
1692 			if (sk->sk_err) {
1693 				copied = sock_error(sk);
1694 				break;
1695 			}
1696 
1697 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1698 				break;
1699 
1700 			if (sk->sk_state == TCP_CLOSE) {
1701 				if (!sock_flag(sk, SOCK_DONE)) {
1702 					/* This occurs when user tries to read
1703 					 * from never connected socket.
1704 					 */
1705 					copied = -ENOTCONN;
1706 					break;
1707 				}
1708 				break;
1709 			}
1710 
1711 			if (!timeo) {
1712 				copied = -EAGAIN;
1713 				break;
1714 			}
1715 
1716 			if (signal_pending(current)) {
1717 				copied = sock_intr_errno(timeo);
1718 				break;
1719 			}
1720 		}
1721 
1722 		tcp_cleanup_rbuf(sk, copied);
1723 
1724 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1725 			/* Install new reader */
1726 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1727 				user_recv = current;
1728 				tp->ucopy.task = user_recv;
1729 				tp->ucopy.iov = msg->msg_iov;
1730 			}
1731 
1732 			tp->ucopy.len = len;
1733 
1734 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1735 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1736 
1737 			/* Ugly... If prequeue is not empty, we have to
1738 			 * process it before releasing socket, otherwise
1739 			 * order will be broken at second iteration.
1740 			 * More elegant solution is required!!!
1741 			 *
1742 			 * Look: we have the following (pseudo)queues:
1743 			 *
1744 			 * 1. packets in flight
1745 			 * 2. backlog
1746 			 * 3. prequeue
1747 			 * 4. receive_queue
1748 			 *
1749 			 * Each queue can be processed only if the next ones
1750 			 * are empty. At this point we have empty receive_queue.
1751 			 * But prequeue _can_ be not empty after 2nd iteration,
1752 			 * when we jumped to start of loop because backlog
1753 			 * processing added something to receive_queue.
1754 			 * We cannot release_sock(), because backlog contains
1755 			 * packets arrived _after_ prequeued ones.
1756 			 *
1757 			 * Shortly, algorithm is clear --- to process all
1758 			 * the queues in order. We could make it more directly,
1759 			 * requeueing packets from backlog to prequeue, if
1760 			 * is not empty. It is more elegant, but eats cycles,
1761 			 * unfortunately.
1762 			 */
1763 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1764 				goto do_prequeue;
1765 
1766 			/* __ Set realtime policy in scheduler __ */
1767 		}
1768 
1769 #ifdef CONFIG_NET_DMA
1770 		if (tp->ucopy.dma_chan) {
1771 			if (tp->rcv_wnd == 0 &&
1772 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1773 				tcp_service_net_dma(sk, true);
1774 				tcp_cleanup_rbuf(sk, copied);
1775 			} else
1776 				dma_async_issue_pending(tp->ucopy.dma_chan);
1777 		}
1778 #endif
1779 		if (copied >= target) {
1780 			/* Do not sleep, just process backlog. */
1781 			release_sock(sk);
1782 			lock_sock(sk);
1783 		} else
1784 			sk_wait_data(sk, &timeo);
1785 
1786 #ifdef CONFIG_NET_DMA
1787 		tcp_service_net_dma(sk, false);  /* Don't block */
1788 		tp->ucopy.wakeup = 0;
1789 #endif
1790 
1791 		if (user_recv) {
1792 			int chunk;
1793 
1794 			/* __ Restore normal policy in scheduler __ */
1795 
1796 			if ((chunk = len - tp->ucopy.len) != 0) {
1797 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1798 				len -= chunk;
1799 				copied += chunk;
1800 			}
1801 
1802 			if (tp->rcv_nxt == tp->copied_seq &&
1803 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1804 do_prequeue:
1805 				tcp_prequeue_process(sk);
1806 
1807 				if ((chunk = len - tp->ucopy.len) != 0) {
1808 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1809 					len -= chunk;
1810 					copied += chunk;
1811 				}
1812 			}
1813 		}
1814 		if ((flags & MSG_PEEK) &&
1815 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1816 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1817 					    current->comm,
1818 					    task_pid_nr(current));
1819 			peek_seq = tp->copied_seq;
1820 		}
1821 		continue;
1822 
1823 	found_ok_skb:
1824 		/* Ok so how much can we use? */
1825 		used = skb->len - offset;
1826 		if (len < used)
1827 			used = len;
1828 
1829 		/* Do we have urgent data here? */
1830 		if (tp->urg_data) {
1831 			u32 urg_offset = tp->urg_seq - *seq;
1832 			if (urg_offset < used) {
1833 				if (!urg_offset) {
1834 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1835 						++*seq;
1836 						urg_hole++;
1837 						offset++;
1838 						used--;
1839 						if (!used)
1840 							goto skip_copy;
1841 					}
1842 				} else
1843 					used = urg_offset;
1844 			}
1845 		}
1846 
1847 		if (!(flags & MSG_TRUNC)) {
1848 #ifdef CONFIG_NET_DMA
1849 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1850 				tp->ucopy.dma_chan = net_dma_find_channel();
1851 
1852 			if (tp->ucopy.dma_chan) {
1853 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1854 					tp->ucopy.dma_chan, skb, offset,
1855 					msg->msg_iov, used,
1856 					tp->ucopy.pinned_list);
1857 
1858 				if (tp->ucopy.dma_cookie < 0) {
1859 
1860 					pr_alert("%s: dma_cookie < 0\n",
1861 						 __func__);
1862 
1863 					/* Exception. Bailout! */
1864 					if (!copied)
1865 						copied = -EFAULT;
1866 					break;
1867 				}
1868 
1869 				dma_async_issue_pending(tp->ucopy.dma_chan);
1870 
1871 				if ((offset + used) == skb->len)
1872 					copied_early = true;
1873 
1874 			} else
1875 #endif
1876 			{
1877 				err = skb_copy_datagram_iovec(skb, offset,
1878 						msg->msg_iov, used);
1879 				if (err) {
1880 					/* Exception. Bailout! */
1881 					if (!copied)
1882 						copied = -EFAULT;
1883 					break;
1884 				}
1885 			}
1886 		}
1887 
1888 		*seq += used;
1889 		copied += used;
1890 		len -= used;
1891 
1892 		tcp_rcv_space_adjust(sk);
1893 
1894 skip_copy:
1895 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1896 			tp->urg_data = 0;
1897 			tcp_fast_path_check(sk);
1898 		}
1899 		if (used + offset < skb->len)
1900 			continue;
1901 
1902 		if (tcp_hdr(skb)->fin)
1903 			goto found_fin_ok;
1904 		if (!(flags & MSG_PEEK)) {
1905 			sk_eat_skb(sk, skb, copied_early);
1906 			copied_early = false;
1907 		}
1908 		continue;
1909 
1910 	found_fin_ok:
1911 		/* Process the FIN. */
1912 		++*seq;
1913 		if (!(flags & MSG_PEEK)) {
1914 			sk_eat_skb(sk, skb, copied_early);
1915 			copied_early = false;
1916 		}
1917 		break;
1918 	} while (len > 0);
1919 
1920 	if (user_recv) {
1921 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1922 			int chunk;
1923 
1924 			tp->ucopy.len = copied > 0 ? len : 0;
1925 
1926 			tcp_prequeue_process(sk);
1927 
1928 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1929 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1930 				len -= chunk;
1931 				copied += chunk;
1932 			}
1933 		}
1934 
1935 		tp->ucopy.task = NULL;
1936 		tp->ucopy.len = 0;
1937 	}
1938 
1939 #ifdef CONFIG_NET_DMA
1940 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1941 	tp->ucopy.dma_chan = NULL;
1942 
1943 	if (tp->ucopy.pinned_list) {
1944 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1945 		tp->ucopy.pinned_list = NULL;
1946 	}
1947 #endif
1948 
1949 	/* According to UNIX98, msg_name/msg_namelen are ignored
1950 	 * on connected socket. I was just happy when found this 8) --ANK
1951 	 */
1952 
1953 	/* Clean up data we have read: This will do ACK frames. */
1954 	tcp_cleanup_rbuf(sk, copied);
1955 
1956 	release_sock(sk);
1957 	return copied;
1958 
1959 out:
1960 	release_sock(sk);
1961 	return err;
1962 
1963 recv_urg:
1964 	err = tcp_recv_urg(sk, msg, len, flags);
1965 	goto out;
1966 
1967 recv_sndq:
1968 	err = tcp_peek_sndq(sk, msg, len);
1969 	goto out;
1970 }
1971 EXPORT_SYMBOL(tcp_recvmsg);
1972 
1973 void tcp_set_state(struct sock *sk, int state)
1974 {
1975 	int oldstate = sk->sk_state;
1976 
1977 	switch (state) {
1978 	case TCP_ESTABLISHED:
1979 		if (oldstate != TCP_ESTABLISHED)
1980 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1981 		break;
1982 
1983 	case TCP_CLOSE:
1984 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1985 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1986 
1987 		sk->sk_prot->unhash(sk);
1988 		if (inet_csk(sk)->icsk_bind_hash &&
1989 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1990 			inet_put_port(sk);
1991 		/* fall through */
1992 	default:
1993 		if (oldstate == TCP_ESTABLISHED)
1994 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1995 	}
1996 
1997 	/* Change state AFTER socket is unhashed to avoid closed
1998 	 * socket sitting in hash tables.
1999 	 */
2000 	sk->sk_state = state;
2001 
2002 #ifdef STATE_TRACE
2003 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2004 #endif
2005 }
2006 EXPORT_SYMBOL_GPL(tcp_set_state);
2007 
2008 /*
2009  *	State processing on a close. This implements the state shift for
2010  *	sending our FIN frame. Note that we only send a FIN for some
2011  *	states. A shutdown() may have already sent the FIN, or we may be
2012  *	closed.
2013  */
2014 
2015 static const unsigned char new_state[16] = {
2016   /* current state:        new state:      action:	*/
2017   /* (Invalid)		*/ TCP_CLOSE,
2018   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2019   /* TCP_SYN_SENT	*/ TCP_CLOSE,
2020   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2021   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2022   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2023   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2024   /* TCP_CLOSE		*/ TCP_CLOSE,
2025   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2026   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2027   /* TCP_LISTEN		*/ TCP_CLOSE,
2028   /* TCP_CLOSING	*/ TCP_CLOSING,
2029 };
2030 
2031 static int tcp_close_state(struct sock *sk)
2032 {
2033 	int next = (int)new_state[sk->sk_state];
2034 	int ns = next & TCP_STATE_MASK;
2035 
2036 	tcp_set_state(sk, ns);
2037 
2038 	return next & TCP_ACTION_FIN;
2039 }
2040 
2041 /*
2042  *	Shutdown the sending side of a connection. Much like close except
2043  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2044  */
2045 
2046 void tcp_shutdown(struct sock *sk, int how)
2047 {
2048 	/*	We need to grab some memory, and put together a FIN,
2049 	 *	and then put it into the queue to be sent.
2050 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2051 	 */
2052 	if (!(how & SEND_SHUTDOWN))
2053 		return;
2054 
2055 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2056 	if ((1 << sk->sk_state) &
2057 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2058 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2059 		/* Clear out any half completed packets.  FIN if needed. */
2060 		if (tcp_close_state(sk))
2061 			tcp_send_fin(sk);
2062 	}
2063 }
2064 EXPORT_SYMBOL(tcp_shutdown);
2065 
2066 bool tcp_check_oom(struct sock *sk, int shift)
2067 {
2068 	bool too_many_orphans, out_of_socket_memory;
2069 
2070 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2071 	out_of_socket_memory = tcp_out_of_memory(sk);
2072 
2073 	if (too_many_orphans)
2074 		net_info_ratelimited("too many orphaned sockets\n");
2075 	if (out_of_socket_memory)
2076 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2077 	return too_many_orphans || out_of_socket_memory;
2078 }
2079 
2080 void tcp_close(struct sock *sk, long timeout)
2081 {
2082 	struct sk_buff *skb;
2083 	int data_was_unread = 0;
2084 	int state;
2085 
2086 	lock_sock(sk);
2087 	sk->sk_shutdown = SHUTDOWN_MASK;
2088 
2089 	if (sk->sk_state == TCP_LISTEN) {
2090 		tcp_set_state(sk, TCP_CLOSE);
2091 
2092 		/* Special case. */
2093 		inet_csk_listen_stop(sk);
2094 
2095 		goto adjudge_to_death;
2096 	}
2097 
2098 	/*  We need to flush the recv. buffs.  We do this only on the
2099 	 *  descriptor close, not protocol-sourced closes, because the
2100 	 *  reader process may not have drained the data yet!
2101 	 */
2102 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2103 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2104 			  tcp_hdr(skb)->fin;
2105 		data_was_unread += len;
2106 		__kfree_skb(skb);
2107 	}
2108 
2109 	sk_mem_reclaim(sk);
2110 
2111 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2112 	if (sk->sk_state == TCP_CLOSE)
2113 		goto adjudge_to_death;
2114 
2115 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2116 	 * data was lost. To witness the awful effects of the old behavior of
2117 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2118 	 * GET in an FTP client, suspend the process, wait for the client to
2119 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2120 	 * Note: timeout is always zero in such a case.
2121 	 */
2122 	if (unlikely(tcp_sk(sk)->repair)) {
2123 		sk->sk_prot->disconnect(sk, 0);
2124 	} else if (data_was_unread) {
2125 		/* Unread data was tossed, zap the connection. */
2126 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2127 		tcp_set_state(sk, TCP_CLOSE);
2128 		tcp_send_active_reset(sk, sk->sk_allocation);
2129 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2130 		/* Check zero linger _after_ checking for unread data. */
2131 		sk->sk_prot->disconnect(sk, 0);
2132 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2133 	} else if (tcp_close_state(sk)) {
2134 		/* We FIN if the application ate all the data before
2135 		 * zapping the connection.
2136 		 */
2137 
2138 		/* RED-PEN. Formally speaking, we have broken TCP state
2139 		 * machine. State transitions:
2140 		 *
2141 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2142 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2143 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2144 		 *
2145 		 * are legal only when FIN has been sent (i.e. in window),
2146 		 * rather than queued out of window. Purists blame.
2147 		 *
2148 		 * F.e. "RFC state" is ESTABLISHED,
2149 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2150 		 *
2151 		 * The visible declinations are that sometimes
2152 		 * we enter time-wait state, when it is not required really
2153 		 * (harmless), do not send active resets, when they are
2154 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2155 		 * they look as CLOSING or LAST_ACK for Linux)
2156 		 * Probably, I missed some more holelets.
2157 		 * 						--ANK
2158 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2159 		 * in a single packet! (May consider it later but will
2160 		 * probably need API support or TCP_CORK SYN-ACK until
2161 		 * data is written and socket is closed.)
2162 		 */
2163 		tcp_send_fin(sk);
2164 	}
2165 
2166 	sk_stream_wait_close(sk, timeout);
2167 
2168 adjudge_to_death:
2169 	state = sk->sk_state;
2170 	sock_hold(sk);
2171 	sock_orphan(sk);
2172 
2173 	/* It is the last release_sock in its life. It will remove backlog. */
2174 	release_sock(sk);
2175 
2176 
2177 	/* Now socket is owned by kernel and we acquire BH lock
2178 	   to finish close. No need to check for user refs.
2179 	 */
2180 	local_bh_disable();
2181 	bh_lock_sock(sk);
2182 	WARN_ON(sock_owned_by_user(sk));
2183 
2184 	percpu_counter_inc(sk->sk_prot->orphan_count);
2185 
2186 	/* Have we already been destroyed by a softirq or backlog? */
2187 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2188 		goto out;
2189 
2190 	/*	This is a (useful) BSD violating of the RFC. There is a
2191 	 *	problem with TCP as specified in that the other end could
2192 	 *	keep a socket open forever with no application left this end.
2193 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2194 	 *	our end. If they send after that then tough - BUT: long enough
2195 	 *	that we won't make the old 4*rto = almost no time - whoops
2196 	 *	reset mistake.
2197 	 *
2198 	 *	Nope, it was not mistake. It is really desired behaviour
2199 	 *	f.e. on http servers, when such sockets are useless, but
2200 	 *	consume significant resources. Let's do it with special
2201 	 *	linger2	option.					--ANK
2202 	 */
2203 
2204 	if (sk->sk_state == TCP_FIN_WAIT2) {
2205 		struct tcp_sock *tp = tcp_sk(sk);
2206 		if (tp->linger2 < 0) {
2207 			tcp_set_state(sk, TCP_CLOSE);
2208 			tcp_send_active_reset(sk, GFP_ATOMIC);
2209 			NET_INC_STATS_BH(sock_net(sk),
2210 					LINUX_MIB_TCPABORTONLINGER);
2211 		} else {
2212 			const int tmo = tcp_fin_time(sk);
2213 
2214 			if (tmo > TCP_TIMEWAIT_LEN) {
2215 				inet_csk_reset_keepalive_timer(sk,
2216 						tmo - TCP_TIMEWAIT_LEN);
2217 			} else {
2218 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2219 				goto out;
2220 			}
2221 		}
2222 	}
2223 	if (sk->sk_state != TCP_CLOSE) {
2224 		sk_mem_reclaim(sk);
2225 		if (tcp_check_oom(sk, 0)) {
2226 			tcp_set_state(sk, TCP_CLOSE);
2227 			tcp_send_active_reset(sk, GFP_ATOMIC);
2228 			NET_INC_STATS_BH(sock_net(sk),
2229 					LINUX_MIB_TCPABORTONMEMORY);
2230 		}
2231 	}
2232 
2233 	if (sk->sk_state == TCP_CLOSE) {
2234 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2235 		/* We could get here with a non-NULL req if the socket is
2236 		 * aborted (e.g., closed with unread data) before 3WHS
2237 		 * finishes.
2238 		 */
2239 		if (req != NULL)
2240 			reqsk_fastopen_remove(sk, req, false);
2241 		inet_csk_destroy_sock(sk);
2242 	}
2243 	/* Otherwise, socket is reprieved until protocol close. */
2244 
2245 out:
2246 	bh_unlock_sock(sk);
2247 	local_bh_enable();
2248 	sock_put(sk);
2249 }
2250 EXPORT_SYMBOL(tcp_close);
2251 
2252 /* These states need RST on ABORT according to RFC793 */
2253 
2254 static inline bool tcp_need_reset(int state)
2255 {
2256 	return (1 << state) &
2257 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2258 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2259 }
2260 
2261 int tcp_disconnect(struct sock *sk, int flags)
2262 {
2263 	struct inet_sock *inet = inet_sk(sk);
2264 	struct inet_connection_sock *icsk = inet_csk(sk);
2265 	struct tcp_sock *tp = tcp_sk(sk);
2266 	int err = 0;
2267 	int old_state = sk->sk_state;
2268 
2269 	if (old_state != TCP_CLOSE)
2270 		tcp_set_state(sk, TCP_CLOSE);
2271 
2272 	/* ABORT function of RFC793 */
2273 	if (old_state == TCP_LISTEN) {
2274 		inet_csk_listen_stop(sk);
2275 	} else if (unlikely(tp->repair)) {
2276 		sk->sk_err = ECONNABORTED;
2277 	} else if (tcp_need_reset(old_state) ||
2278 		   (tp->snd_nxt != tp->write_seq &&
2279 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2280 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2281 		 * states
2282 		 */
2283 		tcp_send_active_reset(sk, gfp_any());
2284 		sk->sk_err = ECONNRESET;
2285 	} else if (old_state == TCP_SYN_SENT)
2286 		sk->sk_err = ECONNRESET;
2287 
2288 	tcp_clear_xmit_timers(sk);
2289 	__skb_queue_purge(&sk->sk_receive_queue);
2290 	tcp_write_queue_purge(sk);
2291 	__skb_queue_purge(&tp->out_of_order_queue);
2292 #ifdef CONFIG_NET_DMA
2293 	__skb_queue_purge(&sk->sk_async_wait_queue);
2294 #endif
2295 
2296 	inet->inet_dport = 0;
2297 
2298 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2299 		inet_reset_saddr(sk);
2300 
2301 	sk->sk_shutdown = 0;
2302 	sock_reset_flag(sk, SOCK_DONE);
2303 	tp->srtt = 0;
2304 	if ((tp->write_seq += tp->max_window + 2) == 0)
2305 		tp->write_seq = 1;
2306 	icsk->icsk_backoff = 0;
2307 	tp->snd_cwnd = 2;
2308 	icsk->icsk_probes_out = 0;
2309 	tp->packets_out = 0;
2310 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2311 	tp->snd_cwnd_cnt = 0;
2312 	tp->window_clamp = 0;
2313 	tcp_set_ca_state(sk, TCP_CA_Open);
2314 	tcp_clear_retrans(tp);
2315 	inet_csk_delack_init(sk);
2316 	tcp_init_send_head(sk);
2317 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2318 	__sk_dst_reset(sk);
2319 
2320 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2321 
2322 	sk->sk_error_report(sk);
2323 	return err;
2324 }
2325 EXPORT_SYMBOL(tcp_disconnect);
2326 
2327 void tcp_sock_destruct(struct sock *sk)
2328 {
2329 	inet_sock_destruct(sk);
2330 
2331 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2332 }
2333 
2334 static inline bool tcp_can_repair_sock(const struct sock *sk)
2335 {
2336 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2337 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2338 }
2339 
2340 static int tcp_repair_options_est(struct tcp_sock *tp,
2341 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2342 {
2343 	struct tcp_repair_opt opt;
2344 
2345 	while (len >= sizeof(opt)) {
2346 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2347 			return -EFAULT;
2348 
2349 		optbuf++;
2350 		len -= sizeof(opt);
2351 
2352 		switch (opt.opt_code) {
2353 		case TCPOPT_MSS:
2354 			tp->rx_opt.mss_clamp = opt.opt_val;
2355 			break;
2356 		case TCPOPT_WINDOW:
2357 			{
2358 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2359 				u16 rcv_wscale = opt.opt_val >> 16;
2360 
2361 				if (snd_wscale > 14 || rcv_wscale > 14)
2362 					return -EFBIG;
2363 
2364 				tp->rx_opt.snd_wscale = snd_wscale;
2365 				tp->rx_opt.rcv_wscale = rcv_wscale;
2366 				tp->rx_opt.wscale_ok = 1;
2367 			}
2368 			break;
2369 		case TCPOPT_SACK_PERM:
2370 			if (opt.opt_val != 0)
2371 				return -EINVAL;
2372 
2373 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2374 			if (sysctl_tcp_fack)
2375 				tcp_enable_fack(tp);
2376 			break;
2377 		case TCPOPT_TIMESTAMP:
2378 			if (opt.opt_val != 0)
2379 				return -EINVAL;
2380 
2381 			tp->rx_opt.tstamp_ok = 1;
2382 			break;
2383 		}
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 /*
2390  *	Socket option code for TCP.
2391  */
2392 static int do_tcp_setsockopt(struct sock *sk, int level,
2393 		int optname, char __user *optval, unsigned int optlen)
2394 {
2395 	struct tcp_sock *tp = tcp_sk(sk);
2396 	struct inet_connection_sock *icsk = inet_csk(sk);
2397 	int val;
2398 	int err = 0;
2399 
2400 	/* These are data/string values, all the others are ints */
2401 	switch (optname) {
2402 	case TCP_CONGESTION: {
2403 		char name[TCP_CA_NAME_MAX];
2404 
2405 		if (optlen < 1)
2406 			return -EINVAL;
2407 
2408 		val = strncpy_from_user(name, optval,
2409 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2410 		if (val < 0)
2411 			return -EFAULT;
2412 		name[val] = 0;
2413 
2414 		lock_sock(sk);
2415 		err = tcp_set_congestion_control(sk, name);
2416 		release_sock(sk);
2417 		return err;
2418 	}
2419 	default:
2420 		/* fallthru */
2421 		break;
2422 	}
2423 
2424 	if (optlen < sizeof(int))
2425 		return -EINVAL;
2426 
2427 	if (get_user(val, (int __user *)optval))
2428 		return -EFAULT;
2429 
2430 	lock_sock(sk);
2431 
2432 	switch (optname) {
2433 	case TCP_MAXSEG:
2434 		/* Values greater than interface MTU won't take effect. However
2435 		 * at the point when this call is done we typically don't yet
2436 		 * know which interface is going to be used */
2437 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2438 			err = -EINVAL;
2439 			break;
2440 		}
2441 		tp->rx_opt.user_mss = val;
2442 		break;
2443 
2444 	case TCP_NODELAY:
2445 		if (val) {
2446 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2447 			 * this option on corked socket is remembered, but
2448 			 * it is not activated until cork is cleared.
2449 			 *
2450 			 * However, when TCP_NODELAY is set we make
2451 			 * an explicit push, which overrides even TCP_CORK
2452 			 * for currently queued segments.
2453 			 */
2454 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2455 			tcp_push_pending_frames(sk);
2456 		} else {
2457 			tp->nonagle &= ~TCP_NAGLE_OFF;
2458 		}
2459 		break;
2460 
2461 	case TCP_THIN_LINEAR_TIMEOUTS:
2462 		if (val < 0 || val > 1)
2463 			err = -EINVAL;
2464 		else
2465 			tp->thin_lto = val;
2466 		break;
2467 
2468 	case TCP_THIN_DUPACK:
2469 		if (val < 0 || val > 1)
2470 			err = -EINVAL;
2471 		else {
2472 			tp->thin_dupack = val;
2473 			if (tp->thin_dupack)
2474 				tcp_disable_early_retrans(tp);
2475 		}
2476 		break;
2477 
2478 	case TCP_REPAIR:
2479 		if (!tcp_can_repair_sock(sk))
2480 			err = -EPERM;
2481 		else if (val == 1) {
2482 			tp->repair = 1;
2483 			sk->sk_reuse = SK_FORCE_REUSE;
2484 			tp->repair_queue = TCP_NO_QUEUE;
2485 		} else if (val == 0) {
2486 			tp->repair = 0;
2487 			sk->sk_reuse = SK_NO_REUSE;
2488 			tcp_send_window_probe(sk);
2489 		} else
2490 			err = -EINVAL;
2491 
2492 		break;
2493 
2494 	case TCP_REPAIR_QUEUE:
2495 		if (!tp->repair)
2496 			err = -EPERM;
2497 		else if (val < TCP_QUEUES_NR)
2498 			tp->repair_queue = val;
2499 		else
2500 			err = -EINVAL;
2501 		break;
2502 
2503 	case TCP_QUEUE_SEQ:
2504 		if (sk->sk_state != TCP_CLOSE)
2505 			err = -EPERM;
2506 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2507 			tp->write_seq = val;
2508 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2509 			tp->rcv_nxt = val;
2510 		else
2511 			err = -EINVAL;
2512 		break;
2513 
2514 	case TCP_REPAIR_OPTIONS:
2515 		if (!tp->repair)
2516 			err = -EINVAL;
2517 		else if (sk->sk_state == TCP_ESTABLISHED)
2518 			err = tcp_repair_options_est(tp,
2519 					(struct tcp_repair_opt __user *)optval,
2520 					optlen);
2521 		else
2522 			err = -EPERM;
2523 		break;
2524 
2525 	case TCP_CORK:
2526 		/* When set indicates to always queue non-full frames.
2527 		 * Later the user clears this option and we transmit
2528 		 * any pending partial frames in the queue.  This is
2529 		 * meant to be used alongside sendfile() to get properly
2530 		 * filled frames when the user (for example) must write
2531 		 * out headers with a write() call first and then use
2532 		 * sendfile to send out the data parts.
2533 		 *
2534 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2535 		 * stronger than TCP_NODELAY.
2536 		 */
2537 		if (val) {
2538 			tp->nonagle |= TCP_NAGLE_CORK;
2539 		} else {
2540 			tp->nonagle &= ~TCP_NAGLE_CORK;
2541 			if (tp->nonagle&TCP_NAGLE_OFF)
2542 				tp->nonagle |= TCP_NAGLE_PUSH;
2543 			tcp_push_pending_frames(sk);
2544 		}
2545 		break;
2546 
2547 	case TCP_KEEPIDLE:
2548 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2549 			err = -EINVAL;
2550 		else {
2551 			tp->keepalive_time = val * HZ;
2552 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2553 			    !((1 << sk->sk_state) &
2554 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2555 				u32 elapsed = keepalive_time_elapsed(tp);
2556 				if (tp->keepalive_time > elapsed)
2557 					elapsed = tp->keepalive_time - elapsed;
2558 				else
2559 					elapsed = 0;
2560 				inet_csk_reset_keepalive_timer(sk, elapsed);
2561 			}
2562 		}
2563 		break;
2564 	case TCP_KEEPINTVL:
2565 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2566 			err = -EINVAL;
2567 		else
2568 			tp->keepalive_intvl = val * HZ;
2569 		break;
2570 	case TCP_KEEPCNT:
2571 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2572 			err = -EINVAL;
2573 		else
2574 			tp->keepalive_probes = val;
2575 		break;
2576 	case TCP_SYNCNT:
2577 		if (val < 1 || val > MAX_TCP_SYNCNT)
2578 			err = -EINVAL;
2579 		else
2580 			icsk->icsk_syn_retries = val;
2581 		break;
2582 
2583 	case TCP_LINGER2:
2584 		if (val < 0)
2585 			tp->linger2 = -1;
2586 		else if (val > sysctl_tcp_fin_timeout / HZ)
2587 			tp->linger2 = 0;
2588 		else
2589 			tp->linger2 = val * HZ;
2590 		break;
2591 
2592 	case TCP_DEFER_ACCEPT:
2593 		/* Translate value in seconds to number of retransmits */
2594 		icsk->icsk_accept_queue.rskq_defer_accept =
2595 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2596 					TCP_RTO_MAX / HZ);
2597 		break;
2598 
2599 	case TCP_WINDOW_CLAMP:
2600 		if (!val) {
2601 			if (sk->sk_state != TCP_CLOSE) {
2602 				err = -EINVAL;
2603 				break;
2604 			}
2605 			tp->window_clamp = 0;
2606 		} else
2607 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2608 						SOCK_MIN_RCVBUF / 2 : val;
2609 		break;
2610 
2611 	case TCP_QUICKACK:
2612 		if (!val) {
2613 			icsk->icsk_ack.pingpong = 1;
2614 		} else {
2615 			icsk->icsk_ack.pingpong = 0;
2616 			if ((1 << sk->sk_state) &
2617 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2618 			    inet_csk_ack_scheduled(sk)) {
2619 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2620 				tcp_cleanup_rbuf(sk, 1);
2621 				if (!(val & 1))
2622 					icsk->icsk_ack.pingpong = 1;
2623 			}
2624 		}
2625 		break;
2626 
2627 #ifdef CONFIG_TCP_MD5SIG
2628 	case TCP_MD5SIG:
2629 		/* Read the IP->Key mappings from userspace */
2630 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2631 		break;
2632 #endif
2633 	case TCP_USER_TIMEOUT:
2634 		/* Cap the max timeout in ms TCP will retry/retrans
2635 		 * before giving up and aborting (ETIMEDOUT) a connection.
2636 		 */
2637 		if (val < 0)
2638 			err = -EINVAL;
2639 		else
2640 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2641 		break;
2642 
2643 	case TCP_FASTOPEN:
2644 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2645 		    TCPF_LISTEN)))
2646 			err = fastopen_init_queue(sk, val);
2647 		else
2648 			err = -EINVAL;
2649 		break;
2650 	case TCP_TIMESTAMP:
2651 		if (!tp->repair)
2652 			err = -EPERM;
2653 		else
2654 			tp->tsoffset = val - tcp_time_stamp;
2655 		break;
2656 	case TCP_NOTSENT_LOWAT:
2657 		tp->notsent_lowat = val;
2658 		sk->sk_write_space(sk);
2659 		break;
2660 	default:
2661 		err = -ENOPROTOOPT;
2662 		break;
2663 	}
2664 
2665 	release_sock(sk);
2666 	return err;
2667 }
2668 
2669 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2670 		   unsigned int optlen)
2671 {
2672 	const struct inet_connection_sock *icsk = inet_csk(sk);
2673 
2674 	if (level != SOL_TCP)
2675 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2676 						     optval, optlen);
2677 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2678 }
2679 EXPORT_SYMBOL(tcp_setsockopt);
2680 
2681 #ifdef CONFIG_COMPAT
2682 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2683 			  char __user *optval, unsigned int optlen)
2684 {
2685 	if (level != SOL_TCP)
2686 		return inet_csk_compat_setsockopt(sk, level, optname,
2687 						  optval, optlen);
2688 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2689 }
2690 EXPORT_SYMBOL(compat_tcp_setsockopt);
2691 #endif
2692 
2693 /* Return information about state of tcp endpoint in API format. */
2694 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2695 {
2696 	const struct tcp_sock *tp = tcp_sk(sk);
2697 	const struct inet_connection_sock *icsk = inet_csk(sk);
2698 	u32 now = tcp_time_stamp;
2699 
2700 	memset(info, 0, sizeof(*info));
2701 
2702 	info->tcpi_state = sk->sk_state;
2703 	info->tcpi_ca_state = icsk->icsk_ca_state;
2704 	info->tcpi_retransmits = icsk->icsk_retransmits;
2705 	info->tcpi_probes = icsk->icsk_probes_out;
2706 	info->tcpi_backoff = icsk->icsk_backoff;
2707 
2708 	if (tp->rx_opt.tstamp_ok)
2709 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2710 	if (tcp_is_sack(tp))
2711 		info->tcpi_options |= TCPI_OPT_SACK;
2712 	if (tp->rx_opt.wscale_ok) {
2713 		info->tcpi_options |= TCPI_OPT_WSCALE;
2714 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2715 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2716 	}
2717 
2718 	if (tp->ecn_flags & TCP_ECN_OK)
2719 		info->tcpi_options |= TCPI_OPT_ECN;
2720 	if (tp->ecn_flags & TCP_ECN_SEEN)
2721 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2722 	if (tp->syn_data_acked)
2723 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2724 
2725 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2726 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2727 	info->tcpi_snd_mss = tp->mss_cache;
2728 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2729 
2730 	if (sk->sk_state == TCP_LISTEN) {
2731 		info->tcpi_unacked = sk->sk_ack_backlog;
2732 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2733 	} else {
2734 		info->tcpi_unacked = tp->packets_out;
2735 		info->tcpi_sacked = tp->sacked_out;
2736 	}
2737 	info->tcpi_lost = tp->lost_out;
2738 	info->tcpi_retrans = tp->retrans_out;
2739 	info->tcpi_fackets = tp->fackets_out;
2740 
2741 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2742 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2743 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2744 
2745 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2746 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2747 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2748 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2749 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2750 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2751 	info->tcpi_advmss = tp->advmss;
2752 	info->tcpi_reordering = tp->reordering;
2753 
2754 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2755 	info->tcpi_rcv_space = tp->rcvq_space.space;
2756 
2757 	info->tcpi_total_retrans = tp->total_retrans;
2758 }
2759 EXPORT_SYMBOL_GPL(tcp_get_info);
2760 
2761 static int do_tcp_getsockopt(struct sock *sk, int level,
2762 		int optname, char __user *optval, int __user *optlen)
2763 {
2764 	struct inet_connection_sock *icsk = inet_csk(sk);
2765 	struct tcp_sock *tp = tcp_sk(sk);
2766 	int val, len;
2767 
2768 	if (get_user(len, optlen))
2769 		return -EFAULT;
2770 
2771 	len = min_t(unsigned int, len, sizeof(int));
2772 
2773 	if (len < 0)
2774 		return -EINVAL;
2775 
2776 	switch (optname) {
2777 	case TCP_MAXSEG:
2778 		val = tp->mss_cache;
2779 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2780 			val = tp->rx_opt.user_mss;
2781 		if (tp->repair)
2782 			val = tp->rx_opt.mss_clamp;
2783 		break;
2784 	case TCP_NODELAY:
2785 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2786 		break;
2787 	case TCP_CORK:
2788 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2789 		break;
2790 	case TCP_KEEPIDLE:
2791 		val = keepalive_time_when(tp) / HZ;
2792 		break;
2793 	case TCP_KEEPINTVL:
2794 		val = keepalive_intvl_when(tp) / HZ;
2795 		break;
2796 	case TCP_KEEPCNT:
2797 		val = keepalive_probes(tp);
2798 		break;
2799 	case TCP_SYNCNT:
2800 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2801 		break;
2802 	case TCP_LINGER2:
2803 		val = tp->linger2;
2804 		if (val >= 0)
2805 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2806 		break;
2807 	case TCP_DEFER_ACCEPT:
2808 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2809 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2810 		break;
2811 	case TCP_WINDOW_CLAMP:
2812 		val = tp->window_clamp;
2813 		break;
2814 	case TCP_INFO: {
2815 		struct tcp_info info;
2816 
2817 		if (get_user(len, optlen))
2818 			return -EFAULT;
2819 
2820 		tcp_get_info(sk, &info);
2821 
2822 		len = min_t(unsigned int, len, sizeof(info));
2823 		if (put_user(len, optlen))
2824 			return -EFAULT;
2825 		if (copy_to_user(optval, &info, len))
2826 			return -EFAULT;
2827 		return 0;
2828 	}
2829 	case TCP_QUICKACK:
2830 		val = !icsk->icsk_ack.pingpong;
2831 		break;
2832 
2833 	case TCP_CONGESTION:
2834 		if (get_user(len, optlen))
2835 			return -EFAULT;
2836 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2837 		if (put_user(len, optlen))
2838 			return -EFAULT;
2839 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2840 			return -EFAULT;
2841 		return 0;
2842 
2843 	case TCP_THIN_LINEAR_TIMEOUTS:
2844 		val = tp->thin_lto;
2845 		break;
2846 	case TCP_THIN_DUPACK:
2847 		val = tp->thin_dupack;
2848 		break;
2849 
2850 	case TCP_REPAIR:
2851 		val = tp->repair;
2852 		break;
2853 
2854 	case TCP_REPAIR_QUEUE:
2855 		if (tp->repair)
2856 			val = tp->repair_queue;
2857 		else
2858 			return -EINVAL;
2859 		break;
2860 
2861 	case TCP_QUEUE_SEQ:
2862 		if (tp->repair_queue == TCP_SEND_QUEUE)
2863 			val = tp->write_seq;
2864 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2865 			val = tp->rcv_nxt;
2866 		else
2867 			return -EINVAL;
2868 		break;
2869 
2870 	case TCP_USER_TIMEOUT:
2871 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2872 		break;
2873 	case TCP_TIMESTAMP:
2874 		val = tcp_time_stamp + tp->tsoffset;
2875 		break;
2876 	case TCP_NOTSENT_LOWAT:
2877 		val = tp->notsent_lowat;
2878 		break;
2879 	default:
2880 		return -ENOPROTOOPT;
2881 	}
2882 
2883 	if (put_user(len, optlen))
2884 		return -EFAULT;
2885 	if (copy_to_user(optval, &val, len))
2886 		return -EFAULT;
2887 	return 0;
2888 }
2889 
2890 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2891 		   int __user *optlen)
2892 {
2893 	struct inet_connection_sock *icsk = inet_csk(sk);
2894 
2895 	if (level != SOL_TCP)
2896 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2897 						     optval, optlen);
2898 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2899 }
2900 EXPORT_SYMBOL(tcp_getsockopt);
2901 
2902 #ifdef CONFIG_COMPAT
2903 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2904 			  char __user *optval, int __user *optlen)
2905 {
2906 	if (level != SOL_TCP)
2907 		return inet_csk_compat_getsockopt(sk, level, optname,
2908 						  optval, optlen);
2909 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2910 }
2911 EXPORT_SYMBOL(compat_tcp_getsockopt);
2912 #endif
2913 
2914 #ifdef CONFIG_TCP_MD5SIG
2915 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2916 static DEFINE_MUTEX(tcp_md5sig_mutex);
2917 
2918 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2919 {
2920 	int cpu;
2921 
2922 	for_each_possible_cpu(cpu) {
2923 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2924 
2925 		if (p->md5_desc.tfm)
2926 			crypto_free_hash(p->md5_desc.tfm);
2927 	}
2928 	free_percpu(pool);
2929 }
2930 
2931 static void __tcp_alloc_md5sig_pool(void)
2932 {
2933 	int cpu;
2934 	struct tcp_md5sig_pool __percpu *pool;
2935 
2936 	pool = alloc_percpu(struct tcp_md5sig_pool);
2937 	if (!pool)
2938 		return;
2939 
2940 	for_each_possible_cpu(cpu) {
2941 		struct crypto_hash *hash;
2942 
2943 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2944 		if (IS_ERR_OR_NULL(hash))
2945 			goto out_free;
2946 
2947 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2948 	}
2949 	/* before setting tcp_md5sig_pool, we must commit all writes
2950 	 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
2951 	 */
2952 	smp_wmb();
2953 	tcp_md5sig_pool = pool;
2954 	return;
2955 out_free:
2956 	__tcp_free_md5sig_pool(pool);
2957 }
2958 
2959 bool tcp_alloc_md5sig_pool(void)
2960 {
2961 	if (unlikely(!tcp_md5sig_pool)) {
2962 		mutex_lock(&tcp_md5sig_mutex);
2963 
2964 		if (!tcp_md5sig_pool)
2965 			__tcp_alloc_md5sig_pool();
2966 
2967 		mutex_unlock(&tcp_md5sig_mutex);
2968 	}
2969 	return tcp_md5sig_pool != NULL;
2970 }
2971 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2972 
2973 
2974 /**
2975  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2976  *
2977  *	We use percpu structure, so if we succeed, we exit with preemption
2978  *	and BH disabled, to make sure another thread or softirq handling
2979  *	wont try to get same context.
2980  */
2981 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2982 {
2983 	struct tcp_md5sig_pool __percpu *p;
2984 
2985 	local_bh_disable();
2986 	p = ACCESS_ONCE(tcp_md5sig_pool);
2987 	if (p)
2988 		return __this_cpu_ptr(p);
2989 
2990 	local_bh_enable();
2991 	return NULL;
2992 }
2993 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2994 
2995 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2996 			const struct tcphdr *th)
2997 {
2998 	struct scatterlist sg;
2999 	struct tcphdr hdr;
3000 	int err;
3001 
3002 	/* We are not allowed to change tcphdr, make a local copy */
3003 	memcpy(&hdr, th, sizeof(hdr));
3004 	hdr.check = 0;
3005 
3006 	/* options aren't included in the hash */
3007 	sg_init_one(&sg, &hdr, sizeof(hdr));
3008 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3009 	return err;
3010 }
3011 EXPORT_SYMBOL(tcp_md5_hash_header);
3012 
3013 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3014 			  const struct sk_buff *skb, unsigned int header_len)
3015 {
3016 	struct scatterlist sg;
3017 	const struct tcphdr *tp = tcp_hdr(skb);
3018 	struct hash_desc *desc = &hp->md5_desc;
3019 	unsigned int i;
3020 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3021 					   skb_headlen(skb) - header_len : 0;
3022 	const struct skb_shared_info *shi = skb_shinfo(skb);
3023 	struct sk_buff *frag_iter;
3024 
3025 	sg_init_table(&sg, 1);
3026 
3027 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3028 	if (crypto_hash_update(desc, &sg, head_data_len))
3029 		return 1;
3030 
3031 	for (i = 0; i < shi->nr_frags; ++i) {
3032 		const struct skb_frag_struct *f = &shi->frags[i];
3033 		unsigned int offset = f->page_offset;
3034 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3035 
3036 		sg_set_page(&sg, page, skb_frag_size(f),
3037 			    offset_in_page(offset));
3038 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3039 			return 1;
3040 	}
3041 
3042 	skb_walk_frags(skb, frag_iter)
3043 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3044 			return 1;
3045 
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3049 
3050 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3051 {
3052 	struct scatterlist sg;
3053 
3054 	sg_init_one(&sg, key->key, key->keylen);
3055 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3056 }
3057 EXPORT_SYMBOL(tcp_md5_hash_key);
3058 
3059 #endif
3060 
3061 void tcp_done(struct sock *sk)
3062 {
3063 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3064 
3065 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3066 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3067 
3068 	tcp_set_state(sk, TCP_CLOSE);
3069 	tcp_clear_xmit_timers(sk);
3070 	if (req != NULL)
3071 		reqsk_fastopen_remove(sk, req, false);
3072 
3073 	sk->sk_shutdown = SHUTDOWN_MASK;
3074 
3075 	if (!sock_flag(sk, SOCK_DEAD))
3076 		sk->sk_state_change(sk);
3077 	else
3078 		inet_csk_destroy_sock(sk);
3079 }
3080 EXPORT_SYMBOL_GPL(tcp_done);
3081 
3082 extern struct tcp_congestion_ops tcp_reno;
3083 
3084 static __initdata unsigned long thash_entries;
3085 static int __init set_thash_entries(char *str)
3086 {
3087 	ssize_t ret;
3088 
3089 	if (!str)
3090 		return 0;
3091 
3092 	ret = kstrtoul(str, 0, &thash_entries);
3093 	if (ret)
3094 		return 0;
3095 
3096 	return 1;
3097 }
3098 __setup("thash_entries=", set_thash_entries);
3099 
3100 void tcp_init_mem(struct net *net)
3101 {
3102 	unsigned long limit = nr_free_buffer_pages() / 8;
3103 	limit = max(limit, 128UL);
3104 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3105 	net->ipv4.sysctl_tcp_mem[1] = limit;
3106 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3107 }
3108 
3109 void __init tcp_init(void)
3110 {
3111 	struct sk_buff *skb = NULL;
3112 	unsigned long limit;
3113 	int max_rshare, max_wshare, cnt;
3114 	unsigned int i;
3115 
3116 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3117 
3118 	percpu_counter_init(&tcp_sockets_allocated, 0);
3119 	percpu_counter_init(&tcp_orphan_count, 0);
3120 	tcp_hashinfo.bind_bucket_cachep =
3121 		kmem_cache_create("tcp_bind_bucket",
3122 				  sizeof(struct inet_bind_bucket), 0,
3123 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3124 
3125 	/* Size and allocate the main established and bind bucket
3126 	 * hash tables.
3127 	 *
3128 	 * The methodology is similar to that of the buffer cache.
3129 	 */
3130 	tcp_hashinfo.ehash =
3131 		alloc_large_system_hash("TCP established",
3132 					sizeof(struct inet_ehash_bucket),
3133 					thash_entries,
3134 					17, /* one slot per 128 KB of memory */
3135 					0,
3136 					NULL,
3137 					&tcp_hashinfo.ehash_mask,
3138 					0,
3139 					thash_entries ? 0 : 512 * 1024);
3140 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3141 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3142 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3143 	}
3144 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3145 		panic("TCP: failed to alloc ehash_locks");
3146 	tcp_hashinfo.bhash =
3147 		alloc_large_system_hash("TCP bind",
3148 					sizeof(struct inet_bind_hashbucket),
3149 					tcp_hashinfo.ehash_mask + 1,
3150 					17, /* one slot per 128 KB of memory */
3151 					0,
3152 					&tcp_hashinfo.bhash_size,
3153 					NULL,
3154 					0,
3155 					64 * 1024);
3156 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3157 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3158 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3159 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3160 	}
3161 
3162 
3163 	cnt = tcp_hashinfo.ehash_mask + 1;
3164 
3165 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3166 	sysctl_tcp_max_orphans = cnt / 2;
3167 	sysctl_max_syn_backlog = max(128, cnt / 256);
3168 
3169 	tcp_init_mem(&init_net);
3170 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3171 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3172 	max_wshare = min(4UL*1024*1024, limit);
3173 	max_rshare = min(6UL*1024*1024, limit);
3174 
3175 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3176 	sysctl_tcp_wmem[1] = 16*1024;
3177 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3178 
3179 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3180 	sysctl_tcp_rmem[1] = 87380;
3181 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3182 
3183 	pr_info("Hash tables configured (established %u bind %u)\n",
3184 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3185 
3186 	tcp_metrics_init();
3187 
3188 	tcp_register_congestion_control(&tcp_reno);
3189 
3190 	tcp_tasklet_init();
3191 }
3192