xref: /openbmc/linux/net/ipv4/tcp.c (revision cd4d09ec)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 int sysctl_tcp_autocorking __read_mostly = 1;
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296 
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 
301 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327 
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	if (!tcp_memory_pressure) {
331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 		tcp_memory_pressure = 1;
333 	}
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 	u8 res = 0;
341 
342 	if (seconds > 0) {
343 		int period = timeout;
344 
345 		res = 1;
346 		while (seconds > period && res < 255) {
347 			res++;
348 			timeout <<= 1;
349 			if (timeout > rto_max)
350 				timeout = rto_max;
351 			period += timeout;
352 		}
353 	}
354 	return res;
355 }
356 
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 	int period = 0;
361 
362 	if (retrans > 0) {
363 		period = timeout;
364 		while (--retrans) {
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return period;
372 }
373 
374 /* Address-family independent initialization for a tcp_sock.
375  *
376  * NOTE: A lot of things set to zero explicitly by call to
377  *       sk_alloc() so need not be done here.
378  */
379 void tcp_init_sock(struct sock *sk)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	__skb_queue_head_init(&tp->out_of_order_queue);
385 	tcp_init_xmit_timers(sk);
386 	tcp_prequeue_init(tp);
387 	INIT_LIST_HEAD(&tp->tsq_node);
388 
389 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391 	tp->rtt_min[0].rtt = ~0U;
392 
393 	/* So many TCP implementations out there (incorrectly) count the
394 	 * initial SYN frame in their delayed-ACK and congestion control
395 	 * algorithms that we must have the following bandaid to talk
396 	 * efficiently to them.  -DaveM
397 	 */
398 	tp->snd_cwnd = TCP_INIT_CWND;
399 
400 	/* See draft-stevens-tcpca-spec-01 for discussion of the
401 	 * initialization of these values.
402 	 */
403 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
404 	tp->snd_cwnd_clamp = ~0;
405 	tp->mss_cache = TCP_MSS_DEFAULT;
406 	u64_stats_init(&tp->syncp);
407 
408 	tp->reordering = sysctl_tcp_reordering;
409 	tcp_enable_early_retrans(tp);
410 	tcp_assign_congestion_control(sk);
411 
412 	tp->tsoffset = 0;
413 
414 	sk->sk_state = TCP_CLOSE;
415 
416 	sk->sk_write_space = sk_stream_write_space;
417 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 
419 	icsk->icsk_sync_mss = tcp_sync_mss;
420 
421 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 
424 	local_bh_disable();
425 	if (mem_cgroup_sockets_enabled)
426 		sock_update_memcg(sk);
427 	sk_sockets_allocated_inc(sk);
428 	local_bh_enable();
429 }
430 EXPORT_SYMBOL(tcp_init_sock);
431 
432 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
433 {
434 	if (sk->sk_tsflags) {
435 		struct skb_shared_info *shinfo = skb_shinfo(skb);
436 
437 		sock_tx_timestamp(sk, &shinfo->tx_flags);
438 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
439 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
440 	}
441 }
442 
443 /*
444  *	Wait for a TCP event.
445  *
446  *	Note that we don't need to lock the socket, as the upper poll layers
447  *	take care of normal races (between the test and the event) and we don't
448  *	go look at any of the socket buffers directly.
449  */
450 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
451 {
452 	unsigned int mask;
453 	struct sock *sk = sock->sk;
454 	const struct tcp_sock *tp = tcp_sk(sk);
455 	int state;
456 
457 	sock_rps_record_flow(sk);
458 
459 	sock_poll_wait(file, sk_sleep(sk), wait);
460 
461 	state = sk_state_load(sk);
462 	if (state == TCP_LISTEN)
463 		return inet_csk_listen_poll(sk);
464 
465 	/* Socket is not locked. We are protected from async events
466 	 * by poll logic and correct handling of state changes
467 	 * made by other threads is impossible in any case.
468 	 */
469 
470 	mask = 0;
471 
472 	/*
473 	 * POLLHUP is certainly not done right. But poll() doesn't
474 	 * have a notion of HUP in just one direction, and for a
475 	 * socket the read side is more interesting.
476 	 *
477 	 * Some poll() documentation says that POLLHUP is incompatible
478 	 * with the POLLOUT/POLLWR flags, so somebody should check this
479 	 * all. But careful, it tends to be safer to return too many
480 	 * bits than too few, and you can easily break real applications
481 	 * if you don't tell them that something has hung up!
482 	 *
483 	 * Check-me.
484 	 *
485 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
486 	 * our fs/select.c). It means that after we received EOF,
487 	 * poll always returns immediately, making impossible poll() on write()
488 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
489 	 * if and only if shutdown has been made in both directions.
490 	 * Actually, it is interesting to look how Solaris and DUX
491 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
492 	 * then we could set it on SND_SHUTDOWN. BTW examples given
493 	 * in Stevens' books assume exactly this behaviour, it explains
494 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
495 	 *
496 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
497 	 * blocking on fresh not-connected or disconnected socket. --ANK
498 	 */
499 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
500 		mask |= POLLHUP;
501 	if (sk->sk_shutdown & RCV_SHUTDOWN)
502 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
503 
504 	/* Connected or passive Fast Open socket? */
505 	if (state != TCP_SYN_SENT &&
506 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
507 		int target = sock_rcvlowat(sk, 0, INT_MAX);
508 
509 		if (tp->urg_seq == tp->copied_seq &&
510 		    !sock_flag(sk, SOCK_URGINLINE) &&
511 		    tp->urg_data)
512 			target++;
513 
514 		if (tp->rcv_nxt - tp->copied_seq >= target)
515 			mask |= POLLIN | POLLRDNORM;
516 
517 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
518 			if (sk_stream_is_writeable(sk)) {
519 				mask |= POLLOUT | POLLWRNORM;
520 			} else {  /* send SIGIO later */
521 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
522 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
523 
524 				/* Race breaker. If space is freed after
525 				 * wspace test but before the flags are set,
526 				 * IO signal will be lost. Memory barrier
527 				 * pairs with the input side.
528 				 */
529 				smp_mb__after_atomic();
530 				if (sk_stream_is_writeable(sk))
531 					mask |= POLLOUT | POLLWRNORM;
532 			}
533 		} else
534 			mask |= POLLOUT | POLLWRNORM;
535 
536 		if (tp->urg_data & TCP_URG_VALID)
537 			mask |= POLLPRI;
538 	}
539 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
540 	smp_rmb();
541 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
542 		mask |= POLLERR;
543 
544 	return mask;
545 }
546 EXPORT_SYMBOL(tcp_poll);
547 
548 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
549 {
550 	struct tcp_sock *tp = tcp_sk(sk);
551 	int answ;
552 	bool slow;
553 
554 	switch (cmd) {
555 	case SIOCINQ:
556 		if (sk->sk_state == TCP_LISTEN)
557 			return -EINVAL;
558 
559 		slow = lock_sock_fast(sk);
560 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
561 			answ = 0;
562 		else if (sock_flag(sk, SOCK_URGINLINE) ||
563 			 !tp->urg_data ||
564 			 before(tp->urg_seq, tp->copied_seq) ||
565 			 !before(tp->urg_seq, tp->rcv_nxt)) {
566 
567 			answ = tp->rcv_nxt - tp->copied_seq;
568 
569 			/* Subtract 1, if FIN was received */
570 			if (answ && sock_flag(sk, SOCK_DONE))
571 				answ--;
572 		} else
573 			answ = tp->urg_seq - tp->copied_seq;
574 		unlock_sock_fast(sk, slow);
575 		break;
576 	case SIOCATMARK:
577 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
578 		break;
579 	case SIOCOUTQ:
580 		if (sk->sk_state == TCP_LISTEN)
581 			return -EINVAL;
582 
583 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
584 			answ = 0;
585 		else
586 			answ = tp->write_seq - tp->snd_una;
587 		break;
588 	case SIOCOUTQNSD:
589 		if (sk->sk_state == TCP_LISTEN)
590 			return -EINVAL;
591 
592 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
593 			answ = 0;
594 		else
595 			answ = tp->write_seq - tp->snd_nxt;
596 		break;
597 	default:
598 		return -ENOIOCTLCMD;
599 	}
600 
601 	return put_user(answ, (int __user *)arg);
602 }
603 EXPORT_SYMBOL(tcp_ioctl);
604 
605 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
606 {
607 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
608 	tp->pushed_seq = tp->write_seq;
609 }
610 
611 static inline bool forced_push(const struct tcp_sock *tp)
612 {
613 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
614 }
615 
616 static void skb_entail(struct sock *sk, struct sk_buff *skb)
617 {
618 	struct tcp_sock *tp = tcp_sk(sk);
619 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
620 
621 	skb->csum    = 0;
622 	tcb->seq     = tcb->end_seq = tp->write_seq;
623 	tcb->tcp_flags = TCPHDR_ACK;
624 	tcb->sacked  = 0;
625 	__skb_header_release(skb);
626 	tcp_add_write_queue_tail(sk, skb);
627 	sk->sk_wmem_queued += skb->truesize;
628 	sk_mem_charge(sk, skb->truesize);
629 	if (tp->nonagle & TCP_NAGLE_PUSH)
630 		tp->nonagle &= ~TCP_NAGLE_PUSH;
631 
632 	tcp_slow_start_after_idle_check(sk);
633 }
634 
635 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
636 {
637 	if (flags & MSG_OOB)
638 		tp->snd_up = tp->write_seq;
639 }
640 
641 /* If a not yet filled skb is pushed, do not send it if
642  * we have data packets in Qdisc or NIC queues :
643  * Because TX completion will happen shortly, it gives a chance
644  * to coalesce future sendmsg() payload into this skb, without
645  * need for a timer, and with no latency trade off.
646  * As packets containing data payload have a bigger truesize
647  * than pure acks (dataless) packets, the last checks prevent
648  * autocorking if we only have an ACK in Qdisc/NIC queues,
649  * or if TX completion was delayed after we processed ACK packet.
650  */
651 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
652 				int size_goal)
653 {
654 	return skb->len < size_goal &&
655 	       sysctl_tcp_autocorking &&
656 	       skb != tcp_write_queue_head(sk) &&
657 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
658 }
659 
660 static void tcp_push(struct sock *sk, int flags, int mss_now,
661 		     int nonagle, int size_goal)
662 {
663 	struct tcp_sock *tp = tcp_sk(sk);
664 	struct sk_buff *skb;
665 
666 	if (!tcp_send_head(sk))
667 		return;
668 
669 	skb = tcp_write_queue_tail(sk);
670 	if (!(flags & MSG_MORE) || forced_push(tp))
671 		tcp_mark_push(tp, skb);
672 
673 	tcp_mark_urg(tp, flags);
674 
675 	if (tcp_should_autocork(sk, skb, size_goal)) {
676 
677 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
678 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
679 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
680 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
681 		}
682 		/* It is possible TX completion already happened
683 		 * before we set TSQ_THROTTLED.
684 		 */
685 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
686 			return;
687 	}
688 
689 	if (flags & MSG_MORE)
690 		nonagle = TCP_NAGLE_CORK;
691 
692 	__tcp_push_pending_frames(sk, mss_now, nonagle);
693 }
694 
695 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
696 				unsigned int offset, size_t len)
697 {
698 	struct tcp_splice_state *tss = rd_desc->arg.data;
699 	int ret;
700 
701 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
702 			      min(rd_desc->count, len), tss->flags,
703 			      skb_socket_splice);
704 	if (ret > 0)
705 		rd_desc->count -= ret;
706 	return ret;
707 }
708 
709 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
710 {
711 	/* Store TCP splice context information in read_descriptor_t. */
712 	read_descriptor_t rd_desc = {
713 		.arg.data = tss,
714 		.count	  = tss->len,
715 	};
716 
717 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
718 }
719 
720 /**
721  *  tcp_splice_read - splice data from TCP socket to a pipe
722  * @sock:	socket to splice from
723  * @ppos:	position (not valid)
724  * @pipe:	pipe to splice to
725  * @len:	number of bytes to splice
726  * @flags:	splice modifier flags
727  *
728  * Description:
729  *    Will read pages from given socket and fill them into a pipe.
730  *
731  **/
732 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
733 			struct pipe_inode_info *pipe, size_t len,
734 			unsigned int flags)
735 {
736 	struct sock *sk = sock->sk;
737 	struct tcp_splice_state tss = {
738 		.pipe = pipe,
739 		.len = len,
740 		.flags = flags,
741 	};
742 	long timeo;
743 	ssize_t spliced;
744 	int ret;
745 
746 	sock_rps_record_flow(sk);
747 	/*
748 	 * We can't seek on a socket input
749 	 */
750 	if (unlikely(*ppos))
751 		return -ESPIPE;
752 
753 	ret = spliced = 0;
754 
755 	lock_sock(sk);
756 
757 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
758 	while (tss.len) {
759 		ret = __tcp_splice_read(sk, &tss);
760 		if (ret < 0)
761 			break;
762 		else if (!ret) {
763 			if (spliced)
764 				break;
765 			if (sock_flag(sk, SOCK_DONE))
766 				break;
767 			if (sk->sk_err) {
768 				ret = sock_error(sk);
769 				break;
770 			}
771 			if (sk->sk_shutdown & RCV_SHUTDOWN)
772 				break;
773 			if (sk->sk_state == TCP_CLOSE) {
774 				/*
775 				 * This occurs when user tries to read
776 				 * from never connected socket.
777 				 */
778 				if (!sock_flag(sk, SOCK_DONE))
779 					ret = -ENOTCONN;
780 				break;
781 			}
782 			if (!timeo) {
783 				ret = -EAGAIN;
784 				break;
785 			}
786 			sk_wait_data(sk, &timeo, NULL);
787 			if (signal_pending(current)) {
788 				ret = sock_intr_errno(timeo);
789 				break;
790 			}
791 			continue;
792 		}
793 		tss.len -= ret;
794 		spliced += ret;
795 
796 		if (!timeo)
797 			break;
798 		release_sock(sk);
799 		lock_sock(sk);
800 
801 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
802 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
803 		    signal_pending(current))
804 			break;
805 	}
806 
807 	release_sock(sk);
808 
809 	if (spliced)
810 		return spliced;
811 
812 	return ret;
813 }
814 EXPORT_SYMBOL(tcp_splice_read);
815 
816 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
817 				    bool force_schedule)
818 {
819 	struct sk_buff *skb;
820 
821 	/* The TCP header must be at least 32-bit aligned.  */
822 	size = ALIGN(size, 4);
823 
824 	if (unlikely(tcp_under_memory_pressure(sk)))
825 		sk_mem_reclaim_partial(sk);
826 
827 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
828 	if (likely(skb)) {
829 		bool mem_scheduled;
830 
831 		if (force_schedule) {
832 			mem_scheduled = true;
833 			sk_forced_mem_schedule(sk, skb->truesize);
834 		} else {
835 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
836 		}
837 		if (likely(mem_scheduled)) {
838 			skb_reserve(skb, sk->sk_prot->max_header);
839 			/*
840 			 * Make sure that we have exactly size bytes
841 			 * available to the caller, no more, no less.
842 			 */
843 			skb->reserved_tailroom = skb->end - skb->tail - size;
844 			return skb;
845 		}
846 		__kfree_skb(skb);
847 	} else {
848 		sk->sk_prot->enter_memory_pressure(sk);
849 		sk_stream_moderate_sndbuf(sk);
850 	}
851 	return NULL;
852 }
853 
854 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
855 				       int large_allowed)
856 {
857 	struct tcp_sock *tp = tcp_sk(sk);
858 	u32 new_size_goal, size_goal;
859 
860 	if (!large_allowed || !sk_can_gso(sk))
861 		return mss_now;
862 
863 	/* Note : tcp_tso_autosize() will eventually split this later */
864 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
865 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
866 
867 	/* We try hard to avoid divides here */
868 	size_goal = tp->gso_segs * mss_now;
869 	if (unlikely(new_size_goal < size_goal ||
870 		     new_size_goal >= size_goal + mss_now)) {
871 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
872 				     sk->sk_gso_max_segs);
873 		size_goal = tp->gso_segs * mss_now;
874 	}
875 
876 	return max(size_goal, mss_now);
877 }
878 
879 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
880 {
881 	int mss_now;
882 
883 	mss_now = tcp_current_mss(sk);
884 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
885 
886 	return mss_now;
887 }
888 
889 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
890 				size_t size, int flags)
891 {
892 	struct tcp_sock *tp = tcp_sk(sk);
893 	int mss_now, size_goal;
894 	int err;
895 	ssize_t copied;
896 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
897 
898 	/* Wait for a connection to finish. One exception is TCP Fast Open
899 	 * (passive side) where data is allowed to be sent before a connection
900 	 * is fully established.
901 	 */
902 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
903 	    !tcp_passive_fastopen(sk)) {
904 		err = sk_stream_wait_connect(sk, &timeo);
905 		if (err != 0)
906 			goto out_err;
907 	}
908 
909 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
910 
911 	mss_now = tcp_send_mss(sk, &size_goal, flags);
912 	copied = 0;
913 
914 	err = -EPIPE;
915 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
916 		goto out_err;
917 
918 	while (size > 0) {
919 		struct sk_buff *skb = tcp_write_queue_tail(sk);
920 		int copy, i;
921 		bool can_coalesce;
922 
923 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
924 new_segment:
925 			if (!sk_stream_memory_free(sk))
926 				goto wait_for_sndbuf;
927 
928 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
929 						  skb_queue_empty(&sk->sk_write_queue));
930 			if (!skb)
931 				goto wait_for_memory;
932 
933 			skb_entail(sk, skb);
934 			copy = size_goal;
935 		}
936 
937 		if (copy > size)
938 			copy = size;
939 
940 		i = skb_shinfo(skb)->nr_frags;
941 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
942 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
943 			tcp_mark_push(tp, skb);
944 			goto new_segment;
945 		}
946 		if (!sk_wmem_schedule(sk, copy))
947 			goto wait_for_memory;
948 
949 		if (can_coalesce) {
950 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
951 		} else {
952 			get_page(page);
953 			skb_fill_page_desc(skb, i, page, offset, copy);
954 		}
955 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
956 
957 		skb->len += copy;
958 		skb->data_len += copy;
959 		skb->truesize += copy;
960 		sk->sk_wmem_queued += copy;
961 		sk_mem_charge(sk, copy);
962 		skb->ip_summed = CHECKSUM_PARTIAL;
963 		tp->write_seq += copy;
964 		TCP_SKB_CB(skb)->end_seq += copy;
965 		tcp_skb_pcount_set(skb, 0);
966 
967 		if (!copied)
968 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
969 
970 		copied += copy;
971 		offset += copy;
972 		size -= copy;
973 		if (!size) {
974 			tcp_tx_timestamp(sk, skb);
975 			goto out;
976 		}
977 
978 		if (skb->len < size_goal || (flags & MSG_OOB))
979 			continue;
980 
981 		if (forced_push(tp)) {
982 			tcp_mark_push(tp, skb);
983 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
984 		} else if (skb == tcp_send_head(sk))
985 			tcp_push_one(sk, mss_now);
986 		continue;
987 
988 wait_for_sndbuf:
989 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
990 wait_for_memory:
991 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
992 			 TCP_NAGLE_PUSH, size_goal);
993 
994 		err = sk_stream_wait_memory(sk, &timeo);
995 		if (err != 0)
996 			goto do_error;
997 
998 		mss_now = tcp_send_mss(sk, &size_goal, flags);
999 	}
1000 
1001 out:
1002 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1003 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1004 	return copied;
1005 
1006 do_error:
1007 	if (copied)
1008 		goto out;
1009 out_err:
1010 	/* make sure we wake any epoll edge trigger waiter */
1011 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1012 		sk->sk_write_space(sk);
1013 	return sk_stream_error(sk, flags, err);
1014 }
1015 
1016 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1017 		 size_t size, int flags)
1018 {
1019 	ssize_t res;
1020 
1021 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1022 	    !sk_check_csum_caps(sk))
1023 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1024 					flags);
1025 
1026 	lock_sock(sk);
1027 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1028 	release_sock(sk);
1029 	return res;
1030 }
1031 EXPORT_SYMBOL(tcp_sendpage);
1032 
1033 static inline int select_size(const struct sock *sk, bool sg)
1034 {
1035 	const struct tcp_sock *tp = tcp_sk(sk);
1036 	int tmp = tp->mss_cache;
1037 
1038 	if (sg) {
1039 		if (sk_can_gso(sk)) {
1040 			/* Small frames wont use a full page:
1041 			 * Payload will immediately follow tcp header.
1042 			 */
1043 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1044 		} else {
1045 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1046 
1047 			if (tmp >= pgbreak &&
1048 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1049 				tmp = pgbreak;
1050 		}
1051 	}
1052 
1053 	return tmp;
1054 }
1055 
1056 void tcp_free_fastopen_req(struct tcp_sock *tp)
1057 {
1058 	if (tp->fastopen_req) {
1059 		kfree(tp->fastopen_req);
1060 		tp->fastopen_req = NULL;
1061 	}
1062 }
1063 
1064 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1065 				int *copied, size_t size)
1066 {
1067 	struct tcp_sock *tp = tcp_sk(sk);
1068 	int err, flags;
1069 
1070 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1071 		return -EOPNOTSUPP;
1072 	if (tp->fastopen_req)
1073 		return -EALREADY; /* Another Fast Open is in progress */
1074 
1075 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1076 				   sk->sk_allocation);
1077 	if (unlikely(!tp->fastopen_req))
1078 		return -ENOBUFS;
1079 	tp->fastopen_req->data = msg;
1080 	tp->fastopen_req->size = size;
1081 
1082 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1083 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1084 				    msg->msg_namelen, flags);
1085 	*copied = tp->fastopen_req->copied;
1086 	tcp_free_fastopen_req(tp);
1087 	return err;
1088 }
1089 
1090 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1091 {
1092 	struct tcp_sock *tp = tcp_sk(sk);
1093 	struct sk_buff *skb;
1094 	int flags, err, copied = 0;
1095 	int mss_now = 0, size_goal, copied_syn = 0;
1096 	bool sg;
1097 	long timeo;
1098 
1099 	lock_sock(sk);
1100 
1101 	flags = msg->msg_flags;
1102 	if (flags & MSG_FASTOPEN) {
1103 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1104 		if (err == -EINPROGRESS && copied_syn > 0)
1105 			goto out;
1106 		else if (err)
1107 			goto out_err;
1108 	}
1109 
1110 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1111 
1112 	/* Wait for a connection to finish. One exception is TCP Fast Open
1113 	 * (passive side) where data is allowed to be sent before a connection
1114 	 * is fully established.
1115 	 */
1116 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1117 	    !tcp_passive_fastopen(sk)) {
1118 		err = sk_stream_wait_connect(sk, &timeo);
1119 		if (err != 0)
1120 			goto do_error;
1121 	}
1122 
1123 	if (unlikely(tp->repair)) {
1124 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1125 			copied = tcp_send_rcvq(sk, msg, size);
1126 			goto out_nopush;
1127 		}
1128 
1129 		err = -EINVAL;
1130 		if (tp->repair_queue == TCP_NO_QUEUE)
1131 			goto out_err;
1132 
1133 		/* 'common' sending to sendq */
1134 	}
1135 
1136 	/* This should be in poll */
1137 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1138 
1139 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1140 
1141 	/* Ok commence sending. */
1142 	copied = 0;
1143 
1144 	err = -EPIPE;
1145 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146 		goto out_err;
1147 
1148 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1149 
1150 	while (msg_data_left(msg)) {
1151 		int copy = 0;
1152 		int max = size_goal;
1153 
1154 		skb = tcp_write_queue_tail(sk);
1155 		if (tcp_send_head(sk)) {
1156 			if (skb->ip_summed == CHECKSUM_NONE)
1157 				max = mss_now;
1158 			copy = max - skb->len;
1159 		}
1160 
1161 		if (copy <= 0) {
1162 new_segment:
1163 			/* Allocate new segment. If the interface is SG,
1164 			 * allocate skb fitting to single page.
1165 			 */
1166 			if (!sk_stream_memory_free(sk))
1167 				goto wait_for_sndbuf;
1168 
1169 			skb = sk_stream_alloc_skb(sk,
1170 						  select_size(sk, sg),
1171 						  sk->sk_allocation,
1172 						  skb_queue_empty(&sk->sk_write_queue));
1173 			if (!skb)
1174 				goto wait_for_memory;
1175 
1176 			/*
1177 			 * Check whether we can use HW checksum.
1178 			 */
1179 			if (sk_check_csum_caps(sk))
1180 				skb->ip_summed = CHECKSUM_PARTIAL;
1181 
1182 			skb_entail(sk, skb);
1183 			copy = size_goal;
1184 			max = size_goal;
1185 
1186 			/* All packets are restored as if they have
1187 			 * already been sent. skb_mstamp isn't set to
1188 			 * avoid wrong rtt estimation.
1189 			 */
1190 			if (tp->repair)
1191 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1192 		}
1193 
1194 		/* Try to append data to the end of skb. */
1195 		if (copy > msg_data_left(msg))
1196 			copy = msg_data_left(msg);
1197 
1198 		/* Where to copy to? */
1199 		if (skb_availroom(skb) > 0) {
1200 			/* We have some space in skb head. Superb! */
1201 			copy = min_t(int, copy, skb_availroom(skb));
1202 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1203 			if (err)
1204 				goto do_fault;
1205 		} else {
1206 			bool merge = true;
1207 			int i = skb_shinfo(skb)->nr_frags;
1208 			struct page_frag *pfrag = sk_page_frag(sk);
1209 
1210 			if (!sk_page_frag_refill(sk, pfrag))
1211 				goto wait_for_memory;
1212 
1213 			if (!skb_can_coalesce(skb, i, pfrag->page,
1214 					      pfrag->offset)) {
1215 				if (i == MAX_SKB_FRAGS || !sg) {
1216 					tcp_mark_push(tp, skb);
1217 					goto new_segment;
1218 				}
1219 				merge = false;
1220 			}
1221 
1222 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1223 
1224 			if (!sk_wmem_schedule(sk, copy))
1225 				goto wait_for_memory;
1226 
1227 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1228 						       pfrag->page,
1229 						       pfrag->offset,
1230 						       copy);
1231 			if (err)
1232 				goto do_error;
1233 
1234 			/* Update the skb. */
1235 			if (merge) {
1236 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1237 			} else {
1238 				skb_fill_page_desc(skb, i, pfrag->page,
1239 						   pfrag->offset, copy);
1240 				get_page(pfrag->page);
1241 			}
1242 			pfrag->offset += copy;
1243 		}
1244 
1245 		if (!copied)
1246 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1247 
1248 		tp->write_seq += copy;
1249 		TCP_SKB_CB(skb)->end_seq += copy;
1250 		tcp_skb_pcount_set(skb, 0);
1251 
1252 		copied += copy;
1253 		if (!msg_data_left(msg)) {
1254 			tcp_tx_timestamp(sk, skb);
1255 			goto out;
1256 		}
1257 
1258 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1259 			continue;
1260 
1261 		if (forced_push(tp)) {
1262 			tcp_mark_push(tp, skb);
1263 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1264 		} else if (skb == tcp_send_head(sk))
1265 			tcp_push_one(sk, mss_now);
1266 		continue;
1267 
1268 wait_for_sndbuf:
1269 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1270 wait_for_memory:
1271 		if (copied)
1272 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1273 				 TCP_NAGLE_PUSH, size_goal);
1274 
1275 		err = sk_stream_wait_memory(sk, &timeo);
1276 		if (err != 0)
1277 			goto do_error;
1278 
1279 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1280 	}
1281 
1282 out:
1283 	if (copied)
1284 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1285 out_nopush:
1286 	release_sock(sk);
1287 	return copied + copied_syn;
1288 
1289 do_fault:
1290 	if (!skb->len) {
1291 		tcp_unlink_write_queue(skb, sk);
1292 		/* It is the one place in all of TCP, except connection
1293 		 * reset, where we can be unlinking the send_head.
1294 		 */
1295 		tcp_check_send_head(sk, skb);
1296 		sk_wmem_free_skb(sk, skb);
1297 	}
1298 
1299 do_error:
1300 	if (copied + copied_syn)
1301 		goto out;
1302 out_err:
1303 	err = sk_stream_error(sk, flags, err);
1304 	/* make sure we wake any epoll edge trigger waiter */
1305 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1306 		sk->sk_write_space(sk);
1307 	release_sock(sk);
1308 	return err;
1309 }
1310 EXPORT_SYMBOL(tcp_sendmsg);
1311 
1312 /*
1313  *	Handle reading urgent data. BSD has very simple semantics for
1314  *	this, no blocking and very strange errors 8)
1315  */
1316 
1317 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1318 {
1319 	struct tcp_sock *tp = tcp_sk(sk);
1320 
1321 	/* No URG data to read. */
1322 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1323 	    tp->urg_data == TCP_URG_READ)
1324 		return -EINVAL;	/* Yes this is right ! */
1325 
1326 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1327 		return -ENOTCONN;
1328 
1329 	if (tp->urg_data & TCP_URG_VALID) {
1330 		int err = 0;
1331 		char c = tp->urg_data;
1332 
1333 		if (!(flags & MSG_PEEK))
1334 			tp->urg_data = TCP_URG_READ;
1335 
1336 		/* Read urgent data. */
1337 		msg->msg_flags |= MSG_OOB;
1338 
1339 		if (len > 0) {
1340 			if (!(flags & MSG_TRUNC))
1341 				err = memcpy_to_msg(msg, &c, 1);
1342 			len = 1;
1343 		} else
1344 			msg->msg_flags |= MSG_TRUNC;
1345 
1346 		return err ? -EFAULT : len;
1347 	}
1348 
1349 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1350 		return 0;
1351 
1352 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1353 	 * the available implementations agree in this case:
1354 	 * this call should never block, independent of the
1355 	 * blocking state of the socket.
1356 	 * Mike <pall@rz.uni-karlsruhe.de>
1357 	 */
1358 	return -EAGAIN;
1359 }
1360 
1361 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1362 {
1363 	struct sk_buff *skb;
1364 	int copied = 0, err = 0;
1365 
1366 	/* XXX -- need to support SO_PEEK_OFF */
1367 
1368 	skb_queue_walk(&sk->sk_write_queue, skb) {
1369 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1370 		if (err)
1371 			break;
1372 
1373 		copied += skb->len;
1374 	}
1375 
1376 	return err ?: copied;
1377 }
1378 
1379 /* Clean up the receive buffer for full frames taken by the user,
1380  * then send an ACK if necessary.  COPIED is the number of bytes
1381  * tcp_recvmsg has given to the user so far, it speeds up the
1382  * calculation of whether or not we must ACK for the sake of
1383  * a window update.
1384  */
1385 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1386 {
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 	bool time_to_ack = false;
1389 
1390 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1391 
1392 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1393 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1394 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1395 
1396 	if (inet_csk_ack_scheduled(sk)) {
1397 		const struct inet_connection_sock *icsk = inet_csk(sk);
1398 		   /* Delayed ACKs frequently hit locked sockets during bulk
1399 		    * receive. */
1400 		if (icsk->icsk_ack.blocked ||
1401 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1402 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1403 		    /*
1404 		     * If this read emptied read buffer, we send ACK, if
1405 		     * connection is not bidirectional, user drained
1406 		     * receive buffer and there was a small segment
1407 		     * in queue.
1408 		     */
1409 		    (copied > 0 &&
1410 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1411 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1412 		       !icsk->icsk_ack.pingpong)) &&
1413 		      !atomic_read(&sk->sk_rmem_alloc)))
1414 			time_to_ack = true;
1415 	}
1416 
1417 	/* We send an ACK if we can now advertise a non-zero window
1418 	 * which has been raised "significantly".
1419 	 *
1420 	 * Even if window raised up to infinity, do not send window open ACK
1421 	 * in states, where we will not receive more. It is useless.
1422 	 */
1423 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1424 		__u32 rcv_window_now = tcp_receive_window(tp);
1425 
1426 		/* Optimize, __tcp_select_window() is not cheap. */
1427 		if (2*rcv_window_now <= tp->window_clamp) {
1428 			__u32 new_window = __tcp_select_window(sk);
1429 
1430 			/* Send ACK now, if this read freed lots of space
1431 			 * in our buffer. Certainly, new_window is new window.
1432 			 * We can advertise it now, if it is not less than current one.
1433 			 * "Lots" means "at least twice" here.
1434 			 */
1435 			if (new_window && new_window >= 2 * rcv_window_now)
1436 				time_to_ack = true;
1437 		}
1438 	}
1439 	if (time_to_ack)
1440 		tcp_send_ack(sk);
1441 }
1442 
1443 static void tcp_prequeue_process(struct sock *sk)
1444 {
1445 	struct sk_buff *skb;
1446 	struct tcp_sock *tp = tcp_sk(sk);
1447 
1448 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1449 
1450 	/* RX process wants to run with disabled BHs, though it is not
1451 	 * necessary */
1452 	local_bh_disable();
1453 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1454 		sk_backlog_rcv(sk, skb);
1455 	local_bh_enable();
1456 
1457 	/* Clear memory counter. */
1458 	tp->ucopy.memory = 0;
1459 }
1460 
1461 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1462 {
1463 	struct sk_buff *skb;
1464 	u32 offset;
1465 
1466 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1467 		offset = seq - TCP_SKB_CB(skb)->seq;
1468 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1469 			offset--;
1470 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1471 			*off = offset;
1472 			return skb;
1473 		}
1474 		/* This looks weird, but this can happen if TCP collapsing
1475 		 * splitted a fat GRO packet, while we released socket lock
1476 		 * in skb_splice_bits()
1477 		 */
1478 		sk_eat_skb(sk, skb);
1479 	}
1480 	return NULL;
1481 }
1482 
1483 /*
1484  * This routine provides an alternative to tcp_recvmsg() for routines
1485  * that would like to handle copying from skbuffs directly in 'sendfile'
1486  * fashion.
1487  * Note:
1488  *	- It is assumed that the socket was locked by the caller.
1489  *	- The routine does not block.
1490  *	- At present, there is no support for reading OOB data
1491  *	  or for 'peeking' the socket using this routine
1492  *	  (although both would be easy to implement).
1493  */
1494 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1495 		  sk_read_actor_t recv_actor)
1496 {
1497 	struct sk_buff *skb;
1498 	struct tcp_sock *tp = tcp_sk(sk);
1499 	u32 seq = tp->copied_seq;
1500 	u32 offset;
1501 	int copied = 0;
1502 
1503 	if (sk->sk_state == TCP_LISTEN)
1504 		return -ENOTCONN;
1505 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1506 		if (offset < skb->len) {
1507 			int used;
1508 			size_t len;
1509 
1510 			len = skb->len - offset;
1511 			/* Stop reading if we hit a patch of urgent data */
1512 			if (tp->urg_data) {
1513 				u32 urg_offset = tp->urg_seq - seq;
1514 				if (urg_offset < len)
1515 					len = urg_offset;
1516 				if (!len)
1517 					break;
1518 			}
1519 			used = recv_actor(desc, skb, offset, len);
1520 			if (used <= 0) {
1521 				if (!copied)
1522 					copied = used;
1523 				break;
1524 			} else if (used <= len) {
1525 				seq += used;
1526 				copied += used;
1527 				offset += used;
1528 			}
1529 			/* If recv_actor drops the lock (e.g. TCP splice
1530 			 * receive) the skb pointer might be invalid when
1531 			 * getting here: tcp_collapse might have deleted it
1532 			 * while aggregating skbs from the socket queue.
1533 			 */
1534 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1535 			if (!skb)
1536 				break;
1537 			/* TCP coalescing might have appended data to the skb.
1538 			 * Try to splice more frags
1539 			 */
1540 			if (offset + 1 != skb->len)
1541 				continue;
1542 		}
1543 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1544 			sk_eat_skb(sk, skb);
1545 			++seq;
1546 			break;
1547 		}
1548 		sk_eat_skb(sk, skb);
1549 		if (!desc->count)
1550 			break;
1551 		tp->copied_seq = seq;
1552 	}
1553 	tp->copied_seq = seq;
1554 
1555 	tcp_rcv_space_adjust(sk);
1556 
1557 	/* Clean up data we have read: This will do ACK frames. */
1558 	if (copied > 0) {
1559 		tcp_recv_skb(sk, seq, &offset);
1560 		tcp_cleanup_rbuf(sk, copied);
1561 	}
1562 	return copied;
1563 }
1564 EXPORT_SYMBOL(tcp_read_sock);
1565 
1566 /*
1567  *	This routine copies from a sock struct into the user buffer.
1568  *
1569  *	Technical note: in 2.3 we work on _locked_ socket, so that
1570  *	tricks with *seq access order and skb->users are not required.
1571  *	Probably, code can be easily improved even more.
1572  */
1573 
1574 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1575 		int flags, int *addr_len)
1576 {
1577 	struct tcp_sock *tp = tcp_sk(sk);
1578 	int copied = 0;
1579 	u32 peek_seq;
1580 	u32 *seq;
1581 	unsigned long used;
1582 	int err;
1583 	int target;		/* Read at least this many bytes */
1584 	long timeo;
1585 	struct task_struct *user_recv = NULL;
1586 	struct sk_buff *skb, *last;
1587 	u32 urg_hole = 0;
1588 
1589 	if (unlikely(flags & MSG_ERRQUEUE))
1590 		return inet_recv_error(sk, msg, len, addr_len);
1591 
1592 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1593 	    (sk->sk_state == TCP_ESTABLISHED))
1594 		sk_busy_loop(sk, nonblock);
1595 
1596 	lock_sock(sk);
1597 
1598 	err = -ENOTCONN;
1599 	if (sk->sk_state == TCP_LISTEN)
1600 		goto out;
1601 
1602 	timeo = sock_rcvtimeo(sk, nonblock);
1603 
1604 	/* Urgent data needs to be handled specially. */
1605 	if (flags & MSG_OOB)
1606 		goto recv_urg;
1607 
1608 	if (unlikely(tp->repair)) {
1609 		err = -EPERM;
1610 		if (!(flags & MSG_PEEK))
1611 			goto out;
1612 
1613 		if (tp->repair_queue == TCP_SEND_QUEUE)
1614 			goto recv_sndq;
1615 
1616 		err = -EINVAL;
1617 		if (tp->repair_queue == TCP_NO_QUEUE)
1618 			goto out;
1619 
1620 		/* 'common' recv queue MSG_PEEK-ing */
1621 	}
1622 
1623 	seq = &tp->copied_seq;
1624 	if (flags & MSG_PEEK) {
1625 		peek_seq = tp->copied_seq;
1626 		seq = &peek_seq;
1627 	}
1628 
1629 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1630 
1631 	do {
1632 		u32 offset;
1633 
1634 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1635 		if (tp->urg_data && tp->urg_seq == *seq) {
1636 			if (copied)
1637 				break;
1638 			if (signal_pending(current)) {
1639 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1640 				break;
1641 			}
1642 		}
1643 
1644 		/* Next get a buffer. */
1645 
1646 		last = skb_peek_tail(&sk->sk_receive_queue);
1647 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1648 			last = skb;
1649 			/* Now that we have two receive queues this
1650 			 * shouldn't happen.
1651 			 */
1652 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1653 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1654 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1655 				 flags))
1656 				break;
1657 
1658 			offset = *seq - TCP_SKB_CB(skb)->seq;
1659 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1660 				offset--;
1661 			if (offset < skb->len)
1662 				goto found_ok_skb;
1663 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1664 				goto found_fin_ok;
1665 			WARN(!(flags & MSG_PEEK),
1666 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1667 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1668 		}
1669 
1670 		/* Well, if we have backlog, try to process it now yet. */
1671 
1672 		if (copied >= target && !sk->sk_backlog.tail)
1673 			break;
1674 
1675 		if (copied) {
1676 			if (sk->sk_err ||
1677 			    sk->sk_state == TCP_CLOSE ||
1678 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1679 			    !timeo ||
1680 			    signal_pending(current))
1681 				break;
1682 		} else {
1683 			if (sock_flag(sk, SOCK_DONE))
1684 				break;
1685 
1686 			if (sk->sk_err) {
1687 				copied = sock_error(sk);
1688 				break;
1689 			}
1690 
1691 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1692 				break;
1693 
1694 			if (sk->sk_state == TCP_CLOSE) {
1695 				if (!sock_flag(sk, SOCK_DONE)) {
1696 					/* This occurs when user tries to read
1697 					 * from never connected socket.
1698 					 */
1699 					copied = -ENOTCONN;
1700 					break;
1701 				}
1702 				break;
1703 			}
1704 
1705 			if (!timeo) {
1706 				copied = -EAGAIN;
1707 				break;
1708 			}
1709 
1710 			if (signal_pending(current)) {
1711 				copied = sock_intr_errno(timeo);
1712 				break;
1713 			}
1714 		}
1715 
1716 		tcp_cleanup_rbuf(sk, copied);
1717 
1718 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1719 			/* Install new reader */
1720 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1721 				user_recv = current;
1722 				tp->ucopy.task = user_recv;
1723 				tp->ucopy.msg = msg;
1724 			}
1725 
1726 			tp->ucopy.len = len;
1727 
1728 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1729 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1730 
1731 			/* Ugly... If prequeue is not empty, we have to
1732 			 * process it before releasing socket, otherwise
1733 			 * order will be broken at second iteration.
1734 			 * More elegant solution is required!!!
1735 			 *
1736 			 * Look: we have the following (pseudo)queues:
1737 			 *
1738 			 * 1. packets in flight
1739 			 * 2. backlog
1740 			 * 3. prequeue
1741 			 * 4. receive_queue
1742 			 *
1743 			 * Each queue can be processed only if the next ones
1744 			 * are empty. At this point we have empty receive_queue.
1745 			 * But prequeue _can_ be not empty after 2nd iteration,
1746 			 * when we jumped to start of loop because backlog
1747 			 * processing added something to receive_queue.
1748 			 * We cannot release_sock(), because backlog contains
1749 			 * packets arrived _after_ prequeued ones.
1750 			 *
1751 			 * Shortly, algorithm is clear --- to process all
1752 			 * the queues in order. We could make it more directly,
1753 			 * requeueing packets from backlog to prequeue, if
1754 			 * is not empty. It is more elegant, but eats cycles,
1755 			 * unfortunately.
1756 			 */
1757 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1758 				goto do_prequeue;
1759 
1760 			/* __ Set realtime policy in scheduler __ */
1761 		}
1762 
1763 		if (copied >= target) {
1764 			/* Do not sleep, just process backlog. */
1765 			release_sock(sk);
1766 			lock_sock(sk);
1767 		} else {
1768 			sk_wait_data(sk, &timeo, last);
1769 		}
1770 
1771 		if (user_recv) {
1772 			int chunk;
1773 
1774 			/* __ Restore normal policy in scheduler __ */
1775 
1776 			chunk = len - tp->ucopy.len;
1777 			if (chunk != 0) {
1778 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1779 				len -= chunk;
1780 				copied += chunk;
1781 			}
1782 
1783 			if (tp->rcv_nxt == tp->copied_seq &&
1784 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1785 do_prequeue:
1786 				tcp_prequeue_process(sk);
1787 
1788 				chunk = len - tp->ucopy.len;
1789 				if (chunk != 0) {
1790 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1791 					len -= chunk;
1792 					copied += chunk;
1793 				}
1794 			}
1795 		}
1796 		if ((flags & MSG_PEEK) &&
1797 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1798 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1799 					    current->comm,
1800 					    task_pid_nr(current));
1801 			peek_seq = tp->copied_seq;
1802 		}
1803 		continue;
1804 
1805 	found_ok_skb:
1806 		/* Ok so how much can we use? */
1807 		used = skb->len - offset;
1808 		if (len < used)
1809 			used = len;
1810 
1811 		/* Do we have urgent data here? */
1812 		if (tp->urg_data) {
1813 			u32 urg_offset = tp->urg_seq - *seq;
1814 			if (urg_offset < used) {
1815 				if (!urg_offset) {
1816 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1817 						++*seq;
1818 						urg_hole++;
1819 						offset++;
1820 						used--;
1821 						if (!used)
1822 							goto skip_copy;
1823 					}
1824 				} else
1825 					used = urg_offset;
1826 			}
1827 		}
1828 
1829 		if (!(flags & MSG_TRUNC)) {
1830 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1831 			if (err) {
1832 				/* Exception. Bailout! */
1833 				if (!copied)
1834 					copied = -EFAULT;
1835 				break;
1836 			}
1837 		}
1838 
1839 		*seq += used;
1840 		copied += used;
1841 		len -= used;
1842 
1843 		tcp_rcv_space_adjust(sk);
1844 
1845 skip_copy:
1846 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1847 			tp->urg_data = 0;
1848 			tcp_fast_path_check(sk);
1849 		}
1850 		if (used + offset < skb->len)
1851 			continue;
1852 
1853 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1854 			goto found_fin_ok;
1855 		if (!(flags & MSG_PEEK))
1856 			sk_eat_skb(sk, skb);
1857 		continue;
1858 
1859 	found_fin_ok:
1860 		/* Process the FIN. */
1861 		++*seq;
1862 		if (!(flags & MSG_PEEK))
1863 			sk_eat_skb(sk, skb);
1864 		break;
1865 	} while (len > 0);
1866 
1867 	if (user_recv) {
1868 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1869 			int chunk;
1870 
1871 			tp->ucopy.len = copied > 0 ? len : 0;
1872 
1873 			tcp_prequeue_process(sk);
1874 
1875 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1876 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1877 				len -= chunk;
1878 				copied += chunk;
1879 			}
1880 		}
1881 
1882 		tp->ucopy.task = NULL;
1883 		tp->ucopy.len = 0;
1884 	}
1885 
1886 	/* According to UNIX98, msg_name/msg_namelen are ignored
1887 	 * on connected socket. I was just happy when found this 8) --ANK
1888 	 */
1889 
1890 	/* Clean up data we have read: This will do ACK frames. */
1891 	tcp_cleanup_rbuf(sk, copied);
1892 
1893 	release_sock(sk);
1894 	return copied;
1895 
1896 out:
1897 	release_sock(sk);
1898 	return err;
1899 
1900 recv_urg:
1901 	err = tcp_recv_urg(sk, msg, len, flags);
1902 	goto out;
1903 
1904 recv_sndq:
1905 	err = tcp_peek_sndq(sk, msg, len);
1906 	goto out;
1907 }
1908 EXPORT_SYMBOL(tcp_recvmsg);
1909 
1910 void tcp_set_state(struct sock *sk, int state)
1911 {
1912 	int oldstate = sk->sk_state;
1913 
1914 	switch (state) {
1915 	case TCP_ESTABLISHED:
1916 		if (oldstate != TCP_ESTABLISHED)
1917 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1918 		break;
1919 
1920 	case TCP_CLOSE:
1921 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1922 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1923 
1924 		sk->sk_prot->unhash(sk);
1925 		if (inet_csk(sk)->icsk_bind_hash &&
1926 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1927 			inet_put_port(sk);
1928 		/* fall through */
1929 	default:
1930 		if (oldstate == TCP_ESTABLISHED)
1931 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1932 	}
1933 
1934 	/* Change state AFTER socket is unhashed to avoid closed
1935 	 * socket sitting in hash tables.
1936 	 */
1937 	sk_state_store(sk, state);
1938 
1939 #ifdef STATE_TRACE
1940 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1941 #endif
1942 }
1943 EXPORT_SYMBOL_GPL(tcp_set_state);
1944 
1945 /*
1946  *	State processing on a close. This implements the state shift for
1947  *	sending our FIN frame. Note that we only send a FIN for some
1948  *	states. A shutdown() may have already sent the FIN, or we may be
1949  *	closed.
1950  */
1951 
1952 static const unsigned char new_state[16] = {
1953   /* current state:        new state:      action:	*/
1954   [0 /* (Invalid) */]	= TCP_CLOSE,
1955   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1956   [TCP_SYN_SENT]	= TCP_CLOSE,
1957   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1958   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1959   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1960   [TCP_TIME_WAIT]	= TCP_CLOSE,
1961   [TCP_CLOSE]		= TCP_CLOSE,
1962   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1963   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1964   [TCP_LISTEN]		= TCP_CLOSE,
1965   [TCP_CLOSING]		= TCP_CLOSING,
1966   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1967 };
1968 
1969 static int tcp_close_state(struct sock *sk)
1970 {
1971 	int next = (int)new_state[sk->sk_state];
1972 	int ns = next & TCP_STATE_MASK;
1973 
1974 	tcp_set_state(sk, ns);
1975 
1976 	return next & TCP_ACTION_FIN;
1977 }
1978 
1979 /*
1980  *	Shutdown the sending side of a connection. Much like close except
1981  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1982  */
1983 
1984 void tcp_shutdown(struct sock *sk, int how)
1985 {
1986 	/*	We need to grab some memory, and put together a FIN,
1987 	 *	and then put it into the queue to be sent.
1988 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1989 	 */
1990 	if (!(how & SEND_SHUTDOWN))
1991 		return;
1992 
1993 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1994 	if ((1 << sk->sk_state) &
1995 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1996 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1997 		/* Clear out any half completed packets.  FIN if needed. */
1998 		if (tcp_close_state(sk))
1999 			tcp_send_fin(sk);
2000 	}
2001 }
2002 EXPORT_SYMBOL(tcp_shutdown);
2003 
2004 bool tcp_check_oom(struct sock *sk, int shift)
2005 {
2006 	bool too_many_orphans, out_of_socket_memory;
2007 
2008 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2009 	out_of_socket_memory = tcp_out_of_memory(sk);
2010 
2011 	if (too_many_orphans)
2012 		net_info_ratelimited("too many orphaned sockets\n");
2013 	if (out_of_socket_memory)
2014 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2015 	return too_many_orphans || out_of_socket_memory;
2016 }
2017 
2018 void tcp_close(struct sock *sk, long timeout)
2019 {
2020 	struct sk_buff *skb;
2021 	int data_was_unread = 0;
2022 	int state;
2023 
2024 	lock_sock(sk);
2025 	sk->sk_shutdown = SHUTDOWN_MASK;
2026 
2027 	if (sk->sk_state == TCP_LISTEN) {
2028 		tcp_set_state(sk, TCP_CLOSE);
2029 
2030 		/* Special case. */
2031 		inet_csk_listen_stop(sk);
2032 
2033 		goto adjudge_to_death;
2034 	}
2035 
2036 	/*  We need to flush the recv. buffs.  We do this only on the
2037 	 *  descriptor close, not protocol-sourced closes, because the
2038 	 *  reader process may not have drained the data yet!
2039 	 */
2040 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2041 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2042 
2043 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2044 			len--;
2045 		data_was_unread += len;
2046 		__kfree_skb(skb);
2047 	}
2048 
2049 	sk_mem_reclaim(sk);
2050 
2051 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2052 	if (sk->sk_state == TCP_CLOSE)
2053 		goto adjudge_to_death;
2054 
2055 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2056 	 * data was lost. To witness the awful effects of the old behavior of
2057 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2058 	 * GET in an FTP client, suspend the process, wait for the client to
2059 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2060 	 * Note: timeout is always zero in such a case.
2061 	 */
2062 	if (unlikely(tcp_sk(sk)->repair)) {
2063 		sk->sk_prot->disconnect(sk, 0);
2064 	} else if (data_was_unread) {
2065 		/* Unread data was tossed, zap the connection. */
2066 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2067 		tcp_set_state(sk, TCP_CLOSE);
2068 		tcp_send_active_reset(sk, sk->sk_allocation);
2069 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2070 		/* Check zero linger _after_ checking for unread data. */
2071 		sk->sk_prot->disconnect(sk, 0);
2072 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2073 	} else if (tcp_close_state(sk)) {
2074 		/* We FIN if the application ate all the data before
2075 		 * zapping the connection.
2076 		 */
2077 
2078 		/* RED-PEN. Formally speaking, we have broken TCP state
2079 		 * machine. State transitions:
2080 		 *
2081 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2082 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2083 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2084 		 *
2085 		 * are legal only when FIN has been sent (i.e. in window),
2086 		 * rather than queued out of window. Purists blame.
2087 		 *
2088 		 * F.e. "RFC state" is ESTABLISHED,
2089 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2090 		 *
2091 		 * The visible declinations are that sometimes
2092 		 * we enter time-wait state, when it is not required really
2093 		 * (harmless), do not send active resets, when they are
2094 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2095 		 * they look as CLOSING or LAST_ACK for Linux)
2096 		 * Probably, I missed some more holelets.
2097 		 * 						--ANK
2098 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2099 		 * in a single packet! (May consider it later but will
2100 		 * probably need API support or TCP_CORK SYN-ACK until
2101 		 * data is written and socket is closed.)
2102 		 */
2103 		tcp_send_fin(sk);
2104 	}
2105 
2106 	sk_stream_wait_close(sk, timeout);
2107 
2108 adjudge_to_death:
2109 	state = sk->sk_state;
2110 	sock_hold(sk);
2111 	sock_orphan(sk);
2112 
2113 	/* It is the last release_sock in its life. It will remove backlog. */
2114 	release_sock(sk);
2115 
2116 
2117 	/* Now socket is owned by kernel and we acquire BH lock
2118 	   to finish close. No need to check for user refs.
2119 	 */
2120 	local_bh_disable();
2121 	bh_lock_sock(sk);
2122 	WARN_ON(sock_owned_by_user(sk));
2123 
2124 	percpu_counter_inc(sk->sk_prot->orphan_count);
2125 
2126 	/* Have we already been destroyed by a softirq or backlog? */
2127 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2128 		goto out;
2129 
2130 	/*	This is a (useful) BSD violating of the RFC. There is a
2131 	 *	problem with TCP as specified in that the other end could
2132 	 *	keep a socket open forever with no application left this end.
2133 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2134 	 *	our end. If they send after that then tough - BUT: long enough
2135 	 *	that we won't make the old 4*rto = almost no time - whoops
2136 	 *	reset mistake.
2137 	 *
2138 	 *	Nope, it was not mistake. It is really desired behaviour
2139 	 *	f.e. on http servers, when such sockets are useless, but
2140 	 *	consume significant resources. Let's do it with special
2141 	 *	linger2	option.					--ANK
2142 	 */
2143 
2144 	if (sk->sk_state == TCP_FIN_WAIT2) {
2145 		struct tcp_sock *tp = tcp_sk(sk);
2146 		if (tp->linger2 < 0) {
2147 			tcp_set_state(sk, TCP_CLOSE);
2148 			tcp_send_active_reset(sk, GFP_ATOMIC);
2149 			NET_INC_STATS_BH(sock_net(sk),
2150 					LINUX_MIB_TCPABORTONLINGER);
2151 		} else {
2152 			const int tmo = tcp_fin_time(sk);
2153 
2154 			if (tmo > TCP_TIMEWAIT_LEN) {
2155 				inet_csk_reset_keepalive_timer(sk,
2156 						tmo - TCP_TIMEWAIT_LEN);
2157 			} else {
2158 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2159 				goto out;
2160 			}
2161 		}
2162 	}
2163 	if (sk->sk_state != TCP_CLOSE) {
2164 		sk_mem_reclaim(sk);
2165 		if (tcp_check_oom(sk, 0)) {
2166 			tcp_set_state(sk, TCP_CLOSE);
2167 			tcp_send_active_reset(sk, GFP_ATOMIC);
2168 			NET_INC_STATS_BH(sock_net(sk),
2169 					LINUX_MIB_TCPABORTONMEMORY);
2170 		}
2171 	}
2172 
2173 	if (sk->sk_state == TCP_CLOSE) {
2174 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2175 		/* We could get here with a non-NULL req if the socket is
2176 		 * aborted (e.g., closed with unread data) before 3WHS
2177 		 * finishes.
2178 		 */
2179 		if (req)
2180 			reqsk_fastopen_remove(sk, req, false);
2181 		inet_csk_destroy_sock(sk);
2182 	}
2183 	/* Otherwise, socket is reprieved until protocol close. */
2184 
2185 out:
2186 	bh_unlock_sock(sk);
2187 	local_bh_enable();
2188 	sock_put(sk);
2189 }
2190 EXPORT_SYMBOL(tcp_close);
2191 
2192 /* These states need RST on ABORT according to RFC793 */
2193 
2194 static inline bool tcp_need_reset(int state)
2195 {
2196 	return (1 << state) &
2197 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2198 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2199 }
2200 
2201 int tcp_disconnect(struct sock *sk, int flags)
2202 {
2203 	struct inet_sock *inet = inet_sk(sk);
2204 	struct inet_connection_sock *icsk = inet_csk(sk);
2205 	struct tcp_sock *tp = tcp_sk(sk);
2206 	int err = 0;
2207 	int old_state = sk->sk_state;
2208 
2209 	if (old_state != TCP_CLOSE)
2210 		tcp_set_state(sk, TCP_CLOSE);
2211 
2212 	/* ABORT function of RFC793 */
2213 	if (old_state == TCP_LISTEN) {
2214 		inet_csk_listen_stop(sk);
2215 	} else if (unlikely(tp->repair)) {
2216 		sk->sk_err = ECONNABORTED;
2217 	} else if (tcp_need_reset(old_state) ||
2218 		   (tp->snd_nxt != tp->write_seq &&
2219 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2220 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2221 		 * states
2222 		 */
2223 		tcp_send_active_reset(sk, gfp_any());
2224 		sk->sk_err = ECONNRESET;
2225 	} else if (old_state == TCP_SYN_SENT)
2226 		sk->sk_err = ECONNRESET;
2227 
2228 	tcp_clear_xmit_timers(sk);
2229 	__skb_queue_purge(&sk->sk_receive_queue);
2230 	tcp_write_queue_purge(sk);
2231 	__skb_queue_purge(&tp->out_of_order_queue);
2232 
2233 	inet->inet_dport = 0;
2234 
2235 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2236 		inet_reset_saddr(sk);
2237 
2238 	sk->sk_shutdown = 0;
2239 	sock_reset_flag(sk, SOCK_DONE);
2240 	tp->srtt_us = 0;
2241 	tp->write_seq += tp->max_window + 2;
2242 	if (tp->write_seq == 0)
2243 		tp->write_seq = 1;
2244 	icsk->icsk_backoff = 0;
2245 	tp->snd_cwnd = 2;
2246 	icsk->icsk_probes_out = 0;
2247 	tp->packets_out = 0;
2248 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2249 	tp->snd_cwnd_cnt = 0;
2250 	tp->window_clamp = 0;
2251 	tcp_set_ca_state(sk, TCP_CA_Open);
2252 	tcp_clear_retrans(tp);
2253 	inet_csk_delack_init(sk);
2254 	tcp_init_send_head(sk);
2255 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2256 	__sk_dst_reset(sk);
2257 
2258 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2259 
2260 	sk->sk_error_report(sk);
2261 	return err;
2262 }
2263 EXPORT_SYMBOL(tcp_disconnect);
2264 
2265 static inline bool tcp_can_repair_sock(const struct sock *sk)
2266 {
2267 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2268 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2269 }
2270 
2271 static int tcp_repair_options_est(struct tcp_sock *tp,
2272 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2273 {
2274 	struct tcp_repair_opt opt;
2275 
2276 	while (len >= sizeof(opt)) {
2277 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2278 			return -EFAULT;
2279 
2280 		optbuf++;
2281 		len -= sizeof(opt);
2282 
2283 		switch (opt.opt_code) {
2284 		case TCPOPT_MSS:
2285 			tp->rx_opt.mss_clamp = opt.opt_val;
2286 			break;
2287 		case TCPOPT_WINDOW:
2288 			{
2289 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2290 				u16 rcv_wscale = opt.opt_val >> 16;
2291 
2292 				if (snd_wscale > 14 || rcv_wscale > 14)
2293 					return -EFBIG;
2294 
2295 				tp->rx_opt.snd_wscale = snd_wscale;
2296 				tp->rx_opt.rcv_wscale = rcv_wscale;
2297 				tp->rx_opt.wscale_ok = 1;
2298 			}
2299 			break;
2300 		case TCPOPT_SACK_PERM:
2301 			if (opt.opt_val != 0)
2302 				return -EINVAL;
2303 
2304 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2305 			if (sysctl_tcp_fack)
2306 				tcp_enable_fack(tp);
2307 			break;
2308 		case TCPOPT_TIMESTAMP:
2309 			if (opt.opt_val != 0)
2310 				return -EINVAL;
2311 
2312 			tp->rx_opt.tstamp_ok = 1;
2313 			break;
2314 		}
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 /*
2321  *	Socket option code for TCP.
2322  */
2323 static int do_tcp_setsockopt(struct sock *sk, int level,
2324 		int optname, char __user *optval, unsigned int optlen)
2325 {
2326 	struct tcp_sock *tp = tcp_sk(sk);
2327 	struct inet_connection_sock *icsk = inet_csk(sk);
2328 	int val;
2329 	int err = 0;
2330 
2331 	/* These are data/string values, all the others are ints */
2332 	switch (optname) {
2333 	case TCP_CONGESTION: {
2334 		char name[TCP_CA_NAME_MAX];
2335 
2336 		if (optlen < 1)
2337 			return -EINVAL;
2338 
2339 		val = strncpy_from_user(name, optval,
2340 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2341 		if (val < 0)
2342 			return -EFAULT;
2343 		name[val] = 0;
2344 
2345 		lock_sock(sk);
2346 		err = tcp_set_congestion_control(sk, name);
2347 		release_sock(sk);
2348 		return err;
2349 	}
2350 	default:
2351 		/* fallthru */
2352 		break;
2353 	}
2354 
2355 	if (optlen < sizeof(int))
2356 		return -EINVAL;
2357 
2358 	if (get_user(val, (int __user *)optval))
2359 		return -EFAULT;
2360 
2361 	lock_sock(sk);
2362 
2363 	switch (optname) {
2364 	case TCP_MAXSEG:
2365 		/* Values greater than interface MTU won't take effect. However
2366 		 * at the point when this call is done we typically don't yet
2367 		 * know which interface is going to be used */
2368 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2369 			err = -EINVAL;
2370 			break;
2371 		}
2372 		tp->rx_opt.user_mss = val;
2373 		break;
2374 
2375 	case TCP_NODELAY:
2376 		if (val) {
2377 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2378 			 * this option on corked socket is remembered, but
2379 			 * it is not activated until cork is cleared.
2380 			 *
2381 			 * However, when TCP_NODELAY is set we make
2382 			 * an explicit push, which overrides even TCP_CORK
2383 			 * for currently queued segments.
2384 			 */
2385 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2386 			tcp_push_pending_frames(sk);
2387 		} else {
2388 			tp->nonagle &= ~TCP_NAGLE_OFF;
2389 		}
2390 		break;
2391 
2392 	case TCP_THIN_LINEAR_TIMEOUTS:
2393 		if (val < 0 || val > 1)
2394 			err = -EINVAL;
2395 		else
2396 			tp->thin_lto = val;
2397 		break;
2398 
2399 	case TCP_THIN_DUPACK:
2400 		if (val < 0 || val > 1)
2401 			err = -EINVAL;
2402 		else {
2403 			tp->thin_dupack = val;
2404 			if (tp->thin_dupack)
2405 				tcp_disable_early_retrans(tp);
2406 		}
2407 		break;
2408 
2409 	case TCP_REPAIR:
2410 		if (!tcp_can_repair_sock(sk))
2411 			err = -EPERM;
2412 		else if (val == 1) {
2413 			tp->repair = 1;
2414 			sk->sk_reuse = SK_FORCE_REUSE;
2415 			tp->repair_queue = TCP_NO_QUEUE;
2416 		} else if (val == 0) {
2417 			tp->repair = 0;
2418 			sk->sk_reuse = SK_NO_REUSE;
2419 			tcp_send_window_probe(sk);
2420 		} else
2421 			err = -EINVAL;
2422 
2423 		break;
2424 
2425 	case TCP_REPAIR_QUEUE:
2426 		if (!tp->repair)
2427 			err = -EPERM;
2428 		else if (val < TCP_QUEUES_NR)
2429 			tp->repair_queue = val;
2430 		else
2431 			err = -EINVAL;
2432 		break;
2433 
2434 	case TCP_QUEUE_SEQ:
2435 		if (sk->sk_state != TCP_CLOSE)
2436 			err = -EPERM;
2437 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2438 			tp->write_seq = val;
2439 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2440 			tp->rcv_nxt = val;
2441 		else
2442 			err = -EINVAL;
2443 		break;
2444 
2445 	case TCP_REPAIR_OPTIONS:
2446 		if (!tp->repair)
2447 			err = -EINVAL;
2448 		else if (sk->sk_state == TCP_ESTABLISHED)
2449 			err = tcp_repair_options_est(tp,
2450 					(struct tcp_repair_opt __user *)optval,
2451 					optlen);
2452 		else
2453 			err = -EPERM;
2454 		break;
2455 
2456 	case TCP_CORK:
2457 		/* When set indicates to always queue non-full frames.
2458 		 * Later the user clears this option and we transmit
2459 		 * any pending partial frames in the queue.  This is
2460 		 * meant to be used alongside sendfile() to get properly
2461 		 * filled frames when the user (for example) must write
2462 		 * out headers with a write() call first and then use
2463 		 * sendfile to send out the data parts.
2464 		 *
2465 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2466 		 * stronger than TCP_NODELAY.
2467 		 */
2468 		if (val) {
2469 			tp->nonagle |= TCP_NAGLE_CORK;
2470 		} else {
2471 			tp->nonagle &= ~TCP_NAGLE_CORK;
2472 			if (tp->nonagle&TCP_NAGLE_OFF)
2473 				tp->nonagle |= TCP_NAGLE_PUSH;
2474 			tcp_push_pending_frames(sk);
2475 		}
2476 		break;
2477 
2478 	case TCP_KEEPIDLE:
2479 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2480 			err = -EINVAL;
2481 		else {
2482 			tp->keepalive_time = val * HZ;
2483 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2484 			    !((1 << sk->sk_state) &
2485 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2486 				u32 elapsed = keepalive_time_elapsed(tp);
2487 				if (tp->keepalive_time > elapsed)
2488 					elapsed = tp->keepalive_time - elapsed;
2489 				else
2490 					elapsed = 0;
2491 				inet_csk_reset_keepalive_timer(sk, elapsed);
2492 			}
2493 		}
2494 		break;
2495 	case TCP_KEEPINTVL:
2496 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2497 			err = -EINVAL;
2498 		else
2499 			tp->keepalive_intvl = val * HZ;
2500 		break;
2501 	case TCP_KEEPCNT:
2502 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2503 			err = -EINVAL;
2504 		else
2505 			tp->keepalive_probes = val;
2506 		break;
2507 	case TCP_SYNCNT:
2508 		if (val < 1 || val > MAX_TCP_SYNCNT)
2509 			err = -EINVAL;
2510 		else
2511 			icsk->icsk_syn_retries = val;
2512 		break;
2513 
2514 	case TCP_SAVE_SYN:
2515 		if (val < 0 || val > 1)
2516 			err = -EINVAL;
2517 		else
2518 			tp->save_syn = val;
2519 		break;
2520 
2521 	case TCP_LINGER2:
2522 		if (val < 0)
2523 			tp->linger2 = -1;
2524 		else if (val > sysctl_tcp_fin_timeout / HZ)
2525 			tp->linger2 = 0;
2526 		else
2527 			tp->linger2 = val * HZ;
2528 		break;
2529 
2530 	case TCP_DEFER_ACCEPT:
2531 		/* Translate value in seconds to number of retransmits */
2532 		icsk->icsk_accept_queue.rskq_defer_accept =
2533 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2534 					TCP_RTO_MAX / HZ);
2535 		break;
2536 
2537 	case TCP_WINDOW_CLAMP:
2538 		if (!val) {
2539 			if (sk->sk_state != TCP_CLOSE) {
2540 				err = -EINVAL;
2541 				break;
2542 			}
2543 			tp->window_clamp = 0;
2544 		} else
2545 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2546 						SOCK_MIN_RCVBUF / 2 : val;
2547 		break;
2548 
2549 	case TCP_QUICKACK:
2550 		if (!val) {
2551 			icsk->icsk_ack.pingpong = 1;
2552 		} else {
2553 			icsk->icsk_ack.pingpong = 0;
2554 			if ((1 << sk->sk_state) &
2555 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2556 			    inet_csk_ack_scheduled(sk)) {
2557 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2558 				tcp_cleanup_rbuf(sk, 1);
2559 				if (!(val & 1))
2560 					icsk->icsk_ack.pingpong = 1;
2561 			}
2562 		}
2563 		break;
2564 
2565 #ifdef CONFIG_TCP_MD5SIG
2566 	case TCP_MD5SIG:
2567 		/* Read the IP->Key mappings from userspace */
2568 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2569 		break;
2570 #endif
2571 	case TCP_USER_TIMEOUT:
2572 		/* Cap the max time in ms TCP will retry or probe the window
2573 		 * before giving up and aborting (ETIMEDOUT) a connection.
2574 		 */
2575 		if (val < 0)
2576 			err = -EINVAL;
2577 		else
2578 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2579 		break;
2580 
2581 	case TCP_FASTOPEN:
2582 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2583 		    TCPF_LISTEN))) {
2584 			tcp_fastopen_init_key_once(true);
2585 
2586 			fastopen_queue_tune(sk, val);
2587 		} else {
2588 			err = -EINVAL;
2589 		}
2590 		break;
2591 	case TCP_TIMESTAMP:
2592 		if (!tp->repair)
2593 			err = -EPERM;
2594 		else
2595 			tp->tsoffset = val - tcp_time_stamp;
2596 		break;
2597 	case TCP_NOTSENT_LOWAT:
2598 		tp->notsent_lowat = val;
2599 		sk->sk_write_space(sk);
2600 		break;
2601 	default:
2602 		err = -ENOPROTOOPT;
2603 		break;
2604 	}
2605 
2606 	release_sock(sk);
2607 	return err;
2608 }
2609 
2610 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2611 		   unsigned int optlen)
2612 {
2613 	const struct inet_connection_sock *icsk = inet_csk(sk);
2614 
2615 	if (level != SOL_TCP)
2616 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2617 						     optval, optlen);
2618 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2619 }
2620 EXPORT_SYMBOL(tcp_setsockopt);
2621 
2622 #ifdef CONFIG_COMPAT
2623 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2624 			  char __user *optval, unsigned int optlen)
2625 {
2626 	if (level != SOL_TCP)
2627 		return inet_csk_compat_setsockopt(sk, level, optname,
2628 						  optval, optlen);
2629 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2630 }
2631 EXPORT_SYMBOL(compat_tcp_setsockopt);
2632 #endif
2633 
2634 /* Return information about state of tcp endpoint in API format. */
2635 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2636 {
2637 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2638 	const struct inet_connection_sock *icsk = inet_csk(sk);
2639 	u32 now = tcp_time_stamp;
2640 	unsigned int start;
2641 	u32 rate;
2642 
2643 	memset(info, 0, sizeof(*info));
2644 	if (sk->sk_type != SOCK_STREAM)
2645 		return;
2646 
2647 	info->tcpi_state = sk_state_load(sk);
2648 
2649 	info->tcpi_ca_state = icsk->icsk_ca_state;
2650 	info->tcpi_retransmits = icsk->icsk_retransmits;
2651 	info->tcpi_probes = icsk->icsk_probes_out;
2652 	info->tcpi_backoff = icsk->icsk_backoff;
2653 
2654 	if (tp->rx_opt.tstamp_ok)
2655 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2656 	if (tcp_is_sack(tp))
2657 		info->tcpi_options |= TCPI_OPT_SACK;
2658 	if (tp->rx_opt.wscale_ok) {
2659 		info->tcpi_options |= TCPI_OPT_WSCALE;
2660 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2661 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2662 	}
2663 
2664 	if (tp->ecn_flags & TCP_ECN_OK)
2665 		info->tcpi_options |= TCPI_OPT_ECN;
2666 	if (tp->ecn_flags & TCP_ECN_SEEN)
2667 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2668 	if (tp->syn_data_acked)
2669 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2670 
2671 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2672 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2673 	info->tcpi_snd_mss = tp->mss_cache;
2674 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2675 
2676 	if (info->tcpi_state == TCP_LISTEN) {
2677 		info->tcpi_unacked = sk->sk_ack_backlog;
2678 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2679 	} else {
2680 		info->tcpi_unacked = tp->packets_out;
2681 		info->tcpi_sacked = tp->sacked_out;
2682 	}
2683 	info->tcpi_lost = tp->lost_out;
2684 	info->tcpi_retrans = tp->retrans_out;
2685 	info->tcpi_fackets = tp->fackets_out;
2686 
2687 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2688 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2689 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2690 
2691 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2692 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2693 	info->tcpi_rtt = tp->srtt_us >> 3;
2694 	info->tcpi_rttvar = tp->mdev_us >> 2;
2695 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2696 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2697 	info->tcpi_advmss = tp->advmss;
2698 	info->tcpi_reordering = tp->reordering;
2699 
2700 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2701 	info->tcpi_rcv_space = tp->rcvq_space.space;
2702 
2703 	info->tcpi_total_retrans = tp->total_retrans;
2704 
2705 	rate = READ_ONCE(sk->sk_pacing_rate);
2706 	info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2707 
2708 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2709 	info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2710 
2711 	do {
2712 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2713 		info->tcpi_bytes_acked = tp->bytes_acked;
2714 		info->tcpi_bytes_received = tp->bytes_received;
2715 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2716 	info->tcpi_segs_out = tp->segs_out;
2717 	info->tcpi_segs_in = tp->segs_in;
2718 }
2719 EXPORT_SYMBOL_GPL(tcp_get_info);
2720 
2721 static int do_tcp_getsockopt(struct sock *sk, int level,
2722 		int optname, char __user *optval, int __user *optlen)
2723 {
2724 	struct inet_connection_sock *icsk = inet_csk(sk);
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 	int val, len;
2727 
2728 	if (get_user(len, optlen))
2729 		return -EFAULT;
2730 
2731 	len = min_t(unsigned int, len, sizeof(int));
2732 
2733 	if (len < 0)
2734 		return -EINVAL;
2735 
2736 	switch (optname) {
2737 	case TCP_MAXSEG:
2738 		val = tp->mss_cache;
2739 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2740 			val = tp->rx_opt.user_mss;
2741 		if (tp->repair)
2742 			val = tp->rx_opt.mss_clamp;
2743 		break;
2744 	case TCP_NODELAY:
2745 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2746 		break;
2747 	case TCP_CORK:
2748 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2749 		break;
2750 	case TCP_KEEPIDLE:
2751 		val = keepalive_time_when(tp) / HZ;
2752 		break;
2753 	case TCP_KEEPINTVL:
2754 		val = keepalive_intvl_when(tp) / HZ;
2755 		break;
2756 	case TCP_KEEPCNT:
2757 		val = keepalive_probes(tp);
2758 		break;
2759 	case TCP_SYNCNT:
2760 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2761 		break;
2762 	case TCP_LINGER2:
2763 		val = tp->linger2;
2764 		if (val >= 0)
2765 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2766 		break;
2767 	case TCP_DEFER_ACCEPT:
2768 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2769 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2770 		break;
2771 	case TCP_WINDOW_CLAMP:
2772 		val = tp->window_clamp;
2773 		break;
2774 	case TCP_INFO: {
2775 		struct tcp_info info;
2776 
2777 		if (get_user(len, optlen))
2778 			return -EFAULT;
2779 
2780 		tcp_get_info(sk, &info);
2781 
2782 		len = min_t(unsigned int, len, sizeof(info));
2783 		if (put_user(len, optlen))
2784 			return -EFAULT;
2785 		if (copy_to_user(optval, &info, len))
2786 			return -EFAULT;
2787 		return 0;
2788 	}
2789 	case TCP_CC_INFO: {
2790 		const struct tcp_congestion_ops *ca_ops;
2791 		union tcp_cc_info info;
2792 		size_t sz = 0;
2793 		int attr;
2794 
2795 		if (get_user(len, optlen))
2796 			return -EFAULT;
2797 
2798 		ca_ops = icsk->icsk_ca_ops;
2799 		if (ca_ops && ca_ops->get_info)
2800 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2801 
2802 		len = min_t(unsigned int, len, sz);
2803 		if (put_user(len, optlen))
2804 			return -EFAULT;
2805 		if (copy_to_user(optval, &info, len))
2806 			return -EFAULT;
2807 		return 0;
2808 	}
2809 	case TCP_QUICKACK:
2810 		val = !icsk->icsk_ack.pingpong;
2811 		break;
2812 
2813 	case TCP_CONGESTION:
2814 		if (get_user(len, optlen))
2815 			return -EFAULT;
2816 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2817 		if (put_user(len, optlen))
2818 			return -EFAULT;
2819 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2820 			return -EFAULT;
2821 		return 0;
2822 
2823 	case TCP_THIN_LINEAR_TIMEOUTS:
2824 		val = tp->thin_lto;
2825 		break;
2826 	case TCP_THIN_DUPACK:
2827 		val = tp->thin_dupack;
2828 		break;
2829 
2830 	case TCP_REPAIR:
2831 		val = tp->repair;
2832 		break;
2833 
2834 	case TCP_REPAIR_QUEUE:
2835 		if (tp->repair)
2836 			val = tp->repair_queue;
2837 		else
2838 			return -EINVAL;
2839 		break;
2840 
2841 	case TCP_QUEUE_SEQ:
2842 		if (tp->repair_queue == TCP_SEND_QUEUE)
2843 			val = tp->write_seq;
2844 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2845 			val = tp->rcv_nxt;
2846 		else
2847 			return -EINVAL;
2848 		break;
2849 
2850 	case TCP_USER_TIMEOUT:
2851 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2852 		break;
2853 
2854 	case TCP_FASTOPEN:
2855 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2856 		break;
2857 
2858 	case TCP_TIMESTAMP:
2859 		val = tcp_time_stamp + tp->tsoffset;
2860 		break;
2861 	case TCP_NOTSENT_LOWAT:
2862 		val = tp->notsent_lowat;
2863 		break;
2864 	case TCP_SAVE_SYN:
2865 		val = tp->save_syn;
2866 		break;
2867 	case TCP_SAVED_SYN: {
2868 		if (get_user(len, optlen))
2869 			return -EFAULT;
2870 
2871 		lock_sock(sk);
2872 		if (tp->saved_syn) {
2873 			if (len < tp->saved_syn[0]) {
2874 				if (put_user(tp->saved_syn[0], optlen)) {
2875 					release_sock(sk);
2876 					return -EFAULT;
2877 				}
2878 				release_sock(sk);
2879 				return -EINVAL;
2880 			}
2881 			len = tp->saved_syn[0];
2882 			if (put_user(len, optlen)) {
2883 				release_sock(sk);
2884 				return -EFAULT;
2885 			}
2886 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2887 				release_sock(sk);
2888 				return -EFAULT;
2889 			}
2890 			tcp_saved_syn_free(tp);
2891 			release_sock(sk);
2892 		} else {
2893 			release_sock(sk);
2894 			len = 0;
2895 			if (put_user(len, optlen))
2896 				return -EFAULT;
2897 		}
2898 		return 0;
2899 	}
2900 	default:
2901 		return -ENOPROTOOPT;
2902 	}
2903 
2904 	if (put_user(len, optlen))
2905 		return -EFAULT;
2906 	if (copy_to_user(optval, &val, len))
2907 		return -EFAULT;
2908 	return 0;
2909 }
2910 
2911 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2912 		   int __user *optlen)
2913 {
2914 	struct inet_connection_sock *icsk = inet_csk(sk);
2915 
2916 	if (level != SOL_TCP)
2917 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2918 						     optval, optlen);
2919 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2920 }
2921 EXPORT_SYMBOL(tcp_getsockopt);
2922 
2923 #ifdef CONFIG_COMPAT
2924 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2925 			  char __user *optval, int __user *optlen)
2926 {
2927 	if (level != SOL_TCP)
2928 		return inet_csk_compat_getsockopt(sk, level, optname,
2929 						  optval, optlen);
2930 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2931 }
2932 EXPORT_SYMBOL(compat_tcp_getsockopt);
2933 #endif
2934 
2935 #ifdef CONFIG_TCP_MD5SIG
2936 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2937 static DEFINE_MUTEX(tcp_md5sig_mutex);
2938 static bool tcp_md5sig_pool_populated = false;
2939 
2940 static void __tcp_alloc_md5sig_pool(void)
2941 {
2942 	int cpu;
2943 
2944 	for_each_possible_cpu(cpu) {
2945 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2946 			struct crypto_hash *hash;
2947 
2948 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2949 			if (IS_ERR_OR_NULL(hash))
2950 				return;
2951 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2952 		}
2953 	}
2954 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2955 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2956 	 */
2957 	smp_wmb();
2958 	tcp_md5sig_pool_populated = true;
2959 }
2960 
2961 bool tcp_alloc_md5sig_pool(void)
2962 {
2963 	if (unlikely(!tcp_md5sig_pool_populated)) {
2964 		mutex_lock(&tcp_md5sig_mutex);
2965 
2966 		if (!tcp_md5sig_pool_populated)
2967 			__tcp_alloc_md5sig_pool();
2968 
2969 		mutex_unlock(&tcp_md5sig_mutex);
2970 	}
2971 	return tcp_md5sig_pool_populated;
2972 }
2973 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2974 
2975 
2976 /**
2977  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2978  *
2979  *	We use percpu structure, so if we succeed, we exit with preemption
2980  *	and BH disabled, to make sure another thread or softirq handling
2981  *	wont try to get same context.
2982  */
2983 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2984 {
2985 	local_bh_disable();
2986 
2987 	if (tcp_md5sig_pool_populated) {
2988 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2989 		smp_rmb();
2990 		return this_cpu_ptr(&tcp_md5sig_pool);
2991 	}
2992 	local_bh_enable();
2993 	return NULL;
2994 }
2995 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2996 
2997 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2998 			const struct tcphdr *th)
2999 {
3000 	struct scatterlist sg;
3001 	struct tcphdr hdr;
3002 	int err;
3003 
3004 	/* We are not allowed to change tcphdr, make a local copy */
3005 	memcpy(&hdr, th, sizeof(hdr));
3006 	hdr.check = 0;
3007 
3008 	/* options aren't included in the hash */
3009 	sg_init_one(&sg, &hdr, sizeof(hdr));
3010 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3011 	return err;
3012 }
3013 EXPORT_SYMBOL(tcp_md5_hash_header);
3014 
3015 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3016 			  const struct sk_buff *skb, unsigned int header_len)
3017 {
3018 	struct scatterlist sg;
3019 	const struct tcphdr *tp = tcp_hdr(skb);
3020 	struct hash_desc *desc = &hp->md5_desc;
3021 	unsigned int i;
3022 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3023 					   skb_headlen(skb) - header_len : 0;
3024 	const struct skb_shared_info *shi = skb_shinfo(skb);
3025 	struct sk_buff *frag_iter;
3026 
3027 	sg_init_table(&sg, 1);
3028 
3029 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3030 	if (crypto_hash_update(desc, &sg, head_data_len))
3031 		return 1;
3032 
3033 	for (i = 0; i < shi->nr_frags; ++i) {
3034 		const struct skb_frag_struct *f = &shi->frags[i];
3035 		unsigned int offset = f->page_offset;
3036 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3037 
3038 		sg_set_page(&sg, page, skb_frag_size(f),
3039 			    offset_in_page(offset));
3040 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3041 			return 1;
3042 	}
3043 
3044 	skb_walk_frags(skb, frag_iter)
3045 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3046 			return 1;
3047 
3048 	return 0;
3049 }
3050 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3051 
3052 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3053 {
3054 	struct scatterlist sg;
3055 
3056 	sg_init_one(&sg, key->key, key->keylen);
3057 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3058 }
3059 EXPORT_SYMBOL(tcp_md5_hash_key);
3060 
3061 #endif
3062 
3063 void tcp_done(struct sock *sk)
3064 {
3065 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3066 
3067 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3068 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3069 
3070 	tcp_set_state(sk, TCP_CLOSE);
3071 	tcp_clear_xmit_timers(sk);
3072 	if (req)
3073 		reqsk_fastopen_remove(sk, req, false);
3074 
3075 	sk->sk_shutdown = SHUTDOWN_MASK;
3076 
3077 	if (!sock_flag(sk, SOCK_DEAD))
3078 		sk->sk_state_change(sk);
3079 	else
3080 		inet_csk_destroy_sock(sk);
3081 }
3082 EXPORT_SYMBOL_GPL(tcp_done);
3083 
3084 int tcp_abort(struct sock *sk, int err)
3085 {
3086 	if (!sk_fullsock(sk)) {
3087 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3088 			struct request_sock *req = inet_reqsk(sk);
3089 
3090 			local_bh_disable();
3091 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3092 							  req);
3093 			local_bh_enable();
3094 			return 0;
3095 		}
3096 		sock_gen_put(sk);
3097 		return -EOPNOTSUPP;
3098 	}
3099 
3100 	/* Don't race with userspace socket closes such as tcp_close. */
3101 	lock_sock(sk);
3102 
3103 	if (sk->sk_state == TCP_LISTEN) {
3104 		tcp_set_state(sk, TCP_CLOSE);
3105 		inet_csk_listen_stop(sk);
3106 	}
3107 
3108 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3109 	local_bh_disable();
3110 	bh_lock_sock(sk);
3111 
3112 	if (!sock_flag(sk, SOCK_DEAD)) {
3113 		sk->sk_err = err;
3114 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3115 		smp_wmb();
3116 		sk->sk_error_report(sk);
3117 		if (tcp_need_reset(sk->sk_state))
3118 			tcp_send_active_reset(sk, GFP_ATOMIC);
3119 		tcp_done(sk);
3120 	}
3121 
3122 	bh_unlock_sock(sk);
3123 	local_bh_enable();
3124 	release_sock(sk);
3125 	sock_put(sk);
3126 	return 0;
3127 }
3128 EXPORT_SYMBOL_GPL(tcp_abort);
3129 
3130 extern struct tcp_congestion_ops tcp_reno;
3131 
3132 static __initdata unsigned long thash_entries;
3133 static int __init set_thash_entries(char *str)
3134 {
3135 	ssize_t ret;
3136 
3137 	if (!str)
3138 		return 0;
3139 
3140 	ret = kstrtoul(str, 0, &thash_entries);
3141 	if (ret)
3142 		return 0;
3143 
3144 	return 1;
3145 }
3146 __setup("thash_entries=", set_thash_entries);
3147 
3148 static void __init tcp_init_mem(void)
3149 {
3150 	unsigned long limit = nr_free_buffer_pages() / 16;
3151 
3152 	limit = max(limit, 128UL);
3153 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3154 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3155 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3156 }
3157 
3158 void __init tcp_init(void)
3159 {
3160 	unsigned long limit;
3161 	int max_rshare, max_wshare, cnt;
3162 	unsigned int i;
3163 
3164 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3165 
3166 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3167 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3168 	tcp_hashinfo.bind_bucket_cachep =
3169 		kmem_cache_create("tcp_bind_bucket",
3170 				  sizeof(struct inet_bind_bucket), 0,
3171 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3172 
3173 	/* Size and allocate the main established and bind bucket
3174 	 * hash tables.
3175 	 *
3176 	 * The methodology is similar to that of the buffer cache.
3177 	 */
3178 	tcp_hashinfo.ehash =
3179 		alloc_large_system_hash("TCP established",
3180 					sizeof(struct inet_ehash_bucket),
3181 					thash_entries,
3182 					17, /* one slot per 128 KB of memory */
3183 					0,
3184 					NULL,
3185 					&tcp_hashinfo.ehash_mask,
3186 					0,
3187 					thash_entries ? 0 : 512 * 1024);
3188 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3189 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3190 
3191 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3192 		panic("TCP: failed to alloc ehash_locks");
3193 	tcp_hashinfo.bhash =
3194 		alloc_large_system_hash("TCP bind",
3195 					sizeof(struct inet_bind_hashbucket),
3196 					tcp_hashinfo.ehash_mask + 1,
3197 					17, /* one slot per 128 KB of memory */
3198 					0,
3199 					&tcp_hashinfo.bhash_size,
3200 					NULL,
3201 					0,
3202 					64 * 1024);
3203 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3204 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3205 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3206 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3207 	}
3208 
3209 
3210 	cnt = tcp_hashinfo.ehash_mask + 1;
3211 
3212 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3213 	sysctl_tcp_max_orphans = cnt / 2;
3214 	sysctl_max_syn_backlog = max(128, cnt / 256);
3215 
3216 	tcp_init_mem();
3217 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3218 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3219 	max_wshare = min(4UL*1024*1024, limit);
3220 	max_rshare = min(6UL*1024*1024, limit);
3221 
3222 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3223 	sysctl_tcp_wmem[1] = 16*1024;
3224 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3225 
3226 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3227 	sysctl_tcp_rmem[1] = 87380;
3228 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3229 
3230 	pr_info("Hash tables configured (established %u bind %u)\n",
3231 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3232 
3233 	tcp_metrics_init();
3234 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3235 	tcp_tasklet_init();
3236 }
3237