xref: /openbmc/linux/net/ipv4/tcp.c (revision ccc66c60)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 
461 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 	sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465 
466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 	struct sk_buff *skb = tcp_write_queue_tail(sk);
469 
470 	if (tsflags && skb) {
471 		struct skb_shared_info *shinfo = skb_shinfo(skb);
472 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473 
474 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 			tcb->txstamp_ack = 1;
477 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 	}
480 }
481 
482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 	if (tcp_epollin_ready(sk, target))
485 		return true;
486 	return sk_is_readable(sk);
487 }
488 
489 /*
490  *	Wait for a TCP event.
491  *
492  *	Note that we don't need to lock the socket, as the upper poll layers
493  *	take care of normal races (between the test and the event) and we don't
494  *	go look at any of the socket buffers directly.
495  */
496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 	__poll_t mask;
499 	struct sock *sk = sock->sk;
500 	const struct tcp_sock *tp = tcp_sk(sk);
501 	int state;
502 
503 	sock_poll_wait(file, sock, wait);
504 
505 	state = inet_sk_state_load(sk);
506 	if (state == TCP_LISTEN)
507 		return inet_csk_listen_poll(sk);
508 
509 	/* Socket is not locked. We are protected from async events
510 	 * by poll logic and correct handling of state changes
511 	 * made by other threads is impossible in any case.
512 	 */
513 
514 	mask = 0;
515 
516 	/*
517 	 * EPOLLHUP is certainly not done right. But poll() doesn't
518 	 * have a notion of HUP in just one direction, and for a
519 	 * socket the read side is more interesting.
520 	 *
521 	 * Some poll() documentation says that EPOLLHUP is incompatible
522 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
523 	 * all. But careful, it tends to be safer to return too many
524 	 * bits than too few, and you can easily break real applications
525 	 * if you don't tell them that something has hung up!
526 	 *
527 	 * Check-me.
528 	 *
529 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
530 	 * our fs/select.c). It means that after we received EOF,
531 	 * poll always returns immediately, making impossible poll() on write()
532 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
533 	 * if and only if shutdown has been made in both directions.
534 	 * Actually, it is interesting to look how Solaris and DUX
535 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
536 	 * then we could set it on SND_SHUTDOWN. BTW examples given
537 	 * in Stevens' books assume exactly this behaviour, it explains
538 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
539 	 *
540 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
541 	 * blocking on fresh not-connected or disconnected socket. --ANK
542 	 */
543 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
544 		mask |= EPOLLHUP;
545 	if (sk->sk_shutdown & RCV_SHUTDOWN)
546 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
547 
548 	/* Connected or passive Fast Open socket? */
549 	if (state != TCP_SYN_SENT &&
550 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
551 		int target = sock_rcvlowat(sk, 0, INT_MAX);
552 		u16 urg_data = READ_ONCE(tp->urg_data);
553 
554 		if (unlikely(urg_data) &&
555 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
556 		    !sock_flag(sk, SOCK_URGINLINE))
557 			target++;
558 
559 		if (tcp_stream_is_readable(sk, target))
560 			mask |= EPOLLIN | EPOLLRDNORM;
561 
562 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
563 			if (__sk_stream_is_writeable(sk, 1)) {
564 				mask |= EPOLLOUT | EPOLLWRNORM;
565 			} else {  /* send SIGIO later */
566 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
567 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
568 
569 				/* Race breaker. If space is freed after
570 				 * wspace test but before the flags are set,
571 				 * IO signal will be lost. Memory barrier
572 				 * pairs with the input side.
573 				 */
574 				smp_mb__after_atomic();
575 				if (__sk_stream_is_writeable(sk, 1))
576 					mask |= EPOLLOUT | EPOLLWRNORM;
577 			}
578 		} else
579 			mask |= EPOLLOUT | EPOLLWRNORM;
580 
581 		if (urg_data & TCP_URG_VALID)
582 			mask |= EPOLLPRI;
583 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
584 		/* Active TCP fastopen socket with defer_connect
585 		 * Return EPOLLOUT so application can call write()
586 		 * in order for kernel to generate SYN+data
587 		 */
588 		mask |= EPOLLOUT | EPOLLWRNORM;
589 	}
590 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
591 	smp_rmb();
592 	if (READ_ONCE(sk->sk_err) ||
593 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
594 		mask |= EPOLLERR;
595 
596 	return mask;
597 }
598 EXPORT_SYMBOL(tcp_poll);
599 
600 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
601 {
602 	struct tcp_sock *tp = tcp_sk(sk);
603 	int answ;
604 	bool slow;
605 
606 	switch (cmd) {
607 	case SIOCINQ:
608 		if (sk->sk_state == TCP_LISTEN)
609 			return -EINVAL;
610 
611 		slow = lock_sock_fast(sk);
612 		answ = tcp_inq(sk);
613 		unlock_sock_fast(sk, slow);
614 		break;
615 	case SIOCATMARK:
616 		answ = READ_ONCE(tp->urg_data) &&
617 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
618 		break;
619 	case SIOCOUTQ:
620 		if (sk->sk_state == TCP_LISTEN)
621 			return -EINVAL;
622 
623 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
624 			answ = 0;
625 		else
626 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
627 		break;
628 	case SIOCOUTQNSD:
629 		if (sk->sk_state == TCP_LISTEN)
630 			return -EINVAL;
631 
632 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
633 			answ = 0;
634 		else
635 			answ = READ_ONCE(tp->write_seq) -
636 			       READ_ONCE(tp->snd_nxt);
637 		break;
638 	default:
639 		return -ENOIOCTLCMD;
640 	}
641 
642 	return put_user(answ, (int __user *)arg);
643 }
644 EXPORT_SYMBOL(tcp_ioctl);
645 
646 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
647 {
648 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
649 	tp->pushed_seq = tp->write_seq;
650 }
651 
652 static inline bool forced_push(const struct tcp_sock *tp)
653 {
654 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
655 }
656 
657 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
658 {
659 	struct tcp_sock *tp = tcp_sk(sk);
660 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
661 
662 	tcb->seq     = tcb->end_seq = tp->write_seq;
663 	tcb->tcp_flags = TCPHDR_ACK;
664 	__skb_header_release(skb);
665 	tcp_add_write_queue_tail(sk, skb);
666 	sk_wmem_queued_add(sk, skb->truesize);
667 	sk_mem_charge(sk, skb->truesize);
668 	if (tp->nonagle & TCP_NAGLE_PUSH)
669 		tp->nonagle &= ~TCP_NAGLE_PUSH;
670 
671 	tcp_slow_start_after_idle_check(sk);
672 }
673 
674 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
675 {
676 	if (flags & MSG_OOB)
677 		tp->snd_up = tp->write_seq;
678 }
679 
680 /* If a not yet filled skb is pushed, do not send it if
681  * we have data packets in Qdisc or NIC queues :
682  * Because TX completion will happen shortly, it gives a chance
683  * to coalesce future sendmsg() payload into this skb, without
684  * need for a timer, and with no latency trade off.
685  * As packets containing data payload have a bigger truesize
686  * than pure acks (dataless) packets, the last checks prevent
687  * autocorking if we only have an ACK in Qdisc/NIC queues,
688  * or if TX completion was delayed after we processed ACK packet.
689  */
690 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
691 				int size_goal)
692 {
693 	return skb->len < size_goal &&
694 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
695 	       !tcp_rtx_queue_empty(sk) &&
696 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
697 	       tcp_skb_can_collapse_to(skb);
698 }
699 
700 void tcp_push(struct sock *sk, int flags, int mss_now,
701 	      int nonagle, int size_goal)
702 {
703 	struct tcp_sock *tp = tcp_sk(sk);
704 	struct sk_buff *skb;
705 
706 	skb = tcp_write_queue_tail(sk);
707 	if (!skb)
708 		return;
709 	if (!(flags & MSG_MORE) || forced_push(tp))
710 		tcp_mark_push(tp, skb);
711 
712 	tcp_mark_urg(tp, flags);
713 
714 	if (tcp_should_autocork(sk, skb, size_goal)) {
715 
716 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
717 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
718 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
719 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
720 		}
721 		/* It is possible TX completion already happened
722 		 * before we set TSQ_THROTTLED.
723 		 */
724 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
725 			return;
726 	}
727 
728 	if (flags & MSG_MORE)
729 		nonagle = TCP_NAGLE_CORK;
730 
731 	__tcp_push_pending_frames(sk, mss_now, nonagle);
732 }
733 
734 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
735 				unsigned int offset, size_t len)
736 {
737 	struct tcp_splice_state *tss = rd_desc->arg.data;
738 	int ret;
739 
740 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
741 			      min(rd_desc->count, len), tss->flags);
742 	if (ret > 0)
743 		rd_desc->count -= ret;
744 	return ret;
745 }
746 
747 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
748 {
749 	/* Store TCP splice context information in read_descriptor_t. */
750 	read_descriptor_t rd_desc = {
751 		.arg.data = tss,
752 		.count	  = tss->len,
753 	};
754 
755 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
756 }
757 
758 /**
759  *  tcp_splice_read - splice data from TCP socket to a pipe
760  * @sock:	socket to splice from
761  * @ppos:	position (not valid)
762  * @pipe:	pipe to splice to
763  * @len:	number of bytes to splice
764  * @flags:	splice modifier flags
765  *
766  * Description:
767  *    Will read pages from given socket and fill them into a pipe.
768  *
769  **/
770 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
771 			struct pipe_inode_info *pipe, size_t len,
772 			unsigned int flags)
773 {
774 	struct sock *sk = sock->sk;
775 	struct tcp_splice_state tss = {
776 		.pipe = pipe,
777 		.len = len,
778 		.flags = flags,
779 	};
780 	long timeo;
781 	ssize_t spliced;
782 	int ret;
783 
784 	sock_rps_record_flow(sk);
785 	/*
786 	 * We can't seek on a socket input
787 	 */
788 	if (unlikely(*ppos))
789 		return -ESPIPE;
790 
791 	ret = spliced = 0;
792 
793 	lock_sock(sk);
794 
795 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
796 	while (tss.len) {
797 		ret = __tcp_splice_read(sk, &tss);
798 		if (ret < 0)
799 			break;
800 		else if (!ret) {
801 			if (spliced)
802 				break;
803 			if (sock_flag(sk, SOCK_DONE))
804 				break;
805 			if (sk->sk_err) {
806 				ret = sock_error(sk);
807 				break;
808 			}
809 			if (sk->sk_shutdown & RCV_SHUTDOWN)
810 				break;
811 			if (sk->sk_state == TCP_CLOSE) {
812 				/*
813 				 * This occurs when user tries to read
814 				 * from never connected socket.
815 				 */
816 				ret = -ENOTCONN;
817 				break;
818 			}
819 			if (!timeo) {
820 				ret = -EAGAIN;
821 				break;
822 			}
823 			/* if __tcp_splice_read() got nothing while we have
824 			 * an skb in receive queue, we do not want to loop.
825 			 * This might happen with URG data.
826 			 */
827 			if (!skb_queue_empty(&sk->sk_receive_queue))
828 				break;
829 			sk_wait_data(sk, &timeo, NULL);
830 			if (signal_pending(current)) {
831 				ret = sock_intr_errno(timeo);
832 				break;
833 			}
834 			continue;
835 		}
836 		tss.len -= ret;
837 		spliced += ret;
838 
839 		if (!timeo)
840 			break;
841 		release_sock(sk);
842 		lock_sock(sk);
843 
844 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
845 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
846 		    signal_pending(current))
847 			break;
848 	}
849 
850 	release_sock(sk);
851 
852 	if (spliced)
853 		return spliced;
854 
855 	return ret;
856 }
857 EXPORT_SYMBOL(tcp_splice_read);
858 
859 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
860 				     bool force_schedule)
861 {
862 	struct sk_buff *skb;
863 
864 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
865 	if (likely(skb)) {
866 		bool mem_scheduled;
867 
868 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
869 		if (force_schedule) {
870 			mem_scheduled = true;
871 			sk_forced_mem_schedule(sk, skb->truesize);
872 		} else {
873 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
874 		}
875 		if (likely(mem_scheduled)) {
876 			skb_reserve(skb, MAX_TCP_HEADER);
877 			skb->ip_summed = CHECKSUM_PARTIAL;
878 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
879 			return skb;
880 		}
881 		__kfree_skb(skb);
882 	} else {
883 		sk->sk_prot->enter_memory_pressure(sk);
884 		sk_stream_moderate_sndbuf(sk);
885 	}
886 	return NULL;
887 }
888 
889 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
890 				       int large_allowed)
891 {
892 	struct tcp_sock *tp = tcp_sk(sk);
893 	u32 new_size_goal, size_goal;
894 
895 	if (!large_allowed)
896 		return mss_now;
897 
898 	/* Note : tcp_tso_autosize() will eventually split this later */
899 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
900 
901 	/* We try hard to avoid divides here */
902 	size_goal = tp->gso_segs * mss_now;
903 	if (unlikely(new_size_goal < size_goal ||
904 		     new_size_goal >= size_goal + mss_now)) {
905 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
906 				     sk->sk_gso_max_segs);
907 		size_goal = tp->gso_segs * mss_now;
908 	}
909 
910 	return max(size_goal, mss_now);
911 }
912 
913 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
914 {
915 	int mss_now;
916 
917 	mss_now = tcp_current_mss(sk);
918 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
919 
920 	return mss_now;
921 }
922 
923 /* In some cases, both sendpage() and sendmsg() could have added
924  * an skb to the write queue, but failed adding payload on it.
925  * We need to remove it to consume less memory, but more
926  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
927  * users.
928  */
929 void tcp_remove_empty_skb(struct sock *sk)
930 {
931 	struct sk_buff *skb = tcp_write_queue_tail(sk);
932 
933 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
934 		tcp_unlink_write_queue(skb, sk);
935 		if (tcp_write_queue_empty(sk))
936 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
937 		tcp_wmem_free_skb(sk, skb);
938 	}
939 }
940 
941 /* skb changing from pure zc to mixed, must charge zc */
942 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
943 {
944 	if (unlikely(skb_zcopy_pure(skb))) {
945 		u32 extra = skb->truesize -
946 			    SKB_TRUESIZE(skb_end_offset(skb));
947 
948 		if (!sk_wmem_schedule(sk, extra))
949 			return -ENOMEM;
950 
951 		sk_mem_charge(sk, extra);
952 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
953 	}
954 	return 0;
955 }
956 
957 
958 static int tcp_wmem_schedule(struct sock *sk, int copy)
959 {
960 	int left;
961 
962 	if (likely(sk_wmem_schedule(sk, copy)))
963 		return copy;
964 
965 	/* We could be in trouble if we have nothing queued.
966 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
967 	 * to guarantee some progress.
968 	 */
969 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
970 	if (left > 0)
971 		sk_forced_mem_schedule(sk, min(left, copy));
972 	return min(copy, sk->sk_forward_alloc);
973 }
974 
975 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
976 				      struct page *page, int offset, size_t *size)
977 {
978 	struct sk_buff *skb = tcp_write_queue_tail(sk);
979 	struct tcp_sock *tp = tcp_sk(sk);
980 	bool can_coalesce;
981 	int copy, i;
982 
983 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
984 	    !tcp_skb_can_collapse_to(skb)) {
985 new_segment:
986 		if (!sk_stream_memory_free(sk))
987 			return NULL;
988 
989 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
990 					   tcp_rtx_and_write_queues_empty(sk));
991 		if (!skb)
992 			return NULL;
993 
994 #ifdef CONFIG_TLS_DEVICE
995 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
996 #endif
997 		tcp_skb_entail(sk, skb);
998 		copy = size_goal;
999 	}
1000 
1001 	if (copy > *size)
1002 		copy = *size;
1003 
1004 	i = skb_shinfo(skb)->nr_frags;
1005 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1006 	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1007 		tcp_mark_push(tp, skb);
1008 		goto new_segment;
1009 	}
1010 	if (tcp_downgrade_zcopy_pure(sk, skb))
1011 		return NULL;
1012 
1013 	copy = tcp_wmem_schedule(sk, copy);
1014 	if (!copy)
1015 		return NULL;
1016 
1017 	if (can_coalesce) {
1018 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1019 	} else {
1020 		get_page(page);
1021 		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1022 	}
1023 
1024 	if (!(flags & MSG_NO_SHARED_FRAGS))
1025 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1026 
1027 	skb->len += copy;
1028 	skb->data_len += copy;
1029 	skb->truesize += copy;
1030 	sk_wmem_queued_add(sk, copy);
1031 	sk_mem_charge(sk, copy);
1032 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1033 	TCP_SKB_CB(skb)->end_seq += copy;
1034 	tcp_skb_pcount_set(skb, 0);
1035 
1036 	*size = copy;
1037 	return skb;
1038 }
1039 
1040 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1041 			 size_t size, int flags)
1042 {
1043 	struct tcp_sock *tp = tcp_sk(sk);
1044 	int mss_now, size_goal;
1045 	int err;
1046 	ssize_t copied;
1047 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1048 
1049 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1050 	    WARN_ONCE(!sendpage_ok(page),
1051 		      "page must not be a Slab one and have page_count > 0"))
1052 		return -EINVAL;
1053 
1054 	/* Wait for a connection to finish. One exception is TCP Fast Open
1055 	 * (passive side) where data is allowed to be sent before a connection
1056 	 * is fully established.
1057 	 */
1058 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1059 	    !tcp_passive_fastopen(sk)) {
1060 		err = sk_stream_wait_connect(sk, &timeo);
1061 		if (err != 0)
1062 			goto out_err;
1063 	}
1064 
1065 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1066 
1067 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1068 	copied = 0;
1069 
1070 	err = -EPIPE;
1071 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1072 		goto out_err;
1073 
1074 	while (size > 0) {
1075 		struct sk_buff *skb;
1076 		size_t copy = size;
1077 
1078 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1079 		if (!skb)
1080 			goto wait_for_space;
1081 
1082 		if (!copied)
1083 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1084 
1085 		copied += copy;
1086 		offset += copy;
1087 		size -= copy;
1088 		if (!size)
1089 			goto out;
1090 
1091 		if (skb->len < size_goal || (flags & MSG_OOB))
1092 			continue;
1093 
1094 		if (forced_push(tp)) {
1095 			tcp_mark_push(tp, skb);
1096 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1097 		} else if (skb == tcp_send_head(sk))
1098 			tcp_push_one(sk, mss_now);
1099 		continue;
1100 
1101 wait_for_space:
1102 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1103 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1104 			 TCP_NAGLE_PUSH, size_goal);
1105 
1106 		err = sk_stream_wait_memory(sk, &timeo);
1107 		if (err != 0)
1108 			goto do_error;
1109 
1110 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1111 	}
1112 
1113 out:
1114 	if (copied) {
1115 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1116 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1117 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1118 	}
1119 	return copied;
1120 
1121 do_error:
1122 	tcp_remove_empty_skb(sk);
1123 	if (copied)
1124 		goto out;
1125 out_err:
1126 	/* make sure we wake any epoll edge trigger waiter */
1127 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1128 		sk->sk_write_space(sk);
1129 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1130 	}
1131 	return sk_stream_error(sk, flags, err);
1132 }
1133 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1134 
1135 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1136 			size_t size, int flags)
1137 {
1138 	if (!(sk->sk_route_caps & NETIF_F_SG))
1139 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1140 
1141 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1142 
1143 	return do_tcp_sendpages(sk, page, offset, size, flags);
1144 }
1145 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1146 
1147 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1148 		 size_t size, int flags)
1149 {
1150 	int ret;
1151 
1152 	lock_sock(sk);
1153 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1154 	release_sock(sk);
1155 
1156 	return ret;
1157 }
1158 EXPORT_SYMBOL(tcp_sendpage);
1159 
1160 void tcp_free_fastopen_req(struct tcp_sock *tp)
1161 {
1162 	if (tp->fastopen_req) {
1163 		kfree(tp->fastopen_req);
1164 		tp->fastopen_req = NULL;
1165 	}
1166 }
1167 
1168 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1169 			 size_t size, struct ubuf_info *uarg)
1170 {
1171 	struct tcp_sock *tp = tcp_sk(sk);
1172 	struct inet_sock *inet = inet_sk(sk);
1173 	struct sockaddr *uaddr = msg->msg_name;
1174 	int err, flags;
1175 
1176 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1177 	      TFO_CLIENT_ENABLE) ||
1178 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1179 	     uaddr->sa_family == AF_UNSPEC))
1180 		return -EOPNOTSUPP;
1181 	if (tp->fastopen_req)
1182 		return -EALREADY; /* Another Fast Open is in progress */
1183 
1184 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1185 				   sk->sk_allocation);
1186 	if (unlikely(!tp->fastopen_req))
1187 		return -ENOBUFS;
1188 	tp->fastopen_req->data = msg;
1189 	tp->fastopen_req->size = size;
1190 	tp->fastopen_req->uarg = uarg;
1191 
1192 	if (inet->defer_connect) {
1193 		err = tcp_connect(sk);
1194 		/* Same failure procedure as in tcp_v4/6_connect */
1195 		if (err) {
1196 			tcp_set_state(sk, TCP_CLOSE);
1197 			inet->inet_dport = 0;
1198 			sk->sk_route_caps = 0;
1199 		}
1200 	}
1201 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1202 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1203 				    msg->msg_namelen, flags, 1);
1204 	/* fastopen_req could already be freed in __inet_stream_connect
1205 	 * if the connection times out or gets rst
1206 	 */
1207 	if (tp->fastopen_req) {
1208 		*copied = tp->fastopen_req->copied;
1209 		tcp_free_fastopen_req(tp);
1210 		inet->defer_connect = 0;
1211 	}
1212 	return err;
1213 }
1214 
1215 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1216 {
1217 	struct tcp_sock *tp = tcp_sk(sk);
1218 	struct ubuf_info *uarg = NULL;
1219 	struct sk_buff *skb;
1220 	struct sockcm_cookie sockc;
1221 	int flags, err, copied = 0;
1222 	int mss_now = 0, size_goal, copied_syn = 0;
1223 	int process_backlog = 0;
1224 	bool zc = false;
1225 	long timeo;
1226 
1227 	flags = msg->msg_flags;
1228 
1229 	if ((flags & MSG_ZEROCOPY) && size) {
1230 		skb = tcp_write_queue_tail(sk);
1231 
1232 		if (msg->msg_ubuf) {
1233 			uarg = msg->msg_ubuf;
1234 			net_zcopy_get(uarg);
1235 			zc = sk->sk_route_caps & NETIF_F_SG;
1236 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1237 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1238 			if (!uarg) {
1239 				err = -ENOBUFS;
1240 				goto out_err;
1241 			}
1242 			zc = sk->sk_route_caps & NETIF_F_SG;
1243 			if (!zc)
1244 				uarg_to_msgzc(uarg)->zerocopy = 0;
1245 		}
1246 	}
1247 
1248 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1249 	    !tp->repair) {
1250 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1251 		if (err == -EINPROGRESS && copied_syn > 0)
1252 			goto out;
1253 		else if (err)
1254 			goto out_err;
1255 	}
1256 
1257 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1258 
1259 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1260 
1261 	/* Wait for a connection to finish. One exception is TCP Fast Open
1262 	 * (passive side) where data is allowed to be sent before a connection
1263 	 * is fully established.
1264 	 */
1265 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1266 	    !tcp_passive_fastopen(sk)) {
1267 		err = sk_stream_wait_connect(sk, &timeo);
1268 		if (err != 0)
1269 			goto do_error;
1270 	}
1271 
1272 	if (unlikely(tp->repair)) {
1273 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1274 			copied = tcp_send_rcvq(sk, msg, size);
1275 			goto out_nopush;
1276 		}
1277 
1278 		err = -EINVAL;
1279 		if (tp->repair_queue == TCP_NO_QUEUE)
1280 			goto out_err;
1281 
1282 		/* 'common' sending to sendq */
1283 	}
1284 
1285 	sockcm_init(&sockc, sk);
1286 	if (msg->msg_controllen) {
1287 		err = sock_cmsg_send(sk, msg, &sockc);
1288 		if (unlikely(err)) {
1289 			err = -EINVAL;
1290 			goto out_err;
1291 		}
1292 	}
1293 
1294 	/* This should be in poll */
1295 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1296 
1297 	/* Ok commence sending. */
1298 	copied = 0;
1299 
1300 restart:
1301 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1302 
1303 	err = -EPIPE;
1304 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1305 		goto do_error;
1306 
1307 	while (msg_data_left(msg)) {
1308 		int copy = 0;
1309 
1310 		skb = tcp_write_queue_tail(sk);
1311 		if (skb)
1312 			copy = size_goal - skb->len;
1313 
1314 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1315 			bool first_skb;
1316 
1317 new_segment:
1318 			if (!sk_stream_memory_free(sk))
1319 				goto wait_for_space;
1320 
1321 			if (unlikely(process_backlog >= 16)) {
1322 				process_backlog = 0;
1323 				if (sk_flush_backlog(sk))
1324 					goto restart;
1325 			}
1326 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1327 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1328 						   first_skb);
1329 			if (!skb)
1330 				goto wait_for_space;
1331 
1332 			process_backlog++;
1333 
1334 			tcp_skb_entail(sk, skb);
1335 			copy = size_goal;
1336 
1337 			/* All packets are restored as if they have
1338 			 * already been sent. skb_mstamp_ns isn't set to
1339 			 * avoid wrong rtt estimation.
1340 			 */
1341 			if (tp->repair)
1342 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1343 		}
1344 
1345 		/* Try to append data to the end of skb. */
1346 		if (copy > msg_data_left(msg))
1347 			copy = msg_data_left(msg);
1348 
1349 		if (!zc) {
1350 			bool merge = true;
1351 			int i = skb_shinfo(skb)->nr_frags;
1352 			struct page_frag *pfrag = sk_page_frag(sk);
1353 
1354 			if (!sk_page_frag_refill(sk, pfrag))
1355 				goto wait_for_space;
1356 
1357 			if (!skb_can_coalesce(skb, i, pfrag->page,
1358 					      pfrag->offset)) {
1359 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1360 					tcp_mark_push(tp, skb);
1361 					goto new_segment;
1362 				}
1363 				merge = false;
1364 			}
1365 
1366 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1367 
1368 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1369 				if (tcp_downgrade_zcopy_pure(sk, skb))
1370 					goto wait_for_space;
1371 				skb_zcopy_downgrade_managed(skb);
1372 			}
1373 
1374 			copy = tcp_wmem_schedule(sk, copy);
1375 			if (!copy)
1376 				goto wait_for_space;
1377 
1378 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1379 						       pfrag->page,
1380 						       pfrag->offset,
1381 						       copy);
1382 			if (err)
1383 				goto do_error;
1384 
1385 			/* Update the skb. */
1386 			if (merge) {
1387 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1388 			} else {
1389 				skb_fill_page_desc(skb, i, pfrag->page,
1390 						   pfrag->offset, copy);
1391 				page_ref_inc(pfrag->page);
1392 			}
1393 			pfrag->offset += copy;
1394 		} else {
1395 			/* First append to a fragless skb builds initial
1396 			 * pure zerocopy skb
1397 			 */
1398 			if (!skb->len)
1399 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1400 
1401 			if (!skb_zcopy_pure(skb)) {
1402 				copy = tcp_wmem_schedule(sk, copy);
1403 				if (!copy)
1404 					goto wait_for_space;
1405 			}
1406 
1407 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1408 			if (err == -EMSGSIZE || err == -EEXIST) {
1409 				tcp_mark_push(tp, skb);
1410 				goto new_segment;
1411 			}
1412 			if (err < 0)
1413 				goto do_error;
1414 			copy = err;
1415 		}
1416 
1417 		if (!copied)
1418 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1419 
1420 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1421 		TCP_SKB_CB(skb)->end_seq += copy;
1422 		tcp_skb_pcount_set(skb, 0);
1423 
1424 		copied += copy;
1425 		if (!msg_data_left(msg)) {
1426 			if (unlikely(flags & MSG_EOR))
1427 				TCP_SKB_CB(skb)->eor = 1;
1428 			goto out;
1429 		}
1430 
1431 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1432 			continue;
1433 
1434 		if (forced_push(tp)) {
1435 			tcp_mark_push(tp, skb);
1436 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1437 		} else if (skb == tcp_send_head(sk))
1438 			tcp_push_one(sk, mss_now);
1439 		continue;
1440 
1441 wait_for_space:
1442 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1443 		if (copied)
1444 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1445 				 TCP_NAGLE_PUSH, size_goal);
1446 
1447 		err = sk_stream_wait_memory(sk, &timeo);
1448 		if (err != 0)
1449 			goto do_error;
1450 
1451 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1452 	}
1453 
1454 out:
1455 	if (copied) {
1456 		tcp_tx_timestamp(sk, sockc.tsflags);
1457 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1458 	}
1459 out_nopush:
1460 	net_zcopy_put(uarg);
1461 	return copied + copied_syn;
1462 
1463 do_error:
1464 	tcp_remove_empty_skb(sk);
1465 
1466 	if (copied + copied_syn)
1467 		goto out;
1468 out_err:
1469 	net_zcopy_put_abort(uarg, true);
1470 	err = sk_stream_error(sk, flags, err);
1471 	/* make sure we wake any epoll edge trigger waiter */
1472 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1473 		sk->sk_write_space(sk);
1474 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1475 	}
1476 	return err;
1477 }
1478 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1479 
1480 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1481 {
1482 	int ret;
1483 
1484 	lock_sock(sk);
1485 	ret = tcp_sendmsg_locked(sk, msg, size);
1486 	release_sock(sk);
1487 
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL(tcp_sendmsg);
1491 
1492 /*
1493  *	Handle reading urgent data. BSD has very simple semantics for
1494  *	this, no blocking and very strange errors 8)
1495  */
1496 
1497 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1498 {
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 
1501 	/* No URG data to read. */
1502 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1503 	    tp->urg_data == TCP_URG_READ)
1504 		return -EINVAL;	/* Yes this is right ! */
1505 
1506 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1507 		return -ENOTCONN;
1508 
1509 	if (tp->urg_data & TCP_URG_VALID) {
1510 		int err = 0;
1511 		char c = tp->urg_data;
1512 
1513 		if (!(flags & MSG_PEEK))
1514 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1515 
1516 		/* Read urgent data. */
1517 		msg->msg_flags |= MSG_OOB;
1518 
1519 		if (len > 0) {
1520 			if (!(flags & MSG_TRUNC))
1521 				err = memcpy_to_msg(msg, &c, 1);
1522 			len = 1;
1523 		} else
1524 			msg->msg_flags |= MSG_TRUNC;
1525 
1526 		return err ? -EFAULT : len;
1527 	}
1528 
1529 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1530 		return 0;
1531 
1532 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1533 	 * the available implementations agree in this case:
1534 	 * this call should never block, independent of the
1535 	 * blocking state of the socket.
1536 	 * Mike <pall@rz.uni-karlsruhe.de>
1537 	 */
1538 	return -EAGAIN;
1539 }
1540 
1541 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1542 {
1543 	struct sk_buff *skb;
1544 	int copied = 0, err = 0;
1545 
1546 	/* XXX -- need to support SO_PEEK_OFF */
1547 
1548 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1549 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1550 		if (err)
1551 			return err;
1552 		copied += skb->len;
1553 	}
1554 
1555 	skb_queue_walk(&sk->sk_write_queue, skb) {
1556 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1557 		if (err)
1558 			break;
1559 
1560 		copied += skb->len;
1561 	}
1562 
1563 	return err ?: copied;
1564 }
1565 
1566 /* Clean up the receive buffer for full frames taken by the user,
1567  * then send an ACK if necessary.  COPIED is the number of bytes
1568  * tcp_recvmsg has given to the user so far, it speeds up the
1569  * calculation of whether or not we must ACK for the sake of
1570  * a window update.
1571  */
1572 static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1573 {
1574 	struct tcp_sock *tp = tcp_sk(sk);
1575 	bool time_to_ack = false;
1576 
1577 	if (inet_csk_ack_scheduled(sk)) {
1578 		const struct inet_connection_sock *icsk = inet_csk(sk);
1579 
1580 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1581 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1582 		    /*
1583 		     * If this read emptied read buffer, we send ACK, if
1584 		     * connection is not bidirectional, user drained
1585 		     * receive buffer and there was a small segment
1586 		     * in queue.
1587 		     */
1588 		    (copied > 0 &&
1589 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1590 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1591 		       !inet_csk_in_pingpong_mode(sk))) &&
1592 		      !atomic_read(&sk->sk_rmem_alloc)))
1593 			time_to_ack = true;
1594 	}
1595 
1596 	/* We send an ACK if we can now advertise a non-zero window
1597 	 * which has been raised "significantly".
1598 	 *
1599 	 * Even if window raised up to infinity, do not send window open ACK
1600 	 * in states, where we will not receive more. It is useless.
1601 	 */
1602 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1603 		__u32 rcv_window_now = tcp_receive_window(tp);
1604 
1605 		/* Optimize, __tcp_select_window() is not cheap. */
1606 		if (2*rcv_window_now <= tp->window_clamp) {
1607 			__u32 new_window = __tcp_select_window(sk);
1608 
1609 			/* Send ACK now, if this read freed lots of space
1610 			 * in our buffer. Certainly, new_window is new window.
1611 			 * We can advertise it now, if it is not less than current one.
1612 			 * "Lots" means "at least twice" here.
1613 			 */
1614 			if (new_window && new_window >= 2 * rcv_window_now)
1615 				time_to_ack = true;
1616 		}
1617 	}
1618 	if (time_to_ack)
1619 		tcp_send_ack(sk);
1620 }
1621 
1622 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1623 {
1624 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1625 	struct tcp_sock *tp = tcp_sk(sk);
1626 
1627 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1628 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1629 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1630 	__tcp_cleanup_rbuf(sk, copied);
1631 }
1632 
1633 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1634 {
1635 	__skb_unlink(skb, &sk->sk_receive_queue);
1636 	if (likely(skb->destructor == sock_rfree)) {
1637 		sock_rfree(skb);
1638 		skb->destructor = NULL;
1639 		skb->sk = NULL;
1640 		return skb_attempt_defer_free(skb);
1641 	}
1642 	__kfree_skb(skb);
1643 }
1644 
1645 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1646 {
1647 	struct sk_buff *skb;
1648 	u32 offset;
1649 
1650 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1651 		offset = seq - TCP_SKB_CB(skb)->seq;
1652 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1653 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1654 			offset--;
1655 		}
1656 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1657 			*off = offset;
1658 			return skb;
1659 		}
1660 		/* This looks weird, but this can happen if TCP collapsing
1661 		 * splitted a fat GRO packet, while we released socket lock
1662 		 * in skb_splice_bits()
1663 		 */
1664 		tcp_eat_recv_skb(sk, skb);
1665 	}
1666 	return NULL;
1667 }
1668 EXPORT_SYMBOL(tcp_recv_skb);
1669 
1670 /*
1671  * This routine provides an alternative to tcp_recvmsg() for routines
1672  * that would like to handle copying from skbuffs directly in 'sendfile'
1673  * fashion.
1674  * Note:
1675  *	- It is assumed that the socket was locked by the caller.
1676  *	- The routine does not block.
1677  *	- At present, there is no support for reading OOB data
1678  *	  or for 'peeking' the socket using this routine
1679  *	  (although both would be easy to implement).
1680  */
1681 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1682 		  sk_read_actor_t recv_actor)
1683 {
1684 	struct sk_buff *skb;
1685 	struct tcp_sock *tp = tcp_sk(sk);
1686 	u32 seq = tp->copied_seq;
1687 	u32 offset;
1688 	int copied = 0;
1689 
1690 	if (sk->sk_state == TCP_LISTEN)
1691 		return -ENOTCONN;
1692 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1693 		if (offset < skb->len) {
1694 			int used;
1695 			size_t len;
1696 
1697 			len = skb->len - offset;
1698 			/* Stop reading if we hit a patch of urgent data */
1699 			if (unlikely(tp->urg_data)) {
1700 				u32 urg_offset = tp->urg_seq - seq;
1701 				if (urg_offset < len)
1702 					len = urg_offset;
1703 				if (!len)
1704 					break;
1705 			}
1706 			used = recv_actor(desc, skb, offset, len);
1707 			if (used <= 0) {
1708 				if (!copied)
1709 					copied = used;
1710 				break;
1711 			}
1712 			if (WARN_ON_ONCE(used > len))
1713 				used = len;
1714 			seq += used;
1715 			copied += used;
1716 			offset += used;
1717 
1718 			/* If recv_actor drops the lock (e.g. TCP splice
1719 			 * receive) the skb pointer might be invalid when
1720 			 * getting here: tcp_collapse might have deleted it
1721 			 * while aggregating skbs from the socket queue.
1722 			 */
1723 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1724 			if (!skb)
1725 				break;
1726 			/* TCP coalescing might have appended data to the skb.
1727 			 * Try to splice more frags
1728 			 */
1729 			if (offset + 1 != skb->len)
1730 				continue;
1731 		}
1732 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1733 			tcp_eat_recv_skb(sk, skb);
1734 			++seq;
1735 			break;
1736 		}
1737 		tcp_eat_recv_skb(sk, skb);
1738 		if (!desc->count)
1739 			break;
1740 		WRITE_ONCE(tp->copied_seq, seq);
1741 	}
1742 	WRITE_ONCE(tp->copied_seq, seq);
1743 
1744 	tcp_rcv_space_adjust(sk);
1745 
1746 	/* Clean up data we have read: This will do ACK frames. */
1747 	if (copied > 0) {
1748 		tcp_recv_skb(sk, seq, &offset);
1749 		tcp_cleanup_rbuf(sk, copied);
1750 	}
1751 	return copied;
1752 }
1753 EXPORT_SYMBOL(tcp_read_sock);
1754 
1755 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1756 {
1757 	struct tcp_sock *tp = tcp_sk(sk);
1758 	u32 seq = tp->copied_seq;
1759 	struct sk_buff *skb;
1760 	int copied = 0;
1761 	u32 offset;
1762 
1763 	if (sk->sk_state == TCP_LISTEN)
1764 		return -ENOTCONN;
1765 
1766 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1767 		u8 tcp_flags;
1768 		int used;
1769 
1770 		__skb_unlink(skb, &sk->sk_receive_queue);
1771 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1772 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1773 		used = recv_actor(sk, skb);
1774 		consume_skb(skb);
1775 		if (used < 0) {
1776 			if (!copied)
1777 				copied = used;
1778 			break;
1779 		}
1780 		seq += used;
1781 		copied += used;
1782 
1783 		if (tcp_flags & TCPHDR_FIN) {
1784 			++seq;
1785 			break;
1786 		}
1787 	}
1788 	WRITE_ONCE(tp->copied_seq, seq);
1789 
1790 	tcp_rcv_space_adjust(sk);
1791 
1792 	/* Clean up data we have read: This will do ACK frames. */
1793 	if (copied > 0)
1794 		__tcp_cleanup_rbuf(sk, copied);
1795 
1796 	return copied;
1797 }
1798 EXPORT_SYMBOL(tcp_read_skb);
1799 
1800 void tcp_read_done(struct sock *sk, size_t len)
1801 {
1802 	struct tcp_sock *tp = tcp_sk(sk);
1803 	u32 seq = tp->copied_seq;
1804 	struct sk_buff *skb;
1805 	size_t left;
1806 	u32 offset;
1807 
1808 	if (sk->sk_state == TCP_LISTEN)
1809 		return;
1810 
1811 	left = len;
1812 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1813 		int used;
1814 
1815 		used = min_t(size_t, skb->len - offset, left);
1816 		seq += used;
1817 		left -= used;
1818 
1819 		if (skb->len > offset + used)
1820 			break;
1821 
1822 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1823 			tcp_eat_recv_skb(sk, skb);
1824 			++seq;
1825 			break;
1826 		}
1827 		tcp_eat_recv_skb(sk, skb);
1828 	}
1829 	WRITE_ONCE(tp->copied_seq, seq);
1830 
1831 	tcp_rcv_space_adjust(sk);
1832 
1833 	/* Clean up data we have read: This will do ACK frames. */
1834 	if (left != len)
1835 		tcp_cleanup_rbuf(sk, len - left);
1836 }
1837 EXPORT_SYMBOL(tcp_read_done);
1838 
1839 int tcp_peek_len(struct socket *sock)
1840 {
1841 	return tcp_inq(sock->sk);
1842 }
1843 EXPORT_SYMBOL(tcp_peek_len);
1844 
1845 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1846 int tcp_set_rcvlowat(struct sock *sk, int val)
1847 {
1848 	int cap;
1849 
1850 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1851 		cap = sk->sk_rcvbuf >> 1;
1852 	else
1853 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1854 	val = min(val, cap);
1855 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1856 
1857 	/* Check if we need to signal EPOLLIN right now */
1858 	tcp_data_ready(sk);
1859 
1860 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1861 		return 0;
1862 
1863 	val <<= 1;
1864 	if (val > sk->sk_rcvbuf) {
1865 		WRITE_ONCE(sk->sk_rcvbuf, val);
1866 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1867 	}
1868 	return 0;
1869 }
1870 EXPORT_SYMBOL(tcp_set_rcvlowat);
1871 
1872 void tcp_update_recv_tstamps(struct sk_buff *skb,
1873 			     struct scm_timestamping_internal *tss)
1874 {
1875 	if (skb->tstamp)
1876 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1877 	else
1878 		tss->ts[0] = (struct timespec64) {0};
1879 
1880 	if (skb_hwtstamps(skb)->hwtstamp)
1881 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1882 	else
1883 		tss->ts[2] = (struct timespec64) {0};
1884 }
1885 
1886 #ifdef CONFIG_MMU
1887 static const struct vm_operations_struct tcp_vm_ops = {
1888 };
1889 
1890 int tcp_mmap(struct file *file, struct socket *sock,
1891 	     struct vm_area_struct *vma)
1892 {
1893 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1894 		return -EPERM;
1895 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1896 
1897 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1898 	vm_flags_set(vma, VM_MIXEDMAP);
1899 
1900 	vma->vm_ops = &tcp_vm_ops;
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL(tcp_mmap);
1904 
1905 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1906 				       u32 *offset_frag)
1907 {
1908 	skb_frag_t *frag;
1909 
1910 	if (unlikely(offset_skb >= skb->len))
1911 		return NULL;
1912 
1913 	offset_skb -= skb_headlen(skb);
1914 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1915 		return NULL;
1916 
1917 	frag = skb_shinfo(skb)->frags;
1918 	while (offset_skb) {
1919 		if (skb_frag_size(frag) > offset_skb) {
1920 			*offset_frag = offset_skb;
1921 			return frag;
1922 		}
1923 		offset_skb -= skb_frag_size(frag);
1924 		++frag;
1925 	}
1926 	*offset_frag = 0;
1927 	return frag;
1928 }
1929 
1930 static bool can_map_frag(const skb_frag_t *frag)
1931 {
1932 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1933 }
1934 
1935 static int find_next_mappable_frag(const skb_frag_t *frag,
1936 				   int remaining_in_skb)
1937 {
1938 	int offset = 0;
1939 
1940 	if (likely(can_map_frag(frag)))
1941 		return 0;
1942 
1943 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1944 		offset += skb_frag_size(frag);
1945 		++frag;
1946 	}
1947 	return offset;
1948 }
1949 
1950 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1951 					  struct tcp_zerocopy_receive *zc,
1952 					  struct sk_buff *skb, u32 offset)
1953 {
1954 	u32 frag_offset, partial_frag_remainder = 0;
1955 	int mappable_offset;
1956 	skb_frag_t *frag;
1957 
1958 	/* worst case: skip to next skb. try to improve on this case below */
1959 	zc->recv_skip_hint = skb->len - offset;
1960 
1961 	/* Find the frag containing this offset (and how far into that frag) */
1962 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1963 	if (!frag)
1964 		return;
1965 
1966 	if (frag_offset) {
1967 		struct skb_shared_info *info = skb_shinfo(skb);
1968 
1969 		/* We read part of the last frag, must recvmsg() rest of skb. */
1970 		if (frag == &info->frags[info->nr_frags - 1])
1971 			return;
1972 
1973 		/* Else, we must at least read the remainder in this frag. */
1974 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1975 		zc->recv_skip_hint -= partial_frag_remainder;
1976 		++frag;
1977 	}
1978 
1979 	/* partial_frag_remainder: If part way through a frag, must read rest.
1980 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1981 	 * in partial_frag_remainder.
1982 	 */
1983 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1984 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1985 }
1986 
1987 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1988 			      int flags, struct scm_timestamping_internal *tss,
1989 			      int *cmsg_flags);
1990 static int receive_fallback_to_copy(struct sock *sk,
1991 				    struct tcp_zerocopy_receive *zc, int inq,
1992 				    struct scm_timestamping_internal *tss)
1993 {
1994 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1995 	struct msghdr msg = {};
1996 	struct iovec iov;
1997 	int err;
1998 
1999 	zc->length = 0;
2000 	zc->recv_skip_hint = 0;
2001 
2002 	if (copy_address != zc->copybuf_address)
2003 		return -EINVAL;
2004 
2005 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2006 				  inq, &iov, &msg.msg_iter);
2007 	if (err)
2008 		return err;
2009 
2010 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2011 				 tss, &zc->msg_flags);
2012 	if (err < 0)
2013 		return err;
2014 
2015 	zc->copybuf_len = err;
2016 	if (likely(zc->copybuf_len)) {
2017 		struct sk_buff *skb;
2018 		u32 offset;
2019 
2020 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2021 		if (skb)
2022 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2023 	}
2024 	return 0;
2025 }
2026 
2027 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2028 				   struct sk_buff *skb, u32 copylen,
2029 				   u32 *offset, u32 *seq)
2030 {
2031 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2032 	struct msghdr msg = {};
2033 	struct iovec iov;
2034 	int err;
2035 
2036 	if (copy_address != zc->copybuf_address)
2037 		return -EINVAL;
2038 
2039 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2040 				  copylen, &iov, &msg.msg_iter);
2041 	if (err)
2042 		return err;
2043 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2044 	if (err)
2045 		return err;
2046 	zc->recv_skip_hint -= copylen;
2047 	*offset += copylen;
2048 	*seq += copylen;
2049 	return (__s32)copylen;
2050 }
2051 
2052 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2053 				  struct sock *sk,
2054 				  struct sk_buff *skb,
2055 				  u32 *seq,
2056 				  s32 copybuf_len,
2057 				  struct scm_timestamping_internal *tss)
2058 {
2059 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2060 
2061 	if (!copylen)
2062 		return 0;
2063 	/* skb is null if inq < PAGE_SIZE. */
2064 	if (skb) {
2065 		offset = *seq - TCP_SKB_CB(skb)->seq;
2066 	} else {
2067 		skb = tcp_recv_skb(sk, *seq, &offset);
2068 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2069 			tcp_update_recv_tstamps(skb, tss);
2070 			zc->msg_flags |= TCP_CMSG_TS;
2071 		}
2072 	}
2073 
2074 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2075 						  seq);
2076 	return zc->copybuf_len < 0 ? 0 : copylen;
2077 }
2078 
2079 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2080 					      struct page **pending_pages,
2081 					      unsigned long pages_remaining,
2082 					      unsigned long *address,
2083 					      u32 *length,
2084 					      u32 *seq,
2085 					      struct tcp_zerocopy_receive *zc,
2086 					      u32 total_bytes_to_map,
2087 					      int err)
2088 {
2089 	/* At least one page did not map. Try zapping if we skipped earlier. */
2090 	if (err == -EBUSY &&
2091 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2092 		u32 maybe_zap_len;
2093 
2094 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2095 				*length + /* Mapped or pending */
2096 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2097 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2098 		err = 0;
2099 	}
2100 
2101 	if (!err) {
2102 		unsigned long leftover_pages = pages_remaining;
2103 		int bytes_mapped;
2104 
2105 		/* We called zap_page_range_single, try to reinsert. */
2106 		err = vm_insert_pages(vma, *address,
2107 				      pending_pages,
2108 				      &pages_remaining);
2109 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2110 		*seq += bytes_mapped;
2111 		*address += bytes_mapped;
2112 	}
2113 	if (err) {
2114 		/* Either we were unable to zap, OR we zapped, retried an
2115 		 * insert, and still had an issue. Either ways, pages_remaining
2116 		 * is the number of pages we were unable to map, and we unroll
2117 		 * some state we speculatively touched before.
2118 		 */
2119 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2120 
2121 		*length -= bytes_not_mapped;
2122 		zc->recv_skip_hint += bytes_not_mapped;
2123 	}
2124 	return err;
2125 }
2126 
2127 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2128 					struct page **pages,
2129 					unsigned int pages_to_map,
2130 					unsigned long *address,
2131 					u32 *length,
2132 					u32 *seq,
2133 					struct tcp_zerocopy_receive *zc,
2134 					u32 total_bytes_to_map)
2135 {
2136 	unsigned long pages_remaining = pages_to_map;
2137 	unsigned int pages_mapped;
2138 	unsigned int bytes_mapped;
2139 	int err;
2140 
2141 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2142 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2143 	bytes_mapped = PAGE_SIZE * pages_mapped;
2144 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2145 	 * mapping (some but not all of the pages).
2146 	 */
2147 	*seq += bytes_mapped;
2148 	*address += bytes_mapped;
2149 
2150 	if (likely(!err))
2151 		return 0;
2152 
2153 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2154 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2155 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2156 		err);
2157 }
2158 
2159 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2160 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2161 				      struct tcp_zerocopy_receive *zc,
2162 				      struct scm_timestamping_internal *tss)
2163 {
2164 	unsigned long msg_control_addr;
2165 	struct msghdr cmsg_dummy;
2166 
2167 	msg_control_addr = (unsigned long)zc->msg_control;
2168 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2169 	cmsg_dummy.msg_controllen =
2170 		(__kernel_size_t)zc->msg_controllen;
2171 	cmsg_dummy.msg_flags = in_compat_syscall()
2172 		? MSG_CMSG_COMPAT : 0;
2173 	cmsg_dummy.msg_control_is_user = true;
2174 	zc->msg_flags = 0;
2175 	if (zc->msg_control == msg_control_addr &&
2176 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2177 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2178 		zc->msg_control = (__u64)
2179 			((uintptr_t)cmsg_dummy.msg_control_user);
2180 		zc->msg_controllen =
2181 			(__u64)cmsg_dummy.msg_controllen;
2182 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2183 	}
2184 }
2185 
2186 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2187 static int tcp_zerocopy_receive(struct sock *sk,
2188 				struct tcp_zerocopy_receive *zc,
2189 				struct scm_timestamping_internal *tss)
2190 {
2191 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2192 	unsigned long address = (unsigned long)zc->address;
2193 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2194 	s32 copybuf_len = zc->copybuf_len;
2195 	struct tcp_sock *tp = tcp_sk(sk);
2196 	const skb_frag_t *frags = NULL;
2197 	unsigned int pages_to_map = 0;
2198 	struct vm_area_struct *vma;
2199 	struct sk_buff *skb = NULL;
2200 	u32 seq = tp->copied_seq;
2201 	u32 total_bytes_to_map;
2202 	int inq = tcp_inq(sk);
2203 	int ret;
2204 
2205 	zc->copybuf_len = 0;
2206 	zc->msg_flags = 0;
2207 
2208 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2209 		return -EINVAL;
2210 
2211 	if (sk->sk_state == TCP_LISTEN)
2212 		return -ENOTCONN;
2213 
2214 	sock_rps_record_flow(sk);
2215 
2216 	if (inq && inq <= copybuf_len)
2217 		return receive_fallback_to_copy(sk, zc, inq, tss);
2218 
2219 	if (inq < PAGE_SIZE) {
2220 		zc->length = 0;
2221 		zc->recv_skip_hint = inq;
2222 		if (!inq && sock_flag(sk, SOCK_DONE))
2223 			return -EIO;
2224 		return 0;
2225 	}
2226 
2227 	mmap_read_lock(current->mm);
2228 
2229 	vma = vma_lookup(current->mm, address);
2230 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2231 		mmap_read_unlock(current->mm);
2232 		return -EINVAL;
2233 	}
2234 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2235 	avail_len = min_t(u32, vma_len, inq);
2236 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2237 	if (total_bytes_to_map) {
2238 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2239 			zap_page_range_single(vma, address, total_bytes_to_map,
2240 					      NULL);
2241 		zc->length = total_bytes_to_map;
2242 		zc->recv_skip_hint = 0;
2243 	} else {
2244 		zc->length = avail_len;
2245 		zc->recv_skip_hint = avail_len;
2246 	}
2247 	ret = 0;
2248 	while (length + PAGE_SIZE <= zc->length) {
2249 		int mappable_offset;
2250 		struct page *page;
2251 
2252 		if (zc->recv_skip_hint < PAGE_SIZE) {
2253 			u32 offset_frag;
2254 
2255 			if (skb) {
2256 				if (zc->recv_skip_hint > 0)
2257 					break;
2258 				skb = skb->next;
2259 				offset = seq - TCP_SKB_CB(skb)->seq;
2260 			} else {
2261 				skb = tcp_recv_skb(sk, seq, &offset);
2262 			}
2263 
2264 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2265 				tcp_update_recv_tstamps(skb, tss);
2266 				zc->msg_flags |= TCP_CMSG_TS;
2267 			}
2268 			zc->recv_skip_hint = skb->len - offset;
2269 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2270 			if (!frags || offset_frag)
2271 				break;
2272 		}
2273 
2274 		mappable_offset = find_next_mappable_frag(frags,
2275 							  zc->recv_skip_hint);
2276 		if (mappable_offset) {
2277 			zc->recv_skip_hint = mappable_offset;
2278 			break;
2279 		}
2280 		page = skb_frag_page(frags);
2281 		prefetchw(page);
2282 		pages[pages_to_map++] = page;
2283 		length += PAGE_SIZE;
2284 		zc->recv_skip_hint -= PAGE_SIZE;
2285 		frags++;
2286 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2287 		    zc->recv_skip_hint < PAGE_SIZE) {
2288 			/* Either full batch, or we're about to go to next skb
2289 			 * (and we cannot unroll failed ops across skbs).
2290 			 */
2291 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2292 							   pages_to_map,
2293 							   &address, &length,
2294 							   &seq, zc,
2295 							   total_bytes_to_map);
2296 			if (ret)
2297 				goto out;
2298 			pages_to_map = 0;
2299 		}
2300 	}
2301 	if (pages_to_map) {
2302 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2303 						   &address, &length, &seq,
2304 						   zc, total_bytes_to_map);
2305 	}
2306 out:
2307 	mmap_read_unlock(current->mm);
2308 	/* Try to copy straggler data. */
2309 	if (!ret)
2310 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2311 
2312 	if (length + copylen) {
2313 		WRITE_ONCE(tp->copied_seq, seq);
2314 		tcp_rcv_space_adjust(sk);
2315 
2316 		/* Clean up data we have read: This will do ACK frames. */
2317 		tcp_recv_skb(sk, seq, &offset);
2318 		tcp_cleanup_rbuf(sk, length + copylen);
2319 		ret = 0;
2320 		if (length == zc->length)
2321 			zc->recv_skip_hint = 0;
2322 	} else {
2323 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2324 			ret = -EIO;
2325 	}
2326 	zc->length = length;
2327 	return ret;
2328 }
2329 #endif
2330 
2331 /* Similar to __sock_recv_timestamp, but does not require an skb */
2332 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2333 			struct scm_timestamping_internal *tss)
2334 {
2335 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2336 	bool has_timestamping = false;
2337 
2338 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2339 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2340 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2341 				if (new_tstamp) {
2342 					struct __kernel_timespec kts = {
2343 						.tv_sec = tss->ts[0].tv_sec,
2344 						.tv_nsec = tss->ts[0].tv_nsec,
2345 					};
2346 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2347 						 sizeof(kts), &kts);
2348 				} else {
2349 					struct __kernel_old_timespec ts_old = {
2350 						.tv_sec = tss->ts[0].tv_sec,
2351 						.tv_nsec = tss->ts[0].tv_nsec,
2352 					};
2353 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2354 						 sizeof(ts_old), &ts_old);
2355 				}
2356 			} else {
2357 				if (new_tstamp) {
2358 					struct __kernel_sock_timeval stv = {
2359 						.tv_sec = tss->ts[0].tv_sec,
2360 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2361 					};
2362 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2363 						 sizeof(stv), &stv);
2364 				} else {
2365 					struct __kernel_old_timeval tv = {
2366 						.tv_sec = tss->ts[0].tv_sec,
2367 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2368 					};
2369 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2370 						 sizeof(tv), &tv);
2371 				}
2372 			}
2373 		}
2374 
2375 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2376 			has_timestamping = true;
2377 		else
2378 			tss->ts[0] = (struct timespec64) {0};
2379 	}
2380 
2381 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2382 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2383 			has_timestamping = true;
2384 		else
2385 			tss->ts[2] = (struct timespec64) {0};
2386 	}
2387 
2388 	if (has_timestamping) {
2389 		tss->ts[1] = (struct timespec64) {0};
2390 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2391 			put_cmsg_scm_timestamping64(msg, tss);
2392 		else
2393 			put_cmsg_scm_timestamping(msg, tss);
2394 	}
2395 }
2396 
2397 static int tcp_inq_hint(struct sock *sk)
2398 {
2399 	const struct tcp_sock *tp = tcp_sk(sk);
2400 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2401 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2402 	int inq;
2403 
2404 	inq = rcv_nxt - copied_seq;
2405 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2406 		lock_sock(sk);
2407 		inq = tp->rcv_nxt - tp->copied_seq;
2408 		release_sock(sk);
2409 	}
2410 	/* After receiving a FIN, tell the user-space to continue reading
2411 	 * by returning a non-zero inq.
2412 	 */
2413 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2414 		inq = 1;
2415 	return inq;
2416 }
2417 
2418 /*
2419  *	This routine copies from a sock struct into the user buffer.
2420  *
2421  *	Technical note: in 2.3 we work on _locked_ socket, so that
2422  *	tricks with *seq access order and skb->users are not required.
2423  *	Probably, code can be easily improved even more.
2424  */
2425 
2426 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2427 			      int flags, struct scm_timestamping_internal *tss,
2428 			      int *cmsg_flags)
2429 {
2430 	struct tcp_sock *tp = tcp_sk(sk);
2431 	int copied = 0;
2432 	u32 peek_seq;
2433 	u32 *seq;
2434 	unsigned long used;
2435 	int err;
2436 	int target;		/* Read at least this many bytes */
2437 	long timeo;
2438 	struct sk_buff *skb, *last;
2439 	u32 urg_hole = 0;
2440 
2441 	err = -ENOTCONN;
2442 	if (sk->sk_state == TCP_LISTEN)
2443 		goto out;
2444 
2445 	if (tp->recvmsg_inq) {
2446 		*cmsg_flags = TCP_CMSG_INQ;
2447 		msg->msg_get_inq = 1;
2448 	}
2449 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2450 
2451 	/* Urgent data needs to be handled specially. */
2452 	if (flags & MSG_OOB)
2453 		goto recv_urg;
2454 
2455 	if (unlikely(tp->repair)) {
2456 		err = -EPERM;
2457 		if (!(flags & MSG_PEEK))
2458 			goto out;
2459 
2460 		if (tp->repair_queue == TCP_SEND_QUEUE)
2461 			goto recv_sndq;
2462 
2463 		err = -EINVAL;
2464 		if (tp->repair_queue == TCP_NO_QUEUE)
2465 			goto out;
2466 
2467 		/* 'common' recv queue MSG_PEEK-ing */
2468 	}
2469 
2470 	seq = &tp->copied_seq;
2471 	if (flags & MSG_PEEK) {
2472 		peek_seq = tp->copied_seq;
2473 		seq = &peek_seq;
2474 	}
2475 
2476 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2477 
2478 	do {
2479 		u32 offset;
2480 
2481 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2482 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2483 			if (copied)
2484 				break;
2485 			if (signal_pending(current)) {
2486 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2487 				break;
2488 			}
2489 		}
2490 
2491 		/* Next get a buffer. */
2492 
2493 		last = skb_peek_tail(&sk->sk_receive_queue);
2494 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2495 			last = skb;
2496 			/* Now that we have two receive queues this
2497 			 * shouldn't happen.
2498 			 */
2499 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2500 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2501 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2502 				 flags))
2503 				break;
2504 
2505 			offset = *seq - TCP_SKB_CB(skb)->seq;
2506 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2507 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2508 				offset--;
2509 			}
2510 			if (offset < skb->len)
2511 				goto found_ok_skb;
2512 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2513 				goto found_fin_ok;
2514 			WARN(!(flags & MSG_PEEK),
2515 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2516 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2517 		}
2518 
2519 		/* Well, if we have backlog, try to process it now yet. */
2520 
2521 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2522 			break;
2523 
2524 		if (copied) {
2525 			if (!timeo ||
2526 			    sk->sk_err ||
2527 			    sk->sk_state == TCP_CLOSE ||
2528 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2529 			    signal_pending(current))
2530 				break;
2531 		} else {
2532 			if (sock_flag(sk, SOCK_DONE))
2533 				break;
2534 
2535 			if (sk->sk_err) {
2536 				copied = sock_error(sk);
2537 				break;
2538 			}
2539 
2540 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2541 				break;
2542 
2543 			if (sk->sk_state == TCP_CLOSE) {
2544 				/* This occurs when user tries to read
2545 				 * from never connected socket.
2546 				 */
2547 				copied = -ENOTCONN;
2548 				break;
2549 			}
2550 
2551 			if (!timeo) {
2552 				copied = -EAGAIN;
2553 				break;
2554 			}
2555 
2556 			if (signal_pending(current)) {
2557 				copied = sock_intr_errno(timeo);
2558 				break;
2559 			}
2560 		}
2561 
2562 		if (copied >= target) {
2563 			/* Do not sleep, just process backlog. */
2564 			__sk_flush_backlog(sk);
2565 		} else {
2566 			tcp_cleanup_rbuf(sk, copied);
2567 			sk_wait_data(sk, &timeo, last);
2568 		}
2569 
2570 		if ((flags & MSG_PEEK) &&
2571 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2572 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2573 					    current->comm,
2574 					    task_pid_nr(current));
2575 			peek_seq = tp->copied_seq;
2576 		}
2577 		continue;
2578 
2579 found_ok_skb:
2580 		/* Ok so how much can we use? */
2581 		used = skb->len - offset;
2582 		if (len < used)
2583 			used = len;
2584 
2585 		/* Do we have urgent data here? */
2586 		if (unlikely(tp->urg_data)) {
2587 			u32 urg_offset = tp->urg_seq - *seq;
2588 			if (urg_offset < used) {
2589 				if (!urg_offset) {
2590 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2591 						WRITE_ONCE(*seq, *seq + 1);
2592 						urg_hole++;
2593 						offset++;
2594 						used--;
2595 						if (!used)
2596 							goto skip_copy;
2597 					}
2598 				} else
2599 					used = urg_offset;
2600 			}
2601 		}
2602 
2603 		if (!(flags & MSG_TRUNC)) {
2604 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2605 			if (err) {
2606 				/* Exception. Bailout! */
2607 				if (!copied)
2608 					copied = -EFAULT;
2609 				break;
2610 			}
2611 		}
2612 
2613 		WRITE_ONCE(*seq, *seq + used);
2614 		copied += used;
2615 		len -= used;
2616 
2617 		tcp_rcv_space_adjust(sk);
2618 
2619 skip_copy:
2620 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2621 			WRITE_ONCE(tp->urg_data, 0);
2622 			tcp_fast_path_check(sk);
2623 		}
2624 
2625 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2626 			tcp_update_recv_tstamps(skb, tss);
2627 			*cmsg_flags |= TCP_CMSG_TS;
2628 		}
2629 
2630 		if (used + offset < skb->len)
2631 			continue;
2632 
2633 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2634 			goto found_fin_ok;
2635 		if (!(flags & MSG_PEEK))
2636 			tcp_eat_recv_skb(sk, skb);
2637 		continue;
2638 
2639 found_fin_ok:
2640 		/* Process the FIN. */
2641 		WRITE_ONCE(*seq, *seq + 1);
2642 		if (!(flags & MSG_PEEK))
2643 			tcp_eat_recv_skb(sk, skb);
2644 		break;
2645 	} while (len > 0);
2646 
2647 	/* According to UNIX98, msg_name/msg_namelen are ignored
2648 	 * on connected socket. I was just happy when found this 8) --ANK
2649 	 */
2650 
2651 	/* Clean up data we have read: This will do ACK frames. */
2652 	tcp_cleanup_rbuf(sk, copied);
2653 	return copied;
2654 
2655 out:
2656 	return err;
2657 
2658 recv_urg:
2659 	err = tcp_recv_urg(sk, msg, len, flags);
2660 	goto out;
2661 
2662 recv_sndq:
2663 	err = tcp_peek_sndq(sk, msg, len);
2664 	goto out;
2665 }
2666 
2667 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2668 		int *addr_len)
2669 {
2670 	int cmsg_flags = 0, ret;
2671 	struct scm_timestamping_internal tss;
2672 
2673 	if (unlikely(flags & MSG_ERRQUEUE))
2674 		return inet_recv_error(sk, msg, len, addr_len);
2675 
2676 	if (sk_can_busy_loop(sk) &&
2677 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2678 	    sk->sk_state == TCP_ESTABLISHED)
2679 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2680 
2681 	lock_sock(sk);
2682 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2683 	release_sock(sk);
2684 
2685 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2686 		if (cmsg_flags & TCP_CMSG_TS)
2687 			tcp_recv_timestamp(msg, sk, &tss);
2688 		if (msg->msg_get_inq) {
2689 			msg->msg_inq = tcp_inq_hint(sk);
2690 			if (cmsg_flags & TCP_CMSG_INQ)
2691 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2692 					 sizeof(msg->msg_inq), &msg->msg_inq);
2693 		}
2694 	}
2695 	return ret;
2696 }
2697 EXPORT_SYMBOL(tcp_recvmsg);
2698 
2699 void tcp_set_state(struct sock *sk, int state)
2700 {
2701 	int oldstate = sk->sk_state;
2702 
2703 	/* We defined a new enum for TCP states that are exported in BPF
2704 	 * so as not force the internal TCP states to be frozen. The
2705 	 * following checks will detect if an internal state value ever
2706 	 * differs from the BPF value. If this ever happens, then we will
2707 	 * need to remap the internal value to the BPF value before calling
2708 	 * tcp_call_bpf_2arg.
2709 	 */
2710 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2711 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2712 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2713 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2714 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2715 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2716 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2717 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2718 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2719 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2720 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2721 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2722 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2723 
2724 	/* bpf uapi header bpf.h defines an anonymous enum with values
2725 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2726 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2727 	 * But clang built vmlinux does not have this enum in DWARF
2728 	 * since clang removes the above code before generating IR/debuginfo.
2729 	 * Let us explicitly emit the type debuginfo to ensure the
2730 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2731 	 * regardless of which compiler is used.
2732 	 */
2733 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2734 
2735 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2736 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2737 
2738 	switch (state) {
2739 	case TCP_ESTABLISHED:
2740 		if (oldstate != TCP_ESTABLISHED)
2741 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2742 		break;
2743 
2744 	case TCP_CLOSE:
2745 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2746 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2747 
2748 		sk->sk_prot->unhash(sk);
2749 		if (inet_csk(sk)->icsk_bind_hash &&
2750 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2751 			inet_put_port(sk);
2752 		fallthrough;
2753 	default:
2754 		if (oldstate == TCP_ESTABLISHED)
2755 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2756 	}
2757 
2758 	/* Change state AFTER socket is unhashed to avoid closed
2759 	 * socket sitting in hash tables.
2760 	 */
2761 	inet_sk_state_store(sk, state);
2762 }
2763 EXPORT_SYMBOL_GPL(tcp_set_state);
2764 
2765 /*
2766  *	State processing on a close. This implements the state shift for
2767  *	sending our FIN frame. Note that we only send a FIN for some
2768  *	states. A shutdown() may have already sent the FIN, or we may be
2769  *	closed.
2770  */
2771 
2772 static const unsigned char new_state[16] = {
2773   /* current state:        new state:      action:	*/
2774   [0 /* (Invalid) */]	= TCP_CLOSE,
2775   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2776   [TCP_SYN_SENT]	= TCP_CLOSE,
2777   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2778   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2779   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2780   [TCP_TIME_WAIT]	= TCP_CLOSE,
2781   [TCP_CLOSE]		= TCP_CLOSE,
2782   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2783   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2784   [TCP_LISTEN]		= TCP_CLOSE,
2785   [TCP_CLOSING]		= TCP_CLOSING,
2786   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2787 };
2788 
2789 static int tcp_close_state(struct sock *sk)
2790 {
2791 	int next = (int)new_state[sk->sk_state];
2792 	int ns = next & TCP_STATE_MASK;
2793 
2794 	tcp_set_state(sk, ns);
2795 
2796 	return next & TCP_ACTION_FIN;
2797 }
2798 
2799 /*
2800  *	Shutdown the sending side of a connection. Much like close except
2801  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2802  */
2803 
2804 void tcp_shutdown(struct sock *sk, int how)
2805 {
2806 	/*	We need to grab some memory, and put together a FIN,
2807 	 *	and then put it into the queue to be sent.
2808 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2809 	 */
2810 	if (!(how & SEND_SHUTDOWN))
2811 		return;
2812 
2813 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2814 	if ((1 << sk->sk_state) &
2815 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2816 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2817 		/* Clear out any half completed packets.  FIN if needed. */
2818 		if (tcp_close_state(sk))
2819 			tcp_send_fin(sk);
2820 	}
2821 }
2822 EXPORT_SYMBOL(tcp_shutdown);
2823 
2824 int tcp_orphan_count_sum(void)
2825 {
2826 	int i, total = 0;
2827 
2828 	for_each_possible_cpu(i)
2829 		total += per_cpu(tcp_orphan_count, i);
2830 
2831 	return max(total, 0);
2832 }
2833 
2834 static int tcp_orphan_cache;
2835 static struct timer_list tcp_orphan_timer;
2836 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2837 
2838 static void tcp_orphan_update(struct timer_list *unused)
2839 {
2840 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2841 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2842 }
2843 
2844 static bool tcp_too_many_orphans(int shift)
2845 {
2846 	return READ_ONCE(tcp_orphan_cache) << shift >
2847 		READ_ONCE(sysctl_tcp_max_orphans);
2848 }
2849 
2850 bool tcp_check_oom(struct sock *sk, int shift)
2851 {
2852 	bool too_many_orphans, out_of_socket_memory;
2853 
2854 	too_many_orphans = tcp_too_many_orphans(shift);
2855 	out_of_socket_memory = tcp_out_of_memory(sk);
2856 
2857 	if (too_many_orphans)
2858 		net_info_ratelimited("too many orphaned sockets\n");
2859 	if (out_of_socket_memory)
2860 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2861 	return too_many_orphans || out_of_socket_memory;
2862 }
2863 
2864 void __tcp_close(struct sock *sk, long timeout)
2865 {
2866 	struct sk_buff *skb;
2867 	int data_was_unread = 0;
2868 	int state;
2869 
2870 	sk->sk_shutdown = SHUTDOWN_MASK;
2871 
2872 	if (sk->sk_state == TCP_LISTEN) {
2873 		tcp_set_state(sk, TCP_CLOSE);
2874 
2875 		/* Special case. */
2876 		inet_csk_listen_stop(sk);
2877 
2878 		goto adjudge_to_death;
2879 	}
2880 
2881 	/*  We need to flush the recv. buffs.  We do this only on the
2882 	 *  descriptor close, not protocol-sourced closes, because the
2883 	 *  reader process may not have drained the data yet!
2884 	 */
2885 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2886 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2887 
2888 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2889 			len--;
2890 		data_was_unread += len;
2891 		__kfree_skb(skb);
2892 	}
2893 
2894 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2895 	if (sk->sk_state == TCP_CLOSE)
2896 		goto adjudge_to_death;
2897 
2898 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2899 	 * data was lost. To witness the awful effects of the old behavior of
2900 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2901 	 * GET in an FTP client, suspend the process, wait for the client to
2902 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2903 	 * Note: timeout is always zero in such a case.
2904 	 */
2905 	if (unlikely(tcp_sk(sk)->repair)) {
2906 		sk->sk_prot->disconnect(sk, 0);
2907 	} else if (data_was_unread) {
2908 		/* Unread data was tossed, zap the connection. */
2909 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2910 		tcp_set_state(sk, TCP_CLOSE);
2911 		tcp_send_active_reset(sk, sk->sk_allocation);
2912 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2913 		/* Check zero linger _after_ checking for unread data. */
2914 		sk->sk_prot->disconnect(sk, 0);
2915 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2916 	} else if (tcp_close_state(sk)) {
2917 		/* We FIN if the application ate all the data before
2918 		 * zapping the connection.
2919 		 */
2920 
2921 		/* RED-PEN. Formally speaking, we have broken TCP state
2922 		 * machine. State transitions:
2923 		 *
2924 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2925 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2926 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2927 		 *
2928 		 * are legal only when FIN has been sent (i.e. in window),
2929 		 * rather than queued out of window. Purists blame.
2930 		 *
2931 		 * F.e. "RFC state" is ESTABLISHED,
2932 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2933 		 *
2934 		 * The visible declinations are that sometimes
2935 		 * we enter time-wait state, when it is not required really
2936 		 * (harmless), do not send active resets, when they are
2937 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2938 		 * they look as CLOSING or LAST_ACK for Linux)
2939 		 * Probably, I missed some more holelets.
2940 		 * 						--ANK
2941 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2942 		 * in a single packet! (May consider it later but will
2943 		 * probably need API support or TCP_CORK SYN-ACK until
2944 		 * data is written and socket is closed.)
2945 		 */
2946 		tcp_send_fin(sk);
2947 	}
2948 
2949 	sk_stream_wait_close(sk, timeout);
2950 
2951 adjudge_to_death:
2952 	state = sk->sk_state;
2953 	sock_hold(sk);
2954 	sock_orphan(sk);
2955 
2956 	local_bh_disable();
2957 	bh_lock_sock(sk);
2958 	/* remove backlog if any, without releasing ownership. */
2959 	__release_sock(sk);
2960 
2961 	this_cpu_inc(tcp_orphan_count);
2962 
2963 	/* Have we already been destroyed by a softirq or backlog? */
2964 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2965 		goto out;
2966 
2967 	/*	This is a (useful) BSD violating of the RFC. There is a
2968 	 *	problem with TCP as specified in that the other end could
2969 	 *	keep a socket open forever with no application left this end.
2970 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2971 	 *	our end. If they send after that then tough - BUT: long enough
2972 	 *	that we won't make the old 4*rto = almost no time - whoops
2973 	 *	reset mistake.
2974 	 *
2975 	 *	Nope, it was not mistake. It is really desired behaviour
2976 	 *	f.e. on http servers, when such sockets are useless, but
2977 	 *	consume significant resources. Let's do it with special
2978 	 *	linger2	option.					--ANK
2979 	 */
2980 
2981 	if (sk->sk_state == TCP_FIN_WAIT2) {
2982 		struct tcp_sock *tp = tcp_sk(sk);
2983 		if (tp->linger2 < 0) {
2984 			tcp_set_state(sk, TCP_CLOSE);
2985 			tcp_send_active_reset(sk, GFP_ATOMIC);
2986 			__NET_INC_STATS(sock_net(sk),
2987 					LINUX_MIB_TCPABORTONLINGER);
2988 		} else {
2989 			const int tmo = tcp_fin_time(sk);
2990 
2991 			if (tmo > TCP_TIMEWAIT_LEN) {
2992 				inet_csk_reset_keepalive_timer(sk,
2993 						tmo - TCP_TIMEWAIT_LEN);
2994 			} else {
2995 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2996 				goto out;
2997 			}
2998 		}
2999 	}
3000 	if (sk->sk_state != TCP_CLOSE) {
3001 		if (tcp_check_oom(sk, 0)) {
3002 			tcp_set_state(sk, TCP_CLOSE);
3003 			tcp_send_active_reset(sk, GFP_ATOMIC);
3004 			__NET_INC_STATS(sock_net(sk),
3005 					LINUX_MIB_TCPABORTONMEMORY);
3006 		} else if (!check_net(sock_net(sk))) {
3007 			/* Not possible to send reset; just close */
3008 			tcp_set_state(sk, TCP_CLOSE);
3009 		}
3010 	}
3011 
3012 	if (sk->sk_state == TCP_CLOSE) {
3013 		struct request_sock *req;
3014 
3015 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3016 						lockdep_sock_is_held(sk));
3017 		/* We could get here with a non-NULL req if the socket is
3018 		 * aborted (e.g., closed with unread data) before 3WHS
3019 		 * finishes.
3020 		 */
3021 		if (req)
3022 			reqsk_fastopen_remove(sk, req, false);
3023 		inet_csk_destroy_sock(sk);
3024 	}
3025 	/* Otherwise, socket is reprieved until protocol close. */
3026 
3027 out:
3028 	bh_unlock_sock(sk);
3029 	local_bh_enable();
3030 }
3031 
3032 void tcp_close(struct sock *sk, long timeout)
3033 {
3034 	lock_sock(sk);
3035 	__tcp_close(sk, timeout);
3036 	release_sock(sk);
3037 	sock_put(sk);
3038 }
3039 EXPORT_SYMBOL(tcp_close);
3040 
3041 /* These states need RST on ABORT according to RFC793 */
3042 
3043 static inline bool tcp_need_reset(int state)
3044 {
3045 	return (1 << state) &
3046 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3047 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3048 }
3049 
3050 static void tcp_rtx_queue_purge(struct sock *sk)
3051 {
3052 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3053 
3054 	tcp_sk(sk)->highest_sack = NULL;
3055 	while (p) {
3056 		struct sk_buff *skb = rb_to_skb(p);
3057 
3058 		p = rb_next(p);
3059 		/* Since we are deleting whole queue, no need to
3060 		 * list_del(&skb->tcp_tsorted_anchor)
3061 		 */
3062 		tcp_rtx_queue_unlink(skb, sk);
3063 		tcp_wmem_free_skb(sk, skb);
3064 	}
3065 }
3066 
3067 void tcp_write_queue_purge(struct sock *sk)
3068 {
3069 	struct sk_buff *skb;
3070 
3071 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3072 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3073 		tcp_skb_tsorted_anchor_cleanup(skb);
3074 		tcp_wmem_free_skb(sk, skb);
3075 	}
3076 	tcp_rtx_queue_purge(sk);
3077 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3078 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3079 	tcp_sk(sk)->packets_out = 0;
3080 	inet_csk(sk)->icsk_backoff = 0;
3081 }
3082 
3083 int tcp_disconnect(struct sock *sk, int flags)
3084 {
3085 	struct inet_sock *inet = inet_sk(sk);
3086 	struct inet_connection_sock *icsk = inet_csk(sk);
3087 	struct tcp_sock *tp = tcp_sk(sk);
3088 	int old_state = sk->sk_state;
3089 	u32 seq;
3090 
3091 	if (old_state != TCP_CLOSE)
3092 		tcp_set_state(sk, TCP_CLOSE);
3093 
3094 	/* ABORT function of RFC793 */
3095 	if (old_state == TCP_LISTEN) {
3096 		inet_csk_listen_stop(sk);
3097 	} else if (unlikely(tp->repair)) {
3098 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3099 	} else if (tcp_need_reset(old_state) ||
3100 		   (tp->snd_nxt != tp->write_seq &&
3101 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3102 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3103 		 * states
3104 		 */
3105 		tcp_send_active_reset(sk, gfp_any());
3106 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3107 	} else if (old_state == TCP_SYN_SENT)
3108 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3109 
3110 	tcp_clear_xmit_timers(sk);
3111 	__skb_queue_purge(&sk->sk_receive_queue);
3112 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3113 	WRITE_ONCE(tp->urg_data, 0);
3114 	tcp_write_queue_purge(sk);
3115 	tcp_fastopen_active_disable_ofo_check(sk);
3116 	skb_rbtree_purge(&tp->out_of_order_queue);
3117 
3118 	inet->inet_dport = 0;
3119 
3120 	inet_bhash2_reset_saddr(sk);
3121 
3122 	sk->sk_shutdown = 0;
3123 	sock_reset_flag(sk, SOCK_DONE);
3124 	tp->srtt_us = 0;
3125 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3126 	tp->rcv_rtt_last_tsecr = 0;
3127 
3128 	seq = tp->write_seq + tp->max_window + 2;
3129 	if (!seq)
3130 		seq = 1;
3131 	WRITE_ONCE(tp->write_seq, seq);
3132 
3133 	icsk->icsk_backoff = 0;
3134 	icsk->icsk_probes_out = 0;
3135 	icsk->icsk_probes_tstamp = 0;
3136 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3137 	icsk->icsk_rto_min = TCP_RTO_MIN;
3138 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3139 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3140 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3141 	tp->snd_cwnd_cnt = 0;
3142 	tp->is_cwnd_limited = 0;
3143 	tp->max_packets_out = 0;
3144 	tp->window_clamp = 0;
3145 	tp->delivered = 0;
3146 	tp->delivered_ce = 0;
3147 	if (icsk->icsk_ca_ops->release)
3148 		icsk->icsk_ca_ops->release(sk);
3149 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3150 	icsk->icsk_ca_initialized = 0;
3151 	tcp_set_ca_state(sk, TCP_CA_Open);
3152 	tp->is_sack_reneg = 0;
3153 	tcp_clear_retrans(tp);
3154 	tp->total_retrans = 0;
3155 	inet_csk_delack_init(sk);
3156 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3157 	 * issue in __tcp_select_window()
3158 	 */
3159 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3160 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3161 	__sk_dst_reset(sk);
3162 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3163 	tcp_saved_syn_free(tp);
3164 	tp->compressed_ack = 0;
3165 	tp->segs_in = 0;
3166 	tp->segs_out = 0;
3167 	tp->bytes_sent = 0;
3168 	tp->bytes_acked = 0;
3169 	tp->bytes_received = 0;
3170 	tp->bytes_retrans = 0;
3171 	tp->data_segs_in = 0;
3172 	tp->data_segs_out = 0;
3173 	tp->duplicate_sack[0].start_seq = 0;
3174 	tp->duplicate_sack[0].end_seq = 0;
3175 	tp->dsack_dups = 0;
3176 	tp->reord_seen = 0;
3177 	tp->retrans_out = 0;
3178 	tp->sacked_out = 0;
3179 	tp->tlp_high_seq = 0;
3180 	tp->last_oow_ack_time = 0;
3181 	tp->plb_rehash = 0;
3182 	/* There's a bubble in the pipe until at least the first ACK. */
3183 	tp->app_limited = ~0U;
3184 	tp->rate_app_limited = 1;
3185 	tp->rack.mstamp = 0;
3186 	tp->rack.advanced = 0;
3187 	tp->rack.reo_wnd_steps = 1;
3188 	tp->rack.last_delivered = 0;
3189 	tp->rack.reo_wnd_persist = 0;
3190 	tp->rack.dsack_seen = 0;
3191 	tp->syn_data_acked = 0;
3192 	tp->rx_opt.saw_tstamp = 0;
3193 	tp->rx_opt.dsack = 0;
3194 	tp->rx_opt.num_sacks = 0;
3195 	tp->rcv_ooopack = 0;
3196 
3197 
3198 	/* Clean up fastopen related fields */
3199 	tcp_free_fastopen_req(tp);
3200 	inet->defer_connect = 0;
3201 	tp->fastopen_client_fail = 0;
3202 
3203 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3204 
3205 	if (sk->sk_frag.page) {
3206 		put_page(sk->sk_frag.page);
3207 		sk->sk_frag.page = NULL;
3208 		sk->sk_frag.offset = 0;
3209 	}
3210 	sk_error_report(sk);
3211 	return 0;
3212 }
3213 EXPORT_SYMBOL(tcp_disconnect);
3214 
3215 static inline bool tcp_can_repair_sock(const struct sock *sk)
3216 {
3217 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3218 		(sk->sk_state != TCP_LISTEN);
3219 }
3220 
3221 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3222 {
3223 	struct tcp_repair_window opt;
3224 
3225 	if (!tp->repair)
3226 		return -EPERM;
3227 
3228 	if (len != sizeof(opt))
3229 		return -EINVAL;
3230 
3231 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3232 		return -EFAULT;
3233 
3234 	if (opt.max_window < opt.snd_wnd)
3235 		return -EINVAL;
3236 
3237 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3238 		return -EINVAL;
3239 
3240 	if (after(opt.rcv_wup, tp->rcv_nxt))
3241 		return -EINVAL;
3242 
3243 	tp->snd_wl1	= opt.snd_wl1;
3244 	tp->snd_wnd	= opt.snd_wnd;
3245 	tp->max_window	= opt.max_window;
3246 
3247 	tp->rcv_wnd	= opt.rcv_wnd;
3248 	tp->rcv_wup	= opt.rcv_wup;
3249 
3250 	return 0;
3251 }
3252 
3253 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3254 		unsigned int len)
3255 {
3256 	struct tcp_sock *tp = tcp_sk(sk);
3257 	struct tcp_repair_opt opt;
3258 	size_t offset = 0;
3259 
3260 	while (len >= sizeof(opt)) {
3261 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3262 			return -EFAULT;
3263 
3264 		offset += sizeof(opt);
3265 		len -= sizeof(opt);
3266 
3267 		switch (opt.opt_code) {
3268 		case TCPOPT_MSS:
3269 			tp->rx_opt.mss_clamp = opt.opt_val;
3270 			tcp_mtup_init(sk);
3271 			break;
3272 		case TCPOPT_WINDOW:
3273 			{
3274 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3275 				u16 rcv_wscale = opt.opt_val >> 16;
3276 
3277 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3278 					return -EFBIG;
3279 
3280 				tp->rx_opt.snd_wscale = snd_wscale;
3281 				tp->rx_opt.rcv_wscale = rcv_wscale;
3282 				tp->rx_opt.wscale_ok = 1;
3283 			}
3284 			break;
3285 		case TCPOPT_SACK_PERM:
3286 			if (opt.opt_val != 0)
3287 				return -EINVAL;
3288 
3289 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3290 			break;
3291 		case TCPOPT_TIMESTAMP:
3292 			if (opt.opt_val != 0)
3293 				return -EINVAL;
3294 
3295 			tp->rx_opt.tstamp_ok = 1;
3296 			break;
3297 		}
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3304 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3305 
3306 static void tcp_enable_tx_delay(void)
3307 {
3308 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3309 		static int __tcp_tx_delay_enabled = 0;
3310 
3311 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3312 			static_branch_enable(&tcp_tx_delay_enabled);
3313 			pr_info("TCP_TX_DELAY enabled\n");
3314 		}
3315 	}
3316 }
3317 
3318 /* When set indicates to always queue non-full frames.  Later the user clears
3319  * this option and we transmit any pending partial frames in the queue.  This is
3320  * meant to be used alongside sendfile() to get properly filled frames when the
3321  * user (for example) must write out headers with a write() call first and then
3322  * use sendfile to send out the data parts.
3323  *
3324  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3325  * TCP_NODELAY.
3326  */
3327 void __tcp_sock_set_cork(struct sock *sk, bool on)
3328 {
3329 	struct tcp_sock *tp = tcp_sk(sk);
3330 
3331 	if (on) {
3332 		tp->nonagle |= TCP_NAGLE_CORK;
3333 	} else {
3334 		tp->nonagle &= ~TCP_NAGLE_CORK;
3335 		if (tp->nonagle & TCP_NAGLE_OFF)
3336 			tp->nonagle |= TCP_NAGLE_PUSH;
3337 		tcp_push_pending_frames(sk);
3338 	}
3339 }
3340 
3341 void tcp_sock_set_cork(struct sock *sk, bool on)
3342 {
3343 	lock_sock(sk);
3344 	__tcp_sock_set_cork(sk, on);
3345 	release_sock(sk);
3346 }
3347 EXPORT_SYMBOL(tcp_sock_set_cork);
3348 
3349 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3350  * remembered, but it is not activated until cork is cleared.
3351  *
3352  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3353  * even TCP_CORK for currently queued segments.
3354  */
3355 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3356 {
3357 	if (on) {
3358 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3359 		tcp_push_pending_frames(sk);
3360 	} else {
3361 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3362 	}
3363 }
3364 
3365 void tcp_sock_set_nodelay(struct sock *sk)
3366 {
3367 	lock_sock(sk);
3368 	__tcp_sock_set_nodelay(sk, true);
3369 	release_sock(sk);
3370 }
3371 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3372 
3373 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3374 {
3375 	if (!val) {
3376 		inet_csk_enter_pingpong_mode(sk);
3377 		return;
3378 	}
3379 
3380 	inet_csk_exit_pingpong_mode(sk);
3381 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3382 	    inet_csk_ack_scheduled(sk)) {
3383 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3384 		tcp_cleanup_rbuf(sk, 1);
3385 		if (!(val & 1))
3386 			inet_csk_enter_pingpong_mode(sk);
3387 	}
3388 }
3389 
3390 void tcp_sock_set_quickack(struct sock *sk, int val)
3391 {
3392 	lock_sock(sk);
3393 	__tcp_sock_set_quickack(sk, val);
3394 	release_sock(sk);
3395 }
3396 EXPORT_SYMBOL(tcp_sock_set_quickack);
3397 
3398 int tcp_sock_set_syncnt(struct sock *sk, int val)
3399 {
3400 	if (val < 1 || val > MAX_TCP_SYNCNT)
3401 		return -EINVAL;
3402 
3403 	lock_sock(sk);
3404 	inet_csk(sk)->icsk_syn_retries = val;
3405 	release_sock(sk);
3406 	return 0;
3407 }
3408 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3409 
3410 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3411 {
3412 	lock_sock(sk);
3413 	inet_csk(sk)->icsk_user_timeout = val;
3414 	release_sock(sk);
3415 }
3416 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3417 
3418 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3419 {
3420 	struct tcp_sock *tp = tcp_sk(sk);
3421 
3422 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3423 		return -EINVAL;
3424 
3425 	tp->keepalive_time = val * HZ;
3426 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3427 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3428 		u32 elapsed = keepalive_time_elapsed(tp);
3429 
3430 		if (tp->keepalive_time > elapsed)
3431 			elapsed = tp->keepalive_time - elapsed;
3432 		else
3433 			elapsed = 0;
3434 		inet_csk_reset_keepalive_timer(sk, elapsed);
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 int tcp_sock_set_keepidle(struct sock *sk, int val)
3441 {
3442 	int err;
3443 
3444 	lock_sock(sk);
3445 	err = tcp_sock_set_keepidle_locked(sk, val);
3446 	release_sock(sk);
3447 	return err;
3448 }
3449 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3450 
3451 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3452 {
3453 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3454 		return -EINVAL;
3455 
3456 	lock_sock(sk);
3457 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3458 	release_sock(sk);
3459 	return 0;
3460 }
3461 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3462 
3463 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3464 {
3465 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3466 		return -EINVAL;
3467 
3468 	lock_sock(sk);
3469 	tcp_sk(sk)->keepalive_probes = val;
3470 	release_sock(sk);
3471 	return 0;
3472 }
3473 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3474 
3475 int tcp_set_window_clamp(struct sock *sk, int val)
3476 {
3477 	struct tcp_sock *tp = tcp_sk(sk);
3478 
3479 	if (!val) {
3480 		if (sk->sk_state != TCP_CLOSE)
3481 			return -EINVAL;
3482 		tp->window_clamp = 0;
3483 	} else {
3484 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3485 			SOCK_MIN_RCVBUF / 2 : val;
3486 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3487 	}
3488 	return 0;
3489 }
3490 
3491 /*
3492  *	Socket option code for TCP.
3493  */
3494 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3495 		      sockptr_t optval, unsigned int optlen)
3496 {
3497 	struct tcp_sock *tp = tcp_sk(sk);
3498 	struct inet_connection_sock *icsk = inet_csk(sk);
3499 	struct net *net = sock_net(sk);
3500 	int val;
3501 	int err = 0;
3502 
3503 	/* These are data/string values, all the others are ints */
3504 	switch (optname) {
3505 	case TCP_CONGESTION: {
3506 		char name[TCP_CA_NAME_MAX];
3507 
3508 		if (optlen < 1)
3509 			return -EINVAL;
3510 
3511 		val = strncpy_from_sockptr(name, optval,
3512 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3513 		if (val < 0)
3514 			return -EFAULT;
3515 		name[val] = 0;
3516 
3517 		sockopt_lock_sock(sk);
3518 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3519 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3520 								    CAP_NET_ADMIN));
3521 		sockopt_release_sock(sk);
3522 		return err;
3523 	}
3524 	case TCP_ULP: {
3525 		char name[TCP_ULP_NAME_MAX];
3526 
3527 		if (optlen < 1)
3528 			return -EINVAL;
3529 
3530 		val = strncpy_from_sockptr(name, optval,
3531 					min_t(long, TCP_ULP_NAME_MAX - 1,
3532 					      optlen));
3533 		if (val < 0)
3534 			return -EFAULT;
3535 		name[val] = 0;
3536 
3537 		sockopt_lock_sock(sk);
3538 		err = tcp_set_ulp(sk, name);
3539 		sockopt_release_sock(sk);
3540 		return err;
3541 	}
3542 	case TCP_FASTOPEN_KEY: {
3543 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3544 		__u8 *backup_key = NULL;
3545 
3546 		/* Allow a backup key as well to facilitate key rotation
3547 		 * First key is the active one.
3548 		 */
3549 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3550 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3551 			return -EINVAL;
3552 
3553 		if (copy_from_sockptr(key, optval, optlen))
3554 			return -EFAULT;
3555 
3556 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3557 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3558 
3559 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3560 	}
3561 	default:
3562 		/* fallthru */
3563 		break;
3564 	}
3565 
3566 	if (optlen < sizeof(int))
3567 		return -EINVAL;
3568 
3569 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3570 		return -EFAULT;
3571 
3572 	sockopt_lock_sock(sk);
3573 
3574 	switch (optname) {
3575 	case TCP_MAXSEG:
3576 		/* Values greater than interface MTU won't take effect. However
3577 		 * at the point when this call is done we typically don't yet
3578 		 * know which interface is going to be used
3579 		 */
3580 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3581 			err = -EINVAL;
3582 			break;
3583 		}
3584 		tp->rx_opt.user_mss = val;
3585 		break;
3586 
3587 	case TCP_NODELAY:
3588 		__tcp_sock_set_nodelay(sk, val);
3589 		break;
3590 
3591 	case TCP_THIN_LINEAR_TIMEOUTS:
3592 		if (val < 0 || val > 1)
3593 			err = -EINVAL;
3594 		else
3595 			tp->thin_lto = val;
3596 		break;
3597 
3598 	case TCP_THIN_DUPACK:
3599 		if (val < 0 || val > 1)
3600 			err = -EINVAL;
3601 		break;
3602 
3603 	case TCP_REPAIR:
3604 		if (!tcp_can_repair_sock(sk))
3605 			err = -EPERM;
3606 		else if (val == TCP_REPAIR_ON) {
3607 			tp->repair = 1;
3608 			sk->sk_reuse = SK_FORCE_REUSE;
3609 			tp->repair_queue = TCP_NO_QUEUE;
3610 		} else if (val == TCP_REPAIR_OFF) {
3611 			tp->repair = 0;
3612 			sk->sk_reuse = SK_NO_REUSE;
3613 			tcp_send_window_probe(sk);
3614 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3615 			tp->repair = 0;
3616 			sk->sk_reuse = SK_NO_REUSE;
3617 		} else
3618 			err = -EINVAL;
3619 
3620 		break;
3621 
3622 	case TCP_REPAIR_QUEUE:
3623 		if (!tp->repair)
3624 			err = -EPERM;
3625 		else if ((unsigned int)val < TCP_QUEUES_NR)
3626 			tp->repair_queue = val;
3627 		else
3628 			err = -EINVAL;
3629 		break;
3630 
3631 	case TCP_QUEUE_SEQ:
3632 		if (sk->sk_state != TCP_CLOSE) {
3633 			err = -EPERM;
3634 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3635 			if (!tcp_rtx_queue_empty(sk))
3636 				err = -EPERM;
3637 			else
3638 				WRITE_ONCE(tp->write_seq, val);
3639 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3640 			if (tp->rcv_nxt != tp->copied_seq) {
3641 				err = -EPERM;
3642 			} else {
3643 				WRITE_ONCE(tp->rcv_nxt, val);
3644 				WRITE_ONCE(tp->copied_seq, val);
3645 			}
3646 		} else {
3647 			err = -EINVAL;
3648 		}
3649 		break;
3650 
3651 	case TCP_REPAIR_OPTIONS:
3652 		if (!tp->repair)
3653 			err = -EINVAL;
3654 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3655 			err = tcp_repair_options_est(sk, optval, optlen);
3656 		else
3657 			err = -EPERM;
3658 		break;
3659 
3660 	case TCP_CORK:
3661 		__tcp_sock_set_cork(sk, val);
3662 		break;
3663 
3664 	case TCP_KEEPIDLE:
3665 		err = tcp_sock_set_keepidle_locked(sk, val);
3666 		break;
3667 	case TCP_KEEPINTVL:
3668 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3669 			err = -EINVAL;
3670 		else
3671 			tp->keepalive_intvl = val * HZ;
3672 		break;
3673 	case TCP_KEEPCNT:
3674 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3675 			err = -EINVAL;
3676 		else
3677 			tp->keepalive_probes = val;
3678 		break;
3679 	case TCP_SYNCNT:
3680 		if (val < 1 || val > MAX_TCP_SYNCNT)
3681 			err = -EINVAL;
3682 		else
3683 			icsk->icsk_syn_retries = val;
3684 		break;
3685 
3686 	case TCP_SAVE_SYN:
3687 		/* 0: disable, 1: enable, 2: start from ether_header */
3688 		if (val < 0 || val > 2)
3689 			err = -EINVAL;
3690 		else
3691 			tp->save_syn = val;
3692 		break;
3693 
3694 	case TCP_LINGER2:
3695 		if (val < 0)
3696 			tp->linger2 = -1;
3697 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3698 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3699 		else
3700 			tp->linger2 = val * HZ;
3701 		break;
3702 
3703 	case TCP_DEFER_ACCEPT:
3704 		/* Translate value in seconds to number of retransmits */
3705 		icsk->icsk_accept_queue.rskq_defer_accept =
3706 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3707 					TCP_RTO_MAX / HZ);
3708 		break;
3709 
3710 	case TCP_WINDOW_CLAMP:
3711 		err = tcp_set_window_clamp(sk, val);
3712 		break;
3713 
3714 	case TCP_QUICKACK:
3715 		__tcp_sock_set_quickack(sk, val);
3716 		break;
3717 
3718 #ifdef CONFIG_TCP_MD5SIG
3719 	case TCP_MD5SIG:
3720 	case TCP_MD5SIG_EXT:
3721 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3722 		break;
3723 #endif
3724 	case TCP_USER_TIMEOUT:
3725 		/* Cap the max time in ms TCP will retry or probe the window
3726 		 * before giving up and aborting (ETIMEDOUT) a connection.
3727 		 */
3728 		if (val < 0)
3729 			err = -EINVAL;
3730 		else
3731 			icsk->icsk_user_timeout = val;
3732 		break;
3733 
3734 	case TCP_FASTOPEN:
3735 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3736 		    TCPF_LISTEN))) {
3737 			tcp_fastopen_init_key_once(net);
3738 
3739 			fastopen_queue_tune(sk, val);
3740 		} else {
3741 			err = -EINVAL;
3742 		}
3743 		break;
3744 	case TCP_FASTOPEN_CONNECT:
3745 		if (val > 1 || val < 0) {
3746 			err = -EINVAL;
3747 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3748 			   TFO_CLIENT_ENABLE) {
3749 			if (sk->sk_state == TCP_CLOSE)
3750 				tp->fastopen_connect = val;
3751 			else
3752 				err = -EINVAL;
3753 		} else {
3754 			err = -EOPNOTSUPP;
3755 		}
3756 		break;
3757 	case TCP_FASTOPEN_NO_COOKIE:
3758 		if (val > 1 || val < 0)
3759 			err = -EINVAL;
3760 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3761 			err = -EINVAL;
3762 		else
3763 			tp->fastopen_no_cookie = val;
3764 		break;
3765 	case TCP_TIMESTAMP:
3766 		if (!tp->repair)
3767 			err = -EPERM;
3768 		else
3769 			tp->tsoffset = val - tcp_time_stamp_raw();
3770 		break;
3771 	case TCP_REPAIR_WINDOW:
3772 		err = tcp_repair_set_window(tp, optval, optlen);
3773 		break;
3774 	case TCP_NOTSENT_LOWAT:
3775 		tp->notsent_lowat = val;
3776 		sk->sk_write_space(sk);
3777 		break;
3778 	case TCP_INQ:
3779 		if (val > 1 || val < 0)
3780 			err = -EINVAL;
3781 		else
3782 			tp->recvmsg_inq = val;
3783 		break;
3784 	case TCP_TX_DELAY:
3785 		if (val)
3786 			tcp_enable_tx_delay();
3787 		tp->tcp_tx_delay = val;
3788 		break;
3789 	default:
3790 		err = -ENOPROTOOPT;
3791 		break;
3792 	}
3793 
3794 	sockopt_release_sock(sk);
3795 	return err;
3796 }
3797 
3798 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3799 		   unsigned int optlen)
3800 {
3801 	const struct inet_connection_sock *icsk = inet_csk(sk);
3802 
3803 	if (level != SOL_TCP)
3804 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3805 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3806 								optval, optlen);
3807 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3808 }
3809 EXPORT_SYMBOL(tcp_setsockopt);
3810 
3811 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3812 				      struct tcp_info *info)
3813 {
3814 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3815 	enum tcp_chrono i;
3816 
3817 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3818 		stats[i] = tp->chrono_stat[i - 1];
3819 		if (i == tp->chrono_type)
3820 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3821 		stats[i] *= USEC_PER_SEC / HZ;
3822 		total += stats[i];
3823 	}
3824 
3825 	info->tcpi_busy_time = total;
3826 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3827 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3828 }
3829 
3830 /* Return information about state of tcp endpoint in API format. */
3831 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3832 {
3833 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3834 	const struct inet_connection_sock *icsk = inet_csk(sk);
3835 	unsigned long rate;
3836 	u32 now;
3837 	u64 rate64;
3838 	bool slow;
3839 
3840 	memset(info, 0, sizeof(*info));
3841 	if (sk->sk_type != SOCK_STREAM)
3842 		return;
3843 
3844 	info->tcpi_state = inet_sk_state_load(sk);
3845 
3846 	/* Report meaningful fields for all TCP states, including listeners */
3847 	rate = READ_ONCE(sk->sk_pacing_rate);
3848 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3849 	info->tcpi_pacing_rate = rate64;
3850 
3851 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3852 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3853 	info->tcpi_max_pacing_rate = rate64;
3854 
3855 	info->tcpi_reordering = tp->reordering;
3856 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3857 
3858 	if (info->tcpi_state == TCP_LISTEN) {
3859 		/* listeners aliased fields :
3860 		 * tcpi_unacked -> Number of children ready for accept()
3861 		 * tcpi_sacked  -> max backlog
3862 		 */
3863 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3864 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3865 		return;
3866 	}
3867 
3868 	slow = lock_sock_fast(sk);
3869 
3870 	info->tcpi_ca_state = icsk->icsk_ca_state;
3871 	info->tcpi_retransmits = icsk->icsk_retransmits;
3872 	info->tcpi_probes = icsk->icsk_probes_out;
3873 	info->tcpi_backoff = icsk->icsk_backoff;
3874 
3875 	if (tp->rx_opt.tstamp_ok)
3876 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3877 	if (tcp_is_sack(tp))
3878 		info->tcpi_options |= TCPI_OPT_SACK;
3879 	if (tp->rx_opt.wscale_ok) {
3880 		info->tcpi_options |= TCPI_OPT_WSCALE;
3881 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3882 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3883 	}
3884 
3885 	if (tp->ecn_flags & TCP_ECN_OK)
3886 		info->tcpi_options |= TCPI_OPT_ECN;
3887 	if (tp->ecn_flags & TCP_ECN_SEEN)
3888 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3889 	if (tp->syn_data_acked)
3890 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3891 
3892 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3893 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3894 	info->tcpi_snd_mss = tp->mss_cache;
3895 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3896 
3897 	info->tcpi_unacked = tp->packets_out;
3898 	info->tcpi_sacked = tp->sacked_out;
3899 
3900 	info->tcpi_lost = tp->lost_out;
3901 	info->tcpi_retrans = tp->retrans_out;
3902 
3903 	now = tcp_jiffies32;
3904 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3905 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3906 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3907 
3908 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3909 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3910 	info->tcpi_rtt = tp->srtt_us >> 3;
3911 	info->tcpi_rttvar = tp->mdev_us >> 2;
3912 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3913 	info->tcpi_advmss = tp->advmss;
3914 
3915 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3916 	info->tcpi_rcv_space = tp->rcvq_space.space;
3917 
3918 	info->tcpi_total_retrans = tp->total_retrans;
3919 
3920 	info->tcpi_bytes_acked = tp->bytes_acked;
3921 	info->tcpi_bytes_received = tp->bytes_received;
3922 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3923 	tcp_get_info_chrono_stats(tp, info);
3924 
3925 	info->tcpi_segs_out = tp->segs_out;
3926 
3927 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3928 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3929 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3930 
3931 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3932 	info->tcpi_data_segs_out = tp->data_segs_out;
3933 
3934 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3935 	rate64 = tcp_compute_delivery_rate(tp);
3936 	if (rate64)
3937 		info->tcpi_delivery_rate = rate64;
3938 	info->tcpi_delivered = tp->delivered;
3939 	info->tcpi_delivered_ce = tp->delivered_ce;
3940 	info->tcpi_bytes_sent = tp->bytes_sent;
3941 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3942 	info->tcpi_dsack_dups = tp->dsack_dups;
3943 	info->tcpi_reord_seen = tp->reord_seen;
3944 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3945 	info->tcpi_snd_wnd = tp->snd_wnd;
3946 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3947 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3948 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3949 	unlock_sock_fast(sk, slow);
3950 }
3951 EXPORT_SYMBOL_GPL(tcp_get_info);
3952 
3953 static size_t tcp_opt_stats_get_size(void)
3954 {
3955 	return
3956 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3957 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3958 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3959 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3960 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3961 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3962 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3963 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3964 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3965 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3966 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3967 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3968 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3969 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3970 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3971 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3972 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3973 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3974 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3975 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3976 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3977 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3978 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3979 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3980 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3981 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3982 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3983 		0;
3984 }
3985 
3986 /* Returns TTL or hop limit of an incoming packet from skb. */
3987 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3988 {
3989 	if (skb->protocol == htons(ETH_P_IP))
3990 		return ip_hdr(skb)->ttl;
3991 	else if (skb->protocol == htons(ETH_P_IPV6))
3992 		return ipv6_hdr(skb)->hop_limit;
3993 	else
3994 		return 0;
3995 }
3996 
3997 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3998 					       const struct sk_buff *orig_skb,
3999 					       const struct sk_buff *ack_skb)
4000 {
4001 	const struct tcp_sock *tp = tcp_sk(sk);
4002 	struct sk_buff *stats;
4003 	struct tcp_info info;
4004 	unsigned long rate;
4005 	u64 rate64;
4006 
4007 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4008 	if (!stats)
4009 		return NULL;
4010 
4011 	tcp_get_info_chrono_stats(tp, &info);
4012 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4013 			  info.tcpi_busy_time, TCP_NLA_PAD);
4014 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4015 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4016 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4017 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4018 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4019 			  tp->data_segs_out, TCP_NLA_PAD);
4020 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4021 			  tp->total_retrans, TCP_NLA_PAD);
4022 
4023 	rate = READ_ONCE(sk->sk_pacing_rate);
4024 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4025 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4026 
4027 	rate64 = tcp_compute_delivery_rate(tp);
4028 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4029 
4030 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4031 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4032 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4033 
4034 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4035 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4036 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4037 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4038 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4039 
4040 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4041 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4042 
4043 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4044 			  TCP_NLA_PAD);
4045 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4046 			  TCP_NLA_PAD);
4047 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4048 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4049 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4050 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4051 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4052 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4053 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4054 			  TCP_NLA_PAD);
4055 	if (ack_skb)
4056 		nla_put_u8(stats, TCP_NLA_TTL,
4057 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4058 
4059 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4060 	return stats;
4061 }
4062 
4063 int do_tcp_getsockopt(struct sock *sk, int level,
4064 		      int optname, sockptr_t optval, sockptr_t optlen)
4065 {
4066 	struct inet_connection_sock *icsk = inet_csk(sk);
4067 	struct tcp_sock *tp = tcp_sk(sk);
4068 	struct net *net = sock_net(sk);
4069 	int val, len;
4070 
4071 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4072 		return -EFAULT;
4073 
4074 	len = min_t(unsigned int, len, sizeof(int));
4075 
4076 	if (len < 0)
4077 		return -EINVAL;
4078 
4079 	switch (optname) {
4080 	case TCP_MAXSEG:
4081 		val = tp->mss_cache;
4082 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4083 			val = tp->rx_opt.user_mss;
4084 		if (tp->repair)
4085 			val = tp->rx_opt.mss_clamp;
4086 		break;
4087 	case TCP_NODELAY:
4088 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4089 		break;
4090 	case TCP_CORK:
4091 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4092 		break;
4093 	case TCP_KEEPIDLE:
4094 		val = keepalive_time_when(tp) / HZ;
4095 		break;
4096 	case TCP_KEEPINTVL:
4097 		val = keepalive_intvl_when(tp) / HZ;
4098 		break;
4099 	case TCP_KEEPCNT:
4100 		val = keepalive_probes(tp);
4101 		break;
4102 	case TCP_SYNCNT:
4103 		val = icsk->icsk_syn_retries ? :
4104 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4105 		break;
4106 	case TCP_LINGER2:
4107 		val = tp->linger2;
4108 		if (val >= 0)
4109 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4110 		break;
4111 	case TCP_DEFER_ACCEPT:
4112 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4113 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4114 		break;
4115 	case TCP_WINDOW_CLAMP:
4116 		val = tp->window_clamp;
4117 		break;
4118 	case TCP_INFO: {
4119 		struct tcp_info info;
4120 
4121 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4122 			return -EFAULT;
4123 
4124 		tcp_get_info(sk, &info);
4125 
4126 		len = min_t(unsigned int, len, sizeof(info));
4127 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4128 			return -EFAULT;
4129 		if (copy_to_sockptr(optval, &info, len))
4130 			return -EFAULT;
4131 		return 0;
4132 	}
4133 	case TCP_CC_INFO: {
4134 		const struct tcp_congestion_ops *ca_ops;
4135 		union tcp_cc_info info;
4136 		size_t sz = 0;
4137 		int attr;
4138 
4139 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4140 			return -EFAULT;
4141 
4142 		ca_ops = icsk->icsk_ca_ops;
4143 		if (ca_ops && ca_ops->get_info)
4144 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4145 
4146 		len = min_t(unsigned int, len, sz);
4147 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4148 			return -EFAULT;
4149 		if (copy_to_sockptr(optval, &info, len))
4150 			return -EFAULT;
4151 		return 0;
4152 	}
4153 	case TCP_QUICKACK:
4154 		val = !inet_csk_in_pingpong_mode(sk);
4155 		break;
4156 
4157 	case TCP_CONGESTION:
4158 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4159 			return -EFAULT;
4160 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4161 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4162 			return -EFAULT;
4163 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4164 			return -EFAULT;
4165 		return 0;
4166 
4167 	case TCP_ULP:
4168 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4169 			return -EFAULT;
4170 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4171 		if (!icsk->icsk_ulp_ops) {
4172 			len = 0;
4173 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4174 				return -EFAULT;
4175 			return 0;
4176 		}
4177 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4178 			return -EFAULT;
4179 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4180 			return -EFAULT;
4181 		return 0;
4182 
4183 	case TCP_FASTOPEN_KEY: {
4184 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4185 		unsigned int key_len;
4186 
4187 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4188 			return -EFAULT;
4189 
4190 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4191 				TCP_FASTOPEN_KEY_LENGTH;
4192 		len = min_t(unsigned int, len, key_len);
4193 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4194 			return -EFAULT;
4195 		if (copy_to_sockptr(optval, key, len))
4196 			return -EFAULT;
4197 		return 0;
4198 	}
4199 	case TCP_THIN_LINEAR_TIMEOUTS:
4200 		val = tp->thin_lto;
4201 		break;
4202 
4203 	case TCP_THIN_DUPACK:
4204 		val = 0;
4205 		break;
4206 
4207 	case TCP_REPAIR:
4208 		val = tp->repair;
4209 		break;
4210 
4211 	case TCP_REPAIR_QUEUE:
4212 		if (tp->repair)
4213 			val = tp->repair_queue;
4214 		else
4215 			return -EINVAL;
4216 		break;
4217 
4218 	case TCP_REPAIR_WINDOW: {
4219 		struct tcp_repair_window opt;
4220 
4221 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4222 			return -EFAULT;
4223 
4224 		if (len != sizeof(opt))
4225 			return -EINVAL;
4226 
4227 		if (!tp->repair)
4228 			return -EPERM;
4229 
4230 		opt.snd_wl1	= tp->snd_wl1;
4231 		opt.snd_wnd	= tp->snd_wnd;
4232 		opt.max_window	= tp->max_window;
4233 		opt.rcv_wnd	= tp->rcv_wnd;
4234 		opt.rcv_wup	= tp->rcv_wup;
4235 
4236 		if (copy_to_sockptr(optval, &opt, len))
4237 			return -EFAULT;
4238 		return 0;
4239 	}
4240 	case TCP_QUEUE_SEQ:
4241 		if (tp->repair_queue == TCP_SEND_QUEUE)
4242 			val = tp->write_seq;
4243 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4244 			val = tp->rcv_nxt;
4245 		else
4246 			return -EINVAL;
4247 		break;
4248 
4249 	case TCP_USER_TIMEOUT:
4250 		val = icsk->icsk_user_timeout;
4251 		break;
4252 
4253 	case TCP_FASTOPEN:
4254 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4255 		break;
4256 
4257 	case TCP_FASTOPEN_CONNECT:
4258 		val = tp->fastopen_connect;
4259 		break;
4260 
4261 	case TCP_FASTOPEN_NO_COOKIE:
4262 		val = tp->fastopen_no_cookie;
4263 		break;
4264 
4265 	case TCP_TX_DELAY:
4266 		val = tp->tcp_tx_delay;
4267 		break;
4268 
4269 	case TCP_TIMESTAMP:
4270 		val = tcp_time_stamp_raw() + tp->tsoffset;
4271 		break;
4272 	case TCP_NOTSENT_LOWAT:
4273 		val = tp->notsent_lowat;
4274 		break;
4275 	case TCP_INQ:
4276 		val = tp->recvmsg_inq;
4277 		break;
4278 	case TCP_SAVE_SYN:
4279 		val = tp->save_syn;
4280 		break;
4281 	case TCP_SAVED_SYN: {
4282 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4283 			return -EFAULT;
4284 
4285 		sockopt_lock_sock(sk);
4286 		if (tp->saved_syn) {
4287 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4288 				len = tcp_saved_syn_len(tp->saved_syn);
4289 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4290 					sockopt_release_sock(sk);
4291 					return -EFAULT;
4292 				}
4293 				sockopt_release_sock(sk);
4294 				return -EINVAL;
4295 			}
4296 			len = tcp_saved_syn_len(tp->saved_syn);
4297 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4298 				sockopt_release_sock(sk);
4299 				return -EFAULT;
4300 			}
4301 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4302 				sockopt_release_sock(sk);
4303 				return -EFAULT;
4304 			}
4305 			tcp_saved_syn_free(tp);
4306 			sockopt_release_sock(sk);
4307 		} else {
4308 			sockopt_release_sock(sk);
4309 			len = 0;
4310 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4311 				return -EFAULT;
4312 		}
4313 		return 0;
4314 	}
4315 #ifdef CONFIG_MMU
4316 	case TCP_ZEROCOPY_RECEIVE: {
4317 		struct scm_timestamping_internal tss;
4318 		struct tcp_zerocopy_receive zc = {};
4319 		int err;
4320 
4321 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4322 			return -EFAULT;
4323 		if (len < 0 ||
4324 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4325 			return -EINVAL;
4326 		if (unlikely(len > sizeof(zc))) {
4327 			err = check_zeroed_sockptr(optval, sizeof(zc),
4328 						   len - sizeof(zc));
4329 			if (err < 1)
4330 				return err == 0 ? -EINVAL : err;
4331 			len = sizeof(zc);
4332 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4333 				return -EFAULT;
4334 		}
4335 		if (copy_from_sockptr(&zc, optval, len))
4336 			return -EFAULT;
4337 		if (zc.reserved)
4338 			return -EINVAL;
4339 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4340 			return -EINVAL;
4341 		sockopt_lock_sock(sk);
4342 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4343 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4344 							  &zc, &len, err);
4345 		sockopt_release_sock(sk);
4346 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4347 			goto zerocopy_rcv_cmsg;
4348 		switch (len) {
4349 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4350 			goto zerocopy_rcv_cmsg;
4351 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4352 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4353 		case offsetofend(struct tcp_zerocopy_receive, flags):
4354 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4355 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4356 		case offsetofend(struct tcp_zerocopy_receive, err):
4357 			goto zerocopy_rcv_sk_err;
4358 		case offsetofend(struct tcp_zerocopy_receive, inq):
4359 			goto zerocopy_rcv_inq;
4360 		case offsetofend(struct tcp_zerocopy_receive, length):
4361 		default:
4362 			goto zerocopy_rcv_out;
4363 		}
4364 zerocopy_rcv_cmsg:
4365 		if (zc.msg_flags & TCP_CMSG_TS)
4366 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4367 		else
4368 			zc.msg_flags = 0;
4369 zerocopy_rcv_sk_err:
4370 		if (!err)
4371 			zc.err = sock_error(sk);
4372 zerocopy_rcv_inq:
4373 		zc.inq = tcp_inq_hint(sk);
4374 zerocopy_rcv_out:
4375 		if (!err && copy_to_sockptr(optval, &zc, len))
4376 			err = -EFAULT;
4377 		return err;
4378 	}
4379 #endif
4380 	default:
4381 		return -ENOPROTOOPT;
4382 	}
4383 
4384 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4385 		return -EFAULT;
4386 	if (copy_to_sockptr(optval, &val, len))
4387 		return -EFAULT;
4388 	return 0;
4389 }
4390 
4391 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4392 {
4393 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4394 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4395 	 */
4396 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4397 		return true;
4398 
4399 	return false;
4400 }
4401 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4402 
4403 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4404 		   int __user *optlen)
4405 {
4406 	struct inet_connection_sock *icsk = inet_csk(sk);
4407 
4408 	if (level != SOL_TCP)
4409 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4410 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4411 								optval, optlen);
4412 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4413 				 USER_SOCKPTR(optlen));
4414 }
4415 EXPORT_SYMBOL(tcp_getsockopt);
4416 
4417 #ifdef CONFIG_TCP_MD5SIG
4418 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4419 static DEFINE_MUTEX(tcp_md5sig_mutex);
4420 static bool tcp_md5sig_pool_populated = false;
4421 
4422 static void __tcp_alloc_md5sig_pool(void)
4423 {
4424 	struct crypto_ahash *hash;
4425 	int cpu;
4426 
4427 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4428 	if (IS_ERR(hash))
4429 		return;
4430 
4431 	for_each_possible_cpu(cpu) {
4432 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4433 		struct ahash_request *req;
4434 
4435 		if (!scratch) {
4436 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4437 					       sizeof(struct tcphdr),
4438 					       GFP_KERNEL,
4439 					       cpu_to_node(cpu));
4440 			if (!scratch)
4441 				return;
4442 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4443 		}
4444 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4445 			continue;
4446 
4447 		req = ahash_request_alloc(hash, GFP_KERNEL);
4448 		if (!req)
4449 			return;
4450 
4451 		ahash_request_set_callback(req, 0, NULL, NULL);
4452 
4453 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4454 	}
4455 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4456 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4457 	 */
4458 	smp_wmb();
4459 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4460 	 * and tcp_get_md5sig_pool().
4461 	*/
4462 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4463 }
4464 
4465 bool tcp_alloc_md5sig_pool(void)
4466 {
4467 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4468 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4469 		mutex_lock(&tcp_md5sig_mutex);
4470 
4471 		if (!tcp_md5sig_pool_populated)
4472 			__tcp_alloc_md5sig_pool();
4473 
4474 		mutex_unlock(&tcp_md5sig_mutex);
4475 	}
4476 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4477 	return READ_ONCE(tcp_md5sig_pool_populated);
4478 }
4479 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4480 
4481 
4482 /**
4483  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4484  *
4485  *	We use percpu structure, so if we succeed, we exit with preemption
4486  *	and BH disabled, to make sure another thread or softirq handling
4487  *	wont try to get same context.
4488  */
4489 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4490 {
4491 	local_bh_disable();
4492 
4493 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4494 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4495 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4496 		smp_rmb();
4497 		return this_cpu_ptr(&tcp_md5sig_pool);
4498 	}
4499 	local_bh_enable();
4500 	return NULL;
4501 }
4502 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4503 
4504 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4505 			  const struct sk_buff *skb, unsigned int header_len)
4506 {
4507 	struct scatterlist sg;
4508 	const struct tcphdr *tp = tcp_hdr(skb);
4509 	struct ahash_request *req = hp->md5_req;
4510 	unsigned int i;
4511 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4512 					   skb_headlen(skb) - header_len : 0;
4513 	const struct skb_shared_info *shi = skb_shinfo(skb);
4514 	struct sk_buff *frag_iter;
4515 
4516 	sg_init_table(&sg, 1);
4517 
4518 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4519 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4520 	if (crypto_ahash_update(req))
4521 		return 1;
4522 
4523 	for (i = 0; i < shi->nr_frags; ++i) {
4524 		const skb_frag_t *f = &shi->frags[i];
4525 		unsigned int offset = skb_frag_off(f);
4526 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4527 
4528 		sg_set_page(&sg, page, skb_frag_size(f),
4529 			    offset_in_page(offset));
4530 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4531 		if (crypto_ahash_update(req))
4532 			return 1;
4533 	}
4534 
4535 	skb_walk_frags(skb, frag_iter)
4536 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4537 			return 1;
4538 
4539 	return 0;
4540 }
4541 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4542 
4543 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4544 {
4545 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4546 	struct scatterlist sg;
4547 
4548 	sg_init_one(&sg, key->key, keylen);
4549 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4550 
4551 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4552 	return data_race(crypto_ahash_update(hp->md5_req));
4553 }
4554 EXPORT_SYMBOL(tcp_md5_hash_key);
4555 
4556 /* Called with rcu_read_lock() */
4557 enum skb_drop_reason
4558 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4559 		     const void *saddr, const void *daddr,
4560 		     int family, int dif, int sdif)
4561 {
4562 	/*
4563 	 * This gets called for each TCP segment that arrives
4564 	 * so we want to be efficient.
4565 	 * We have 3 drop cases:
4566 	 * o No MD5 hash and one expected.
4567 	 * o MD5 hash and we're not expecting one.
4568 	 * o MD5 hash and its wrong.
4569 	 */
4570 	const __u8 *hash_location = NULL;
4571 	struct tcp_md5sig_key *hash_expected;
4572 	const struct tcphdr *th = tcp_hdr(skb);
4573 	const struct tcp_sock *tp = tcp_sk(sk);
4574 	int genhash, l3index;
4575 	u8 newhash[16];
4576 
4577 	/* sdif set, means packet ingressed via a device
4578 	 * in an L3 domain and dif is set to the l3mdev
4579 	 */
4580 	l3index = sdif ? dif : 0;
4581 
4582 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4583 	hash_location = tcp_parse_md5sig_option(th);
4584 
4585 	/* We've parsed the options - do we have a hash? */
4586 	if (!hash_expected && !hash_location)
4587 		return SKB_NOT_DROPPED_YET;
4588 
4589 	if (hash_expected && !hash_location) {
4590 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4591 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4592 	}
4593 
4594 	if (!hash_expected && hash_location) {
4595 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4596 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4597 	}
4598 
4599 	/* Check the signature.
4600 	 * To support dual stack listeners, we need to handle
4601 	 * IPv4-mapped case.
4602 	 */
4603 	if (family == AF_INET)
4604 		genhash = tcp_v4_md5_hash_skb(newhash,
4605 					      hash_expected,
4606 					      NULL, skb);
4607 	else
4608 		genhash = tp->af_specific->calc_md5_hash(newhash,
4609 							 hash_expected,
4610 							 NULL, skb);
4611 
4612 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4613 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4614 		if (family == AF_INET) {
4615 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4616 					saddr, ntohs(th->source),
4617 					daddr, ntohs(th->dest),
4618 					genhash ? " tcp_v4_calc_md5_hash failed"
4619 					: "", l3index);
4620 		} else {
4621 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4622 					genhash ? "failed" : "mismatch",
4623 					saddr, ntohs(th->source),
4624 					daddr, ntohs(th->dest), l3index);
4625 		}
4626 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4627 	}
4628 	return SKB_NOT_DROPPED_YET;
4629 }
4630 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4631 
4632 #endif
4633 
4634 void tcp_done(struct sock *sk)
4635 {
4636 	struct request_sock *req;
4637 
4638 	/* We might be called with a new socket, after
4639 	 * inet_csk_prepare_forced_close() has been called
4640 	 * so we can not use lockdep_sock_is_held(sk)
4641 	 */
4642 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4643 
4644 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4645 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4646 
4647 	tcp_set_state(sk, TCP_CLOSE);
4648 	tcp_clear_xmit_timers(sk);
4649 	if (req)
4650 		reqsk_fastopen_remove(sk, req, false);
4651 
4652 	sk->sk_shutdown = SHUTDOWN_MASK;
4653 
4654 	if (!sock_flag(sk, SOCK_DEAD))
4655 		sk->sk_state_change(sk);
4656 	else
4657 		inet_csk_destroy_sock(sk);
4658 }
4659 EXPORT_SYMBOL_GPL(tcp_done);
4660 
4661 int tcp_abort(struct sock *sk, int err)
4662 {
4663 	int state = inet_sk_state_load(sk);
4664 
4665 	if (state == TCP_NEW_SYN_RECV) {
4666 		struct request_sock *req = inet_reqsk(sk);
4667 
4668 		local_bh_disable();
4669 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4670 		local_bh_enable();
4671 		return 0;
4672 	}
4673 	if (state == TCP_TIME_WAIT) {
4674 		struct inet_timewait_sock *tw = inet_twsk(sk);
4675 
4676 		refcount_inc(&tw->tw_refcnt);
4677 		local_bh_disable();
4678 		inet_twsk_deschedule_put(tw);
4679 		local_bh_enable();
4680 		return 0;
4681 	}
4682 
4683 	/* Don't race with userspace socket closes such as tcp_close. */
4684 	lock_sock(sk);
4685 
4686 	if (sk->sk_state == TCP_LISTEN) {
4687 		tcp_set_state(sk, TCP_CLOSE);
4688 		inet_csk_listen_stop(sk);
4689 	}
4690 
4691 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4692 	local_bh_disable();
4693 	bh_lock_sock(sk);
4694 
4695 	if (!sock_flag(sk, SOCK_DEAD)) {
4696 		WRITE_ONCE(sk->sk_err, err);
4697 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4698 		smp_wmb();
4699 		sk_error_report(sk);
4700 		if (tcp_need_reset(sk->sk_state))
4701 			tcp_send_active_reset(sk, GFP_ATOMIC);
4702 		tcp_done(sk);
4703 	}
4704 
4705 	bh_unlock_sock(sk);
4706 	local_bh_enable();
4707 	tcp_write_queue_purge(sk);
4708 	release_sock(sk);
4709 	return 0;
4710 }
4711 EXPORT_SYMBOL_GPL(tcp_abort);
4712 
4713 extern struct tcp_congestion_ops tcp_reno;
4714 
4715 static __initdata unsigned long thash_entries;
4716 static int __init set_thash_entries(char *str)
4717 {
4718 	ssize_t ret;
4719 
4720 	if (!str)
4721 		return 0;
4722 
4723 	ret = kstrtoul(str, 0, &thash_entries);
4724 	if (ret)
4725 		return 0;
4726 
4727 	return 1;
4728 }
4729 __setup("thash_entries=", set_thash_entries);
4730 
4731 static void __init tcp_init_mem(void)
4732 {
4733 	unsigned long limit = nr_free_buffer_pages() / 16;
4734 
4735 	limit = max(limit, 128UL);
4736 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4737 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4738 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4739 }
4740 
4741 void __init tcp_init(void)
4742 {
4743 	int max_rshare, max_wshare, cnt;
4744 	unsigned long limit;
4745 	unsigned int i;
4746 
4747 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4748 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4749 		     sizeof_field(struct sk_buff, cb));
4750 
4751 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4752 
4753 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4754 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4755 
4756 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4757 			    thash_entries, 21,  /* one slot per 2 MB*/
4758 			    0, 64 * 1024);
4759 	tcp_hashinfo.bind_bucket_cachep =
4760 		kmem_cache_create("tcp_bind_bucket",
4761 				  sizeof(struct inet_bind_bucket), 0,
4762 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4763 				  SLAB_ACCOUNT,
4764 				  NULL);
4765 	tcp_hashinfo.bind2_bucket_cachep =
4766 		kmem_cache_create("tcp_bind2_bucket",
4767 				  sizeof(struct inet_bind2_bucket), 0,
4768 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4769 				  SLAB_ACCOUNT,
4770 				  NULL);
4771 
4772 	/* Size and allocate the main established and bind bucket
4773 	 * hash tables.
4774 	 *
4775 	 * The methodology is similar to that of the buffer cache.
4776 	 */
4777 	tcp_hashinfo.ehash =
4778 		alloc_large_system_hash("TCP established",
4779 					sizeof(struct inet_ehash_bucket),
4780 					thash_entries,
4781 					17, /* one slot per 128 KB of memory */
4782 					0,
4783 					NULL,
4784 					&tcp_hashinfo.ehash_mask,
4785 					0,
4786 					thash_entries ? 0 : 512 * 1024);
4787 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4788 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4789 
4790 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4791 		panic("TCP: failed to alloc ehash_locks");
4792 	tcp_hashinfo.bhash =
4793 		alloc_large_system_hash("TCP bind",
4794 					2 * sizeof(struct inet_bind_hashbucket),
4795 					tcp_hashinfo.ehash_mask + 1,
4796 					17, /* one slot per 128 KB of memory */
4797 					0,
4798 					&tcp_hashinfo.bhash_size,
4799 					NULL,
4800 					0,
4801 					64 * 1024);
4802 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4803 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4804 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4805 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4806 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4807 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4808 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4809 	}
4810 
4811 	tcp_hashinfo.pernet = false;
4812 
4813 	cnt = tcp_hashinfo.ehash_mask + 1;
4814 	sysctl_tcp_max_orphans = cnt / 2;
4815 
4816 	tcp_init_mem();
4817 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4818 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4819 	max_wshare = min(4UL*1024*1024, limit);
4820 	max_rshare = min(6UL*1024*1024, limit);
4821 
4822 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4823 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4824 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4825 
4826 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4827 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4828 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4829 
4830 	pr_info("Hash tables configured (established %u bind %u)\n",
4831 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4832 
4833 	tcp_v4_init();
4834 	tcp_metrics_init();
4835 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4836 	tcp_tasklet_init();
4837 	mptcp_init();
4838 }
4839