xref: /openbmc/linux/net/ipv4/tcp.c (revision c8013a1f714f6d9f2d8d673177a824c6b9653218)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 
461 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 	sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465 
466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 	struct sk_buff *skb = tcp_write_queue_tail(sk);
469 
470 	if (tsflags && skb) {
471 		struct skb_shared_info *shinfo = skb_shinfo(skb);
472 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473 
474 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 			tcb->txstamp_ack = 1;
477 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 	}
480 }
481 
482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 	if (tcp_epollin_ready(sk, target))
485 		return true;
486 	return sk_is_readable(sk);
487 }
488 
489 /*
490  *	Wait for a TCP event.
491  *
492  *	Note that we don't need to lock the socket, as the upper poll layers
493  *	take care of normal races (between the test and the event) and we don't
494  *	go look at any of the socket buffers directly.
495  */
496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 	__poll_t mask;
499 	struct sock *sk = sock->sk;
500 	const struct tcp_sock *tp = tcp_sk(sk);
501 	u8 shutdown;
502 	int state;
503 
504 	sock_poll_wait(file, sock, wait);
505 
506 	state = inet_sk_state_load(sk);
507 	if (state == TCP_LISTEN)
508 		return inet_csk_listen_poll(sk);
509 
510 	/* Socket is not locked. We are protected from async events
511 	 * by poll logic and correct handling of state changes
512 	 * made by other threads is impossible in any case.
513 	 */
514 
515 	mask = 0;
516 
517 	/*
518 	 * EPOLLHUP is certainly not done right. But poll() doesn't
519 	 * have a notion of HUP in just one direction, and for a
520 	 * socket the read side is more interesting.
521 	 *
522 	 * Some poll() documentation says that EPOLLHUP is incompatible
523 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
524 	 * all. But careful, it tends to be safer to return too many
525 	 * bits than too few, and you can easily break real applications
526 	 * if you don't tell them that something has hung up!
527 	 *
528 	 * Check-me.
529 	 *
530 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
531 	 * our fs/select.c). It means that after we received EOF,
532 	 * poll always returns immediately, making impossible poll() on write()
533 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
534 	 * if and only if shutdown has been made in both directions.
535 	 * Actually, it is interesting to look how Solaris and DUX
536 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
537 	 * then we could set it on SND_SHUTDOWN. BTW examples given
538 	 * in Stevens' books assume exactly this behaviour, it explains
539 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
540 	 *
541 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
542 	 * blocking on fresh not-connected or disconnected socket. --ANK
543 	 */
544 	shutdown = READ_ONCE(sk->sk_shutdown);
545 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 		mask |= EPOLLHUP;
547 	if (shutdown & RCV_SHUTDOWN)
548 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
549 
550 	/* Connected or passive Fast Open socket? */
551 	if (state != TCP_SYN_SENT &&
552 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
553 		int target = sock_rcvlowat(sk, 0, INT_MAX);
554 		u16 urg_data = READ_ONCE(tp->urg_data);
555 
556 		if (unlikely(urg_data) &&
557 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
558 		    !sock_flag(sk, SOCK_URGINLINE))
559 			target++;
560 
561 		if (tcp_stream_is_readable(sk, target))
562 			mask |= EPOLLIN | EPOLLRDNORM;
563 
564 		if (!(shutdown & SEND_SHUTDOWN)) {
565 			if (__sk_stream_is_writeable(sk, 1)) {
566 				mask |= EPOLLOUT | EPOLLWRNORM;
567 			} else {  /* send SIGIO later */
568 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570 
571 				/* Race breaker. If space is freed after
572 				 * wspace test but before the flags are set,
573 				 * IO signal will be lost. Memory barrier
574 				 * pairs with the input side.
575 				 */
576 				smp_mb__after_atomic();
577 				if (__sk_stream_is_writeable(sk, 1))
578 					mask |= EPOLLOUT | EPOLLWRNORM;
579 			}
580 		} else
581 			mask |= EPOLLOUT | EPOLLWRNORM;
582 
583 		if (urg_data & TCP_URG_VALID)
584 			mask |= EPOLLPRI;
585 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 		/* Active TCP fastopen socket with defer_connect
587 		 * Return EPOLLOUT so application can call write()
588 		 * in order for kernel to generate SYN+data
589 		 */
590 		mask |= EPOLLOUT | EPOLLWRNORM;
591 	}
592 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
593 	smp_rmb();
594 	if (READ_ONCE(sk->sk_err) ||
595 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
596 		mask |= EPOLLERR;
597 
598 	return mask;
599 }
600 EXPORT_SYMBOL(tcp_poll);
601 
602 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	int answ;
606 	bool slow;
607 
608 	switch (cmd) {
609 	case SIOCINQ:
610 		if (sk->sk_state == TCP_LISTEN)
611 			return -EINVAL;
612 
613 		slow = lock_sock_fast(sk);
614 		answ = tcp_inq(sk);
615 		unlock_sock_fast(sk, slow);
616 		break;
617 	case SIOCATMARK:
618 		answ = READ_ONCE(tp->urg_data) &&
619 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
620 		break;
621 	case SIOCOUTQ:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 			answ = 0;
627 		else
628 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
629 		break;
630 	case SIOCOUTQNSD:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) -
638 			       READ_ONCE(tp->snd_nxt);
639 		break;
640 	default:
641 		return -ENOIOCTLCMD;
642 	}
643 
644 	*karg = answ;
645 	return 0;
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
649 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
660 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	tcb->seq     = tcb->end_seq = tp->write_seq;
666 	tcb->tcp_flags = TCPHDR_ACK;
667 	__skb_header_release(skb);
668 	tcp_add_write_queue_tail(sk, skb);
669 	sk_wmem_queued_add(sk, skb->truesize);
670 	sk_mem_charge(sk, skb->truesize);
671 	if (tp->nonagle & TCP_NAGLE_PUSH)
672 		tp->nonagle &= ~TCP_NAGLE_PUSH;
673 
674 	tcp_slow_start_after_idle_check(sk);
675 }
676 
677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 	if (flags & MSG_OOB)
680 		tp->snd_up = tp->write_seq;
681 }
682 
683 /* If a not yet filled skb is pushed, do not send it if
684  * we have data packets in Qdisc or NIC queues :
685  * Because TX completion will happen shortly, it gives a chance
686  * to coalesce future sendmsg() payload into this skb, without
687  * need for a timer, and with no latency trade off.
688  * As packets containing data payload have a bigger truesize
689  * than pure acks (dataless) packets, the last checks prevent
690  * autocorking if we only have an ACK in Qdisc/NIC queues,
691  * or if TX completion was delayed after we processed ACK packet.
692  */
693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 				int size_goal)
695 {
696 	return skb->len < size_goal &&
697 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
698 	       !tcp_rtx_queue_empty(sk) &&
699 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
700 	       tcp_skb_can_collapse_to(skb);
701 }
702 
703 void tcp_push(struct sock *sk, int flags, int mss_now,
704 	      int nonagle, int size_goal)
705 {
706 	struct tcp_sock *tp = tcp_sk(sk);
707 	struct sk_buff *skb;
708 
709 	skb = tcp_write_queue_tail(sk);
710 	if (!skb)
711 		return;
712 	if (!(flags & MSG_MORE) || forced_push(tp))
713 		tcp_mark_push(tp, skb);
714 
715 	tcp_mark_urg(tp, flags);
716 
717 	if (tcp_should_autocork(sk, skb, size_goal)) {
718 
719 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
720 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
721 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
722 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
723 		}
724 		/* It is possible TX completion already happened
725 		 * before we set TSQ_THROTTLED.
726 		 */
727 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
728 			return;
729 	}
730 
731 	if (flags & MSG_MORE)
732 		nonagle = TCP_NAGLE_CORK;
733 
734 	__tcp_push_pending_frames(sk, mss_now, nonagle);
735 }
736 
737 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
738 				unsigned int offset, size_t len)
739 {
740 	struct tcp_splice_state *tss = rd_desc->arg.data;
741 	int ret;
742 
743 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
744 			      min(rd_desc->count, len), tss->flags);
745 	if (ret > 0)
746 		rd_desc->count -= ret;
747 	return ret;
748 }
749 
750 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
751 {
752 	/* Store TCP splice context information in read_descriptor_t. */
753 	read_descriptor_t rd_desc = {
754 		.arg.data = tss,
755 		.count	  = tss->len,
756 	};
757 
758 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
759 }
760 
761 /**
762  *  tcp_splice_read - splice data from TCP socket to a pipe
763  * @sock:	socket to splice from
764  * @ppos:	position (not valid)
765  * @pipe:	pipe to splice to
766  * @len:	number of bytes to splice
767  * @flags:	splice modifier flags
768  *
769  * Description:
770  *    Will read pages from given socket and fill them into a pipe.
771  *
772  **/
773 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
774 			struct pipe_inode_info *pipe, size_t len,
775 			unsigned int flags)
776 {
777 	struct sock *sk = sock->sk;
778 	struct tcp_splice_state tss = {
779 		.pipe = pipe,
780 		.len = len,
781 		.flags = flags,
782 	};
783 	long timeo;
784 	ssize_t spliced;
785 	int ret;
786 
787 	sock_rps_record_flow(sk);
788 	/*
789 	 * We can't seek on a socket input
790 	 */
791 	if (unlikely(*ppos))
792 		return -ESPIPE;
793 
794 	ret = spliced = 0;
795 
796 	lock_sock(sk);
797 
798 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
799 	while (tss.len) {
800 		ret = __tcp_splice_read(sk, &tss);
801 		if (ret < 0)
802 			break;
803 		else if (!ret) {
804 			if (spliced)
805 				break;
806 			if (sock_flag(sk, SOCK_DONE))
807 				break;
808 			if (sk->sk_err) {
809 				ret = sock_error(sk);
810 				break;
811 			}
812 			if (sk->sk_shutdown & RCV_SHUTDOWN)
813 				break;
814 			if (sk->sk_state == TCP_CLOSE) {
815 				/*
816 				 * This occurs when user tries to read
817 				 * from never connected socket.
818 				 */
819 				ret = -ENOTCONN;
820 				break;
821 			}
822 			if (!timeo) {
823 				ret = -EAGAIN;
824 				break;
825 			}
826 			/* if __tcp_splice_read() got nothing while we have
827 			 * an skb in receive queue, we do not want to loop.
828 			 * This might happen with URG data.
829 			 */
830 			if (!skb_queue_empty(&sk->sk_receive_queue))
831 				break;
832 			sk_wait_data(sk, &timeo, NULL);
833 			if (signal_pending(current)) {
834 				ret = sock_intr_errno(timeo);
835 				break;
836 			}
837 			continue;
838 		}
839 		tss.len -= ret;
840 		spliced += ret;
841 
842 		if (!timeo)
843 			break;
844 		release_sock(sk);
845 		lock_sock(sk);
846 
847 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
848 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
849 		    signal_pending(current))
850 			break;
851 	}
852 
853 	release_sock(sk);
854 
855 	if (spliced)
856 		return spliced;
857 
858 	return ret;
859 }
860 EXPORT_SYMBOL(tcp_splice_read);
861 
862 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
863 				     bool force_schedule)
864 {
865 	struct sk_buff *skb;
866 
867 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
868 	if (likely(skb)) {
869 		bool mem_scheduled;
870 
871 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
872 		if (force_schedule) {
873 			mem_scheduled = true;
874 			sk_forced_mem_schedule(sk, skb->truesize);
875 		} else {
876 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
877 		}
878 		if (likely(mem_scheduled)) {
879 			skb_reserve(skb, MAX_TCP_HEADER);
880 			skb->ip_summed = CHECKSUM_PARTIAL;
881 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
882 			return skb;
883 		}
884 		__kfree_skb(skb);
885 	} else {
886 		sk->sk_prot->enter_memory_pressure(sk);
887 		sk_stream_moderate_sndbuf(sk);
888 	}
889 	return NULL;
890 }
891 
892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
893 				       int large_allowed)
894 {
895 	struct tcp_sock *tp = tcp_sk(sk);
896 	u32 new_size_goal, size_goal;
897 
898 	if (!large_allowed)
899 		return mss_now;
900 
901 	/* Note : tcp_tso_autosize() will eventually split this later */
902 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
903 
904 	/* We try hard to avoid divides here */
905 	size_goal = tp->gso_segs * mss_now;
906 	if (unlikely(new_size_goal < size_goal ||
907 		     new_size_goal >= size_goal + mss_now)) {
908 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
909 				     sk->sk_gso_max_segs);
910 		size_goal = tp->gso_segs * mss_now;
911 	}
912 
913 	return max(size_goal, mss_now);
914 }
915 
916 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
917 {
918 	int mss_now;
919 
920 	mss_now = tcp_current_mss(sk);
921 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
922 
923 	return mss_now;
924 }
925 
926 /* In some cases, both sendpage() and sendmsg() could have added
927  * an skb to the write queue, but failed adding payload on it.
928  * We need to remove it to consume less memory, but more
929  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
930  * users.
931  */
932 void tcp_remove_empty_skb(struct sock *sk)
933 {
934 	struct sk_buff *skb = tcp_write_queue_tail(sk);
935 
936 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
937 		tcp_unlink_write_queue(skb, sk);
938 		if (tcp_write_queue_empty(sk))
939 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
940 		tcp_wmem_free_skb(sk, skb);
941 	}
942 }
943 
944 /* skb changing from pure zc to mixed, must charge zc */
945 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
946 {
947 	if (unlikely(skb_zcopy_pure(skb))) {
948 		u32 extra = skb->truesize -
949 			    SKB_TRUESIZE(skb_end_offset(skb));
950 
951 		if (!sk_wmem_schedule(sk, extra))
952 			return -ENOMEM;
953 
954 		sk_mem_charge(sk, extra);
955 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
956 	}
957 	return 0;
958 }
959 
960 
961 int tcp_wmem_schedule(struct sock *sk, int copy)
962 {
963 	int left;
964 
965 	if (likely(sk_wmem_schedule(sk, copy)))
966 		return copy;
967 
968 	/* We could be in trouble if we have nothing queued.
969 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
970 	 * to guarantee some progress.
971 	 */
972 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
973 	if (left > 0)
974 		sk_forced_mem_schedule(sk, min(left, copy));
975 	return min(copy, sk->sk_forward_alloc);
976 }
977 
978 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
979 			size_t size, int flags)
980 {
981 	struct bio_vec bvec;
982 	struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, };
983 
984 	if (!(sk->sk_route_caps & NETIF_F_SG))
985 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
986 
987 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
988 
989 	bvec_set_page(&bvec, page, size, offset);
990 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
991 
992 	if (flags & MSG_SENDPAGE_NOTLAST)
993 		msg.msg_flags |= MSG_MORE;
994 
995 	return tcp_sendmsg_locked(sk, &msg, size);
996 }
997 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
998 
999 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1000 		 size_t size, int flags)
1001 {
1002 	int ret;
1003 
1004 	lock_sock(sk);
1005 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1006 	release_sock(sk);
1007 
1008 	return ret;
1009 }
1010 EXPORT_SYMBOL(tcp_sendpage);
1011 
1012 void tcp_free_fastopen_req(struct tcp_sock *tp)
1013 {
1014 	if (tp->fastopen_req) {
1015 		kfree(tp->fastopen_req);
1016 		tp->fastopen_req = NULL;
1017 	}
1018 }
1019 
1020 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1021 			 size_t size, struct ubuf_info *uarg)
1022 {
1023 	struct tcp_sock *tp = tcp_sk(sk);
1024 	struct inet_sock *inet = inet_sk(sk);
1025 	struct sockaddr *uaddr = msg->msg_name;
1026 	int err, flags;
1027 
1028 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1029 	      TFO_CLIENT_ENABLE) ||
1030 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1031 	     uaddr->sa_family == AF_UNSPEC))
1032 		return -EOPNOTSUPP;
1033 	if (tp->fastopen_req)
1034 		return -EALREADY; /* Another Fast Open is in progress */
1035 
1036 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1037 				   sk->sk_allocation);
1038 	if (unlikely(!tp->fastopen_req))
1039 		return -ENOBUFS;
1040 	tp->fastopen_req->data = msg;
1041 	tp->fastopen_req->size = size;
1042 	tp->fastopen_req->uarg = uarg;
1043 
1044 	if (inet->defer_connect) {
1045 		err = tcp_connect(sk);
1046 		/* Same failure procedure as in tcp_v4/6_connect */
1047 		if (err) {
1048 			tcp_set_state(sk, TCP_CLOSE);
1049 			inet->inet_dport = 0;
1050 			sk->sk_route_caps = 0;
1051 		}
1052 	}
1053 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1054 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1055 				    msg->msg_namelen, flags, 1);
1056 	/* fastopen_req could already be freed in __inet_stream_connect
1057 	 * if the connection times out or gets rst
1058 	 */
1059 	if (tp->fastopen_req) {
1060 		*copied = tp->fastopen_req->copied;
1061 		tcp_free_fastopen_req(tp);
1062 		inet->defer_connect = 0;
1063 	}
1064 	return err;
1065 }
1066 
1067 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1068 {
1069 	struct tcp_sock *tp = tcp_sk(sk);
1070 	struct ubuf_info *uarg = NULL;
1071 	struct sk_buff *skb;
1072 	struct sockcm_cookie sockc;
1073 	int flags, err, copied = 0;
1074 	int mss_now = 0, size_goal, copied_syn = 0;
1075 	int process_backlog = 0;
1076 	int zc = 0;
1077 	long timeo;
1078 
1079 	flags = msg->msg_flags;
1080 
1081 	if ((flags & MSG_ZEROCOPY) && size) {
1082 		if (msg->msg_ubuf) {
1083 			uarg = msg->msg_ubuf;
1084 			if (sk->sk_route_caps & NETIF_F_SG)
1085 				zc = MSG_ZEROCOPY;
1086 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1087 			skb = tcp_write_queue_tail(sk);
1088 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1089 			if (!uarg) {
1090 				err = -ENOBUFS;
1091 				goto out_err;
1092 			}
1093 			if (sk->sk_route_caps & NETIF_F_SG)
1094 				zc = MSG_ZEROCOPY;
1095 			else
1096 				uarg_to_msgzc(uarg)->zerocopy = 0;
1097 		}
1098 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1099 		if (sk->sk_route_caps & NETIF_F_SG)
1100 			zc = MSG_SPLICE_PAGES;
1101 	}
1102 
1103 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1104 	    !tp->repair) {
1105 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1106 		if (err == -EINPROGRESS && copied_syn > 0)
1107 			goto out;
1108 		else if (err)
1109 			goto out_err;
1110 	}
1111 
1112 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1113 
1114 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1115 
1116 	/* Wait for a connection to finish. One exception is TCP Fast Open
1117 	 * (passive side) where data is allowed to be sent before a connection
1118 	 * is fully established.
1119 	 */
1120 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1121 	    !tcp_passive_fastopen(sk)) {
1122 		err = sk_stream_wait_connect(sk, &timeo);
1123 		if (err != 0)
1124 			goto do_error;
1125 	}
1126 
1127 	if (unlikely(tp->repair)) {
1128 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1129 			copied = tcp_send_rcvq(sk, msg, size);
1130 			goto out_nopush;
1131 		}
1132 
1133 		err = -EINVAL;
1134 		if (tp->repair_queue == TCP_NO_QUEUE)
1135 			goto out_err;
1136 
1137 		/* 'common' sending to sendq */
1138 	}
1139 
1140 	sockcm_init(&sockc, sk);
1141 	if (msg->msg_controllen) {
1142 		err = sock_cmsg_send(sk, msg, &sockc);
1143 		if (unlikely(err)) {
1144 			err = -EINVAL;
1145 			goto out_err;
1146 		}
1147 	}
1148 
1149 	/* This should be in poll */
1150 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1151 
1152 	/* Ok commence sending. */
1153 	copied = 0;
1154 
1155 restart:
1156 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1157 
1158 	err = -EPIPE;
1159 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1160 		goto do_error;
1161 
1162 	while (msg_data_left(msg)) {
1163 		ssize_t copy = 0;
1164 
1165 		skb = tcp_write_queue_tail(sk);
1166 		if (skb)
1167 			copy = size_goal - skb->len;
1168 
1169 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1170 			bool first_skb;
1171 
1172 new_segment:
1173 			if (!sk_stream_memory_free(sk))
1174 				goto wait_for_space;
1175 
1176 			if (unlikely(process_backlog >= 16)) {
1177 				process_backlog = 0;
1178 				if (sk_flush_backlog(sk))
1179 					goto restart;
1180 			}
1181 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1182 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1183 						   first_skb);
1184 			if (!skb)
1185 				goto wait_for_space;
1186 
1187 			process_backlog++;
1188 
1189 			tcp_skb_entail(sk, skb);
1190 			copy = size_goal;
1191 
1192 			/* All packets are restored as if they have
1193 			 * already been sent. skb_mstamp_ns isn't set to
1194 			 * avoid wrong rtt estimation.
1195 			 */
1196 			if (tp->repair)
1197 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1198 		}
1199 
1200 		/* Try to append data to the end of skb. */
1201 		if (copy > msg_data_left(msg))
1202 			copy = msg_data_left(msg);
1203 
1204 		if (zc == 0) {
1205 			bool merge = true;
1206 			int i = skb_shinfo(skb)->nr_frags;
1207 			struct page_frag *pfrag = sk_page_frag(sk);
1208 
1209 			if (!sk_page_frag_refill(sk, pfrag))
1210 				goto wait_for_space;
1211 
1212 			if (!skb_can_coalesce(skb, i, pfrag->page,
1213 					      pfrag->offset)) {
1214 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1215 					tcp_mark_push(tp, skb);
1216 					goto new_segment;
1217 				}
1218 				merge = false;
1219 			}
1220 
1221 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1222 
1223 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1224 				if (tcp_downgrade_zcopy_pure(sk, skb))
1225 					goto wait_for_space;
1226 				skb_zcopy_downgrade_managed(skb);
1227 			}
1228 
1229 			copy = tcp_wmem_schedule(sk, copy);
1230 			if (!copy)
1231 				goto wait_for_space;
1232 
1233 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1234 						       pfrag->page,
1235 						       pfrag->offset,
1236 						       copy);
1237 			if (err)
1238 				goto do_error;
1239 
1240 			/* Update the skb. */
1241 			if (merge) {
1242 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1243 			} else {
1244 				skb_fill_page_desc(skb, i, pfrag->page,
1245 						   pfrag->offset, copy);
1246 				page_ref_inc(pfrag->page);
1247 			}
1248 			pfrag->offset += copy;
1249 		} else if (zc == MSG_ZEROCOPY)  {
1250 			/* First append to a fragless skb builds initial
1251 			 * pure zerocopy skb
1252 			 */
1253 			if (!skb->len)
1254 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1255 
1256 			if (!skb_zcopy_pure(skb)) {
1257 				copy = tcp_wmem_schedule(sk, copy);
1258 				if (!copy)
1259 					goto wait_for_space;
1260 			}
1261 
1262 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1263 			if (err == -EMSGSIZE || err == -EEXIST) {
1264 				tcp_mark_push(tp, skb);
1265 				goto new_segment;
1266 			}
1267 			if (err < 0)
1268 				goto do_error;
1269 			copy = err;
1270 		} else if (zc == MSG_SPLICE_PAGES) {
1271 			/* Splice in data if we can; copy if we can't. */
1272 			if (tcp_downgrade_zcopy_pure(sk, skb))
1273 				goto wait_for_space;
1274 			copy = tcp_wmem_schedule(sk, copy);
1275 			if (!copy)
1276 				goto wait_for_space;
1277 
1278 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1279 						   sk->sk_allocation);
1280 			if (err < 0) {
1281 				if (err == -EMSGSIZE) {
1282 					tcp_mark_push(tp, skb);
1283 					goto new_segment;
1284 				}
1285 				goto do_error;
1286 			}
1287 			copy = err;
1288 
1289 			if (!(flags & MSG_NO_SHARED_FRAGS))
1290 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1291 
1292 			sk_wmem_queued_add(sk, copy);
1293 			sk_mem_charge(sk, copy);
1294 		}
1295 
1296 		if (!copied)
1297 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1298 
1299 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1300 		TCP_SKB_CB(skb)->end_seq += copy;
1301 		tcp_skb_pcount_set(skb, 0);
1302 
1303 		copied += copy;
1304 		if (!msg_data_left(msg)) {
1305 			if (unlikely(flags & MSG_EOR))
1306 				TCP_SKB_CB(skb)->eor = 1;
1307 			goto out;
1308 		}
1309 
1310 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1311 			continue;
1312 
1313 		if (forced_push(tp)) {
1314 			tcp_mark_push(tp, skb);
1315 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1316 		} else if (skb == tcp_send_head(sk))
1317 			tcp_push_one(sk, mss_now);
1318 		continue;
1319 
1320 wait_for_space:
1321 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1322 		if (copied)
1323 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1324 				 TCP_NAGLE_PUSH, size_goal);
1325 
1326 		err = sk_stream_wait_memory(sk, &timeo);
1327 		if (err != 0)
1328 			goto do_error;
1329 
1330 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1331 	}
1332 
1333 out:
1334 	if (copied) {
1335 		tcp_tx_timestamp(sk, sockc.tsflags);
1336 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1337 	}
1338 out_nopush:
1339 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1340 	if (uarg && !msg->msg_ubuf)
1341 		net_zcopy_put(uarg);
1342 	return copied + copied_syn;
1343 
1344 do_error:
1345 	tcp_remove_empty_skb(sk);
1346 
1347 	if (copied + copied_syn)
1348 		goto out;
1349 out_err:
1350 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1351 	if (uarg && !msg->msg_ubuf)
1352 		net_zcopy_put_abort(uarg, true);
1353 	err = sk_stream_error(sk, flags, err);
1354 	/* make sure we wake any epoll edge trigger waiter */
1355 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1356 		sk->sk_write_space(sk);
1357 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1358 	}
1359 	return err;
1360 }
1361 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1362 
1363 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1364 {
1365 	int ret;
1366 
1367 	lock_sock(sk);
1368 	ret = tcp_sendmsg_locked(sk, msg, size);
1369 	release_sock(sk);
1370 
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL(tcp_sendmsg);
1374 
1375 void tcp_splice_eof(struct socket *sock)
1376 {
1377 	struct sock *sk = sock->sk;
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 	int mss_now, size_goal;
1380 
1381 	if (!tcp_write_queue_tail(sk))
1382 		return;
1383 
1384 	lock_sock(sk);
1385 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1386 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1387 	release_sock(sk);
1388 }
1389 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1390 
1391 /*
1392  *	Handle reading urgent data. BSD has very simple semantics for
1393  *	this, no blocking and very strange errors 8)
1394  */
1395 
1396 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1397 {
1398 	struct tcp_sock *tp = tcp_sk(sk);
1399 
1400 	/* No URG data to read. */
1401 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1402 	    tp->urg_data == TCP_URG_READ)
1403 		return -EINVAL;	/* Yes this is right ! */
1404 
1405 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1406 		return -ENOTCONN;
1407 
1408 	if (tp->urg_data & TCP_URG_VALID) {
1409 		int err = 0;
1410 		char c = tp->urg_data;
1411 
1412 		if (!(flags & MSG_PEEK))
1413 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1414 
1415 		/* Read urgent data. */
1416 		msg->msg_flags |= MSG_OOB;
1417 
1418 		if (len > 0) {
1419 			if (!(flags & MSG_TRUNC))
1420 				err = memcpy_to_msg(msg, &c, 1);
1421 			len = 1;
1422 		} else
1423 			msg->msg_flags |= MSG_TRUNC;
1424 
1425 		return err ? -EFAULT : len;
1426 	}
1427 
1428 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1429 		return 0;
1430 
1431 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1432 	 * the available implementations agree in this case:
1433 	 * this call should never block, independent of the
1434 	 * blocking state of the socket.
1435 	 * Mike <pall@rz.uni-karlsruhe.de>
1436 	 */
1437 	return -EAGAIN;
1438 }
1439 
1440 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1441 {
1442 	struct sk_buff *skb;
1443 	int copied = 0, err = 0;
1444 
1445 	/* XXX -- need to support SO_PEEK_OFF */
1446 
1447 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1448 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1449 		if (err)
1450 			return err;
1451 		copied += skb->len;
1452 	}
1453 
1454 	skb_queue_walk(&sk->sk_write_queue, skb) {
1455 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1456 		if (err)
1457 			break;
1458 
1459 		copied += skb->len;
1460 	}
1461 
1462 	return err ?: copied;
1463 }
1464 
1465 /* Clean up the receive buffer for full frames taken by the user,
1466  * then send an ACK if necessary.  COPIED is the number of bytes
1467  * tcp_recvmsg has given to the user so far, it speeds up the
1468  * calculation of whether or not we must ACK for the sake of
1469  * a window update.
1470  */
1471 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1472 {
1473 	struct tcp_sock *tp = tcp_sk(sk);
1474 	bool time_to_ack = false;
1475 
1476 	if (inet_csk_ack_scheduled(sk)) {
1477 		const struct inet_connection_sock *icsk = inet_csk(sk);
1478 
1479 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1480 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1481 		    /*
1482 		     * If this read emptied read buffer, we send ACK, if
1483 		     * connection is not bidirectional, user drained
1484 		     * receive buffer and there was a small segment
1485 		     * in queue.
1486 		     */
1487 		    (copied > 0 &&
1488 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1489 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1490 		       !inet_csk_in_pingpong_mode(sk))) &&
1491 		      !atomic_read(&sk->sk_rmem_alloc)))
1492 			time_to_ack = true;
1493 	}
1494 
1495 	/* We send an ACK if we can now advertise a non-zero window
1496 	 * which has been raised "significantly".
1497 	 *
1498 	 * Even if window raised up to infinity, do not send window open ACK
1499 	 * in states, where we will not receive more. It is useless.
1500 	 */
1501 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1502 		__u32 rcv_window_now = tcp_receive_window(tp);
1503 
1504 		/* Optimize, __tcp_select_window() is not cheap. */
1505 		if (2*rcv_window_now <= tp->window_clamp) {
1506 			__u32 new_window = __tcp_select_window(sk);
1507 
1508 			/* Send ACK now, if this read freed lots of space
1509 			 * in our buffer. Certainly, new_window is new window.
1510 			 * We can advertise it now, if it is not less than current one.
1511 			 * "Lots" means "at least twice" here.
1512 			 */
1513 			if (new_window && new_window >= 2 * rcv_window_now)
1514 				time_to_ack = true;
1515 		}
1516 	}
1517 	if (time_to_ack)
1518 		tcp_send_ack(sk);
1519 }
1520 
1521 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1522 {
1523 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1524 	struct tcp_sock *tp = tcp_sk(sk);
1525 
1526 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1527 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1528 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1529 	__tcp_cleanup_rbuf(sk, copied);
1530 }
1531 
1532 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1533 {
1534 	__skb_unlink(skb, &sk->sk_receive_queue);
1535 	if (likely(skb->destructor == sock_rfree)) {
1536 		sock_rfree(skb);
1537 		skb->destructor = NULL;
1538 		skb->sk = NULL;
1539 		return skb_attempt_defer_free(skb);
1540 	}
1541 	__kfree_skb(skb);
1542 }
1543 
1544 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1545 {
1546 	struct sk_buff *skb;
1547 	u32 offset;
1548 
1549 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1550 		offset = seq - TCP_SKB_CB(skb)->seq;
1551 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1552 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1553 			offset--;
1554 		}
1555 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1556 			*off = offset;
1557 			return skb;
1558 		}
1559 		/* This looks weird, but this can happen if TCP collapsing
1560 		 * splitted a fat GRO packet, while we released socket lock
1561 		 * in skb_splice_bits()
1562 		 */
1563 		tcp_eat_recv_skb(sk, skb);
1564 	}
1565 	return NULL;
1566 }
1567 EXPORT_SYMBOL(tcp_recv_skb);
1568 
1569 /*
1570  * This routine provides an alternative to tcp_recvmsg() for routines
1571  * that would like to handle copying from skbuffs directly in 'sendfile'
1572  * fashion.
1573  * Note:
1574  *	- It is assumed that the socket was locked by the caller.
1575  *	- The routine does not block.
1576  *	- At present, there is no support for reading OOB data
1577  *	  or for 'peeking' the socket using this routine
1578  *	  (although both would be easy to implement).
1579  */
1580 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1581 		  sk_read_actor_t recv_actor)
1582 {
1583 	struct sk_buff *skb;
1584 	struct tcp_sock *tp = tcp_sk(sk);
1585 	u32 seq = tp->copied_seq;
1586 	u32 offset;
1587 	int copied = 0;
1588 
1589 	if (sk->sk_state == TCP_LISTEN)
1590 		return -ENOTCONN;
1591 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1592 		if (offset < skb->len) {
1593 			int used;
1594 			size_t len;
1595 
1596 			len = skb->len - offset;
1597 			/* Stop reading if we hit a patch of urgent data */
1598 			if (unlikely(tp->urg_data)) {
1599 				u32 urg_offset = tp->urg_seq - seq;
1600 				if (urg_offset < len)
1601 					len = urg_offset;
1602 				if (!len)
1603 					break;
1604 			}
1605 			used = recv_actor(desc, skb, offset, len);
1606 			if (used <= 0) {
1607 				if (!copied)
1608 					copied = used;
1609 				break;
1610 			}
1611 			if (WARN_ON_ONCE(used > len))
1612 				used = len;
1613 			seq += used;
1614 			copied += used;
1615 			offset += used;
1616 
1617 			/* If recv_actor drops the lock (e.g. TCP splice
1618 			 * receive) the skb pointer might be invalid when
1619 			 * getting here: tcp_collapse might have deleted it
1620 			 * while aggregating skbs from the socket queue.
1621 			 */
1622 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1623 			if (!skb)
1624 				break;
1625 			/* TCP coalescing might have appended data to the skb.
1626 			 * Try to splice more frags
1627 			 */
1628 			if (offset + 1 != skb->len)
1629 				continue;
1630 		}
1631 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1632 			tcp_eat_recv_skb(sk, skb);
1633 			++seq;
1634 			break;
1635 		}
1636 		tcp_eat_recv_skb(sk, skb);
1637 		if (!desc->count)
1638 			break;
1639 		WRITE_ONCE(tp->copied_seq, seq);
1640 	}
1641 	WRITE_ONCE(tp->copied_seq, seq);
1642 
1643 	tcp_rcv_space_adjust(sk);
1644 
1645 	/* Clean up data we have read: This will do ACK frames. */
1646 	if (copied > 0) {
1647 		tcp_recv_skb(sk, seq, &offset);
1648 		tcp_cleanup_rbuf(sk, copied);
1649 	}
1650 	return copied;
1651 }
1652 EXPORT_SYMBOL(tcp_read_sock);
1653 
1654 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1655 {
1656 	struct tcp_sock *tp = tcp_sk(sk);
1657 	u32 seq = tp->copied_seq;
1658 	struct sk_buff *skb;
1659 	int copied = 0;
1660 	u32 offset;
1661 
1662 	if (sk->sk_state == TCP_LISTEN)
1663 		return -ENOTCONN;
1664 
1665 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1666 		u8 tcp_flags;
1667 		int used;
1668 
1669 		__skb_unlink(skb, &sk->sk_receive_queue);
1670 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1671 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1672 		used = recv_actor(sk, skb);
1673 		if (used < 0) {
1674 			if (!copied)
1675 				copied = used;
1676 			break;
1677 		}
1678 		seq += used;
1679 		copied += used;
1680 
1681 		if (tcp_flags & TCPHDR_FIN) {
1682 			++seq;
1683 			break;
1684 		}
1685 	}
1686 	return copied;
1687 }
1688 EXPORT_SYMBOL(tcp_read_skb);
1689 
1690 void tcp_read_done(struct sock *sk, size_t len)
1691 {
1692 	struct tcp_sock *tp = tcp_sk(sk);
1693 	u32 seq = tp->copied_seq;
1694 	struct sk_buff *skb;
1695 	size_t left;
1696 	u32 offset;
1697 
1698 	if (sk->sk_state == TCP_LISTEN)
1699 		return;
1700 
1701 	left = len;
1702 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1703 		int used;
1704 
1705 		used = min_t(size_t, skb->len - offset, left);
1706 		seq += used;
1707 		left -= used;
1708 
1709 		if (skb->len > offset + used)
1710 			break;
1711 
1712 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1713 			tcp_eat_recv_skb(sk, skb);
1714 			++seq;
1715 			break;
1716 		}
1717 		tcp_eat_recv_skb(sk, skb);
1718 	}
1719 	WRITE_ONCE(tp->copied_seq, seq);
1720 
1721 	tcp_rcv_space_adjust(sk);
1722 
1723 	/* Clean up data we have read: This will do ACK frames. */
1724 	if (left != len)
1725 		tcp_cleanup_rbuf(sk, len - left);
1726 }
1727 EXPORT_SYMBOL(tcp_read_done);
1728 
1729 int tcp_peek_len(struct socket *sock)
1730 {
1731 	return tcp_inq(sock->sk);
1732 }
1733 EXPORT_SYMBOL(tcp_peek_len);
1734 
1735 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1736 int tcp_set_rcvlowat(struct sock *sk, int val)
1737 {
1738 	int cap;
1739 
1740 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1741 		cap = sk->sk_rcvbuf >> 1;
1742 	else
1743 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1744 	val = min(val, cap);
1745 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1746 
1747 	/* Check if we need to signal EPOLLIN right now */
1748 	tcp_data_ready(sk);
1749 
1750 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1751 		return 0;
1752 
1753 	val <<= 1;
1754 	if (val > sk->sk_rcvbuf) {
1755 		WRITE_ONCE(sk->sk_rcvbuf, val);
1756 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1757 	}
1758 	return 0;
1759 }
1760 EXPORT_SYMBOL(tcp_set_rcvlowat);
1761 
1762 void tcp_update_recv_tstamps(struct sk_buff *skb,
1763 			     struct scm_timestamping_internal *tss)
1764 {
1765 	if (skb->tstamp)
1766 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1767 	else
1768 		tss->ts[0] = (struct timespec64) {0};
1769 
1770 	if (skb_hwtstamps(skb)->hwtstamp)
1771 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1772 	else
1773 		tss->ts[2] = (struct timespec64) {0};
1774 }
1775 
1776 #ifdef CONFIG_MMU
1777 static const struct vm_operations_struct tcp_vm_ops = {
1778 };
1779 
1780 int tcp_mmap(struct file *file, struct socket *sock,
1781 	     struct vm_area_struct *vma)
1782 {
1783 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1784 		return -EPERM;
1785 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1786 
1787 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1788 	vm_flags_set(vma, VM_MIXEDMAP);
1789 
1790 	vma->vm_ops = &tcp_vm_ops;
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(tcp_mmap);
1794 
1795 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1796 				       u32 *offset_frag)
1797 {
1798 	skb_frag_t *frag;
1799 
1800 	if (unlikely(offset_skb >= skb->len))
1801 		return NULL;
1802 
1803 	offset_skb -= skb_headlen(skb);
1804 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1805 		return NULL;
1806 
1807 	frag = skb_shinfo(skb)->frags;
1808 	while (offset_skb) {
1809 		if (skb_frag_size(frag) > offset_skb) {
1810 			*offset_frag = offset_skb;
1811 			return frag;
1812 		}
1813 		offset_skb -= skb_frag_size(frag);
1814 		++frag;
1815 	}
1816 	*offset_frag = 0;
1817 	return frag;
1818 }
1819 
1820 static bool can_map_frag(const skb_frag_t *frag)
1821 {
1822 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1823 }
1824 
1825 static int find_next_mappable_frag(const skb_frag_t *frag,
1826 				   int remaining_in_skb)
1827 {
1828 	int offset = 0;
1829 
1830 	if (likely(can_map_frag(frag)))
1831 		return 0;
1832 
1833 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1834 		offset += skb_frag_size(frag);
1835 		++frag;
1836 	}
1837 	return offset;
1838 }
1839 
1840 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1841 					  struct tcp_zerocopy_receive *zc,
1842 					  struct sk_buff *skb, u32 offset)
1843 {
1844 	u32 frag_offset, partial_frag_remainder = 0;
1845 	int mappable_offset;
1846 	skb_frag_t *frag;
1847 
1848 	/* worst case: skip to next skb. try to improve on this case below */
1849 	zc->recv_skip_hint = skb->len - offset;
1850 
1851 	/* Find the frag containing this offset (and how far into that frag) */
1852 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1853 	if (!frag)
1854 		return;
1855 
1856 	if (frag_offset) {
1857 		struct skb_shared_info *info = skb_shinfo(skb);
1858 
1859 		/* We read part of the last frag, must recvmsg() rest of skb. */
1860 		if (frag == &info->frags[info->nr_frags - 1])
1861 			return;
1862 
1863 		/* Else, we must at least read the remainder in this frag. */
1864 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1865 		zc->recv_skip_hint -= partial_frag_remainder;
1866 		++frag;
1867 	}
1868 
1869 	/* partial_frag_remainder: If part way through a frag, must read rest.
1870 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1871 	 * in partial_frag_remainder.
1872 	 */
1873 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1874 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1875 }
1876 
1877 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1878 			      int flags, struct scm_timestamping_internal *tss,
1879 			      int *cmsg_flags);
1880 static int receive_fallback_to_copy(struct sock *sk,
1881 				    struct tcp_zerocopy_receive *zc, int inq,
1882 				    struct scm_timestamping_internal *tss)
1883 {
1884 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1885 	struct msghdr msg = {};
1886 	struct iovec iov;
1887 	int err;
1888 
1889 	zc->length = 0;
1890 	zc->recv_skip_hint = 0;
1891 
1892 	if (copy_address != zc->copybuf_address)
1893 		return -EINVAL;
1894 
1895 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1896 				  inq, &iov, &msg.msg_iter);
1897 	if (err)
1898 		return err;
1899 
1900 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1901 				 tss, &zc->msg_flags);
1902 	if (err < 0)
1903 		return err;
1904 
1905 	zc->copybuf_len = err;
1906 	if (likely(zc->copybuf_len)) {
1907 		struct sk_buff *skb;
1908 		u32 offset;
1909 
1910 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1911 		if (skb)
1912 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1913 	}
1914 	return 0;
1915 }
1916 
1917 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1918 				   struct sk_buff *skb, u32 copylen,
1919 				   u32 *offset, u32 *seq)
1920 {
1921 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1922 	struct msghdr msg = {};
1923 	struct iovec iov;
1924 	int err;
1925 
1926 	if (copy_address != zc->copybuf_address)
1927 		return -EINVAL;
1928 
1929 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1930 				  copylen, &iov, &msg.msg_iter);
1931 	if (err)
1932 		return err;
1933 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1934 	if (err)
1935 		return err;
1936 	zc->recv_skip_hint -= copylen;
1937 	*offset += copylen;
1938 	*seq += copylen;
1939 	return (__s32)copylen;
1940 }
1941 
1942 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1943 				  struct sock *sk,
1944 				  struct sk_buff *skb,
1945 				  u32 *seq,
1946 				  s32 copybuf_len,
1947 				  struct scm_timestamping_internal *tss)
1948 {
1949 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1950 
1951 	if (!copylen)
1952 		return 0;
1953 	/* skb is null if inq < PAGE_SIZE. */
1954 	if (skb) {
1955 		offset = *seq - TCP_SKB_CB(skb)->seq;
1956 	} else {
1957 		skb = tcp_recv_skb(sk, *seq, &offset);
1958 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1959 			tcp_update_recv_tstamps(skb, tss);
1960 			zc->msg_flags |= TCP_CMSG_TS;
1961 		}
1962 	}
1963 
1964 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1965 						  seq);
1966 	return zc->copybuf_len < 0 ? 0 : copylen;
1967 }
1968 
1969 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1970 					      struct page **pending_pages,
1971 					      unsigned long pages_remaining,
1972 					      unsigned long *address,
1973 					      u32 *length,
1974 					      u32 *seq,
1975 					      struct tcp_zerocopy_receive *zc,
1976 					      u32 total_bytes_to_map,
1977 					      int err)
1978 {
1979 	/* At least one page did not map. Try zapping if we skipped earlier. */
1980 	if (err == -EBUSY &&
1981 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1982 		u32 maybe_zap_len;
1983 
1984 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1985 				*length + /* Mapped or pending */
1986 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1987 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1988 		err = 0;
1989 	}
1990 
1991 	if (!err) {
1992 		unsigned long leftover_pages = pages_remaining;
1993 		int bytes_mapped;
1994 
1995 		/* We called zap_page_range_single, try to reinsert. */
1996 		err = vm_insert_pages(vma, *address,
1997 				      pending_pages,
1998 				      &pages_remaining);
1999 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2000 		*seq += bytes_mapped;
2001 		*address += bytes_mapped;
2002 	}
2003 	if (err) {
2004 		/* Either we were unable to zap, OR we zapped, retried an
2005 		 * insert, and still had an issue. Either ways, pages_remaining
2006 		 * is the number of pages we were unable to map, and we unroll
2007 		 * some state we speculatively touched before.
2008 		 */
2009 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2010 
2011 		*length -= bytes_not_mapped;
2012 		zc->recv_skip_hint += bytes_not_mapped;
2013 	}
2014 	return err;
2015 }
2016 
2017 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2018 					struct page **pages,
2019 					unsigned int pages_to_map,
2020 					unsigned long *address,
2021 					u32 *length,
2022 					u32 *seq,
2023 					struct tcp_zerocopy_receive *zc,
2024 					u32 total_bytes_to_map)
2025 {
2026 	unsigned long pages_remaining = pages_to_map;
2027 	unsigned int pages_mapped;
2028 	unsigned int bytes_mapped;
2029 	int err;
2030 
2031 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2032 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2033 	bytes_mapped = PAGE_SIZE * pages_mapped;
2034 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2035 	 * mapping (some but not all of the pages).
2036 	 */
2037 	*seq += bytes_mapped;
2038 	*address += bytes_mapped;
2039 
2040 	if (likely(!err))
2041 		return 0;
2042 
2043 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2044 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2045 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2046 		err);
2047 }
2048 
2049 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2050 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2051 				      struct tcp_zerocopy_receive *zc,
2052 				      struct scm_timestamping_internal *tss)
2053 {
2054 	unsigned long msg_control_addr;
2055 	struct msghdr cmsg_dummy;
2056 
2057 	msg_control_addr = (unsigned long)zc->msg_control;
2058 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2059 	cmsg_dummy.msg_controllen =
2060 		(__kernel_size_t)zc->msg_controllen;
2061 	cmsg_dummy.msg_flags = in_compat_syscall()
2062 		? MSG_CMSG_COMPAT : 0;
2063 	cmsg_dummy.msg_control_is_user = true;
2064 	zc->msg_flags = 0;
2065 	if (zc->msg_control == msg_control_addr &&
2066 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2067 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2068 		zc->msg_control = (__u64)
2069 			((uintptr_t)cmsg_dummy.msg_control_user);
2070 		zc->msg_controllen =
2071 			(__u64)cmsg_dummy.msg_controllen;
2072 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2073 	}
2074 }
2075 
2076 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2077 static int tcp_zerocopy_receive(struct sock *sk,
2078 				struct tcp_zerocopy_receive *zc,
2079 				struct scm_timestamping_internal *tss)
2080 {
2081 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2082 	unsigned long address = (unsigned long)zc->address;
2083 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2084 	s32 copybuf_len = zc->copybuf_len;
2085 	struct tcp_sock *tp = tcp_sk(sk);
2086 	const skb_frag_t *frags = NULL;
2087 	unsigned int pages_to_map = 0;
2088 	struct vm_area_struct *vma;
2089 	struct sk_buff *skb = NULL;
2090 	u32 seq = tp->copied_seq;
2091 	u32 total_bytes_to_map;
2092 	int inq = tcp_inq(sk);
2093 	int ret;
2094 
2095 	zc->copybuf_len = 0;
2096 	zc->msg_flags = 0;
2097 
2098 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2099 		return -EINVAL;
2100 
2101 	if (sk->sk_state == TCP_LISTEN)
2102 		return -ENOTCONN;
2103 
2104 	sock_rps_record_flow(sk);
2105 
2106 	if (inq && inq <= copybuf_len)
2107 		return receive_fallback_to_copy(sk, zc, inq, tss);
2108 
2109 	if (inq < PAGE_SIZE) {
2110 		zc->length = 0;
2111 		zc->recv_skip_hint = inq;
2112 		if (!inq && sock_flag(sk, SOCK_DONE))
2113 			return -EIO;
2114 		return 0;
2115 	}
2116 
2117 	mmap_read_lock(current->mm);
2118 
2119 	vma = vma_lookup(current->mm, address);
2120 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2121 		mmap_read_unlock(current->mm);
2122 		return -EINVAL;
2123 	}
2124 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2125 	avail_len = min_t(u32, vma_len, inq);
2126 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2127 	if (total_bytes_to_map) {
2128 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2129 			zap_page_range_single(vma, address, total_bytes_to_map,
2130 					      NULL);
2131 		zc->length = total_bytes_to_map;
2132 		zc->recv_skip_hint = 0;
2133 	} else {
2134 		zc->length = avail_len;
2135 		zc->recv_skip_hint = avail_len;
2136 	}
2137 	ret = 0;
2138 	while (length + PAGE_SIZE <= zc->length) {
2139 		int mappable_offset;
2140 		struct page *page;
2141 
2142 		if (zc->recv_skip_hint < PAGE_SIZE) {
2143 			u32 offset_frag;
2144 
2145 			if (skb) {
2146 				if (zc->recv_skip_hint > 0)
2147 					break;
2148 				skb = skb->next;
2149 				offset = seq - TCP_SKB_CB(skb)->seq;
2150 			} else {
2151 				skb = tcp_recv_skb(sk, seq, &offset);
2152 			}
2153 
2154 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2155 				tcp_update_recv_tstamps(skb, tss);
2156 				zc->msg_flags |= TCP_CMSG_TS;
2157 			}
2158 			zc->recv_skip_hint = skb->len - offset;
2159 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2160 			if (!frags || offset_frag)
2161 				break;
2162 		}
2163 
2164 		mappable_offset = find_next_mappable_frag(frags,
2165 							  zc->recv_skip_hint);
2166 		if (mappable_offset) {
2167 			zc->recv_skip_hint = mappable_offset;
2168 			break;
2169 		}
2170 		page = skb_frag_page(frags);
2171 		prefetchw(page);
2172 		pages[pages_to_map++] = page;
2173 		length += PAGE_SIZE;
2174 		zc->recv_skip_hint -= PAGE_SIZE;
2175 		frags++;
2176 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2177 		    zc->recv_skip_hint < PAGE_SIZE) {
2178 			/* Either full batch, or we're about to go to next skb
2179 			 * (and we cannot unroll failed ops across skbs).
2180 			 */
2181 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2182 							   pages_to_map,
2183 							   &address, &length,
2184 							   &seq, zc,
2185 							   total_bytes_to_map);
2186 			if (ret)
2187 				goto out;
2188 			pages_to_map = 0;
2189 		}
2190 	}
2191 	if (pages_to_map) {
2192 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2193 						   &address, &length, &seq,
2194 						   zc, total_bytes_to_map);
2195 	}
2196 out:
2197 	mmap_read_unlock(current->mm);
2198 	/* Try to copy straggler data. */
2199 	if (!ret)
2200 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2201 
2202 	if (length + copylen) {
2203 		WRITE_ONCE(tp->copied_seq, seq);
2204 		tcp_rcv_space_adjust(sk);
2205 
2206 		/* Clean up data we have read: This will do ACK frames. */
2207 		tcp_recv_skb(sk, seq, &offset);
2208 		tcp_cleanup_rbuf(sk, length + copylen);
2209 		ret = 0;
2210 		if (length == zc->length)
2211 			zc->recv_skip_hint = 0;
2212 	} else {
2213 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2214 			ret = -EIO;
2215 	}
2216 	zc->length = length;
2217 	return ret;
2218 }
2219 #endif
2220 
2221 /* Similar to __sock_recv_timestamp, but does not require an skb */
2222 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2223 			struct scm_timestamping_internal *tss)
2224 {
2225 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2226 	bool has_timestamping = false;
2227 
2228 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2229 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2230 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2231 				if (new_tstamp) {
2232 					struct __kernel_timespec kts = {
2233 						.tv_sec = tss->ts[0].tv_sec,
2234 						.tv_nsec = tss->ts[0].tv_nsec,
2235 					};
2236 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2237 						 sizeof(kts), &kts);
2238 				} else {
2239 					struct __kernel_old_timespec ts_old = {
2240 						.tv_sec = tss->ts[0].tv_sec,
2241 						.tv_nsec = tss->ts[0].tv_nsec,
2242 					};
2243 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2244 						 sizeof(ts_old), &ts_old);
2245 				}
2246 			} else {
2247 				if (new_tstamp) {
2248 					struct __kernel_sock_timeval stv = {
2249 						.tv_sec = tss->ts[0].tv_sec,
2250 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2251 					};
2252 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2253 						 sizeof(stv), &stv);
2254 				} else {
2255 					struct __kernel_old_timeval tv = {
2256 						.tv_sec = tss->ts[0].tv_sec,
2257 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2258 					};
2259 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2260 						 sizeof(tv), &tv);
2261 				}
2262 			}
2263 		}
2264 
2265 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2266 			has_timestamping = true;
2267 		else
2268 			tss->ts[0] = (struct timespec64) {0};
2269 	}
2270 
2271 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2272 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2273 			has_timestamping = true;
2274 		else
2275 			tss->ts[2] = (struct timespec64) {0};
2276 	}
2277 
2278 	if (has_timestamping) {
2279 		tss->ts[1] = (struct timespec64) {0};
2280 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2281 			put_cmsg_scm_timestamping64(msg, tss);
2282 		else
2283 			put_cmsg_scm_timestamping(msg, tss);
2284 	}
2285 }
2286 
2287 static int tcp_inq_hint(struct sock *sk)
2288 {
2289 	const struct tcp_sock *tp = tcp_sk(sk);
2290 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2291 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2292 	int inq;
2293 
2294 	inq = rcv_nxt - copied_seq;
2295 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2296 		lock_sock(sk);
2297 		inq = tp->rcv_nxt - tp->copied_seq;
2298 		release_sock(sk);
2299 	}
2300 	/* After receiving a FIN, tell the user-space to continue reading
2301 	 * by returning a non-zero inq.
2302 	 */
2303 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2304 		inq = 1;
2305 	return inq;
2306 }
2307 
2308 /*
2309  *	This routine copies from a sock struct into the user buffer.
2310  *
2311  *	Technical note: in 2.3 we work on _locked_ socket, so that
2312  *	tricks with *seq access order and skb->users are not required.
2313  *	Probably, code can be easily improved even more.
2314  */
2315 
2316 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2317 			      int flags, struct scm_timestamping_internal *tss,
2318 			      int *cmsg_flags)
2319 {
2320 	struct tcp_sock *tp = tcp_sk(sk);
2321 	int copied = 0;
2322 	u32 peek_seq;
2323 	u32 *seq;
2324 	unsigned long used;
2325 	int err;
2326 	int target;		/* Read at least this many bytes */
2327 	long timeo;
2328 	struct sk_buff *skb, *last;
2329 	u32 urg_hole = 0;
2330 
2331 	err = -ENOTCONN;
2332 	if (sk->sk_state == TCP_LISTEN)
2333 		goto out;
2334 
2335 	if (tp->recvmsg_inq) {
2336 		*cmsg_flags = TCP_CMSG_INQ;
2337 		msg->msg_get_inq = 1;
2338 	}
2339 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2340 
2341 	/* Urgent data needs to be handled specially. */
2342 	if (flags & MSG_OOB)
2343 		goto recv_urg;
2344 
2345 	if (unlikely(tp->repair)) {
2346 		err = -EPERM;
2347 		if (!(flags & MSG_PEEK))
2348 			goto out;
2349 
2350 		if (tp->repair_queue == TCP_SEND_QUEUE)
2351 			goto recv_sndq;
2352 
2353 		err = -EINVAL;
2354 		if (tp->repair_queue == TCP_NO_QUEUE)
2355 			goto out;
2356 
2357 		/* 'common' recv queue MSG_PEEK-ing */
2358 	}
2359 
2360 	seq = &tp->copied_seq;
2361 	if (flags & MSG_PEEK) {
2362 		peek_seq = tp->copied_seq;
2363 		seq = &peek_seq;
2364 	}
2365 
2366 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2367 
2368 	do {
2369 		u32 offset;
2370 
2371 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2372 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2373 			if (copied)
2374 				break;
2375 			if (signal_pending(current)) {
2376 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2377 				break;
2378 			}
2379 		}
2380 
2381 		/* Next get a buffer. */
2382 
2383 		last = skb_peek_tail(&sk->sk_receive_queue);
2384 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2385 			last = skb;
2386 			/* Now that we have two receive queues this
2387 			 * shouldn't happen.
2388 			 */
2389 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2390 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2391 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2392 				 flags))
2393 				break;
2394 
2395 			offset = *seq - TCP_SKB_CB(skb)->seq;
2396 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2397 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2398 				offset--;
2399 			}
2400 			if (offset < skb->len)
2401 				goto found_ok_skb;
2402 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2403 				goto found_fin_ok;
2404 			WARN(!(flags & MSG_PEEK),
2405 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2406 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2407 		}
2408 
2409 		/* Well, if we have backlog, try to process it now yet. */
2410 
2411 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2412 			break;
2413 
2414 		if (copied) {
2415 			if (!timeo ||
2416 			    sk->sk_err ||
2417 			    sk->sk_state == TCP_CLOSE ||
2418 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2419 			    signal_pending(current))
2420 				break;
2421 		} else {
2422 			if (sock_flag(sk, SOCK_DONE))
2423 				break;
2424 
2425 			if (sk->sk_err) {
2426 				copied = sock_error(sk);
2427 				break;
2428 			}
2429 
2430 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2431 				break;
2432 
2433 			if (sk->sk_state == TCP_CLOSE) {
2434 				/* This occurs when user tries to read
2435 				 * from never connected socket.
2436 				 */
2437 				copied = -ENOTCONN;
2438 				break;
2439 			}
2440 
2441 			if (!timeo) {
2442 				copied = -EAGAIN;
2443 				break;
2444 			}
2445 
2446 			if (signal_pending(current)) {
2447 				copied = sock_intr_errno(timeo);
2448 				break;
2449 			}
2450 		}
2451 
2452 		if (copied >= target) {
2453 			/* Do not sleep, just process backlog. */
2454 			__sk_flush_backlog(sk);
2455 		} else {
2456 			tcp_cleanup_rbuf(sk, copied);
2457 			sk_wait_data(sk, &timeo, last);
2458 		}
2459 
2460 		if ((flags & MSG_PEEK) &&
2461 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2462 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2463 					    current->comm,
2464 					    task_pid_nr(current));
2465 			peek_seq = tp->copied_seq;
2466 		}
2467 		continue;
2468 
2469 found_ok_skb:
2470 		/* Ok so how much can we use? */
2471 		used = skb->len - offset;
2472 		if (len < used)
2473 			used = len;
2474 
2475 		/* Do we have urgent data here? */
2476 		if (unlikely(tp->urg_data)) {
2477 			u32 urg_offset = tp->urg_seq - *seq;
2478 			if (urg_offset < used) {
2479 				if (!urg_offset) {
2480 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2481 						WRITE_ONCE(*seq, *seq + 1);
2482 						urg_hole++;
2483 						offset++;
2484 						used--;
2485 						if (!used)
2486 							goto skip_copy;
2487 					}
2488 				} else
2489 					used = urg_offset;
2490 			}
2491 		}
2492 
2493 		if (!(flags & MSG_TRUNC)) {
2494 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2495 			if (err) {
2496 				/* Exception. Bailout! */
2497 				if (!copied)
2498 					copied = -EFAULT;
2499 				break;
2500 			}
2501 		}
2502 
2503 		WRITE_ONCE(*seq, *seq + used);
2504 		copied += used;
2505 		len -= used;
2506 
2507 		tcp_rcv_space_adjust(sk);
2508 
2509 skip_copy:
2510 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2511 			WRITE_ONCE(tp->urg_data, 0);
2512 			tcp_fast_path_check(sk);
2513 		}
2514 
2515 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2516 			tcp_update_recv_tstamps(skb, tss);
2517 			*cmsg_flags |= TCP_CMSG_TS;
2518 		}
2519 
2520 		if (used + offset < skb->len)
2521 			continue;
2522 
2523 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2524 			goto found_fin_ok;
2525 		if (!(flags & MSG_PEEK))
2526 			tcp_eat_recv_skb(sk, skb);
2527 		continue;
2528 
2529 found_fin_ok:
2530 		/* Process the FIN. */
2531 		WRITE_ONCE(*seq, *seq + 1);
2532 		if (!(flags & MSG_PEEK))
2533 			tcp_eat_recv_skb(sk, skb);
2534 		break;
2535 	} while (len > 0);
2536 
2537 	/* According to UNIX98, msg_name/msg_namelen are ignored
2538 	 * on connected socket. I was just happy when found this 8) --ANK
2539 	 */
2540 
2541 	/* Clean up data we have read: This will do ACK frames. */
2542 	tcp_cleanup_rbuf(sk, copied);
2543 	return copied;
2544 
2545 out:
2546 	return err;
2547 
2548 recv_urg:
2549 	err = tcp_recv_urg(sk, msg, len, flags);
2550 	goto out;
2551 
2552 recv_sndq:
2553 	err = tcp_peek_sndq(sk, msg, len);
2554 	goto out;
2555 }
2556 
2557 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2558 		int *addr_len)
2559 {
2560 	int cmsg_flags = 0, ret;
2561 	struct scm_timestamping_internal tss;
2562 
2563 	if (unlikely(flags & MSG_ERRQUEUE))
2564 		return inet_recv_error(sk, msg, len, addr_len);
2565 
2566 	if (sk_can_busy_loop(sk) &&
2567 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2568 	    sk->sk_state == TCP_ESTABLISHED)
2569 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2570 
2571 	lock_sock(sk);
2572 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2573 	release_sock(sk);
2574 
2575 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2576 		if (cmsg_flags & TCP_CMSG_TS)
2577 			tcp_recv_timestamp(msg, sk, &tss);
2578 		if (msg->msg_get_inq) {
2579 			msg->msg_inq = tcp_inq_hint(sk);
2580 			if (cmsg_flags & TCP_CMSG_INQ)
2581 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2582 					 sizeof(msg->msg_inq), &msg->msg_inq);
2583 		}
2584 	}
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL(tcp_recvmsg);
2588 
2589 void tcp_set_state(struct sock *sk, int state)
2590 {
2591 	int oldstate = sk->sk_state;
2592 
2593 	/* We defined a new enum for TCP states that are exported in BPF
2594 	 * so as not force the internal TCP states to be frozen. The
2595 	 * following checks will detect if an internal state value ever
2596 	 * differs from the BPF value. If this ever happens, then we will
2597 	 * need to remap the internal value to the BPF value before calling
2598 	 * tcp_call_bpf_2arg.
2599 	 */
2600 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2601 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2602 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2603 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2604 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2605 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2606 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2607 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2608 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2609 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2610 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2611 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2612 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2613 
2614 	/* bpf uapi header bpf.h defines an anonymous enum with values
2615 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2616 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2617 	 * But clang built vmlinux does not have this enum in DWARF
2618 	 * since clang removes the above code before generating IR/debuginfo.
2619 	 * Let us explicitly emit the type debuginfo to ensure the
2620 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2621 	 * regardless of which compiler is used.
2622 	 */
2623 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2624 
2625 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2626 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2627 
2628 	switch (state) {
2629 	case TCP_ESTABLISHED:
2630 		if (oldstate != TCP_ESTABLISHED)
2631 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2632 		break;
2633 
2634 	case TCP_CLOSE:
2635 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2636 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2637 
2638 		sk->sk_prot->unhash(sk);
2639 		if (inet_csk(sk)->icsk_bind_hash &&
2640 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2641 			inet_put_port(sk);
2642 		fallthrough;
2643 	default:
2644 		if (oldstate == TCP_ESTABLISHED)
2645 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2646 	}
2647 
2648 	/* Change state AFTER socket is unhashed to avoid closed
2649 	 * socket sitting in hash tables.
2650 	 */
2651 	inet_sk_state_store(sk, state);
2652 }
2653 EXPORT_SYMBOL_GPL(tcp_set_state);
2654 
2655 /*
2656  *	State processing on a close. This implements the state shift for
2657  *	sending our FIN frame. Note that we only send a FIN for some
2658  *	states. A shutdown() may have already sent the FIN, or we may be
2659  *	closed.
2660  */
2661 
2662 static const unsigned char new_state[16] = {
2663   /* current state:        new state:      action:	*/
2664   [0 /* (Invalid) */]	= TCP_CLOSE,
2665   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2666   [TCP_SYN_SENT]	= TCP_CLOSE,
2667   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2668   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2669   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2670   [TCP_TIME_WAIT]	= TCP_CLOSE,
2671   [TCP_CLOSE]		= TCP_CLOSE,
2672   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2673   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2674   [TCP_LISTEN]		= TCP_CLOSE,
2675   [TCP_CLOSING]		= TCP_CLOSING,
2676   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2677 };
2678 
2679 static int tcp_close_state(struct sock *sk)
2680 {
2681 	int next = (int)new_state[sk->sk_state];
2682 	int ns = next & TCP_STATE_MASK;
2683 
2684 	tcp_set_state(sk, ns);
2685 
2686 	return next & TCP_ACTION_FIN;
2687 }
2688 
2689 /*
2690  *	Shutdown the sending side of a connection. Much like close except
2691  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2692  */
2693 
2694 void tcp_shutdown(struct sock *sk, int how)
2695 {
2696 	/*	We need to grab some memory, and put together a FIN,
2697 	 *	and then put it into the queue to be sent.
2698 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2699 	 */
2700 	if (!(how & SEND_SHUTDOWN))
2701 		return;
2702 
2703 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2704 	if ((1 << sk->sk_state) &
2705 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2706 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2707 		/* Clear out any half completed packets.  FIN if needed. */
2708 		if (tcp_close_state(sk))
2709 			tcp_send_fin(sk);
2710 	}
2711 }
2712 EXPORT_SYMBOL(tcp_shutdown);
2713 
2714 int tcp_orphan_count_sum(void)
2715 {
2716 	int i, total = 0;
2717 
2718 	for_each_possible_cpu(i)
2719 		total += per_cpu(tcp_orphan_count, i);
2720 
2721 	return max(total, 0);
2722 }
2723 
2724 static int tcp_orphan_cache;
2725 static struct timer_list tcp_orphan_timer;
2726 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2727 
2728 static void tcp_orphan_update(struct timer_list *unused)
2729 {
2730 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2731 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2732 }
2733 
2734 static bool tcp_too_many_orphans(int shift)
2735 {
2736 	return READ_ONCE(tcp_orphan_cache) << shift >
2737 		READ_ONCE(sysctl_tcp_max_orphans);
2738 }
2739 
2740 bool tcp_check_oom(struct sock *sk, int shift)
2741 {
2742 	bool too_many_orphans, out_of_socket_memory;
2743 
2744 	too_many_orphans = tcp_too_many_orphans(shift);
2745 	out_of_socket_memory = tcp_out_of_memory(sk);
2746 
2747 	if (too_many_orphans)
2748 		net_info_ratelimited("too many orphaned sockets\n");
2749 	if (out_of_socket_memory)
2750 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2751 	return too_many_orphans || out_of_socket_memory;
2752 }
2753 
2754 void __tcp_close(struct sock *sk, long timeout)
2755 {
2756 	struct sk_buff *skb;
2757 	int data_was_unread = 0;
2758 	int state;
2759 
2760 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2761 
2762 	if (sk->sk_state == TCP_LISTEN) {
2763 		tcp_set_state(sk, TCP_CLOSE);
2764 
2765 		/* Special case. */
2766 		inet_csk_listen_stop(sk);
2767 
2768 		goto adjudge_to_death;
2769 	}
2770 
2771 	/*  We need to flush the recv. buffs.  We do this only on the
2772 	 *  descriptor close, not protocol-sourced closes, because the
2773 	 *  reader process may not have drained the data yet!
2774 	 */
2775 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2776 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2777 
2778 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2779 			len--;
2780 		data_was_unread += len;
2781 		__kfree_skb(skb);
2782 	}
2783 
2784 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2785 	if (sk->sk_state == TCP_CLOSE)
2786 		goto adjudge_to_death;
2787 
2788 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2789 	 * data was lost. To witness the awful effects of the old behavior of
2790 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2791 	 * GET in an FTP client, suspend the process, wait for the client to
2792 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2793 	 * Note: timeout is always zero in such a case.
2794 	 */
2795 	if (unlikely(tcp_sk(sk)->repair)) {
2796 		sk->sk_prot->disconnect(sk, 0);
2797 	} else if (data_was_unread) {
2798 		/* Unread data was tossed, zap the connection. */
2799 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2800 		tcp_set_state(sk, TCP_CLOSE);
2801 		tcp_send_active_reset(sk, sk->sk_allocation);
2802 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2803 		/* Check zero linger _after_ checking for unread data. */
2804 		sk->sk_prot->disconnect(sk, 0);
2805 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2806 	} else if (tcp_close_state(sk)) {
2807 		/* We FIN if the application ate all the data before
2808 		 * zapping the connection.
2809 		 */
2810 
2811 		/* RED-PEN. Formally speaking, we have broken TCP state
2812 		 * machine. State transitions:
2813 		 *
2814 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2815 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2816 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2817 		 *
2818 		 * are legal only when FIN has been sent (i.e. in window),
2819 		 * rather than queued out of window. Purists blame.
2820 		 *
2821 		 * F.e. "RFC state" is ESTABLISHED,
2822 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2823 		 *
2824 		 * The visible declinations are that sometimes
2825 		 * we enter time-wait state, when it is not required really
2826 		 * (harmless), do not send active resets, when they are
2827 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2828 		 * they look as CLOSING or LAST_ACK for Linux)
2829 		 * Probably, I missed some more holelets.
2830 		 * 						--ANK
2831 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2832 		 * in a single packet! (May consider it later but will
2833 		 * probably need API support or TCP_CORK SYN-ACK until
2834 		 * data is written and socket is closed.)
2835 		 */
2836 		tcp_send_fin(sk);
2837 	}
2838 
2839 	sk_stream_wait_close(sk, timeout);
2840 
2841 adjudge_to_death:
2842 	state = sk->sk_state;
2843 	sock_hold(sk);
2844 	sock_orphan(sk);
2845 
2846 	local_bh_disable();
2847 	bh_lock_sock(sk);
2848 	/* remove backlog if any, without releasing ownership. */
2849 	__release_sock(sk);
2850 
2851 	this_cpu_inc(tcp_orphan_count);
2852 
2853 	/* Have we already been destroyed by a softirq or backlog? */
2854 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2855 		goto out;
2856 
2857 	/*	This is a (useful) BSD violating of the RFC. There is a
2858 	 *	problem with TCP as specified in that the other end could
2859 	 *	keep a socket open forever with no application left this end.
2860 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2861 	 *	our end. If they send after that then tough - BUT: long enough
2862 	 *	that we won't make the old 4*rto = almost no time - whoops
2863 	 *	reset mistake.
2864 	 *
2865 	 *	Nope, it was not mistake. It is really desired behaviour
2866 	 *	f.e. on http servers, when such sockets are useless, but
2867 	 *	consume significant resources. Let's do it with special
2868 	 *	linger2	option.					--ANK
2869 	 */
2870 
2871 	if (sk->sk_state == TCP_FIN_WAIT2) {
2872 		struct tcp_sock *tp = tcp_sk(sk);
2873 		if (tp->linger2 < 0) {
2874 			tcp_set_state(sk, TCP_CLOSE);
2875 			tcp_send_active_reset(sk, GFP_ATOMIC);
2876 			__NET_INC_STATS(sock_net(sk),
2877 					LINUX_MIB_TCPABORTONLINGER);
2878 		} else {
2879 			const int tmo = tcp_fin_time(sk);
2880 
2881 			if (tmo > TCP_TIMEWAIT_LEN) {
2882 				inet_csk_reset_keepalive_timer(sk,
2883 						tmo - TCP_TIMEWAIT_LEN);
2884 			} else {
2885 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2886 				goto out;
2887 			}
2888 		}
2889 	}
2890 	if (sk->sk_state != TCP_CLOSE) {
2891 		if (tcp_check_oom(sk, 0)) {
2892 			tcp_set_state(sk, TCP_CLOSE);
2893 			tcp_send_active_reset(sk, GFP_ATOMIC);
2894 			__NET_INC_STATS(sock_net(sk),
2895 					LINUX_MIB_TCPABORTONMEMORY);
2896 		} else if (!check_net(sock_net(sk))) {
2897 			/* Not possible to send reset; just close */
2898 			tcp_set_state(sk, TCP_CLOSE);
2899 		}
2900 	}
2901 
2902 	if (sk->sk_state == TCP_CLOSE) {
2903 		struct request_sock *req;
2904 
2905 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2906 						lockdep_sock_is_held(sk));
2907 		/* We could get here with a non-NULL req if the socket is
2908 		 * aborted (e.g., closed with unread data) before 3WHS
2909 		 * finishes.
2910 		 */
2911 		if (req)
2912 			reqsk_fastopen_remove(sk, req, false);
2913 		inet_csk_destroy_sock(sk);
2914 	}
2915 	/* Otherwise, socket is reprieved until protocol close. */
2916 
2917 out:
2918 	bh_unlock_sock(sk);
2919 	local_bh_enable();
2920 }
2921 
2922 void tcp_close(struct sock *sk, long timeout)
2923 {
2924 	lock_sock(sk);
2925 	__tcp_close(sk, timeout);
2926 	release_sock(sk);
2927 	sock_put(sk);
2928 }
2929 EXPORT_SYMBOL(tcp_close);
2930 
2931 /* These states need RST on ABORT according to RFC793 */
2932 
2933 static inline bool tcp_need_reset(int state)
2934 {
2935 	return (1 << state) &
2936 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2937 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2938 }
2939 
2940 static void tcp_rtx_queue_purge(struct sock *sk)
2941 {
2942 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2943 
2944 	tcp_sk(sk)->highest_sack = NULL;
2945 	while (p) {
2946 		struct sk_buff *skb = rb_to_skb(p);
2947 
2948 		p = rb_next(p);
2949 		/* Since we are deleting whole queue, no need to
2950 		 * list_del(&skb->tcp_tsorted_anchor)
2951 		 */
2952 		tcp_rtx_queue_unlink(skb, sk);
2953 		tcp_wmem_free_skb(sk, skb);
2954 	}
2955 }
2956 
2957 void tcp_write_queue_purge(struct sock *sk)
2958 {
2959 	struct sk_buff *skb;
2960 
2961 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2962 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2963 		tcp_skb_tsorted_anchor_cleanup(skb);
2964 		tcp_wmem_free_skb(sk, skb);
2965 	}
2966 	tcp_rtx_queue_purge(sk);
2967 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2968 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2969 	tcp_sk(sk)->packets_out = 0;
2970 	inet_csk(sk)->icsk_backoff = 0;
2971 }
2972 
2973 int tcp_disconnect(struct sock *sk, int flags)
2974 {
2975 	struct inet_sock *inet = inet_sk(sk);
2976 	struct inet_connection_sock *icsk = inet_csk(sk);
2977 	struct tcp_sock *tp = tcp_sk(sk);
2978 	int old_state = sk->sk_state;
2979 	u32 seq;
2980 
2981 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2982 	 * or inet_wait_for_connect().
2983 	 */
2984 	if (sk->sk_wait_pending)
2985 		return -EBUSY;
2986 
2987 	if (old_state != TCP_CLOSE)
2988 		tcp_set_state(sk, TCP_CLOSE);
2989 
2990 	/* ABORT function of RFC793 */
2991 	if (old_state == TCP_LISTEN) {
2992 		inet_csk_listen_stop(sk);
2993 	} else if (unlikely(tp->repair)) {
2994 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2995 	} else if (tcp_need_reset(old_state) ||
2996 		   (tp->snd_nxt != tp->write_seq &&
2997 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2998 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2999 		 * states
3000 		 */
3001 		tcp_send_active_reset(sk, gfp_any());
3002 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3003 	} else if (old_state == TCP_SYN_SENT)
3004 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3005 
3006 	tcp_clear_xmit_timers(sk);
3007 	__skb_queue_purge(&sk->sk_receive_queue);
3008 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3009 	WRITE_ONCE(tp->urg_data, 0);
3010 	tcp_write_queue_purge(sk);
3011 	tcp_fastopen_active_disable_ofo_check(sk);
3012 	skb_rbtree_purge(&tp->out_of_order_queue);
3013 
3014 	inet->inet_dport = 0;
3015 
3016 	inet_bhash2_reset_saddr(sk);
3017 
3018 	WRITE_ONCE(sk->sk_shutdown, 0);
3019 	sock_reset_flag(sk, SOCK_DONE);
3020 	tp->srtt_us = 0;
3021 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3022 	tp->rcv_rtt_last_tsecr = 0;
3023 
3024 	seq = tp->write_seq + tp->max_window + 2;
3025 	if (!seq)
3026 		seq = 1;
3027 	WRITE_ONCE(tp->write_seq, seq);
3028 
3029 	icsk->icsk_backoff = 0;
3030 	icsk->icsk_probes_out = 0;
3031 	icsk->icsk_probes_tstamp = 0;
3032 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3033 	icsk->icsk_rto_min = TCP_RTO_MIN;
3034 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3035 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3036 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3037 	tp->snd_cwnd_cnt = 0;
3038 	tp->is_cwnd_limited = 0;
3039 	tp->max_packets_out = 0;
3040 	tp->window_clamp = 0;
3041 	tp->delivered = 0;
3042 	tp->delivered_ce = 0;
3043 	if (icsk->icsk_ca_ops->release)
3044 		icsk->icsk_ca_ops->release(sk);
3045 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3046 	icsk->icsk_ca_initialized = 0;
3047 	tcp_set_ca_state(sk, TCP_CA_Open);
3048 	tp->is_sack_reneg = 0;
3049 	tcp_clear_retrans(tp);
3050 	tp->total_retrans = 0;
3051 	inet_csk_delack_init(sk);
3052 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3053 	 * issue in __tcp_select_window()
3054 	 */
3055 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3056 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3057 	__sk_dst_reset(sk);
3058 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3059 	tcp_saved_syn_free(tp);
3060 	tp->compressed_ack = 0;
3061 	tp->segs_in = 0;
3062 	tp->segs_out = 0;
3063 	tp->bytes_sent = 0;
3064 	tp->bytes_acked = 0;
3065 	tp->bytes_received = 0;
3066 	tp->bytes_retrans = 0;
3067 	tp->data_segs_in = 0;
3068 	tp->data_segs_out = 0;
3069 	tp->duplicate_sack[0].start_seq = 0;
3070 	tp->duplicate_sack[0].end_seq = 0;
3071 	tp->dsack_dups = 0;
3072 	tp->reord_seen = 0;
3073 	tp->retrans_out = 0;
3074 	tp->sacked_out = 0;
3075 	tp->tlp_high_seq = 0;
3076 	tp->last_oow_ack_time = 0;
3077 	tp->plb_rehash = 0;
3078 	/* There's a bubble in the pipe until at least the first ACK. */
3079 	tp->app_limited = ~0U;
3080 	tp->rate_app_limited = 1;
3081 	tp->rack.mstamp = 0;
3082 	tp->rack.advanced = 0;
3083 	tp->rack.reo_wnd_steps = 1;
3084 	tp->rack.last_delivered = 0;
3085 	tp->rack.reo_wnd_persist = 0;
3086 	tp->rack.dsack_seen = 0;
3087 	tp->syn_data_acked = 0;
3088 	tp->rx_opt.saw_tstamp = 0;
3089 	tp->rx_opt.dsack = 0;
3090 	tp->rx_opt.num_sacks = 0;
3091 	tp->rcv_ooopack = 0;
3092 
3093 
3094 	/* Clean up fastopen related fields */
3095 	tcp_free_fastopen_req(tp);
3096 	inet->defer_connect = 0;
3097 	tp->fastopen_client_fail = 0;
3098 
3099 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3100 
3101 	if (sk->sk_frag.page) {
3102 		put_page(sk->sk_frag.page);
3103 		sk->sk_frag.page = NULL;
3104 		sk->sk_frag.offset = 0;
3105 	}
3106 	sk_error_report(sk);
3107 	return 0;
3108 }
3109 EXPORT_SYMBOL(tcp_disconnect);
3110 
3111 static inline bool tcp_can_repair_sock(const struct sock *sk)
3112 {
3113 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3114 		(sk->sk_state != TCP_LISTEN);
3115 }
3116 
3117 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3118 {
3119 	struct tcp_repair_window opt;
3120 
3121 	if (!tp->repair)
3122 		return -EPERM;
3123 
3124 	if (len != sizeof(opt))
3125 		return -EINVAL;
3126 
3127 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3128 		return -EFAULT;
3129 
3130 	if (opt.max_window < opt.snd_wnd)
3131 		return -EINVAL;
3132 
3133 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3134 		return -EINVAL;
3135 
3136 	if (after(opt.rcv_wup, tp->rcv_nxt))
3137 		return -EINVAL;
3138 
3139 	tp->snd_wl1	= opt.snd_wl1;
3140 	tp->snd_wnd	= opt.snd_wnd;
3141 	tp->max_window	= opt.max_window;
3142 
3143 	tp->rcv_wnd	= opt.rcv_wnd;
3144 	tp->rcv_wup	= opt.rcv_wup;
3145 
3146 	return 0;
3147 }
3148 
3149 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3150 		unsigned int len)
3151 {
3152 	struct tcp_sock *tp = tcp_sk(sk);
3153 	struct tcp_repair_opt opt;
3154 	size_t offset = 0;
3155 
3156 	while (len >= sizeof(opt)) {
3157 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3158 			return -EFAULT;
3159 
3160 		offset += sizeof(opt);
3161 		len -= sizeof(opt);
3162 
3163 		switch (opt.opt_code) {
3164 		case TCPOPT_MSS:
3165 			tp->rx_opt.mss_clamp = opt.opt_val;
3166 			tcp_mtup_init(sk);
3167 			break;
3168 		case TCPOPT_WINDOW:
3169 			{
3170 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3171 				u16 rcv_wscale = opt.opt_val >> 16;
3172 
3173 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3174 					return -EFBIG;
3175 
3176 				tp->rx_opt.snd_wscale = snd_wscale;
3177 				tp->rx_opt.rcv_wscale = rcv_wscale;
3178 				tp->rx_opt.wscale_ok = 1;
3179 			}
3180 			break;
3181 		case TCPOPT_SACK_PERM:
3182 			if (opt.opt_val != 0)
3183 				return -EINVAL;
3184 
3185 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3186 			break;
3187 		case TCPOPT_TIMESTAMP:
3188 			if (opt.opt_val != 0)
3189 				return -EINVAL;
3190 
3191 			tp->rx_opt.tstamp_ok = 1;
3192 			break;
3193 		}
3194 	}
3195 
3196 	return 0;
3197 }
3198 
3199 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3200 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3201 
3202 static void tcp_enable_tx_delay(void)
3203 {
3204 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3205 		static int __tcp_tx_delay_enabled = 0;
3206 
3207 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3208 			static_branch_enable(&tcp_tx_delay_enabled);
3209 			pr_info("TCP_TX_DELAY enabled\n");
3210 		}
3211 	}
3212 }
3213 
3214 /* When set indicates to always queue non-full frames.  Later the user clears
3215  * this option and we transmit any pending partial frames in the queue.  This is
3216  * meant to be used alongside sendfile() to get properly filled frames when the
3217  * user (for example) must write out headers with a write() call first and then
3218  * use sendfile to send out the data parts.
3219  *
3220  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3221  * TCP_NODELAY.
3222  */
3223 void __tcp_sock_set_cork(struct sock *sk, bool on)
3224 {
3225 	struct tcp_sock *tp = tcp_sk(sk);
3226 
3227 	if (on) {
3228 		tp->nonagle |= TCP_NAGLE_CORK;
3229 	} else {
3230 		tp->nonagle &= ~TCP_NAGLE_CORK;
3231 		if (tp->nonagle & TCP_NAGLE_OFF)
3232 			tp->nonagle |= TCP_NAGLE_PUSH;
3233 		tcp_push_pending_frames(sk);
3234 	}
3235 }
3236 
3237 void tcp_sock_set_cork(struct sock *sk, bool on)
3238 {
3239 	lock_sock(sk);
3240 	__tcp_sock_set_cork(sk, on);
3241 	release_sock(sk);
3242 }
3243 EXPORT_SYMBOL(tcp_sock_set_cork);
3244 
3245 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3246  * remembered, but it is not activated until cork is cleared.
3247  *
3248  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3249  * even TCP_CORK for currently queued segments.
3250  */
3251 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3252 {
3253 	if (on) {
3254 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3255 		tcp_push_pending_frames(sk);
3256 	} else {
3257 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3258 	}
3259 }
3260 
3261 void tcp_sock_set_nodelay(struct sock *sk)
3262 {
3263 	lock_sock(sk);
3264 	__tcp_sock_set_nodelay(sk, true);
3265 	release_sock(sk);
3266 }
3267 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3268 
3269 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3270 {
3271 	if (!val) {
3272 		inet_csk_enter_pingpong_mode(sk);
3273 		return;
3274 	}
3275 
3276 	inet_csk_exit_pingpong_mode(sk);
3277 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3278 	    inet_csk_ack_scheduled(sk)) {
3279 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3280 		tcp_cleanup_rbuf(sk, 1);
3281 		if (!(val & 1))
3282 			inet_csk_enter_pingpong_mode(sk);
3283 	}
3284 }
3285 
3286 void tcp_sock_set_quickack(struct sock *sk, int val)
3287 {
3288 	lock_sock(sk);
3289 	__tcp_sock_set_quickack(sk, val);
3290 	release_sock(sk);
3291 }
3292 EXPORT_SYMBOL(tcp_sock_set_quickack);
3293 
3294 int tcp_sock_set_syncnt(struct sock *sk, int val)
3295 {
3296 	if (val < 1 || val > MAX_TCP_SYNCNT)
3297 		return -EINVAL;
3298 
3299 	lock_sock(sk);
3300 	inet_csk(sk)->icsk_syn_retries = val;
3301 	release_sock(sk);
3302 	return 0;
3303 }
3304 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3305 
3306 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3307 {
3308 	lock_sock(sk);
3309 	inet_csk(sk)->icsk_user_timeout = val;
3310 	release_sock(sk);
3311 }
3312 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3313 
3314 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3315 {
3316 	struct tcp_sock *tp = tcp_sk(sk);
3317 
3318 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3319 		return -EINVAL;
3320 
3321 	tp->keepalive_time = val * HZ;
3322 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3323 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3324 		u32 elapsed = keepalive_time_elapsed(tp);
3325 
3326 		if (tp->keepalive_time > elapsed)
3327 			elapsed = tp->keepalive_time - elapsed;
3328 		else
3329 			elapsed = 0;
3330 		inet_csk_reset_keepalive_timer(sk, elapsed);
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 int tcp_sock_set_keepidle(struct sock *sk, int val)
3337 {
3338 	int err;
3339 
3340 	lock_sock(sk);
3341 	err = tcp_sock_set_keepidle_locked(sk, val);
3342 	release_sock(sk);
3343 	return err;
3344 }
3345 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3346 
3347 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3348 {
3349 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3350 		return -EINVAL;
3351 
3352 	lock_sock(sk);
3353 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3354 	release_sock(sk);
3355 	return 0;
3356 }
3357 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3358 
3359 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3360 {
3361 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3362 		return -EINVAL;
3363 
3364 	lock_sock(sk);
3365 	tcp_sk(sk)->keepalive_probes = val;
3366 	release_sock(sk);
3367 	return 0;
3368 }
3369 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3370 
3371 int tcp_set_window_clamp(struct sock *sk, int val)
3372 {
3373 	struct tcp_sock *tp = tcp_sk(sk);
3374 
3375 	if (!val) {
3376 		if (sk->sk_state != TCP_CLOSE)
3377 			return -EINVAL;
3378 		tp->window_clamp = 0;
3379 	} else {
3380 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3381 			SOCK_MIN_RCVBUF / 2 : val;
3382 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3383 	}
3384 	return 0;
3385 }
3386 
3387 /*
3388  *	Socket option code for TCP.
3389  */
3390 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3391 		      sockptr_t optval, unsigned int optlen)
3392 {
3393 	struct tcp_sock *tp = tcp_sk(sk);
3394 	struct inet_connection_sock *icsk = inet_csk(sk);
3395 	struct net *net = sock_net(sk);
3396 	int val;
3397 	int err = 0;
3398 
3399 	/* These are data/string values, all the others are ints */
3400 	switch (optname) {
3401 	case TCP_CONGESTION: {
3402 		char name[TCP_CA_NAME_MAX];
3403 
3404 		if (optlen < 1)
3405 			return -EINVAL;
3406 
3407 		val = strncpy_from_sockptr(name, optval,
3408 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3409 		if (val < 0)
3410 			return -EFAULT;
3411 		name[val] = 0;
3412 
3413 		sockopt_lock_sock(sk);
3414 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3415 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3416 								    CAP_NET_ADMIN));
3417 		sockopt_release_sock(sk);
3418 		return err;
3419 	}
3420 	case TCP_ULP: {
3421 		char name[TCP_ULP_NAME_MAX];
3422 
3423 		if (optlen < 1)
3424 			return -EINVAL;
3425 
3426 		val = strncpy_from_sockptr(name, optval,
3427 					min_t(long, TCP_ULP_NAME_MAX - 1,
3428 					      optlen));
3429 		if (val < 0)
3430 			return -EFAULT;
3431 		name[val] = 0;
3432 
3433 		sockopt_lock_sock(sk);
3434 		err = tcp_set_ulp(sk, name);
3435 		sockopt_release_sock(sk);
3436 		return err;
3437 	}
3438 	case TCP_FASTOPEN_KEY: {
3439 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3440 		__u8 *backup_key = NULL;
3441 
3442 		/* Allow a backup key as well to facilitate key rotation
3443 		 * First key is the active one.
3444 		 */
3445 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3446 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3447 			return -EINVAL;
3448 
3449 		if (copy_from_sockptr(key, optval, optlen))
3450 			return -EFAULT;
3451 
3452 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3453 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3454 
3455 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3456 	}
3457 	default:
3458 		/* fallthru */
3459 		break;
3460 	}
3461 
3462 	if (optlen < sizeof(int))
3463 		return -EINVAL;
3464 
3465 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3466 		return -EFAULT;
3467 
3468 	sockopt_lock_sock(sk);
3469 
3470 	switch (optname) {
3471 	case TCP_MAXSEG:
3472 		/* Values greater than interface MTU won't take effect. However
3473 		 * at the point when this call is done we typically don't yet
3474 		 * know which interface is going to be used
3475 		 */
3476 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3477 			err = -EINVAL;
3478 			break;
3479 		}
3480 		tp->rx_opt.user_mss = val;
3481 		break;
3482 
3483 	case TCP_NODELAY:
3484 		__tcp_sock_set_nodelay(sk, val);
3485 		break;
3486 
3487 	case TCP_THIN_LINEAR_TIMEOUTS:
3488 		if (val < 0 || val > 1)
3489 			err = -EINVAL;
3490 		else
3491 			tp->thin_lto = val;
3492 		break;
3493 
3494 	case TCP_THIN_DUPACK:
3495 		if (val < 0 || val > 1)
3496 			err = -EINVAL;
3497 		break;
3498 
3499 	case TCP_REPAIR:
3500 		if (!tcp_can_repair_sock(sk))
3501 			err = -EPERM;
3502 		else if (val == TCP_REPAIR_ON) {
3503 			tp->repair = 1;
3504 			sk->sk_reuse = SK_FORCE_REUSE;
3505 			tp->repair_queue = TCP_NO_QUEUE;
3506 		} else if (val == TCP_REPAIR_OFF) {
3507 			tp->repair = 0;
3508 			sk->sk_reuse = SK_NO_REUSE;
3509 			tcp_send_window_probe(sk);
3510 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3511 			tp->repair = 0;
3512 			sk->sk_reuse = SK_NO_REUSE;
3513 		} else
3514 			err = -EINVAL;
3515 
3516 		break;
3517 
3518 	case TCP_REPAIR_QUEUE:
3519 		if (!tp->repair)
3520 			err = -EPERM;
3521 		else if ((unsigned int)val < TCP_QUEUES_NR)
3522 			tp->repair_queue = val;
3523 		else
3524 			err = -EINVAL;
3525 		break;
3526 
3527 	case TCP_QUEUE_SEQ:
3528 		if (sk->sk_state != TCP_CLOSE) {
3529 			err = -EPERM;
3530 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3531 			if (!tcp_rtx_queue_empty(sk))
3532 				err = -EPERM;
3533 			else
3534 				WRITE_ONCE(tp->write_seq, val);
3535 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3536 			if (tp->rcv_nxt != tp->copied_seq) {
3537 				err = -EPERM;
3538 			} else {
3539 				WRITE_ONCE(tp->rcv_nxt, val);
3540 				WRITE_ONCE(tp->copied_seq, val);
3541 			}
3542 		} else {
3543 			err = -EINVAL;
3544 		}
3545 		break;
3546 
3547 	case TCP_REPAIR_OPTIONS:
3548 		if (!tp->repair)
3549 			err = -EINVAL;
3550 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3551 			err = tcp_repair_options_est(sk, optval, optlen);
3552 		else
3553 			err = -EPERM;
3554 		break;
3555 
3556 	case TCP_CORK:
3557 		__tcp_sock_set_cork(sk, val);
3558 		break;
3559 
3560 	case TCP_KEEPIDLE:
3561 		err = tcp_sock_set_keepidle_locked(sk, val);
3562 		break;
3563 	case TCP_KEEPINTVL:
3564 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3565 			err = -EINVAL;
3566 		else
3567 			tp->keepalive_intvl = val * HZ;
3568 		break;
3569 	case TCP_KEEPCNT:
3570 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3571 			err = -EINVAL;
3572 		else
3573 			tp->keepalive_probes = val;
3574 		break;
3575 	case TCP_SYNCNT:
3576 		if (val < 1 || val > MAX_TCP_SYNCNT)
3577 			err = -EINVAL;
3578 		else
3579 			icsk->icsk_syn_retries = val;
3580 		break;
3581 
3582 	case TCP_SAVE_SYN:
3583 		/* 0: disable, 1: enable, 2: start from ether_header */
3584 		if (val < 0 || val > 2)
3585 			err = -EINVAL;
3586 		else
3587 			tp->save_syn = val;
3588 		break;
3589 
3590 	case TCP_LINGER2:
3591 		if (val < 0)
3592 			tp->linger2 = -1;
3593 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3594 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3595 		else
3596 			tp->linger2 = val * HZ;
3597 		break;
3598 
3599 	case TCP_DEFER_ACCEPT:
3600 		/* Translate value in seconds to number of retransmits */
3601 		icsk->icsk_accept_queue.rskq_defer_accept =
3602 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3603 					TCP_RTO_MAX / HZ);
3604 		break;
3605 
3606 	case TCP_WINDOW_CLAMP:
3607 		err = tcp_set_window_clamp(sk, val);
3608 		break;
3609 
3610 	case TCP_QUICKACK:
3611 		__tcp_sock_set_quickack(sk, val);
3612 		break;
3613 
3614 #ifdef CONFIG_TCP_MD5SIG
3615 	case TCP_MD5SIG:
3616 	case TCP_MD5SIG_EXT:
3617 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3618 		break;
3619 #endif
3620 	case TCP_USER_TIMEOUT:
3621 		/* Cap the max time in ms TCP will retry or probe the window
3622 		 * before giving up and aborting (ETIMEDOUT) a connection.
3623 		 */
3624 		if (val < 0)
3625 			err = -EINVAL;
3626 		else
3627 			icsk->icsk_user_timeout = val;
3628 		break;
3629 
3630 	case TCP_FASTOPEN:
3631 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3632 		    TCPF_LISTEN))) {
3633 			tcp_fastopen_init_key_once(net);
3634 
3635 			fastopen_queue_tune(sk, val);
3636 		} else {
3637 			err = -EINVAL;
3638 		}
3639 		break;
3640 	case TCP_FASTOPEN_CONNECT:
3641 		if (val > 1 || val < 0) {
3642 			err = -EINVAL;
3643 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3644 			   TFO_CLIENT_ENABLE) {
3645 			if (sk->sk_state == TCP_CLOSE)
3646 				tp->fastopen_connect = val;
3647 			else
3648 				err = -EINVAL;
3649 		} else {
3650 			err = -EOPNOTSUPP;
3651 		}
3652 		break;
3653 	case TCP_FASTOPEN_NO_COOKIE:
3654 		if (val > 1 || val < 0)
3655 			err = -EINVAL;
3656 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3657 			err = -EINVAL;
3658 		else
3659 			tp->fastopen_no_cookie = val;
3660 		break;
3661 	case TCP_TIMESTAMP:
3662 		if (!tp->repair)
3663 			err = -EPERM;
3664 		else
3665 			tp->tsoffset = val - tcp_time_stamp_raw();
3666 		break;
3667 	case TCP_REPAIR_WINDOW:
3668 		err = tcp_repair_set_window(tp, optval, optlen);
3669 		break;
3670 	case TCP_NOTSENT_LOWAT:
3671 		tp->notsent_lowat = val;
3672 		sk->sk_write_space(sk);
3673 		break;
3674 	case TCP_INQ:
3675 		if (val > 1 || val < 0)
3676 			err = -EINVAL;
3677 		else
3678 			tp->recvmsg_inq = val;
3679 		break;
3680 	case TCP_TX_DELAY:
3681 		if (val)
3682 			tcp_enable_tx_delay();
3683 		tp->tcp_tx_delay = val;
3684 		break;
3685 	default:
3686 		err = -ENOPROTOOPT;
3687 		break;
3688 	}
3689 
3690 	sockopt_release_sock(sk);
3691 	return err;
3692 }
3693 
3694 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3695 		   unsigned int optlen)
3696 {
3697 	const struct inet_connection_sock *icsk = inet_csk(sk);
3698 
3699 	if (level != SOL_TCP)
3700 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3701 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3702 								optval, optlen);
3703 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3704 }
3705 EXPORT_SYMBOL(tcp_setsockopt);
3706 
3707 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3708 				      struct tcp_info *info)
3709 {
3710 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3711 	enum tcp_chrono i;
3712 
3713 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3714 		stats[i] = tp->chrono_stat[i - 1];
3715 		if (i == tp->chrono_type)
3716 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3717 		stats[i] *= USEC_PER_SEC / HZ;
3718 		total += stats[i];
3719 	}
3720 
3721 	info->tcpi_busy_time = total;
3722 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3723 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3724 }
3725 
3726 /* Return information about state of tcp endpoint in API format. */
3727 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3728 {
3729 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3730 	const struct inet_connection_sock *icsk = inet_csk(sk);
3731 	unsigned long rate;
3732 	u32 now;
3733 	u64 rate64;
3734 	bool slow;
3735 
3736 	memset(info, 0, sizeof(*info));
3737 	if (sk->sk_type != SOCK_STREAM)
3738 		return;
3739 
3740 	info->tcpi_state = inet_sk_state_load(sk);
3741 
3742 	/* Report meaningful fields for all TCP states, including listeners */
3743 	rate = READ_ONCE(sk->sk_pacing_rate);
3744 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3745 	info->tcpi_pacing_rate = rate64;
3746 
3747 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3748 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3749 	info->tcpi_max_pacing_rate = rate64;
3750 
3751 	info->tcpi_reordering = tp->reordering;
3752 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3753 
3754 	if (info->tcpi_state == TCP_LISTEN) {
3755 		/* listeners aliased fields :
3756 		 * tcpi_unacked -> Number of children ready for accept()
3757 		 * tcpi_sacked  -> max backlog
3758 		 */
3759 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3760 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3761 		return;
3762 	}
3763 
3764 	slow = lock_sock_fast(sk);
3765 
3766 	info->tcpi_ca_state = icsk->icsk_ca_state;
3767 	info->tcpi_retransmits = icsk->icsk_retransmits;
3768 	info->tcpi_probes = icsk->icsk_probes_out;
3769 	info->tcpi_backoff = icsk->icsk_backoff;
3770 
3771 	if (tp->rx_opt.tstamp_ok)
3772 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3773 	if (tcp_is_sack(tp))
3774 		info->tcpi_options |= TCPI_OPT_SACK;
3775 	if (tp->rx_opt.wscale_ok) {
3776 		info->tcpi_options |= TCPI_OPT_WSCALE;
3777 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3778 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3779 	}
3780 
3781 	if (tp->ecn_flags & TCP_ECN_OK)
3782 		info->tcpi_options |= TCPI_OPT_ECN;
3783 	if (tp->ecn_flags & TCP_ECN_SEEN)
3784 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3785 	if (tp->syn_data_acked)
3786 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3787 
3788 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3789 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3790 	info->tcpi_snd_mss = tp->mss_cache;
3791 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3792 
3793 	info->tcpi_unacked = tp->packets_out;
3794 	info->tcpi_sacked = tp->sacked_out;
3795 
3796 	info->tcpi_lost = tp->lost_out;
3797 	info->tcpi_retrans = tp->retrans_out;
3798 
3799 	now = tcp_jiffies32;
3800 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3801 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3802 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3803 
3804 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3805 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3806 	info->tcpi_rtt = tp->srtt_us >> 3;
3807 	info->tcpi_rttvar = tp->mdev_us >> 2;
3808 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3809 	info->tcpi_advmss = tp->advmss;
3810 
3811 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3812 	info->tcpi_rcv_space = tp->rcvq_space.space;
3813 
3814 	info->tcpi_total_retrans = tp->total_retrans;
3815 
3816 	info->tcpi_bytes_acked = tp->bytes_acked;
3817 	info->tcpi_bytes_received = tp->bytes_received;
3818 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3819 	tcp_get_info_chrono_stats(tp, info);
3820 
3821 	info->tcpi_segs_out = tp->segs_out;
3822 
3823 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3824 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3825 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3826 
3827 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3828 	info->tcpi_data_segs_out = tp->data_segs_out;
3829 
3830 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3831 	rate64 = tcp_compute_delivery_rate(tp);
3832 	if (rate64)
3833 		info->tcpi_delivery_rate = rate64;
3834 	info->tcpi_delivered = tp->delivered;
3835 	info->tcpi_delivered_ce = tp->delivered_ce;
3836 	info->tcpi_bytes_sent = tp->bytes_sent;
3837 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3838 	info->tcpi_dsack_dups = tp->dsack_dups;
3839 	info->tcpi_reord_seen = tp->reord_seen;
3840 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3841 	info->tcpi_snd_wnd = tp->snd_wnd;
3842 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3843 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3844 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3845 	unlock_sock_fast(sk, slow);
3846 }
3847 EXPORT_SYMBOL_GPL(tcp_get_info);
3848 
3849 static size_t tcp_opt_stats_get_size(void)
3850 {
3851 	return
3852 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3853 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3854 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3855 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3856 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3857 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3858 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3859 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3860 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3862 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3863 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3865 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3866 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3867 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3868 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3869 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3870 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3871 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3872 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3873 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3874 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3875 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3876 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3877 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3878 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3879 		0;
3880 }
3881 
3882 /* Returns TTL or hop limit of an incoming packet from skb. */
3883 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3884 {
3885 	if (skb->protocol == htons(ETH_P_IP))
3886 		return ip_hdr(skb)->ttl;
3887 	else if (skb->protocol == htons(ETH_P_IPV6))
3888 		return ipv6_hdr(skb)->hop_limit;
3889 	else
3890 		return 0;
3891 }
3892 
3893 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3894 					       const struct sk_buff *orig_skb,
3895 					       const struct sk_buff *ack_skb)
3896 {
3897 	const struct tcp_sock *tp = tcp_sk(sk);
3898 	struct sk_buff *stats;
3899 	struct tcp_info info;
3900 	unsigned long rate;
3901 	u64 rate64;
3902 
3903 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3904 	if (!stats)
3905 		return NULL;
3906 
3907 	tcp_get_info_chrono_stats(tp, &info);
3908 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3909 			  info.tcpi_busy_time, TCP_NLA_PAD);
3910 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3911 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3912 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3913 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3914 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3915 			  tp->data_segs_out, TCP_NLA_PAD);
3916 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3917 			  tp->total_retrans, TCP_NLA_PAD);
3918 
3919 	rate = READ_ONCE(sk->sk_pacing_rate);
3920 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3921 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3922 
3923 	rate64 = tcp_compute_delivery_rate(tp);
3924 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3925 
3926 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3927 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3928 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3929 
3930 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3931 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3932 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3933 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3934 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3935 
3936 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3937 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3938 
3939 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3940 			  TCP_NLA_PAD);
3941 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3942 			  TCP_NLA_PAD);
3943 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3944 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3945 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3946 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3947 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3948 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3949 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3950 			  TCP_NLA_PAD);
3951 	if (ack_skb)
3952 		nla_put_u8(stats, TCP_NLA_TTL,
3953 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3954 
3955 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3956 	return stats;
3957 }
3958 
3959 int do_tcp_getsockopt(struct sock *sk, int level,
3960 		      int optname, sockptr_t optval, sockptr_t optlen)
3961 {
3962 	struct inet_connection_sock *icsk = inet_csk(sk);
3963 	struct tcp_sock *tp = tcp_sk(sk);
3964 	struct net *net = sock_net(sk);
3965 	int val, len;
3966 
3967 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3968 		return -EFAULT;
3969 
3970 	len = min_t(unsigned int, len, sizeof(int));
3971 
3972 	if (len < 0)
3973 		return -EINVAL;
3974 
3975 	switch (optname) {
3976 	case TCP_MAXSEG:
3977 		val = tp->mss_cache;
3978 		if (tp->rx_opt.user_mss &&
3979 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3980 			val = tp->rx_opt.user_mss;
3981 		if (tp->repair)
3982 			val = tp->rx_opt.mss_clamp;
3983 		break;
3984 	case TCP_NODELAY:
3985 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3986 		break;
3987 	case TCP_CORK:
3988 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3989 		break;
3990 	case TCP_KEEPIDLE:
3991 		val = keepalive_time_when(tp) / HZ;
3992 		break;
3993 	case TCP_KEEPINTVL:
3994 		val = keepalive_intvl_when(tp) / HZ;
3995 		break;
3996 	case TCP_KEEPCNT:
3997 		val = keepalive_probes(tp);
3998 		break;
3999 	case TCP_SYNCNT:
4000 		val = icsk->icsk_syn_retries ? :
4001 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4002 		break;
4003 	case TCP_LINGER2:
4004 		val = tp->linger2;
4005 		if (val >= 0)
4006 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4007 		break;
4008 	case TCP_DEFER_ACCEPT:
4009 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4010 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4011 		break;
4012 	case TCP_WINDOW_CLAMP:
4013 		val = tp->window_clamp;
4014 		break;
4015 	case TCP_INFO: {
4016 		struct tcp_info info;
4017 
4018 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4019 			return -EFAULT;
4020 
4021 		tcp_get_info(sk, &info);
4022 
4023 		len = min_t(unsigned int, len, sizeof(info));
4024 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4025 			return -EFAULT;
4026 		if (copy_to_sockptr(optval, &info, len))
4027 			return -EFAULT;
4028 		return 0;
4029 	}
4030 	case TCP_CC_INFO: {
4031 		const struct tcp_congestion_ops *ca_ops;
4032 		union tcp_cc_info info;
4033 		size_t sz = 0;
4034 		int attr;
4035 
4036 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4037 			return -EFAULT;
4038 
4039 		ca_ops = icsk->icsk_ca_ops;
4040 		if (ca_ops && ca_ops->get_info)
4041 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4042 
4043 		len = min_t(unsigned int, len, sz);
4044 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4045 			return -EFAULT;
4046 		if (copy_to_sockptr(optval, &info, len))
4047 			return -EFAULT;
4048 		return 0;
4049 	}
4050 	case TCP_QUICKACK:
4051 		val = !inet_csk_in_pingpong_mode(sk);
4052 		break;
4053 
4054 	case TCP_CONGESTION:
4055 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4056 			return -EFAULT;
4057 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4058 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4059 			return -EFAULT;
4060 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4061 			return -EFAULT;
4062 		return 0;
4063 
4064 	case TCP_ULP:
4065 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4066 			return -EFAULT;
4067 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4068 		if (!icsk->icsk_ulp_ops) {
4069 			len = 0;
4070 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4071 				return -EFAULT;
4072 			return 0;
4073 		}
4074 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4075 			return -EFAULT;
4076 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4077 			return -EFAULT;
4078 		return 0;
4079 
4080 	case TCP_FASTOPEN_KEY: {
4081 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4082 		unsigned int key_len;
4083 
4084 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4085 			return -EFAULT;
4086 
4087 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4088 				TCP_FASTOPEN_KEY_LENGTH;
4089 		len = min_t(unsigned int, len, key_len);
4090 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4091 			return -EFAULT;
4092 		if (copy_to_sockptr(optval, key, len))
4093 			return -EFAULT;
4094 		return 0;
4095 	}
4096 	case TCP_THIN_LINEAR_TIMEOUTS:
4097 		val = tp->thin_lto;
4098 		break;
4099 
4100 	case TCP_THIN_DUPACK:
4101 		val = 0;
4102 		break;
4103 
4104 	case TCP_REPAIR:
4105 		val = tp->repair;
4106 		break;
4107 
4108 	case TCP_REPAIR_QUEUE:
4109 		if (tp->repair)
4110 			val = tp->repair_queue;
4111 		else
4112 			return -EINVAL;
4113 		break;
4114 
4115 	case TCP_REPAIR_WINDOW: {
4116 		struct tcp_repair_window opt;
4117 
4118 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4119 			return -EFAULT;
4120 
4121 		if (len != sizeof(opt))
4122 			return -EINVAL;
4123 
4124 		if (!tp->repair)
4125 			return -EPERM;
4126 
4127 		opt.snd_wl1	= tp->snd_wl1;
4128 		opt.snd_wnd	= tp->snd_wnd;
4129 		opt.max_window	= tp->max_window;
4130 		opt.rcv_wnd	= tp->rcv_wnd;
4131 		opt.rcv_wup	= tp->rcv_wup;
4132 
4133 		if (copy_to_sockptr(optval, &opt, len))
4134 			return -EFAULT;
4135 		return 0;
4136 	}
4137 	case TCP_QUEUE_SEQ:
4138 		if (tp->repair_queue == TCP_SEND_QUEUE)
4139 			val = tp->write_seq;
4140 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4141 			val = tp->rcv_nxt;
4142 		else
4143 			return -EINVAL;
4144 		break;
4145 
4146 	case TCP_USER_TIMEOUT:
4147 		val = icsk->icsk_user_timeout;
4148 		break;
4149 
4150 	case TCP_FASTOPEN:
4151 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4152 		break;
4153 
4154 	case TCP_FASTOPEN_CONNECT:
4155 		val = tp->fastopen_connect;
4156 		break;
4157 
4158 	case TCP_FASTOPEN_NO_COOKIE:
4159 		val = tp->fastopen_no_cookie;
4160 		break;
4161 
4162 	case TCP_TX_DELAY:
4163 		val = tp->tcp_tx_delay;
4164 		break;
4165 
4166 	case TCP_TIMESTAMP:
4167 		val = tcp_time_stamp_raw() + tp->tsoffset;
4168 		break;
4169 	case TCP_NOTSENT_LOWAT:
4170 		val = tp->notsent_lowat;
4171 		break;
4172 	case TCP_INQ:
4173 		val = tp->recvmsg_inq;
4174 		break;
4175 	case TCP_SAVE_SYN:
4176 		val = tp->save_syn;
4177 		break;
4178 	case TCP_SAVED_SYN: {
4179 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4180 			return -EFAULT;
4181 
4182 		sockopt_lock_sock(sk);
4183 		if (tp->saved_syn) {
4184 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4185 				len = tcp_saved_syn_len(tp->saved_syn);
4186 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4187 					sockopt_release_sock(sk);
4188 					return -EFAULT;
4189 				}
4190 				sockopt_release_sock(sk);
4191 				return -EINVAL;
4192 			}
4193 			len = tcp_saved_syn_len(tp->saved_syn);
4194 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4195 				sockopt_release_sock(sk);
4196 				return -EFAULT;
4197 			}
4198 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4199 				sockopt_release_sock(sk);
4200 				return -EFAULT;
4201 			}
4202 			tcp_saved_syn_free(tp);
4203 			sockopt_release_sock(sk);
4204 		} else {
4205 			sockopt_release_sock(sk);
4206 			len = 0;
4207 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4208 				return -EFAULT;
4209 		}
4210 		return 0;
4211 	}
4212 #ifdef CONFIG_MMU
4213 	case TCP_ZEROCOPY_RECEIVE: {
4214 		struct scm_timestamping_internal tss;
4215 		struct tcp_zerocopy_receive zc = {};
4216 		int err;
4217 
4218 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4219 			return -EFAULT;
4220 		if (len < 0 ||
4221 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4222 			return -EINVAL;
4223 		if (unlikely(len > sizeof(zc))) {
4224 			err = check_zeroed_sockptr(optval, sizeof(zc),
4225 						   len - sizeof(zc));
4226 			if (err < 1)
4227 				return err == 0 ? -EINVAL : err;
4228 			len = sizeof(zc);
4229 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4230 				return -EFAULT;
4231 		}
4232 		if (copy_from_sockptr(&zc, optval, len))
4233 			return -EFAULT;
4234 		if (zc.reserved)
4235 			return -EINVAL;
4236 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4237 			return -EINVAL;
4238 		sockopt_lock_sock(sk);
4239 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4240 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4241 							  &zc, &len, err);
4242 		sockopt_release_sock(sk);
4243 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4244 			goto zerocopy_rcv_cmsg;
4245 		switch (len) {
4246 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4247 			goto zerocopy_rcv_cmsg;
4248 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4249 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4250 		case offsetofend(struct tcp_zerocopy_receive, flags):
4251 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4252 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4253 		case offsetofend(struct tcp_zerocopy_receive, err):
4254 			goto zerocopy_rcv_sk_err;
4255 		case offsetofend(struct tcp_zerocopy_receive, inq):
4256 			goto zerocopy_rcv_inq;
4257 		case offsetofend(struct tcp_zerocopy_receive, length):
4258 		default:
4259 			goto zerocopy_rcv_out;
4260 		}
4261 zerocopy_rcv_cmsg:
4262 		if (zc.msg_flags & TCP_CMSG_TS)
4263 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4264 		else
4265 			zc.msg_flags = 0;
4266 zerocopy_rcv_sk_err:
4267 		if (!err)
4268 			zc.err = sock_error(sk);
4269 zerocopy_rcv_inq:
4270 		zc.inq = tcp_inq_hint(sk);
4271 zerocopy_rcv_out:
4272 		if (!err && copy_to_sockptr(optval, &zc, len))
4273 			err = -EFAULT;
4274 		return err;
4275 	}
4276 #endif
4277 	default:
4278 		return -ENOPROTOOPT;
4279 	}
4280 
4281 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4282 		return -EFAULT;
4283 	if (copy_to_sockptr(optval, &val, len))
4284 		return -EFAULT;
4285 	return 0;
4286 }
4287 
4288 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4289 {
4290 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4291 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4292 	 */
4293 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4294 		return true;
4295 
4296 	return false;
4297 }
4298 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4299 
4300 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4301 		   int __user *optlen)
4302 {
4303 	struct inet_connection_sock *icsk = inet_csk(sk);
4304 
4305 	if (level != SOL_TCP)
4306 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4307 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4308 								optval, optlen);
4309 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4310 				 USER_SOCKPTR(optlen));
4311 }
4312 EXPORT_SYMBOL(tcp_getsockopt);
4313 
4314 #ifdef CONFIG_TCP_MD5SIG
4315 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4316 static DEFINE_MUTEX(tcp_md5sig_mutex);
4317 static bool tcp_md5sig_pool_populated = false;
4318 
4319 static void __tcp_alloc_md5sig_pool(void)
4320 {
4321 	struct crypto_ahash *hash;
4322 	int cpu;
4323 
4324 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4325 	if (IS_ERR(hash))
4326 		return;
4327 
4328 	for_each_possible_cpu(cpu) {
4329 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4330 		struct ahash_request *req;
4331 
4332 		if (!scratch) {
4333 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4334 					       sizeof(struct tcphdr),
4335 					       GFP_KERNEL,
4336 					       cpu_to_node(cpu));
4337 			if (!scratch)
4338 				return;
4339 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4340 		}
4341 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4342 			continue;
4343 
4344 		req = ahash_request_alloc(hash, GFP_KERNEL);
4345 		if (!req)
4346 			return;
4347 
4348 		ahash_request_set_callback(req, 0, NULL, NULL);
4349 
4350 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4351 	}
4352 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4353 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4354 	 */
4355 	smp_wmb();
4356 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4357 	 * and tcp_get_md5sig_pool().
4358 	*/
4359 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4360 }
4361 
4362 bool tcp_alloc_md5sig_pool(void)
4363 {
4364 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4365 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4366 		mutex_lock(&tcp_md5sig_mutex);
4367 
4368 		if (!tcp_md5sig_pool_populated)
4369 			__tcp_alloc_md5sig_pool();
4370 
4371 		mutex_unlock(&tcp_md5sig_mutex);
4372 	}
4373 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4374 	return READ_ONCE(tcp_md5sig_pool_populated);
4375 }
4376 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4377 
4378 
4379 /**
4380  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4381  *
4382  *	We use percpu structure, so if we succeed, we exit with preemption
4383  *	and BH disabled, to make sure another thread or softirq handling
4384  *	wont try to get same context.
4385  */
4386 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4387 {
4388 	local_bh_disable();
4389 
4390 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4391 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4392 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4393 		smp_rmb();
4394 		return this_cpu_ptr(&tcp_md5sig_pool);
4395 	}
4396 	local_bh_enable();
4397 	return NULL;
4398 }
4399 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4400 
4401 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4402 			  const struct sk_buff *skb, unsigned int header_len)
4403 {
4404 	struct scatterlist sg;
4405 	const struct tcphdr *tp = tcp_hdr(skb);
4406 	struct ahash_request *req = hp->md5_req;
4407 	unsigned int i;
4408 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4409 					   skb_headlen(skb) - header_len : 0;
4410 	const struct skb_shared_info *shi = skb_shinfo(skb);
4411 	struct sk_buff *frag_iter;
4412 
4413 	sg_init_table(&sg, 1);
4414 
4415 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4416 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4417 	if (crypto_ahash_update(req))
4418 		return 1;
4419 
4420 	for (i = 0; i < shi->nr_frags; ++i) {
4421 		const skb_frag_t *f = &shi->frags[i];
4422 		unsigned int offset = skb_frag_off(f);
4423 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4424 
4425 		sg_set_page(&sg, page, skb_frag_size(f),
4426 			    offset_in_page(offset));
4427 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4428 		if (crypto_ahash_update(req))
4429 			return 1;
4430 	}
4431 
4432 	skb_walk_frags(skb, frag_iter)
4433 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4434 			return 1;
4435 
4436 	return 0;
4437 }
4438 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4439 
4440 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4441 {
4442 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4443 	struct scatterlist sg;
4444 
4445 	sg_init_one(&sg, key->key, keylen);
4446 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4447 
4448 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4449 	return data_race(crypto_ahash_update(hp->md5_req));
4450 }
4451 EXPORT_SYMBOL(tcp_md5_hash_key);
4452 
4453 /* Called with rcu_read_lock() */
4454 enum skb_drop_reason
4455 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4456 		     const void *saddr, const void *daddr,
4457 		     int family, int dif, int sdif)
4458 {
4459 	/*
4460 	 * This gets called for each TCP segment that arrives
4461 	 * so we want to be efficient.
4462 	 * We have 3 drop cases:
4463 	 * o No MD5 hash and one expected.
4464 	 * o MD5 hash and we're not expecting one.
4465 	 * o MD5 hash and its wrong.
4466 	 */
4467 	const __u8 *hash_location = NULL;
4468 	struct tcp_md5sig_key *hash_expected;
4469 	const struct tcphdr *th = tcp_hdr(skb);
4470 	const struct tcp_sock *tp = tcp_sk(sk);
4471 	int genhash, l3index;
4472 	u8 newhash[16];
4473 
4474 	/* sdif set, means packet ingressed via a device
4475 	 * in an L3 domain and dif is set to the l3mdev
4476 	 */
4477 	l3index = sdif ? dif : 0;
4478 
4479 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4480 	hash_location = tcp_parse_md5sig_option(th);
4481 
4482 	/* We've parsed the options - do we have a hash? */
4483 	if (!hash_expected && !hash_location)
4484 		return SKB_NOT_DROPPED_YET;
4485 
4486 	if (hash_expected && !hash_location) {
4487 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4488 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4489 	}
4490 
4491 	if (!hash_expected && hash_location) {
4492 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4493 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4494 	}
4495 
4496 	/* Check the signature.
4497 	 * To support dual stack listeners, we need to handle
4498 	 * IPv4-mapped case.
4499 	 */
4500 	if (family == AF_INET)
4501 		genhash = tcp_v4_md5_hash_skb(newhash,
4502 					      hash_expected,
4503 					      NULL, skb);
4504 	else
4505 		genhash = tp->af_specific->calc_md5_hash(newhash,
4506 							 hash_expected,
4507 							 NULL, skb);
4508 
4509 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4510 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4511 		if (family == AF_INET) {
4512 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4513 					saddr, ntohs(th->source),
4514 					daddr, ntohs(th->dest),
4515 					genhash ? " tcp_v4_calc_md5_hash failed"
4516 					: "", l3index);
4517 		} else {
4518 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4519 					genhash ? "failed" : "mismatch",
4520 					saddr, ntohs(th->source),
4521 					daddr, ntohs(th->dest), l3index);
4522 		}
4523 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4524 	}
4525 	return SKB_NOT_DROPPED_YET;
4526 }
4527 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4528 
4529 #endif
4530 
4531 void tcp_done(struct sock *sk)
4532 {
4533 	struct request_sock *req;
4534 
4535 	/* We might be called with a new socket, after
4536 	 * inet_csk_prepare_forced_close() has been called
4537 	 * so we can not use lockdep_sock_is_held(sk)
4538 	 */
4539 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4540 
4541 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4542 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4543 
4544 	tcp_set_state(sk, TCP_CLOSE);
4545 	tcp_clear_xmit_timers(sk);
4546 	if (req)
4547 		reqsk_fastopen_remove(sk, req, false);
4548 
4549 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4550 
4551 	if (!sock_flag(sk, SOCK_DEAD))
4552 		sk->sk_state_change(sk);
4553 	else
4554 		inet_csk_destroy_sock(sk);
4555 }
4556 EXPORT_SYMBOL_GPL(tcp_done);
4557 
4558 int tcp_abort(struct sock *sk, int err)
4559 {
4560 	int state = inet_sk_state_load(sk);
4561 
4562 	if (state == TCP_NEW_SYN_RECV) {
4563 		struct request_sock *req = inet_reqsk(sk);
4564 
4565 		local_bh_disable();
4566 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4567 		local_bh_enable();
4568 		return 0;
4569 	}
4570 	if (state == TCP_TIME_WAIT) {
4571 		struct inet_timewait_sock *tw = inet_twsk(sk);
4572 
4573 		refcount_inc(&tw->tw_refcnt);
4574 		local_bh_disable();
4575 		inet_twsk_deschedule_put(tw);
4576 		local_bh_enable();
4577 		return 0;
4578 	}
4579 
4580 	/* BPF context ensures sock locking. */
4581 	if (!has_current_bpf_ctx())
4582 		/* Don't race with userspace socket closes such as tcp_close. */
4583 		lock_sock(sk);
4584 
4585 	if (sk->sk_state == TCP_LISTEN) {
4586 		tcp_set_state(sk, TCP_CLOSE);
4587 		inet_csk_listen_stop(sk);
4588 	}
4589 
4590 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4591 	local_bh_disable();
4592 	bh_lock_sock(sk);
4593 
4594 	if (!sock_flag(sk, SOCK_DEAD)) {
4595 		WRITE_ONCE(sk->sk_err, err);
4596 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4597 		smp_wmb();
4598 		sk_error_report(sk);
4599 		if (tcp_need_reset(sk->sk_state))
4600 			tcp_send_active_reset(sk, GFP_ATOMIC);
4601 		tcp_done(sk);
4602 	}
4603 
4604 	bh_unlock_sock(sk);
4605 	local_bh_enable();
4606 	tcp_write_queue_purge(sk);
4607 	if (!has_current_bpf_ctx())
4608 		release_sock(sk);
4609 	return 0;
4610 }
4611 EXPORT_SYMBOL_GPL(tcp_abort);
4612 
4613 extern struct tcp_congestion_ops tcp_reno;
4614 
4615 static __initdata unsigned long thash_entries;
4616 static int __init set_thash_entries(char *str)
4617 {
4618 	ssize_t ret;
4619 
4620 	if (!str)
4621 		return 0;
4622 
4623 	ret = kstrtoul(str, 0, &thash_entries);
4624 	if (ret)
4625 		return 0;
4626 
4627 	return 1;
4628 }
4629 __setup("thash_entries=", set_thash_entries);
4630 
4631 static void __init tcp_init_mem(void)
4632 {
4633 	unsigned long limit = nr_free_buffer_pages() / 16;
4634 
4635 	limit = max(limit, 128UL);
4636 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4637 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4638 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4639 }
4640 
4641 void __init tcp_init(void)
4642 {
4643 	int max_rshare, max_wshare, cnt;
4644 	unsigned long limit;
4645 	unsigned int i;
4646 
4647 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4648 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4649 		     sizeof_field(struct sk_buff, cb));
4650 
4651 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4652 
4653 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4654 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4655 
4656 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4657 			    thash_entries, 21,  /* one slot per 2 MB*/
4658 			    0, 64 * 1024);
4659 	tcp_hashinfo.bind_bucket_cachep =
4660 		kmem_cache_create("tcp_bind_bucket",
4661 				  sizeof(struct inet_bind_bucket), 0,
4662 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4663 				  SLAB_ACCOUNT,
4664 				  NULL);
4665 	tcp_hashinfo.bind2_bucket_cachep =
4666 		kmem_cache_create("tcp_bind2_bucket",
4667 				  sizeof(struct inet_bind2_bucket), 0,
4668 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4669 				  SLAB_ACCOUNT,
4670 				  NULL);
4671 
4672 	/* Size and allocate the main established and bind bucket
4673 	 * hash tables.
4674 	 *
4675 	 * The methodology is similar to that of the buffer cache.
4676 	 */
4677 	tcp_hashinfo.ehash =
4678 		alloc_large_system_hash("TCP established",
4679 					sizeof(struct inet_ehash_bucket),
4680 					thash_entries,
4681 					17, /* one slot per 128 KB of memory */
4682 					0,
4683 					NULL,
4684 					&tcp_hashinfo.ehash_mask,
4685 					0,
4686 					thash_entries ? 0 : 512 * 1024);
4687 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4688 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4689 
4690 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4691 		panic("TCP: failed to alloc ehash_locks");
4692 	tcp_hashinfo.bhash =
4693 		alloc_large_system_hash("TCP bind",
4694 					2 * sizeof(struct inet_bind_hashbucket),
4695 					tcp_hashinfo.ehash_mask + 1,
4696 					17, /* one slot per 128 KB of memory */
4697 					0,
4698 					&tcp_hashinfo.bhash_size,
4699 					NULL,
4700 					0,
4701 					64 * 1024);
4702 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4703 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4704 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4705 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4706 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4707 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4708 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4709 	}
4710 
4711 	tcp_hashinfo.pernet = false;
4712 
4713 	cnt = tcp_hashinfo.ehash_mask + 1;
4714 	sysctl_tcp_max_orphans = cnt / 2;
4715 
4716 	tcp_init_mem();
4717 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4718 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4719 	max_wshare = min(4UL*1024*1024, limit);
4720 	max_rshare = min(6UL*1024*1024, limit);
4721 
4722 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4723 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4724 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4725 
4726 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4727 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4728 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4729 
4730 	pr_info("Hash tables configured (established %u bind %u)\n",
4731 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4732 
4733 	tcp_v4_init();
4734 	tcp_metrics_init();
4735 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4736 	tcp_tasklet_init();
4737 	mptcp_init();
4738 }
4739