xref: /openbmc/linux/net/ipv4/tcp.c (revision c4ee0af3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290 
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294 
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298 
299 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301 
302 /*
303  * Current number of TCP sockets.
304  */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307 
308 /*
309  * TCP splice context
310  */
311 struct tcp_splice_state {
312 	struct pipe_inode_info *pipe;
313 	size_t len;
314 	unsigned int flags;
315 };
316 
317 /*
318  * Pressure flag: try to collapse.
319  * Technical note: it is used by multiple contexts non atomically.
320  * All the __sk_mem_schedule() is of this nature: accounting
321  * is strict, actions are advisory and have some latency.
322  */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	if (!tcp_memory_pressure) {
329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 		tcp_memory_pressure = 1;
331 	}
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334 
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 	u8 res = 0;
339 
340 	if (seconds > 0) {
341 		int period = timeout;
342 
343 		res = 1;
344 		while (seconds > period && res < 255) {
345 			res++;
346 			timeout <<= 1;
347 			if (timeout > rto_max)
348 				timeout = rto_max;
349 			period += timeout;
350 		}
351 	}
352 	return res;
353 }
354 
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 	int period = 0;
359 
360 	if (retrans > 0) {
361 		period = timeout;
362 		while (--retrans) {
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return period;
370 }
371 
372 /* Address-family independent initialization for a tcp_sock.
373  *
374  * NOTE: A lot of things set to zero explicitly by call to
375  *       sk_alloc() so need not be done here.
376  */
377 void tcp_init_sock(struct sock *sk)
378 {
379 	struct inet_connection_sock *icsk = inet_csk(sk);
380 	struct tcp_sock *tp = tcp_sk(sk);
381 
382 	skb_queue_head_init(&tp->out_of_order_queue);
383 	tcp_init_xmit_timers(sk);
384 	tcp_prequeue_init(tp);
385 	INIT_LIST_HEAD(&tp->tsq_node);
386 
387 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 	tp->mdev = TCP_TIMEOUT_INIT;
389 
390 	/* So many TCP implementations out there (incorrectly) count the
391 	 * initial SYN frame in their delayed-ACK and congestion control
392 	 * algorithms that we must have the following bandaid to talk
393 	 * efficiently to them.  -DaveM
394 	 */
395 	tp->snd_cwnd = TCP_INIT_CWND;
396 
397 	/* See draft-stevens-tcpca-spec-01 for discussion of the
398 	 * initialization of these values.
399 	 */
400 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
401 	tp->snd_cwnd_clamp = ~0;
402 	tp->mss_cache = TCP_MSS_DEFAULT;
403 
404 	tp->reordering = sysctl_tcp_reordering;
405 	tcp_enable_early_retrans(tp);
406 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
407 
408 	tp->tsoffset = 0;
409 
410 	sk->sk_state = TCP_CLOSE;
411 
412 	sk->sk_write_space = sk_stream_write_space;
413 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
414 
415 	icsk->icsk_sync_mss = tcp_sync_mss;
416 
417 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
418 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
419 
420 	local_bh_disable();
421 	sock_update_memcg(sk);
422 	sk_sockets_allocated_inc(sk);
423 	local_bh_enable();
424 }
425 EXPORT_SYMBOL(tcp_init_sock);
426 
427 /*
428  *	Wait for a TCP event.
429  *
430  *	Note that we don't need to lock the socket, as the upper poll layers
431  *	take care of normal races (between the test and the event) and we don't
432  *	go look at any of the socket buffers directly.
433  */
434 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
435 {
436 	unsigned int mask;
437 	struct sock *sk = sock->sk;
438 	const struct tcp_sock *tp = tcp_sk(sk);
439 
440 	sock_rps_record_flow(sk);
441 
442 	sock_poll_wait(file, sk_sleep(sk), wait);
443 	if (sk->sk_state == TCP_LISTEN)
444 		return inet_csk_listen_poll(sk);
445 
446 	/* Socket is not locked. We are protected from async events
447 	 * by poll logic and correct handling of state changes
448 	 * made by other threads is impossible in any case.
449 	 */
450 
451 	mask = 0;
452 
453 	/*
454 	 * POLLHUP is certainly not done right. But poll() doesn't
455 	 * have a notion of HUP in just one direction, and for a
456 	 * socket the read side is more interesting.
457 	 *
458 	 * Some poll() documentation says that POLLHUP is incompatible
459 	 * with the POLLOUT/POLLWR flags, so somebody should check this
460 	 * all. But careful, it tends to be safer to return too many
461 	 * bits than too few, and you can easily break real applications
462 	 * if you don't tell them that something has hung up!
463 	 *
464 	 * Check-me.
465 	 *
466 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
467 	 * our fs/select.c). It means that after we received EOF,
468 	 * poll always returns immediately, making impossible poll() on write()
469 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
470 	 * if and only if shutdown has been made in both directions.
471 	 * Actually, it is interesting to look how Solaris and DUX
472 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
473 	 * then we could set it on SND_SHUTDOWN. BTW examples given
474 	 * in Stevens' books assume exactly this behaviour, it explains
475 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
476 	 *
477 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
478 	 * blocking on fresh not-connected or disconnected socket. --ANK
479 	 */
480 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
481 		mask |= POLLHUP;
482 	if (sk->sk_shutdown & RCV_SHUTDOWN)
483 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
484 
485 	/* Connected or passive Fast Open socket? */
486 	if (sk->sk_state != TCP_SYN_SENT &&
487 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
488 		int target = sock_rcvlowat(sk, 0, INT_MAX);
489 
490 		if (tp->urg_seq == tp->copied_seq &&
491 		    !sock_flag(sk, SOCK_URGINLINE) &&
492 		    tp->urg_data)
493 			target++;
494 
495 		/* Potential race condition. If read of tp below will
496 		 * escape above sk->sk_state, we can be illegally awaken
497 		 * in SYN_* states. */
498 		if (tp->rcv_nxt - tp->copied_seq >= target)
499 			mask |= POLLIN | POLLRDNORM;
500 
501 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
502 			if (sk_stream_is_writeable(sk)) {
503 				mask |= POLLOUT | POLLWRNORM;
504 			} else {  /* send SIGIO later */
505 				set_bit(SOCK_ASYNC_NOSPACE,
506 					&sk->sk_socket->flags);
507 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
508 
509 				/* Race breaker. If space is freed after
510 				 * wspace test but before the flags are set,
511 				 * IO signal will be lost.
512 				 */
513 				if (sk_stream_is_writeable(sk))
514 					mask |= POLLOUT | POLLWRNORM;
515 			}
516 		} else
517 			mask |= POLLOUT | POLLWRNORM;
518 
519 		if (tp->urg_data & TCP_URG_VALID)
520 			mask |= POLLPRI;
521 	}
522 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
523 	smp_rmb();
524 	if (sk->sk_err)
525 		mask |= POLLERR;
526 
527 	return mask;
528 }
529 EXPORT_SYMBOL(tcp_poll);
530 
531 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
532 {
533 	struct tcp_sock *tp = tcp_sk(sk);
534 	int answ;
535 	bool slow;
536 
537 	switch (cmd) {
538 	case SIOCINQ:
539 		if (sk->sk_state == TCP_LISTEN)
540 			return -EINVAL;
541 
542 		slow = lock_sock_fast(sk);
543 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
544 			answ = 0;
545 		else if (sock_flag(sk, SOCK_URGINLINE) ||
546 			 !tp->urg_data ||
547 			 before(tp->urg_seq, tp->copied_seq) ||
548 			 !before(tp->urg_seq, tp->rcv_nxt)) {
549 
550 			answ = tp->rcv_nxt - tp->copied_seq;
551 
552 			/* Subtract 1, if FIN was received */
553 			if (answ && sock_flag(sk, SOCK_DONE))
554 				answ--;
555 		} else
556 			answ = tp->urg_seq - tp->copied_seq;
557 		unlock_sock_fast(sk, slow);
558 		break;
559 	case SIOCATMARK:
560 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
561 		break;
562 	case SIOCOUTQ:
563 		if (sk->sk_state == TCP_LISTEN)
564 			return -EINVAL;
565 
566 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
567 			answ = 0;
568 		else
569 			answ = tp->write_seq - tp->snd_una;
570 		break;
571 	case SIOCOUTQNSD:
572 		if (sk->sk_state == TCP_LISTEN)
573 			return -EINVAL;
574 
575 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
576 			answ = 0;
577 		else
578 			answ = tp->write_seq - tp->snd_nxt;
579 		break;
580 	default:
581 		return -ENOIOCTLCMD;
582 	}
583 
584 	return put_user(answ, (int __user *)arg);
585 }
586 EXPORT_SYMBOL(tcp_ioctl);
587 
588 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
589 {
590 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
591 	tp->pushed_seq = tp->write_seq;
592 }
593 
594 static inline bool forced_push(const struct tcp_sock *tp)
595 {
596 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
597 }
598 
599 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
600 {
601 	struct tcp_sock *tp = tcp_sk(sk);
602 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
603 
604 	skb->csum    = 0;
605 	tcb->seq     = tcb->end_seq = tp->write_seq;
606 	tcb->tcp_flags = TCPHDR_ACK;
607 	tcb->sacked  = 0;
608 	skb_header_release(skb);
609 	tcp_add_write_queue_tail(sk, skb);
610 	sk->sk_wmem_queued += skb->truesize;
611 	sk_mem_charge(sk, skb->truesize);
612 	if (tp->nonagle & TCP_NAGLE_PUSH)
613 		tp->nonagle &= ~TCP_NAGLE_PUSH;
614 }
615 
616 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
617 {
618 	if (flags & MSG_OOB)
619 		tp->snd_up = tp->write_seq;
620 }
621 
622 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
623 			    int nonagle)
624 {
625 	if (tcp_send_head(sk)) {
626 		struct tcp_sock *tp = tcp_sk(sk);
627 
628 		if (!(flags & MSG_MORE) || forced_push(tp))
629 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
630 
631 		tcp_mark_urg(tp, flags);
632 		__tcp_push_pending_frames(sk, mss_now,
633 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
634 	}
635 }
636 
637 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
638 				unsigned int offset, size_t len)
639 {
640 	struct tcp_splice_state *tss = rd_desc->arg.data;
641 	int ret;
642 
643 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
644 			      tss->flags);
645 	if (ret > 0)
646 		rd_desc->count -= ret;
647 	return ret;
648 }
649 
650 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
651 {
652 	/* Store TCP splice context information in read_descriptor_t. */
653 	read_descriptor_t rd_desc = {
654 		.arg.data = tss,
655 		.count	  = tss->len,
656 	};
657 
658 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
659 }
660 
661 /**
662  *  tcp_splice_read - splice data from TCP socket to a pipe
663  * @sock:	socket to splice from
664  * @ppos:	position (not valid)
665  * @pipe:	pipe to splice to
666  * @len:	number of bytes to splice
667  * @flags:	splice modifier flags
668  *
669  * Description:
670  *    Will read pages from given socket and fill them into a pipe.
671  *
672  **/
673 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
674 			struct pipe_inode_info *pipe, size_t len,
675 			unsigned int flags)
676 {
677 	struct sock *sk = sock->sk;
678 	struct tcp_splice_state tss = {
679 		.pipe = pipe,
680 		.len = len,
681 		.flags = flags,
682 	};
683 	long timeo;
684 	ssize_t spliced;
685 	int ret;
686 
687 	sock_rps_record_flow(sk);
688 	/*
689 	 * We can't seek on a socket input
690 	 */
691 	if (unlikely(*ppos))
692 		return -ESPIPE;
693 
694 	ret = spliced = 0;
695 
696 	lock_sock(sk);
697 
698 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
699 	while (tss.len) {
700 		ret = __tcp_splice_read(sk, &tss);
701 		if (ret < 0)
702 			break;
703 		else if (!ret) {
704 			if (spliced)
705 				break;
706 			if (sock_flag(sk, SOCK_DONE))
707 				break;
708 			if (sk->sk_err) {
709 				ret = sock_error(sk);
710 				break;
711 			}
712 			if (sk->sk_shutdown & RCV_SHUTDOWN)
713 				break;
714 			if (sk->sk_state == TCP_CLOSE) {
715 				/*
716 				 * This occurs when user tries to read
717 				 * from never connected socket.
718 				 */
719 				if (!sock_flag(sk, SOCK_DONE))
720 					ret = -ENOTCONN;
721 				break;
722 			}
723 			if (!timeo) {
724 				ret = -EAGAIN;
725 				break;
726 			}
727 			sk_wait_data(sk, &timeo);
728 			if (signal_pending(current)) {
729 				ret = sock_intr_errno(timeo);
730 				break;
731 			}
732 			continue;
733 		}
734 		tss.len -= ret;
735 		spliced += ret;
736 
737 		if (!timeo)
738 			break;
739 		release_sock(sk);
740 		lock_sock(sk);
741 
742 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
743 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
744 		    signal_pending(current))
745 			break;
746 	}
747 
748 	release_sock(sk);
749 
750 	if (spliced)
751 		return spliced;
752 
753 	return ret;
754 }
755 EXPORT_SYMBOL(tcp_splice_read);
756 
757 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
758 {
759 	struct sk_buff *skb;
760 
761 	/* The TCP header must be at least 32-bit aligned.  */
762 	size = ALIGN(size, 4);
763 
764 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
765 	if (skb) {
766 		if (sk_wmem_schedule(sk, skb->truesize)) {
767 			skb_reserve(skb, sk->sk_prot->max_header);
768 			/*
769 			 * Make sure that we have exactly size bytes
770 			 * available to the caller, no more, no less.
771 			 */
772 			skb->reserved_tailroom = skb->end - skb->tail - size;
773 			return skb;
774 		}
775 		__kfree_skb(skb);
776 	} else {
777 		sk->sk_prot->enter_memory_pressure(sk);
778 		sk_stream_moderate_sndbuf(sk);
779 	}
780 	return NULL;
781 }
782 
783 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
784 				       int large_allowed)
785 {
786 	struct tcp_sock *tp = tcp_sk(sk);
787 	u32 xmit_size_goal, old_size_goal;
788 
789 	xmit_size_goal = mss_now;
790 
791 	if (large_allowed && sk_can_gso(sk)) {
792 		u32 gso_size, hlen;
793 
794 		/* Maybe we should/could use sk->sk_prot->max_header here ? */
795 		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
796 		       inet_csk(sk)->icsk_ext_hdr_len +
797 		       tp->tcp_header_len;
798 
799 		/* Goal is to send at least one packet per ms,
800 		 * not one big TSO packet every 100 ms.
801 		 * This preserves ACK clocking and is consistent
802 		 * with tcp_tso_should_defer() heuristic.
803 		 */
804 		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
805 		gso_size = max_t(u32, gso_size,
806 				 sysctl_tcp_min_tso_segs * mss_now);
807 
808 		xmit_size_goal = min_t(u32, gso_size,
809 				       sk->sk_gso_max_size - 1 - hlen);
810 
811 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
812 
813 		/* We try hard to avoid divides here */
814 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
815 
816 		if (likely(old_size_goal <= xmit_size_goal &&
817 			   old_size_goal + mss_now > xmit_size_goal)) {
818 			xmit_size_goal = old_size_goal;
819 		} else {
820 			tp->xmit_size_goal_segs =
821 				min_t(u16, xmit_size_goal / mss_now,
822 				      sk->sk_gso_max_segs);
823 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
824 		}
825 	}
826 
827 	return max(xmit_size_goal, mss_now);
828 }
829 
830 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
831 {
832 	int mss_now;
833 
834 	mss_now = tcp_current_mss(sk);
835 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
836 
837 	return mss_now;
838 }
839 
840 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
841 				size_t size, int flags)
842 {
843 	struct tcp_sock *tp = tcp_sk(sk);
844 	int mss_now, size_goal;
845 	int err;
846 	ssize_t copied;
847 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
848 
849 	/* Wait for a connection to finish. One exception is TCP Fast Open
850 	 * (passive side) where data is allowed to be sent before a connection
851 	 * is fully established.
852 	 */
853 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
854 	    !tcp_passive_fastopen(sk)) {
855 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
856 			goto out_err;
857 	}
858 
859 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
860 
861 	mss_now = tcp_send_mss(sk, &size_goal, flags);
862 	copied = 0;
863 
864 	err = -EPIPE;
865 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
866 		goto out_err;
867 
868 	while (size > 0) {
869 		struct sk_buff *skb = tcp_write_queue_tail(sk);
870 		int copy, i;
871 		bool can_coalesce;
872 
873 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
874 new_segment:
875 			if (!sk_stream_memory_free(sk))
876 				goto wait_for_sndbuf;
877 
878 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
879 			if (!skb)
880 				goto wait_for_memory;
881 
882 			skb_entail(sk, skb);
883 			copy = size_goal;
884 		}
885 
886 		if (copy > size)
887 			copy = size;
888 
889 		i = skb_shinfo(skb)->nr_frags;
890 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
891 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
892 			tcp_mark_push(tp, skb);
893 			goto new_segment;
894 		}
895 		if (!sk_wmem_schedule(sk, copy))
896 			goto wait_for_memory;
897 
898 		if (can_coalesce) {
899 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
900 		} else {
901 			get_page(page);
902 			skb_fill_page_desc(skb, i, page, offset, copy);
903 		}
904 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
905 
906 		skb->len += copy;
907 		skb->data_len += copy;
908 		skb->truesize += copy;
909 		sk->sk_wmem_queued += copy;
910 		sk_mem_charge(sk, copy);
911 		skb->ip_summed = CHECKSUM_PARTIAL;
912 		tp->write_seq += copy;
913 		TCP_SKB_CB(skb)->end_seq += copy;
914 		skb_shinfo(skb)->gso_segs = 0;
915 
916 		if (!copied)
917 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
918 
919 		copied += copy;
920 		offset += copy;
921 		if (!(size -= copy))
922 			goto out;
923 
924 		if (skb->len < size_goal || (flags & MSG_OOB))
925 			continue;
926 
927 		if (forced_push(tp)) {
928 			tcp_mark_push(tp, skb);
929 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
930 		} else if (skb == tcp_send_head(sk))
931 			tcp_push_one(sk, mss_now);
932 		continue;
933 
934 wait_for_sndbuf:
935 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
936 wait_for_memory:
937 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
938 
939 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
940 			goto do_error;
941 
942 		mss_now = tcp_send_mss(sk, &size_goal, flags);
943 	}
944 
945 out:
946 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
947 		tcp_push(sk, flags, mss_now, tp->nonagle);
948 	return copied;
949 
950 do_error:
951 	if (copied)
952 		goto out;
953 out_err:
954 	return sk_stream_error(sk, flags, err);
955 }
956 
957 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
958 		 size_t size, int flags)
959 {
960 	ssize_t res;
961 
962 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
963 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
964 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
965 					flags);
966 
967 	lock_sock(sk);
968 	res = do_tcp_sendpages(sk, page, offset, size, flags);
969 	release_sock(sk);
970 	return res;
971 }
972 EXPORT_SYMBOL(tcp_sendpage);
973 
974 static inline int select_size(const struct sock *sk, bool sg)
975 {
976 	const struct tcp_sock *tp = tcp_sk(sk);
977 	int tmp = tp->mss_cache;
978 
979 	if (sg) {
980 		if (sk_can_gso(sk)) {
981 			/* Small frames wont use a full page:
982 			 * Payload will immediately follow tcp header.
983 			 */
984 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
985 		} else {
986 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
987 
988 			if (tmp >= pgbreak &&
989 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
990 				tmp = pgbreak;
991 		}
992 	}
993 
994 	return tmp;
995 }
996 
997 void tcp_free_fastopen_req(struct tcp_sock *tp)
998 {
999 	if (tp->fastopen_req != NULL) {
1000 		kfree(tp->fastopen_req);
1001 		tp->fastopen_req = NULL;
1002 	}
1003 }
1004 
1005 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1006 {
1007 	struct tcp_sock *tp = tcp_sk(sk);
1008 	int err, flags;
1009 
1010 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1011 		return -EOPNOTSUPP;
1012 	if (tp->fastopen_req != NULL)
1013 		return -EALREADY; /* Another Fast Open is in progress */
1014 
1015 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1016 				   sk->sk_allocation);
1017 	if (unlikely(tp->fastopen_req == NULL))
1018 		return -ENOBUFS;
1019 	tp->fastopen_req->data = msg;
1020 
1021 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1022 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1023 				    msg->msg_namelen, flags);
1024 	*size = tp->fastopen_req->copied;
1025 	tcp_free_fastopen_req(tp);
1026 	return err;
1027 }
1028 
1029 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1030 		size_t size)
1031 {
1032 	struct iovec *iov;
1033 	struct tcp_sock *tp = tcp_sk(sk);
1034 	struct sk_buff *skb;
1035 	int iovlen, flags, err, copied = 0;
1036 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1037 	bool sg;
1038 	long timeo;
1039 
1040 	lock_sock(sk);
1041 
1042 	flags = msg->msg_flags;
1043 	if (flags & MSG_FASTOPEN) {
1044 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1045 		if (err == -EINPROGRESS && copied_syn > 0)
1046 			goto out;
1047 		else if (err)
1048 			goto out_err;
1049 		offset = copied_syn;
1050 	}
1051 
1052 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1053 
1054 	/* Wait for a connection to finish. One exception is TCP Fast Open
1055 	 * (passive side) where data is allowed to be sent before a connection
1056 	 * is fully established.
1057 	 */
1058 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1059 	    !tcp_passive_fastopen(sk)) {
1060 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1061 			goto do_error;
1062 	}
1063 
1064 	if (unlikely(tp->repair)) {
1065 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1066 			copied = tcp_send_rcvq(sk, msg, size);
1067 			goto out;
1068 		}
1069 
1070 		err = -EINVAL;
1071 		if (tp->repair_queue == TCP_NO_QUEUE)
1072 			goto out_err;
1073 
1074 		/* 'common' sending to sendq */
1075 	}
1076 
1077 	/* This should be in poll */
1078 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1079 
1080 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1081 
1082 	/* Ok commence sending. */
1083 	iovlen = msg->msg_iovlen;
1084 	iov = msg->msg_iov;
1085 	copied = 0;
1086 
1087 	err = -EPIPE;
1088 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1089 		goto out_err;
1090 
1091 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1092 
1093 	while (--iovlen >= 0) {
1094 		size_t seglen = iov->iov_len;
1095 		unsigned char __user *from = iov->iov_base;
1096 
1097 		iov++;
1098 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1099 			if (offset >= seglen) {
1100 				offset -= seglen;
1101 				continue;
1102 			}
1103 			seglen -= offset;
1104 			from += offset;
1105 			offset = 0;
1106 		}
1107 
1108 		while (seglen > 0) {
1109 			int copy = 0;
1110 			int max = size_goal;
1111 
1112 			skb = tcp_write_queue_tail(sk);
1113 			if (tcp_send_head(sk)) {
1114 				if (skb->ip_summed == CHECKSUM_NONE)
1115 					max = mss_now;
1116 				copy = max - skb->len;
1117 			}
1118 
1119 			if (copy <= 0) {
1120 new_segment:
1121 				/* Allocate new segment. If the interface is SG,
1122 				 * allocate skb fitting to single page.
1123 				 */
1124 				if (!sk_stream_memory_free(sk))
1125 					goto wait_for_sndbuf;
1126 
1127 				skb = sk_stream_alloc_skb(sk,
1128 							  select_size(sk, sg),
1129 							  sk->sk_allocation);
1130 				if (!skb)
1131 					goto wait_for_memory;
1132 
1133 				/*
1134 				 * All packets are restored as if they have
1135 				 * already been sent.
1136 				 */
1137 				if (tp->repair)
1138 					TCP_SKB_CB(skb)->when = tcp_time_stamp;
1139 
1140 				/*
1141 				 * Check whether we can use HW checksum.
1142 				 */
1143 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1144 					skb->ip_summed = CHECKSUM_PARTIAL;
1145 
1146 				skb_entail(sk, skb);
1147 				copy = size_goal;
1148 				max = size_goal;
1149 			}
1150 
1151 			/* Try to append data to the end of skb. */
1152 			if (copy > seglen)
1153 				copy = seglen;
1154 
1155 			/* Where to copy to? */
1156 			if (skb_availroom(skb) > 0) {
1157 				/* We have some space in skb head. Superb! */
1158 				copy = min_t(int, copy, skb_availroom(skb));
1159 				err = skb_add_data_nocache(sk, skb, from, copy);
1160 				if (err)
1161 					goto do_fault;
1162 			} else {
1163 				bool merge = true;
1164 				int i = skb_shinfo(skb)->nr_frags;
1165 				struct page_frag *pfrag = sk_page_frag(sk);
1166 
1167 				if (!sk_page_frag_refill(sk, pfrag))
1168 					goto wait_for_memory;
1169 
1170 				if (!skb_can_coalesce(skb, i, pfrag->page,
1171 						      pfrag->offset)) {
1172 					if (i == MAX_SKB_FRAGS || !sg) {
1173 						tcp_mark_push(tp, skb);
1174 						goto new_segment;
1175 					}
1176 					merge = false;
1177 				}
1178 
1179 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1180 
1181 				if (!sk_wmem_schedule(sk, copy))
1182 					goto wait_for_memory;
1183 
1184 				err = skb_copy_to_page_nocache(sk, from, skb,
1185 							       pfrag->page,
1186 							       pfrag->offset,
1187 							       copy);
1188 				if (err)
1189 					goto do_error;
1190 
1191 				/* Update the skb. */
1192 				if (merge) {
1193 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1194 				} else {
1195 					skb_fill_page_desc(skb, i, pfrag->page,
1196 							   pfrag->offset, copy);
1197 					get_page(pfrag->page);
1198 				}
1199 				pfrag->offset += copy;
1200 			}
1201 
1202 			if (!copied)
1203 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1204 
1205 			tp->write_seq += copy;
1206 			TCP_SKB_CB(skb)->end_seq += copy;
1207 			skb_shinfo(skb)->gso_segs = 0;
1208 
1209 			from += copy;
1210 			copied += copy;
1211 			if ((seglen -= copy) == 0 && iovlen == 0)
1212 				goto out;
1213 
1214 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1215 				continue;
1216 
1217 			if (forced_push(tp)) {
1218 				tcp_mark_push(tp, skb);
1219 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1220 			} else if (skb == tcp_send_head(sk))
1221 				tcp_push_one(sk, mss_now);
1222 			continue;
1223 
1224 wait_for_sndbuf:
1225 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1226 wait_for_memory:
1227 			if (copied)
1228 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1229 
1230 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1231 				goto do_error;
1232 
1233 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1234 		}
1235 	}
1236 
1237 out:
1238 	if (copied)
1239 		tcp_push(sk, flags, mss_now, tp->nonagle);
1240 	release_sock(sk);
1241 	return copied + copied_syn;
1242 
1243 do_fault:
1244 	if (!skb->len) {
1245 		tcp_unlink_write_queue(skb, sk);
1246 		/* It is the one place in all of TCP, except connection
1247 		 * reset, where we can be unlinking the send_head.
1248 		 */
1249 		tcp_check_send_head(sk, skb);
1250 		sk_wmem_free_skb(sk, skb);
1251 	}
1252 
1253 do_error:
1254 	if (copied + copied_syn)
1255 		goto out;
1256 out_err:
1257 	err = sk_stream_error(sk, flags, err);
1258 	release_sock(sk);
1259 	return err;
1260 }
1261 EXPORT_SYMBOL(tcp_sendmsg);
1262 
1263 /*
1264  *	Handle reading urgent data. BSD has very simple semantics for
1265  *	this, no blocking and very strange errors 8)
1266  */
1267 
1268 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1269 {
1270 	struct tcp_sock *tp = tcp_sk(sk);
1271 
1272 	/* No URG data to read. */
1273 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1274 	    tp->urg_data == TCP_URG_READ)
1275 		return -EINVAL;	/* Yes this is right ! */
1276 
1277 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1278 		return -ENOTCONN;
1279 
1280 	if (tp->urg_data & TCP_URG_VALID) {
1281 		int err = 0;
1282 		char c = tp->urg_data;
1283 
1284 		if (!(flags & MSG_PEEK))
1285 			tp->urg_data = TCP_URG_READ;
1286 
1287 		/* Read urgent data. */
1288 		msg->msg_flags |= MSG_OOB;
1289 
1290 		if (len > 0) {
1291 			if (!(flags & MSG_TRUNC))
1292 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1293 			len = 1;
1294 		} else
1295 			msg->msg_flags |= MSG_TRUNC;
1296 
1297 		return err ? -EFAULT : len;
1298 	}
1299 
1300 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1301 		return 0;
1302 
1303 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1304 	 * the available implementations agree in this case:
1305 	 * this call should never block, independent of the
1306 	 * blocking state of the socket.
1307 	 * Mike <pall@rz.uni-karlsruhe.de>
1308 	 */
1309 	return -EAGAIN;
1310 }
1311 
1312 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1313 {
1314 	struct sk_buff *skb;
1315 	int copied = 0, err = 0;
1316 
1317 	/* XXX -- need to support SO_PEEK_OFF */
1318 
1319 	skb_queue_walk(&sk->sk_write_queue, skb) {
1320 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1321 		if (err)
1322 			break;
1323 
1324 		copied += skb->len;
1325 	}
1326 
1327 	return err ?: copied;
1328 }
1329 
1330 /* Clean up the receive buffer for full frames taken by the user,
1331  * then send an ACK if necessary.  COPIED is the number of bytes
1332  * tcp_recvmsg has given to the user so far, it speeds up the
1333  * calculation of whether or not we must ACK for the sake of
1334  * a window update.
1335  */
1336 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1337 {
1338 	struct tcp_sock *tp = tcp_sk(sk);
1339 	bool time_to_ack = false;
1340 
1341 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1342 
1343 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1344 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1345 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1346 
1347 	if (inet_csk_ack_scheduled(sk)) {
1348 		const struct inet_connection_sock *icsk = inet_csk(sk);
1349 		   /* Delayed ACKs frequently hit locked sockets during bulk
1350 		    * receive. */
1351 		if (icsk->icsk_ack.blocked ||
1352 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1353 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1354 		    /*
1355 		     * If this read emptied read buffer, we send ACK, if
1356 		     * connection is not bidirectional, user drained
1357 		     * receive buffer and there was a small segment
1358 		     * in queue.
1359 		     */
1360 		    (copied > 0 &&
1361 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1362 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1363 		       !icsk->icsk_ack.pingpong)) &&
1364 		      !atomic_read(&sk->sk_rmem_alloc)))
1365 			time_to_ack = true;
1366 	}
1367 
1368 	/* We send an ACK if we can now advertise a non-zero window
1369 	 * which has been raised "significantly".
1370 	 *
1371 	 * Even if window raised up to infinity, do not send window open ACK
1372 	 * in states, where we will not receive more. It is useless.
1373 	 */
1374 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1375 		__u32 rcv_window_now = tcp_receive_window(tp);
1376 
1377 		/* Optimize, __tcp_select_window() is not cheap. */
1378 		if (2*rcv_window_now <= tp->window_clamp) {
1379 			__u32 new_window = __tcp_select_window(sk);
1380 
1381 			/* Send ACK now, if this read freed lots of space
1382 			 * in our buffer. Certainly, new_window is new window.
1383 			 * We can advertise it now, if it is not less than current one.
1384 			 * "Lots" means "at least twice" here.
1385 			 */
1386 			if (new_window && new_window >= 2 * rcv_window_now)
1387 				time_to_ack = true;
1388 		}
1389 	}
1390 	if (time_to_ack)
1391 		tcp_send_ack(sk);
1392 }
1393 
1394 static void tcp_prequeue_process(struct sock *sk)
1395 {
1396 	struct sk_buff *skb;
1397 	struct tcp_sock *tp = tcp_sk(sk);
1398 
1399 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1400 
1401 	/* RX process wants to run with disabled BHs, though it is not
1402 	 * necessary */
1403 	local_bh_disable();
1404 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1405 		sk_backlog_rcv(sk, skb);
1406 	local_bh_enable();
1407 
1408 	/* Clear memory counter. */
1409 	tp->ucopy.memory = 0;
1410 }
1411 
1412 #ifdef CONFIG_NET_DMA
1413 static void tcp_service_net_dma(struct sock *sk, bool wait)
1414 {
1415 	dma_cookie_t done, used;
1416 	dma_cookie_t last_issued;
1417 	struct tcp_sock *tp = tcp_sk(sk);
1418 
1419 	if (!tp->ucopy.dma_chan)
1420 		return;
1421 
1422 	last_issued = tp->ucopy.dma_cookie;
1423 	dma_async_issue_pending(tp->ucopy.dma_chan);
1424 
1425 	do {
1426 		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1427 					      last_issued, &done,
1428 					      &used) == DMA_COMPLETE) {
1429 			/* Safe to free early-copied skbs now */
1430 			__skb_queue_purge(&sk->sk_async_wait_queue);
1431 			break;
1432 		} else {
1433 			struct sk_buff *skb;
1434 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1435 			       (dma_async_is_complete(skb->dma_cookie, done,
1436 						      used) == DMA_COMPLETE)) {
1437 				__skb_dequeue(&sk->sk_async_wait_queue);
1438 				kfree_skb(skb);
1439 			}
1440 		}
1441 	} while (wait);
1442 }
1443 #endif
1444 
1445 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1446 {
1447 	struct sk_buff *skb;
1448 	u32 offset;
1449 
1450 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1451 		offset = seq - TCP_SKB_CB(skb)->seq;
1452 		if (tcp_hdr(skb)->syn)
1453 			offset--;
1454 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1455 			*off = offset;
1456 			return skb;
1457 		}
1458 		/* This looks weird, but this can happen if TCP collapsing
1459 		 * splitted a fat GRO packet, while we released socket lock
1460 		 * in skb_splice_bits()
1461 		 */
1462 		sk_eat_skb(sk, skb, false);
1463 	}
1464 	return NULL;
1465 }
1466 
1467 /*
1468  * This routine provides an alternative to tcp_recvmsg() for routines
1469  * that would like to handle copying from skbuffs directly in 'sendfile'
1470  * fashion.
1471  * Note:
1472  *	- It is assumed that the socket was locked by the caller.
1473  *	- The routine does not block.
1474  *	- At present, there is no support for reading OOB data
1475  *	  or for 'peeking' the socket using this routine
1476  *	  (although both would be easy to implement).
1477  */
1478 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1479 		  sk_read_actor_t recv_actor)
1480 {
1481 	struct sk_buff *skb;
1482 	struct tcp_sock *tp = tcp_sk(sk);
1483 	u32 seq = tp->copied_seq;
1484 	u32 offset;
1485 	int copied = 0;
1486 
1487 	if (sk->sk_state == TCP_LISTEN)
1488 		return -ENOTCONN;
1489 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1490 		if (offset < skb->len) {
1491 			int used;
1492 			size_t len;
1493 
1494 			len = skb->len - offset;
1495 			/* Stop reading if we hit a patch of urgent data */
1496 			if (tp->urg_data) {
1497 				u32 urg_offset = tp->urg_seq - seq;
1498 				if (urg_offset < len)
1499 					len = urg_offset;
1500 				if (!len)
1501 					break;
1502 			}
1503 			used = recv_actor(desc, skb, offset, len);
1504 			if (used <= 0) {
1505 				if (!copied)
1506 					copied = used;
1507 				break;
1508 			} else if (used <= len) {
1509 				seq += used;
1510 				copied += used;
1511 				offset += used;
1512 			}
1513 			/* If recv_actor drops the lock (e.g. TCP splice
1514 			 * receive) the skb pointer might be invalid when
1515 			 * getting here: tcp_collapse might have deleted it
1516 			 * while aggregating skbs from the socket queue.
1517 			 */
1518 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1519 			if (!skb)
1520 				break;
1521 			/* TCP coalescing might have appended data to the skb.
1522 			 * Try to splice more frags
1523 			 */
1524 			if (offset + 1 != skb->len)
1525 				continue;
1526 		}
1527 		if (tcp_hdr(skb)->fin) {
1528 			sk_eat_skb(sk, skb, false);
1529 			++seq;
1530 			break;
1531 		}
1532 		sk_eat_skb(sk, skb, false);
1533 		if (!desc->count)
1534 			break;
1535 		tp->copied_seq = seq;
1536 	}
1537 	tp->copied_seq = seq;
1538 
1539 	tcp_rcv_space_adjust(sk);
1540 
1541 	/* Clean up data we have read: This will do ACK frames. */
1542 	if (copied > 0) {
1543 		tcp_recv_skb(sk, seq, &offset);
1544 		tcp_cleanup_rbuf(sk, copied);
1545 	}
1546 	return copied;
1547 }
1548 EXPORT_SYMBOL(tcp_read_sock);
1549 
1550 /*
1551  *	This routine copies from a sock struct into the user buffer.
1552  *
1553  *	Technical note: in 2.3 we work on _locked_ socket, so that
1554  *	tricks with *seq access order and skb->users are not required.
1555  *	Probably, code can be easily improved even more.
1556  */
1557 
1558 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1559 		size_t len, int nonblock, int flags, int *addr_len)
1560 {
1561 	struct tcp_sock *tp = tcp_sk(sk);
1562 	int copied = 0;
1563 	u32 peek_seq;
1564 	u32 *seq;
1565 	unsigned long used;
1566 	int err;
1567 	int target;		/* Read at least this many bytes */
1568 	long timeo;
1569 	struct task_struct *user_recv = NULL;
1570 	bool copied_early = false;
1571 	struct sk_buff *skb;
1572 	u32 urg_hole = 0;
1573 
1574 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1575 	    (sk->sk_state == TCP_ESTABLISHED))
1576 		sk_busy_loop(sk, nonblock);
1577 
1578 	lock_sock(sk);
1579 
1580 	err = -ENOTCONN;
1581 	if (sk->sk_state == TCP_LISTEN)
1582 		goto out;
1583 
1584 	timeo = sock_rcvtimeo(sk, nonblock);
1585 
1586 	/* Urgent data needs to be handled specially. */
1587 	if (flags & MSG_OOB)
1588 		goto recv_urg;
1589 
1590 	if (unlikely(tp->repair)) {
1591 		err = -EPERM;
1592 		if (!(flags & MSG_PEEK))
1593 			goto out;
1594 
1595 		if (tp->repair_queue == TCP_SEND_QUEUE)
1596 			goto recv_sndq;
1597 
1598 		err = -EINVAL;
1599 		if (tp->repair_queue == TCP_NO_QUEUE)
1600 			goto out;
1601 
1602 		/* 'common' recv queue MSG_PEEK-ing */
1603 	}
1604 
1605 	seq = &tp->copied_seq;
1606 	if (flags & MSG_PEEK) {
1607 		peek_seq = tp->copied_seq;
1608 		seq = &peek_seq;
1609 	}
1610 
1611 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1612 
1613 #ifdef CONFIG_NET_DMA
1614 	tp->ucopy.dma_chan = NULL;
1615 	preempt_disable();
1616 	skb = skb_peek_tail(&sk->sk_receive_queue);
1617 	{
1618 		int available = 0;
1619 
1620 		if (skb)
1621 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1622 		if ((available < target) &&
1623 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1624 		    !sysctl_tcp_low_latency &&
1625 		    net_dma_find_channel()) {
1626 			preempt_enable_no_resched();
1627 			tp->ucopy.pinned_list =
1628 					dma_pin_iovec_pages(msg->msg_iov, len);
1629 		} else {
1630 			preempt_enable_no_resched();
1631 		}
1632 	}
1633 #endif
1634 
1635 	do {
1636 		u32 offset;
1637 
1638 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1639 		if (tp->urg_data && tp->urg_seq == *seq) {
1640 			if (copied)
1641 				break;
1642 			if (signal_pending(current)) {
1643 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1644 				break;
1645 			}
1646 		}
1647 
1648 		/* Next get a buffer. */
1649 
1650 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1651 			/* Now that we have two receive queues this
1652 			 * shouldn't happen.
1653 			 */
1654 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1655 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1656 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1657 				 flags))
1658 				break;
1659 
1660 			offset = *seq - TCP_SKB_CB(skb)->seq;
1661 			if (tcp_hdr(skb)->syn)
1662 				offset--;
1663 			if (offset < skb->len)
1664 				goto found_ok_skb;
1665 			if (tcp_hdr(skb)->fin)
1666 				goto found_fin_ok;
1667 			WARN(!(flags & MSG_PEEK),
1668 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1669 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1670 		}
1671 
1672 		/* Well, if we have backlog, try to process it now yet. */
1673 
1674 		if (copied >= target && !sk->sk_backlog.tail)
1675 			break;
1676 
1677 		if (copied) {
1678 			if (sk->sk_err ||
1679 			    sk->sk_state == TCP_CLOSE ||
1680 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1681 			    !timeo ||
1682 			    signal_pending(current))
1683 				break;
1684 		} else {
1685 			if (sock_flag(sk, SOCK_DONE))
1686 				break;
1687 
1688 			if (sk->sk_err) {
1689 				copied = sock_error(sk);
1690 				break;
1691 			}
1692 
1693 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1694 				break;
1695 
1696 			if (sk->sk_state == TCP_CLOSE) {
1697 				if (!sock_flag(sk, SOCK_DONE)) {
1698 					/* This occurs when user tries to read
1699 					 * from never connected socket.
1700 					 */
1701 					copied = -ENOTCONN;
1702 					break;
1703 				}
1704 				break;
1705 			}
1706 
1707 			if (!timeo) {
1708 				copied = -EAGAIN;
1709 				break;
1710 			}
1711 
1712 			if (signal_pending(current)) {
1713 				copied = sock_intr_errno(timeo);
1714 				break;
1715 			}
1716 		}
1717 
1718 		tcp_cleanup_rbuf(sk, copied);
1719 
1720 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1721 			/* Install new reader */
1722 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1723 				user_recv = current;
1724 				tp->ucopy.task = user_recv;
1725 				tp->ucopy.iov = msg->msg_iov;
1726 			}
1727 
1728 			tp->ucopy.len = len;
1729 
1730 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1731 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1732 
1733 			/* Ugly... If prequeue is not empty, we have to
1734 			 * process it before releasing socket, otherwise
1735 			 * order will be broken at second iteration.
1736 			 * More elegant solution is required!!!
1737 			 *
1738 			 * Look: we have the following (pseudo)queues:
1739 			 *
1740 			 * 1. packets in flight
1741 			 * 2. backlog
1742 			 * 3. prequeue
1743 			 * 4. receive_queue
1744 			 *
1745 			 * Each queue can be processed only if the next ones
1746 			 * are empty. At this point we have empty receive_queue.
1747 			 * But prequeue _can_ be not empty after 2nd iteration,
1748 			 * when we jumped to start of loop because backlog
1749 			 * processing added something to receive_queue.
1750 			 * We cannot release_sock(), because backlog contains
1751 			 * packets arrived _after_ prequeued ones.
1752 			 *
1753 			 * Shortly, algorithm is clear --- to process all
1754 			 * the queues in order. We could make it more directly,
1755 			 * requeueing packets from backlog to prequeue, if
1756 			 * is not empty. It is more elegant, but eats cycles,
1757 			 * unfortunately.
1758 			 */
1759 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1760 				goto do_prequeue;
1761 
1762 			/* __ Set realtime policy in scheduler __ */
1763 		}
1764 
1765 #ifdef CONFIG_NET_DMA
1766 		if (tp->ucopy.dma_chan) {
1767 			if (tp->rcv_wnd == 0 &&
1768 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1769 				tcp_service_net_dma(sk, true);
1770 				tcp_cleanup_rbuf(sk, copied);
1771 			} else
1772 				dma_async_issue_pending(tp->ucopy.dma_chan);
1773 		}
1774 #endif
1775 		if (copied >= target) {
1776 			/* Do not sleep, just process backlog. */
1777 			release_sock(sk);
1778 			lock_sock(sk);
1779 		} else
1780 			sk_wait_data(sk, &timeo);
1781 
1782 #ifdef CONFIG_NET_DMA
1783 		tcp_service_net_dma(sk, false);  /* Don't block */
1784 		tp->ucopy.wakeup = 0;
1785 #endif
1786 
1787 		if (user_recv) {
1788 			int chunk;
1789 
1790 			/* __ Restore normal policy in scheduler __ */
1791 
1792 			if ((chunk = len - tp->ucopy.len) != 0) {
1793 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1794 				len -= chunk;
1795 				copied += chunk;
1796 			}
1797 
1798 			if (tp->rcv_nxt == tp->copied_seq &&
1799 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1800 do_prequeue:
1801 				tcp_prequeue_process(sk);
1802 
1803 				if ((chunk = len - tp->ucopy.len) != 0) {
1804 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1805 					len -= chunk;
1806 					copied += chunk;
1807 				}
1808 			}
1809 		}
1810 		if ((flags & MSG_PEEK) &&
1811 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1812 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1813 					    current->comm,
1814 					    task_pid_nr(current));
1815 			peek_seq = tp->copied_seq;
1816 		}
1817 		continue;
1818 
1819 	found_ok_skb:
1820 		/* Ok so how much can we use? */
1821 		used = skb->len - offset;
1822 		if (len < used)
1823 			used = len;
1824 
1825 		/* Do we have urgent data here? */
1826 		if (tp->urg_data) {
1827 			u32 urg_offset = tp->urg_seq - *seq;
1828 			if (urg_offset < used) {
1829 				if (!urg_offset) {
1830 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1831 						++*seq;
1832 						urg_hole++;
1833 						offset++;
1834 						used--;
1835 						if (!used)
1836 							goto skip_copy;
1837 					}
1838 				} else
1839 					used = urg_offset;
1840 			}
1841 		}
1842 
1843 		if (!(flags & MSG_TRUNC)) {
1844 #ifdef CONFIG_NET_DMA
1845 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1846 				tp->ucopy.dma_chan = net_dma_find_channel();
1847 
1848 			if (tp->ucopy.dma_chan) {
1849 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1850 					tp->ucopy.dma_chan, skb, offset,
1851 					msg->msg_iov, used,
1852 					tp->ucopy.pinned_list);
1853 
1854 				if (tp->ucopy.dma_cookie < 0) {
1855 
1856 					pr_alert("%s: dma_cookie < 0\n",
1857 						 __func__);
1858 
1859 					/* Exception. Bailout! */
1860 					if (!copied)
1861 						copied = -EFAULT;
1862 					break;
1863 				}
1864 
1865 				dma_async_issue_pending(tp->ucopy.dma_chan);
1866 
1867 				if ((offset + used) == skb->len)
1868 					copied_early = true;
1869 
1870 			} else
1871 #endif
1872 			{
1873 				err = skb_copy_datagram_iovec(skb, offset,
1874 						msg->msg_iov, used);
1875 				if (err) {
1876 					/* Exception. Bailout! */
1877 					if (!copied)
1878 						copied = -EFAULT;
1879 					break;
1880 				}
1881 			}
1882 		}
1883 
1884 		*seq += used;
1885 		copied += used;
1886 		len -= used;
1887 
1888 		tcp_rcv_space_adjust(sk);
1889 
1890 skip_copy:
1891 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1892 			tp->urg_data = 0;
1893 			tcp_fast_path_check(sk);
1894 		}
1895 		if (used + offset < skb->len)
1896 			continue;
1897 
1898 		if (tcp_hdr(skb)->fin)
1899 			goto found_fin_ok;
1900 		if (!(flags & MSG_PEEK)) {
1901 			sk_eat_skb(sk, skb, copied_early);
1902 			copied_early = false;
1903 		}
1904 		continue;
1905 
1906 	found_fin_ok:
1907 		/* Process the FIN. */
1908 		++*seq;
1909 		if (!(flags & MSG_PEEK)) {
1910 			sk_eat_skb(sk, skb, copied_early);
1911 			copied_early = false;
1912 		}
1913 		break;
1914 	} while (len > 0);
1915 
1916 	if (user_recv) {
1917 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1918 			int chunk;
1919 
1920 			tp->ucopy.len = copied > 0 ? len : 0;
1921 
1922 			tcp_prequeue_process(sk);
1923 
1924 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1925 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1926 				len -= chunk;
1927 				copied += chunk;
1928 			}
1929 		}
1930 
1931 		tp->ucopy.task = NULL;
1932 		tp->ucopy.len = 0;
1933 	}
1934 
1935 #ifdef CONFIG_NET_DMA
1936 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1937 	tp->ucopy.dma_chan = NULL;
1938 
1939 	if (tp->ucopy.pinned_list) {
1940 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1941 		tp->ucopy.pinned_list = NULL;
1942 	}
1943 #endif
1944 
1945 	/* According to UNIX98, msg_name/msg_namelen are ignored
1946 	 * on connected socket. I was just happy when found this 8) --ANK
1947 	 */
1948 
1949 	/* Clean up data we have read: This will do ACK frames. */
1950 	tcp_cleanup_rbuf(sk, copied);
1951 
1952 	release_sock(sk);
1953 	return copied;
1954 
1955 out:
1956 	release_sock(sk);
1957 	return err;
1958 
1959 recv_urg:
1960 	err = tcp_recv_urg(sk, msg, len, flags);
1961 	goto out;
1962 
1963 recv_sndq:
1964 	err = tcp_peek_sndq(sk, msg, len);
1965 	goto out;
1966 }
1967 EXPORT_SYMBOL(tcp_recvmsg);
1968 
1969 void tcp_set_state(struct sock *sk, int state)
1970 {
1971 	int oldstate = sk->sk_state;
1972 
1973 	switch (state) {
1974 	case TCP_ESTABLISHED:
1975 		if (oldstate != TCP_ESTABLISHED)
1976 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1977 		break;
1978 
1979 	case TCP_CLOSE:
1980 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1981 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1982 
1983 		sk->sk_prot->unhash(sk);
1984 		if (inet_csk(sk)->icsk_bind_hash &&
1985 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1986 			inet_put_port(sk);
1987 		/* fall through */
1988 	default:
1989 		if (oldstate == TCP_ESTABLISHED)
1990 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1991 	}
1992 
1993 	/* Change state AFTER socket is unhashed to avoid closed
1994 	 * socket sitting in hash tables.
1995 	 */
1996 	sk->sk_state = state;
1997 
1998 #ifdef STATE_TRACE
1999 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2000 #endif
2001 }
2002 EXPORT_SYMBOL_GPL(tcp_set_state);
2003 
2004 /*
2005  *	State processing on a close. This implements the state shift for
2006  *	sending our FIN frame. Note that we only send a FIN for some
2007  *	states. A shutdown() may have already sent the FIN, or we may be
2008  *	closed.
2009  */
2010 
2011 static const unsigned char new_state[16] = {
2012   /* current state:        new state:      action:	*/
2013   /* (Invalid)		*/ TCP_CLOSE,
2014   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2015   /* TCP_SYN_SENT	*/ TCP_CLOSE,
2016   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2017   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2018   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2019   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2020   /* TCP_CLOSE		*/ TCP_CLOSE,
2021   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2022   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2023   /* TCP_LISTEN		*/ TCP_CLOSE,
2024   /* TCP_CLOSING	*/ TCP_CLOSING,
2025 };
2026 
2027 static int tcp_close_state(struct sock *sk)
2028 {
2029 	int next = (int)new_state[sk->sk_state];
2030 	int ns = next & TCP_STATE_MASK;
2031 
2032 	tcp_set_state(sk, ns);
2033 
2034 	return next & TCP_ACTION_FIN;
2035 }
2036 
2037 /*
2038  *	Shutdown the sending side of a connection. Much like close except
2039  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2040  */
2041 
2042 void tcp_shutdown(struct sock *sk, int how)
2043 {
2044 	/*	We need to grab some memory, and put together a FIN,
2045 	 *	and then put it into the queue to be sent.
2046 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2047 	 */
2048 	if (!(how & SEND_SHUTDOWN))
2049 		return;
2050 
2051 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2052 	if ((1 << sk->sk_state) &
2053 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2054 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2055 		/* Clear out any half completed packets.  FIN if needed. */
2056 		if (tcp_close_state(sk))
2057 			tcp_send_fin(sk);
2058 	}
2059 }
2060 EXPORT_SYMBOL(tcp_shutdown);
2061 
2062 bool tcp_check_oom(struct sock *sk, int shift)
2063 {
2064 	bool too_many_orphans, out_of_socket_memory;
2065 
2066 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2067 	out_of_socket_memory = tcp_out_of_memory(sk);
2068 
2069 	if (too_many_orphans)
2070 		net_info_ratelimited("too many orphaned sockets\n");
2071 	if (out_of_socket_memory)
2072 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2073 	return too_many_orphans || out_of_socket_memory;
2074 }
2075 
2076 void tcp_close(struct sock *sk, long timeout)
2077 {
2078 	struct sk_buff *skb;
2079 	int data_was_unread = 0;
2080 	int state;
2081 
2082 	lock_sock(sk);
2083 	sk->sk_shutdown = SHUTDOWN_MASK;
2084 
2085 	if (sk->sk_state == TCP_LISTEN) {
2086 		tcp_set_state(sk, TCP_CLOSE);
2087 
2088 		/* Special case. */
2089 		inet_csk_listen_stop(sk);
2090 
2091 		goto adjudge_to_death;
2092 	}
2093 
2094 	/*  We need to flush the recv. buffs.  We do this only on the
2095 	 *  descriptor close, not protocol-sourced closes, because the
2096 	 *  reader process may not have drained the data yet!
2097 	 */
2098 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2099 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2100 			  tcp_hdr(skb)->fin;
2101 		data_was_unread += len;
2102 		__kfree_skb(skb);
2103 	}
2104 
2105 	sk_mem_reclaim(sk);
2106 
2107 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2108 	if (sk->sk_state == TCP_CLOSE)
2109 		goto adjudge_to_death;
2110 
2111 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2112 	 * data was lost. To witness the awful effects of the old behavior of
2113 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2114 	 * GET in an FTP client, suspend the process, wait for the client to
2115 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2116 	 * Note: timeout is always zero in such a case.
2117 	 */
2118 	if (unlikely(tcp_sk(sk)->repair)) {
2119 		sk->sk_prot->disconnect(sk, 0);
2120 	} else if (data_was_unread) {
2121 		/* Unread data was tossed, zap the connection. */
2122 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2123 		tcp_set_state(sk, TCP_CLOSE);
2124 		tcp_send_active_reset(sk, sk->sk_allocation);
2125 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2126 		/* Check zero linger _after_ checking for unread data. */
2127 		sk->sk_prot->disconnect(sk, 0);
2128 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2129 	} else if (tcp_close_state(sk)) {
2130 		/* We FIN if the application ate all the data before
2131 		 * zapping the connection.
2132 		 */
2133 
2134 		/* RED-PEN. Formally speaking, we have broken TCP state
2135 		 * machine. State transitions:
2136 		 *
2137 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2138 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2139 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2140 		 *
2141 		 * are legal only when FIN has been sent (i.e. in window),
2142 		 * rather than queued out of window. Purists blame.
2143 		 *
2144 		 * F.e. "RFC state" is ESTABLISHED,
2145 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2146 		 *
2147 		 * The visible declinations are that sometimes
2148 		 * we enter time-wait state, when it is not required really
2149 		 * (harmless), do not send active resets, when they are
2150 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2151 		 * they look as CLOSING or LAST_ACK for Linux)
2152 		 * Probably, I missed some more holelets.
2153 		 * 						--ANK
2154 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2155 		 * in a single packet! (May consider it later but will
2156 		 * probably need API support or TCP_CORK SYN-ACK until
2157 		 * data is written and socket is closed.)
2158 		 */
2159 		tcp_send_fin(sk);
2160 	}
2161 
2162 	sk_stream_wait_close(sk, timeout);
2163 
2164 adjudge_to_death:
2165 	state = sk->sk_state;
2166 	sock_hold(sk);
2167 	sock_orphan(sk);
2168 
2169 	/* It is the last release_sock in its life. It will remove backlog. */
2170 	release_sock(sk);
2171 
2172 
2173 	/* Now socket is owned by kernel and we acquire BH lock
2174 	   to finish close. No need to check for user refs.
2175 	 */
2176 	local_bh_disable();
2177 	bh_lock_sock(sk);
2178 	WARN_ON(sock_owned_by_user(sk));
2179 
2180 	percpu_counter_inc(sk->sk_prot->orphan_count);
2181 
2182 	/* Have we already been destroyed by a softirq or backlog? */
2183 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2184 		goto out;
2185 
2186 	/*	This is a (useful) BSD violating of the RFC. There is a
2187 	 *	problem with TCP as specified in that the other end could
2188 	 *	keep a socket open forever with no application left this end.
2189 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2190 	 *	our end. If they send after that then tough - BUT: long enough
2191 	 *	that we won't make the old 4*rto = almost no time - whoops
2192 	 *	reset mistake.
2193 	 *
2194 	 *	Nope, it was not mistake. It is really desired behaviour
2195 	 *	f.e. on http servers, when such sockets are useless, but
2196 	 *	consume significant resources. Let's do it with special
2197 	 *	linger2	option.					--ANK
2198 	 */
2199 
2200 	if (sk->sk_state == TCP_FIN_WAIT2) {
2201 		struct tcp_sock *tp = tcp_sk(sk);
2202 		if (tp->linger2 < 0) {
2203 			tcp_set_state(sk, TCP_CLOSE);
2204 			tcp_send_active_reset(sk, GFP_ATOMIC);
2205 			NET_INC_STATS_BH(sock_net(sk),
2206 					LINUX_MIB_TCPABORTONLINGER);
2207 		} else {
2208 			const int tmo = tcp_fin_time(sk);
2209 
2210 			if (tmo > TCP_TIMEWAIT_LEN) {
2211 				inet_csk_reset_keepalive_timer(sk,
2212 						tmo - TCP_TIMEWAIT_LEN);
2213 			} else {
2214 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2215 				goto out;
2216 			}
2217 		}
2218 	}
2219 	if (sk->sk_state != TCP_CLOSE) {
2220 		sk_mem_reclaim(sk);
2221 		if (tcp_check_oom(sk, 0)) {
2222 			tcp_set_state(sk, TCP_CLOSE);
2223 			tcp_send_active_reset(sk, GFP_ATOMIC);
2224 			NET_INC_STATS_BH(sock_net(sk),
2225 					LINUX_MIB_TCPABORTONMEMORY);
2226 		}
2227 	}
2228 
2229 	if (sk->sk_state == TCP_CLOSE) {
2230 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2231 		/* We could get here with a non-NULL req if the socket is
2232 		 * aborted (e.g., closed with unread data) before 3WHS
2233 		 * finishes.
2234 		 */
2235 		if (req != NULL)
2236 			reqsk_fastopen_remove(sk, req, false);
2237 		inet_csk_destroy_sock(sk);
2238 	}
2239 	/* Otherwise, socket is reprieved until protocol close. */
2240 
2241 out:
2242 	bh_unlock_sock(sk);
2243 	local_bh_enable();
2244 	sock_put(sk);
2245 }
2246 EXPORT_SYMBOL(tcp_close);
2247 
2248 /* These states need RST on ABORT according to RFC793 */
2249 
2250 static inline bool tcp_need_reset(int state)
2251 {
2252 	return (1 << state) &
2253 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2254 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2255 }
2256 
2257 int tcp_disconnect(struct sock *sk, int flags)
2258 {
2259 	struct inet_sock *inet = inet_sk(sk);
2260 	struct inet_connection_sock *icsk = inet_csk(sk);
2261 	struct tcp_sock *tp = tcp_sk(sk);
2262 	int err = 0;
2263 	int old_state = sk->sk_state;
2264 
2265 	if (old_state != TCP_CLOSE)
2266 		tcp_set_state(sk, TCP_CLOSE);
2267 
2268 	/* ABORT function of RFC793 */
2269 	if (old_state == TCP_LISTEN) {
2270 		inet_csk_listen_stop(sk);
2271 	} else if (unlikely(tp->repair)) {
2272 		sk->sk_err = ECONNABORTED;
2273 	} else if (tcp_need_reset(old_state) ||
2274 		   (tp->snd_nxt != tp->write_seq &&
2275 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2276 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2277 		 * states
2278 		 */
2279 		tcp_send_active_reset(sk, gfp_any());
2280 		sk->sk_err = ECONNRESET;
2281 	} else if (old_state == TCP_SYN_SENT)
2282 		sk->sk_err = ECONNRESET;
2283 
2284 	tcp_clear_xmit_timers(sk);
2285 	__skb_queue_purge(&sk->sk_receive_queue);
2286 	tcp_write_queue_purge(sk);
2287 	__skb_queue_purge(&tp->out_of_order_queue);
2288 #ifdef CONFIG_NET_DMA
2289 	__skb_queue_purge(&sk->sk_async_wait_queue);
2290 #endif
2291 
2292 	inet->inet_dport = 0;
2293 
2294 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2295 		inet_reset_saddr(sk);
2296 
2297 	sk->sk_shutdown = 0;
2298 	sock_reset_flag(sk, SOCK_DONE);
2299 	tp->srtt = 0;
2300 	if ((tp->write_seq += tp->max_window + 2) == 0)
2301 		tp->write_seq = 1;
2302 	icsk->icsk_backoff = 0;
2303 	tp->snd_cwnd = 2;
2304 	icsk->icsk_probes_out = 0;
2305 	tp->packets_out = 0;
2306 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2307 	tp->snd_cwnd_cnt = 0;
2308 	tp->window_clamp = 0;
2309 	tcp_set_ca_state(sk, TCP_CA_Open);
2310 	tcp_clear_retrans(tp);
2311 	inet_csk_delack_init(sk);
2312 	tcp_init_send_head(sk);
2313 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2314 	__sk_dst_reset(sk);
2315 
2316 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2317 
2318 	sk->sk_error_report(sk);
2319 	return err;
2320 }
2321 EXPORT_SYMBOL(tcp_disconnect);
2322 
2323 void tcp_sock_destruct(struct sock *sk)
2324 {
2325 	inet_sock_destruct(sk);
2326 
2327 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2328 }
2329 
2330 static inline bool tcp_can_repair_sock(const struct sock *sk)
2331 {
2332 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2333 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2334 }
2335 
2336 static int tcp_repair_options_est(struct tcp_sock *tp,
2337 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2338 {
2339 	struct tcp_repair_opt opt;
2340 
2341 	while (len >= sizeof(opt)) {
2342 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2343 			return -EFAULT;
2344 
2345 		optbuf++;
2346 		len -= sizeof(opt);
2347 
2348 		switch (opt.opt_code) {
2349 		case TCPOPT_MSS:
2350 			tp->rx_opt.mss_clamp = opt.opt_val;
2351 			break;
2352 		case TCPOPT_WINDOW:
2353 			{
2354 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2355 				u16 rcv_wscale = opt.opt_val >> 16;
2356 
2357 				if (snd_wscale > 14 || rcv_wscale > 14)
2358 					return -EFBIG;
2359 
2360 				tp->rx_opt.snd_wscale = snd_wscale;
2361 				tp->rx_opt.rcv_wscale = rcv_wscale;
2362 				tp->rx_opt.wscale_ok = 1;
2363 			}
2364 			break;
2365 		case TCPOPT_SACK_PERM:
2366 			if (opt.opt_val != 0)
2367 				return -EINVAL;
2368 
2369 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2370 			if (sysctl_tcp_fack)
2371 				tcp_enable_fack(tp);
2372 			break;
2373 		case TCPOPT_TIMESTAMP:
2374 			if (opt.opt_val != 0)
2375 				return -EINVAL;
2376 
2377 			tp->rx_opt.tstamp_ok = 1;
2378 			break;
2379 		}
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 /*
2386  *	Socket option code for TCP.
2387  */
2388 static int do_tcp_setsockopt(struct sock *sk, int level,
2389 		int optname, char __user *optval, unsigned int optlen)
2390 {
2391 	struct tcp_sock *tp = tcp_sk(sk);
2392 	struct inet_connection_sock *icsk = inet_csk(sk);
2393 	int val;
2394 	int err = 0;
2395 
2396 	/* These are data/string values, all the others are ints */
2397 	switch (optname) {
2398 	case TCP_CONGESTION: {
2399 		char name[TCP_CA_NAME_MAX];
2400 
2401 		if (optlen < 1)
2402 			return -EINVAL;
2403 
2404 		val = strncpy_from_user(name, optval,
2405 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2406 		if (val < 0)
2407 			return -EFAULT;
2408 		name[val] = 0;
2409 
2410 		lock_sock(sk);
2411 		err = tcp_set_congestion_control(sk, name);
2412 		release_sock(sk);
2413 		return err;
2414 	}
2415 	default:
2416 		/* fallthru */
2417 		break;
2418 	}
2419 
2420 	if (optlen < sizeof(int))
2421 		return -EINVAL;
2422 
2423 	if (get_user(val, (int __user *)optval))
2424 		return -EFAULT;
2425 
2426 	lock_sock(sk);
2427 
2428 	switch (optname) {
2429 	case TCP_MAXSEG:
2430 		/* Values greater than interface MTU won't take effect. However
2431 		 * at the point when this call is done we typically don't yet
2432 		 * know which interface is going to be used */
2433 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2434 			err = -EINVAL;
2435 			break;
2436 		}
2437 		tp->rx_opt.user_mss = val;
2438 		break;
2439 
2440 	case TCP_NODELAY:
2441 		if (val) {
2442 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2443 			 * this option on corked socket is remembered, but
2444 			 * it is not activated until cork is cleared.
2445 			 *
2446 			 * However, when TCP_NODELAY is set we make
2447 			 * an explicit push, which overrides even TCP_CORK
2448 			 * for currently queued segments.
2449 			 */
2450 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2451 			tcp_push_pending_frames(sk);
2452 		} else {
2453 			tp->nonagle &= ~TCP_NAGLE_OFF;
2454 		}
2455 		break;
2456 
2457 	case TCP_THIN_LINEAR_TIMEOUTS:
2458 		if (val < 0 || val > 1)
2459 			err = -EINVAL;
2460 		else
2461 			tp->thin_lto = val;
2462 		break;
2463 
2464 	case TCP_THIN_DUPACK:
2465 		if (val < 0 || val > 1)
2466 			err = -EINVAL;
2467 		else {
2468 			tp->thin_dupack = val;
2469 			if (tp->thin_dupack)
2470 				tcp_disable_early_retrans(tp);
2471 		}
2472 		break;
2473 
2474 	case TCP_REPAIR:
2475 		if (!tcp_can_repair_sock(sk))
2476 			err = -EPERM;
2477 		else if (val == 1) {
2478 			tp->repair = 1;
2479 			sk->sk_reuse = SK_FORCE_REUSE;
2480 			tp->repair_queue = TCP_NO_QUEUE;
2481 		} else if (val == 0) {
2482 			tp->repair = 0;
2483 			sk->sk_reuse = SK_NO_REUSE;
2484 			tcp_send_window_probe(sk);
2485 		} else
2486 			err = -EINVAL;
2487 
2488 		break;
2489 
2490 	case TCP_REPAIR_QUEUE:
2491 		if (!tp->repair)
2492 			err = -EPERM;
2493 		else if (val < TCP_QUEUES_NR)
2494 			tp->repair_queue = val;
2495 		else
2496 			err = -EINVAL;
2497 		break;
2498 
2499 	case TCP_QUEUE_SEQ:
2500 		if (sk->sk_state != TCP_CLOSE)
2501 			err = -EPERM;
2502 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2503 			tp->write_seq = val;
2504 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2505 			tp->rcv_nxt = val;
2506 		else
2507 			err = -EINVAL;
2508 		break;
2509 
2510 	case TCP_REPAIR_OPTIONS:
2511 		if (!tp->repair)
2512 			err = -EINVAL;
2513 		else if (sk->sk_state == TCP_ESTABLISHED)
2514 			err = tcp_repair_options_est(tp,
2515 					(struct tcp_repair_opt __user *)optval,
2516 					optlen);
2517 		else
2518 			err = -EPERM;
2519 		break;
2520 
2521 	case TCP_CORK:
2522 		/* When set indicates to always queue non-full frames.
2523 		 * Later the user clears this option and we transmit
2524 		 * any pending partial frames in the queue.  This is
2525 		 * meant to be used alongside sendfile() to get properly
2526 		 * filled frames when the user (for example) must write
2527 		 * out headers with a write() call first and then use
2528 		 * sendfile to send out the data parts.
2529 		 *
2530 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2531 		 * stronger than TCP_NODELAY.
2532 		 */
2533 		if (val) {
2534 			tp->nonagle |= TCP_NAGLE_CORK;
2535 		} else {
2536 			tp->nonagle &= ~TCP_NAGLE_CORK;
2537 			if (tp->nonagle&TCP_NAGLE_OFF)
2538 				tp->nonagle |= TCP_NAGLE_PUSH;
2539 			tcp_push_pending_frames(sk);
2540 		}
2541 		break;
2542 
2543 	case TCP_KEEPIDLE:
2544 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2545 			err = -EINVAL;
2546 		else {
2547 			tp->keepalive_time = val * HZ;
2548 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2549 			    !((1 << sk->sk_state) &
2550 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2551 				u32 elapsed = keepalive_time_elapsed(tp);
2552 				if (tp->keepalive_time > elapsed)
2553 					elapsed = tp->keepalive_time - elapsed;
2554 				else
2555 					elapsed = 0;
2556 				inet_csk_reset_keepalive_timer(sk, elapsed);
2557 			}
2558 		}
2559 		break;
2560 	case TCP_KEEPINTVL:
2561 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2562 			err = -EINVAL;
2563 		else
2564 			tp->keepalive_intvl = val * HZ;
2565 		break;
2566 	case TCP_KEEPCNT:
2567 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2568 			err = -EINVAL;
2569 		else
2570 			tp->keepalive_probes = val;
2571 		break;
2572 	case TCP_SYNCNT:
2573 		if (val < 1 || val > MAX_TCP_SYNCNT)
2574 			err = -EINVAL;
2575 		else
2576 			icsk->icsk_syn_retries = val;
2577 		break;
2578 
2579 	case TCP_LINGER2:
2580 		if (val < 0)
2581 			tp->linger2 = -1;
2582 		else if (val > sysctl_tcp_fin_timeout / HZ)
2583 			tp->linger2 = 0;
2584 		else
2585 			tp->linger2 = val * HZ;
2586 		break;
2587 
2588 	case TCP_DEFER_ACCEPT:
2589 		/* Translate value in seconds to number of retransmits */
2590 		icsk->icsk_accept_queue.rskq_defer_accept =
2591 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2592 					TCP_RTO_MAX / HZ);
2593 		break;
2594 
2595 	case TCP_WINDOW_CLAMP:
2596 		if (!val) {
2597 			if (sk->sk_state != TCP_CLOSE) {
2598 				err = -EINVAL;
2599 				break;
2600 			}
2601 			tp->window_clamp = 0;
2602 		} else
2603 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2604 						SOCK_MIN_RCVBUF / 2 : val;
2605 		break;
2606 
2607 	case TCP_QUICKACK:
2608 		if (!val) {
2609 			icsk->icsk_ack.pingpong = 1;
2610 		} else {
2611 			icsk->icsk_ack.pingpong = 0;
2612 			if ((1 << sk->sk_state) &
2613 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2614 			    inet_csk_ack_scheduled(sk)) {
2615 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2616 				tcp_cleanup_rbuf(sk, 1);
2617 				if (!(val & 1))
2618 					icsk->icsk_ack.pingpong = 1;
2619 			}
2620 		}
2621 		break;
2622 
2623 #ifdef CONFIG_TCP_MD5SIG
2624 	case TCP_MD5SIG:
2625 		/* Read the IP->Key mappings from userspace */
2626 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2627 		break;
2628 #endif
2629 	case TCP_USER_TIMEOUT:
2630 		/* Cap the max timeout in ms TCP will retry/retrans
2631 		 * before giving up and aborting (ETIMEDOUT) a connection.
2632 		 */
2633 		if (val < 0)
2634 			err = -EINVAL;
2635 		else
2636 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2637 		break;
2638 
2639 	case TCP_FASTOPEN:
2640 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2641 		    TCPF_LISTEN)))
2642 			err = fastopen_init_queue(sk, val);
2643 		else
2644 			err = -EINVAL;
2645 		break;
2646 	case TCP_TIMESTAMP:
2647 		if (!tp->repair)
2648 			err = -EPERM;
2649 		else
2650 			tp->tsoffset = val - tcp_time_stamp;
2651 		break;
2652 	case TCP_NOTSENT_LOWAT:
2653 		tp->notsent_lowat = val;
2654 		sk->sk_write_space(sk);
2655 		break;
2656 	default:
2657 		err = -ENOPROTOOPT;
2658 		break;
2659 	}
2660 
2661 	release_sock(sk);
2662 	return err;
2663 }
2664 
2665 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2666 		   unsigned int optlen)
2667 {
2668 	const struct inet_connection_sock *icsk = inet_csk(sk);
2669 
2670 	if (level != SOL_TCP)
2671 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2672 						     optval, optlen);
2673 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2674 }
2675 EXPORT_SYMBOL(tcp_setsockopt);
2676 
2677 #ifdef CONFIG_COMPAT
2678 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2679 			  char __user *optval, unsigned int optlen)
2680 {
2681 	if (level != SOL_TCP)
2682 		return inet_csk_compat_setsockopt(sk, level, optname,
2683 						  optval, optlen);
2684 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2685 }
2686 EXPORT_SYMBOL(compat_tcp_setsockopt);
2687 #endif
2688 
2689 /* Return information about state of tcp endpoint in API format. */
2690 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2691 {
2692 	const struct tcp_sock *tp = tcp_sk(sk);
2693 	const struct inet_connection_sock *icsk = inet_csk(sk);
2694 	u32 now = tcp_time_stamp;
2695 
2696 	memset(info, 0, sizeof(*info));
2697 
2698 	info->tcpi_state = sk->sk_state;
2699 	info->tcpi_ca_state = icsk->icsk_ca_state;
2700 	info->tcpi_retransmits = icsk->icsk_retransmits;
2701 	info->tcpi_probes = icsk->icsk_probes_out;
2702 	info->tcpi_backoff = icsk->icsk_backoff;
2703 
2704 	if (tp->rx_opt.tstamp_ok)
2705 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2706 	if (tcp_is_sack(tp))
2707 		info->tcpi_options |= TCPI_OPT_SACK;
2708 	if (tp->rx_opt.wscale_ok) {
2709 		info->tcpi_options |= TCPI_OPT_WSCALE;
2710 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2711 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2712 	}
2713 
2714 	if (tp->ecn_flags & TCP_ECN_OK)
2715 		info->tcpi_options |= TCPI_OPT_ECN;
2716 	if (tp->ecn_flags & TCP_ECN_SEEN)
2717 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2718 	if (tp->syn_data_acked)
2719 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2720 
2721 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2722 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2723 	info->tcpi_snd_mss = tp->mss_cache;
2724 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2725 
2726 	if (sk->sk_state == TCP_LISTEN) {
2727 		info->tcpi_unacked = sk->sk_ack_backlog;
2728 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2729 	} else {
2730 		info->tcpi_unacked = tp->packets_out;
2731 		info->tcpi_sacked = tp->sacked_out;
2732 	}
2733 	info->tcpi_lost = tp->lost_out;
2734 	info->tcpi_retrans = tp->retrans_out;
2735 	info->tcpi_fackets = tp->fackets_out;
2736 
2737 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2738 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2739 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2740 
2741 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2742 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2743 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2744 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2745 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2746 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2747 	info->tcpi_advmss = tp->advmss;
2748 	info->tcpi_reordering = tp->reordering;
2749 
2750 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2751 	info->tcpi_rcv_space = tp->rcvq_space.space;
2752 
2753 	info->tcpi_total_retrans = tp->total_retrans;
2754 }
2755 EXPORT_SYMBOL_GPL(tcp_get_info);
2756 
2757 static int do_tcp_getsockopt(struct sock *sk, int level,
2758 		int optname, char __user *optval, int __user *optlen)
2759 {
2760 	struct inet_connection_sock *icsk = inet_csk(sk);
2761 	struct tcp_sock *tp = tcp_sk(sk);
2762 	int val, len;
2763 
2764 	if (get_user(len, optlen))
2765 		return -EFAULT;
2766 
2767 	len = min_t(unsigned int, len, sizeof(int));
2768 
2769 	if (len < 0)
2770 		return -EINVAL;
2771 
2772 	switch (optname) {
2773 	case TCP_MAXSEG:
2774 		val = tp->mss_cache;
2775 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2776 			val = tp->rx_opt.user_mss;
2777 		if (tp->repair)
2778 			val = tp->rx_opt.mss_clamp;
2779 		break;
2780 	case TCP_NODELAY:
2781 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2782 		break;
2783 	case TCP_CORK:
2784 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2785 		break;
2786 	case TCP_KEEPIDLE:
2787 		val = keepalive_time_when(tp) / HZ;
2788 		break;
2789 	case TCP_KEEPINTVL:
2790 		val = keepalive_intvl_when(tp) / HZ;
2791 		break;
2792 	case TCP_KEEPCNT:
2793 		val = keepalive_probes(tp);
2794 		break;
2795 	case TCP_SYNCNT:
2796 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2797 		break;
2798 	case TCP_LINGER2:
2799 		val = tp->linger2;
2800 		if (val >= 0)
2801 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2802 		break;
2803 	case TCP_DEFER_ACCEPT:
2804 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2805 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2806 		break;
2807 	case TCP_WINDOW_CLAMP:
2808 		val = tp->window_clamp;
2809 		break;
2810 	case TCP_INFO: {
2811 		struct tcp_info info;
2812 
2813 		if (get_user(len, optlen))
2814 			return -EFAULT;
2815 
2816 		tcp_get_info(sk, &info);
2817 
2818 		len = min_t(unsigned int, len, sizeof(info));
2819 		if (put_user(len, optlen))
2820 			return -EFAULT;
2821 		if (copy_to_user(optval, &info, len))
2822 			return -EFAULT;
2823 		return 0;
2824 	}
2825 	case TCP_QUICKACK:
2826 		val = !icsk->icsk_ack.pingpong;
2827 		break;
2828 
2829 	case TCP_CONGESTION:
2830 		if (get_user(len, optlen))
2831 			return -EFAULT;
2832 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2833 		if (put_user(len, optlen))
2834 			return -EFAULT;
2835 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2836 			return -EFAULT;
2837 		return 0;
2838 
2839 	case TCP_THIN_LINEAR_TIMEOUTS:
2840 		val = tp->thin_lto;
2841 		break;
2842 	case TCP_THIN_DUPACK:
2843 		val = tp->thin_dupack;
2844 		break;
2845 
2846 	case TCP_REPAIR:
2847 		val = tp->repair;
2848 		break;
2849 
2850 	case TCP_REPAIR_QUEUE:
2851 		if (tp->repair)
2852 			val = tp->repair_queue;
2853 		else
2854 			return -EINVAL;
2855 		break;
2856 
2857 	case TCP_QUEUE_SEQ:
2858 		if (tp->repair_queue == TCP_SEND_QUEUE)
2859 			val = tp->write_seq;
2860 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2861 			val = tp->rcv_nxt;
2862 		else
2863 			return -EINVAL;
2864 		break;
2865 
2866 	case TCP_USER_TIMEOUT:
2867 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2868 		break;
2869 	case TCP_TIMESTAMP:
2870 		val = tcp_time_stamp + tp->tsoffset;
2871 		break;
2872 	case TCP_NOTSENT_LOWAT:
2873 		val = tp->notsent_lowat;
2874 		break;
2875 	default:
2876 		return -ENOPROTOOPT;
2877 	}
2878 
2879 	if (put_user(len, optlen))
2880 		return -EFAULT;
2881 	if (copy_to_user(optval, &val, len))
2882 		return -EFAULT;
2883 	return 0;
2884 }
2885 
2886 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2887 		   int __user *optlen)
2888 {
2889 	struct inet_connection_sock *icsk = inet_csk(sk);
2890 
2891 	if (level != SOL_TCP)
2892 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2893 						     optval, optlen);
2894 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2895 }
2896 EXPORT_SYMBOL(tcp_getsockopt);
2897 
2898 #ifdef CONFIG_COMPAT
2899 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2900 			  char __user *optval, int __user *optlen)
2901 {
2902 	if (level != SOL_TCP)
2903 		return inet_csk_compat_getsockopt(sk, level, optname,
2904 						  optval, optlen);
2905 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2906 }
2907 EXPORT_SYMBOL(compat_tcp_getsockopt);
2908 #endif
2909 
2910 #ifdef CONFIG_TCP_MD5SIG
2911 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2912 static DEFINE_MUTEX(tcp_md5sig_mutex);
2913 
2914 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2915 {
2916 	int cpu;
2917 
2918 	for_each_possible_cpu(cpu) {
2919 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2920 
2921 		if (p->md5_desc.tfm)
2922 			crypto_free_hash(p->md5_desc.tfm);
2923 	}
2924 	free_percpu(pool);
2925 }
2926 
2927 static void __tcp_alloc_md5sig_pool(void)
2928 {
2929 	int cpu;
2930 	struct tcp_md5sig_pool __percpu *pool;
2931 
2932 	pool = alloc_percpu(struct tcp_md5sig_pool);
2933 	if (!pool)
2934 		return;
2935 
2936 	for_each_possible_cpu(cpu) {
2937 		struct crypto_hash *hash;
2938 
2939 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2940 		if (IS_ERR_OR_NULL(hash))
2941 			goto out_free;
2942 
2943 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2944 	}
2945 	/* before setting tcp_md5sig_pool, we must commit all writes
2946 	 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
2947 	 */
2948 	smp_wmb();
2949 	tcp_md5sig_pool = pool;
2950 	return;
2951 out_free:
2952 	__tcp_free_md5sig_pool(pool);
2953 }
2954 
2955 bool tcp_alloc_md5sig_pool(void)
2956 {
2957 	if (unlikely(!tcp_md5sig_pool)) {
2958 		mutex_lock(&tcp_md5sig_mutex);
2959 
2960 		if (!tcp_md5sig_pool)
2961 			__tcp_alloc_md5sig_pool();
2962 
2963 		mutex_unlock(&tcp_md5sig_mutex);
2964 	}
2965 	return tcp_md5sig_pool != NULL;
2966 }
2967 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2968 
2969 
2970 /**
2971  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2972  *
2973  *	We use percpu structure, so if we succeed, we exit with preemption
2974  *	and BH disabled, to make sure another thread or softirq handling
2975  *	wont try to get same context.
2976  */
2977 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2978 {
2979 	struct tcp_md5sig_pool __percpu *p;
2980 
2981 	local_bh_disable();
2982 	p = ACCESS_ONCE(tcp_md5sig_pool);
2983 	if (p)
2984 		return __this_cpu_ptr(p);
2985 
2986 	local_bh_enable();
2987 	return NULL;
2988 }
2989 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2990 
2991 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2992 			const struct tcphdr *th)
2993 {
2994 	struct scatterlist sg;
2995 	struct tcphdr hdr;
2996 	int err;
2997 
2998 	/* We are not allowed to change tcphdr, make a local copy */
2999 	memcpy(&hdr, th, sizeof(hdr));
3000 	hdr.check = 0;
3001 
3002 	/* options aren't included in the hash */
3003 	sg_init_one(&sg, &hdr, sizeof(hdr));
3004 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3005 	return err;
3006 }
3007 EXPORT_SYMBOL(tcp_md5_hash_header);
3008 
3009 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3010 			  const struct sk_buff *skb, unsigned int header_len)
3011 {
3012 	struct scatterlist sg;
3013 	const struct tcphdr *tp = tcp_hdr(skb);
3014 	struct hash_desc *desc = &hp->md5_desc;
3015 	unsigned int i;
3016 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3017 					   skb_headlen(skb) - header_len : 0;
3018 	const struct skb_shared_info *shi = skb_shinfo(skb);
3019 	struct sk_buff *frag_iter;
3020 
3021 	sg_init_table(&sg, 1);
3022 
3023 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3024 	if (crypto_hash_update(desc, &sg, head_data_len))
3025 		return 1;
3026 
3027 	for (i = 0; i < shi->nr_frags; ++i) {
3028 		const struct skb_frag_struct *f = &shi->frags[i];
3029 		unsigned int offset = f->page_offset;
3030 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3031 
3032 		sg_set_page(&sg, page, skb_frag_size(f),
3033 			    offset_in_page(offset));
3034 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3035 			return 1;
3036 	}
3037 
3038 	skb_walk_frags(skb, frag_iter)
3039 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3040 			return 1;
3041 
3042 	return 0;
3043 }
3044 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3045 
3046 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3047 {
3048 	struct scatterlist sg;
3049 
3050 	sg_init_one(&sg, key->key, key->keylen);
3051 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3052 }
3053 EXPORT_SYMBOL(tcp_md5_hash_key);
3054 
3055 #endif
3056 
3057 void tcp_done(struct sock *sk)
3058 {
3059 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3060 
3061 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3062 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3063 
3064 	tcp_set_state(sk, TCP_CLOSE);
3065 	tcp_clear_xmit_timers(sk);
3066 	if (req != NULL)
3067 		reqsk_fastopen_remove(sk, req, false);
3068 
3069 	sk->sk_shutdown = SHUTDOWN_MASK;
3070 
3071 	if (!sock_flag(sk, SOCK_DEAD))
3072 		sk->sk_state_change(sk);
3073 	else
3074 		inet_csk_destroy_sock(sk);
3075 }
3076 EXPORT_SYMBOL_GPL(tcp_done);
3077 
3078 extern struct tcp_congestion_ops tcp_reno;
3079 
3080 static __initdata unsigned long thash_entries;
3081 static int __init set_thash_entries(char *str)
3082 {
3083 	ssize_t ret;
3084 
3085 	if (!str)
3086 		return 0;
3087 
3088 	ret = kstrtoul(str, 0, &thash_entries);
3089 	if (ret)
3090 		return 0;
3091 
3092 	return 1;
3093 }
3094 __setup("thash_entries=", set_thash_entries);
3095 
3096 static void tcp_init_mem(void)
3097 {
3098 	unsigned long limit = nr_free_buffer_pages() / 8;
3099 	limit = max(limit, 128UL);
3100 	sysctl_tcp_mem[0] = limit / 4 * 3;
3101 	sysctl_tcp_mem[1] = limit;
3102 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3103 }
3104 
3105 void __init tcp_init(void)
3106 {
3107 	struct sk_buff *skb = NULL;
3108 	unsigned long limit;
3109 	int max_rshare, max_wshare, cnt;
3110 	unsigned int i;
3111 
3112 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3113 
3114 	percpu_counter_init(&tcp_sockets_allocated, 0);
3115 	percpu_counter_init(&tcp_orphan_count, 0);
3116 	tcp_hashinfo.bind_bucket_cachep =
3117 		kmem_cache_create("tcp_bind_bucket",
3118 				  sizeof(struct inet_bind_bucket), 0,
3119 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3120 
3121 	/* Size and allocate the main established and bind bucket
3122 	 * hash tables.
3123 	 *
3124 	 * The methodology is similar to that of the buffer cache.
3125 	 */
3126 	tcp_hashinfo.ehash =
3127 		alloc_large_system_hash("TCP established",
3128 					sizeof(struct inet_ehash_bucket),
3129 					thash_entries,
3130 					17, /* one slot per 128 KB of memory */
3131 					0,
3132 					NULL,
3133 					&tcp_hashinfo.ehash_mask,
3134 					0,
3135 					thash_entries ? 0 : 512 * 1024);
3136 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3137 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3138 
3139 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3140 		panic("TCP: failed to alloc ehash_locks");
3141 	tcp_hashinfo.bhash =
3142 		alloc_large_system_hash("TCP bind",
3143 					sizeof(struct inet_bind_hashbucket),
3144 					tcp_hashinfo.ehash_mask + 1,
3145 					17, /* one slot per 128 KB of memory */
3146 					0,
3147 					&tcp_hashinfo.bhash_size,
3148 					NULL,
3149 					0,
3150 					64 * 1024);
3151 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3152 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3153 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3154 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3155 	}
3156 
3157 
3158 	cnt = tcp_hashinfo.ehash_mask + 1;
3159 
3160 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3161 	sysctl_tcp_max_orphans = cnt / 2;
3162 	sysctl_max_syn_backlog = max(128, cnt / 256);
3163 
3164 	tcp_init_mem();
3165 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3166 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3167 	max_wshare = min(4UL*1024*1024, limit);
3168 	max_rshare = min(6UL*1024*1024, limit);
3169 
3170 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3171 	sysctl_tcp_wmem[1] = 16*1024;
3172 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3173 
3174 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3175 	sysctl_tcp_rmem[1] = 87380;
3176 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3177 
3178 	pr_info("Hash tables configured (established %u bind %u)\n",
3179 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3180 
3181 	tcp_metrics_init();
3182 
3183 	tcp_register_congestion_control(&tcp_reno);
3184 
3185 	tcp_tasklet_init();
3186 }
3187