xref: /openbmc/linux/net/ipv4/tcp.c (revision c33c7948)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 
461 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 	sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465 
466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 	struct sk_buff *skb = tcp_write_queue_tail(sk);
469 
470 	if (tsflags && skb) {
471 		struct skb_shared_info *shinfo = skb_shinfo(skb);
472 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473 
474 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 			tcb->txstamp_ack = 1;
477 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 	}
480 }
481 
482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 	if (tcp_epollin_ready(sk, target))
485 		return true;
486 	return sk_is_readable(sk);
487 }
488 
489 /*
490  *	Wait for a TCP event.
491  *
492  *	Note that we don't need to lock the socket, as the upper poll layers
493  *	take care of normal races (between the test and the event) and we don't
494  *	go look at any of the socket buffers directly.
495  */
496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 	__poll_t mask;
499 	struct sock *sk = sock->sk;
500 	const struct tcp_sock *tp = tcp_sk(sk);
501 	u8 shutdown;
502 	int state;
503 
504 	sock_poll_wait(file, sock, wait);
505 
506 	state = inet_sk_state_load(sk);
507 	if (state == TCP_LISTEN)
508 		return inet_csk_listen_poll(sk);
509 
510 	/* Socket is not locked. We are protected from async events
511 	 * by poll logic and correct handling of state changes
512 	 * made by other threads is impossible in any case.
513 	 */
514 
515 	mask = 0;
516 
517 	/*
518 	 * EPOLLHUP is certainly not done right. But poll() doesn't
519 	 * have a notion of HUP in just one direction, and for a
520 	 * socket the read side is more interesting.
521 	 *
522 	 * Some poll() documentation says that EPOLLHUP is incompatible
523 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
524 	 * all. But careful, it tends to be safer to return too many
525 	 * bits than too few, and you can easily break real applications
526 	 * if you don't tell them that something has hung up!
527 	 *
528 	 * Check-me.
529 	 *
530 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
531 	 * our fs/select.c). It means that after we received EOF,
532 	 * poll always returns immediately, making impossible poll() on write()
533 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
534 	 * if and only if shutdown has been made in both directions.
535 	 * Actually, it is interesting to look how Solaris and DUX
536 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
537 	 * then we could set it on SND_SHUTDOWN. BTW examples given
538 	 * in Stevens' books assume exactly this behaviour, it explains
539 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
540 	 *
541 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
542 	 * blocking on fresh not-connected or disconnected socket. --ANK
543 	 */
544 	shutdown = READ_ONCE(sk->sk_shutdown);
545 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 		mask |= EPOLLHUP;
547 	if (shutdown & RCV_SHUTDOWN)
548 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
549 
550 	/* Connected or passive Fast Open socket? */
551 	if (state != TCP_SYN_SENT &&
552 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
553 		int target = sock_rcvlowat(sk, 0, INT_MAX);
554 		u16 urg_data = READ_ONCE(tp->urg_data);
555 
556 		if (unlikely(urg_data) &&
557 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
558 		    !sock_flag(sk, SOCK_URGINLINE))
559 			target++;
560 
561 		if (tcp_stream_is_readable(sk, target))
562 			mask |= EPOLLIN | EPOLLRDNORM;
563 
564 		if (!(shutdown & SEND_SHUTDOWN)) {
565 			if (__sk_stream_is_writeable(sk, 1)) {
566 				mask |= EPOLLOUT | EPOLLWRNORM;
567 			} else {  /* send SIGIO later */
568 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570 
571 				/* Race breaker. If space is freed after
572 				 * wspace test but before the flags are set,
573 				 * IO signal will be lost. Memory barrier
574 				 * pairs with the input side.
575 				 */
576 				smp_mb__after_atomic();
577 				if (__sk_stream_is_writeable(sk, 1))
578 					mask |= EPOLLOUT | EPOLLWRNORM;
579 			}
580 		} else
581 			mask |= EPOLLOUT | EPOLLWRNORM;
582 
583 		if (urg_data & TCP_URG_VALID)
584 			mask |= EPOLLPRI;
585 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 		/* Active TCP fastopen socket with defer_connect
587 		 * Return EPOLLOUT so application can call write()
588 		 * in order for kernel to generate SYN+data
589 		 */
590 		mask |= EPOLLOUT | EPOLLWRNORM;
591 	}
592 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
593 	smp_rmb();
594 	if (READ_ONCE(sk->sk_err) ||
595 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
596 		mask |= EPOLLERR;
597 
598 	return mask;
599 }
600 EXPORT_SYMBOL(tcp_poll);
601 
602 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	int answ;
606 	bool slow;
607 
608 	switch (cmd) {
609 	case SIOCINQ:
610 		if (sk->sk_state == TCP_LISTEN)
611 			return -EINVAL;
612 
613 		slow = lock_sock_fast(sk);
614 		answ = tcp_inq(sk);
615 		unlock_sock_fast(sk, slow);
616 		break;
617 	case SIOCATMARK:
618 		answ = READ_ONCE(tp->urg_data) &&
619 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
620 		break;
621 	case SIOCOUTQ:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 			answ = 0;
627 		else
628 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
629 		break;
630 	case SIOCOUTQNSD:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) -
638 			       READ_ONCE(tp->snd_nxt);
639 		break;
640 	default:
641 		return -ENOIOCTLCMD;
642 	}
643 
644 	return put_user(answ, (int __user *)arg);
645 }
646 EXPORT_SYMBOL(tcp_ioctl);
647 
648 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
649 {
650 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
651 	tp->pushed_seq = tp->write_seq;
652 }
653 
654 static inline bool forced_push(const struct tcp_sock *tp)
655 {
656 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
657 }
658 
659 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
660 {
661 	struct tcp_sock *tp = tcp_sk(sk);
662 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
663 
664 	tcb->seq     = tcb->end_seq = tp->write_seq;
665 	tcb->tcp_flags = TCPHDR_ACK;
666 	__skb_header_release(skb);
667 	tcp_add_write_queue_tail(sk, skb);
668 	sk_wmem_queued_add(sk, skb->truesize);
669 	sk_mem_charge(sk, skb->truesize);
670 	if (tp->nonagle & TCP_NAGLE_PUSH)
671 		tp->nonagle &= ~TCP_NAGLE_PUSH;
672 
673 	tcp_slow_start_after_idle_check(sk);
674 }
675 
676 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
677 {
678 	if (flags & MSG_OOB)
679 		tp->snd_up = tp->write_seq;
680 }
681 
682 /* If a not yet filled skb is pushed, do not send it if
683  * we have data packets in Qdisc or NIC queues :
684  * Because TX completion will happen shortly, it gives a chance
685  * to coalesce future sendmsg() payload into this skb, without
686  * need for a timer, and with no latency trade off.
687  * As packets containing data payload have a bigger truesize
688  * than pure acks (dataless) packets, the last checks prevent
689  * autocorking if we only have an ACK in Qdisc/NIC queues,
690  * or if TX completion was delayed after we processed ACK packet.
691  */
692 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
693 				int size_goal)
694 {
695 	return skb->len < size_goal &&
696 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
697 	       !tcp_rtx_queue_empty(sk) &&
698 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
699 	       tcp_skb_can_collapse_to(skb);
700 }
701 
702 void tcp_push(struct sock *sk, int flags, int mss_now,
703 	      int nonagle, int size_goal)
704 {
705 	struct tcp_sock *tp = tcp_sk(sk);
706 	struct sk_buff *skb;
707 
708 	skb = tcp_write_queue_tail(sk);
709 	if (!skb)
710 		return;
711 	if (!(flags & MSG_MORE) || forced_push(tp))
712 		tcp_mark_push(tp, skb);
713 
714 	tcp_mark_urg(tp, flags);
715 
716 	if (tcp_should_autocork(sk, skb, size_goal)) {
717 
718 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
719 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
720 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
721 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
722 		}
723 		/* It is possible TX completion already happened
724 		 * before we set TSQ_THROTTLED.
725 		 */
726 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 			return;
728 	}
729 
730 	if (flags & MSG_MORE)
731 		nonagle = TCP_NAGLE_CORK;
732 
733 	__tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735 
736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 				unsigned int offset, size_t len)
738 {
739 	struct tcp_splice_state *tss = rd_desc->arg.data;
740 	int ret;
741 
742 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 			      min(rd_desc->count, len), tss->flags);
744 	if (ret > 0)
745 		rd_desc->count -= ret;
746 	return ret;
747 }
748 
749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 	/* Store TCP splice context information in read_descriptor_t. */
752 	read_descriptor_t rd_desc = {
753 		.arg.data = tss,
754 		.count	  = tss->len,
755 	};
756 
757 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759 
760 /**
761  *  tcp_splice_read - splice data from TCP socket to a pipe
762  * @sock:	socket to splice from
763  * @ppos:	position (not valid)
764  * @pipe:	pipe to splice to
765  * @len:	number of bytes to splice
766  * @flags:	splice modifier flags
767  *
768  * Description:
769  *    Will read pages from given socket and fill them into a pipe.
770  *
771  **/
772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 			struct pipe_inode_info *pipe, size_t len,
774 			unsigned int flags)
775 {
776 	struct sock *sk = sock->sk;
777 	struct tcp_splice_state tss = {
778 		.pipe = pipe,
779 		.len = len,
780 		.flags = flags,
781 	};
782 	long timeo;
783 	ssize_t spliced;
784 	int ret;
785 
786 	sock_rps_record_flow(sk);
787 	/*
788 	 * We can't seek on a socket input
789 	 */
790 	if (unlikely(*ppos))
791 		return -ESPIPE;
792 
793 	ret = spliced = 0;
794 
795 	lock_sock(sk);
796 
797 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 	while (tss.len) {
799 		ret = __tcp_splice_read(sk, &tss);
800 		if (ret < 0)
801 			break;
802 		else if (!ret) {
803 			if (spliced)
804 				break;
805 			if (sock_flag(sk, SOCK_DONE))
806 				break;
807 			if (sk->sk_err) {
808 				ret = sock_error(sk);
809 				break;
810 			}
811 			if (sk->sk_shutdown & RCV_SHUTDOWN)
812 				break;
813 			if (sk->sk_state == TCP_CLOSE) {
814 				/*
815 				 * This occurs when user tries to read
816 				 * from never connected socket.
817 				 */
818 				ret = -ENOTCONN;
819 				break;
820 			}
821 			if (!timeo) {
822 				ret = -EAGAIN;
823 				break;
824 			}
825 			/* if __tcp_splice_read() got nothing while we have
826 			 * an skb in receive queue, we do not want to loop.
827 			 * This might happen with URG data.
828 			 */
829 			if (!skb_queue_empty(&sk->sk_receive_queue))
830 				break;
831 			sk_wait_data(sk, &timeo, NULL);
832 			if (signal_pending(current)) {
833 				ret = sock_intr_errno(timeo);
834 				break;
835 			}
836 			continue;
837 		}
838 		tss.len -= ret;
839 		spliced += ret;
840 
841 		if (!timeo)
842 			break;
843 		release_sock(sk);
844 		lock_sock(sk);
845 
846 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 		    signal_pending(current))
849 			break;
850 	}
851 
852 	release_sock(sk);
853 
854 	if (spliced)
855 		return spliced;
856 
857 	return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860 
861 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 				     bool force_schedule)
863 {
864 	struct sk_buff *skb;
865 
866 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
867 	if (likely(skb)) {
868 		bool mem_scheduled;
869 
870 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
871 		if (force_schedule) {
872 			mem_scheduled = true;
873 			sk_forced_mem_schedule(sk, skb->truesize);
874 		} else {
875 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
876 		}
877 		if (likely(mem_scheduled)) {
878 			skb_reserve(skb, MAX_TCP_HEADER);
879 			skb->ip_summed = CHECKSUM_PARTIAL;
880 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
881 			return skb;
882 		}
883 		__kfree_skb(skb);
884 	} else {
885 		sk->sk_prot->enter_memory_pressure(sk);
886 		sk_stream_moderate_sndbuf(sk);
887 	}
888 	return NULL;
889 }
890 
891 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
892 				       int large_allowed)
893 {
894 	struct tcp_sock *tp = tcp_sk(sk);
895 	u32 new_size_goal, size_goal;
896 
897 	if (!large_allowed)
898 		return mss_now;
899 
900 	/* Note : tcp_tso_autosize() will eventually split this later */
901 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
902 
903 	/* We try hard to avoid divides here */
904 	size_goal = tp->gso_segs * mss_now;
905 	if (unlikely(new_size_goal < size_goal ||
906 		     new_size_goal >= size_goal + mss_now)) {
907 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
908 				     sk->sk_gso_max_segs);
909 		size_goal = tp->gso_segs * mss_now;
910 	}
911 
912 	return max(size_goal, mss_now);
913 }
914 
915 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
916 {
917 	int mss_now;
918 
919 	mss_now = tcp_current_mss(sk);
920 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
921 
922 	return mss_now;
923 }
924 
925 /* In some cases, both sendpage() and sendmsg() could have added
926  * an skb to the write queue, but failed adding payload on it.
927  * We need to remove it to consume less memory, but more
928  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
929  * users.
930  */
931 void tcp_remove_empty_skb(struct sock *sk)
932 {
933 	struct sk_buff *skb = tcp_write_queue_tail(sk);
934 
935 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
936 		tcp_unlink_write_queue(skb, sk);
937 		if (tcp_write_queue_empty(sk))
938 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
939 		tcp_wmem_free_skb(sk, skb);
940 	}
941 }
942 
943 /* skb changing from pure zc to mixed, must charge zc */
944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
945 {
946 	if (unlikely(skb_zcopy_pure(skb))) {
947 		u32 extra = skb->truesize -
948 			    SKB_TRUESIZE(skb_end_offset(skb));
949 
950 		if (!sk_wmem_schedule(sk, extra))
951 			return -ENOMEM;
952 
953 		sk_mem_charge(sk, extra);
954 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
955 	}
956 	return 0;
957 }
958 
959 
960 static int tcp_wmem_schedule(struct sock *sk, int copy)
961 {
962 	int left;
963 
964 	if (likely(sk_wmem_schedule(sk, copy)))
965 		return copy;
966 
967 	/* We could be in trouble if we have nothing queued.
968 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
969 	 * to guarantee some progress.
970 	 */
971 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
972 	if (left > 0)
973 		sk_forced_mem_schedule(sk, min(left, copy));
974 	return min(copy, sk->sk_forward_alloc);
975 }
976 
977 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
978 				      struct page *page, int offset, size_t *size)
979 {
980 	struct sk_buff *skb = tcp_write_queue_tail(sk);
981 	struct tcp_sock *tp = tcp_sk(sk);
982 	bool can_coalesce;
983 	int copy, i;
984 
985 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
986 	    !tcp_skb_can_collapse_to(skb)) {
987 new_segment:
988 		if (!sk_stream_memory_free(sk))
989 			return NULL;
990 
991 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
992 					   tcp_rtx_and_write_queues_empty(sk));
993 		if (!skb)
994 			return NULL;
995 
996 #ifdef CONFIG_TLS_DEVICE
997 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
998 #endif
999 		tcp_skb_entail(sk, skb);
1000 		copy = size_goal;
1001 	}
1002 
1003 	if (copy > *size)
1004 		copy = *size;
1005 
1006 	i = skb_shinfo(skb)->nr_frags;
1007 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1008 	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1009 		tcp_mark_push(tp, skb);
1010 		goto new_segment;
1011 	}
1012 	if (tcp_downgrade_zcopy_pure(sk, skb))
1013 		return NULL;
1014 
1015 	copy = tcp_wmem_schedule(sk, copy);
1016 	if (!copy)
1017 		return NULL;
1018 
1019 	if (can_coalesce) {
1020 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1021 	} else {
1022 		get_page(page);
1023 		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1024 	}
1025 
1026 	if (!(flags & MSG_NO_SHARED_FRAGS))
1027 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1028 
1029 	skb->len += copy;
1030 	skb->data_len += copy;
1031 	skb->truesize += copy;
1032 	sk_wmem_queued_add(sk, copy);
1033 	sk_mem_charge(sk, copy);
1034 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1035 	TCP_SKB_CB(skb)->end_seq += copy;
1036 	tcp_skb_pcount_set(skb, 0);
1037 
1038 	*size = copy;
1039 	return skb;
1040 }
1041 
1042 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1043 			 size_t size, int flags)
1044 {
1045 	struct tcp_sock *tp = tcp_sk(sk);
1046 	int mss_now, size_goal;
1047 	int err;
1048 	ssize_t copied;
1049 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1050 
1051 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1052 	    WARN_ONCE(!sendpage_ok(page),
1053 		      "page must not be a Slab one and have page_count > 0"))
1054 		return -EINVAL;
1055 
1056 	/* Wait for a connection to finish. One exception is TCP Fast Open
1057 	 * (passive side) where data is allowed to be sent before a connection
1058 	 * is fully established.
1059 	 */
1060 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1061 	    !tcp_passive_fastopen(sk)) {
1062 		err = sk_stream_wait_connect(sk, &timeo);
1063 		if (err != 0)
1064 			goto out_err;
1065 	}
1066 
1067 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1068 
1069 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1070 	copied = 0;
1071 
1072 	err = -EPIPE;
1073 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1074 		goto out_err;
1075 
1076 	while (size > 0) {
1077 		struct sk_buff *skb;
1078 		size_t copy = size;
1079 
1080 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1081 		if (!skb)
1082 			goto wait_for_space;
1083 
1084 		if (!copied)
1085 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1086 
1087 		copied += copy;
1088 		offset += copy;
1089 		size -= copy;
1090 		if (!size)
1091 			goto out;
1092 
1093 		if (skb->len < size_goal || (flags & MSG_OOB))
1094 			continue;
1095 
1096 		if (forced_push(tp)) {
1097 			tcp_mark_push(tp, skb);
1098 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1099 		} else if (skb == tcp_send_head(sk))
1100 			tcp_push_one(sk, mss_now);
1101 		continue;
1102 
1103 wait_for_space:
1104 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1105 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1106 			 TCP_NAGLE_PUSH, size_goal);
1107 
1108 		err = sk_stream_wait_memory(sk, &timeo);
1109 		if (err != 0)
1110 			goto do_error;
1111 
1112 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1113 	}
1114 
1115 out:
1116 	if (copied) {
1117 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1118 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1119 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1120 	}
1121 	return copied;
1122 
1123 do_error:
1124 	tcp_remove_empty_skb(sk);
1125 	if (copied)
1126 		goto out;
1127 out_err:
1128 	/* make sure we wake any epoll edge trigger waiter */
1129 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1130 		sk->sk_write_space(sk);
1131 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1132 	}
1133 	return sk_stream_error(sk, flags, err);
1134 }
1135 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1136 
1137 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1138 			size_t size, int flags)
1139 {
1140 	if (!(sk->sk_route_caps & NETIF_F_SG))
1141 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1142 
1143 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1144 
1145 	return do_tcp_sendpages(sk, page, offset, size, flags);
1146 }
1147 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1148 
1149 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1150 		 size_t size, int flags)
1151 {
1152 	int ret;
1153 
1154 	lock_sock(sk);
1155 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1156 	release_sock(sk);
1157 
1158 	return ret;
1159 }
1160 EXPORT_SYMBOL(tcp_sendpage);
1161 
1162 void tcp_free_fastopen_req(struct tcp_sock *tp)
1163 {
1164 	if (tp->fastopen_req) {
1165 		kfree(tp->fastopen_req);
1166 		tp->fastopen_req = NULL;
1167 	}
1168 }
1169 
1170 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1171 			 size_t size, struct ubuf_info *uarg)
1172 {
1173 	struct tcp_sock *tp = tcp_sk(sk);
1174 	struct inet_sock *inet = inet_sk(sk);
1175 	struct sockaddr *uaddr = msg->msg_name;
1176 	int err, flags;
1177 
1178 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1179 	      TFO_CLIENT_ENABLE) ||
1180 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1181 	     uaddr->sa_family == AF_UNSPEC))
1182 		return -EOPNOTSUPP;
1183 	if (tp->fastopen_req)
1184 		return -EALREADY; /* Another Fast Open is in progress */
1185 
1186 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1187 				   sk->sk_allocation);
1188 	if (unlikely(!tp->fastopen_req))
1189 		return -ENOBUFS;
1190 	tp->fastopen_req->data = msg;
1191 	tp->fastopen_req->size = size;
1192 	tp->fastopen_req->uarg = uarg;
1193 
1194 	if (inet->defer_connect) {
1195 		err = tcp_connect(sk);
1196 		/* Same failure procedure as in tcp_v4/6_connect */
1197 		if (err) {
1198 			tcp_set_state(sk, TCP_CLOSE);
1199 			inet->inet_dport = 0;
1200 			sk->sk_route_caps = 0;
1201 		}
1202 	}
1203 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1204 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1205 				    msg->msg_namelen, flags, 1);
1206 	/* fastopen_req could already be freed in __inet_stream_connect
1207 	 * if the connection times out or gets rst
1208 	 */
1209 	if (tp->fastopen_req) {
1210 		*copied = tp->fastopen_req->copied;
1211 		tcp_free_fastopen_req(tp);
1212 		inet->defer_connect = 0;
1213 	}
1214 	return err;
1215 }
1216 
1217 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1218 {
1219 	struct tcp_sock *tp = tcp_sk(sk);
1220 	struct ubuf_info *uarg = NULL;
1221 	struct sk_buff *skb;
1222 	struct sockcm_cookie sockc;
1223 	int flags, err, copied = 0;
1224 	int mss_now = 0, size_goal, copied_syn = 0;
1225 	int process_backlog = 0;
1226 	bool zc = false;
1227 	long timeo;
1228 
1229 	flags = msg->msg_flags;
1230 
1231 	if ((flags & MSG_ZEROCOPY) && size) {
1232 		skb = tcp_write_queue_tail(sk);
1233 
1234 		if (msg->msg_ubuf) {
1235 			uarg = msg->msg_ubuf;
1236 			net_zcopy_get(uarg);
1237 			zc = sk->sk_route_caps & NETIF_F_SG;
1238 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1239 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1240 			if (!uarg) {
1241 				err = -ENOBUFS;
1242 				goto out_err;
1243 			}
1244 			zc = sk->sk_route_caps & NETIF_F_SG;
1245 			if (!zc)
1246 				uarg_to_msgzc(uarg)->zerocopy = 0;
1247 		}
1248 	}
1249 
1250 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1251 	    !tp->repair) {
1252 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1253 		if (err == -EINPROGRESS && copied_syn > 0)
1254 			goto out;
1255 		else if (err)
1256 			goto out_err;
1257 	}
1258 
1259 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1260 
1261 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1262 
1263 	/* Wait for a connection to finish. One exception is TCP Fast Open
1264 	 * (passive side) where data is allowed to be sent before a connection
1265 	 * is fully established.
1266 	 */
1267 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1268 	    !tcp_passive_fastopen(sk)) {
1269 		err = sk_stream_wait_connect(sk, &timeo);
1270 		if (err != 0)
1271 			goto do_error;
1272 	}
1273 
1274 	if (unlikely(tp->repair)) {
1275 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1276 			copied = tcp_send_rcvq(sk, msg, size);
1277 			goto out_nopush;
1278 		}
1279 
1280 		err = -EINVAL;
1281 		if (tp->repair_queue == TCP_NO_QUEUE)
1282 			goto out_err;
1283 
1284 		/* 'common' sending to sendq */
1285 	}
1286 
1287 	sockcm_init(&sockc, sk);
1288 	if (msg->msg_controllen) {
1289 		err = sock_cmsg_send(sk, msg, &sockc);
1290 		if (unlikely(err)) {
1291 			err = -EINVAL;
1292 			goto out_err;
1293 		}
1294 	}
1295 
1296 	/* This should be in poll */
1297 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1298 
1299 	/* Ok commence sending. */
1300 	copied = 0;
1301 
1302 restart:
1303 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1304 
1305 	err = -EPIPE;
1306 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1307 		goto do_error;
1308 
1309 	while (msg_data_left(msg)) {
1310 		int copy = 0;
1311 
1312 		skb = tcp_write_queue_tail(sk);
1313 		if (skb)
1314 			copy = size_goal - skb->len;
1315 
1316 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1317 			bool first_skb;
1318 
1319 new_segment:
1320 			if (!sk_stream_memory_free(sk))
1321 				goto wait_for_space;
1322 
1323 			if (unlikely(process_backlog >= 16)) {
1324 				process_backlog = 0;
1325 				if (sk_flush_backlog(sk))
1326 					goto restart;
1327 			}
1328 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1329 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1330 						   first_skb);
1331 			if (!skb)
1332 				goto wait_for_space;
1333 
1334 			process_backlog++;
1335 
1336 			tcp_skb_entail(sk, skb);
1337 			copy = size_goal;
1338 
1339 			/* All packets are restored as if they have
1340 			 * already been sent. skb_mstamp_ns isn't set to
1341 			 * avoid wrong rtt estimation.
1342 			 */
1343 			if (tp->repair)
1344 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1345 		}
1346 
1347 		/* Try to append data to the end of skb. */
1348 		if (copy > msg_data_left(msg))
1349 			copy = msg_data_left(msg);
1350 
1351 		if (!zc) {
1352 			bool merge = true;
1353 			int i = skb_shinfo(skb)->nr_frags;
1354 			struct page_frag *pfrag = sk_page_frag(sk);
1355 
1356 			if (!sk_page_frag_refill(sk, pfrag))
1357 				goto wait_for_space;
1358 
1359 			if (!skb_can_coalesce(skb, i, pfrag->page,
1360 					      pfrag->offset)) {
1361 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1362 					tcp_mark_push(tp, skb);
1363 					goto new_segment;
1364 				}
1365 				merge = false;
1366 			}
1367 
1368 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1369 
1370 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1371 				if (tcp_downgrade_zcopy_pure(sk, skb))
1372 					goto wait_for_space;
1373 				skb_zcopy_downgrade_managed(skb);
1374 			}
1375 
1376 			copy = tcp_wmem_schedule(sk, copy);
1377 			if (!copy)
1378 				goto wait_for_space;
1379 
1380 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1381 						       pfrag->page,
1382 						       pfrag->offset,
1383 						       copy);
1384 			if (err)
1385 				goto do_error;
1386 
1387 			/* Update the skb. */
1388 			if (merge) {
1389 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1390 			} else {
1391 				skb_fill_page_desc(skb, i, pfrag->page,
1392 						   pfrag->offset, copy);
1393 				page_ref_inc(pfrag->page);
1394 			}
1395 			pfrag->offset += copy;
1396 		} else {
1397 			/* First append to a fragless skb builds initial
1398 			 * pure zerocopy skb
1399 			 */
1400 			if (!skb->len)
1401 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1402 
1403 			if (!skb_zcopy_pure(skb)) {
1404 				copy = tcp_wmem_schedule(sk, copy);
1405 				if (!copy)
1406 					goto wait_for_space;
1407 			}
1408 
1409 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1410 			if (err == -EMSGSIZE || err == -EEXIST) {
1411 				tcp_mark_push(tp, skb);
1412 				goto new_segment;
1413 			}
1414 			if (err < 0)
1415 				goto do_error;
1416 			copy = err;
1417 		}
1418 
1419 		if (!copied)
1420 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1421 
1422 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1423 		TCP_SKB_CB(skb)->end_seq += copy;
1424 		tcp_skb_pcount_set(skb, 0);
1425 
1426 		copied += copy;
1427 		if (!msg_data_left(msg)) {
1428 			if (unlikely(flags & MSG_EOR))
1429 				TCP_SKB_CB(skb)->eor = 1;
1430 			goto out;
1431 		}
1432 
1433 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1434 			continue;
1435 
1436 		if (forced_push(tp)) {
1437 			tcp_mark_push(tp, skb);
1438 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1439 		} else if (skb == tcp_send_head(sk))
1440 			tcp_push_one(sk, mss_now);
1441 		continue;
1442 
1443 wait_for_space:
1444 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1445 		if (copied)
1446 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1447 				 TCP_NAGLE_PUSH, size_goal);
1448 
1449 		err = sk_stream_wait_memory(sk, &timeo);
1450 		if (err != 0)
1451 			goto do_error;
1452 
1453 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1454 	}
1455 
1456 out:
1457 	if (copied) {
1458 		tcp_tx_timestamp(sk, sockc.tsflags);
1459 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1460 	}
1461 out_nopush:
1462 	net_zcopy_put(uarg);
1463 	return copied + copied_syn;
1464 
1465 do_error:
1466 	tcp_remove_empty_skb(sk);
1467 
1468 	if (copied + copied_syn)
1469 		goto out;
1470 out_err:
1471 	net_zcopy_put_abort(uarg, true);
1472 	err = sk_stream_error(sk, flags, err);
1473 	/* make sure we wake any epoll edge trigger waiter */
1474 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1475 		sk->sk_write_space(sk);
1476 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1477 	}
1478 	return err;
1479 }
1480 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1481 
1482 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1483 {
1484 	int ret;
1485 
1486 	lock_sock(sk);
1487 	ret = tcp_sendmsg_locked(sk, msg, size);
1488 	release_sock(sk);
1489 
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(tcp_sendmsg);
1493 
1494 /*
1495  *	Handle reading urgent data. BSD has very simple semantics for
1496  *	this, no blocking and very strange errors 8)
1497  */
1498 
1499 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1500 {
1501 	struct tcp_sock *tp = tcp_sk(sk);
1502 
1503 	/* No URG data to read. */
1504 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1505 	    tp->urg_data == TCP_URG_READ)
1506 		return -EINVAL;	/* Yes this is right ! */
1507 
1508 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1509 		return -ENOTCONN;
1510 
1511 	if (tp->urg_data & TCP_URG_VALID) {
1512 		int err = 0;
1513 		char c = tp->urg_data;
1514 
1515 		if (!(flags & MSG_PEEK))
1516 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1517 
1518 		/* Read urgent data. */
1519 		msg->msg_flags |= MSG_OOB;
1520 
1521 		if (len > 0) {
1522 			if (!(flags & MSG_TRUNC))
1523 				err = memcpy_to_msg(msg, &c, 1);
1524 			len = 1;
1525 		} else
1526 			msg->msg_flags |= MSG_TRUNC;
1527 
1528 		return err ? -EFAULT : len;
1529 	}
1530 
1531 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1532 		return 0;
1533 
1534 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1535 	 * the available implementations agree in this case:
1536 	 * this call should never block, independent of the
1537 	 * blocking state of the socket.
1538 	 * Mike <pall@rz.uni-karlsruhe.de>
1539 	 */
1540 	return -EAGAIN;
1541 }
1542 
1543 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1544 {
1545 	struct sk_buff *skb;
1546 	int copied = 0, err = 0;
1547 
1548 	/* XXX -- need to support SO_PEEK_OFF */
1549 
1550 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1551 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1552 		if (err)
1553 			return err;
1554 		copied += skb->len;
1555 	}
1556 
1557 	skb_queue_walk(&sk->sk_write_queue, skb) {
1558 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1559 		if (err)
1560 			break;
1561 
1562 		copied += skb->len;
1563 	}
1564 
1565 	return err ?: copied;
1566 }
1567 
1568 /* Clean up the receive buffer for full frames taken by the user,
1569  * then send an ACK if necessary.  COPIED is the number of bytes
1570  * tcp_recvmsg has given to the user so far, it speeds up the
1571  * calculation of whether or not we must ACK for the sake of
1572  * a window update.
1573  */
1574 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1575 {
1576 	struct tcp_sock *tp = tcp_sk(sk);
1577 	bool time_to_ack = false;
1578 
1579 	if (inet_csk_ack_scheduled(sk)) {
1580 		const struct inet_connection_sock *icsk = inet_csk(sk);
1581 
1582 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1583 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1584 		    /*
1585 		     * If this read emptied read buffer, we send ACK, if
1586 		     * connection is not bidirectional, user drained
1587 		     * receive buffer and there was a small segment
1588 		     * in queue.
1589 		     */
1590 		    (copied > 0 &&
1591 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1592 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1593 		       !inet_csk_in_pingpong_mode(sk))) &&
1594 		      !atomic_read(&sk->sk_rmem_alloc)))
1595 			time_to_ack = true;
1596 	}
1597 
1598 	/* We send an ACK if we can now advertise a non-zero window
1599 	 * which has been raised "significantly".
1600 	 *
1601 	 * Even if window raised up to infinity, do not send window open ACK
1602 	 * in states, where we will not receive more. It is useless.
1603 	 */
1604 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1605 		__u32 rcv_window_now = tcp_receive_window(tp);
1606 
1607 		/* Optimize, __tcp_select_window() is not cheap. */
1608 		if (2*rcv_window_now <= tp->window_clamp) {
1609 			__u32 new_window = __tcp_select_window(sk);
1610 
1611 			/* Send ACK now, if this read freed lots of space
1612 			 * in our buffer. Certainly, new_window is new window.
1613 			 * We can advertise it now, if it is not less than current one.
1614 			 * "Lots" means "at least twice" here.
1615 			 */
1616 			if (new_window && new_window >= 2 * rcv_window_now)
1617 				time_to_ack = true;
1618 		}
1619 	}
1620 	if (time_to_ack)
1621 		tcp_send_ack(sk);
1622 }
1623 
1624 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1625 {
1626 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 
1629 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1630 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1631 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1632 	__tcp_cleanup_rbuf(sk, copied);
1633 }
1634 
1635 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1636 {
1637 	__skb_unlink(skb, &sk->sk_receive_queue);
1638 	if (likely(skb->destructor == sock_rfree)) {
1639 		sock_rfree(skb);
1640 		skb->destructor = NULL;
1641 		skb->sk = NULL;
1642 		return skb_attempt_defer_free(skb);
1643 	}
1644 	__kfree_skb(skb);
1645 }
1646 
1647 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1648 {
1649 	struct sk_buff *skb;
1650 	u32 offset;
1651 
1652 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1653 		offset = seq - TCP_SKB_CB(skb)->seq;
1654 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1655 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1656 			offset--;
1657 		}
1658 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1659 			*off = offset;
1660 			return skb;
1661 		}
1662 		/* This looks weird, but this can happen if TCP collapsing
1663 		 * splitted a fat GRO packet, while we released socket lock
1664 		 * in skb_splice_bits()
1665 		 */
1666 		tcp_eat_recv_skb(sk, skb);
1667 	}
1668 	return NULL;
1669 }
1670 EXPORT_SYMBOL(tcp_recv_skb);
1671 
1672 /*
1673  * This routine provides an alternative to tcp_recvmsg() for routines
1674  * that would like to handle copying from skbuffs directly in 'sendfile'
1675  * fashion.
1676  * Note:
1677  *	- It is assumed that the socket was locked by the caller.
1678  *	- The routine does not block.
1679  *	- At present, there is no support for reading OOB data
1680  *	  or for 'peeking' the socket using this routine
1681  *	  (although both would be easy to implement).
1682  */
1683 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1684 		  sk_read_actor_t recv_actor)
1685 {
1686 	struct sk_buff *skb;
1687 	struct tcp_sock *tp = tcp_sk(sk);
1688 	u32 seq = tp->copied_seq;
1689 	u32 offset;
1690 	int copied = 0;
1691 
1692 	if (sk->sk_state == TCP_LISTEN)
1693 		return -ENOTCONN;
1694 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1695 		if (offset < skb->len) {
1696 			int used;
1697 			size_t len;
1698 
1699 			len = skb->len - offset;
1700 			/* Stop reading if we hit a patch of urgent data */
1701 			if (unlikely(tp->urg_data)) {
1702 				u32 urg_offset = tp->urg_seq - seq;
1703 				if (urg_offset < len)
1704 					len = urg_offset;
1705 				if (!len)
1706 					break;
1707 			}
1708 			used = recv_actor(desc, skb, offset, len);
1709 			if (used <= 0) {
1710 				if (!copied)
1711 					copied = used;
1712 				break;
1713 			}
1714 			if (WARN_ON_ONCE(used > len))
1715 				used = len;
1716 			seq += used;
1717 			copied += used;
1718 			offset += used;
1719 
1720 			/* If recv_actor drops the lock (e.g. TCP splice
1721 			 * receive) the skb pointer might be invalid when
1722 			 * getting here: tcp_collapse might have deleted it
1723 			 * while aggregating skbs from the socket queue.
1724 			 */
1725 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1726 			if (!skb)
1727 				break;
1728 			/* TCP coalescing might have appended data to the skb.
1729 			 * Try to splice more frags
1730 			 */
1731 			if (offset + 1 != skb->len)
1732 				continue;
1733 		}
1734 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1735 			tcp_eat_recv_skb(sk, skb);
1736 			++seq;
1737 			break;
1738 		}
1739 		tcp_eat_recv_skb(sk, skb);
1740 		if (!desc->count)
1741 			break;
1742 		WRITE_ONCE(tp->copied_seq, seq);
1743 	}
1744 	WRITE_ONCE(tp->copied_seq, seq);
1745 
1746 	tcp_rcv_space_adjust(sk);
1747 
1748 	/* Clean up data we have read: This will do ACK frames. */
1749 	if (copied > 0) {
1750 		tcp_recv_skb(sk, seq, &offset);
1751 		tcp_cleanup_rbuf(sk, copied);
1752 	}
1753 	return copied;
1754 }
1755 EXPORT_SYMBOL(tcp_read_sock);
1756 
1757 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1758 {
1759 	struct tcp_sock *tp = tcp_sk(sk);
1760 	u32 seq = tp->copied_seq;
1761 	struct sk_buff *skb;
1762 	int copied = 0;
1763 	u32 offset;
1764 
1765 	if (sk->sk_state == TCP_LISTEN)
1766 		return -ENOTCONN;
1767 
1768 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1769 		u8 tcp_flags;
1770 		int used;
1771 
1772 		__skb_unlink(skb, &sk->sk_receive_queue);
1773 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1774 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1775 		used = recv_actor(sk, skb);
1776 		if (used < 0) {
1777 			if (!copied)
1778 				copied = used;
1779 			break;
1780 		}
1781 		seq += used;
1782 		copied += used;
1783 
1784 		if (tcp_flags & TCPHDR_FIN) {
1785 			++seq;
1786 			break;
1787 		}
1788 	}
1789 	return copied;
1790 }
1791 EXPORT_SYMBOL(tcp_read_skb);
1792 
1793 void tcp_read_done(struct sock *sk, size_t len)
1794 {
1795 	struct tcp_sock *tp = tcp_sk(sk);
1796 	u32 seq = tp->copied_seq;
1797 	struct sk_buff *skb;
1798 	size_t left;
1799 	u32 offset;
1800 
1801 	if (sk->sk_state == TCP_LISTEN)
1802 		return;
1803 
1804 	left = len;
1805 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1806 		int used;
1807 
1808 		used = min_t(size_t, skb->len - offset, left);
1809 		seq += used;
1810 		left -= used;
1811 
1812 		if (skb->len > offset + used)
1813 			break;
1814 
1815 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1816 			tcp_eat_recv_skb(sk, skb);
1817 			++seq;
1818 			break;
1819 		}
1820 		tcp_eat_recv_skb(sk, skb);
1821 	}
1822 	WRITE_ONCE(tp->copied_seq, seq);
1823 
1824 	tcp_rcv_space_adjust(sk);
1825 
1826 	/* Clean up data we have read: This will do ACK frames. */
1827 	if (left != len)
1828 		tcp_cleanup_rbuf(sk, len - left);
1829 }
1830 EXPORT_SYMBOL(tcp_read_done);
1831 
1832 int tcp_peek_len(struct socket *sock)
1833 {
1834 	return tcp_inq(sock->sk);
1835 }
1836 EXPORT_SYMBOL(tcp_peek_len);
1837 
1838 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1839 int tcp_set_rcvlowat(struct sock *sk, int val)
1840 {
1841 	int cap;
1842 
1843 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1844 		cap = sk->sk_rcvbuf >> 1;
1845 	else
1846 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1847 	val = min(val, cap);
1848 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1849 
1850 	/* Check if we need to signal EPOLLIN right now */
1851 	tcp_data_ready(sk);
1852 
1853 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1854 		return 0;
1855 
1856 	val <<= 1;
1857 	if (val > sk->sk_rcvbuf) {
1858 		WRITE_ONCE(sk->sk_rcvbuf, val);
1859 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1860 	}
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(tcp_set_rcvlowat);
1864 
1865 void tcp_update_recv_tstamps(struct sk_buff *skb,
1866 			     struct scm_timestamping_internal *tss)
1867 {
1868 	if (skb->tstamp)
1869 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1870 	else
1871 		tss->ts[0] = (struct timespec64) {0};
1872 
1873 	if (skb_hwtstamps(skb)->hwtstamp)
1874 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1875 	else
1876 		tss->ts[2] = (struct timespec64) {0};
1877 }
1878 
1879 #ifdef CONFIG_MMU
1880 static const struct vm_operations_struct tcp_vm_ops = {
1881 };
1882 
1883 int tcp_mmap(struct file *file, struct socket *sock,
1884 	     struct vm_area_struct *vma)
1885 {
1886 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1887 		return -EPERM;
1888 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1889 
1890 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1891 	vm_flags_set(vma, VM_MIXEDMAP);
1892 
1893 	vma->vm_ops = &tcp_vm_ops;
1894 	return 0;
1895 }
1896 EXPORT_SYMBOL(tcp_mmap);
1897 
1898 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1899 				       u32 *offset_frag)
1900 {
1901 	skb_frag_t *frag;
1902 
1903 	if (unlikely(offset_skb >= skb->len))
1904 		return NULL;
1905 
1906 	offset_skb -= skb_headlen(skb);
1907 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1908 		return NULL;
1909 
1910 	frag = skb_shinfo(skb)->frags;
1911 	while (offset_skb) {
1912 		if (skb_frag_size(frag) > offset_skb) {
1913 			*offset_frag = offset_skb;
1914 			return frag;
1915 		}
1916 		offset_skb -= skb_frag_size(frag);
1917 		++frag;
1918 	}
1919 	*offset_frag = 0;
1920 	return frag;
1921 }
1922 
1923 static bool can_map_frag(const skb_frag_t *frag)
1924 {
1925 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1926 }
1927 
1928 static int find_next_mappable_frag(const skb_frag_t *frag,
1929 				   int remaining_in_skb)
1930 {
1931 	int offset = 0;
1932 
1933 	if (likely(can_map_frag(frag)))
1934 		return 0;
1935 
1936 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1937 		offset += skb_frag_size(frag);
1938 		++frag;
1939 	}
1940 	return offset;
1941 }
1942 
1943 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1944 					  struct tcp_zerocopy_receive *zc,
1945 					  struct sk_buff *skb, u32 offset)
1946 {
1947 	u32 frag_offset, partial_frag_remainder = 0;
1948 	int mappable_offset;
1949 	skb_frag_t *frag;
1950 
1951 	/* worst case: skip to next skb. try to improve on this case below */
1952 	zc->recv_skip_hint = skb->len - offset;
1953 
1954 	/* Find the frag containing this offset (and how far into that frag) */
1955 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1956 	if (!frag)
1957 		return;
1958 
1959 	if (frag_offset) {
1960 		struct skb_shared_info *info = skb_shinfo(skb);
1961 
1962 		/* We read part of the last frag, must recvmsg() rest of skb. */
1963 		if (frag == &info->frags[info->nr_frags - 1])
1964 			return;
1965 
1966 		/* Else, we must at least read the remainder in this frag. */
1967 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1968 		zc->recv_skip_hint -= partial_frag_remainder;
1969 		++frag;
1970 	}
1971 
1972 	/* partial_frag_remainder: If part way through a frag, must read rest.
1973 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1974 	 * in partial_frag_remainder.
1975 	 */
1976 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1977 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1978 }
1979 
1980 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1981 			      int flags, struct scm_timestamping_internal *tss,
1982 			      int *cmsg_flags);
1983 static int receive_fallback_to_copy(struct sock *sk,
1984 				    struct tcp_zerocopy_receive *zc, int inq,
1985 				    struct scm_timestamping_internal *tss)
1986 {
1987 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1988 	struct msghdr msg = {};
1989 	struct iovec iov;
1990 	int err;
1991 
1992 	zc->length = 0;
1993 	zc->recv_skip_hint = 0;
1994 
1995 	if (copy_address != zc->copybuf_address)
1996 		return -EINVAL;
1997 
1998 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1999 				  inq, &iov, &msg.msg_iter);
2000 	if (err)
2001 		return err;
2002 
2003 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2004 				 tss, &zc->msg_flags);
2005 	if (err < 0)
2006 		return err;
2007 
2008 	zc->copybuf_len = err;
2009 	if (likely(zc->copybuf_len)) {
2010 		struct sk_buff *skb;
2011 		u32 offset;
2012 
2013 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2014 		if (skb)
2015 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2016 	}
2017 	return 0;
2018 }
2019 
2020 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2021 				   struct sk_buff *skb, u32 copylen,
2022 				   u32 *offset, u32 *seq)
2023 {
2024 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2025 	struct msghdr msg = {};
2026 	struct iovec iov;
2027 	int err;
2028 
2029 	if (copy_address != zc->copybuf_address)
2030 		return -EINVAL;
2031 
2032 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2033 				  copylen, &iov, &msg.msg_iter);
2034 	if (err)
2035 		return err;
2036 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2037 	if (err)
2038 		return err;
2039 	zc->recv_skip_hint -= copylen;
2040 	*offset += copylen;
2041 	*seq += copylen;
2042 	return (__s32)copylen;
2043 }
2044 
2045 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2046 				  struct sock *sk,
2047 				  struct sk_buff *skb,
2048 				  u32 *seq,
2049 				  s32 copybuf_len,
2050 				  struct scm_timestamping_internal *tss)
2051 {
2052 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2053 
2054 	if (!copylen)
2055 		return 0;
2056 	/* skb is null if inq < PAGE_SIZE. */
2057 	if (skb) {
2058 		offset = *seq - TCP_SKB_CB(skb)->seq;
2059 	} else {
2060 		skb = tcp_recv_skb(sk, *seq, &offset);
2061 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2062 			tcp_update_recv_tstamps(skb, tss);
2063 			zc->msg_flags |= TCP_CMSG_TS;
2064 		}
2065 	}
2066 
2067 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2068 						  seq);
2069 	return zc->copybuf_len < 0 ? 0 : copylen;
2070 }
2071 
2072 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2073 					      struct page **pending_pages,
2074 					      unsigned long pages_remaining,
2075 					      unsigned long *address,
2076 					      u32 *length,
2077 					      u32 *seq,
2078 					      struct tcp_zerocopy_receive *zc,
2079 					      u32 total_bytes_to_map,
2080 					      int err)
2081 {
2082 	/* At least one page did not map. Try zapping if we skipped earlier. */
2083 	if (err == -EBUSY &&
2084 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2085 		u32 maybe_zap_len;
2086 
2087 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2088 				*length + /* Mapped or pending */
2089 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2090 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2091 		err = 0;
2092 	}
2093 
2094 	if (!err) {
2095 		unsigned long leftover_pages = pages_remaining;
2096 		int bytes_mapped;
2097 
2098 		/* We called zap_page_range_single, try to reinsert. */
2099 		err = vm_insert_pages(vma, *address,
2100 				      pending_pages,
2101 				      &pages_remaining);
2102 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2103 		*seq += bytes_mapped;
2104 		*address += bytes_mapped;
2105 	}
2106 	if (err) {
2107 		/* Either we were unable to zap, OR we zapped, retried an
2108 		 * insert, and still had an issue. Either ways, pages_remaining
2109 		 * is the number of pages we were unable to map, and we unroll
2110 		 * some state we speculatively touched before.
2111 		 */
2112 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2113 
2114 		*length -= bytes_not_mapped;
2115 		zc->recv_skip_hint += bytes_not_mapped;
2116 	}
2117 	return err;
2118 }
2119 
2120 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2121 					struct page **pages,
2122 					unsigned int pages_to_map,
2123 					unsigned long *address,
2124 					u32 *length,
2125 					u32 *seq,
2126 					struct tcp_zerocopy_receive *zc,
2127 					u32 total_bytes_to_map)
2128 {
2129 	unsigned long pages_remaining = pages_to_map;
2130 	unsigned int pages_mapped;
2131 	unsigned int bytes_mapped;
2132 	int err;
2133 
2134 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2135 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2136 	bytes_mapped = PAGE_SIZE * pages_mapped;
2137 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2138 	 * mapping (some but not all of the pages).
2139 	 */
2140 	*seq += bytes_mapped;
2141 	*address += bytes_mapped;
2142 
2143 	if (likely(!err))
2144 		return 0;
2145 
2146 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2147 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2148 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2149 		err);
2150 }
2151 
2152 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2153 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2154 				      struct tcp_zerocopy_receive *zc,
2155 				      struct scm_timestamping_internal *tss)
2156 {
2157 	unsigned long msg_control_addr;
2158 	struct msghdr cmsg_dummy;
2159 
2160 	msg_control_addr = (unsigned long)zc->msg_control;
2161 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2162 	cmsg_dummy.msg_controllen =
2163 		(__kernel_size_t)zc->msg_controllen;
2164 	cmsg_dummy.msg_flags = in_compat_syscall()
2165 		? MSG_CMSG_COMPAT : 0;
2166 	cmsg_dummy.msg_control_is_user = true;
2167 	zc->msg_flags = 0;
2168 	if (zc->msg_control == msg_control_addr &&
2169 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2170 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2171 		zc->msg_control = (__u64)
2172 			((uintptr_t)cmsg_dummy.msg_control_user);
2173 		zc->msg_controllen =
2174 			(__u64)cmsg_dummy.msg_controllen;
2175 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2176 	}
2177 }
2178 
2179 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2180 static int tcp_zerocopy_receive(struct sock *sk,
2181 				struct tcp_zerocopy_receive *zc,
2182 				struct scm_timestamping_internal *tss)
2183 {
2184 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2185 	unsigned long address = (unsigned long)zc->address;
2186 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2187 	s32 copybuf_len = zc->copybuf_len;
2188 	struct tcp_sock *tp = tcp_sk(sk);
2189 	const skb_frag_t *frags = NULL;
2190 	unsigned int pages_to_map = 0;
2191 	struct vm_area_struct *vma;
2192 	struct sk_buff *skb = NULL;
2193 	u32 seq = tp->copied_seq;
2194 	u32 total_bytes_to_map;
2195 	int inq = tcp_inq(sk);
2196 	int ret;
2197 
2198 	zc->copybuf_len = 0;
2199 	zc->msg_flags = 0;
2200 
2201 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2202 		return -EINVAL;
2203 
2204 	if (sk->sk_state == TCP_LISTEN)
2205 		return -ENOTCONN;
2206 
2207 	sock_rps_record_flow(sk);
2208 
2209 	if (inq && inq <= copybuf_len)
2210 		return receive_fallback_to_copy(sk, zc, inq, tss);
2211 
2212 	if (inq < PAGE_SIZE) {
2213 		zc->length = 0;
2214 		zc->recv_skip_hint = inq;
2215 		if (!inq && sock_flag(sk, SOCK_DONE))
2216 			return -EIO;
2217 		return 0;
2218 	}
2219 
2220 	mmap_read_lock(current->mm);
2221 
2222 	vma = vma_lookup(current->mm, address);
2223 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2224 		mmap_read_unlock(current->mm);
2225 		return -EINVAL;
2226 	}
2227 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2228 	avail_len = min_t(u32, vma_len, inq);
2229 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2230 	if (total_bytes_to_map) {
2231 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2232 			zap_page_range_single(vma, address, total_bytes_to_map,
2233 					      NULL);
2234 		zc->length = total_bytes_to_map;
2235 		zc->recv_skip_hint = 0;
2236 	} else {
2237 		zc->length = avail_len;
2238 		zc->recv_skip_hint = avail_len;
2239 	}
2240 	ret = 0;
2241 	while (length + PAGE_SIZE <= zc->length) {
2242 		int mappable_offset;
2243 		struct page *page;
2244 
2245 		if (zc->recv_skip_hint < PAGE_SIZE) {
2246 			u32 offset_frag;
2247 
2248 			if (skb) {
2249 				if (zc->recv_skip_hint > 0)
2250 					break;
2251 				skb = skb->next;
2252 				offset = seq - TCP_SKB_CB(skb)->seq;
2253 			} else {
2254 				skb = tcp_recv_skb(sk, seq, &offset);
2255 			}
2256 
2257 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2258 				tcp_update_recv_tstamps(skb, tss);
2259 				zc->msg_flags |= TCP_CMSG_TS;
2260 			}
2261 			zc->recv_skip_hint = skb->len - offset;
2262 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2263 			if (!frags || offset_frag)
2264 				break;
2265 		}
2266 
2267 		mappable_offset = find_next_mappable_frag(frags,
2268 							  zc->recv_skip_hint);
2269 		if (mappable_offset) {
2270 			zc->recv_skip_hint = mappable_offset;
2271 			break;
2272 		}
2273 		page = skb_frag_page(frags);
2274 		prefetchw(page);
2275 		pages[pages_to_map++] = page;
2276 		length += PAGE_SIZE;
2277 		zc->recv_skip_hint -= PAGE_SIZE;
2278 		frags++;
2279 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2280 		    zc->recv_skip_hint < PAGE_SIZE) {
2281 			/* Either full batch, or we're about to go to next skb
2282 			 * (and we cannot unroll failed ops across skbs).
2283 			 */
2284 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2285 							   pages_to_map,
2286 							   &address, &length,
2287 							   &seq, zc,
2288 							   total_bytes_to_map);
2289 			if (ret)
2290 				goto out;
2291 			pages_to_map = 0;
2292 		}
2293 	}
2294 	if (pages_to_map) {
2295 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2296 						   &address, &length, &seq,
2297 						   zc, total_bytes_to_map);
2298 	}
2299 out:
2300 	mmap_read_unlock(current->mm);
2301 	/* Try to copy straggler data. */
2302 	if (!ret)
2303 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2304 
2305 	if (length + copylen) {
2306 		WRITE_ONCE(tp->copied_seq, seq);
2307 		tcp_rcv_space_adjust(sk);
2308 
2309 		/* Clean up data we have read: This will do ACK frames. */
2310 		tcp_recv_skb(sk, seq, &offset);
2311 		tcp_cleanup_rbuf(sk, length + copylen);
2312 		ret = 0;
2313 		if (length == zc->length)
2314 			zc->recv_skip_hint = 0;
2315 	} else {
2316 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2317 			ret = -EIO;
2318 	}
2319 	zc->length = length;
2320 	return ret;
2321 }
2322 #endif
2323 
2324 /* Similar to __sock_recv_timestamp, but does not require an skb */
2325 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2326 			struct scm_timestamping_internal *tss)
2327 {
2328 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2329 	bool has_timestamping = false;
2330 
2331 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2332 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2333 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2334 				if (new_tstamp) {
2335 					struct __kernel_timespec kts = {
2336 						.tv_sec = tss->ts[0].tv_sec,
2337 						.tv_nsec = tss->ts[0].tv_nsec,
2338 					};
2339 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2340 						 sizeof(kts), &kts);
2341 				} else {
2342 					struct __kernel_old_timespec ts_old = {
2343 						.tv_sec = tss->ts[0].tv_sec,
2344 						.tv_nsec = tss->ts[0].tv_nsec,
2345 					};
2346 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2347 						 sizeof(ts_old), &ts_old);
2348 				}
2349 			} else {
2350 				if (new_tstamp) {
2351 					struct __kernel_sock_timeval stv = {
2352 						.tv_sec = tss->ts[0].tv_sec,
2353 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2354 					};
2355 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2356 						 sizeof(stv), &stv);
2357 				} else {
2358 					struct __kernel_old_timeval tv = {
2359 						.tv_sec = tss->ts[0].tv_sec,
2360 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2361 					};
2362 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2363 						 sizeof(tv), &tv);
2364 				}
2365 			}
2366 		}
2367 
2368 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2369 			has_timestamping = true;
2370 		else
2371 			tss->ts[0] = (struct timespec64) {0};
2372 	}
2373 
2374 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2375 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2376 			has_timestamping = true;
2377 		else
2378 			tss->ts[2] = (struct timespec64) {0};
2379 	}
2380 
2381 	if (has_timestamping) {
2382 		tss->ts[1] = (struct timespec64) {0};
2383 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2384 			put_cmsg_scm_timestamping64(msg, tss);
2385 		else
2386 			put_cmsg_scm_timestamping(msg, tss);
2387 	}
2388 }
2389 
2390 static int tcp_inq_hint(struct sock *sk)
2391 {
2392 	const struct tcp_sock *tp = tcp_sk(sk);
2393 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2394 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2395 	int inq;
2396 
2397 	inq = rcv_nxt - copied_seq;
2398 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2399 		lock_sock(sk);
2400 		inq = tp->rcv_nxt - tp->copied_seq;
2401 		release_sock(sk);
2402 	}
2403 	/* After receiving a FIN, tell the user-space to continue reading
2404 	 * by returning a non-zero inq.
2405 	 */
2406 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2407 		inq = 1;
2408 	return inq;
2409 }
2410 
2411 /*
2412  *	This routine copies from a sock struct into the user buffer.
2413  *
2414  *	Technical note: in 2.3 we work on _locked_ socket, so that
2415  *	tricks with *seq access order and skb->users are not required.
2416  *	Probably, code can be easily improved even more.
2417  */
2418 
2419 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2420 			      int flags, struct scm_timestamping_internal *tss,
2421 			      int *cmsg_flags)
2422 {
2423 	struct tcp_sock *tp = tcp_sk(sk);
2424 	int copied = 0;
2425 	u32 peek_seq;
2426 	u32 *seq;
2427 	unsigned long used;
2428 	int err;
2429 	int target;		/* Read at least this many bytes */
2430 	long timeo;
2431 	struct sk_buff *skb, *last;
2432 	u32 urg_hole = 0;
2433 
2434 	err = -ENOTCONN;
2435 	if (sk->sk_state == TCP_LISTEN)
2436 		goto out;
2437 
2438 	if (tp->recvmsg_inq) {
2439 		*cmsg_flags = TCP_CMSG_INQ;
2440 		msg->msg_get_inq = 1;
2441 	}
2442 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2443 
2444 	/* Urgent data needs to be handled specially. */
2445 	if (flags & MSG_OOB)
2446 		goto recv_urg;
2447 
2448 	if (unlikely(tp->repair)) {
2449 		err = -EPERM;
2450 		if (!(flags & MSG_PEEK))
2451 			goto out;
2452 
2453 		if (tp->repair_queue == TCP_SEND_QUEUE)
2454 			goto recv_sndq;
2455 
2456 		err = -EINVAL;
2457 		if (tp->repair_queue == TCP_NO_QUEUE)
2458 			goto out;
2459 
2460 		/* 'common' recv queue MSG_PEEK-ing */
2461 	}
2462 
2463 	seq = &tp->copied_seq;
2464 	if (flags & MSG_PEEK) {
2465 		peek_seq = tp->copied_seq;
2466 		seq = &peek_seq;
2467 	}
2468 
2469 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2470 
2471 	do {
2472 		u32 offset;
2473 
2474 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2475 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2476 			if (copied)
2477 				break;
2478 			if (signal_pending(current)) {
2479 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2480 				break;
2481 			}
2482 		}
2483 
2484 		/* Next get a buffer. */
2485 
2486 		last = skb_peek_tail(&sk->sk_receive_queue);
2487 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2488 			last = skb;
2489 			/* Now that we have two receive queues this
2490 			 * shouldn't happen.
2491 			 */
2492 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2493 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2494 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2495 				 flags))
2496 				break;
2497 
2498 			offset = *seq - TCP_SKB_CB(skb)->seq;
2499 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2500 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2501 				offset--;
2502 			}
2503 			if (offset < skb->len)
2504 				goto found_ok_skb;
2505 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2506 				goto found_fin_ok;
2507 			WARN(!(flags & MSG_PEEK),
2508 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2509 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2510 		}
2511 
2512 		/* Well, if we have backlog, try to process it now yet. */
2513 
2514 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2515 			break;
2516 
2517 		if (copied) {
2518 			if (!timeo ||
2519 			    sk->sk_err ||
2520 			    sk->sk_state == TCP_CLOSE ||
2521 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2522 			    signal_pending(current))
2523 				break;
2524 		} else {
2525 			if (sock_flag(sk, SOCK_DONE))
2526 				break;
2527 
2528 			if (sk->sk_err) {
2529 				copied = sock_error(sk);
2530 				break;
2531 			}
2532 
2533 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2534 				break;
2535 
2536 			if (sk->sk_state == TCP_CLOSE) {
2537 				/* This occurs when user tries to read
2538 				 * from never connected socket.
2539 				 */
2540 				copied = -ENOTCONN;
2541 				break;
2542 			}
2543 
2544 			if (!timeo) {
2545 				copied = -EAGAIN;
2546 				break;
2547 			}
2548 
2549 			if (signal_pending(current)) {
2550 				copied = sock_intr_errno(timeo);
2551 				break;
2552 			}
2553 		}
2554 
2555 		if (copied >= target) {
2556 			/* Do not sleep, just process backlog. */
2557 			__sk_flush_backlog(sk);
2558 		} else {
2559 			tcp_cleanup_rbuf(sk, copied);
2560 			sk_wait_data(sk, &timeo, last);
2561 		}
2562 
2563 		if ((flags & MSG_PEEK) &&
2564 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2565 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2566 					    current->comm,
2567 					    task_pid_nr(current));
2568 			peek_seq = tp->copied_seq;
2569 		}
2570 		continue;
2571 
2572 found_ok_skb:
2573 		/* Ok so how much can we use? */
2574 		used = skb->len - offset;
2575 		if (len < used)
2576 			used = len;
2577 
2578 		/* Do we have urgent data here? */
2579 		if (unlikely(tp->urg_data)) {
2580 			u32 urg_offset = tp->urg_seq - *seq;
2581 			if (urg_offset < used) {
2582 				if (!urg_offset) {
2583 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2584 						WRITE_ONCE(*seq, *seq + 1);
2585 						urg_hole++;
2586 						offset++;
2587 						used--;
2588 						if (!used)
2589 							goto skip_copy;
2590 					}
2591 				} else
2592 					used = urg_offset;
2593 			}
2594 		}
2595 
2596 		if (!(flags & MSG_TRUNC)) {
2597 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2598 			if (err) {
2599 				/* Exception. Bailout! */
2600 				if (!copied)
2601 					copied = -EFAULT;
2602 				break;
2603 			}
2604 		}
2605 
2606 		WRITE_ONCE(*seq, *seq + used);
2607 		copied += used;
2608 		len -= used;
2609 
2610 		tcp_rcv_space_adjust(sk);
2611 
2612 skip_copy:
2613 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2614 			WRITE_ONCE(tp->urg_data, 0);
2615 			tcp_fast_path_check(sk);
2616 		}
2617 
2618 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2619 			tcp_update_recv_tstamps(skb, tss);
2620 			*cmsg_flags |= TCP_CMSG_TS;
2621 		}
2622 
2623 		if (used + offset < skb->len)
2624 			continue;
2625 
2626 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2627 			goto found_fin_ok;
2628 		if (!(flags & MSG_PEEK))
2629 			tcp_eat_recv_skb(sk, skb);
2630 		continue;
2631 
2632 found_fin_ok:
2633 		/* Process the FIN. */
2634 		WRITE_ONCE(*seq, *seq + 1);
2635 		if (!(flags & MSG_PEEK))
2636 			tcp_eat_recv_skb(sk, skb);
2637 		break;
2638 	} while (len > 0);
2639 
2640 	/* According to UNIX98, msg_name/msg_namelen are ignored
2641 	 * on connected socket. I was just happy when found this 8) --ANK
2642 	 */
2643 
2644 	/* Clean up data we have read: This will do ACK frames. */
2645 	tcp_cleanup_rbuf(sk, copied);
2646 	return copied;
2647 
2648 out:
2649 	return err;
2650 
2651 recv_urg:
2652 	err = tcp_recv_urg(sk, msg, len, flags);
2653 	goto out;
2654 
2655 recv_sndq:
2656 	err = tcp_peek_sndq(sk, msg, len);
2657 	goto out;
2658 }
2659 
2660 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2661 		int *addr_len)
2662 {
2663 	int cmsg_flags = 0, ret;
2664 	struct scm_timestamping_internal tss;
2665 
2666 	if (unlikely(flags & MSG_ERRQUEUE))
2667 		return inet_recv_error(sk, msg, len, addr_len);
2668 
2669 	if (sk_can_busy_loop(sk) &&
2670 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2671 	    sk->sk_state == TCP_ESTABLISHED)
2672 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2673 
2674 	lock_sock(sk);
2675 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2676 	release_sock(sk);
2677 
2678 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2679 		if (cmsg_flags & TCP_CMSG_TS)
2680 			tcp_recv_timestamp(msg, sk, &tss);
2681 		if (msg->msg_get_inq) {
2682 			msg->msg_inq = tcp_inq_hint(sk);
2683 			if (cmsg_flags & TCP_CMSG_INQ)
2684 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2685 					 sizeof(msg->msg_inq), &msg->msg_inq);
2686 		}
2687 	}
2688 	return ret;
2689 }
2690 EXPORT_SYMBOL(tcp_recvmsg);
2691 
2692 void tcp_set_state(struct sock *sk, int state)
2693 {
2694 	int oldstate = sk->sk_state;
2695 
2696 	/* We defined a new enum for TCP states that are exported in BPF
2697 	 * so as not force the internal TCP states to be frozen. The
2698 	 * following checks will detect if an internal state value ever
2699 	 * differs from the BPF value. If this ever happens, then we will
2700 	 * need to remap the internal value to the BPF value before calling
2701 	 * tcp_call_bpf_2arg.
2702 	 */
2703 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2704 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2705 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2706 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2707 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2708 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2709 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2710 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2711 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2712 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2713 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2714 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2715 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2716 
2717 	/* bpf uapi header bpf.h defines an anonymous enum with values
2718 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2719 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2720 	 * But clang built vmlinux does not have this enum in DWARF
2721 	 * since clang removes the above code before generating IR/debuginfo.
2722 	 * Let us explicitly emit the type debuginfo to ensure the
2723 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2724 	 * regardless of which compiler is used.
2725 	 */
2726 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2727 
2728 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2729 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2730 
2731 	switch (state) {
2732 	case TCP_ESTABLISHED:
2733 		if (oldstate != TCP_ESTABLISHED)
2734 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2735 		break;
2736 
2737 	case TCP_CLOSE:
2738 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2739 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2740 
2741 		sk->sk_prot->unhash(sk);
2742 		if (inet_csk(sk)->icsk_bind_hash &&
2743 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2744 			inet_put_port(sk);
2745 		fallthrough;
2746 	default:
2747 		if (oldstate == TCP_ESTABLISHED)
2748 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2749 	}
2750 
2751 	/* Change state AFTER socket is unhashed to avoid closed
2752 	 * socket sitting in hash tables.
2753 	 */
2754 	inet_sk_state_store(sk, state);
2755 }
2756 EXPORT_SYMBOL_GPL(tcp_set_state);
2757 
2758 /*
2759  *	State processing on a close. This implements the state shift for
2760  *	sending our FIN frame. Note that we only send a FIN for some
2761  *	states. A shutdown() may have already sent the FIN, or we may be
2762  *	closed.
2763  */
2764 
2765 static const unsigned char new_state[16] = {
2766   /* current state:        new state:      action:	*/
2767   [0 /* (Invalid) */]	= TCP_CLOSE,
2768   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2769   [TCP_SYN_SENT]	= TCP_CLOSE,
2770   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2771   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2772   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2773   [TCP_TIME_WAIT]	= TCP_CLOSE,
2774   [TCP_CLOSE]		= TCP_CLOSE,
2775   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2776   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2777   [TCP_LISTEN]		= TCP_CLOSE,
2778   [TCP_CLOSING]		= TCP_CLOSING,
2779   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2780 };
2781 
2782 static int tcp_close_state(struct sock *sk)
2783 {
2784 	int next = (int)new_state[sk->sk_state];
2785 	int ns = next & TCP_STATE_MASK;
2786 
2787 	tcp_set_state(sk, ns);
2788 
2789 	return next & TCP_ACTION_FIN;
2790 }
2791 
2792 /*
2793  *	Shutdown the sending side of a connection. Much like close except
2794  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2795  */
2796 
2797 void tcp_shutdown(struct sock *sk, int how)
2798 {
2799 	/*	We need to grab some memory, and put together a FIN,
2800 	 *	and then put it into the queue to be sent.
2801 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2802 	 */
2803 	if (!(how & SEND_SHUTDOWN))
2804 		return;
2805 
2806 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2807 	if ((1 << sk->sk_state) &
2808 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2809 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2810 		/* Clear out any half completed packets.  FIN if needed. */
2811 		if (tcp_close_state(sk))
2812 			tcp_send_fin(sk);
2813 	}
2814 }
2815 EXPORT_SYMBOL(tcp_shutdown);
2816 
2817 int tcp_orphan_count_sum(void)
2818 {
2819 	int i, total = 0;
2820 
2821 	for_each_possible_cpu(i)
2822 		total += per_cpu(tcp_orphan_count, i);
2823 
2824 	return max(total, 0);
2825 }
2826 
2827 static int tcp_orphan_cache;
2828 static struct timer_list tcp_orphan_timer;
2829 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2830 
2831 static void tcp_orphan_update(struct timer_list *unused)
2832 {
2833 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2834 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2835 }
2836 
2837 static bool tcp_too_many_orphans(int shift)
2838 {
2839 	return READ_ONCE(tcp_orphan_cache) << shift >
2840 		READ_ONCE(sysctl_tcp_max_orphans);
2841 }
2842 
2843 bool tcp_check_oom(struct sock *sk, int shift)
2844 {
2845 	bool too_many_orphans, out_of_socket_memory;
2846 
2847 	too_many_orphans = tcp_too_many_orphans(shift);
2848 	out_of_socket_memory = tcp_out_of_memory(sk);
2849 
2850 	if (too_many_orphans)
2851 		net_info_ratelimited("too many orphaned sockets\n");
2852 	if (out_of_socket_memory)
2853 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2854 	return too_many_orphans || out_of_socket_memory;
2855 }
2856 
2857 void __tcp_close(struct sock *sk, long timeout)
2858 {
2859 	struct sk_buff *skb;
2860 	int data_was_unread = 0;
2861 	int state;
2862 
2863 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2864 
2865 	if (sk->sk_state == TCP_LISTEN) {
2866 		tcp_set_state(sk, TCP_CLOSE);
2867 
2868 		/* Special case. */
2869 		inet_csk_listen_stop(sk);
2870 
2871 		goto adjudge_to_death;
2872 	}
2873 
2874 	/*  We need to flush the recv. buffs.  We do this only on the
2875 	 *  descriptor close, not protocol-sourced closes, because the
2876 	 *  reader process may not have drained the data yet!
2877 	 */
2878 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2879 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2880 
2881 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2882 			len--;
2883 		data_was_unread += len;
2884 		__kfree_skb(skb);
2885 	}
2886 
2887 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2888 	if (sk->sk_state == TCP_CLOSE)
2889 		goto adjudge_to_death;
2890 
2891 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2892 	 * data was lost. To witness the awful effects of the old behavior of
2893 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2894 	 * GET in an FTP client, suspend the process, wait for the client to
2895 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2896 	 * Note: timeout is always zero in such a case.
2897 	 */
2898 	if (unlikely(tcp_sk(sk)->repair)) {
2899 		sk->sk_prot->disconnect(sk, 0);
2900 	} else if (data_was_unread) {
2901 		/* Unread data was tossed, zap the connection. */
2902 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2903 		tcp_set_state(sk, TCP_CLOSE);
2904 		tcp_send_active_reset(sk, sk->sk_allocation);
2905 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2906 		/* Check zero linger _after_ checking for unread data. */
2907 		sk->sk_prot->disconnect(sk, 0);
2908 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2909 	} else if (tcp_close_state(sk)) {
2910 		/* We FIN if the application ate all the data before
2911 		 * zapping the connection.
2912 		 */
2913 
2914 		/* RED-PEN. Formally speaking, we have broken TCP state
2915 		 * machine. State transitions:
2916 		 *
2917 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2918 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2919 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2920 		 *
2921 		 * are legal only when FIN has been sent (i.e. in window),
2922 		 * rather than queued out of window. Purists blame.
2923 		 *
2924 		 * F.e. "RFC state" is ESTABLISHED,
2925 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2926 		 *
2927 		 * The visible declinations are that sometimes
2928 		 * we enter time-wait state, when it is not required really
2929 		 * (harmless), do not send active resets, when they are
2930 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2931 		 * they look as CLOSING or LAST_ACK for Linux)
2932 		 * Probably, I missed some more holelets.
2933 		 * 						--ANK
2934 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2935 		 * in a single packet! (May consider it later but will
2936 		 * probably need API support or TCP_CORK SYN-ACK until
2937 		 * data is written and socket is closed.)
2938 		 */
2939 		tcp_send_fin(sk);
2940 	}
2941 
2942 	sk_stream_wait_close(sk, timeout);
2943 
2944 adjudge_to_death:
2945 	state = sk->sk_state;
2946 	sock_hold(sk);
2947 	sock_orphan(sk);
2948 
2949 	local_bh_disable();
2950 	bh_lock_sock(sk);
2951 	/* remove backlog if any, without releasing ownership. */
2952 	__release_sock(sk);
2953 
2954 	this_cpu_inc(tcp_orphan_count);
2955 
2956 	/* Have we already been destroyed by a softirq or backlog? */
2957 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2958 		goto out;
2959 
2960 	/*	This is a (useful) BSD violating of the RFC. There is a
2961 	 *	problem with TCP as specified in that the other end could
2962 	 *	keep a socket open forever with no application left this end.
2963 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2964 	 *	our end. If they send after that then tough - BUT: long enough
2965 	 *	that we won't make the old 4*rto = almost no time - whoops
2966 	 *	reset mistake.
2967 	 *
2968 	 *	Nope, it was not mistake. It is really desired behaviour
2969 	 *	f.e. on http servers, when such sockets are useless, but
2970 	 *	consume significant resources. Let's do it with special
2971 	 *	linger2	option.					--ANK
2972 	 */
2973 
2974 	if (sk->sk_state == TCP_FIN_WAIT2) {
2975 		struct tcp_sock *tp = tcp_sk(sk);
2976 		if (tp->linger2 < 0) {
2977 			tcp_set_state(sk, TCP_CLOSE);
2978 			tcp_send_active_reset(sk, GFP_ATOMIC);
2979 			__NET_INC_STATS(sock_net(sk),
2980 					LINUX_MIB_TCPABORTONLINGER);
2981 		} else {
2982 			const int tmo = tcp_fin_time(sk);
2983 
2984 			if (tmo > TCP_TIMEWAIT_LEN) {
2985 				inet_csk_reset_keepalive_timer(sk,
2986 						tmo - TCP_TIMEWAIT_LEN);
2987 			} else {
2988 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2989 				goto out;
2990 			}
2991 		}
2992 	}
2993 	if (sk->sk_state != TCP_CLOSE) {
2994 		if (tcp_check_oom(sk, 0)) {
2995 			tcp_set_state(sk, TCP_CLOSE);
2996 			tcp_send_active_reset(sk, GFP_ATOMIC);
2997 			__NET_INC_STATS(sock_net(sk),
2998 					LINUX_MIB_TCPABORTONMEMORY);
2999 		} else if (!check_net(sock_net(sk))) {
3000 			/* Not possible to send reset; just close */
3001 			tcp_set_state(sk, TCP_CLOSE);
3002 		}
3003 	}
3004 
3005 	if (sk->sk_state == TCP_CLOSE) {
3006 		struct request_sock *req;
3007 
3008 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3009 						lockdep_sock_is_held(sk));
3010 		/* We could get here with a non-NULL req if the socket is
3011 		 * aborted (e.g., closed with unread data) before 3WHS
3012 		 * finishes.
3013 		 */
3014 		if (req)
3015 			reqsk_fastopen_remove(sk, req, false);
3016 		inet_csk_destroy_sock(sk);
3017 	}
3018 	/* Otherwise, socket is reprieved until protocol close. */
3019 
3020 out:
3021 	bh_unlock_sock(sk);
3022 	local_bh_enable();
3023 }
3024 
3025 void tcp_close(struct sock *sk, long timeout)
3026 {
3027 	lock_sock(sk);
3028 	__tcp_close(sk, timeout);
3029 	release_sock(sk);
3030 	sock_put(sk);
3031 }
3032 EXPORT_SYMBOL(tcp_close);
3033 
3034 /* These states need RST on ABORT according to RFC793 */
3035 
3036 static inline bool tcp_need_reset(int state)
3037 {
3038 	return (1 << state) &
3039 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3040 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3041 }
3042 
3043 static void tcp_rtx_queue_purge(struct sock *sk)
3044 {
3045 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3046 
3047 	tcp_sk(sk)->highest_sack = NULL;
3048 	while (p) {
3049 		struct sk_buff *skb = rb_to_skb(p);
3050 
3051 		p = rb_next(p);
3052 		/* Since we are deleting whole queue, no need to
3053 		 * list_del(&skb->tcp_tsorted_anchor)
3054 		 */
3055 		tcp_rtx_queue_unlink(skb, sk);
3056 		tcp_wmem_free_skb(sk, skb);
3057 	}
3058 }
3059 
3060 void tcp_write_queue_purge(struct sock *sk)
3061 {
3062 	struct sk_buff *skb;
3063 
3064 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3065 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3066 		tcp_skb_tsorted_anchor_cleanup(skb);
3067 		tcp_wmem_free_skb(sk, skb);
3068 	}
3069 	tcp_rtx_queue_purge(sk);
3070 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3071 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3072 	tcp_sk(sk)->packets_out = 0;
3073 	inet_csk(sk)->icsk_backoff = 0;
3074 }
3075 
3076 int tcp_disconnect(struct sock *sk, int flags)
3077 {
3078 	struct inet_sock *inet = inet_sk(sk);
3079 	struct inet_connection_sock *icsk = inet_csk(sk);
3080 	struct tcp_sock *tp = tcp_sk(sk);
3081 	int old_state = sk->sk_state;
3082 	u32 seq;
3083 
3084 	if (old_state != TCP_CLOSE)
3085 		tcp_set_state(sk, TCP_CLOSE);
3086 
3087 	/* ABORT function of RFC793 */
3088 	if (old_state == TCP_LISTEN) {
3089 		inet_csk_listen_stop(sk);
3090 	} else if (unlikely(tp->repair)) {
3091 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3092 	} else if (tcp_need_reset(old_state) ||
3093 		   (tp->snd_nxt != tp->write_seq &&
3094 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3095 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3096 		 * states
3097 		 */
3098 		tcp_send_active_reset(sk, gfp_any());
3099 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3100 	} else if (old_state == TCP_SYN_SENT)
3101 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3102 
3103 	tcp_clear_xmit_timers(sk);
3104 	__skb_queue_purge(&sk->sk_receive_queue);
3105 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3106 	WRITE_ONCE(tp->urg_data, 0);
3107 	tcp_write_queue_purge(sk);
3108 	tcp_fastopen_active_disable_ofo_check(sk);
3109 	skb_rbtree_purge(&tp->out_of_order_queue);
3110 
3111 	inet->inet_dport = 0;
3112 
3113 	inet_bhash2_reset_saddr(sk);
3114 
3115 	WRITE_ONCE(sk->sk_shutdown, 0);
3116 	sock_reset_flag(sk, SOCK_DONE);
3117 	tp->srtt_us = 0;
3118 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3119 	tp->rcv_rtt_last_tsecr = 0;
3120 
3121 	seq = tp->write_seq + tp->max_window + 2;
3122 	if (!seq)
3123 		seq = 1;
3124 	WRITE_ONCE(tp->write_seq, seq);
3125 
3126 	icsk->icsk_backoff = 0;
3127 	icsk->icsk_probes_out = 0;
3128 	icsk->icsk_probes_tstamp = 0;
3129 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3130 	icsk->icsk_rto_min = TCP_RTO_MIN;
3131 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3132 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3133 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3134 	tp->snd_cwnd_cnt = 0;
3135 	tp->is_cwnd_limited = 0;
3136 	tp->max_packets_out = 0;
3137 	tp->window_clamp = 0;
3138 	tp->delivered = 0;
3139 	tp->delivered_ce = 0;
3140 	if (icsk->icsk_ca_ops->release)
3141 		icsk->icsk_ca_ops->release(sk);
3142 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3143 	icsk->icsk_ca_initialized = 0;
3144 	tcp_set_ca_state(sk, TCP_CA_Open);
3145 	tp->is_sack_reneg = 0;
3146 	tcp_clear_retrans(tp);
3147 	tp->total_retrans = 0;
3148 	inet_csk_delack_init(sk);
3149 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3150 	 * issue in __tcp_select_window()
3151 	 */
3152 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3153 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3154 	__sk_dst_reset(sk);
3155 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3156 	tcp_saved_syn_free(tp);
3157 	tp->compressed_ack = 0;
3158 	tp->segs_in = 0;
3159 	tp->segs_out = 0;
3160 	tp->bytes_sent = 0;
3161 	tp->bytes_acked = 0;
3162 	tp->bytes_received = 0;
3163 	tp->bytes_retrans = 0;
3164 	tp->data_segs_in = 0;
3165 	tp->data_segs_out = 0;
3166 	tp->duplicate_sack[0].start_seq = 0;
3167 	tp->duplicate_sack[0].end_seq = 0;
3168 	tp->dsack_dups = 0;
3169 	tp->reord_seen = 0;
3170 	tp->retrans_out = 0;
3171 	tp->sacked_out = 0;
3172 	tp->tlp_high_seq = 0;
3173 	tp->last_oow_ack_time = 0;
3174 	tp->plb_rehash = 0;
3175 	/* There's a bubble in the pipe until at least the first ACK. */
3176 	tp->app_limited = ~0U;
3177 	tp->rate_app_limited = 1;
3178 	tp->rack.mstamp = 0;
3179 	tp->rack.advanced = 0;
3180 	tp->rack.reo_wnd_steps = 1;
3181 	tp->rack.last_delivered = 0;
3182 	tp->rack.reo_wnd_persist = 0;
3183 	tp->rack.dsack_seen = 0;
3184 	tp->syn_data_acked = 0;
3185 	tp->rx_opt.saw_tstamp = 0;
3186 	tp->rx_opt.dsack = 0;
3187 	tp->rx_opt.num_sacks = 0;
3188 	tp->rcv_ooopack = 0;
3189 
3190 
3191 	/* Clean up fastopen related fields */
3192 	tcp_free_fastopen_req(tp);
3193 	inet->defer_connect = 0;
3194 	tp->fastopen_client_fail = 0;
3195 
3196 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3197 
3198 	if (sk->sk_frag.page) {
3199 		put_page(sk->sk_frag.page);
3200 		sk->sk_frag.page = NULL;
3201 		sk->sk_frag.offset = 0;
3202 	}
3203 	sk_error_report(sk);
3204 	return 0;
3205 }
3206 EXPORT_SYMBOL(tcp_disconnect);
3207 
3208 static inline bool tcp_can_repair_sock(const struct sock *sk)
3209 {
3210 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3211 		(sk->sk_state != TCP_LISTEN);
3212 }
3213 
3214 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3215 {
3216 	struct tcp_repair_window opt;
3217 
3218 	if (!tp->repair)
3219 		return -EPERM;
3220 
3221 	if (len != sizeof(opt))
3222 		return -EINVAL;
3223 
3224 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3225 		return -EFAULT;
3226 
3227 	if (opt.max_window < opt.snd_wnd)
3228 		return -EINVAL;
3229 
3230 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3231 		return -EINVAL;
3232 
3233 	if (after(opt.rcv_wup, tp->rcv_nxt))
3234 		return -EINVAL;
3235 
3236 	tp->snd_wl1	= opt.snd_wl1;
3237 	tp->snd_wnd	= opt.snd_wnd;
3238 	tp->max_window	= opt.max_window;
3239 
3240 	tp->rcv_wnd	= opt.rcv_wnd;
3241 	tp->rcv_wup	= opt.rcv_wup;
3242 
3243 	return 0;
3244 }
3245 
3246 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3247 		unsigned int len)
3248 {
3249 	struct tcp_sock *tp = tcp_sk(sk);
3250 	struct tcp_repair_opt opt;
3251 	size_t offset = 0;
3252 
3253 	while (len >= sizeof(opt)) {
3254 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3255 			return -EFAULT;
3256 
3257 		offset += sizeof(opt);
3258 		len -= sizeof(opt);
3259 
3260 		switch (opt.opt_code) {
3261 		case TCPOPT_MSS:
3262 			tp->rx_opt.mss_clamp = opt.opt_val;
3263 			tcp_mtup_init(sk);
3264 			break;
3265 		case TCPOPT_WINDOW:
3266 			{
3267 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3268 				u16 rcv_wscale = opt.opt_val >> 16;
3269 
3270 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3271 					return -EFBIG;
3272 
3273 				tp->rx_opt.snd_wscale = snd_wscale;
3274 				tp->rx_opt.rcv_wscale = rcv_wscale;
3275 				tp->rx_opt.wscale_ok = 1;
3276 			}
3277 			break;
3278 		case TCPOPT_SACK_PERM:
3279 			if (opt.opt_val != 0)
3280 				return -EINVAL;
3281 
3282 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3283 			break;
3284 		case TCPOPT_TIMESTAMP:
3285 			if (opt.opt_val != 0)
3286 				return -EINVAL;
3287 
3288 			tp->rx_opt.tstamp_ok = 1;
3289 			break;
3290 		}
3291 	}
3292 
3293 	return 0;
3294 }
3295 
3296 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3297 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3298 
3299 static void tcp_enable_tx_delay(void)
3300 {
3301 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3302 		static int __tcp_tx_delay_enabled = 0;
3303 
3304 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3305 			static_branch_enable(&tcp_tx_delay_enabled);
3306 			pr_info("TCP_TX_DELAY enabled\n");
3307 		}
3308 	}
3309 }
3310 
3311 /* When set indicates to always queue non-full frames.  Later the user clears
3312  * this option and we transmit any pending partial frames in the queue.  This is
3313  * meant to be used alongside sendfile() to get properly filled frames when the
3314  * user (for example) must write out headers with a write() call first and then
3315  * use sendfile to send out the data parts.
3316  *
3317  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3318  * TCP_NODELAY.
3319  */
3320 void __tcp_sock_set_cork(struct sock *sk, bool on)
3321 {
3322 	struct tcp_sock *tp = tcp_sk(sk);
3323 
3324 	if (on) {
3325 		tp->nonagle |= TCP_NAGLE_CORK;
3326 	} else {
3327 		tp->nonagle &= ~TCP_NAGLE_CORK;
3328 		if (tp->nonagle & TCP_NAGLE_OFF)
3329 			tp->nonagle |= TCP_NAGLE_PUSH;
3330 		tcp_push_pending_frames(sk);
3331 	}
3332 }
3333 
3334 void tcp_sock_set_cork(struct sock *sk, bool on)
3335 {
3336 	lock_sock(sk);
3337 	__tcp_sock_set_cork(sk, on);
3338 	release_sock(sk);
3339 }
3340 EXPORT_SYMBOL(tcp_sock_set_cork);
3341 
3342 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3343  * remembered, but it is not activated until cork is cleared.
3344  *
3345  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3346  * even TCP_CORK for currently queued segments.
3347  */
3348 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3349 {
3350 	if (on) {
3351 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3352 		tcp_push_pending_frames(sk);
3353 	} else {
3354 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3355 	}
3356 }
3357 
3358 void tcp_sock_set_nodelay(struct sock *sk)
3359 {
3360 	lock_sock(sk);
3361 	__tcp_sock_set_nodelay(sk, true);
3362 	release_sock(sk);
3363 }
3364 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3365 
3366 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3367 {
3368 	if (!val) {
3369 		inet_csk_enter_pingpong_mode(sk);
3370 		return;
3371 	}
3372 
3373 	inet_csk_exit_pingpong_mode(sk);
3374 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3375 	    inet_csk_ack_scheduled(sk)) {
3376 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3377 		tcp_cleanup_rbuf(sk, 1);
3378 		if (!(val & 1))
3379 			inet_csk_enter_pingpong_mode(sk);
3380 	}
3381 }
3382 
3383 void tcp_sock_set_quickack(struct sock *sk, int val)
3384 {
3385 	lock_sock(sk);
3386 	__tcp_sock_set_quickack(sk, val);
3387 	release_sock(sk);
3388 }
3389 EXPORT_SYMBOL(tcp_sock_set_quickack);
3390 
3391 int tcp_sock_set_syncnt(struct sock *sk, int val)
3392 {
3393 	if (val < 1 || val > MAX_TCP_SYNCNT)
3394 		return -EINVAL;
3395 
3396 	lock_sock(sk);
3397 	inet_csk(sk)->icsk_syn_retries = val;
3398 	release_sock(sk);
3399 	return 0;
3400 }
3401 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3402 
3403 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3404 {
3405 	lock_sock(sk);
3406 	inet_csk(sk)->icsk_user_timeout = val;
3407 	release_sock(sk);
3408 }
3409 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3410 
3411 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3412 {
3413 	struct tcp_sock *tp = tcp_sk(sk);
3414 
3415 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3416 		return -EINVAL;
3417 
3418 	tp->keepalive_time = val * HZ;
3419 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3420 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3421 		u32 elapsed = keepalive_time_elapsed(tp);
3422 
3423 		if (tp->keepalive_time > elapsed)
3424 			elapsed = tp->keepalive_time - elapsed;
3425 		else
3426 			elapsed = 0;
3427 		inet_csk_reset_keepalive_timer(sk, elapsed);
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 int tcp_sock_set_keepidle(struct sock *sk, int val)
3434 {
3435 	int err;
3436 
3437 	lock_sock(sk);
3438 	err = tcp_sock_set_keepidle_locked(sk, val);
3439 	release_sock(sk);
3440 	return err;
3441 }
3442 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3443 
3444 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3445 {
3446 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3447 		return -EINVAL;
3448 
3449 	lock_sock(sk);
3450 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3451 	release_sock(sk);
3452 	return 0;
3453 }
3454 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3455 
3456 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3457 {
3458 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3459 		return -EINVAL;
3460 
3461 	lock_sock(sk);
3462 	tcp_sk(sk)->keepalive_probes = val;
3463 	release_sock(sk);
3464 	return 0;
3465 }
3466 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3467 
3468 int tcp_set_window_clamp(struct sock *sk, int val)
3469 {
3470 	struct tcp_sock *tp = tcp_sk(sk);
3471 
3472 	if (!val) {
3473 		if (sk->sk_state != TCP_CLOSE)
3474 			return -EINVAL;
3475 		tp->window_clamp = 0;
3476 	} else {
3477 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3478 			SOCK_MIN_RCVBUF / 2 : val;
3479 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3480 	}
3481 	return 0;
3482 }
3483 
3484 /*
3485  *	Socket option code for TCP.
3486  */
3487 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3488 		      sockptr_t optval, unsigned int optlen)
3489 {
3490 	struct tcp_sock *tp = tcp_sk(sk);
3491 	struct inet_connection_sock *icsk = inet_csk(sk);
3492 	struct net *net = sock_net(sk);
3493 	int val;
3494 	int err = 0;
3495 
3496 	/* These are data/string values, all the others are ints */
3497 	switch (optname) {
3498 	case TCP_CONGESTION: {
3499 		char name[TCP_CA_NAME_MAX];
3500 
3501 		if (optlen < 1)
3502 			return -EINVAL;
3503 
3504 		val = strncpy_from_sockptr(name, optval,
3505 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3506 		if (val < 0)
3507 			return -EFAULT;
3508 		name[val] = 0;
3509 
3510 		sockopt_lock_sock(sk);
3511 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3512 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3513 								    CAP_NET_ADMIN));
3514 		sockopt_release_sock(sk);
3515 		return err;
3516 	}
3517 	case TCP_ULP: {
3518 		char name[TCP_ULP_NAME_MAX];
3519 
3520 		if (optlen < 1)
3521 			return -EINVAL;
3522 
3523 		val = strncpy_from_sockptr(name, optval,
3524 					min_t(long, TCP_ULP_NAME_MAX - 1,
3525 					      optlen));
3526 		if (val < 0)
3527 			return -EFAULT;
3528 		name[val] = 0;
3529 
3530 		sockopt_lock_sock(sk);
3531 		err = tcp_set_ulp(sk, name);
3532 		sockopt_release_sock(sk);
3533 		return err;
3534 	}
3535 	case TCP_FASTOPEN_KEY: {
3536 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3537 		__u8 *backup_key = NULL;
3538 
3539 		/* Allow a backup key as well to facilitate key rotation
3540 		 * First key is the active one.
3541 		 */
3542 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3543 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3544 			return -EINVAL;
3545 
3546 		if (copy_from_sockptr(key, optval, optlen))
3547 			return -EFAULT;
3548 
3549 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3550 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3551 
3552 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3553 	}
3554 	default:
3555 		/* fallthru */
3556 		break;
3557 	}
3558 
3559 	if (optlen < sizeof(int))
3560 		return -EINVAL;
3561 
3562 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3563 		return -EFAULT;
3564 
3565 	sockopt_lock_sock(sk);
3566 
3567 	switch (optname) {
3568 	case TCP_MAXSEG:
3569 		/* Values greater than interface MTU won't take effect. However
3570 		 * at the point when this call is done we typically don't yet
3571 		 * know which interface is going to be used
3572 		 */
3573 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3574 			err = -EINVAL;
3575 			break;
3576 		}
3577 		tp->rx_opt.user_mss = val;
3578 		break;
3579 
3580 	case TCP_NODELAY:
3581 		__tcp_sock_set_nodelay(sk, val);
3582 		break;
3583 
3584 	case TCP_THIN_LINEAR_TIMEOUTS:
3585 		if (val < 0 || val > 1)
3586 			err = -EINVAL;
3587 		else
3588 			tp->thin_lto = val;
3589 		break;
3590 
3591 	case TCP_THIN_DUPACK:
3592 		if (val < 0 || val > 1)
3593 			err = -EINVAL;
3594 		break;
3595 
3596 	case TCP_REPAIR:
3597 		if (!tcp_can_repair_sock(sk))
3598 			err = -EPERM;
3599 		else if (val == TCP_REPAIR_ON) {
3600 			tp->repair = 1;
3601 			sk->sk_reuse = SK_FORCE_REUSE;
3602 			tp->repair_queue = TCP_NO_QUEUE;
3603 		} else if (val == TCP_REPAIR_OFF) {
3604 			tp->repair = 0;
3605 			sk->sk_reuse = SK_NO_REUSE;
3606 			tcp_send_window_probe(sk);
3607 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3608 			tp->repair = 0;
3609 			sk->sk_reuse = SK_NO_REUSE;
3610 		} else
3611 			err = -EINVAL;
3612 
3613 		break;
3614 
3615 	case TCP_REPAIR_QUEUE:
3616 		if (!tp->repair)
3617 			err = -EPERM;
3618 		else if ((unsigned int)val < TCP_QUEUES_NR)
3619 			tp->repair_queue = val;
3620 		else
3621 			err = -EINVAL;
3622 		break;
3623 
3624 	case TCP_QUEUE_SEQ:
3625 		if (sk->sk_state != TCP_CLOSE) {
3626 			err = -EPERM;
3627 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3628 			if (!tcp_rtx_queue_empty(sk))
3629 				err = -EPERM;
3630 			else
3631 				WRITE_ONCE(tp->write_seq, val);
3632 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3633 			if (tp->rcv_nxt != tp->copied_seq) {
3634 				err = -EPERM;
3635 			} else {
3636 				WRITE_ONCE(tp->rcv_nxt, val);
3637 				WRITE_ONCE(tp->copied_seq, val);
3638 			}
3639 		} else {
3640 			err = -EINVAL;
3641 		}
3642 		break;
3643 
3644 	case TCP_REPAIR_OPTIONS:
3645 		if (!tp->repair)
3646 			err = -EINVAL;
3647 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3648 			err = tcp_repair_options_est(sk, optval, optlen);
3649 		else
3650 			err = -EPERM;
3651 		break;
3652 
3653 	case TCP_CORK:
3654 		__tcp_sock_set_cork(sk, val);
3655 		break;
3656 
3657 	case TCP_KEEPIDLE:
3658 		err = tcp_sock_set_keepidle_locked(sk, val);
3659 		break;
3660 	case TCP_KEEPINTVL:
3661 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3662 			err = -EINVAL;
3663 		else
3664 			tp->keepalive_intvl = val * HZ;
3665 		break;
3666 	case TCP_KEEPCNT:
3667 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3668 			err = -EINVAL;
3669 		else
3670 			tp->keepalive_probes = val;
3671 		break;
3672 	case TCP_SYNCNT:
3673 		if (val < 1 || val > MAX_TCP_SYNCNT)
3674 			err = -EINVAL;
3675 		else
3676 			icsk->icsk_syn_retries = val;
3677 		break;
3678 
3679 	case TCP_SAVE_SYN:
3680 		/* 0: disable, 1: enable, 2: start from ether_header */
3681 		if (val < 0 || val > 2)
3682 			err = -EINVAL;
3683 		else
3684 			tp->save_syn = val;
3685 		break;
3686 
3687 	case TCP_LINGER2:
3688 		if (val < 0)
3689 			tp->linger2 = -1;
3690 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3691 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3692 		else
3693 			tp->linger2 = val * HZ;
3694 		break;
3695 
3696 	case TCP_DEFER_ACCEPT:
3697 		/* Translate value in seconds to number of retransmits */
3698 		icsk->icsk_accept_queue.rskq_defer_accept =
3699 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3700 					TCP_RTO_MAX / HZ);
3701 		break;
3702 
3703 	case TCP_WINDOW_CLAMP:
3704 		err = tcp_set_window_clamp(sk, val);
3705 		break;
3706 
3707 	case TCP_QUICKACK:
3708 		__tcp_sock_set_quickack(sk, val);
3709 		break;
3710 
3711 #ifdef CONFIG_TCP_MD5SIG
3712 	case TCP_MD5SIG:
3713 	case TCP_MD5SIG_EXT:
3714 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3715 		break;
3716 #endif
3717 	case TCP_USER_TIMEOUT:
3718 		/* Cap the max time in ms TCP will retry or probe the window
3719 		 * before giving up and aborting (ETIMEDOUT) a connection.
3720 		 */
3721 		if (val < 0)
3722 			err = -EINVAL;
3723 		else
3724 			icsk->icsk_user_timeout = val;
3725 		break;
3726 
3727 	case TCP_FASTOPEN:
3728 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3729 		    TCPF_LISTEN))) {
3730 			tcp_fastopen_init_key_once(net);
3731 
3732 			fastopen_queue_tune(sk, val);
3733 		} else {
3734 			err = -EINVAL;
3735 		}
3736 		break;
3737 	case TCP_FASTOPEN_CONNECT:
3738 		if (val > 1 || val < 0) {
3739 			err = -EINVAL;
3740 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3741 			   TFO_CLIENT_ENABLE) {
3742 			if (sk->sk_state == TCP_CLOSE)
3743 				tp->fastopen_connect = val;
3744 			else
3745 				err = -EINVAL;
3746 		} else {
3747 			err = -EOPNOTSUPP;
3748 		}
3749 		break;
3750 	case TCP_FASTOPEN_NO_COOKIE:
3751 		if (val > 1 || val < 0)
3752 			err = -EINVAL;
3753 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3754 			err = -EINVAL;
3755 		else
3756 			tp->fastopen_no_cookie = val;
3757 		break;
3758 	case TCP_TIMESTAMP:
3759 		if (!tp->repair)
3760 			err = -EPERM;
3761 		else
3762 			tp->tsoffset = val - tcp_time_stamp_raw();
3763 		break;
3764 	case TCP_REPAIR_WINDOW:
3765 		err = tcp_repair_set_window(tp, optval, optlen);
3766 		break;
3767 	case TCP_NOTSENT_LOWAT:
3768 		tp->notsent_lowat = val;
3769 		sk->sk_write_space(sk);
3770 		break;
3771 	case TCP_INQ:
3772 		if (val > 1 || val < 0)
3773 			err = -EINVAL;
3774 		else
3775 			tp->recvmsg_inq = val;
3776 		break;
3777 	case TCP_TX_DELAY:
3778 		if (val)
3779 			tcp_enable_tx_delay();
3780 		tp->tcp_tx_delay = val;
3781 		break;
3782 	default:
3783 		err = -ENOPROTOOPT;
3784 		break;
3785 	}
3786 
3787 	sockopt_release_sock(sk);
3788 	return err;
3789 }
3790 
3791 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3792 		   unsigned int optlen)
3793 {
3794 	const struct inet_connection_sock *icsk = inet_csk(sk);
3795 
3796 	if (level != SOL_TCP)
3797 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3798 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3799 								optval, optlen);
3800 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3801 }
3802 EXPORT_SYMBOL(tcp_setsockopt);
3803 
3804 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3805 				      struct tcp_info *info)
3806 {
3807 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3808 	enum tcp_chrono i;
3809 
3810 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3811 		stats[i] = tp->chrono_stat[i - 1];
3812 		if (i == tp->chrono_type)
3813 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3814 		stats[i] *= USEC_PER_SEC / HZ;
3815 		total += stats[i];
3816 	}
3817 
3818 	info->tcpi_busy_time = total;
3819 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3820 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3821 }
3822 
3823 /* Return information about state of tcp endpoint in API format. */
3824 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3825 {
3826 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3827 	const struct inet_connection_sock *icsk = inet_csk(sk);
3828 	unsigned long rate;
3829 	u32 now;
3830 	u64 rate64;
3831 	bool slow;
3832 
3833 	memset(info, 0, sizeof(*info));
3834 	if (sk->sk_type != SOCK_STREAM)
3835 		return;
3836 
3837 	info->tcpi_state = inet_sk_state_load(sk);
3838 
3839 	/* Report meaningful fields for all TCP states, including listeners */
3840 	rate = READ_ONCE(sk->sk_pacing_rate);
3841 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3842 	info->tcpi_pacing_rate = rate64;
3843 
3844 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3845 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3846 	info->tcpi_max_pacing_rate = rate64;
3847 
3848 	info->tcpi_reordering = tp->reordering;
3849 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3850 
3851 	if (info->tcpi_state == TCP_LISTEN) {
3852 		/* listeners aliased fields :
3853 		 * tcpi_unacked -> Number of children ready for accept()
3854 		 * tcpi_sacked  -> max backlog
3855 		 */
3856 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3857 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3858 		return;
3859 	}
3860 
3861 	slow = lock_sock_fast(sk);
3862 
3863 	info->tcpi_ca_state = icsk->icsk_ca_state;
3864 	info->tcpi_retransmits = icsk->icsk_retransmits;
3865 	info->tcpi_probes = icsk->icsk_probes_out;
3866 	info->tcpi_backoff = icsk->icsk_backoff;
3867 
3868 	if (tp->rx_opt.tstamp_ok)
3869 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3870 	if (tcp_is_sack(tp))
3871 		info->tcpi_options |= TCPI_OPT_SACK;
3872 	if (tp->rx_opt.wscale_ok) {
3873 		info->tcpi_options |= TCPI_OPT_WSCALE;
3874 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3875 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3876 	}
3877 
3878 	if (tp->ecn_flags & TCP_ECN_OK)
3879 		info->tcpi_options |= TCPI_OPT_ECN;
3880 	if (tp->ecn_flags & TCP_ECN_SEEN)
3881 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3882 	if (tp->syn_data_acked)
3883 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3884 
3885 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3886 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3887 	info->tcpi_snd_mss = tp->mss_cache;
3888 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3889 
3890 	info->tcpi_unacked = tp->packets_out;
3891 	info->tcpi_sacked = tp->sacked_out;
3892 
3893 	info->tcpi_lost = tp->lost_out;
3894 	info->tcpi_retrans = tp->retrans_out;
3895 
3896 	now = tcp_jiffies32;
3897 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3898 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3899 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3900 
3901 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3902 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3903 	info->tcpi_rtt = tp->srtt_us >> 3;
3904 	info->tcpi_rttvar = tp->mdev_us >> 2;
3905 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3906 	info->tcpi_advmss = tp->advmss;
3907 
3908 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3909 	info->tcpi_rcv_space = tp->rcvq_space.space;
3910 
3911 	info->tcpi_total_retrans = tp->total_retrans;
3912 
3913 	info->tcpi_bytes_acked = tp->bytes_acked;
3914 	info->tcpi_bytes_received = tp->bytes_received;
3915 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3916 	tcp_get_info_chrono_stats(tp, info);
3917 
3918 	info->tcpi_segs_out = tp->segs_out;
3919 
3920 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3921 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3922 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3923 
3924 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3925 	info->tcpi_data_segs_out = tp->data_segs_out;
3926 
3927 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3928 	rate64 = tcp_compute_delivery_rate(tp);
3929 	if (rate64)
3930 		info->tcpi_delivery_rate = rate64;
3931 	info->tcpi_delivered = tp->delivered;
3932 	info->tcpi_delivered_ce = tp->delivered_ce;
3933 	info->tcpi_bytes_sent = tp->bytes_sent;
3934 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3935 	info->tcpi_dsack_dups = tp->dsack_dups;
3936 	info->tcpi_reord_seen = tp->reord_seen;
3937 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3938 	info->tcpi_snd_wnd = tp->snd_wnd;
3939 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3940 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3941 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3942 	unlock_sock_fast(sk, slow);
3943 }
3944 EXPORT_SYMBOL_GPL(tcp_get_info);
3945 
3946 static size_t tcp_opt_stats_get_size(void)
3947 {
3948 	return
3949 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3950 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3951 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3952 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3953 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3954 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3955 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3956 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3957 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3958 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3959 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3960 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3961 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3962 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3963 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3964 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3965 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3966 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3967 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3968 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3969 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3970 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3971 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3972 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3973 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3974 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3975 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3976 		0;
3977 }
3978 
3979 /* Returns TTL or hop limit of an incoming packet from skb. */
3980 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3981 {
3982 	if (skb->protocol == htons(ETH_P_IP))
3983 		return ip_hdr(skb)->ttl;
3984 	else if (skb->protocol == htons(ETH_P_IPV6))
3985 		return ipv6_hdr(skb)->hop_limit;
3986 	else
3987 		return 0;
3988 }
3989 
3990 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3991 					       const struct sk_buff *orig_skb,
3992 					       const struct sk_buff *ack_skb)
3993 {
3994 	const struct tcp_sock *tp = tcp_sk(sk);
3995 	struct sk_buff *stats;
3996 	struct tcp_info info;
3997 	unsigned long rate;
3998 	u64 rate64;
3999 
4000 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4001 	if (!stats)
4002 		return NULL;
4003 
4004 	tcp_get_info_chrono_stats(tp, &info);
4005 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4006 			  info.tcpi_busy_time, TCP_NLA_PAD);
4007 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4008 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4009 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4010 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4011 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4012 			  tp->data_segs_out, TCP_NLA_PAD);
4013 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4014 			  tp->total_retrans, TCP_NLA_PAD);
4015 
4016 	rate = READ_ONCE(sk->sk_pacing_rate);
4017 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4018 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4019 
4020 	rate64 = tcp_compute_delivery_rate(tp);
4021 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4022 
4023 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4024 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4025 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4026 
4027 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4028 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4029 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4030 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4031 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4032 
4033 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4034 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4035 
4036 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4037 			  TCP_NLA_PAD);
4038 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4039 			  TCP_NLA_PAD);
4040 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4041 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4042 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4043 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4044 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4045 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4046 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4047 			  TCP_NLA_PAD);
4048 	if (ack_skb)
4049 		nla_put_u8(stats, TCP_NLA_TTL,
4050 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4051 
4052 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4053 	return stats;
4054 }
4055 
4056 int do_tcp_getsockopt(struct sock *sk, int level,
4057 		      int optname, sockptr_t optval, sockptr_t optlen)
4058 {
4059 	struct inet_connection_sock *icsk = inet_csk(sk);
4060 	struct tcp_sock *tp = tcp_sk(sk);
4061 	struct net *net = sock_net(sk);
4062 	int val, len;
4063 
4064 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4065 		return -EFAULT;
4066 
4067 	len = min_t(unsigned int, len, sizeof(int));
4068 
4069 	if (len < 0)
4070 		return -EINVAL;
4071 
4072 	switch (optname) {
4073 	case TCP_MAXSEG:
4074 		val = tp->mss_cache;
4075 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4076 			val = tp->rx_opt.user_mss;
4077 		if (tp->repair)
4078 			val = tp->rx_opt.mss_clamp;
4079 		break;
4080 	case TCP_NODELAY:
4081 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4082 		break;
4083 	case TCP_CORK:
4084 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4085 		break;
4086 	case TCP_KEEPIDLE:
4087 		val = keepalive_time_when(tp) / HZ;
4088 		break;
4089 	case TCP_KEEPINTVL:
4090 		val = keepalive_intvl_when(tp) / HZ;
4091 		break;
4092 	case TCP_KEEPCNT:
4093 		val = keepalive_probes(tp);
4094 		break;
4095 	case TCP_SYNCNT:
4096 		val = icsk->icsk_syn_retries ? :
4097 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4098 		break;
4099 	case TCP_LINGER2:
4100 		val = tp->linger2;
4101 		if (val >= 0)
4102 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4103 		break;
4104 	case TCP_DEFER_ACCEPT:
4105 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4106 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4107 		break;
4108 	case TCP_WINDOW_CLAMP:
4109 		val = tp->window_clamp;
4110 		break;
4111 	case TCP_INFO: {
4112 		struct tcp_info info;
4113 
4114 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4115 			return -EFAULT;
4116 
4117 		tcp_get_info(sk, &info);
4118 
4119 		len = min_t(unsigned int, len, sizeof(info));
4120 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4121 			return -EFAULT;
4122 		if (copy_to_sockptr(optval, &info, len))
4123 			return -EFAULT;
4124 		return 0;
4125 	}
4126 	case TCP_CC_INFO: {
4127 		const struct tcp_congestion_ops *ca_ops;
4128 		union tcp_cc_info info;
4129 		size_t sz = 0;
4130 		int attr;
4131 
4132 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4133 			return -EFAULT;
4134 
4135 		ca_ops = icsk->icsk_ca_ops;
4136 		if (ca_ops && ca_ops->get_info)
4137 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4138 
4139 		len = min_t(unsigned int, len, sz);
4140 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4141 			return -EFAULT;
4142 		if (copy_to_sockptr(optval, &info, len))
4143 			return -EFAULT;
4144 		return 0;
4145 	}
4146 	case TCP_QUICKACK:
4147 		val = !inet_csk_in_pingpong_mode(sk);
4148 		break;
4149 
4150 	case TCP_CONGESTION:
4151 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4152 			return -EFAULT;
4153 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4154 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4155 			return -EFAULT;
4156 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4157 			return -EFAULT;
4158 		return 0;
4159 
4160 	case TCP_ULP:
4161 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4162 			return -EFAULT;
4163 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4164 		if (!icsk->icsk_ulp_ops) {
4165 			len = 0;
4166 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4167 				return -EFAULT;
4168 			return 0;
4169 		}
4170 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4171 			return -EFAULT;
4172 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4173 			return -EFAULT;
4174 		return 0;
4175 
4176 	case TCP_FASTOPEN_KEY: {
4177 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4178 		unsigned int key_len;
4179 
4180 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4181 			return -EFAULT;
4182 
4183 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4184 				TCP_FASTOPEN_KEY_LENGTH;
4185 		len = min_t(unsigned int, len, key_len);
4186 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4187 			return -EFAULT;
4188 		if (copy_to_sockptr(optval, key, len))
4189 			return -EFAULT;
4190 		return 0;
4191 	}
4192 	case TCP_THIN_LINEAR_TIMEOUTS:
4193 		val = tp->thin_lto;
4194 		break;
4195 
4196 	case TCP_THIN_DUPACK:
4197 		val = 0;
4198 		break;
4199 
4200 	case TCP_REPAIR:
4201 		val = tp->repair;
4202 		break;
4203 
4204 	case TCP_REPAIR_QUEUE:
4205 		if (tp->repair)
4206 			val = tp->repair_queue;
4207 		else
4208 			return -EINVAL;
4209 		break;
4210 
4211 	case TCP_REPAIR_WINDOW: {
4212 		struct tcp_repair_window opt;
4213 
4214 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4215 			return -EFAULT;
4216 
4217 		if (len != sizeof(opt))
4218 			return -EINVAL;
4219 
4220 		if (!tp->repair)
4221 			return -EPERM;
4222 
4223 		opt.snd_wl1	= tp->snd_wl1;
4224 		opt.snd_wnd	= tp->snd_wnd;
4225 		opt.max_window	= tp->max_window;
4226 		opt.rcv_wnd	= tp->rcv_wnd;
4227 		opt.rcv_wup	= tp->rcv_wup;
4228 
4229 		if (copy_to_sockptr(optval, &opt, len))
4230 			return -EFAULT;
4231 		return 0;
4232 	}
4233 	case TCP_QUEUE_SEQ:
4234 		if (tp->repair_queue == TCP_SEND_QUEUE)
4235 			val = tp->write_seq;
4236 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4237 			val = tp->rcv_nxt;
4238 		else
4239 			return -EINVAL;
4240 		break;
4241 
4242 	case TCP_USER_TIMEOUT:
4243 		val = icsk->icsk_user_timeout;
4244 		break;
4245 
4246 	case TCP_FASTOPEN:
4247 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4248 		break;
4249 
4250 	case TCP_FASTOPEN_CONNECT:
4251 		val = tp->fastopen_connect;
4252 		break;
4253 
4254 	case TCP_FASTOPEN_NO_COOKIE:
4255 		val = tp->fastopen_no_cookie;
4256 		break;
4257 
4258 	case TCP_TX_DELAY:
4259 		val = tp->tcp_tx_delay;
4260 		break;
4261 
4262 	case TCP_TIMESTAMP:
4263 		val = tcp_time_stamp_raw() + tp->tsoffset;
4264 		break;
4265 	case TCP_NOTSENT_LOWAT:
4266 		val = tp->notsent_lowat;
4267 		break;
4268 	case TCP_INQ:
4269 		val = tp->recvmsg_inq;
4270 		break;
4271 	case TCP_SAVE_SYN:
4272 		val = tp->save_syn;
4273 		break;
4274 	case TCP_SAVED_SYN: {
4275 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4276 			return -EFAULT;
4277 
4278 		sockopt_lock_sock(sk);
4279 		if (tp->saved_syn) {
4280 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4281 				len = tcp_saved_syn_len(tp->saved_syn);
4282 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4283 					sockopt_release_sock(sk);
4284 					return -EFAULT;
4285 				}
4286 				sockopt_release_sock(sk);
4287 				return -EINVAL;
4288 			}
4289 			len = tcp_saved_syn_len(tp->saved_syn);
4290 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4291 				sockopt_release_sock(sk);
4292 				return -EFAULT;
4293 			}
4294 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4295 				sockopt_release_sock(sk);
4296 				return -EFAULT;
4297 			}
4298 			tcp_saved_syn_free(tp);
4299 			sockopt_release_sock(sk);
4300 		} else {
4301 			sockopt_release_sock(sk);
4302 			len = 0;
4303 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4304 				return -EFAULT;
4305 		}
4306 		return 0;
4307 	}
4308 #ifdef CONFIG_MMU
4309 	case TCP_ZEROCOPY_RECEIVE: {
4310 		struct scm_timestamping_internal tss;
4311 		struct tcp_zerocopy_receive zc = {};
4312 		int err;
4313 
4314 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4315 			return -EFAULT;
4316 		if (len < 0 ||
4317 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4318 			return -EINVAL;
4319 		if (unlikely(len > sizeof(zc))) {
4320 			err = check_zeroed_sockptr(optval, sizeof(zc),
4321 						   len - sizeof(zc));
4322 			if (err < 1)
4323 				return err == 0 ? -EINVAL : err;
4324 			len = sizeof(zc);
4325 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4326 				return -EFAULT;
4327 		}
4328 		if (copy_from_sockptr(&zc, optval, len))
4329 			return -EFAULT;
4330 		if (zc.reserved)
4331 			return -EINVAL;
4332 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4333 			return -EINVAL;
4334 		sockopt_lock_sock(sk);
4335 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4336 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4337 							  &zc, &len, err);
4338 		sockopt_release_sock(sk);
4339 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4340 			goto zerocopy_rcv_cmsg;
4341 		switch (len) {
4342 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4343 			goto zerocopy_rcv_cmsg;
4344 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4345 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4346 		case offsetofend(struct tcp_zerocopy_receive, flags):
4347 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4348 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4349 		case offsetofend(struct tcp_zerocopy_receive, err):
4350 			goto zerocopy_rcv_sk_err;
4351 		case offsetofend(struct tcp_zerocopy_receive, inq):
4352 			goto zerocopy_rcv_inq;
4353 		case offsetofend(struct tcp_zerocopy_receive, length):
4354 		default:
4355 			goto zerocopy_rcv_out;
4356 		}
4357 zerocopy_rcv_cmsg:
4358 		if (zc.msg_flags & TCP_CMSG_TS)
4359 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4360 		else
4361 			zc.msg_flags = 0;
4362 zerocopy_rcv_sk_err:
4363 		if (!err)
4364 			zc.err = sock_error(sk);
4365 zerocopy_rcv_inq:
4366 		zc.inq = tcp_inq_hint(sk);
4367 zerocopy_rcv_out:
4368 		if (!err && copy_to_sockptr(optval, &zc, len))
4369 			err = -EFAULT;
4370 		return err;
4371 	}
4372 #endif
4373 	default:
4374 		return -ENOPROTOOPT;
4375 	}
4376 
4377 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4378 		return -EFAULT;
4379 	if (copy_to_sockptr(optval, &val, len))
4380 		return -EFAULT;
4381 	return 0;
4382 }
4383 
4384 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4385 {
4386 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4387 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4388 	 */
4389 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4390 		return true;
4391 
4392 	return false;
4393 }
4394 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4395 
4396 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4397 		   int __user *optlen)
4398 {
4399 	struct inet_connection_sock *icsk = inet_csk(sk);
4400 
4401 	if (level != SOL_TCP)
4402 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4403 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4404 								optval, optlen);
4405 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4406 				 USER_SOCKPTR(optlen));
4407 }
4408 EXPORT_SYMBOL(tcp_getsockopt);
4409 
4410 #ifdef CONFIG_TCP_MD5SIG
4411 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4412 static DEFINE_MUTEX(tcp_md5sig_mutex);
4413 static bool tcp_md5sig_pool_populated = false;
4414 
4415 static void __tcp_alloc_md5sig_pool(void)
4416 {
4417 	struct crypto_ahash *hash;
4418 	int cpu;
4419 
4420 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4421 	if (IS_ERR(hash))
4422 		return;
4423 
4424 	for_each_possible_cpu(cpu) {
4425 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4426 		struct ahash_request *req;
4427 
4428 		if (!scratch) {
4429 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4430 					       sizeof(struct tcphdr),
4431 					       GFP_KERNEL,
4432 					       cpu_to_node(cpu));
4433 			if (!scratch)
4434 				return;
4435 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4436 		}
4437 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4438 			continue;
4439 
4440 		req = ahash_request_alloc(hash, GFP_KERNEL);
4441 		if (!req)
4442 			return;
4443 
4444 		ahash_request_set_callback(req, 0, NULL, NULL);
4445 
4446 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4447 	}
4448 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4449 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4450 	 */
4451 	smp_wmb();
4452 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4453 	 * and tcp_get_md5sig_pool().
4454 	*/
4455 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4456 }
4457 
4458 bool tcp_alloc_md5sig_pool(void)
4459 {
4460 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4461 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4462 		mutex_lock(&tcp_md5sig_mutex);
4463 
4464 		if (!tcp_md5sig_pool_populated)
4465 			__tcp_alloc_md5sig_pool();
4466 
4467 		mutex_unlock(&tcp_md5sig_mutex);
4468 	}
4469 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4470 	return READ_ONCE(tcp_md5sig_pool_populated);
4471 }
4472 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4473 
4474 
4475 /**
4476  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4477  *
4478  *	We use percpu structure, so if we succeed, we exit with preemption
4479  *	and BH disabled, to make sure another thread or softirq handling
4480  *	wont try to get same context.
4481  */
4482 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4483 {
4484 	local_bh_disable();
4485 
4486 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4487 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4488 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4489 		smp_rmb();
4490 		return this_cpu_ptr(&tcp_md5sig_pool);
4491 	}
4492 	local_bh_enable();
4493 	return NULL;
4494 }
4495 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4496 
4497 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4498 			  const struct sk_buff *skb, unsigned int header_len)
4499 {
4500 	struct scatterlist sg;
4501 	const struct tcphdr *tp = tcp_hdr(skb);
4502 	struct ahash_request *req = hp->md5_req;
4503 	unsigned int i;
4504 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4505 					   skb_headlen(skb) - header_len : 0;
4506 	const struct skb_shared_info *shi = skb_shinfo(skb);
4507 	struct sk_buff *frag_iter;
4508 
4509 	sg_init_table(&sg, 1);
4510 
4511 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4512 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4513 	if (crypto_ahash_update(req))
4514 		return 1;
4515 
4516 	for (i = 0; i < shi->nr_frags; ++i) {
4517 		const skb_frag_t *f = &shi->frags[i];
4518 		unsigned int offset = skb_frag_off(f);
4519 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4520 
4521 		sg_set_page(&sg, page, skb_frag_size(f),
4522 			    offset_in_page(offset));
4523 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4524 		if (crypto_ahash_update(req))
4525 			return 1;
4526 	}
4527 
4528 	skb_walk_frags(skb, frag_iter)
4529 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4530 			return 1;
4531 
4532 	return 0;
4533 }
4534 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4535 
4536 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4537 {
4538 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4539 	struct scatterlist sg;
4540 
4541 	sg_init_one(&sg, key->key, keylen);
4542 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4543 
4544 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4545 	return data_race(crypto_ahash_update(hp->md5_req));
4546 }
4547 EXPORT_SYMBOL(tcp_md5_hash_key);
4548 
4549 /* Called with rcu_read_lock() */
4550 enum skb_drop_reason
4551 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4552 		     const void *saddr, const void *daddr,
4553 		     int family, int dif, int sdif)
4554 {
4555 	/*
4556 	 * This gets called for each TCP segment that arrives
4557 	 * so we want to be efficient.
4558 	 * We have 3 drop cases:
4559 	 * o No MD5 hash and one expected.
4560 	 * o MD5 hash and we're not expecting one.
4561 	 * o MD5 hash and its wrong.
4562 	 */
4563 	const __u8 *hash_location = NULL;
4564 	struct tcp_md5sig_key *hash_expected;
4565 	const struct tcphdr *th = tcp_hdr(skb);
4566 	const struct tcp_sock *tp = tcp_sk(sk);
4567 	int genhash, l3index;
4568 	u8 newhash[16];
4569 
4570 	/* sdif set, means packet ingressed via a device
4571 	 * in an L3 domain and dif is set to the l3mdev
4572 	 */
4573 	l3index = sdif ? dif : 0;
4574 
4575 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4576 	hash_location = tcp_parse_md5sig_option(th);
4577 
4578 	/* We've parsed the options - do we have a hash? */
4579 	if (!hash_expected && !hash_location)
4580 		return SKB_NOT_DROPPED_YET;
4581 
4582 	if (hash_expected && !hash_location) {
4583 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4584 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4585 	}
4586 
4587 	if (!hash_expected && hash_location) {
4588 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4589 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4590 	}
4591 
4592 	/* Check the signature.
4593 	 * To support dual stack listeners, we need to handle
4594 	 * IPv4-mapped case.
4595 	 */
4596 	if (family == AF_INET)
4597 		genhash = tcp_v4_md5_hash_skb(newhash,
4598 					      hash_expected,
4599 					      NULL, skb);
4600 	else
4601 		genhash = tp->af_specific->calc_md5_hash(newhash,
4602 							 hash_expected,
4603 							 NULL, skb);
4604 
4605 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4606 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4607 		if (family == AF_INET) {
4608 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4609 					saddr, ntohs(th->source),
4610 					daddr, ntohs(th->dest),
4611 					genhash ? " tcp_v4_calc_md5_hash failed"
4612 					: "", l3index);
4613 		} else {
4614 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4615 					genhash ? "failed" : "mismatch",
4616 					saddr, ntohs(th->source),
4617 					daddr, ntohs(th->dest), l3index);
4618 		}
4619 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4620 	}
4621 	return SKB_NOT_DROPPED_YET;
4622 }
4623 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4624 
4625 #endif
4626 
4627 void tcp_done(struct sock *sk)
4628 {
4629 	struct request_sock *req;
4630 
4631 	/* We might be called with a new socket, after
4632 	 * inet_csk_prepare_forced_close() has been called
4633 	 * so we can not use lockdep_sock_is_held(sk)
4634 	 */
4635 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4636 
4637 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4638 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4639 
4640 	tcp_set_state(sk, TCP_CLOSE);
4641 	tcp_clear_xmit_timers(sk);
4642 	if (req)
4643 		reqsk_fastopen_remove(sk, req, false);
4644 
4645 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4646 
4647 	if (!sock_flag(sk, SOCK_DEAD))
4648 		sk->sk_state_change(sk);
4649 	else
4650 		inet_csk_destroy_sock(sk);
4651 }
4652 EXPORT_SYMBOL_GPL(tcp_done);
4653 
4654 int tcp_abort(struct sock *sk, int err)
4655 {
4656 	int state = inet_sk_state_load(sk);
4657 
4658 	if (state == TCP_NEW_SYN_RECV) {
4659 		struct request_sock *req = inet_reqsk(sk);
4660 
4661 		local_bh_disable();
4662 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4663 		local_bh_enable();
4664 		return 0;
4665 	}
4666 	if (state == TCP_TIME_WAIT) {
4667 		struct inet_timewait_sock *tw = inet_twsk(sk);
4668 
4669 		refcount_inc(&tw->tw_refcnt);
4670 		local_bh_disable();
4671 		inet_twsk_deschedule_put(tw);
4672 		local_bh_enable();
4673 		return 0;
4674 	}
4675 
4676 	/* Don't race with userspace socket closes such as tcp_close. */
4677 	lock_sock(sk);
4678 
4679 	if (sk->sk_state == TCP_LISTEN) {
4680 		tcp_set_state(sk, TCP_CLOSE);
4681 		inet_csk_listen_stop(sk);
4682 	}
4683 
4684 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4685 	local_bh_disable();
4686 	bh_lock_sock(sk);
4687 
4688 	if (!sock_flag(sk, SOCK_DEAD)) {
4689 		WRITE_ONCE(sk->sk_err, err);
4690 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4691 		smp_wmb();
4692 		sk_error_report(sk);
4693 		if (tcp_need_reset(sk->sk_state))
4694 			tcp_send_active_reset(sk, GFP_ATOMIC);
4695 		tcp_done(sk);
4696 	}
4697 
4698 	bh_unlock_sock(sk);
4699 	local_bh_enable();
4700 	tcp_write_queue_purge(sk);
4701 	release_sock(sk);
4702 	return 0;
4703 }
4704 EXPORT_SYMBOL_GPL(tcp_abort);
4705 
4706 extern struct tcp_congestion_ops tcp_reno;
4707 
4708 static __initdata unsigned long thash_entries;
4709 static int __init set_thash_entries(char *str)
4710 {
4711 	ssize_t ret;
4712 
4713 	if (!str)
4714 		return 0;
4715 
4716 	ret = kstrtoul(str, 0, &thash_entries);
4717 	if (ret)
4718 		return 0;
4719 
4720 	return 1;
4721 }
4722 __setup("thash_entries=", set_thash_entries);
4723 
4724 static void __init tcp_init_mem(void)
4725 {
4726 	unsigned long limit = nr_free_buffer_pages() / 16;
4727 
4728 	limit = max(limit, 128UL);
4729 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4730 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4731 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4732 }
4733 
4734 void __init tcp_init(void)
4735 {
4736 	int max_rshare, max_wshare, cnt;
4737 	unsigned long limit;
4738 	unsigned int i;
4739 
4740 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4741 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4742 		     sizeof_field(struct sk_buff, cb));
4743 
4744 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4745 
4746 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4747 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4748 
4749 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4750 			    thash_entries, 21,  /* one slot per 2 MB*/
4751 			    0, 64 * 1024);
4752 	tcp_hashinfo.bind_bucket_cachep =
4753 		kmem_cache_create("tcp_bind_bucket",
4754 				  sizeof(struct inet_bind_bucket), 0,
4755 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4756 				  SLAB_ACCOUNT,
4757 				  NULL);
4758 	tcp_hashinfo.bind2_bucket_cachep =
4759 		kmem_cache_create("tcp_bind2_bucket",
4760 				  sizeof(struct inet_bind2_bucket), 0,
4761 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4762 				  SLAB_ACCOUNT,
4763 				  NULL);
4764 
4765 	/* Size and allocate the main established and bind bucket
4766 	 * hash tables.
4767 	 *
4768 	 * The methodology is similar to that of the buffer cache.
4769 	 */
4770 	tcp_hashinfo.ehash =
4771 		alloc_large_system_hash("TCP established",
4772 					sizeof(struct inet_ehash_bucket),
4773 					thash_entries,
4774 					17, /* one slot per 128 KB of memory */
4775 					0,
4776 					NULL,
4777 					&tcp_hashinfo.ehash_mask,
4778 					0,
4779 					thash_entries ? 0 : 512 * 1024);
4780 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4781 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4782 
4783 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4784 		panic("TCP: failed to alloc ehash_locks");
4785 	tcp_hashinfo.bhash =
4786 		alloc_large_system_hash("TCP bind",
4787 					2 * sizeof(struct inet_bind_hashbucket),
4788 					tcp_hashinfo.ehash_mask + 1,
4789 					17, /* one slot per 128 KB of memory */
4790 					0,
4791 					&tcp_hashinfo.bhash_size,
4792 					NULL,
4793 					0,
4794 					64 * 1024);
4795 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4796 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4797 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4798 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4799 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4800 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4801 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4802 	}
4803 
4804 	tcp_hashinfo.pernet = false;
4805 
4806 	cnt = tcp_hashinfo.ehash_mask + 1;
4807 	sysctl_tcp_max_orphans = cnt / 2;
4808 
4809 	tcp_init_mem();
4810 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4811 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4812 	max_wshare = min(4UL*1024*1024, limit);
4813 	max_rshare = min(6UL*1024*1024, limit);
4814 
4815 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4816 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4817 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4818 
4819 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4820 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4821 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4822 
4823 	pr_info("Hash tables configured (established %u bind %u)\n",
4824 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4825 
4826 	tcp_v4_init();
4827 	tcp_metrics_init();
4828 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4829 	tcp_tasklet_init();
4830 	mptcp_init();
4831 }
4832