xref: /openbmc/linux/net/ipv4/tcp.c (revision c1e0230e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 	tcp_scaling_ratio_init(sk);
461 
462 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 	sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466 
467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 	struct sk_buff *skb = tcp_write_queue_tail(sk);
470 
471 	if (tsflags && skb) {
472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
473 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474 
475 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 			tcb->txstamp_ack = 1;
478 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 	}
481 }
482 
483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 	if (tcp_epollin_ready(sk, target))
486 		return true;
487 	return sk_is_readable(sk);
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	u8 shutdown;
503 	int state;
504 
505 	sock_poll_wait(file, sock, wait);
506 
507 	state = inet_sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * EPOLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that EPOLLHUP is incompatible
524 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	shutdown = READ_ONCE(sk->sk_shutdown);
546 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 		u16 urg_data = READ_ONCE(tp->urg_data);
556 
557 		if (unlikely(urg_data) &&
558 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE))
560 			target++;
561 
562 		if (tcp_stream_is_readable(sk, target))
563 			mask |= EPOLLIN | EPOLLRDNORM;
564 
565 		if (!(shutdown & SEND_SHUTDOWN)) {
566 			if (__sk_stream_is_writeable(sk, 1)) {
567 				mask |= EPOLLOUT | EPOLLWRNORM;
568 			} else {  /* send SIGIO later */
569 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571 
572 				/* Race breaker. If space is freed after
573 				 * wspace test but before the flags are set,
574 				 * IO signal will be lost. Memory barrier
575 				 * pairs with the input side.
576 				 */
577 				smp_mb__after_atomic();
578 				if (__sk_stream_is_writeable(sk, 1))
579 					mask |= EPOLLOUT | EPOLLWRNORM;
580 			}
581 		} else
582 			mask |= EPOLLOUT | EPOLLWRNORM;
583 
584 		if (urg_data & TCP_URG_VALID)
585 			mask |= EPOLLPRI;
586 	} else if (state == TCP_SYN_SENT &&
587 		   inet_test_bit(DEFER_CONNECT, sk)) {
588 		/* Active TCP fastopen socket with defer_connect
589 		 * Return EPOLLOUT so application can call write()
590 		 * in order for kernel to generate SYN+data
591 		 */
592 		mask |= EPOLLOUT | EPOLLWRNORM;
593 	}
594 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
595 	smp_rmb();
596 	if (READ_ONCE(sk->sk_err) ||
597 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
598 		mask |= EPOLLERR;
599 
600 	return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603 
604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	int answ;
608 	bool slow;
609 
610 	switch (cmd) {
611 	case SIOCINQ:
612 		if (sk->sk_state == TCP_LISTEN)
613 			return -EINVAL;
614 
615 		slow = lock_sock_fast(sk);
616 		answ = tcp_inq(sk);
617 		unlock_sock_fast(sk, slow);
618 		break;
619 	case SIOCATMARK:
620 		answ = READ_ONCE(tp->urg_data) &&
621 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = READ_ONCE(tp->write_seq) -
640 			       READ_ONCE(tp->snd_nxt);
641 		break;
642 	default:
643 		return -ENOIOCTLCMD;
644 	}
645 
646 	*karg = answ;
647 	return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650 
651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 	tp->pushed_seq = tp->write_seq;
655 }
656 
657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661 
662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666 
667 	tcb->seq     = tcb->end_seq = tp->write_seq;
668 	tcb->tcp_flags = TCPHDR_ACK;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk_wmem_queued_add(sk, skb->truesize);
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 	       tcp_skb_can_collapse_to(skb);
703 }
704 
705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 	      int nonagle, int size_goal)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct sk_buff *skb;
710 
711 	skb = tcp_write_queue_tail(sk);
712 	if (!skb)
713 		return;
714 	if (!(flags & MSG_MORE) || forced_push(tp))
715 		tcp_mark_push(tp, skb);
716 
717 	tcp_mark_urg(tp, flags);
718 
719 	if (tcp_should_autocork(sk, skb, size_goal)) {
720 
721 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
722 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 		}
726 		/* It is possible TX completion already happened
727 		 * before we set TSQ_THROTTLED.
728 		 */
729 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
730 			return;
731 	}
732 
733 	if (flags & MSG_MORE)
734 		nonagle = TCP_NAGLE_CORK;
735 
736 	__tcp_push_pending_frames(sk, mss_now, nonagle);
737 }
738 
739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
740 				unsigned int offset, size_t len)
741 {
742 	struct tcp_splice_state *tss = rd_desc->arg.data;
743 	int ret;
744 
745 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
746 			      min(rd_desc->count, len), tss->flags);
747 	if (ret > 0)
748 		rd_desc->count -= ret;
749 	return ret;
750 }
751 
752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
753 {
754 	/* Store TCP splice context information in read_descriptor_t. */
755 	read_descriptor_t rd_desc = {
756 		.arg.data = tss,
757 		.count	  = tss->len,
758 	};
759 
760 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
761 }
762 
763 /**
764  *  tcp_splice_read - splice data from TCP socket to a pipe
765  * @sock:	socket to splice from
766  * @ppos:	position (not valid)
767  * @pipe:	pipe to splice to
768  * @len:	number of bytes to splice
769  * @flags:	splice modifier flags
770  *
771  * Description:
772  *    Will read pages from given socket and fill them into a pipe.
773  *
774  **/
775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
776 			struct pipe_inode_info *pipe, size_t len,
777 			unsigned int flags)
778 {
779 	struct sock *sk = sock->sk;
780 	struct tcp_splice_state tss = {
781 		.pipe = pipe,
782 		.len = len,
783 		.flags = flags,
784 	};
785 	long timeo;
786 	ssize_t spliced;
787 	int ret;
788 
789 	sock_rps_record_flow(sk);
790 	/*
791 	 * We can't seek on a socket input
792 	 */
793 	if (unlikely(*ppos))
794 		return -ESPIPE;
795 
796 	ret = spliced = 0;
797 
798 	lock_sock(sk);
799 
800 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
801 	while (tss.len) {
802 		ret = __tcp_splice_read(sk, &tss);
803 		if (ret < 0)
804 			break;
805 		else if (!ret) {
806 			if (spliced)
807 				break;
808 			if (sock_flag(sk, SOCK_DONE))
809 				break;
810 			if (sk->sk_err) {
811 				ret = sock_error(sk);
812 				break;
813 			}
814 			if (sk->sk_shutdown & RCV_SHUTDOWN)
815 				break;
816 			if (sk->sk_state == TCP_CLOSE) {
817 				/*
818 				 * This occurs when user tries to read
819 				 * from never connected socket.
820 				 */
821 				ret = -ENOTCONN;
822 				break;
823 			}
824 			if (!timeo) {
825 				ret = -EAGAIN;
826 				break;
827 			}
828 			/* if __tcp_splice_read() got nothing while we have
829 			 * an skb in receive queue, we do not want to loop.
830 			 * This might happen with URG data.
831 			 */
832 			if (!skb_queue_empty(&sk->sk_receive_queue))
833 				break;
834 			sk_wait_data(sk, &timeo, NULL);
835 			if (signal_pending(current)) {
836 				ret = sock_intr_errno(timeo);
837 				break;
838 			}
839 			continue;
840 		}
841 		tss.len -= ret;
842 		spliced += ret;
843 
844 		if (!tss.len || !timeo)
845 			break;
846 		release_sock(sk);
847 		lock_sock(sk);
848 
849 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
850 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
851 		    signal_pending(current))
852 			break;
853 	}
854 
855 	release_sock(sk);
856 
857 	if (spliced)
858 		return spliced;
859 
860 	return ret;
861 }
862 EXPORT_SYMBOL(tcp_splice_read);
863 
864 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
865 				     bool force_schedule)
866 {
867 	struct sk_buff *skb;
868 
869 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
870 	if (likely(skb)) {
871 		bool mem_scheduled;
872 
873 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 		if (force_schedule) {
875 			mem_scheduled = true;
876 			sk_forced_mem_schedule(sk, skb->truesize);
877 		} else {
878 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 		}
880 		if (likely(mem_scheduled)) {
881 			skb_reserve(skb, MAX_TCP_HEADER);
882 			skb->ip_summed = CHECKSUM_PARTIAL;
883 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
884 			return skb;
885 		}
886 		__kfree_skb(skb);
887 	} else {
888 		sk->sk_prot->enter_memory_pressure(sk);
889 		sk_stream_moderate_sndbuf(sk);
890 	}
891 	return NULL;
892 }
893 
894 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
895 				       int large_allowed)
896 {
897 	struct tcp_sock *tp = tcp_sk(sk);
898 	u32 new_size_goal, size_goal;
899 
900 	if (!large_allowed)
901 		return mss_now;
902 
903 	/* Note : tcp_tso_autosize() will eventually split this later */
904 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
905 
906 	/* We try hard to avoid divides here */
907 	size_goal = tp->gso_segs * mss_now;
908 	if (unlikely(new_size_goal < size_goal ||
909 		     new_size_goal >= size_goal + mss_now)) {
910 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
911 				     sk->sk_gso_max_segs);
912 		size_goal = tp->gso_segs * mss_now;
913 	}
914 
915 	return max(size_goal, mss_now);
916 }
917 
918 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
919 {
920 	int mss_now;
921 
922 	mss_now = tcp_current_mss(sk);
923 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
924 
925 	return mss_now;
926 }
927 
928 /* In some cases, both sendmsg() could have added an skb to the write queue,
929  * but failed adding payload on it.  We need to remove it to consume less
930  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
931  * epoll() users.
932  */
933 void tcp_remove_empty_skb(struct sock *sk)
934 {
935 	struct sk_buff *skb = tcp_write_queue_tail(sk);
936 
937 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
938 		tcp_unlink_write_queue(skb, sk);
939 		if (tcp_write_queue_empty(sk))
940 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
941 		tcp_wmem_free_skb(sk, skb);
942 	}
943 }
944 
945 /* skb changing from pure zc to mixed, must charge zc */
946 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
947 {
948 	if (unlikely(skb_zcopy_pure(skb))) {
949 		u32 extra = skb->truesize -
950 			    SKB_TRUESIZE(skb_end_offset(skb));
951 
952 		if (!sk_wmem_schedule(sk, extra))
953 			return -ENOMEM;
954 
955 		sk_mem_charge(sk, extra);
956 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
957 	}
958 	return 0;
959 }
960 
961 
962 int tcp_wmem_schedule(struct sock *sk, int copy)
963 {
964 	int left;
965 
966 	if (likely(sk_wmem_schedule(sk, copy)))
967 		return copy;
968 
969 	/* We could be in trouble if we have nothing queued.
970 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
971 	 * to guarantee some progress.
972 	 */
973 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
974 	if (left > 0)
975 		sk_forced_mem_schedule(sk, min(left, copy));
976 	return min(copy, sk->sk_forward_alloc);
977 }
978 
979 void tcp_free_fastopen_req(struct tcp_sock *tp)
980 {
981 	if (tp->fastopen_req) {
982 		kfree(tp->fastopen_req);
983 		tp->fastopen_req = NULL;
984 	}
985 }
986 
987 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
988 			 size_t size, struct ubuf_info *uarg)
989 {
990 	struct tcp_sock *tp = tcp_sk(sk);
991 	struct inet_sock *inet = inet_sk(sk);
992 	struct sockaddr *uaddr = msg->msg_name;
993 	int err, flags;
994 
995 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
996 	      TFO_CLIENT_ENABLE) ||
997 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
998 	     uaddr->sa_family == AF_UNSPEC))
999 		return -EOPNOTSUPP;
1000 	if (tp->fastopen_req)
1001 		return -EALREADY; /* Another Fast Open is in progress */
1002 
1003 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1004 				   sk->sk_allocation);
1005 	if (unlikely(!tp->fastopen_req))
1006 		return -ENOBUFS;
1007 	tp->fastopen_req->data = msg;
1008 	tp->fastopen_req->size = size;
1009 	tp->fastopen_req->uarg = uarg;
1010 
1011 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1012 		err = tcp_connect(sk);
1013 		/* Same failure procedure as in tcp_v4/6_connect */
1014 		if (err) {
1015 			tcp_set_state(sk, TCP_CLOSE);
1016 			inet->inet_dport = 0;
1017 			sk->sk_route_caps = 0;
1018 		}
1019 	}
1020 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1021 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1022 				    msg->msg_namelen, flags, 1);
1023 	/* fastopen_req could already be freed in __inet_stream_connect
1024 	 * if the connection times out or gets rst
1025 	 */
1026 	if (tp->fastopen_req) {
1027 		*copied = tp->fastopen_req->copied;
1028 		tcp_free_fastopen_req(tp);
1029 		inet_clear_bit(DEFER_CONNECT, sk);
1030 	}
1031 	return err;
1032 }
1033 
1034 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1035 {
1036 	struct tcp_sock *tp = tcp_sk(sk);
1037 	struct ubuf_info *uarg = NULL;
1038 	struct sk_buff *skb;
1039 	struct sockcm_cookie sockc;
1040 	int flags, err, copied = 0;
1041 	int mss_now = 0, size_goal, copied_syn = 0;
1042 	int process_backlog = 0;
1043 	int zc = 0;
1044 	long timeo;
1045 
1046 	flags = msg->msg_flags;
1047 
1048 	if ((flags & MSG_ZEROCOPY) && size) {
1049 		if (msg->msg_ubuf) {
1050 			uarg = msg->msg_ubuf;
1051 			if (sk->sk_route_caps & NETIF_F_SG)
1052 				zc = MSG_ZEROCOPY;
1053 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1054 			skb = tcp_write_queue_tail(sk);
1055 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1056 			if (!uarg) {
1057 				err = -ENOBUFS;
1058 				goto out_err;
1059 			}
1060 			if (sk->sk_route_caps & NETIF_F_SG)
1061 				zc = MSG_ZEROCOPY;
1062 			else
1063 				uarg_to_msgzc(uarg)->zerocopy = 0;
1064 		}
1065 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1066 		if (sk->sk_route_caps & NETIF_F_SG)
1067 			zc = MSG_SPLICE_PAGES;
1068 	}
1069 
1070 	if (unlikely(flags & MSG_FASTOPEN ||
1071 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1072 	    !tp->repair) {
1073 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1074 		if (err == -EINPROGRESS && copied_syn > 0)
1075 			goto out;
1076 		else if (err)
1077 			goto out_err;
1078 	}
1079 
1080 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1081 
1082 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1083 
1084 	/* Wait for a connection to finish. One exception is TCP Fast Open
1085 	 * (passive side) where data is allowed to be sent before a connection
1086 	 * is fully established.
1087 	 */
1088 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1089 	    !tcp_passive_fastopen(sk)) {
1090 		err = sk_stream_wait_connect(sk, &timeo);
1091 		if (err != 0)
1092 			goto do_error;
1093 	}
1094 
1095 	if (unlikely(tp->repair)) {
1096 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1097 			copied = tcp_send_rcvq(sk, msg, size);
1098 			goto out_nopush;
1099 		}
1100 
1101 		err = -EINVAL;
1102 		if (tp->repair_queue == TCP_NO_QUEUE)
1103 			goto out_err;
1104 
1105 		/* 'common' sending to sendq */
1106 	}
1107 
1108 	sockcm_init(&sockc, sk);
1109 	if (msg->msg_controllen) {
1110 		err = sock_cmsg_send(sk, msg, &sockc);
1111 		if (unlikely(err)) {
1112 			err = -EINVAL;
1113 			goto out_err;
1114 		}
1115 	}
1116 
1117 	/* This should be in poll */
1118 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1119 
1120 	/* Ok commence sending. */
1121 	copied = 0;
1122 
1123 restart:
1124 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1125 
1126 	err = -EPIPE;
1127 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1128 		goto do_error;
1129 
1130 	while (msg_data_left(msg)) {
1131 		ssize_t copy = 0;
1132 
1133 		skb = tcp_write_queue_tail(sk);
1134 		if (skb)
1135 			copy = size_goal - skb->len;
1136 
1137 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1138 			bool first_skb;
1139 
1140 new_segment:
1141 			if (!sk_stream_memory_free(sk))
1142 				goto wait_for_space;
1143 
1144 			if (unlikely(process_backlog >= 16)) {
1145 				process_backlog = 0;
1146 				if (sk_flush_backlog(sk))
1147 					goto restart;
1148 			}
1149 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1150 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1151 						   first_skb);
1152 			if (!skb)
1153 				goto wait_for_space;
1154 
1155 			process_backlog++;
1156 
1157 			tcp_skb_entail(sk, skb);
1158 			copy = size_goal;
1159 
1160 			/* All packets are restored as if they have
1161 			 * already been sent. skb_mstamp_ns isn't set to
1162 			 * avoid wrong rtt estimation.
1163 			 */
1164 			if (tp->repair)
1165 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1166 		}
1167 
1168 		/* Try to append data to the end of skb. */
1169 		if (copy > msg_data_left(msg))
1170 			copy = msg_data_left(msg);
1171 
1172 		if (zc == 0) {
1173 			bool merge = true;
1174 			int i = skb_shinfo(skb)->nr_frags;
1175 			struct page_frag *pfrag = sk_page_frag(sk);
1176 
1177 			if (!sk_page_frag_refill(sk, pfrag))
1178 				goto wait_for_space;
1179 
1180 			if (!skb_can_coalesce(skb, i, pfrag->page,
1181 					      pfrag->offset)) {
1182 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1183 					tcp_mark_push(tp, skb);
1184 					goto new_segment;
1185 				}
1186 				merge = false;
1187 			}
1188 
1189 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1190 
1191 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1192 				if (tcp_downgrade_zcopy_pure(sk, skb))
1193 					goto wait_for_space;
1194 				skb_zcopy_downgrade_managed(skb);
1195 			}
1196 
1197 			copy = tcp_wmem_schedule(sk, copy);
1198 			if (!copy)
1199 				goto wait_for_space;
1200 
1201 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1202 						       pfrag->page,
1203 						       pfrag->offset,
1204 						       copy);
1205 			if (err)
1206 				goto do_error;
1207 
1208 			/* Update the skb. */
1209 			if (merge) {
1210 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1211 			} else {
1212 				skb_fill_page_desc(skb, i, pfrag->page,
1213 						   pfrag->offset, copy);
1214 				page_ref_inc(pfrag->page);
1215 			}
1216 			pfrag->offset += copy;
1217 		} else if (zc == MSG_ZEROCOPY)  {
1218 			/* First append to a fragless skb builds initial
1219 			 * pure zerocopy skb
1220 			 */
1221 			if (!skb->len)
1222 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1223 
1224 			if (!skb_zcopy_pure(skb)) {
1225 				copy = tcp_wmem_schedule(sk, copy);
1226 				if (!copy)
1227 					goto wait_for_space;
1228 			}
1229 
1230 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1231 			if (err == -EMSGSIZE || err == -EEXIST) {
1232 				tcp_mark_push(tp, skb);
1233 				goto new_segment;
1234 			}
1235 			if (err < 0)
1236 				goto do_error;
1237 			copy = err;
1238 		} else if (zc == MSG_SPLICE_PAGES) {
1239 			/* Splice in data if we can; copy if we can't. */
1240 			if (tcp_downgrade_zcopy_pure(sk, skb))
1241 				goto wait_for_space;
1242 			copy = tcp_wmem_schedule(sk, copy);
1243 			if (!copy)
1244 				goto wait_for_space;
1245 
1246 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1247 						   sk->sk_allocation);
1248 			if (err < 0) {
1249 				if (err == -EMSGSIZE) {
1250 					tcp_mark_push(tp, skb);
1251 					goto new_segment;
1252 				}
1253 				goto do_error;
1254 			}
1255 			copy = err;
1256 
1257 			if (!(flags & MSG_NO_SHARED_FRAGS))
1258 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1259 
1260 			sk_wmem_queued_add(sk, copy);
1261 			sk_mem_charge(sk, copy);
1262 		}
1263 
1264 		if (!copied)
1265 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1266 
1267 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1268 		TCP_SKB_CB(skb)->end_seq += copy;
1269 		tcp_skb_pcount_set(skb, 0);
1270 
1271 		copied += copy;
1272 		if (!msg_data_left(msg)) {
1273 			if (unlikely(flags & MSG_EOR))
1274 				TCP_SKB_CB(skb)->eor = 1;
1275 			goto out;
1276 		}
1277 
1278 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1279 			continue;
1280 
1281 		if (forced_push(tp)) {
1282 			tcp_mark_push(tp, skb);
1283 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1284 		} else if (skb == tcp_send_head(sk))
1285 			tcp_push_one(sk, mss_now);
1286 		continue;
1287 
1288 wait_for_space:
1289 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1290 		if (copied)
1291 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1292 				 TCP_NAGLE_PUSH, size_goal);
1293 
1294 		err = sk_stream_wait_memory(sk, &timeo);
1295 		if (err != 0)
1296 			goto do_error;
1297 
1298 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1299 	}
1300 
1301 out:
1302 	if (copied) {
1303 		tcp_tx_timestamp(sk, sockc.tsflags);
1304 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1305 	}
1306 out_nopush:
1307 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1308 	if (uarg && !msg->msg_ubuf)
1309 		net_zcopy_put(uarg);
1310 	return copied + copied_syn;
1311 
1312 do_error:
1313 	tcp_remove_empty_skb(sk);
1314 
1315 	if (copied + copied_syn)
1316 		goto out;
1317 out_err:
1318 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1319 	if (uarg && !msg->msg_ubuf)
1320 		net_zcopy_put_abort(uarg, true);
1321 	err = sk_stream_error(sk, flags, err);
1322 	/* make sure we wake any epoll edge trigger waiter */
1323 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1324 		sk->sk_write_space(sk);
1325 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1326 	}
1327 	return err;
1328 }
1329 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1330 
1331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1332 {
1333 	int ret;
1334 
1335 	lock_sock(sk);
1336 	ret = tcp_sendmsg_locked(sk, msg, size);
1337 	release_sock(sk);
1338 
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL(tcp_sendmsg);
1342 
1343 void tcp_splice_eof(struct socket *sock)
1344 {
1345 	struct sock *sk = sock->sk;
1346 	struct tcp_sock *tp = tcp_sk(sk);
1347 	int mss_now, size_goal;
1348 
1349 	if (!tcp_write_queue_tail(sk))
1350 		return;
1351 
1352 	lock_sock(sk);
1353 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1354 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1355 	release_sock(sk);
1356 }
1357 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1358 
1359 /*
1360  *	Handle reading urgent data. BSD has very simple semantics for
1361  *	this, no blocking and very strange errors 8)
1362  */
1363 
1364 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1365 {
1366 	struct tcp_sock *tp = tcp_sk(sk);
1367 
1368 	/* No URG data to read. */
1369 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1370 	    tp->urg_data == TCP_URG_READ)
1371 		return -EINVAL;	/* Yes this is right ! */
1372 
1373 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1374 		return -ENOTCONN;
1375 
1376 	if (tp->urg_data & TCP_URG_VALID) {
1377 		int err = 0;
1378 		char c = tp->urg_data;
1379 
1380 		if (!(flags & MSG_PEEK))
1381 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1382 
1383 		/* Read urgent data. */
1384 		msg->msg_flags |= MSG_OOB;
1385 
1386 		if (len > 0) {
1387 			if (!(flags & MSG_TRUNC))
1388 				err = memcpy_to_msg(msg, &c, 1);
1389 			len = 1;
1390 		} else
1391 			msg->msg_flags |= MSG_TRUNC;
1392 
1393 		return err ? -EFAULT : len;
1394 	}
1395 
1396 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1397 		return 0;
1398 
1399 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1400 	 * the available implementations agree in this case:
1401 	 * this call should never block, independent of the
1402 	 * blocking state of the socket.
1403 	 * Mike <pall@rz.uni-karlsruhe.de>
1404 	 */
1405 	return -EAGAIN;
1406 }
1407 
1408 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1409 {
1410 	struct sk_buff *skb;
1411 	int copied = 0, err = 0;
1412 
1413 	/* XXX -- need to support SO_PEEK_OFF */
1414 
1415 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1416 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1417 		if (err)
1418 			return err;
1419 		copied += skb->len;
1420 	}
1421 
1422 	skb_queue_walk(&sk->sk_write_queue, skb) {
1423 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1424 		if (err)
1425 			break;
1426 
1427 		copied += skb->len;
1428 	}
1429 
1430 	return err ?: copied;
1431 }
1432 
1433 /* Clean up the receive buffer for full frames taken by the user,
1434  * then send an ACK if necessary.  COPIED is the number of bytes
1435  * tcp_recvmsg has given to the user so far, it speeds up the
1436  * calculation of whether or not we must ACK for the sake of
1437  * a window update.
1438  */
1439 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1440 {
1441 	struct tcp_sock *tp = tcp_sk(sk);
1442 	bool time_to_ack = false;
1443 
1444 	if (inet_csk_ack_scheduled(sk)) {
1445 		const struct inet_connection_sock *icsk = inet_csk(sk);
1446 
1447 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1448 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1449 		    /*
1450 		     * If this read emptied read buffer, we send ACK, if
1451 		     * connection is not bidirectional, user drained
1452 		     * receive buffer and there was a small segment
1453 		     * in queue.
1454 		     */
1455 		    (copied > 0 &&
1456 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1457 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1458 		       !inet_csk_in_pingpong_mode(sk))) &&
1459 		      !atomic_read(&sk->sk_rmem_alloc)))
1460 			time_to_ack = true;
1461 	}
1462 
1463 	/* We send an ACK if we can now advertise a non-zero window
1464 	 * which has been raised "significantly".
1465 	 *
1466 	 * Even if window raised up to infinity, do not send window open ACK
1467 	 * in states, where we will not receive more. It is useless.
1468 	 */
1469 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1470 		__u32 rcv_window_now = tcp_receive_window(tp);
1471 
1472 		/* Optimize, __tcp_select_window() is not cheap. */
1473 		if (2*rcv_window_now <= tp->window_clamp) {
1474 			__u32 new_window = __tcp_select_window(sk);
1475 
1476 			/* Send ACK now, if this read freed lots of space
1477 			 * in our buffer. Certainly, new_window is new window.
1478 			 * We can advertise it now, if it is not less than current one.
1479 			 * "Lots" means "at least twice" here.
1480 			 */
1481 			if (new_window && new_window >= 2 * rcv_window_now)
1482 				time_to_ack = true;
1483 		}
1484 	}
1485 	if (time_to_ack)
1486 		tcp_send_ack(sk);
1487 }
1488 
1489 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1490 {
1491 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1492 	struct tcp_sock *tp = tcp_sk(sk);
1493 
1494 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1495 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1496 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1497 	__tcp_cleanup_rbuf(sk, copied);
1498 }
1499 
1500 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1501 {
1502 	__skb_unlink(skb, &sk->sk_receive_queue);
1503 	if (likely(skb->destructor == sock_rfree)) {
1504 		sock_rfree(skb);
1505 		skb->destructor = NULL;
1506 		skb->sk = NULL;
1507 		return skb_attempt_defer_free(skb);
1508 	}
1509 	__kfree_skb(skb);
1510 }
1511 
1512 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1513 {
1514 	struct sk_buff *skb;
1515 	u32 offset;
1516 
1517 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1518 		offset = seq - TCP_SKB_CB(skb)->seq;
1519 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1520 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1521 			offset--;
1522 		}
1523 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1524 			*off = offset;
1525 			return skb;
1526 		}
1527 		/* This looks weird, but this can happen if TCP collapsing
1528 		 * splitted a fat GRO packet, while we released socket lock
1529 		 * in skb_splice_bits()
1530 		 */
1531 		tcp_eat_recv_skb(sk, skb);
1532 	}
1533 	return NULL;
1534 }
1535 EXPORT_SYMBOL(tcp_recv_skb);
1536 
1537 /*
1538  * This routine provides an alternative to tcp_recvmsg() for routines
1539  * that would like to handle copying from skbuffs directly in 'sendfile'
1540  * fashion.
1541  * Note:
1542  *	- It is assumed that the socket was locked by the caller.
1543  *	- The routine does not block.
1544  *	- At present, there is no support for reading OOB data
1545  *	  or for 'peeking' the socket using this routine
1546  *	  (although both would be easy to implement).
1547  */
1548 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1549 		  sk_read_actor_t recv_actor)
1550 {
1551 	struct sk_buff *skb;
1552 	struct tcp_sock *tp = tcp_sk(sk);
1553 	u32 seq = tp->copied_seq;
1554 	u32 offset;
1555 	int copied = 0;
1556 
1557 	if (sk->sk_state == TCP_LISTEN)
1558 		return -ENOTCONN;
1559 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1560 		if (offset < skb->len) {
1561 			int used;
1562 			size_t len;
1563 
1564 			len = skb->len - offset;
1565 			/* Stop reading if we hit a patch of urgent data */
1566 			if (unlikely(tp->urg_data)) {
1567 				u32 urg_offset = tp->urg_seq - seq;
1568 				if (urg_offset < len)
1569 					len = urg_offset;
1570 				if (!len)
1571 					break;
1572 			}
1573 			used = recv_actor(desc, skb, offset, len);
1574 			if (used <= 0) {
1575 				if (!copied)
1576 					copied = used;
1577 				break;
1578 			}
1579 			if (WARN_ON_ONCE(used > len))
1580 				used = len;
1581 			seq += used;
1582 			copied += used;
1583 			offset += used;
1584 
1585 			/* If recv_actor drops the lock (e.g. TCP splice
1586 			 * receive) the skb pointer might be invalid when
1587 			 * getting here: tcp_collapse might have deleted it
1588 			 * while aggregating skbs from the socket queue.
1589 			 */
1590 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1591 			if (!skb)
1592 				break;
1593 			/* TCP coalescing might have appended data to the skb.
1594 			 * Try to splice more frags
1595 			 */
1596 			if (offset + 1 != skb->len)
1597 				continue;
1598 		}
1599 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1600 			tcp_eat_recv_skb(sk, skb);
1601 			++seq;
1602 			break;
1603 		}
1604 		tcp_eat_recv_skb(sk, skb);
1605 		if (!desc->count)
1606 			break;
1607 		WRITE_ONCE(tp->copied_seq, seq);
1608 	}
1609 	WRITE_ONCE(tp->copied_seq, seq);
1610 
1611 	tcp_rcv_space_adjust(sk);
1612 
1613 	/* Clean up data we have read: This will do ACK frames. */
1614 	if (copied > 0) {
1615 		tcp_recv_skb(sk, seq, &offset);
1616 		tcp_cleanup_rbuf(sk, copied);
1617 	}
1618 	return copied;
1619 }
1620 EXPORT_SYMBOL(tcp_read_sock);
1621 
1622 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1623 {
1624 	struct tcp_sock *tp = tcp_sk(sk);
1625 	u32 seq = tp->copied_seq;
1626 	struct sk_buff *skb;
1627 	int copied = 0;
1628 	u32 offset;
1629 
1630 	if (sk->sk_state == TCP_LISTEN)
1631 		return -ENOTCONN;
1632 
1633 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1634 		u8 tcp_flags;
1635 		int used;
1636 
1637 		__skb_unlink(skb, &sk->sk_receive_queue);
1638 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1639 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1640 		used = recv_actor(sk, skb);
1641 		if (used < 0) {
1642 			if (!copied)
1643 				copied = used;
1644 			break;
1645 		}
1646 		seq += used;
1647 		copied += used;
1648 
1649 		if (tcp_flags & TCPHDR_FIN) {
1650 			++seq;
1651 			break;
1652 		}
1653 	}
1654 	return copied;
1655 }
1656 EXPORT_SYMBOL(tcp_read_skb);
1657 
1658 void tcp_read_done(struct sock *sk, size_t len)
1659 {
1660 	struct tcp_sock *tp = tcp_sk(sk);
1661 	u32 seq = tp->copied_seq;
1662 	struct sk_buff *skb;
1663 	size_t left;
1664 	u32 offset;
1665 
1666 	if (sk->sk_state == TCP_LISTEN)
1667 		return;
1668 
1669 	left = len;
1670 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1671 		int used;
1672 
1673 		used = min_t(size_t, skb->len - offset, left);
1674 		seq += used;
1675 		left -= used;
1676 
1677 		if (skb->len > offset + used)
1678 			break;
1679 
1680 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681 			tcp_eat_recv_skb(sk, skb);
1682 			++seq;
1683 			break;
1684 		}
1685 		tcp_eat_recv_skb(sk, skb);
1686 	}
1687 	WRITE_ONCE(tp->copied_seq, seq);
1688 
1689 	tcp_rcv_space_adjust(sk);
1690 
1691 	/* Clean up data we have read: This will do ACK frames. */
1692 	if (left != len)
1693 		tcp_cleanup_rbuf(sk, len - left);
1694 }
1695 EXPORT_SYMBOL(tcp_read_done);
1696 
1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 	return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702 
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 	int space, cap;
1707 
1708 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 		cap = sk->sk_rcvbuf >> 1;
1710 	else
1711 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1712 	val = min(val, cap);
1713 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714 
1715 	/* Check if we need to signal EPOLLIN right now */
1716 	tcp_data_ready(sk);
1717 
1718 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 		return 0;
1720 
1721 	space = tcp_space_from_win(sk, val);
1722 	if (space > sk->sk_rcvbuf) {
1723 		WRITE_ONCE(sk->sk_rcvbuf, space);
1724 		tcp_sk(sk)->window_clamp = val;
1725 	}
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729 
1730 void tcp_update_recv_tstamps(struct sk_buff *skb,
1731 			     struct scm_timestamping_internal *tss)
1732 {
1733 	if (skb->tstamp)
1734 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1735 	else
1736 		tss->ts[0] = (struct timespec64) {0};
1737 
1738 	if (skb_hwtstamps(skb)->hwtstamp)
1739 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1740 	else
1741 		tss->ts[2] = (struct timespec64) {0};
1742 }
1743 
1744 #ifdef CONFIG_MMU
1745 const struct vm_operations_struct tcp_vm_ops = {
1746 };
1747 
1748 int tcp_mmap(struct file *file, struct socket *sock,
1749 	     struct vm_area_struct *vma)
1750 {
1751 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1752 		return -EPERM;
1753 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1754 
1755 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1756 	vm_flags_set(vma, VM_MIXEDMAP);
1757 
1758 	vma->vm_ops = &tcp_vm_ops;
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL(tcp_mmap);
1762 
1763 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1764 				       u32 *offset_frag)
1765 {
1766 	skb_frag_t *frag;
1767 
1768 	if (unlikely(offset_skb >= skb->len))
1769 		return NULL;
1770 
1771 	offset_skb -= skb_headlen(skb);
1772 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1773 		return NULL;
1774 
1775 	frag = skb_shinfo(skb)->frags;
1776 	while (offset_skb) {
1777 		if (skb_frag_size(frag) > offset_skb) {
1778 			*offset_frag = offset_skb;
1779 			return frag;
1780 		}
1781 		offset_skb -= skb_frag_size(frag);
1782 		++frag;
1783 	}
1784 	*offset_frag = 0;
1785 	return frag;
1786 }
1787 
1788 static bool can_map_frag(const skb_frag_t *frag)
1789 {
1790 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1791 }
1792 
1793 static int find_next_mappable_frag(const skb_frag_t *frag,
1794 				   int remaining_in_skb)
1795 {
1796 	int offset = 0;
1797 
1798 	if (likely(can_map_frag(frag)))
1799 		return 0;
1800 
1801 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1802 		offset += skb_frag_size(frag);
1803 		++frag;
1804 	}
1805 	return offset;
1806 }
1807 
1808 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1809 					  struct tcp_zerocopy_receive *zc,
1810 					  struct sk_buff *skb, u32 offset)
1811 {
1812 	u32 frag_offset, partial_frag_remainder = 0;
1813 	int mappable_offset;
1814 	skb_frag_t *frag;
1815 
1816 	/* worst case: skip to next skb. try to improve on this case below */
1817 	zc->recv_skip_hint = skb->len - offset;
1818 
1819 	/* Find the frag containing this offset (and how far into that frag) */
1820 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1821 	if (!frag)
1822 		return;
1823 
1824 	if (frag_offset) {
1825 		struct skb_shared_info *info = skb_shinfo(skb);
1826 
1827 		/* We read part of the last frag, must recvmsg() rest of skb. */
1828 		if (frag == &info->frags[info->nr_frags - 1])
1829 			return;
1830 
1831 		/* Else, we must at least read the remainder in this frag. */
1832 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1833 		zc->recv_skip_hint -= partial_frag_remainder;
1834 		++frag;
1835 	}
1836 
1837 	/* partial_frag_remainder: If part way through a frag, must read rest.
1838 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1839 	 * in partial_frag_remainder.
1840 	 */
1841 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1842 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1843 }
1844 
1845 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1846 			      int flags, struct scm_timestamping_internal *tss,
1847 			      int *cmsg_flags);
1848 static int receive_fallback_to_copy(struct sock *sk,
1849 				    struct tcp_zerocopy_receive *zc, int inq,
1850 				    struct scm_timestamping_internal *tss)
1851 {
1852 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1853 	struct msghdr msg = {};
1854 	struct iovec iov;
1855 	int err;
1856 
1857 	zc->length = 0;
1858 	zc->recv_skip_hint = 0;
1859 
1860 	if (copy_address != zc->copybuf_address)
1861 		return -EINVAL;
1862 
1863 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1864 				  inq, &iov, &msg.msg_iter);
1865 	if (err)
1866 		return err;
1867 
1868 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1869 				 tss, &zc->msg_flags);
1870 	if (err < 0)
1871 		return err;
1872 
1873 	zc->copybuf_len = err;
1874 	if (likely(zc->copybuf_len)) {
1875 		struct sk_buff *skb;
1876 		u32 offset;
1877 
1878 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1879 		if (skb)
1880 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1881 	}
1882 	return 0;
1883 }
1884 
1885 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1886 				   struct sk_buff *skb, u32 copylen,
1887 				   u32 *offset, u32 *seq)
1888 {
1889 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1890 	struct msghdr msg = {};
1891 	struct iovec iov;
1892 	int err;
1893 
1894 	if (copy_address != zc->copybuf_address)
1895 		return -EINVAL;
1896 
1897 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1898 				  copylen, &iov, &msg.msg_iter);
1899 	if (err)
1900 		return err;
1901 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1902 	if (err)
1903 		return err;
1904 	zc->recv_skip_hint -= copylen;
1905 	*offset += copylen;
1906 	*seq += copylen;
1907 	return (__s32)copylen;
1908 }
1909 
1910 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1911 				  struct sock *sk,
1912 				  struct sk_buff *skb,
1913 				  u32 *seq,
1914 				  s32 copybuf_len,
1915 				  struct scm_timestamping_internal *tss)
1916 {
1917 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1918 
1919 	if (!copylen)
1920 		return 0;
1921 	/* skb is null if inq < PAGE_SIZE. */
1922 	if (skb) {
1923 		offset = *seq - TCP_SKB_CB(skb)->seq;
1924 	} else {
1925 		skb = tcp_recv_skb(sk, *seq, &offset);
1926 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1927 			tcp_update_recv_tstamps(skb, tss);
1928 			zc->msg_flags |= TCP_CMSG_TS;
1929 		}
1930 	}
1931 
1932 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1933 						  seq);
1934 	return zc->copybuf_len < 0 ? 0 : copylen;
1935 }
1936 
1937 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1938 					      struct page **pending_pages,
1939 					      unsigned long pages_remaining,
1940 					      unsigned long *address,
1941 					      u32 *length,
1942 					      u32 *seq,
1943 					      struct tcp_zerocopy_receive *zc,
1944 					      u32 total_bytes_to_map,
1945 					      int err)
1946 {
1947 	/* At least one page did not map. Try zapping if we skipped earlier. */
1948 	if (err == -EBUSY &&
1949 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1950 		u32 maybe_zap_len;
1951 
1952 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1953 				*length + /* Mapped or pending */
1954 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1955 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1956 		err = 0;
1957 	}
1958 
1959 	if (!err) {
1960 		unsigned long leftover_pages = pages_remaining;
1961 		int bytes_mapped;
1962 
1963 		/* We called zap_page_range_single, try to reinsert. */
1964 		err = vm_insert_pages(vma, *address,
1965 				      pending_pages,
1966 				      &pages_remaining);
1967 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1968 		*seq += bytes_mapped;
1969 		*address += bytes_mapped;
1970 	}
1971 	if (err) {
1972 		/* Either we were unable to zap, OR we zapped, retried an
1973 		 * insert, and still had an issue. Either ways, pages_remaining
1974 		 * is the number of pages we were unable to map, and we unroll
1975 		 * some state we speculatively touched before.
1976 		 */
1977 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1978 
1979 		*length -= bytes_not_mapped;
1980 		zc->recv_skip_hint += bytes_not_mapped;
1981 	}
1982 	return err;
1983 }
1984 
1985 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1986 					struct page **pages,
1987 					unsigned int pages_to_map,
1988 					unsigned long *address,
1989 					u32 *length,
1990 					u32 *seq,
1991 					struct tcp_zerocopy_receive *zc,
1992 					u32 total_bytes_to_map)
1993 {
1994 	unsigned long pages_remaining = pages_to_map;
1995 	unsigned int pages_mapped;
1996 	unsigned int bytes_mapped;
1997 	int err;
1998 
1999 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2000 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2001 	bytes_mapped = PAGE_SIZE * pages_mapped;
2002 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2003 	 * mapping (some but not all of the pages).
2004 	 */
2005 	*seq += bytes_mapped;
2006 	*address += bytes_mapped;
2007 
2008 	if (likely(!err))
2009 		return 0;
2010 
2011 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2012 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2013 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2014 		err);
2015 }
2016 
2017 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2018 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2019 				      struct tcp_zerocopy_receive *zc,
2020 				      struct scm_timestamping_internal *tss)
2021 {
2022 	unsigned long msg_control_addr;
2023 	struct msghdr cmsg_dummy;
2024 
2025 	msg_control_addr = (unsigned long)zc->msg_control;
2026 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2027 	cmsg_dummy.msg_controllen =
2028 		(__kernel_size_t)zc->msg_controllen;
2029 	cmsg_dummy.msg_flags = in_compat_syscall()
2030 		? MSG_CMSG_COMPAT : 0;
2031 	cmsg_dummy.msg_control_is_user = true;
2032 	zc->msg_flags = 0;
2033 	if (zc->msg_control == msg_control_addr &&
2034 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2035 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2036 		zc->msg_control = (__u64)
2037 			((uintptr_t)cmsg_dummy.msg_control_user);
2038 		zc->msg_controllen =
2039 			(__u64)cmsg_dummy.msg_controllen;
2040 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2041 	}
2042 }
2043 
2044 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2045 					   unsigned long address,
2046 					   bool *mmap_locked)
2047 {
2048 	struct vm_area_struct *vma = NULL;
2049 
2050 #ifdef CONFIG_PER_VMA_LOCK
2051 	vma = lock_vma_under_rcu(mm, address);
2052 #endif
2053 	if (vma) {
2054 		if (!vma_is_tcp(vma)) {
2055 			vma_end_read(vma);
2056 			return NULL;
2057 		}
2058 		*mmap_locked = false;
2059 		return vma;
2060 	}
2061 
2062 	mmap_read_lock(mm);
2063 	vma = vma_lookup(mm, address);
2064 	if (!vma || !vma_is_tcp(vma)) {
2065 		mmap_read_unlock(mm);
2066 		return NULL;
2067 	}
2068 	*mmap_locked = true;
2069 	return vma;
2070 }
2071 
2072 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2073 static int tcp_zerocopy_receive(struct sock *sk,
2074 				struct tcp_zerocopy_receive *zc,
2075 				struct scm_timestamping_internal *tss)
2076 {
2077 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2078 	unsigned long address = (unsigned long)zc->address;
2079 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2080 	s32 copybuf_len = zc->copybuf_len;
2081 	struct tcp_sock *tp = tcp_sk(sk);
2082 	const skb_frag_t *frags = NULL;
2083 	unsigned int pages_to_map = 0;
2084 	struct vm_area_struct *vma;
2085 	struct sk_buff *skb = NULL;
2086 	u32 seq = tp->copied_seq;
2087 	u32 total_bytes_to_map;
2088 	int inq = tcp_inq(sk);
2089 	bool mmap_locked;
2090 	int ret;
2091 
2092 	zc->copybuf_len = 0;
2093 	zc->msg_flags = 0;
2094 
2095 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2096 		return -EINVAL;
2097 
2098 	if (sk->sk_state == TCP_LISTEN)
2099 		return -ENOTCONN;
2100 
2101 	sock_rps_record_flow(sk);
2102 
2103 	if (inq && inq <= copybuf_len)
2104 		return receive_fallback_to_copy(sk, zc, inq, tss);
2105 
2106 	if (inq < PAGE_SIZE) {
2107 		zc->length = 0;
2108 		zc->recv_skip_hint = inq;
2109 		if (!inq && sock_flag(sk, SOCK_DONE))
2110 			return -EIO;
2111 		return 0;
2112 	}
2113 
2114 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2115 	if (!vma)
2116 		return -EINVAL;
2117 
2118 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2119 	avail_len = min_t(u32, vma_len, inq);
2120 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2121 	if (total_bytes_to_map) {
2122 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2123 			zap_page_range_single(vma, address, total_bytes_to_map,
2124 					      NULL);
2125 		zc->length = total_bytes_to_map;
2126 		zc->recv_skip_hint = 0;
2127 	} else {
2128 		zc->length = avail_len;
2129 		zc->recv_skip_hint = avail_len;
2130 	}
2131 	ret = 0;
2132 	while (length + PAGE_SIZE <= zc->length) {
2133 		int mappable_offset;
2134 		struct page *page;
2135 
2136 		if (zc->recv_skip_hint < PAGE_SIZE) {
2137 			u32 offset_frag;
2138 
2139 			if (skb) {
2140 				if (zc->recv_skip_hint > 0)
2141 					break;
2142 				skb = skb->next;
2143 				offset = seq - TCP_SKB_CB(skb)->seq;
2144 			} else {
2145 				skb = tcp_recv_skb(sk, seq, &offset);
2146 			}
2147 
2148 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2149 				tcp_update_recv_tstamps(skb, tss);
2150 				zc->msg_flags |= TCP_CMSG_TS;
2151 			}
2152 			zc->recv_skip_hint = skb->len - offset;
2153 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2154 			if (!frags || offset_frag)
2155 				break;
2156 		}
2157 
2158 		mappable_offset = find_next_mappable_frag(frags,
2159 							  zc->recv_skip_hint);
2160 		if (mappable_offset) {
2161 			zc->recv_skip_hint = mappable_offset;
2162 			break;
2163 		}
2164 		page = skb_frag_page(frags);
2165 		prefetchw(page);
2166 		pages[pages_to_map++] = page;
2167 		length += PAGE_SIZE;
2168 		zc->recv_skip_hint -= PAGE_SIZE;
2169 		frags++;
2170 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2171 		    zc->recv_skip_hint < PAGE_SIZE) {
2172 			/* Either full batch, or we're about to go to next skb
2173 			 * (and we cannot unroll failed ops across skbs).
2174 			 */
2175 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2176 							   pages_to_map,
2177 							   &address, &length,
2178 							   &seq, zc,
2179 							   total_bytes_to_map);
2180 			if (ret)
2181 				goto out;
2182 			pages_to_map = 0;
2183 		}
2184 	}
2185 	if (pages_to_map) {
2186 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2187 						   &address, &length, &seq,
2188 						   zc, total_bytes_to_map);
2189 	}
2190 out:
2191 	if (mmap_locked)
2192 		mmap_read_unlock(current->mm);
2193 	else
2194 		vma_end_read(vma);
2195 	/* Try to copy straggler data. */
2196 	if (!ret)
2197 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2198 
2199 	if (length + copylen) {
2200 		WRITE_ONCE(tp->copied_seq, seq);
2201 		tcp_rcv_space_adjust(sk);
2202 
2203 		/* Clean up data we have read: This will do ACK frames. */
2204 		tcp_recv_skb(sk, seq, &offset);
2205 		tcp_cleanup_rbuf(sk, length + copylen);
2206 		ret = 0;
2207 		if (length == zc->length)
2208 			zc->recv_skip_hint = 0;
2209 	} else {
2210 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2211 			ret = -EIO;
2212 	}
2213 	zc->length = length;
2214 	return ret;
2215 }
2216 #endif
2217 
2218 /* Similar to __sock_recv_timestamp, but does not require an skb */
2219 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2220 			struct scm_timestamping_internal *tss)
2221 {
2222 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2223 	bool has_timestamping = false;
2224 
2225 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2226 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2227 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2228 				if (new_tstamp) {
2229 					struct __kernel_timespec kts = {
2230 						.tv_sec = tss->ts[0].tv_sec,
2231 						.tv_nsec = tss->ts[0].tv_nsec,
2232 					};
2233 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2234 						 sizeof(kts), &kts);
2235 				} else {
2236 					struct __kernel_old_timespec ts_old = {
2237 						.tv_sec = tss->ts[0].tv_sec,
2238 						.tv_nsec = tss->ts[0].tv_nsec,
2239 					};
2240 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2241 						 sizeof(ts_old), &ts_old);
2242 				}
2243 			} else {
2244 				if (new_tstamp) {
2245 					struct __kernel_sock_timeval stv = {
2246 						.tv_sec = tss->ts[0].tv_sec,
2247 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2248 					};
2249 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2250 						 sizeof(stv), &stv);
2251 				} else {
2252 					struct __kernel_old_timeval tv = {
2253 						.tv_sec = tss->ts[0].tv_sec,
2254 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2255 					};
2256 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2257 						 sizeof(tv), &tv);
2258 				}
2259 			}
2260 		}
2261 
2262 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2263 			has_timestamping = true;
2264 		else
2265 			tss->ts[0] = (struct timespec64) {0};
2266 	}
2267 
2268 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2269 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2270 			has_timestamping = true;
2271 		else
2272 			tss->ts[2] = (struct timespec64) {0};
2273 	}
2274 
2275 	if (has_timestamping) {
2276 		tss->ts[1] = (struct timespec64) {0};
2277 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2278 			put_cmsg_scm_timestamping64(msg, tss);
2279 		else
2280 			put_cmsg_scm_timestamping(msg, tss);
2281 	}
2282 }
2283 
2284 static int tcp_inq_hint(struct sock *sk)
2285 {
2286 	const struct tcp_sock *tp = tcp_sk(sk);
2287 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2288 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2289 	int inq;
2290 
2291 	inq = rcv_nxt - copied_seq;
2292 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2293 		lock_sock(sk);
2294 		inq = tp->rcv_nxt - tp->copied_seq;
2295 		release_sock(sk);
2296 	}
2297 	/* After receiving a FIN, tell the user-space to continue reading
2298 	 * by returning a non-zero inq.
2299 	 */
2300 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2301 		inq = 1;
2302 	return inq;
2303 }
2304 
2305 /*
2306  *	This routine copies from a sock struct into the user buffer.
2307  *
2308  *	Technical note: in 2.3 we work on _locked_ socket, so that
2309  *	tricks with *seq access order and skb->users are not required.
2310  *	Probably, code can be easily improved even more.
2311  */
2312 
2313 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2314 			      int flags, struct scm_timestamping_internal *tss,
2315 			      int *cmsg_flags)
2316 {
2317 	struct tcp_sock *tp = tcp_sk(sk);
2318 	int copied = 0;
2319 	u32 peek_seq;
2320 	u32 *seq;
2321 	unsigned long used;
2322 	int err;
2323 	int target;		/* Read at least this many bytes */
2324 	long timeo;
2325 	struct sk_buff *skb, *last;
2326 	u32 urg_hole = 0;
2327 
2328 	err = -ENOTCONN;
2329 	if (sk->sk_state == TCP_LISTEN)
2330 		goto out;
2331 
2332 	if (tp->recvmsg_inq) {
2333 		*cmsg_flags = TCP_CMSG_INQ;
2334 		msg->msg_get_inq = 1;
2335 	}
2336 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2337 
2338 	/* Urgent data needs to be handled specially. */
2339 	if (flags & MSG_OOB)
2340 		goto recv_urg;
2341 
2342 	if (unlikely(tp->repair)) {
2343 		err = -EPERM;
2344 		if (!(flags & MSG_PEEK))
2345 			goto out;
2346 
2347 		if (tp->repair_queue == TCP_SEND_QUEUE)
2348 			goto recv_sndq;
2349 
2350 		err = -EINVAL;
2351 		if (tp->repair_queue == TCP_NO_QUEUE)
2352 			goto out;
2353 
2354 		/* 'common' recv queue MSG_PEEK-ing */
2355 	}
2356 
2357 	seq = &tp->copied_seq;
2358 	if (flags & MSG_PEEK) {
2359 		peek_seq = tp->copied_seq;
2360 		seq = &peek_seq;
2361 	}
2362 
2363 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2364 
2365 	do {
2366 		u32 offset;
2367 
2368 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2369 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2370 			if (copied)
2371 				break;
2372 			if (signal_pending(current)) {
2373 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2374 				break;
2375 			}
2376 		}
2377 
2378 		/* Next get a buffer. */
2379 
2380 		last = skb_peek_tail(&sk->sk_receive_queue);
2381 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2382 			last = skb;
2383 			/* Now that we have two receive queues this
2384 			 * shouldn't happen.
2385 			 */
2386 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2387 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2388 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2389 				 flags))
2390 				break;
2391 
2392 			offset = *seq - TCP_SKB_CB(skb)->seq;
2393 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2394 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2395 				offset--;
2396 			}
2397 			if (offset < skb->len)
2398 				goto found_ok_skb;
2399 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2400 				goto found_fin_ok;
2401 			WARN(!(flags & MSG_PEEK),
2402 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2403 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2404 		}
2405 
2406 		/* Well, if we have backlog, try to process it now yet. */
2407 
2408 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2409 			break;
2410 
2411 		if (copied) {
2412 			if (!timeo ||
2413 			    sk->sk_err ||
2414 			    sk->sk_state == TCP_CLOSE ||
2415 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2416 			    signal_pending(current))
2417 				break;
2418 		} else {
2419 			if (sock_flag(sk, SOCK_DONE))
2420 				break;
2421 
2422 			if (sk->sk_err) {
2423 				copied = sock_error(sk);
2424 				break;
2425 			}
2426 
2427 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2428 				break;
2429 
2430 			if (sk->sk_state == TCP_CLOSE) {
2431 				/* This occurs when user tries to read
2432 				 * from never connected socket.
2433 				 */
2434 				copied = -ENOTCONN;
2435 				break;
2436 			}
2437 
2438 			if (!timeo) {
2439 				copied = -EAGAIN;
2440 				break;
2441 			}
2442 
2443 			if (signal_pending(current)) {
2444 				copied = sock_intr_errno(timeo);
2445 				break;
2446 			}
2447 		}
2448 
2449 		if (copied >= target) {
2450 			/* Do not sleep, just process backlog. */
2451 			__sk_flush_backlog(sk);
2452 		} else {
2453 			tcp_cleanup_rbuf(sk, copied);
2454 			sk_wait_data(sk, &timeo, last);
2455 		}
2456 
2457 		if ((flags & MSG_PEEK) &&
2458 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2459 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2460 					    current->comm,
2461 					    task_pid_nr(current));
2462 			peek_seq = tp->copied_seq;
2463 		}
2464 		continue;
2465 
2466 found_ok_skb:
2467 		/* Ok so how much can we use? */
2468 		used = skb->len - offset;
2469 		if (len < used)
2470 			used = len;
2471 
2472 		/* Do we have urgent data here? */
2473 		if (unlikely(tp->urg_data)) {
2474 			u32 urg_offset = tp->urg_seq - *seq;
2475 			if (urg_offset < used) {
2476 				if (!urg_offset) {
2477 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2478 						WRITE_ONCE(*seq, *seq + 1);
2479 						urg_hole++;
2480 						offset++;
2481 						used--;
2482 						if (!used)
2483 							goto skip_copy;
2484 					}
2485 				} else
2486 					used = urg_offset;
2487 			}
2488 		}
2489 
2490 		if (!(flags & MSG_TRUNC)) {
2491 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2492 			if (err) {
2493 				/* Exception. Bailout! */
2494 				if (!copied)
2495 					copied = -EFAULT;
2496 				break;
2497 			}
2498 		}
2499 
2500 		WRITE_ONCE(*seq, *seq + used);
2501 		copied += used;
2502 		len -= used;
2503 
2504 		tcp_rcv_space_adjust(sk);
2505 
2506 skip_copy:
2507 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2508 			WRITE_ONCE(tp->urg_data, 0);
2509 			tcp_fast_path_check(sk);
2510 		}
2511 
2512 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2513 			tcp_update_recv_tstamps(skb, tss);
2514 			*cmsg_flags |= TCP_CMSG_TS;
2515 		}
2516 
2517 		if (used + offset < skb->len)
2518 			continue;
2519 
2520 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2521 			goto found_fin_ok;
2522 		if (!(flags & MSG_PEEK))
2523 			tcp_eat_recv_skb(sk, skb);
2524 		continue;
2525 
2526 found_fin_ok:
2527 		/* Process the FIN. */
2528 		WRITE_ONCE(*seq, *seq + 1);
2529 		if (!(flags & MSG_PEEK))
2530 			tcp_eat_recv_skb(sk, skb);
2531 		break;
2532 	} while (len > 0);
2533 
2534 	/* According to UNIX98, msg_name/msg_namelen are ignored
2535 	 * on connected socket. I was just happy when found this 8) --ANK
2536 	 */
2537 
2538 	/* Clean up data we have read: This will do ACK frames. */
2539 	tcp_cleanup_rbuf(sk, copied);
2540 	return copied;
2541 
2542 out:
2543 	return err;
2544 
2545 recv_urg:
2546 	err = tcp_recv_urg(sk, msg, len, flags);
2547 	goto out;
2548 
2549 recv_sndq:
2550 	err = tcp_peek_sndq(sk, msg, len);
2551 	goto out;
2552 }
2553 
2554 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2555 		int *addr_len)
2556 {
2557 	int cmsg_flags = 0, ret;
2558 	struct scm_timestamping_internal tss;
2559 
2560 	if (unlikely(flags & MSG_ERRQUEUE))
2561 		return inet_recv_error(sk, msg, len, addr_len);
2562 
2563 	if (sk_can_busy_loop(sk) &&
2564 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2565 	    sk->sk_state == TCP_ESTABLISHED)
2566 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2567 
2568 	lock_sock(sk);
2569 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2570 	release_sock(sk);
2571 
2572 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2573 		if (cmsg_flags & TCP_CMSG_TS)
2574 			tcp_recv_timestamp(msg, sk, &tss);
2575 		if (msg->msg_get_inq) {
2576 			msg->msg_inq = tcp_inq_hint(sk);
2577 			if (cmsg_flags & TCP_CMSG_INQ)
2578 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2579 					 sizeof(msg->msg_inq), &msg->msg_inq);
2580 		}
2581 	}
2582 	return ret;
2583 }
2584 EXPORT_SYMBOL(tcp_recvmsg);
2585 
2586 void tcp_set_state(struct sock *sk, int state)
2587 {
2588 	int oldstate = sk->sk_state;
2589 
2590 	/* We defined a new enum for TCP states that are exported in BPF
2591 	 * so as not force the internal TCP states to be frozen. The
2592 	 * following checks will detect if an internal state value ever
2593 	 * differs from the BPF value. If this ever happens, then we will
2594 	 * need to remap the internal value to the BPF value before calling
2595 	 * tcp_call_bpf_2arg.
2596 	 */
2597 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2598 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2599 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2600 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2601 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2602 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2603 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2604 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2605 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2606 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2607 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2608 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2609 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2610 
2611 	/* bpf uapi header bpf.h defines an anonymous enum with values
2612 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2613 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2614 	 * But clang built vmlinux does not have this enum in DWARF
2615 	 * since clang removes the above code before generating IR/debuginfo.
2616 	 * Let us explicitly emit the type debuginfo to ensure the
2617 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2618 	 * regardless of which compiler is used.
2619 	 */
2620 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2621 
2622 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2623 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2624 
2625 	switch (state) {
2626 	case TCP_ESTABLISHED:
2627 		if (oldstate != TCP_ESTABLISHED)
2628 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2629 		break;
2630 
2631 	case TCP_CLOSE:
2632 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2633 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2634 
2635 		sk->sk_prot->unhash(sk);
2636 		if (inet_csk(sk)->icsk_bind_hash &&
2637 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2638 			inet_put_port(sk);
2639 		fallthrough;
2640 	default:
2641 		if (oldstate == TCP_ESTABLISHED)
2642 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2643 	}
2644 
2645 	/* Change state AFTER socket is unhashed to avoid closed
2646 	 * socket sitting in hash tables.
2647 	 */
2648 	inet_sk_state_store(sk, state);
2649 }
2650 EXPORT_SYMBOL_GPL(tcp_set_state);
2651 
2652 /*
2653  *	State processing on a close. This implements the state shift for
2654  *	sending our FIN frame. Note that we only send a FIN for some
2655  *	states. A shutdown() may have already sent the FIN, or we may be
2656  *	closed.
2657  */
2658 
2659 static const unsigned char new_state[16] = {
2660   /* current state:        new state:      action:	*/
2661   [0 /* (Invalid) */]	= TCP_CLOSE,
2662   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2663   [TCP_SYN_SENT]	= TCP_CLOSE,
2664   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2665   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2666   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2667   [TCP_TIME_WAIT]	= TCP_CLOSE,
2668   [TCP_CLOSE]		= TCP_CLOSE,
2669   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2670   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2671   [TCP_LISTEN]		= TCP_CLOSE,
2672   [TCP_CLOSING]		= TCP_CLOSING,
2673   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2674 };
2675 
2676 static int tcp_close_state(struct sock *sk)
2677 {
2678 	int next = (int)new_state[sk->sk_state];
2679 	int ns = next & TCP_STATE_MASK;
2680 
2681 	tcp_set_state(sk, ns);
2682 
2683 	return next & TCP_ACTION_FIN;
2684 }
2685 
2686 /*
2687  *	Shutdown the sending side of a connection. Much like close except
2688  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2689  */
2690 
2691 void tcp_shutdown(struct sock *sk, int how)
2692 {
2693 	/*	We need to grab some memory, and put together a FIN,
2694 	 *	and then put it into the queue to be sent.
2695 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2696 	 */
2697 	if (!(how & SEND_SHUTDOWN))
2698 		return;
2699 
2700 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2701 	if ((1 << sk->sk_state) &
2702 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2703 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2704 		/* Clear out any half completed packets.  FIN if needed. */
2705 		if (tcp_close_state(sk))
2706 			tcp_send_fin(sk);
2707 	}
2708 }
2709 EXPORT_SYMBOL(tcp_shutdown);
2710 
2711 int tcp_orphan_count_sum(void)
2712 {
2713 	int i, total = 0;
2714 
2715 	for_each_possible_cpu(i)
2716 		total += per_cpu(tcp_orphan_count, i);
2717 
2718 	return max(total, 0);
2719 }
2720 
2721 static int tcp_orphan_cache;
2722 static struct timer_list tcp_orphan_timer;
2723 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2724 
2725 static void tcp_orphan_update(struct timer_list *unused)
2726 {
2727 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2728 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2729 }
2730 
2731 static bool tcp_too_many_orphans(int shift)
2732 {
2733 	return READ_ONCE(tcp_orphan_cache) << shift >
2734 		READ_ONCE(sysctl_tcp_max_orphans);
2735 }
2736 
2737 bool tcp_check_oom(struct sock *sk, int shift)
2738 {
2739 	bool too_many_orphans, out_of_socket_memory;
2740 
2741 	too_many_orphans = tcp_too_many_orphans(shift);
2742 	out_of_socket_memory = tcp_out_of_memory(sk);
2743 
2744 	if (too_many_orphans)
2745 		net_info_ratelimited("too many orphaned sockets\n");
2746 	if (out_of_socket_memory)
2747 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2748 	return too_many_orphans || out_of_socket_memory;
2749 }
2750 
2751 void __tcp_close(struct sock *sk, long timeout)
2752 {
2753 	struct sk_buff *skb;
2754 	int data_was_unread = 0;
2755 	int state;
2756 
2757 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2758 
2759 	if (sk->sk_state == TCP_LISTEN) {
2760 		tcp_set_state(sk, TCP_CLOSE);
2761 
2762 		/* Special case. */
2763 		inet_csk_listen_stop(sk);
2764 
2765 		goto adjudge_to_death;
2766 	}
2767 
2768 	/*  We need to flush the recv. buffs.  We do this only on the
2769 	 *  descriptor close, not protocol-sourced closes, because the
2770 	 *  reader process may not have drained the data yet!
2771 	 */
2772 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2773 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2774 
2775 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2776 			len--;
2777 		data_was_unread += len;
2778 		__kfree_skb(skb);
2779 	}
2780 
2781 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2782 	if (sk->sk_state == TCP_CLOSE)
2783 		goto adjudge_to_death;
2784 
2785 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2786 	 * data was lost. To witness the awful effects of the old behavior of
2787 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2788 	 * GET in an FTP client, suspend the process, wait for the client to
2789 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2790 	 * Note: timeout is always zero in such a case.
2791 	 */
2792 	if (unlikely(tcp_sk(sk)->repair)) {
2793 		sk->sk_prot->disconnect(sk, 0);
2794 	} else if (data_was_unread) {
2795 		/* Unread data was tossed, zap the connection. */
2796 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2797 		tcp_set_state(sk, TCP_CLOSE);
2798 		tcp_send_active_reset(sk, sk->sk_allocation);
2799 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2800 		/* Check zero linger _after_ checking for unread data. */
2801 		sk->sk_prot->disconnect(sk, 0);
2802 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2803 	} else if (tcp_close_state(sk)) {
2804 		/* We FIN if the application ate all the data before
2805 		 * zapping the connection.
2806 		 */
2807 
2808 		/* RED-PEN. Formally speaking, we have broken TCP state
2809 		 * machine. State transitions:
2810 		 *
2811 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2812 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2813 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2814 		 *
2815 		 * are legal only when FIN has been sent (i.e. in window),
2816 		 * rather than queued out of window. Purists blame.
2817 		 *
2818 		 * F.e. "RFC state" is ESTABLISHED,
2819 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2820 		 *
2821 		 * The visible declinations are that sometimes
2822 		 * we enter time-wait state, when it is not required really
2823 		 * (harmless), do not send active resets, when they are
2824 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2825 		 * they look as CLOSING or LAST_ACK for Linux)
2826 		 * Probably, I missed some more holelets.
2827 		 * 						--ANK
2828 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2829 		 * in a single packet! (May consider it later but will
2830 		 * probably need API support or TCP_CORK SYN-ACK until
2831 		 * data is written and socket is closed.)
2832 		 */
2833 		tcp_send_fin(sk);
2834 	}
2835 
2836 	sk_stream_wait_close(sk, timeout);
2837 
2838 adjudge_to_death:
2839 	state = sk->sk_state;
2840 	sock_hold(sk);
2841 	sock_orphan(sk);
2842 
2843 	local_bh_disable();
2844 	bh_lock_sock(sk);
2845 	/* remove backlog if any, without releasing ownership. */
2846 	__release_sock(sk);
2847 
2848 	this_cpu_inc(tcp_orphan_count);
2849 
2850 	/* Have we already been destroyed by a softirq or backlog? */
2851 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2852 		goto out;
2853 
2854 	/*	This is a (useful) BSD violating of the RFC. There is a
2855 	 *	problem with TCP as specified in that the other end could
2856 	 *	keep a socket open forever with no application left this end.
2857 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2858 	 *	our end. If they send after that then tough - BUT: long enough
2859 	 *	that we won't make the old 4*rto = almost no time - whoops
2860 	 *	reset mistake.
2861 	 *
2862 	 *	Nope, it was not mistake. It is really desired behaviour
2863 	 *	f.e. on http servers, when such sockets are useless, but
2864 	 *	consume significant resources. Let's do it with special
2865 	 *	linger2	option.					--ANK
2866 	 */
2867 
2868 	if (sk->sk_state == TCP_FIN_WAIT2) {
2869 		struct tcp_sock *tp = tcp_sk(sk);
2870 		if (READ_ONCE(tp->linger2) < 0) {
2871 			tcp_set_state(sk, TCP_CLOSE);
2872 			tcp_send_active_reset(sk, GFP_ATOMIC);
2873 			__NET_INC_STATS(sock_net(sk),
2874 					LINUX_MIB_TCPABORTONLINGER);
2875 		} else {
2876 			const int tmo = tcp_fin_time(sk);
2877 
2878 			if (tmo > TCP_TIMEWAIT_LEN) {
2879 				inet_csk_reset_keepalive_timer(sk,
2880 						tmo - TCP_TIMEWAIT_LEN);
2881 			} else {
2882 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2883 				goto out;
2884 			}
2885 		}
2886 	}
2887 	if (sk->sk_state != TCP_CLOSE) {
2888 		if (tcp_check_oom(sk, 0)) {
2889 			tcp_set_state(sk, TCP_CLOSE);
2890 			tcp_send_active_reset(sk, GFP_ATOMIC);
2891 			__NET_INC_STATS(sock_net(sk),
2892 					LINUX_MIB_TCPABORTONMEMORY);
2893 		} else if (!check_net(sock_net(sk))) {
2894 			/* Not possible to send reset; just close */
2895 			tcp_set_state(sk, TCP_CLOSE);
2896 		}
2897 	}
2898 
2899 	if (sk->sk_state == TCP_CLOSE) {
2900 		struct request_sock *req;
2901 
2902 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2903 						lockdep_sock_is_held(sk));
2904 		/* We could get here with a non-NULL req if the socket is
2905 		 * aborted (e.g., closed with unread data) before 3WHS
2906 		 * finishes.
2907 		 */
2908 		if (req)
2909 			reqsk_fastopen_remove(sk, req, false);
2910 		inet_csk_destroy_sock(sk);
2911 	}
2912 	/* Otherwise, socket is reprieved until protocol close. */
2913 
2914 out:
2915 	bh_unlock_sock(sk);
2916 	local_bh_enable();
2917 }
2918 
2919 void tcp_close(struct sock *sk, long timeout)
2920 {
2921 	lock_sock(sk);
2922 	__tcp_close(sk, timeout);
2923 	release_sock(sk);
2924 	sock_put(sk);
2925 }
2926 EXPORT_SYMBOL(tcp_close);
2927 
2928 /* These states need RST on ABORT according to RFC793 */
2929 
2930 static inline bool tcp_need_reset(int state)
2931 {
2932 	return (1 << state) &
2933 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2934 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2935 }
2936 
2937 static void tcp_rtx_queue_purge(struct sock *sk)
2938 {
2939 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2940 
2941 	tcp_sk(sk)->highest_sack = NULL;
2942 	while (p) {
2943 		struct sk_buff *skb = rb_to_skb(p);
2944 
2945 		p = rb_next(p);
2946 		/* Since we are deleting whole queue, no need to
2947 		 * list_del(&skb->tcp_tsorted_anchor)
2948 		 */
2949 		tcp_rtx_queue_unlink(skb, sk);
2950 		tcp_wmem_free_skb(sk, skb);
2951 	}
2952 }
2953 
2954 void tcp_write_queue_purge(struct sock *sk)
2955 {
2956 	struct sk_buff *skb;
2957 
2958 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2959 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2960 		tcp_skb_tsorted_anchor_cleanup(skb);
2961 		tcp_wmem_free_skb(sk, skb);
2962 	}
2963 	tcp_rtx_queue_purge(sk);
2964 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2965 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2966 	tcp_sk(sk)->packets_out = 0;
2967 	inet_csk(sk)->icsk_backoff = 0;
2968 }
2969 
2970 int tcp_disconnect(struct sock *sk, int flags)
2971 {
2972 	struct inet_sock *inet = inet_sk(sk);
2973 	struct inet_connection_sock *icsk = inet_csk(sk);
2974 	struct tcp_sock *tp = tcp_sk(sk);
2975 	int old_state = sk->sk_state;
2976 	u32 seq;
2977 
2978 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2979 	 * or inet_wait_for_connect().
2980 	 */
2981 	if (sk->sk_wait_pending)
2982 		return -EBUSY;
2983 
2984 	if (old_state != TCP_CLOSE)
2985 		tcp_set_state(sk, TCP_CLOSE);
2986 
2987 	/* ABORT function of RFC793 */
2988 	if (old_state == TCP_LISTEN) {
2989 		inet_csk_listen_stop(sk);
2990 	} else if (unlikely(tp->repair)) {
2991 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2992 	} else if (tcp_need_reset(old_state) ||
2993 		   (tp->snd_nxt != tp->write_seq &&
2994 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2995 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2996 		 * states
2997 		 */
2998 		tcp_send_active_reset(sk, gfp_any());
2999 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3000 	} else if (old_state == TCP_SYN_SENT)
3001 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3002 
3003 	tcp_clear_xmit_timers(sk);
3004 	__skb_queue_purge(&sk->sk_receive_queue);
3005 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3006 	WRITE_ONCE(tp->urg_data, 0);
3007 	tcp_write_queue_purge(sk);
3008 	tcp_fastopen_active_disable_ofo_check(sk);
3009 	skb_rbtree_purge(&tp->out_of_order_queue);
3010 
3011 	inet->inet_dport = 0;
3012 
3013 	inet_bhash2_reset_saddr(sk);
3014 
3015 	WRITE_ONCE(sk->sk_shutdown, 0);
3016 	sock_reset_flag(sk, SOCK_DONE);
3017 	tp->srtt_us = 0;
3018 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3019 	tp->rcv_rtt_last_tsecr = 0;
3020 
3021 	seq = tp->write_seq + tp->max_window + 2;
3022 	if (!seq)
3023 		seq = 1;
3024 	WRITE_ONCE(tp->write_seq, seq);
3025 
3026 	icsk->icsk_backoff = 0;
3027 	icsk->icsk_probes_out = 0;
3028 	icsk->icsk_probes_tstamp = 0;
3029 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3030 	icsk->icsk_rto_min = TCP_RTO_MIN;
3031 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3032 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3033 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3034 	tp->snd_cwnd_cnt = 0;
3035 	tp->is_cwnd_limited = 0;
3036 	tp->max_packets_out = 0;
3037 	tp->window_clamp = 0;
3038 	tp->delivered = 0;
3039 	tp->delivered_ce = 0;
3040 	if (icsk->icsk_ca_ops->release)
3041 		icsk->icsk_ca_ops->release(sk);
3042 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3043 	icsk->icsk_ca_initialized = 0;
3044 	tcp_set_ca_state(sk, TCP_CA_Open);
3045 	tp->is_sack_reneg = 0;
3046 	tcp_clear_retrans(tp);
3047 	tp->total_retrans = 0;
3048 	inet_csk_delack_init(sk);
3049 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3050 	 * issue in __tcp_select_window()
3051 	 */
3052 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3053 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3054 	__sk_dst_reset(sk);
3055 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3056 	tcp_saved_syn_free(tp);
3057 	tp->compressed_ack = 0;
3058 	tp->segs_in = 0;
3059 	tp->segs_out = 0;
3060 	tp->bytes_sent = 0;
3061 	tp->bytes_acked = 0;
3062 	tp->bytes_received = 0;
3063 	tp->bytes_retrans = 0;
3064 	tp->data_segs_in = 0;
3065 	tp->data_segs_out = 0;
3066 	tp->duplicate_sack[0].start_seq = 0;
3067 	tp->duplicate_sack[0].end_seq = 0;
3068 	tp->dsack_dups = 0;
3069 	tp->reord_seen = 0;
3070 	tp->retrans_out = 0;
3071 	tp->sacked_out = 0;
3072 	tp->tlp_high_seq = 0;
3073 	tp->last_oow_ack_time = 0;
3074 	tp->plb_rehash = 0;
3075 	/* There's a bubble in the pipe until at least the first ACK. */
3076 	tp->app_limited = ~0U;
3077 	tp->rate_app_limited = 1;
3078 	tp->rack.mstamp = 0;
3079 	tp->rack.advanced = 0;
3080 	tp->rack.reo_wnd_steps = 1;
3081 	tp->rack.last_delivered = 0;
3082 	tp->rack.reo_wnd_persist = 0;
3083 	tp->rack.dsack_seen = 0;
3084 	tp->syn_data_acked = 0;
3085 	tp->rx_opt.saw_tstamp = 0;
3086 	tp->rx_opt.dsack = 0;
3087 	tp->rx_opt.num_sacks = 0;
3088 	tp->rcv_ooopack = 0;
3089 
3090 
3091 	/* Clean up fastopen related fields */
3092 	tcp_free_fastopen_req(tp);
3093 	inet_clear_bit(DEFER_CONNECT, sk);
3094 	tp->fastopen_client_fail = 0;
3095 
3096 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3097 
3098 	if (sk->sk_frag.page) {
3099 		put_page(sk->sk_frag.page);
3100 		sk->sk_frag.page = NULL;
3101 		sk->sk_frag.offset = 0;
3102 	}
3103 	sk_error_report(sk);
3104 	return 0;
3105 }
3106 EXPORT_SYMBOL(tcp_disconnect);
3107 
3108 static inline bool tcp_can_repair_sock(const struct sock *sk)
3109 {
3110 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3111 		(sk->sk_state != TCP_LISTEN);
3112 }
3113 
3114 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3115 {
3116 	struct tcp_repair_window opt;
3117 
3118 	if (!tp->repair)
3119 		return -EPERM;
3120 
3121 	if (len != sizeof(opt))
3122 		return -EINVAL;
3123 
3124 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3125 		return -EFAULT;
3126 
3127 	if (opt.max_window < opt.snd_wnd)
3128 		return -EINVAL;
3129 
3130 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3131 		return -EINVAL;
3132 
3133 	if (after(opt.rcv_wup, tp->rcv_nxt))
3134 		return -EINVAL;
3135 
3136 	tp->snd_wl1	= opt.snd_wl1;
3137 	tp->snd_wnd	= opt.snd_wnd;
3138 	tp->max_window	= opt.max_window;
3139 
3140 	tp->rcv_wnd	= opt.rcv_wnd;
3141 	tp->rcv_wup	= opt.rcv_wup;
3142 
3143 	return 0;
3144 }
3145 
3146 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3147 		unsigned int len)
3148 {
3149 	struct tcp_sock *tp = tcp_sk(sk);
3150 	struct tcp_repair_opt opt;
3151 	size_t offset = 0;
3152 
3153 	while (len >= sizeof(opt)) {
3154 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3155 			return -EFAULT;
3156 
3157 		offset += sizeof(opt);
3158 		len -= sizeof(opt);
3159 
3160 		switch (opt.opt_code) {
3161 		case TCPOPT_MSS:
3162 			tp->rx_opt.mss_clamp = opt.opt_val;
3163 			tcp_mtup_init(sk);
3164 			break;
3165 		case TCPOPT_WINDOW:
3166 			{
3167 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3168 				u16 rcv_wscale = opt.opt_val >> 16;
3169 
3170 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3171 					return -EFBIG;
3172 
3173 				tp->rx_opt.snd_wscale = snd_wscale;
3174 				tp->rx_opt.rcv_wscale = rcv_wscale;
3175 				tp->rx_opt.wscale_ok = 1;
3176 			}
3177 			break;
3178 		case TCPOPT_SACK_PERM:
3179 			if (opt.opt_val != 0)
3180 				return -EINVAL;
3181 
3182 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3183 			break;
3184 		case TCPOPT_TIMESTAMP:
3185 			if (opt.opt_val != 0)
3186 				return -EINVAL;
3187 
3188 			tp->rx_opt.tstamp_ok = 1;
3189 			break;
3190 		}
3191 	}
3192 
3193 	return 0;
3194 }
3195 
3196 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3197 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3198 
3199 static void tcp_enable_tx_delay(void)
3200 {
3201 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3202 		static int __tcp_tx_delay_enabled = 0;
3203 
3204 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3205 			static_branch_enable(&tcp_tx_delay_enabled);
3206 			pr_info("TCP_TX_DELAY enabled\n");
3207 		}
3208 	}
3209 }
3210 
3211 /* When set indicates to always queue non-full frames.  Later the user clears
3212  * this option and we transmit any pending partial frames in the queue.  This is
3213  * meant to be used alongside sendfile() to get properly filled frames when the
3214  * user (for example) must write out headers with a write() call first and then
3215  * use sendfile to send out the data parts.
3216  *
3217  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3218  * TCP_NODELAY.
3219  */
3220 void __tcp_sock_set_cork(struct sock *sk, bool on)
3221 {
3222 	struct tcp_sock *tp = tcp_sk(sk);
3223 
3224 	if (on) {
3225 		tp->nonagle |= TCP_NAGLE_CORK;
3226 	} else {
3227 		tp->nonagle &= ~TCP_NAGLE_CORK;
3228 		if (tp->nonagle & TCP_NAGLE_OFF)
3229 			tp->nonagle |= TCP_NAGLE_PUSH;
3230 		tcp_push_pending_frames(sk);
3231 	}
3232 }
3233 
3234 void tcp_sock_set_cork(struct sock *sk, bool on)
3235 {
3236 	lock_sock(sk);
3237 	__tcp_sock_set_cork(sk, on);
3238 	release_sock(sk);
3239 }
3240 EXPORT_SYMBOL(tcp_sock_set_cork);
3241 
3242 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3243  * remembered, but it is not activated until cork is cleared.
3244  *
3245  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3246  * even TCP_CORK for currently queued segments.
3247  */
3248 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3249 {
3250 	if (on) {
3251 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3252 		tcp_push_pending_frames(sk);
3253 	} else {
3254 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3255 	}
3256 }
3257 
3258 void tcp_sock_set_nodelay(struct sock *sk)
3259 {
3260 	lock_sock(sk);
3261 	__tcp_sock_set_nodelay(sk, true);
3262 	release_sock(sk);
3263 }
3264 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3265 
3266 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3267 {
3268 	if (!val) {
3269 		inet_csk_enter_pingpong_mode(sk);
3270 		return;
3271 	}
3272 
3273 	inet_csk_exit_pingpong_mode(sk);
3274 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3275 	    inet_csk_ack_scheduled(sk)) {
3276 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3277 		tcp_cleanup_rbuf(sk, 1);
3278 		if (!(val & 1))
3279 			inet_csk_enter_pingpong_mode(sk);
3280 	}
3281 }
3282 
3283 void tcp_sock_set_quickack(struct sock *sk, int val)
3284 {
3285 	lock_sock(sk);
3286 	__tcp_sock_set_quickack(sk, val);
3287 	release_sock(sk);
3288 }
3289 EXPORT_SYMBOL(tcp_sock_set_quickack);
3290 
3291 int tcp_sock_set_syncnt(struct sock *sk, int val)
3292 {
3293 	if (val < 1 || val > MAX_TCP_SYNCNT)
3294 		return -EINVAL;
3295 
3296 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3300 
3301 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3302 {
3303 	/* Cap the max time in ms TCP will retry or probe the window
3304 	 * before giving up and aborting (ETIMEDOUT) a connection.
3305 	 */
3306 	if (val < 0)
3307 		return -EINVAL;
3308 
3309 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3310 	return 0;
3311 }
3312 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3313 
3314 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3315 {
3316 	struct tcp_sock *tp = tcp_sk(sk);
3317 
3318 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3319 		return -EINVAL;
3320 
3321 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3322 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3323 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3324 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3325 		u32 elapsed = keepalive_time_elapsed(tp);
3326 
3327 		if (tp->keepalive_time > elapsed)
3328 			elapsed = tp->keepalive_time - elapsed;
3329 		else
3330 			elapsed = 0;
3331 		inet_csk_reset_keepalive_timer(sk, elapsed);
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 int tcp_sock_set_keepidle(struct sock *sk, int val)
3338 {
3339 	int err;
3340 
3341 	lock_sock(sk);
3342 	err = tcp_sock_set_keepidle_locked(sk, val);
3343 	release_sock(sk);
3344 	return err;
3345 }
3346 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3347 
3348 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3349 {
3350 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3351 		return -EINVAL;
3352 
3353 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3354 	return 0;
3355 }
3356 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3357 
3358 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3359 {
3360 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3361 		return -EINVAL;
3362 
3363 	/* Paired with READ_ONCE() in keepalive_probes() */
3364 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3365 	return 0;
3366 }
3367 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3368 
3369 int tcp_set_window_clamp(struct sock *sk, int val)
3370 {
3371 	struct tcp_sock *tp = tcp_sk(sk);
3372 
3373 	if (!val) {
3374 		if (sk->sk_state != TCP_CLOSE)
3375 			return -EINVAL;
3376 		tp->window_clamp = 0;
3377 	} else {
3378 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3379 			SOCK_MIN_RCVBUF / 2 : val;
3380 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3381 	}
3382 	return 0;
3383 }
3384 
3385 /*
3386  *	Socket option code for TCP.
3387  */
3388 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3389 		      sockptr_t optval, unsigned int optlen)
3390 {
3391 	struct tcp_sock *tp = tcp_sk(sk);
3392 	struct inet_connection_sock *icsk = inet_csk(sk);
3393 	struct net *net = sock_net(sk);
3394 	int val;
3395 	int err = 0;
3396 
3397 	/* These are data/string values, all the others are ints */
3398 	switch (optname) {
3399 	case TCP_CONGESTION: {
3400 		char name[TCP_CA_NAME_MAX];
3401 
3402 		if (optlen < 1)
3403 			return -EINVAL;
3404 
3405 		val = strncpy_from_sockptr(name, optval,
3406 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3407 		if (val < 0)
3408 			return -EFAULT;
3409 		name[val] = 0;
3410 
3411 		sockopt_lock_sock(sk);
3412 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3413 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3414 								    CAP_NET_ADMIN));
3415 		sockopt_release_sock(sk);
3416 		return err;
3417 	}
3418 	case TCP_ULP: {
3419 		char name[TCP_ULP_NAME_MAX];
3420 
3421 		if (optlen < 1)
3422 			return -EINVAL;
3423 
3424 		val = strncpy_from_sockptr(name, optval,
3425 					min_t(long, TCP_ULP_NAME_MAX - 1,
3426 					      optlen));
3427 		if (val < 0)
3428 			return -EFAULT;
3429 		name[val] = 0;
3430 
3431 		sockopt_lock_sock(sk);
3432 		err = tcp_set_ulp(sk, name);
3433 		sockopt_release_sock(sk);
3434 		return err;
3435 	}
3436 	case TCP_FASTOPEN_KEY: {
3437 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3438 		__u8 *backup_key = NULL;
3439 
3440 		/* Allow a backup key as well to facilitate key rotation
3441 		 * First key is the active one.
3442 		 */
3443 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3444 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3445 			return -EINVAL;
3446 
3447 		if (copy_from_sockptr(key, optval, optlen))
3448 			return -EFAULT;
3449 
3450 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3451 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3452 
3453 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3454 	}
3455 	default:
3456 		/* fallthru */
3457 		break;
3458 	}
3459 
3460 	if (optlen < sizeof(int))
3461 		return -EINVAL;
3462 
3463 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3464 		return -EFAULT;
3465 
3466 	/* Handle options that can be set without locking the socket. */
3467 	switch (optname) {
3468 	case TCP_SYNCNT:
3469 		return tcp_sock_set_syncnt(sk, val);
3470 	case TCP_USER_TIMEOUT:
3471 		return tcp_sock_set_user_timeout(sk, val);
3472 	case TCP_KEEPINTVL:
3473 		return tcp_sock_set_keepintvl(sk, val);
3474 	case TCP_KEEPCNT:
3475 		return tcp_sock_set_keepcnt(sk, val);
3476 	case TCP_LINGER2:
3477 		if (val < 0)
3478 			WRITE_ONCE(tp->linger2, -1);
3479 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3480 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3481 		else
3482 			WRITE_ONCE(tp->linger2, val * HZ);
3483 		return 0;
3484 	case TCP_DEFER_ACCEPT:
3485 		/* Translate value in seconds to number of retransmits */
3486 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3487 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3488 					   TCP_RTO_MAX / HZ));
3489 		return 0;
3490 	}
3491 
3492 	sockopt_lock_sock(sk);
3493 
3494 	switch (optname) {
3495 	case TCP_MAXSEG:
3496 		/* Values greater than interface MTU won't take effect. However
3497 		 * at the point when this call is done we typically don't yet
3498 		 * know which interface is going to be used
3499 		 */
3500 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3501 			err = -EINVAL;
3502 			break;
3503 		}
3504 		tp->rx_opt.user_mss = val;
3505 		break;
3506 
3507 	case TCP_NODELAY:
3508 		__tcp_sock_set_nodelay(sk, val);
3509 		break;
3510 
3511 	case TCP_THIN_LINEAR_TIMEOUTS:
3512 		if (val < 0 || val > 1)
3513 			err = -EINVAL;
3514 		else
3515 			tp->thin_lto = val;
3516 		break;
3517 
3518 	case TCP_THIN_DUPACK:
3519 		if (val < 0 || val > 1)
3520 			err = -EINVAL;
3521 		break;
3522 
3523 	case TCP_REPAIR:
3524 		if (!tcp_can_repair_sock(sk))
3525 			err = -EPERM;
3526 		else if (val == TCP_REPAIR_ON) {
3527 			tp->repair = 1;
3528 			sk->sk_reuse = SK_FORCE_REUSE;
3529 			tp->repair_queue = TCP_NO_QUEUE;
3530 		} else if (val == TCP_REPAIR_OFF) {
3531 			tp->repair = 0;
3532 			sk->sk_reuse = SK_NO_REUSE;
3533 			tcp_send_window_probe(sk);
3534 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3535 			tp->repair = 0;
3536 			sk->sk_reuse = SK_NO_REUSE;
3537 		} else
3538 			err = -EINVAL;
3539 
3540 		break;
3541 
3542 	case TCP_REPAIR_QUEUE:
3543 		if (!tp->repair)
3544 			err = -EPERM;
3545 		else if ((unsigned int)val < TCP_QUEUES_NR)
3546 			tp->repair_queue = val;
3547 		else
3548 			err = -EINVAL;
3549 		break;
3550 
3551 	case TCP_QUEUE_SEQ:
3552 		if (sk->sk_state != TCP_CLOSE) {
3553 			err = -EPERM;
3554 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3555 			if (!tcp_rtx_queue_empty(sk))
3556 				err = -EPERM;
3557 			else
3558 				WRITE_ONCE(tp->write_seq, val);
3559 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3560 			if (tp->rcv_nxt != tp->copied_seq) {
3561 				err = -EPERM;
3562 			} else {
3563 				WRITE_ONCE(tp->rcv_nxt, val);
3564 				WRITE_ONCE(tp->copied_seq, val);
3565 			}
3566 		} else {
3567 			err = -EINVAL;
3568 		}
3569 		break;
3570 
3571 	case TCP_REPAIR_OPTIONS:
3572 		if (!tp->repair)
3573 			err = -EINVAL;
3574 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3575 			err = tcp_repair_options_est(sk, optval, optlen);
3576 		else
3577 			err = -EPERM;
3578 		break;
3579 
3580 	case TCP_CORK:
3581 		__tcp_sock_set_cork(sk, val);
3582 		break;
3583 
3584 	case TCP_KEEPIDLE:
3585 		err = tcp_sock_set_keepidle_locked(sk, val);
3586 		break;
3587 	case TCP_SAVE_SYN:
3588 		/* 0: disable, 1: enable, 2: start from ether_header */
3589 		if (val < 0 || val > 2)
3590 			err = -EINVAL;
3591 		else
3592 			tp->save_syn = val;
3593 		break;
3594 
3595 	case TCP_WINDOW_CLAMP:
3596 		err = tcp_set_window_clamp(sk, val);
3597 		break;
3598 
3599 	case TCP_QUICKACK:
3600 		__tcp_sock_set_quickack(sk, val);
3601 		break;
3602 
3603 #ifdef CONFIG_TCP_MD5SIG
3604 	case TCP_MD5SIG:
3605 	case TCP_MD5SIG_EXT:
3606 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3607 		break;
3608 #endif
3609 	case TCP_FASTOPEN:
3610 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3611 		    TCPF_LISTEN))) {
3612 			tcp_fastopen_init_key_once(net);
3613 
3614 			fastopen_queue_tune(sk, val);
3615 		} else {
3616 			err = -EINVAL;
3617 		}
3618 		break;
3619 	case TCP_FASTOPEN_CONNECT:
3620 		if (val > 1 || val < 0) {
3621 			err = -EINVAL;
3622 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3623 			   TFO_CLIENT_ENABLE) {
3624 			if (sk->sk_state == TCP_CLOSE)
3625 				tp->fastopen_connect = val;
3626 			else
3627 				err = -EINVAL;
3628 		} else {
3629 			err = -EOPNOTSUPP;
3630 		}
3631 		break;
3632 	case TCP_FASTOPEN_NO_COOKIE:
3633 		if (val > 1 || val < 0)
3634 			err = -EINVAL;
3635 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3636 			err = -EINVAL;
3637 		else
3638 			tp->fastopen_no_cookie = val;
3639 		break;
3640 	case TCP_TIMESTAMP:
3641 		if (!tp->repair)
3642 			err = -EPERM;
3643 		else
3644 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3645 		break;
3646 	case TCP_REPAIR_WINDOW:
3647 		err = tcp_repair_set_window(tp, optval, optlen);
3648 		break;
3649 	case TCP_NOTSENT_LOWAT:
3650 		WRITE_ONCE(tp->notsent_lowat, val);
3651 		sk->sk_write_space(sk);
3652 		break;
3653 	case TCP_INQ:
3654 		if (val > 1 || val < 0)
3655 			err = -EINVAL;
3656 		else
3657 			tp->recvmsg_inq = val;
3658 		break;
3659 	case TCP_TX_DELAY:
3660 		if (val)
3661 			tcp_enable_tx_delay();
3662 		WRITE_ONCE(tp->tcp_tx_delay, val);
3663 		break;
3664 	default:
3665 		err = -ENOPROTOOPT;
3666 		break;
3667 	}
3668 
3669 	sockopt_release_sock(sk);
3670 	return err;
3671 }
3672 
3673 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3674 		   unsigned int optlen)
3675 {
3676 	const struct inet_connection_sock *icsk = inet_csk(sk);
3677 
3678 	if (level != SOL_TCP)
3679 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3680 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3681 								optval, optlen);
3682 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3683 }
3684 EXPORT_SYMBOL(tcp_setsockopt);
3685 
3686 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3687 				      struct tcp_info *info)
3688 {
3689 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3690 	enum tcp_chrono i;
3691 
3692 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3693 		stats[i] = tp->chrono_stat[i - 1];
3694 		if (i == tp->chrono_type)
3695 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3696 		stats[i] *= USEC_PER_SEC / HZ;
3697 		total += stats[i];
3698 	}
3699 
3700 	info->tcpi_busy_time = total;
3701 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3702 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3703 }
3704 
3705 /* Return information about state of tcp endpoint in API format. */
3706 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3707 {
3708 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3709 	const struct inet_connection_sock *icsk = inet_csk(sk);
3710 	unsigned long rate;
3711 	u32 now;
3712 	u64 rate64;
3713 	bool slow;
3714 
3715 	memset(info, 0, sizeof(*info));
3716 	if (sk->sk_type != SOCK_STREAM)
3717 		return;
3718 
3719 	info->tcpi_state = inet_sk_state_load(sk);
3720 
3721 	/* Report meaningful fields for all TCP states, including listeners */
3722 	rate = READ_ONCE(sk->sk_pacing_rate);
3723 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3724 	info->tcpi_pacing_rate = rate64;
3725 
3726 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3727 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3728 	info->tcpi_max_pacing_rate = rate64;
3729 
3730 	info->tcpi_reordering = tp->reordering;
3731 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3732 
3733 	if (info->tcpi_state == TCP_LISTEN) {
3734 		/* listeners aliased fields :
3735 		 * tcpi_unacked -> Number of children ready for accept()
3736 		 * tcpi_sacked  -> max backlog
3737 		 */
3738 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3739 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3740 		return;
3741 	}
3742 
3743 	slow = lock_sock_fast(sk);
3744 
3745 	info->tcpi_ca_state = icsk->icsk_ca_state;
3746 	info->tcpi_retransmits = icsk->icsk_retransmits;
3747 	info->tcpi_probes = icsk->icsk_probes_out;
3748 	info->tcpi_backoff = icsk->icsk_backoff;
3749 
3750 	if (tp->rx_opt.tstamp_ok)
3751 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3752 	if (tcp_is_sack(tp))
3753 		info->tcpi_options |= TCPI_OPT_SACK;
3754 	if (tp->rx_opt.wscale_ok) {
3755 		info->tcpi_options |= TCPI_OPT_WSCALE;
3756 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3757 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3758 	}
3759 
3760 	if (tp->ecn_flags & TCP_ECN_OK)
3761 		info->tcpi_options |= TCPI_OPT_ECN;
3762 	if (tp->ecn_flags & TCP_ECN_SEEN)
3763 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3764 	if (tp->syn_data_acked)
3765 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3766 
3767 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3768 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3769 	info->tcpi_snd_mss = tp->mss_cache;
3770 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3771 
3772 	info->tcpi_unacked = tp->packets_out;
3773 	info->tcpi_sacked = tp->sacked_out;
3774 
3775 	info->tcpi_lost = tp->lost_out;
3776 	info->tcpi_retrans = tp->retrans_out;
3777 
3778 	now = tcp_jiffies32;
3779 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3780 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3781 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3782 
3783 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3784 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3785 	info->tcpi_rtt = tp->srtt_us >> 3;
3786 	info->tcpi_rttvar = tp->mdev_us >> 2;
3787 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3788 	info->tcpi_advmss = tp->advmss;
3789 
3790 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3791 	info->tcpi_rcv_space = tp->rcvq_space.space;
3792 
3793 	info->tcpi_total_retrans = tp->total_retrans;
3794 
3795 	info->tcpi_bytes_acked = tp->bytes_acked;
3796 	info->tcpi_bytes_received = tp->bytes_received;
3797 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3798 	tcp_get_info_chrono_stats(tp, info);
3799 
3800 	info->tcpi_segs_out = tp->segs_out;
3801 
3802 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3803 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3804 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3805 
3806 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3807 	info->tcpi_data_segs_out = tp->data_segs_out;
3808 
3809 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3810 	rate64 = tcp_compute_delivery_rate(tp);
3811 	if (rate64)
3812 		info->tcpi_delivery_rate = rate64;
3813 	info->tcpi_delivered = tp->delivered;
3814 	info->tcpi_delivered_ce = tp->delivered_ce;
3815 	info->tcpi_bytes_sent = tp->bytes_sent;
3816 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3817 	info->tcpi_dsack_dups = tp->dsack_dups;
3818 	info->tcpi_reord_seen = tp->reord_seen;
3819 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3820 	info->tcpi_snd_wnd = tp->snd_wnd;
3821 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3822 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3823 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3824 	unlock_sock_fast(sk, slow);
3825 }
3826 EXPORT_SYMBOL_GPL(tcp_get_info);
3827 
3828 static size_t tcp_opt_stats_get_size(void)
3829 {
3830 	return
3831 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3832 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3833 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3834 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3835 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3836 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3837 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3838 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3839 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3840 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3841 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3842 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3843 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3844 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3845 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3846 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3847 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3848 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3849 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3850 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3851 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3852 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3853 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3854 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3855 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3856 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3858 		0;
3859 }
3860 
3861 /* Returns TTL or hop limit of an incoming packet from skb. */
3862 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3863 {
3864 	if (skb->protocol == htons(ETH_P_IP))
3865 		return ip_hdr(skb)->ttl;
3866 	else if (skb->protocol == htons(ETH_P_IPV6))
3867 		return ipv6_hdr(skb)->hop_limit;
3868 	else
3869 		return 0;
3870 }
3871 
3872 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3873 					       const struct sk_buff *orig_skb,
3874 					       const struct sk_buff *ack_skb)
3875 {
3876 	const struct tcp_sock *tp = tcp_sk(sk);
3877 	struct sk_buff *stats;
3878 	struct tcp_info info;
3879 	unsigned long rate;
3880 	u64 rate64;
3881 
3882 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3883 	if (!stats)
3884 		return NULL;
3885 
3886 	tcp_get_info_chrono_stats(tp, &info);
3887 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3888 			  info.tcpi_busy_time, TCP_NLA_PAD);
3889 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3890 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3891 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3892 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3893 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3894 			  tp->data_segs_out, TCP_NLA_PAD);
3895 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3896 			  tp->total_retrans, TCP_NLA_PAD);
3897 
3898 	rate = READ_ONCE(sk->sk_pacing_rate);
3899 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3900 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3901 
3902 	rate64 = tcp_compute_delivery_rate(tp);
3903 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3904 
3905 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3906 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3907 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3908 
3909 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3910 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3911 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3912 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3913 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3914 
3915 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3916 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3917 
3918 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3919 			  TCP_NLA_PAD);
3920 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3921 			  TCP_NLA_PAD);
3922 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3923 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3924 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3925 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3926 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3927 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3928 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3929 			  TCP_NLA_PAD);
3930 	if (ack_skb)
3931 		nla_put_u8(stats, TCP_NLA_TTL,
3932 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3933 
3934 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3935 	return stats;
3936 }
3937 
3938 int do_tcp_getsockopt(struct sock *sk, int level,
3939 		      int optname, sockptr_t optval, sockptr_t optlen)
3940 {
3941 	struct inet_connection_sock *icsk = inet_csk(sk);
3942 	struct tcp_sock *tp = tcp_sk(sk);
3943 	struct net *net = sock_net(sk);
3944 	int val, len;
3945 
3946 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3947 		return -EFAULT;
3948 
3949 	len = min_t(unsigned int, len, sizeof(int));
3950 
3951 	if (len < 0)
3952 		return -EINVAL;
3953 
3954 	switch (optname) {
3955 	case TCP_MAXSEG:
3956 		val = tp->mss_cache;
3957 		if (tp->rx_opt.user_mss &&
3958 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3959 			val = tp->rx_opt.user_mss;
3960 		if (tp->repair)
3961 			val = tp->rx_opt.mss_clamp;
3962 		break;
3963 	case TCP_NODELAY:
3964 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3965 		break;
3966 	case TCP_CORK:
3967 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3968 		break;
3969 	case TCP_KEEPIDLE:
3970 		val = keepalive_time_when(tp) / HZ;
3971 		break;
3972 	case TCP_KEEPINTVL:
3973 		val = keepalive_intvl_when(tp) / HZ;
3974 		break;
3975 	case TCP_KEEPCNT:
3976 		val = keepalive_probes(tp);
3977 		break;
3978 	case TCP_SYNCNT:
3979 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3980 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3981 		break;
3982 	case TCP_LINGER2:
3983 		val = READ_ONCE(tp->linger2);
3984 		if (val >= 0)
3985 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3986 		break;
3987 	case TCP_DEFER_ACCEPT:
3988 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3989 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3990 				      TCP_RTO_MAX / HZ);
3991 		break;
3992 	case TCP_WINDOW_CLAMP:
3993 		val = tp->window_clamp;
3994 		break;
3995 	case TCP_INFO: {
3996 		struct tcp_info info;
3997 
3998 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
3999 			return -EFAULT;
4000 
4001 		tcp_get_info(sk, &info);
4002 
4003 		len = min_t(unsigned int, len, sizeof(info));
4004 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4005 			return -EFAULT;
4006 		if (copy_to_sockptr(optval, &info, len))
4007 			return -EFAULT;
4008 		return 0;
4009 	}
4010 	case TCP_CC_INFO: {
4011 		const struct tcp_congestion_ops *ca_ops;
4012 		union tcp_cc_info info;
4013 		size_t sz = 0;
4014 		int attr;
4015 
4016 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4017 			return -EFAULT;
4018 
4019 		ca_ops = icsk->icsk_ca_ops;
4020 		if (ca_ops && ca_ops->get_info)
4021 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4022 
4023 		len = min_t(unsigned int, len, sz);
4024 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4025 			return -EFAULT;
4026 		if (copy_to_sockptr(optval, &info, len))
4027 			return -EFAULT;
4028 		return 0;
4029 	}
4030 	case TCP_QUICKACK:
4031 		val = !inet_csk_in_pingpong_mode(sk);
4032 		break;
4033 
4034 	case TCP_CONGESTION:
4035 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4036 			return -EFAULT;
4037 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4038 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4039 			return -EFAULT;
4040 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4041 			return -EFAULT;
4042 		return 0;
4043 
4044 	case TCP_ULP:
4045 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4046 			return -EFAULT;
4047 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4048 		if (!icsk->icsk_ulp_ops) {
4049 			len = 0;
4050 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4051 				return -EFAULT;
4052 			return 0;
4053 		}
4054 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4055 			return -EFAULT;
4056 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4057 			return -EFAULT;
4058 		return 0;
4059 
4060 	case TCP_FASTOPEN_KEY: {
4061 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4062 		unsigned int key_len;
4063 
4064 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4065 			return -EFAULT;
4066 
4067 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4068 				TCP_FASTOPEN_KEY_LENGTH;
4069 		len = min_t(unsigned int, len, key_len);
4070 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4071 			return -EFAULT;
4072 		if (copy_to_sockptr(optval, key, len))
4073 			return -EFAULT;
4074 		return 0;
4075 	}
4076 	case TCP_THIN_LINEAR_TIMEOUTS:
4077 		val = tp->thin_lto;
4078 		break;
4079 
4080 	case TCP_THIN_DUPACK:
4081 		val = 0;
4082 		break;
4083 
4084 	case TCP_REPAIR:
4085 		val = tp->repair;
4086 		break;
4087 
4088 	case TCP_REPAIR_QUEUE:
4089 		if (tp->repair)
4090 			val = tp->repair_queue;
4091 		else
4092 			return -EINVAL;
4093 		break;
4094 
4095 	case TCP_REPAIR_WINDOW: {
4096 		struct tcp_repair_window opt;
4097 
4098 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4099 			return -EFAULT;
4100 
4101 		if (len != sizeof(opt))
4102 			return -EINVAL;
4103 
4104 		if (!tp->repair)
4105 			return -EPERM;
4106 
4107 		opt.snd_wl1	= tp->snd_wl1;
4108 		opt.snd_wnd	= tp->snd_wnd;
4109 		opt.max_window	= tp->max_window;
4110 		opt.rcv_wnd	= tp->rcv_wnd;
4111 		opt.rcv_wup	= tp->rcv_wup;
4112 
4113 		if (copy_to_sockptr(optval, &opt, len))
4114 			return -EFAULT;
4115 		return 0;
4116 	}
4117 	case TCP_QUEUE_SEQ:
4118 		if (tp->repair_queue == TCP_SEND_QUEUE)
4119 			val = tp->write_seq;
4120 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4121 			val = tp->rcv_nxt;
4122 		else
4123 			return -EINVAL;
4124 		break;
4125 
4126 	case TCP_USER_TIMEOUT:
4127 		val = READ_ONCE(icsk->icsk_user_timeout);
4128 		break;
4129 
4130 	case TCP_FASTOPEN:
4131 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4132 		break;
4133 
4134 	case TCP_FASTOPEN_CONNECT:
4135 		val = tp->fastopen_connect;
4136 		break;
4137 
4138 	case TCP_FASTOPEN_NO_COOKIE:
4139 		val = tp->fastopen_no_cookie;
4140 		break;
4141 
4142 	case TCP_TX_DELAY:
4143 		val = READ_ONCE(tp->tcp_tx_delay);
4144 		break;
4145 
4146 	case TCP_TIMESTAMP:
4147 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4148 		break;
4149 	case TCP_NOTSENT_LOWAT:
4150 		val = READ_ONCE(tp->notsent_lowat);
4151 		break;
4152 	case TCP_INQ:
4153 		val = tp->recvmsg_inq;
4154 		break;
4155 	case TCP_SAVE_SYN:
4156 		val = tp->save_syn;
4157 		break;
4158 	case TCP_SAVED_SYN: {
4159 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4160 			return -EFAULT;
4161 
4162 		sockopt_lock_sock(sk);
4163 		if (tp->saved_syn) {
4164 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4165 				len = tcp_saved_syn_len(tp->saved_syn);
4166 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4167 					sockopt_release_sock(sk);
4168 					return -EFAULT;
4169 				}
4170 				sockopt_release_sock(sk);
4171 				return -EINVAL;
4172 			}
4173 			len = tcp_saved_syn_len(tp->saved_syn);
4174 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4175 				sockopt_release_sock(sk);
4176 				return -EFAULT;
4177 			}
4178 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4179 				sockopt_release_sock(sk);
4180 				return -EFAULT;
4181 			}
4182 			tcp_saved_syn_free(tp);
4183 			sockopt_release_sock(sk);
4184 		} else {
4185 			sockopt_release_sock(sk);
4186 			len = 0;
4187 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4188 				return -EFAULT;
4189 		}
4190 		return 0;
4191 	}
4192 #ifdef CONFIG_MMU
4193 	case TCP_ZEROCOPY_RECEIVE: {
4194 		struct scm_timestamping_internal tss;
4195 		struct tcp_zerocopy_receive zc = {};
4196 		int err;
4197 
4198 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4199 			return -EFAULT;
4200 		if (len < 0 ||
4201 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4202 			return -EINVAL;
4203 		if (unlikely(len > sizeof(zc))) {
4204 			err = check_zeroed_sockptr(optval, sizeof(zc),
4205 						   len - sizeof(zc));
4206 			if (err < 1)
4207 				return err == 0 ? -EINVAL : err;
4208 			len = sizeof(zc);
4209 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4210 				return -EFAULT;
4211 		}
4212 		if (copy_from_sockptr(&zc, optval, len))
4213 			return -EFAULT;
4214 		if (zc.reserved)
4215 			return -EINVAL;
4216 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4217 			return -EINVAL;
4218 		sockopt_lock_sock(sk);
4219 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4220 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4221 							  &zc, &len, err);
4222 		sockopt_release_sock(sk);
4223 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4224 			goto zerocopy_rcv_cmsg;
4225 		switch (len) {
4226 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4227 			goto zerocopy_rcv_cmsg;
4228 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4229 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4230 		case offsetofend(struct tcp_zerocopy_receive, flags):
4231 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4232 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4233 		case offsetofend(struct tcp_zerocopy_receive, err):
4234 			goto zerocopy_rcv_sk_err;
4235 		case offsetofend(struct tcp_zerocopy_receive, inq):
4236 			goto zerocopy_rcv_inq;
4237 		case offsetofend(struct tcp_zerocopy_receive, length):
4238 		default:
4239 			goto zerocopy_rcv_out;
4240 		}
4241 zerocopy_rcv_cmsg:
4242 		if (zc.msg_flags & TCP_CMSG_TS)
4243 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4244 		else
4245 			zc.msg_flags = 0;
4246 zerocopy_rcv_sk_err:
4247 		if (!err)
4248 			zc.err = sock_error(sk);
4249 zerocopy_rcv_inq:
4250 		zc.inq = tcp_inq_hint(sk);
4251 zerocopy_rcv_out:
4252 		if (!err && copy_to_sockptr(optval, &zc, len))
4253 			err = -EFAULT;
4254 		return err;
4255 	}
4256 #endif
4257 	default:
4258 		return -ENOPROTOOPT;
4259 	}
4260 
4261 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4262 		return -EFAULT;
4263 	if (copy_to_sockptr(optval, &val, len))
4264 		return -EFAULT;
4265 	return 0;
4266 }
4267 
4268 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4269 {
4270 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4271 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4272 	 */
4273 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4274 		return true;
4275 
4276 	return false;
4277 }
4278 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4279 
4280 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4281 		   int __user *optlen)
4282 {
4283 	struct inet_connection_sock *icsk = inet_csk(sk);
4284 
4285 	if (level != SOL_TCP)
4286 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4287 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4288 								optval, optlen);
4289 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4290 				 USER_SOCKPTR(optlen));
4291 }
4292 EXPORT_SYMBOL(tcp_getsockopt);
4293 
4294 #ifdef CONFIG_TCP_MD5SIG
4295 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4296 static DEFINE_MUTEX(tcp_md5sig_mutex);
4297 static bool tcp_md5sig_pool_populated = false;
4298 
4299 static void __tcp_alloc_md5sig_pool(void)
4300 {
4301 	struct crypto_ahash *hash;
4302 	int cpu;
4303 
4304 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4305 	if (IS_ERR(hash))
4306 		return;
4307 
4308 	for_each_possible_cpu(cpu) {
4309 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4310 		struct ahash_request *req;
4311 
4312 		if (!scratch) {
4313 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4314 					       sizeof(struct tcphdr),
4315 					       GFP_KERNEL,
4316 					       cpu_to_node(cpu));
4317 			if (!scratch)
4318 				return;
4319 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4320 		}
4321 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4322 			continue;
4323 
4324 		req = ahash_request_alloc(hash, GFP_KERNEL);
4325 		if (!req)
4326 			return;
4327 
4328 		ahash_request_set_callback(req, 0, NULL, NULL);
4329 
4330 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4331 	}
4332 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4333 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4334 	 */
4335 	smp_wmb();
4336 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4337 	 * and tcp_get_md5sig_pool().
4338 	*/
4339 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4340 }
4341 
4342 bool tcp_alloc_md5sig_pool(void)
4343 {
4344 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4345 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4346 		mutex_lock(&tcp_md5sig_mutex);
4347 
4348 		if (!tcp_md5sig_pool_populated)
4349 			__tcp_alloc_md5sig_pool();
4350 
4351 		mutex_unlock(&tcp_md5sig_mutex);
4352 	}
4353 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4354 	return READ_ONCE(tcp_md5sig_pool_populated);
4355 }
4356 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4357 
4358 
4359 /**
4360  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4361  *
4362  *	We use percpu structure, so if we succeed, we exit with preemption
4363  *	and BH disabled, to make sure another thread or softirq handling
4364  *	wont try to get same context.
4365  */
4366 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4367 {
4368 	local_bh_disable();
4369 
4370 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4371 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4372 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4373 		smp_rmb();
4374 		return this_cpu_ptr(&tcp_md5sig_pool);
4375 	}
4376 	local_bh_enable();
4377 	return NULL;
4378 }
4379 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4380 
4381 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4382 			  const struct sk_buff *skb, unsigned int header_len)
4383 {
4384 	struct scatterlist sg;
4385 	const struct tcphdr *tp = tcp_hdr(skb);
4386 	struct ahash_request *req = hp->md5_req;
4387 	unsigned int i;
4388 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4389 					   skb_headlen(skb) - header_len : 0;
4390 	const struct skb_shared_info *shi = skb_shinfo(skb);
4391 	struct sk_buff *frag_iter;
4392 
4393 	sg_init_table(&sg, 1);
4394 
4395 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4396 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4397 	if (crypto_ahash_update(req))
4398 		return 1;
4399 
4400 	for (i = 0; i < shi->nr_frags; ++i) {
4401 		const skb_frag_t *f = &shi->frags[i];
4402 		unsigned int offset = skb_frag_off(f);
4403 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4404 
4405 		sg_set_page(&sg, page, skb_frag_size(f),
4406 			    offset_in_page(offset));
4407 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4408 		if (crypto_ahash_update(req))
4409 			return 1;
4410 	}
4411 
4412 	skb_walk_frags(skb, frag_iter)
4413 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4414 			return 1;
4415 
4416 	return 0;
4417 }
4418 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4419 
4420 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4421 {
4422 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4423 	struct scatterlist sg;
4424 
4425 	sg_init_one(&sg, key->key, keylen);
4426 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4427 
4428 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4429 	return data_race(crypto_ahash_update(hp->md5_req));
4430 }
4431 EXPORT_SYMBOL(tcp_md5_hash_key);
4432 
4433 /* Called with rcu_read_lock() */
4434 enum skb_drop_reason
4435 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4436 		     const void *saddr, const void *daddr,
4437 		     int family, int dif, int sdif)
4438 {
4439 	/*
4440 	 * This gets called for each TCP segment that arrives
4441 	 * so we want to be efficient.
4442 	 * We have 3 drop cases:
4443 	 * o No MD5 hash and one expected.
4444 	 * o MD5 hash and we're not expecting one.
4445 	 * o MD5 hash and its wrong.
4446 	 */
4447 	const __u8 *hash_location = NULL;
4448 	struct tcp_md5sig_key *hash_expected;
4449 	const struct tcphdr *th = tcp_hdr(skb);
4450 	const struct tcp_sock *tp = tcp_sk(sk);
4451 	int genhash, l3index;
4452 	u8 newhash[16];
4453 
4454 	/* sdif set, means packet ingressed via a device
4455 	 * in an L3 domain and dif is set to the l3mdev
4456 	 */
4457 	l3index = sdif ? dif : 0;
4458 
4459 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4460 	hash_location = tcp_parse_md5sig_option(th);
4461 
4462 	/* We've parsed the options - do we have a hash? */
4463 	if (!hash_expected && !hash_location)
4464 		return SKB_NOT_DROPPED_YET;
4465 
4466 	if (hash_expected && !hash_location) {
4467 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4468 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4469 	}
4470 
4471 	if (!hash_expected && hash_location) {
4472 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4473 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4474 	}
4475 
4476 	/* Check the signature.
4477 	 * To support dual stack listeners, we need to handle
4478 	 * IPv4-mapped case.
4479 	 */
4480 	if (family == AF_INET)
4481 		genhash = tcp_v4_md5_hash_skb(newhash,
4482 					      hash_expected,
4483 					      NULL, skb);
4484 	else
4485 		genhash = tp->af_specific->calc_md5_hash(newhash,
4486 							 hash_expected,
4487 							 NULL, skb);
4488 
4489 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4490 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4491 		if (family == AF_INET) {
4492 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4493 					saddr, ntohs(th->source),
4494 					daddr, ntohs(th->dest),
4495 					genhash ? " tcp_v4_calc_md5_hash failed"
4496 					: "", l3index);
4497 		} else {
4498 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4499 					genhash ? "failed" : "mismatch",
4500 					saddr, ntohs(th->source),
4501 					daddr, ntohs(th->dest), l3index);
4502 		}
4503 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4504 	}
4505 	return SKB_NOT_DROPPED_YET;
4506 }
4507 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4508 
4509 #endif
4510 
4511 void tcp_done(struct sock *sk)
4512 {
4513 	struct request_sock *req;
4514 
4515 	/* We might be called with a new socket, after
4516 	 * inet_csk_prepare_forced_close() has been called
4517 	 * so we can not use lockdep_sock_is_held(sk)
4518 	 */
4519 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4520 
4521 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4522 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4523 
4524 	tcp_set_state(sk, TCP_CLOSE);
4525 	tcp_clear_xmit_timers(sk);
4526 	if (req)
4527 		reqsk_fastopen_remove(sk, req, false);
4528 
4529 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4530 
4531 	if (!sock_flag(sk, SOCK_DEAD))
4532 		sk->sk_state_change(sk);
4533 	else
4534 		inet_csk_destroy_sock(sk);
4535 }
4536 EXPORT_SYMBOL_GPL(tcp_done);
4537 
4538 int tcp_abort(struct sock *sk, int err)
4539 {
4540 	int state = inet_sk_state_load(sk);
4541 
4542 	if (state == TCP_NEW_SYN_RECV) {
4543 		struct request_sock *req = inet_reqsk(sk);
4544 
4545 		local_bh_disable();
4546 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4547 		local_bh_enable();
4548 		return 0;
4549 	}
4550 	if (state == TCP_TIME_WAIT) {
4551 		struct inet_timewait_sock *tw = inet_twsk(sk);
4552 
4553 		refcount_inc(&tw->tw_refcnt);
4554 		local_bh_disable();
4555 		inet_twsk_deschedule_put(tw);
4556 		local_bh_enable();
4557 		return 0;
4558 	}
4559 
4560 	/* BPF context ensures sock locking. */
4561 	if (!has_current_bpf_ctx())
4562 		/* Don't race with userspace socket closes such as tcp_close. */
4563 		lock_sock(sk);
4564 
4565 	if (sk->sk_state == TCP_LISTEN) {
4566 		tcp_set_state(sk, TCP_CLOSE);
4567 		inet_csk_listen_stop(sk);
4568 	}
4569 
4570 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4571 	local_bh_disable();
4572 	bh_lock_sock(sk);
4573 
4574 	if (!sock_flag(sk, SOCK_DEAD)) {
4575 		WRITE_ONCE(sk->sk_err, err);
4576 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4577 		smp_wmb();
4578 		sk_error_report(sk);
4579 		if (tcp_need_reset(sk->sk_state))
4580 			tcp_send_active_reset(sk, GFP_ATOMIC);
4581 		tcp_done(sk);
4582 	}
4583 
4584 	bh_unlock_sock(sk);
4585 	local_bh_enable();
4586 	tcp_write_queue_purge(sk);
4587 	if (!has_current_bpf_ctx())
4588 		release_sock(sk);
4589 	return 0;
4590 }
4591 EXPORT_SYMBOL_GPL(tcp_abort);
4592 
4593 extern struct tcp_congestion_ops tcp_reno;
4594 
4595 static __initdata unsigned long thash_entries;
4596 static int __init set_thash_entries(char *str)
4597 {
4598 	ssize_t ret;
4599 
4600 	if (!str)
4601 		return 0;
4602 
4603 	ret = kstrtoul(str, 0, &thash_entries);
4604 	if (ret)
4605 		return 0;
4606 
4607 	return 1;
4608 }
4609 __setup("thash_entries=", set_thash_entries);
4610 
4611 static void __init tcp_init_mem(void)
4612 {
4613 	unsigned long limit = nr_free_buffer_pages() / 16;
4614 
4615 	limit = max(limit, 128UL);
4616 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4617 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4618 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4619 }
4620 
4621 void __init tcp_init(void)
4622 {
4623 	int max_rshare, max_wshare, cnt;
4624 	unsigned long limit;
4625 	unsigned int i;
4626 
4627 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4628 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4629 		     sizeof_field(struct sk_buff, cb));
4630 
4631 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4632 
4633 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4634 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4635 
4636 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4637 			    thash_entries, 21,  /* one slot per 2 MB*/
4638 			    0, 64 * 1024);
4639 	tcp_hashinfo.bind_bucket_cachep =
4640 		kmem_cache_create("tcp_bind_bucket",
4641 				  sizeof(struct inet_bind_bucket), 0,
4642 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4643 				  SLAB_ACCOUNT,
4644 				  NULL);
4645 	tcp_hashinfo.bind2_bucket_cachep =
4646 		kmem_cache_create("tcp_bind2_bucket",
4647 				  sizeof(struct inet_bind2_bucket), 0,
4648 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4649 				  SLAB_ACCOUNT,
4650 				  NULL);
4651 
4652 	/* Size and allocate the main established and bind bucket
4653 	 * hash tables.
4654 	 *
4655 	 * The methodology is similar to that of the buffer cache.
4656 	 */
4657 	tcp_hashinfo.ehash =
4658 		alloc_large_system_hash("TCP established",
4659 					sizeof(struct inet_ehash_bucket),
4660 					thash_entries,
4661 					17, /* one slot per 128 KB of memory */
4662 					0,
4663 					NULL,
4664 					&tcp_hashinfo.ehash_mask,
4665 					0,
4666 					thash_entries ? 0 : 512 * 1024);
4667 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4668 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4669 
4670 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4671 		panic("TCP: failed to alloc ehash_locks");
4672 	tcp_hashinfo.bhash =
4673 		alloc_large_system_hash("TCP bind",
4674 					2 * sizeof(struct inet_bind_hashbucket),
4675 					tcp_hashinfo.ehash_mask + 1,
4676 					17, /* one slot per 128 KB of memory */
4677 					0,
4678 					&tcp_hashinfo.bhash_size,
4679 					NULL,
4680 					0,
4681 					64 * 1024);
4682 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4683 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4684 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4685 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4686 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4687 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4688 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4689 	}
4690 
4691 	tcp_hashinfo.pernet = false;
4692 
4693 	cnt = tcp_hashinfo.ehash_mask + 1;
4694 	sysctl_tcp_max_orphans = cnt / 2;
4695 
4696 	tcp_init_mem();
4697 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4698 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4699 	max_wshare = min(4UL*1024*1024, limit);
4700 	max_rshare = min(6UL*1024*1024, limit);
4701 
4702 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4703 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4704 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4705 
4706 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4707 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4708 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4709 
4710 	pr_info("Hash tables configured (established %u bind %u)\n",
4711 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4712 
4713 	tcp_v4_init();
4714 	tcp_metrics_init();
4715 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4716 	tcp_tasklet_init();
4717 	mptcp_init();
4718 }
4719