xref: /openbmc/linux/net/ipv4/tcp.c (revision bb5dbf2cc64d5cfa696765944c784c0010c48ae8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 /* Track pending CMSGs. */
285 enum {
286 	TCP_CMSG_INQ = 1,
287 	TCP_CMSG_TS = 2
288 };
289 
290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295 
296 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298 
299 #if IS_ENABLED(CONFIG_SMC)
300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
301 EXPORT_SYMBOL(tcp_have_smc);
302 #endif
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 unsigned long tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
327 
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	unsigned long val;
331 
332 	if (READ_ONCE(tcp_memory_pressure))
333 		return;
334 	val = jiffies;
335 
336 	if (!val)
337 		val--;
338 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
339 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
340 }
341 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
342 
343 void tcp_leave_memory_pressure(struct sock *sk)
344 {
345 	unsigned long val;
346 
347 	if (!READ_ONCE(tcp_memory_pressure))
348 		return;
349 	val = xchg(&tcp_memory_pressure, 0);
350 	if (val)
351 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
352 			      jiffies_to_msecs(jiffies - val));
353 }
354 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
355 
356 /* Convert seconds to retransmits based on initial and max timeout */
357 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
358 {
359 	u8 res = 0;
360 
361 	if (seconds > 0) {
362 		int period = timeout;
363 
364 		res = 1;
365 		while (seconds > period && res < 255) {
366 			res++;
367 			timeout <<= 1;
368 			if (timeout > rto_max)
369 				timeout = rto_max;
370 			period += timeout;
371 		}
372 	}
373 	return res;
374 }
375 
376 /* Convert retransmits to seconds based on initial and max timeout */
377 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
378 {
379 	int period = 0;
380 
381 	if (retrans > 0) {
382 		period = timeout;
383 		while (--retrans) {
384 			timeout <<= 1;
385 			if (timeout > rto_max)
386 				timeout = rto_max;
387 			period += timeout;
388 		}
389 	}
390 	return period;
391 }
392 
393 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
394 {
395 	u32 rate = READ_ONCE(tp->rate_delivered);
396 	u32 intv = READ_ONCE(tp->rate_interval_us);
397 	u64 rate64 = 0;
398 
399 	if (rate && intv) {
400 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
401 		do_div(rate64, intv);
402 	}
403 	return rate64;
404 }
405 
406 /* Address-family independent initialization for a tcp_sock.
407  *
408  * NOTE: A lot of things set to zero explicitly by call to
409  *       sk_alloc() so need not be done here.
410  */
411 void tcp_init_sock(struct sock *sk)
412 {
413 	struct inet_connection_sock *icsk = inet_csk(sk);
414 	struct tcp_sock *tp = tcp_sk(sk);
415 
416 	tp->out_of_order_queue = RB_ROOT;
417 	sk->tcp_rtx_queue = RB_ROOT;
418 	tcp_init_xmit_timers(sk);
419 	INIT_LIST_HEAD(&tp->tsq_node);
420 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
421 
422 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
423 	icsk->icsk_rto_min = TCP_RTO_MIN;
424 	icsk->icsk_delack_max = TCP_DELACK_MAX;
425 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
426 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
427 
428 	/* So many TCP implementations out there (incorrectly) count the
429 	 * initial SYN frame in their delayed-ACK and congestion control
430 	 * algorithms that we must have the following bandaid to talk
431 	 * efficiently to them.  -DaveM
432 	 */
433 	tp->snd_cwnd = TCP_INIT_CWND;
434 
435 	/* There's a bubble in the pipe until at least the first ACK. */
436 	tp->app_limited = ~0U;
437 
438 	/* See draft-stevens-tcpca-spec-01 for discussion of the
439 	 * initialization of these values.
440 	 */
441 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
442 	tp->snd_cwnd_clamp = ~0;
443 	tp->mss_cache = TCP_MSS_DEFAULT;
444 
445 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
446 	tcp_assign_congestion_control(sk);
447 
448 	tp->tsoffset = 0;
449 	tp->rack.reo_wnd_steps = 1;
450 
451 	sk->sk_write_space = sk_stream_write_space;
452 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
453 
454 	icsk->icsk_sync_mss = tcp_sync_mss;
455 
456 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
457 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
458 
459 	sk_sockets_allocated_inc(sk);
460 	sk->sk_route_forced_caps = NETIF_F_GSO;
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463 
464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 	struct sk_buff *skb = tcp_write_queue_tail(sk);
467 
468 	if (tsflags && skb) {
469 		struct skb_shared_info *shinfo = skb_shinfo(skb);
470 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471 
472 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 			tcb->txstamp_ack = 1;
475 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 	}
478 }
479 
480 static bool tcp_stream_is_readable(struct sock *sk, int target)
481 {
482 	if (tcp_epollin_ready(sk, target))
483 		return true;
484 	return sk_is_readable(sk);
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	__poll_t mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_poll_wait(file, sock, wait);
502 
503 	state = inet_sk_state_load(sk);
504 	if (state == TCP_LISTEN)
505 		return inet_csk_listen_poll(sk);
506 
507 	/* Socket is not locked. We are protected from async events
508 	 * by poll logic and correct handling of state changes
509 	 * made by other threads is impossible in any case.
510 	 */
511 
512 	mask = 0;
513 
514 	/*
515 	 * EPOLLHUP is certainly not done right. But poll() doesn't
516 	 * have a notion of HUP in just one direction, and for a
517 	 * socket the read side is more interesting.
518 	 *
519 	 * Some poll() documentation says that EPOLLHUP is incompatible
520 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 	 * all. But careful, it tends to be safer to return too many
522 	 * bits than too few, and you can easily break real applications
523 	 * if you don't tell them that something has hung up!
524 	 *
525 	 * Check-me.
526 	 *
527 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 	 * our fs/select.c). It means that after we received EOF,
529 	 * poll always returns immediately, making impossible poll() on write()
530 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 	 * if and only if shutdown has been made in both directions.
532 	 * Actually, it is interesting to look how Solaris and DUX
533 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 	 * then we could set it on SND_SHUTDOWN. BTW examples given
535 	 * in Stevens' books assume exactly this behaviour, it explains
536 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
537 	 *
538 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 	 * blocking on fresh not-connected or disconnected socket. --ANK
540 	 */
541 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 		mask |= EPOLLHUP;
543 	if (sk->sk_shutdown & RCV_SHUTDOWN)
544 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545 
546 	/* Connected or passive Fast Open socket? */
547 	if (state != TCP_SYN_SENT &&
548 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
549 		int target = sock_rcvlowat(sk, 0, INT_MAX);
550 
551 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
552 		    !sock_flag(sk, SOCK_URGINLINE) &&
553 		    tp->urg_data)
554 			target++;
555 
556 		if (tcp_stream_is_readable(sk, target))
557 			mask |= EPOLLIN | EPOLLRDNORM;
558 
559 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
560 			if (__sk_stream_is_writeable(sk, 1)) {
561 				mask |= EPOLLOUT | EPOLLWRNORM;
562 			} else {  /* send SIGIO later */
563 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
564 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
565 
566 				/* Race breaker. If space is freed after
567 				 * wspace test but before the flags are set,
568 				 * IO signal will be lost. Memory barrier
569 				 * pairs with the input side.
570 				 */
571 				smp_mb__after_atomic();
572 				if (__sk_stream_is_writeable(sk, 1))
573 					mask |= EPOLLOUT | EPOLLWRNORM;
574 			}
575 		} else
576 			mask |= EPOLLOUT | EPOLLWRNORM;
577 
578 		if (tp->urg_data & TCP_URG_VALID)
579 			mask |= EPOLLPRI;
580 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
581 		/* Active TCP fastopen socket with defer_connect
582 		 * Return EPOLLOUT so application can call write()
583 		 * in order for kernel to generate SYN+data
584 		 */
585 		mask |= EPOLLOUT | EPOLLWRNORM;
586 	}
587 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
588 	smp_rmb();
589 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
590 		mask |= EPOLLERR;
591 
592 	return mask;
593 }
594 EXPORT_SYMBOL(tcp_poll);
595 
596 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
597 {
598 	struct tcp_sock *tp = tcp_sk(sk);
599 	int answ;
600 	bool slow;
601 
602 	switch (cmd) {
603 	case SIOCINQ:
604 		if (sk->sk_state == TCP_LISTEN)
605 			return -EINVAL;
606 
607 		slow = lock_sock_fast(sk);
608 		answ = tcp_inq(sk);
609 		unlock_sock_fast(sk, slow);
610 		break;
611 	case SIOCATMARK:
612 		answ = tp->urg_data &&
613 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
614 		break;
615 	case SIOCOUTQ:
616 		if (sk->sk_state == TCP_LISTEN)
617 			return -EINVAL;
618 
619 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
620 			answ = 0;
621 		else
622 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
623 		break;
624 	case SIOCOUTQNSD:
625 		if (sk->sk_state == TCP_LISTEN)
626 			return -EINVAL;
627 
628 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 			answ = 0;
630 		else
631 			answ = READ_ONCE(tp->write_seq) -
632 			       READ_ONCE(tp->snd_nxt);
633 		break;
634 	default:
635 		return -ENOIOCTLCMD;
636 	}
637 
638 	return put_user(answ, (int __user *)arg);
639 }
640 EXPORT_SYMBOL(tcp_ioctl);
641 
642 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
643 {
644 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
645 	tp->pushed_seq = tp->write_seq;
646 }
647 
648 static inline bool forced_push(const struct tcp_sock *tp)
649 {
650 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
651 }
652 
653 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
654 {
655 	struct tcp_sock *tp = tcp_sk(sk);
656 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
657 
658 	tcb->seq     = tcb->end_seq = tp->write_seq;
659 	tcb->tcp_flags = TCPHDR_ACK;
660 	__skb_header_release(skb);
661 	tcp_add_write_queue_tail(sk, skb);
662 	sk_wmem_queued_add(sk, skb->truesize);
663 	sk_mem_charge(sk, skb->truesize);
664 	if (tp->nonagle & TCP_NAGLE_PUSH)
665 		tp->nonagle &= ~TCP_NAGLE_PUSH;
666 
667 	tcp_slow_start_after_idle_check(sk);
668 }
669 
670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671 {
672 	if (flags & MSG_OOB)
673 		tp->snd_up = tp->write_seq;
674 }
675 
676 /* If a not yet filled skb is pushed, do not send it if
677  * we have data packets in Qdisc or NIC queues :
678  * Because TX completion will happen shortly, it gives a chance
679  * to coalesce future sendmsg() payload into this skb, without
680  * need for a timer, and with no latency trade off.
681  * As packets containing data payload have a bigger truesize
682  * than pure acks (dataless) packets, the last checks prevent
683  * autocorking if we only have an ACK in Qdisc/NIC queues,
684  * or if TX completion was delayed after we processed ACK packet.
685  */
686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
687 				int size_goal)
688 {
689 	return skb->len < size_goal &&
690 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
691 	       !tcp_rtx_queue_empty(sk) &&
692 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
693 }
694 
695 void tcp_push(struct sock *sk, int flags, int mss_now,
696 	      int nonagle, int size_goal)
697 {
698 	struct tcp_sock *tp = tcp_sk(sk);
699 	struct sk_buff *skb;
700 
701 	skb = tcp_write_queue_tail(sk);
702 	if (!skb)
703 		return;
704 	if (!(flags & MSG_MORE) || forced_push(tp))
705 		tcp_mark_push(tp, skb);
706 
707 	tcp_mark_urg(tp, flags);
708 
709 	if (tcp_should_autocork(sk, skb, size_goal)) {
710 
711 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
712 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 		}
716 		/* It is possible TX completion already happened
717 		 * before we set TSQ_THROTTLED.
718 		 */
719 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 			return;
721 	}
722 
723 	if (flags & MSG_MORE)
724 		nonagle = TCP_NAGLE_CORK;
725 
726 	__tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728 
729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 				unsigned int offset, size_t len)
731 {
732 	struct tcp_splice_state *tss = rd_desc->arg.data;
733 	int ret;
734 
735 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 			      min(rd_desc->count, len), tss->flags);
737 	if (ret > 0)
738 		rd_desc->count -= ret;
739 	return ret;
740 }
741 
742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 	/* Store TCP splice context information in read_descriptor_t. */
745 	read_descriptor_t rd_desc = {
746 		.arg.data = tss,
747 		.count	  = tss->len,
748 	};
749 
750 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752 
753 /**
754  *  tcp_splice_read - splice data from TCP socket to a pipe
755  * @sock:	socket to splice from
756  * @ppos:	position (not valid)
757  * @pipe:	pipe to splice to
758  * @len:	number of bytes to splice
759  * @flags:	splice modifier flags
760  *
761  * Description:
762  *    Will read pages from given socket and fill them into a pipe.
763  *
764  **/
765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 			struct pipe_inode_info *pipe, size_t len,
767 			unsigned int flags)
768 {
769 	struct sock *sk = sock->sk;
770 	struct tcp_splice_state tss = {
771 		.pipe = pipe,
772 		.len = len,
773 		.flags = flags,
774 	};
775 	long timeo;
776 	ssize_t spliced;
777 	int ret;
778 
779 	sock_rps_record_flow(sk);
780 	/*
781 	 * We can't seek on a socket input
782 	 */
783 	if (unlikely(*ppos))
784 		return -ESPIPE;
785 
786 	ret = spliced = 0;
787 
788 	lock_sock(sk);
789 
790 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 	while (tss.len) {
792 		ret = __tcp_splice_read(sk, &tss);
793 		if (ret < 0)
794 			break;
795 		else if (!ret) {
796 			if (spliced)
797 				break;
798 			if (sock_flag(sk, SOCK_DONE))
799 				break;
800 			if (sk->sk_err) {
801 				ret = sock_error(sk);
802 				break;
803 			}
804 			if (sk->sk_shutdown & RCV_SHUTDOWN)
805 				break;
806 			if (sk->sk_state == TCP_CLOSE) {
807 				/*
808 				 * This occurs when user tries to read
809 				 * from never connected socket.
810 				 */
811 				ret = -ENOTCONN;
812 				break;
813 			}
814 			if (!timeo) {
815 				ret = -EAGAIN;
816 				break;
817 			}
818 			/* if __tcp_splice_read() got nothing while we have
819 			 * an skb in receive queue, we do not want to loop.
820 			 * This might happen with URG data.
821 			 */
822 			if (!skb_queue_empty(&sk->sk_receive_queue))
823 				break;
824 			sk_wait_data(sk, &timeo, NULL);
825 			if (signal_pending(current)) {
826 				ret = sock_intr_errno(timeo);
827 				break;
828 			}
829 			continue;
830 		}
831 		tss.len -= ret;
832 		spliced += ret;
833 
834 		if (!timeo)
835 			break;
836 		release_sock(sk);
837 		lock_sock(sk);
838 
839 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
840 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
841 		    signal_pending(current))
842 			break;
843 	}
844 
845 	release_sock(sk);
846 
847 	if (spliced)
848 		return spliced;
849 
850 	return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853 
854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 				     bool force_schedule)
856 {
857 	struct sk_buff *skb;
858 
859 	if (unlikely(tcp_under_memory_pressure(sk)))
860 		sk_mem_reclaim_partial(sk);
861 
862 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
863 	if (likely(skb)) {
864 		bool mem_scheduled;
865 
866 		if (force_schedule) {
867 			mem_scheduled = true;
868 			sk_forced_mem_schedule(sk, skb->truesize);
869 		} else {
870 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 		}
872 		if (likely(mem_scheduled)) {
873 			skb_reserve(skb, MAX_TCP_HEADER);
874 			skb->ip_summed = CHECKSUM_PARTIAL;
875 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 			return skb;
877 		}
878 		__kfree_skb(skb);
879 	} else {
880 		sk->sk_prot->enter_memory_pressure(sk);
881 		sk_stream_moderate_sndbuf(sk);
882 	}
883 	return NULL;
884 }
885 
886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 				       int large_allowed)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	u32 new_size_goal, size_goal;
891 
892 	if (!large_allowed)
893 		return mss_now;
894 
895 	/* Note : tcp_tso_autosize() will eventually split this later */
896 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
897 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
898 
899 	/* We try hard to avoid divides here */
900 	size_goal = tp->gso_segs * mss_now;
901 	if (unlikely(new_size_goal < size_goal ||
902 		     new_size_goal >= size_goal + mss_now)) {
903 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 				     sk->sk_gso_max_segs);
905 		size_goal = tp->gso_segs * mss_now;
906 	}
907 
908 	return max(size_goal, mss_now);
909 }
910 
911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 	int mss_now;
914 
915 	mss_now = tcp_current_mss(sk);
916 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917 
918 	return mss_now;
919 }
920 
921 /* In some cases, both sendpage() and sendmsg() could have added
922  * an skb to the write queue, but failed adding payload on it.
923  * We need to remove it to consume less memory, but more
924  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925  * users.
926  */
927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 	struct sk_buff *skb = tcp_write_queue_tail(sk);
930 
931 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 		tcp_unlink_write_queue(skb, sk);
933 		if (tcp_write_queue_empty(sk))
934 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 		sk_wmem_free_skb(sk, skb);
936 	}
937 }
938 
939 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
940 				      struct page *page, int offset, size_t *size)
941 {
942 	struct sk_buff *skb = tcp_write_queue_tail(sk);
943 	struct tcp_sock *tp = tcp_sk(sk);
944 	bool can_coalesce;
945 	int copy, i;
946 
947 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
948 	    !tcp_skb_can_collapse_to(skb)) {
949 new_segment:
950 		if (!sk_stream_memory_free(sk))
951 			return NULL;
952 
953 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
954 					   tcp_rtx_and_write_queues_empty(sk));
955 		if (!skb)
956 			return NULL;
957 
958 #ifdef CONFIG_TLS_DEVICE
959 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
960 #endif
961 		tcp_skb_entail(sk, skb);
962 		copy = size_goal;
963 	}
964 
965 	if (copy > *size)
966 		copy = *size;
967 
968 	i = skb_shinfo(skb)->nr_frags;
969 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
970 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
971 		tcp_mark_push(tp, skb);
972 		goto new_segment;
973 	}
974 	if (!sk_wmem_schedule(sk, copy))
975 		return NULL;
976 
977 	if (can_coalesce) {
978 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
979 	} else {
980 		get_page(page);
981 		skb_fill_page_desc(skb, i, page, offset, copy);
982 	}
983 
984 	if (!(flags & MSG_NO_SHARED_FRAGS))
985 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
986 
987 	skb->len += copy;
988 	skb->data_len += copy;
989 	skb->truesize += copy;
990 	sk_wmem_queued_add(sk, copy);
991 	sk_mem_charge(sk, copy);
992 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
993 	TCP_SKB_CB(skb)->end_seq += copy;
994 	tcp_skb_pcount_set(skb, 0);
995 
996 	*size = copy;
997 	return skb;
998 }
999 
1000 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1001 			 size_t size, int flags)
1002 {
1003 	struct tcp_sock *tp = tcp_sk(sk);
1004 	int mss_now, size_goal;
1005 	int err;
1006 	ssize_t copied;
1007 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1008 
1009 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1010 	    WARN_ONCE(!sendpage_ok(page),
1011 		      "page must not be a Slab one and have page_count > 0"))
1012 		return -EINVAL;
1013 
1014 	/* Wait for a connection to finish. One exception is TCP Fast Open
1015 	 * (passive side) where data is allowed to be sent before a connection
1016 	 * is fully established.
1017 	 */
1018 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1019 	    !tcp_passive_fastopen(sk)) {
1020 		err = sk_stream_wait_connect(sk, &timeo);
1021 		if (err != 0)
1022 			goto out_err;
1023 	}
1024 
1025 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1026 
1027 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1028 	copied = 0;
1029 
1030 	err = -EPIPE;
1031 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1032 		goto out_err;
1033 
1034 	while (size > 0) {
1035 		struct sk_buff *skb;
1036 		size_t copy = size;
1037 
1038 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1039 		if (!skb)
1040 			goto wait_for_space;
1041 
1042 		if (!copied)
1043 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1044 
1045 		copied += copy;
1046 		offset += copy;
1047 		size -= copy;
1048 		if (!size)
1049 			goto out;
1050 
1051 		if (skb->len < size_goal || (flags & MSG_OOB))
1052 			continue;
1053 
1054 		if (forced_push(tp)) {
1055 			tcp_mark_push(tp, skb);
1056 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1057 		} else if (skb == tcp_send_head(sk))
1058 			tcp_push_one(sk, mss_now);
1059 		continue;
1060 
1061 wait_for_space:
1062 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1063 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1064 			 TCP_NAGLE_PUSH, size_goal);
1065 
1066 		err = sk_stream_wait_memory(sk, &timeo);
1067 		if (err != 0)
1068 			goto do_error;
1069 
1070 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1071 	}
1072 
1073 out:
1074 	if (copied) {
1075 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1076 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1077 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1078 	}
1079 	return copied;
1080 
1081 do_error:
1082 	tcp_remove_empty_skb(sk);
1083 	if (copied)
1084 		goto out;
1085 out_err:
1086 	/* make sure we wake any epoll edge trigger waiter */
1087 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1088 		sk->sk_write_space(sk);
1089 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1090 	}
1091 	return sk_stream_error(sk, flags, err);
1092 }
1093 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1094 
1095 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1096 			size_t size, int flags)
1097 {
1098 	if (!(sk->sk_route_caps & NETIF_F_SG))
1099 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1100 
1101 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1102 
1103 	return do_tcp_sendpages(sk, page, offset, size, flags);
1104 }
1105 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1106 
1107 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1108 		 size_t size, int flags)
1109 {
1110 	int ret;
1111 
1112 	lock_sock(sk);
1113 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1114 	release_sock(sk);
1115 
1116 	return ret;
1117 }
1118 EXPORT_SYMBOL(tcp_sendpage);
1119 
1120 void tcp_free_fastopen_req(struct tcp_sock *tp)
1121 {
1122 	if (tp->fastopen_req) {
1123 		kfree(tp->fastopen_req);
1124 		tp->fastopen_req = NULL;
1125 	}
1126 }
1127 
1128 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1129 				int *copied, size_t size,
1130 				struct ubuf_info *uarg)
1131 {
1132 	struct tcp_sock *tp = tcp_sk(sk);
1133 	struct inet_sock *inet = inet_sk(sk);
1134 	struct sockaddr *uaddr = msg->msg_name;
1135 	int err, flags;
1136 
1137 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1138 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1139 	     uaddr->sa_family == AF_UNSPEC))
1140 		return -EOPNOTSUPP;
1141 	if (tp->fastopen_req)
1142 		return -EALREADY; /* Another Fast Open is in progress */
1143 
1144 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1145 				   sk->sk_allocation);
1146 	if (unlikely(!tp->fastopen_req))
1147 		return -ENOBUFS;
1148 	tp->fastopen_req->data = msg;
1149 	tp->fastopen_req->size = size;
1150 	tp->fastopen_req->uarg = uarg;
1151 
1152 	if (inet->defer_connect) {
1153 		err = tcp_connect(sk);
1154 		/* Same failure procedure as in tcp_v4/6_connect */
1155 		if (err) {
1156 			tcp_set_state(sk, TCP_CLOSE);
1157 			inet->inet_dport = 0;
1158 			sk->sk_route_caps = 0;
1159 		}
1160 	}
1161 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1163 				    msg->msg_namelen, flags, 1);
1164 	/* fastopen_req could already be freed in __inet_stream_connect
1165 	 * if the connection times out or gets rst
1166 	 */
1167 	if (tp->fastopen_req) {
1168 		*copied = tp->fastopen_req->copied;
1169 		tcp_free_fastopen_req(tp);
1170 		inet->defer_connect = 0;
1171 	}
1172 	return err;
1173 }
1174 
1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176 {
1177 	struct tcp_sock *tp = tcp_sk(sk);
1178 	struct ubuf_info *uarg = NULL;
1179 	struct sk_buff *skb;
1180 	struct sockcm_cookie sockc;
1181 	int flags, err, copied = 0;
1182 	int mss_now = 0, size_goal, copied_syn = 0;
1183 	int process_backlog = 0;
1184 	bool zc = false;
1185 	long timeo;
1186 
1187 	flags = msg->msg_flags;
1188 
1189 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1190 		skb = tcp_write_queue_tail(sk);
1191 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1192 		if (!uarg) {
1193 			err = -ENOBUFS;
1194 			goto out_err;
1195 		}
1196 
1197 		zc = sk->sk_route_caps & NETIF_F_SG;
1198 		if (!zc)
1199 			uarg->zerocopy = 0;
1200 	}
1201 
1202 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1203 	    !tp->repair) {
1204 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1205 		if (err == -EINPROGRESS && copied_syn > 0)
1206 			goto out;
1207 		else if (err)
1208 			goto out_err;
1209 	}
1210 
1211 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1212 
1213 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1214 
1215 	/* Wait for a connection to finish. One exception is TCP Fast Open
1216 	 * (passive side) where data is allowed to be sent before a connection
1217 	 * is fully established.
1218 	 */
1219 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1220 	    !tcp_passive_fastopen(sk)) {
1221 		err = sk_stream_wait_connect(sk, &timeo);
1222 		if (err != 0)
1223 			goto do_error;
1224 	}
1225 
1226 	if (unlikely(tp->repair)) {
1227 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1228 			copied = tcp_send_rcvq(sk, msg, size);
1229 			goto out_nopush;
1230 		}
1231 
1232 		err = -EINVAL;
1233 		if (tp->repair_queue == TCP_NO_QUEUE)
1234 			goto out_err;
1235 
1236 		/* 'common' sending to sendq */
1237 	}
1238 
1239 	sockcm_init(&sockc, sk);
1240 	if (msg->msg_controllen) {
1241 		err = sock_cmsg_send(sk, msg, &sockc);
1242 		if (unlikely(err)) {
1243 			err = -EINVAL;
1244 			goto out_err;
1245 		}
1246 	}
1247 
1248 	/* This should be in poll */
1249 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1250 
1251 	/* Ok commence sending. */
1252 	copied = 0;
1253 
1254 restart:
1255 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1256 
1257 	err = -EPIPE;
1258 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1259 		goto do_error;
1260 
1261 	while (msg_data_left(msg)) {
1262 		int copy = 0;
1263 
1264 		skb = tcp_write_queue_tail(sk);
1265 		if (skb)
1266 			copy = size_goal - skb->len;
1267 
1268 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1269 			bool first_skb;
1270 
1271 new_segment:
1272 			if (!sk_stream_memory_free(sk))
1273 				goto wait_for_space;
1274 
1275 			if (unlikely(process_backlog >= 16)) {
1276 				process_backlog = 0;
1277 				if (sk_flush_backlog(sk))
1278 					goto restart;
1279 			}
1280 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1281 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1282 						   first_skb);
1283 			if (!skb)
1284 				goto wait_for_space;
1285 
1286 			process_backlog++;
1287 
1288 			tcp_skb_entail(sk, skb);
1289 			copy = size_goal;
1290 
1291 			/* All packets are restored as if they have
1292 			 * already been sent. skb_mstamp_ns isn't set to
1293 			 * avoid wrong rtt estimation.
1294 			 */
1295 			if (tp->repair)
1296 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1297 		}
1298 
1299 		/* Try to append data to the end of skb. */
1300 		if (copy > msg_data_left(msg))
1301 			copy = msg_data_left(msg);
1302 
1303 		if (!zc) {
1304 			bool merge = true;
1305 			int i = skb_shinfo(skb)->nr_frags;
1306 			struct page_frag *pfrag = sk_page_frag(sk);
1307 
1308 			if (!sk_page_frag_refill(sk, pfrag))
1309 				goto wait_for_space;
1310 
1311 			if (!skb_can_coalesce(skb, i, pfrag->page,
1312 					      pfrag->offset)) {
1313 				if (i >= sysctl_max_skb_frags) {
1314 					tcp_mark_push(tp, skb);
1315 					goto new_segment;
1316 				}
1317 				merge = false;
1318 			}
1319 
1320 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1321 
1322 			if (!sk_wmem_schedule(sk, copy))
1323 				goto wait_for_space;
1324 
1325 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1326 						       pfrag->page,
1327 						       pfrag->offset,
1328 						       copy);
1329 			if (err)
1330 				goto do_error;
1331 
1332 			/* Update the skb. */
1333 			if (merge) {
1334 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1335 			} else {
1336 				skb_fill_page_desc(skb, i, pfrag->page,
1337 						   pfrag->offset, copy);
1338 				page_ref_inc(pfrag->page);
1339 			}
1340 			pfrag->offset += copy;
1341 		} else {
1342 			if (!sk_wmem_schedule(sk, copy))
1343 				goto wait_for_space;
1344 
1345 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1346 			if (err == -EMSGSIZE || err == -EEXIST) {
1347 				tcp_mark_push(tp, skb);
1348 				goto new_segment;
1349 			}
1350 			if (err < 0)
1351 				goto do_error;
1352 			copy = err;
1353 		}
1354 
1355 		if (!copied)
1356 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1357 
1358 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1359 		TCP_SKB_CB(skb)->end_seq += copy;
1360 		tcp_skb_pcount_set(skb, 0);
1361 
1362 		copied += copy;
1363 		if (!msg_data_left(msg)) {
1364 			if (unlikely(flags & MSG_EOR))
1365 				TCP_SKB_CB(skb)->eor = 1;
1366 			goto out;
1367 		}
1368 
1369 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1370 			continue;
1371 
1372 		if (forced_push(tp)) {
1373 			tcp_mark_push(tp, skb);
1374 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1375 		} else if (skb == tcp_send_head(sk))
1376 			tcp_push_one(sk, mss_now);
1377 		continue;
1378 
1379 wait_for_space:
1380 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1381 		if (copied)
1382 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1383 				 TCP_NAGLE_PUSH, size_goal);
1384 
1385 		err = sk_stream_wait_memory(sk, &timeo);
1386 		if (err != 0)
1387 			goto do_error;
1388 
1389 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1390 	}
1391 
1392 out:
1393 	if (copied) {
1394 		tcp_tx_timestamp(sk, sockc.tsflags);
1395 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1396 	}
1397 out_nopush:
1398 	net_zcopy_put(uarg);
1399 	return copied + copied_syn;
1400 
1401 do_error:
1402 	tcp_remove_empty_skb(sk);
1403 
1404 	if (copied + copied_syn)
1405 		goto out;
1406 out_err:
1407 	net_zcopy_put_abort(uarg, true);
1408 	err = sk_stream_error(sk, flags, err);
1409 	/* make sure we wake any epoll edge trigger waiter */
1410 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1411 		sk->sk_write_space(sk);
1412 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1413 	}
1414 	return err;
1415 }
1416 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1417 
1418 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1419 {
1420 	int ret;
1421 
1422 	lock_sock(sk);
1423 	ret = tcp_sendmsg_locked(sk, msg, size);
1424 	release_sock(sk);
1425 
1426 	return ret;
1427 }
1428 EXPORT_SYMBOL(tcp_sendmsg);
1429 
1430 /*
1431  *	Handle reading urgent data. BSD has very simple semantics for
1432  *	this, no blocking and very strange errors 8)
1433  */
1434 
1435 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1436 {
1437 	struct tcp_sock *tp = tcp_sk(sk);
1438 
1439 	/* No URG data to read. */
1440 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1441 	    tp->urg_data == TCP_URG_READ)
1442 		return -EINVAL;	/* Yes this is right ! */
1443 
1444 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1445 		return -ENOTCONN;
1446 
1447 	if (tp->urg_data & TCP_URG_VALID) {
1448 		int err = 0;
1449 		char c = tp->urg_data;
1450 
1451 		if (!(flags & MSG_PEEK))
1452 			tp->urg_data = TCP_URG_READ;
1453 
1454 		/* Read urgent data. */
1455 		msg->msg_flags |= MSG_OOB;
1456 
1457 		if (len > 0) {
1458 			if (!(flags & MSG_TRUNC))
1459 				err = memcpy_to_msg(msg, &c, 1);
1460 			len = 1;
1461 		} else
1462 			msg->msg_flags |= MSG_TRUNC;
1463 
1464 		return err ? -EFAULT : len;
1465 	}
1466 
1467 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1468 		return 0;
1469 
1470 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1471 	 * the available implementations agree in this case:
1472 	 * this call should never block, independent of the
1473 	 * blocking state of the socket.
1474 	 * Mike <pall@rz.uni-karlsruhe.de>
1475 	 */
1476 	return -EAGAIN;
1477 }
1478 
1479 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1480 {
1481 	struct sk_buff *skb;
1482 	int copied = 0, err = 0;
1483 
1484 	/* XXX -- need to support SO_PEEK_OFF */
1485 
1486 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1487 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1488 		if (err)
1489 			return err;
1490 		copied += skb->len;
1491 	}
1492 
1493 	skb_queue_walk(&sk->sk_write_queue, skb) {
1494 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1495 		if (err)
1496 			break;
1497 
1498 		copied += skb->len;
1499 	}
1500 
1501 	return err ?: copied;
1502 }
1503 
1504 /* Clean up the receive buffer for full frames taken by the user,
1505  * then send an ACK if necessary.  COPIED is the number of bytes
1506  * tcp_recvmsg has given to the user so far, it speeds up the
1507  * calculation of whether or not we must ACK for the sake of
1508  * a window update.
1509  */
1510 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1511 {
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 	bool time_to_ack = false;
1514 
1515 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1516 
1517 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1518 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1519 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1520 
1521 	if (inet_csk_ack_scheduled(sk)) {
1522 		const struct inet_connection_sock *icsk = inet_csk(sk);
1523 
1524 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1525 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1526 		    /*
1527 		     * If this read emptied read buffer, we send ACK, if
1528 		     * connection is not bidirectional, user drained
1529 		     * receive buffer and there was a small segment
1530 		     * in queue.
1531 		     */
1532 		    (copied > 0 &&
1533 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1534 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1535 		       !inet_csk_in_pingpong_mode(sk))) &&
1536 		      !atomic_read(&sk->sk_rmem_alloc)))
1537 			time_to_ack = true;
1538 	}
1539 
1540 	/* We send an ACK if we can now advertise a non-zero window
1541 	 * which has been raised "significantly".
1542 	 *
1543 	 * Even if window raised up to infinity, do not send window open ACK
1544 	 * in states, where we will not receive more. It is useless.
1545 	 */
1546 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1547 		__u32 rcv_window_now = tcp_receive_window(tp);
1548 
1549 		/* Optimize, __tcp_select_window() is not cheap. */
1550 		if (2*rcv_window_now <= tp->window_clamp) {
1551 			__u32 new_window = __tcp_select_window(sk);
1552 
1553 			/* Send ACK now, if this read freed lots of space
1554 			 * in our buffer. Certainly, new_window is new window.
1555 			 * We can advertise it now, if it is not less than current one.
1556 			 * "Lots" means "at least twice" here.
1557 			 */
1558 			if (new_window && new_window >= 2 * rcv_window_now)
1559 				time_to_ack = true;
1560 		}
1561 	}
1562 	if (time_to_ack)
1563 		tcp_send_ack(sk);
1564 }
1565 
1566 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1567 {
1568 	struct sk_buff *skb;
1569 	u32 offset;
1570 
1571 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1572 		offset = seq - TCP_SKB_CB(skb)->seq;
1573 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1574 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1575 			offset--;
1576 		}
1577 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1578 			*off = offset;
1579 			return skb;
1580 		}
1581 		/* This looks weird, but this can happen if TCP collapsing
1582 		 * splitted a fat GRO packet, while we released socket lock
1583 		 * in skb_splice_bits()
1584 		 */
1585 		sk_eat_skb(sk, skb);
1586 	}
1587 	return NULL;
1588 }
1589 
1590 /*
1591  * This routine provides an alternative to tcp_recvmsg() for routines
1592  * that would like to handle copying from skbuffs directly in 'sendfile'
1593  * fashion.
1594  * Note:
1595  *	- It is assumed that the socket was locked by the caller.
1596  *	- The routine does not block.
1597  *	- At present, there is no support for reading OOB data
1598  *	  or for 'peeking' the socket using this routine
1599  *	  (although both would be easy to implement).
1600  */
1601 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1602 		  sk_read_actor_t recv_actor)
1603 {
1604 	struct sk_buff *skb;
1605 	struct tcp_sock *tp = tcp_sk(sk);
1606 	u32 seq = tp->copied_seq;
1607 	u32 offset;
1608 	int copied = 0;
1609 
1610 	if (sk->sk_state == TCP_LISTEN)
1611 		return -ENOTCONN;
1612 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1613 		if (offset < skb->len) {
1614 			int used;
1615 			size_t len;
1616 
1617 			len = skb->len - offset;
1618 			/* Stop reading if we hit a patch of urgent data */
1619 			if (tp->urg_data) {
1620 				u32 urg_offset = tp->urg_seq - seq;
1621 				if (urg_offset < len)
1622 					len = urg_offset;
1623 				if (!len)
1624 					break;
1625 			}
1626 			used = recv_actor(desc, skb, offset, len);
1627 			if (used <= 0) {
1628 				if (!copied)
1629 					copied = used;
1630 				break;
1631 			} else if (used <= len) {
1632 				seq += used;
1633 				copied += used;
1634 				offset += used;
1635 			}
1636 			/* If recv_actor drops the lock (e.g. TCP splice
1637 			 * receive) the skb pointer might be invalid when
1638 			 * getting here: tcp_collapse might have deleted it
1639 			 * while aggregating skbs from the socket queue.
1640 			 */
1641 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1642 			if (!skb)
1643 				break;
1644 			/* TCP coalescing might have appended data to the skb.
1645 			 * Try to splice more frags
1646 			 */
1647 			if (offset + 1 != skb->len)
1648 				continue;
1649 		}
1650 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1651 			sk_eat_skb(sk, skb);
1652 			++seq;
1653 			break;
1654 		}
1655 		sk_eat_skb(sk, skb);
1656 		if (!desc->count)
1657 			break;
1658 		WRITE_ONCE(tp->copied_seq, seq);
1659 	}
1660 	WRITE_ONCE(tp->copied_seq, seq);
1661 
1662 	tcp_rcv_space_adjust(sk);
1663 
1664 	/* Clean up data we have read: This will do ACK frames. */
1665 	if (copied > 0) {
1666 		tcp_recv_skb(sk, seq, &offset);
1667 		tcp_cleanup_rbuf(sk, copied);
1668 	}
1669 	return copied;
1670 }
1671 EXPORT_SYMBOL(tcp_read_sock);
1672 
1673 int tcp_peek_len(struct socket *sock)
1674 {
1675 	return tcp_inq(sock->sk);
1676 }
1677 EXPORT_SYMBOL(tcp_peek_len);
1678 
1679 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1680 int tcp_set_rcvlowat(struct sock *sk, int val)
1681 {
1682 	int cap;
1683 
1684 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1685 		cap = sk->sk_rcvbuf >> 1;
1686 	else
1687 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1688 	val = min(val, cap);
1689 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1690 
1691 	/* Check if we need to signal EPOLLIN right now */
1692 	tcp_data_ready(sk);
1693 
1694 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1695 		return 0;
1696 
1697 	val <<= 1;
1698 	if (val > sk->sk_rcvbuf) {
1699 		WRITE_ONCE(sk->sk_rcvbuf, val);
1700 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1701 	}
1702 	return 0;
1703 }
1704 EXPORT_SYMBOL(tcp_set_rcvlowat);
1705 
1706 void tcp_update_recv_tstamps(struct sk_buff *skb,
1707 			     struct scm_timestamping_internal *tss)
1708 {
1709 	if (skb->tstamp)
1710 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1711 	else
1712 		tss->ts[0] = (struct timespec64) {0};
1713 
1714 	if (skb_hwtstamps(skb)->hwtstamp)
1715 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1716 	else
1717 		tss->ts[2] = (struct timespec64) {0};
1718 }
1719 
1720 #ifdef CONFIG_MMU
1721 static const struct vm_operations_struct tcp_vm_ops = {
1722 };
1723 
1724 int tcp_mmap(struct file *file, struct socket *sock,
1725 	     struct vm_area_struct *vma)
1726 {
1727 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1728 		return -EPERM;
1729 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1730 
1731 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1732 	vma->vm_flags |= VM_MIXEDMAP;
1733 
1734 	vma->vm_ops = &tcp_vm_ops;
1735 	return 0;
1736 }
1737 EXPORT_SYMBOL(tcp_mmap);
1738 
1739 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1740 				       u32 *offset_frag)
1741 {
1742 	skb_frag_t *frag;
1743 
1744 	offset_skb -= skb_headlen(skb);
1745 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1746 		return NULL;
1747 
1748 	frag = skb_shinfo(skb)->frags;
1749 	while (offset_skb) {
1750 		if (skb_frag_size(frag) > offset_skb) {
1751 			*offset_frag = offset_skb;
1752 			return frag;
1753 		}
1754 		offset_skb -= skb_frag_size(frag);
1755 		++frag;
1756 	}
1757 	*offset_frag = 0;
1758 	return frag;
1759 }
1760 
1761 static bool can_map_frag(const skb_frag_t *frag)
1762 {
1763 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1764 }
1765 
1766 static int find_next_mappable_frag(const skb_frag_t *frag,
1767 				   int remaining_in_skb)
1768 {
1769 	int offset = 0;
1770 
1771 	if (likely(can_map_frag(frag)))
1772 		return 0;
1773 
1774 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1775 		offset += skb_frag_size(frag);
1776 		++frag;
1777 	}
1778 	return offset;
1779 }
1780 
1781 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1782 					  struct tcp_zerocopy_receive *zc,
1783 					  struct sk_buff *skb, u32 offset)
1784 {
1785 	u32 frag_offset, partial_frag_remainder = 0;
1786 	int mappable_offset;
1787 	skb_frag_t *frag;
1788 
1789 	/* worst case: skip to next skb. try to improve on this case below */
1790 	zc->recv_skip_hint = skb->len - offset;
1791 
1792 	/* Find the frag containing this offset (and how far into that frag) */
1793 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1794 	if (!frag)
1795 		return;
1796 
1797 	if (frag_offset) {
1798 		struct skb_shared_info *info = skb_shinfo(skb);
1799 
1800 		/* We read part of the last frag, must recvmsg() rest of skb. */
1801 		if (frag == &info->frags[info->nr_frags - 1])
1802 			return;
1803 
1804 		/* Else, we must at least read the remainder in this frag. */
1805 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1806 		zc->recv_skip_hint -= partial_frag_remainder;
1807 		++frag;
1808 	}
1809 
1810 	/* partial_frag_remainder: If part way through a frag, must read rest.
1811 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1812 	 * in partial_frag_remainder.
1813 	 */
1814 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1815 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1816 }
1817 
1818 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1819 			      int nonblock, int flags,
1820 			      struct scm_timestamping_internal *tss,
1821 			      int *cmsg_flags);
1822 static int receive_fallback_to_copy(struct sock *sk,
1823 				    struct tcp_zerocopy_receive *zc, int inq,
1824 				    struct scm_timestamping_internal *tss)
1825 {
1826 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1827 	struct msghdr msg = {};
1828 	struct iovec iov;
1829 	int err;
1830 
1831 	zc->length = 0;
1832 	zc->recv_skip_hint = 0;
1833 
1834 	if (copy_address != zc->copybuf_address)
1835 		return -EINVAL;
1836 
1837 	err = import_single_range(READ, (void __user *)copy_address,
1838 				  inq, &iov, &msg.msg_iter);
1839 	if (err)
1840 		return err;
1841 
1842 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1843 				 tss, &zc->msg_flags);
1844 	if (err < 0)
1845 		return err;
1846 
1847 	zc->copybuf_len = err;
1848 	if (likely(zc->copybuf_len)) {
1849 		struct sk_buff *skb;
1850 		u32 offset;
1851 
1852 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1853 		if (skb)
1854 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1855 	}
1856 	return 0;
1857 }
1858 
1859 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1860 				   struct sk_buff *skb, u32 copylen,
1861 				   u32 *offset, u32 *seq)
1862 {
1863 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1864 	struct msghdr msg = {};
1865 	struct iovec iov;
1866 	int err;
1867 
1868 	if (copy_address != zc->copybuf_address)
1869 		return -EINVAL;
1870 
1871 	err = import_single_range(READ, (void __user *)copy_address,
1872 				  copylen, &iov, &msg.msg_iter);
1873 	if (err)
1874 		return err;
1875 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1876 	if (err)
1877 		return err;
1878 	zc->recv_skip_hint -= copylen;
1879 	*offset += copylen;
1880 	*seq += copylen;
1881 	return (__s32)copylen;
1882 }
1883 
1884 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1885 				  struct sock *sk,
1886 				  struct sk_buff *skb,
1887 				  u32 *seq,
1888 				  s32 copybuf_len,
1889 				  struct scm_timestamping_internal *tss)
1890 {
1891 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1892 
1893 	if (!copylen)
1894 		return 0;
1895 	/* skb is null if inq < PAGE_SIZE. */
1896 	if (skb) {
1897 		offset = *seq - TCP_SKB_CB(skb)->seq;
1898 	} else {
1899 		skb = tcp_recv_skb(sk, *seq, &offset);
1900 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1901 			tcp_update_recv_tstamps(skb, tss);
1902 			zc->msg_flags |= TCP_CMSG_TS;
1903 		}
1904 	}
1905 
1906 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1907 						  seq);
1908 	return zc->copybuf_len < 0 ? 0 : copylen;
1909 }
1910 
1911 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1912 					      struct page **pending_pages,
1913 					      unsigned long pages_remaining,
1914 					      unsigned long *address,
1915 					      u32 *length,
1916 					      u32 *seq,
1917 					      struct tcp_zerocopy_receive *zc,
1918 					      u32 total_bytes_to_map,
1919 					      int err)
1920 {
1921 	/* At least one page did not map. Try zapping if we skipped earlier. */
1922 	if (err == -EBUSY &&
1923 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1924 		u32 maybe_zap_len;
1925 
1926 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1927 				*length + /* Mapped or pending */
1928 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1929 		zap_page_range(vma, *address, maybe_zap_len);
1930 		err = 0;
1931 	}
1932 
1933 	if (!err) {
1934 		unsigned long leftover_pages = pages_remaining;
1935 		int bytes_mapped;
1936 
1937 		/* We called zap_page_range, try to reinsert. */
1938 		err = vm_insert_pages(vma, *address,
1939 				      pending_pages,
1940 				      &pages_remaining);
1941 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1942 		*seq += bytes_mapped;
1943 		*address += bytes_mapped;
1944 	}
1945 	if (err) {
1946 		/* Either we were unable to zap, OR we zapped, retried an
1947 		 * insert, and still had an issue. Either ways, pages_remaining
1948 		 * is the number of pages we were unable to map, and we unroll
1949 		 * some state we speculatively touched before.
1950 		 */
1951 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1952 
1953 		*length -= bytes_not_mapped;
1954 		zc->recv_skip_hint += bytes_not_mapped;
1955 	}
1956 	return err;
1957 }
1958 
1959 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1960 					struct page **pages,
1961 					unsigned int pages_to_map,
1962 					unsigned long *address,
1963 					u32 *length,
1964 					u32 *seq,
1965 					struct tcp_zerocopy_receive *zc,
1966 					u32 total_bytes_to_map)
1967 {
1968 	unsigned long pages_remaining = pages_to_map;
1969 	unsigned int pages_mapped;
1970 	unsigned int bytes_mapped;
1971 	int err;
1972 
1973 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1974 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1975 	bytes_mapped = PAGE_SIZE * pages_mapped;
1976 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1977 	 * mapping (some but not all of the pages).
1978 	 */
1979 	*seq += bytes_mapped;
1980 	*address += bytes_mapped;
1981 
1982 	if (likely(!err))
1983 		return 0;
1984 
1985 	/* Error: maybe zap and retry + rollback state for failed inserts. */
1986 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
1987 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
1988 		err);
1989 }
1990 
1991 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
1992 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
1993 				      struct tcp_zerocopy_receive *zc,
1994 				      struct scm_timestamping_internal *tss)
1995 {
1996 	unsigned long msg_control_addr;
1997 	struct msghdr cmsg_dummy;
1998 
1999 	msg_control_addr = (unsigned long)zc->msg_control;
2000 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2001 	cmsg_dummy.msg_controllen =
2002 		(__kernel_size_t)zc->msg_controllen;
2003 	cmsg_dummy.msg_flags = in_compat_syscall()
2004 		? MSG_CMSG_COMPAT : 0;
2005 	cmsg_dummy.msg_control_is_user = true;
2006 	zc->msg_flags = 0;
2007 	if (zc->msg_control == msg_control_addr &&
2008 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2009 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2010 		zc->msg_control = (__u64)
2011 			((uintptr_t)cmsg_dummy.msg_control);
2012 		zc->msg_controllen =
2013 			(__u64)cmsg_dummy.msg_controllen;
2014 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2015 	}
2016 }
2017 
2018 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2019 static int tcp_zerocopy_receive(struct sock *sk,
2020 				struct tcp_zerocopy_receive *zc,
2021 				struct scm_timestamping_internal *tss)
2022 {
2023 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2024 	unsigned long address = (unsigned long)zc->address;
2025 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2026 	s32 copybuf_len = zc->copybuf_len;
2027 	struct tcp_sock *tp = tcp_sk(sk);
2028 	const skb_frag_t *frags = NULL;
2029 	unsigned int pages_to_map = 0;
2030 	struct vm_area_struct *vma;
2031 	struct sk_buff *skb = NULL;
2032 	u32 seq = tp->copied_seq;
2033 	u32 total_bytes_to_map;
2034 	int inq = tcp_inq(sk);
2035 	int ret;
2036 
2037 	zc->copybuf_len = 0;
2038 	zc->msg_flags = 0;
2039 
2040 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2041 		return -EINVAL;
2042 
2043 	if (sk->sk_state == TCP_LISTEN)
2044 		return -ENOTCONN;
2045 
2046 	sock_rps_record_flow(sk);
2047 
2048 	if (inq && inq <= copybuf_len)
2049 		return receive_fallback_to_copy(sk, zc, inq, tss);
2050 
2051 	if (inq < PAGE_SIZE) {
2052 		zc->length = 0;
2053 		zc->recv_skip_hint = inq;
2054 		if (!inq && sock_flag(sk, SOCK_DONE))
2055 			return -EIO;
2056 		return 0;
2057 	}
2058 
2059 	mmap_read_lock(current->mm);
2060 
2061 	vma = vma_lookup(current->mm, address);
2062 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2063 		mmap_read_unlock(current->mm);
2064 		return -EINVAL;
2065 	}
2066 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2067 	avail_len = min_t(u32, vma_len, inq);
2068 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2069 	if (total_bytes_to_map) {
2070 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2071 			zap_page_range(vma, address, total_bytes_to_map);
2072 		zc->length = total_bytes_to_map;
2073 		zc->recv_skip_hint = 0;
2074 	} else {
2075 		zc->length = avail_len;
2076 		zc->recv_skip_hint = avail_len;
2077 	}
2078 	ret = 0;
2079 	while (length + PAGE_SIZE <= zc->length) {
2080 		int mappable_offset;
2081 		struct page *page;
2082 
2083 		if (zc->recv_skip_hint < PAGE_SIZE) {
2084 			u32 offset_frag;
2085 
2086 			if (skb) {
2087 				if (zc->recv_skip_hint > 0)
2088 					break;
2089 				skb = skb->next;
2090 				offset = seq - TCP_SKB_CB(skb)->seq;
2091 			} else {
2092 				skb = tcp_recv_skb(sk, seq, &offset);
2093 			}
2094 
2095 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2096 				tcp_update_recv_tstamps(skb, tss);
2097 				zc->msg_flags |= TCP_CMSG_TS;
2098 			}
2099 			zc->recv_skip_hint = skb->len - offset;
2100 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2101 			if (!frags || offset_frag)
2102 				break;
2103 		}
2104 
2105 		mappable_offset = find_next_mappable_frag(frags,
2106 							  zc->recv_skip_hint);
2107 		if (mappable_offset) {
2108 			zc->recv_skip_hint = mappable_offset;
2109 			break;
2110 		}
2111 		page = skb_frag_page(frags);
2112 		prefetchw(page);
2113 		pages[pages_to_map++] = page;
2114 		length += PAGE_SIZE;
2115 		zc->recv_skip_hint -= PAGE_SIZE;
2116 		frags++;
2117 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2118 		    zc->recv_skip_hint < PAGE_SIZE) {
2119 			/* Either full batch, or we're about to go to next skb
2120 			 * (and we cannot unroll failed ops across skbs).
2121 			 */
2122 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2123 							   pages_to_map,
2124 							   &address, &length,
2125 							   &seq, zc,
2126 							   total_bytes_to_map);
2127 			if (ret)
2128 				goto out;
2129 			pages_to_map = 0;
2130 		}
2131 	}
2132 	if (pages_to_map) {
2133 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2134 						   &address, &length, &seq,
2135 						   zc, total_bytes_to_map);
2136 	}
2137 out:
2138 	mmap_read_unlock(current->mm);
2139 	/* Try to copy straggler data. */
2140 	if (!ret)
2141 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2142 
2143 	if (length + copylen) {
2144 		WRITE_ONCE(tp->copied_seq, seq);
2145 		tcp_rcv_space_adjust(sk);
2146 
2147 		/* Clean up data we have read: This will do ACK frames. */
2148 		tcp_recv_skb(sk, seq, &offset);
2149 		tcp_cleanup_rbuf(sk, length + copylen);
2150 		ret = 0;
2151 		if (length == zc->length)
2152 			zc->recv_skip_hint = 0;
2153 	} else {
2154 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2155 			ret = -EIO;
2156 	}
2157 	zc->length = length;
2158 	return ret;
2159 }
2160 #endif
2161 
2162 /* Similar to __sock_recv_timestamp, but does not require an skb */
2163 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2164 			struct scm_timestamping_internal *tss)
2165 {
2166 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2167 	bool has_timestamping = false;
2168 
2169 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2170 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2171 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2172 				if (new_tstamp) {
2173 					struct __kernel_timespec kts = {
2174 						.tv_sec = tss->ts[0].tv_sec,
2175 						.tv_nsec = tss->ts[0].tv_nsec,
2176 					};
2177 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2178 						 sizeof(kts), &kts);
2179 				} else {
2180 					struct __kernel_old_timespec ts_old = {
2181 						.tv_sec = tss->ts[0].tv_sec,
2182 						.tv_nsec = tss->ts[0].tv_nsec,
2183 					};
2184 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2185 						 sizeof(ts_old), &ts_old);
2186 				}
2187 			} else {
2188 				if (new_tstamp) {
2189 					struct __kernel_sock_timeval stv = {
2190 						.tv_sec = tss->ts[0].tv_sec,
2191 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2192 					};
2193 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2194 						 sizeof(stv), &stv);
2195 				} else {
2196 					struct __kernel_old_timeval tv = {
2197 						.tv_sec = tss->ts[0].tv_sec,
2198 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2199 					};
2200 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2201 						 sizeof(tv), &tv);
2202 				}
2203 			}
2204 		}
2205 
2206 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2207 			has_timestamping = true;
2208 		else
2209 			tss->ts[0] = (struct timespec64) {0};
2210 	}
2211 
2212 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2213 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2214 			has_timestamping = true;
2215 		else
2216 			tss->ts[2] = (struct timespec64) {0};
2217 	}
2218 
2219 	if (has_timestamping) {
2220 		tss->ts[1] = (struct timespec64) {0};
2221 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2222 			put_cmsg_scm_timestamping64(msg, tss);
2223 		else
2224 			put_cmsg_scm_timestamping(msg, tss);
2225 	}
2226 }
2227 
2228 static int tcp_inq_hint(struct sock *sk)
2229 {
2230 	const struct tcp_sock *tp = tcp_sk(sk);
2231 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2232 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2233 	int inq;
2234 
2235 	inq = rcv_nxt - copied_seq;
2236 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2237 		lock_sock(sk);
2238 		inq = tp->rcv_nxt - tp->copied_seq;
2239 		release_sock(sk);
2240 	}
2241 	/* After receiving a FIN, tell the user-space to continue reading
2242 	 * by returning a non-zero inq.
2243 	 */
2244 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2245 		inq = 1;
2246 	return inq;
2247 }
2248 
2249 /*
2250  *	This routine copies from a sock struct into the user buffer.
2251  *
2252  *	Technical note: in 2.3 we work on _locked_ socket, so that
2253  *	tricks with *seq access order and skb->users are not required.
2254  *	Probably, code can be easily improved even more.
2255  */
2256 
2257 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2258 			      int nonblock, int flags,
2259 			      struct scm_timestamping_internal *tss,
2260 			      int *cmsg_flags)
2261 {
2262 	struct tcp_sock *tp = tcp_sk(sk);
2263 	int copied = 0;
2264 	u32 peek_seq;
2265 	u32 *seq;
2266 	unsigned long used;
2267 	int err;
2268 	int target;		/* Read at least this many bytes */
2269 	long timeo;
2270 	struct sk_buff *skb, *last;
2271 	u32 urg_hole = 0;
2272 
2273 	err = -ENOTCONN;
2274 	if (sk->sk_state == TCP_LISTEN)
2275 		goto out;
2276 
2277 	if (tp->recvmsg_inq)
2278 		*cmsg_flags = TCP_CMSG_INQ;
2279 	timeo = sock_rcvtimeo(sk, nonblock);
2280 
2281 	/* Urgent data needs to be handled specially. */
2282 	if (flags & MSG_OOB)
2283 		goto recv_urg;
2284 
2285 	if (unlikely(tp->repair)) {
2286 		err = -EPERM;
2287 		if (!(flags & MSG_PEEK))
2288 			goto out;
2289 
2290 		if (tp->repair_queue == TCP_SEND_QUEUE)
2291 			goto recv_sndq;
2292 
2293 		err = -EINVAL;
2294 		if (tp->repair_queue == TCP_NO_QUEUE)
2295 			goto out;
2296 
2297 		/* 'common' recv queue MSG_PEEK-ing */
2298 	}
2299 
2300 	seq = &tp->copied_seq;
2301 	if (flags & MSG_PEEK) {
2302 		peek_seq = tp->copied_seq;
2303 		seq = &peek_seq;
2304 	}
2305 
2306 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2307 
2308 	do {
2309 		u32 offset;
2310 
2311 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2312 		if (tp->urg_data && tp->urg_seq == *seq) {
2313 			if (copied)
2314 				break;
2315 			if (signal_pending(current)) {
2316 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2317 				break;
2318 			}
2319 		}
2320 
2321 		/* Next get a buffer. */
2322 
2323 		last = skb_peek_tail(&sk->sk_receive_queue);
2324 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2325 			last = skb;
2326 			/* Now that we have two receive queues this
2327 			 * shouldn't happen.
2328 			 */
2329 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2330 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2331 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2332 				 flags))
2333 				break;
2334 
2335 			offset = *seq - TCP_SKB_CB(skb)->seq;
2336 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2337 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2338 				offset--;
2339 			}
2340 			if (offset < skb->len)
2341 				goto found_ok_skb;
2342 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2343 				goto found_fin_ok;
2344 			WARN(!(flags & MSG_PEEK),
2345 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2346 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2347 		}
2348 
2349 		/* Well, if we have backlog, try to process it now yet. */
2350 
2351 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2352 			break;
2353 
2354 		if (copied) {
2355 			if (sk->sk_err ||
2356 			    sk->sk_state == TCP_CLOSE ||
2357 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2358 			    !timeo ||
2359 			    signal_pending(current))
2360 				break;
2361 		} else {
2362 			if (sock_flag(sk, SOCK_DONE))
2363 				break;
2364 
2365 			if (sk->sk_err) {
2366 				copied = sock_error(sk);
2367 				break;
2368 			}
2369 
2370 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2371 				break;
2372 
2373 			if (sk->sk_state == TCP_CLOSE) {
2374 				/* This occurs when user tries to read
2375 				 * from never connected socket.
2376 				 */
2377 				copied = -ENOTCONN;
2378 				break;
2379 			}
2380 
2381 			if (!timeo) {
2382 				copied = -EAGAIN;
2383 				break;
2384 			}
2385 
2386 			if (signal_pending(current)) {
2387 				copied = sock_intr_errno(timeo);
2388 				break;
2389 			}
2390 		}
2391 
2392 		tcp_cleanup_rbuf(sk, copied);
2393 
2394 		if (copied >= target) {
2395 			/* Do not sleep, just process backlog. */
2396 			release_sock(sk);
2397 			lock_sock(sk);
2398 		} else {
2399 			sk_wait_data(sk, &timeo, last);
2400 		}
2401 
2402 		if ((flags & MSG_PEEK) &&
2403 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2404 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2405 					    current->comm,
2406 					    task_pid_nr(current));
2407 			peek_seq = tp->copied_seq;
2408 		}
2409 		continue;
2410 
2411 found_ok_skb:
2412 		/* Ok so how much can we use? */
2413 		used = skb->len - offset;
2414 		if (len < used)
2415 			used = len;
2416 
2417 		/* Do we have urgent data here? */
2418 		if (tp->urg_data) {
2419 			u32 urg_offset = tp->urg_seq - *seq;
2420 			if (urg_offset < used) {
2421 				if (!urg_offset) {
2422 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2423 						WRITE_ONCE(*seq, *seq + 1);
2424 						urg_hole++;
2425 						offset++;
2426 						used--;
2427 						if (!used)
2428 							goto skip_copy;
2429 					}
2430 				} else
2431 					used = urg_offset;
2432 			}
2433 		}
2434 
2435 		if (!(flags & MSG_TRUNC)) {
2436 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2437 			if (err) {
2438 				/* Exception. Bailout! */
2439 				if (!copied)
2440 					copied = -EFAULT;
2441 				break;
2442 			}
2443 		}
2444 
2445 		WRITE_ONCE(*seq, *seq + used);
2446 		copied += used;
2447 		len -= used;
2448 
2449 		tcp_rcv_space_adjust(sk);
2450 
2451 skip_copy:
2452 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2453 			tp->urg_data = 0;
2454 			tcp_fast_path_check(sk);
2455 		}
2456 
2457 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2458 			tcp_update_recv_tstamps(skb, tss);
2459 			*cmsg_flags |= TCP_CMSG_TS;
2460 		}
2461 
2462 		if (used + offset < skb->len)
2463 			continue;
2464 
2465 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2466 			goto found_fin_ok;
2467 		if (!(flags & MSG_PEEK))
2468 			sk_eat_skb(sk, skb);
2469 		continue;
2470 
2471 found_fin_ok:
2472 		/* Process the FIN. */
2473 		WRITE_ONCE(*seq, *seq + 1);
2474 		if (!(flags & MSG_PEEK))
2475 			sk_eat_skb(sk, skb);
2476 		break;
2477 	} while (len > 0);
2478 
2479 	/* According to UNIX98, msg_name/msg_namelen are ignored
2480 	 * on connected socket. I was just happy when found this 8) --ANK
2481 	 */
2482 
2483 	/* Clean up data we have read: This will do ACK frames. */
2484 	tcp_cleanup_rbuf(sk, copied);
2485 	return copied;
2486 
2487 out:
2488 	return err;
2489 
2490 recv_urg:
2491 	err = tcp_recv_urg(sk, msg, len, flags);
2492 	goto out;
2493 
2494 recv_sndq:
2495 	err = tcp_peek_sndq(sk, msg, len);
2496 	goto out;
2497 }
2498 
2499 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2500 		int flags, int *addr_len)
2501 {
2502 	int cmsg_flags = 0, ret, inq;
2503 	struct scm_timestamping_internal tss;
2504 
2505 	if (unlikely(flags & MSG_ERRQUEUE))
2506 		return inet_recv_error(sk, msg, len, addr_len);
2507 
2508 	if (sk_can_busy_loop(sk) &&
2509 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2510 	    sk->sk_state == TCP_ESTABLISHED)
2511 		sk_busy_loop(sk, nonblock);
2512 
2513 	lock_sock(sk);
2514 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2515 				 &cmsg_flags);
2516 	release_sock(sk);
2517 
2518 	if (cmsg_flags && ret >= 0) {
2519 		if (cmsg_flags & TCP_CMSG_TS)
2520 			tcp_recv_timestamp(msg, sk, &tss);
2521 		if (cmsg_flags & TCP_CMSG_INQ) {
2522 			inq = tcp_inq_hint(sk);
2523 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2524 		}
2525 	}
2526 	return ret;
2527 }
2528 EXPORT_SYMBOL(tcp_recvmsg);
2529 
2530 void tcp_set_state(struct sock *sk, int state)
2531 {
2532 	int oldstate = sk->sk_state;
2533 
2534 	/* We defined a new enum for TCP states that are exported in BPF
2535 	 * so as not force the internal TCP states to be frozen. The
2536 	 * following checks will detect if an internal state value ever
2537 	 * differs from the BPF value. If this ever happens, then we will
2538 	 * need to remap the internal value to the BPF value before calling
2539 	 * tcp_call_bpf_2arg.
2540 	 */
2541 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2542 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2543 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2544 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2545 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2546 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2547 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2548 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2549 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2550 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2551 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2552 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2553 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2554 
2555 	/* bpf uapi header bpf.h defines an anonymous enum with values
2556 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2557 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2558 	 * But clang built vmlinux does not have this enum in DWARF
2559 	 * since clang removes the above code before generating IR/debuginfo.
2560 	 * Let us explicitly emit the type debuginfo to ensure the
2561 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2562 	 * regardless of which compiler is used.
2563 	 */
2564 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2565 
2566 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2567 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2568 
2569 	switch (state) {
2570 	case TCP_ESTABLISHED:
2571 		if (oldstate != TCP_ESTABLISHED)
2572 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2573 		break;
2574 
2575 	case TCP_CLOSE:
2576 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2577 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2578 
2579 		sk->sk_prot->unhash(sk);
2580 		if (inet_csk(sk)->icsk_bind_hash &&
2581 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2582 			inet_put_port(sk);
2583 		fallthrough;
2584 	default:
2585 		if (oldstate == TCP_ESTABLISHED)
2586 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2587 	}
2588 
2589 	/* Change state AFTER socket is unhashed to avoid closed
2590 	 * socket sitting in hash tables.
2591 	 */
2592 	inet_sk_state_store(sk, state);
2593 }
2594 EXPORT_SYMBOL_GPL(tcp_set_state);
2595 
2596 /*
2597  *	State processing on a close. This implements the state shift for
2598  *	sending our FIN frame. Note that we only send a FIN for some
2599  *	states. A shutdown() may have already sent the FIN, or we may be
2600  *	closed.
2601  */
2602 
2603 static const unsigned char new_state[16] = {
2604   /* current state:        new state:      action:	*/
2605   [0 /* (Invalid) */]	= TCP_CLOSE,
2606   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2607   [TCP_SYN_SENT]	= TCP_CLOSE,
2608   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2609   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2610   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2611   [TCP_TIME_WAIT]	= TCP_CLOSE,
2612   [TCP_CLOSE]		= TCP_CLOSE,
2613   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2614   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2615   [TCP_LISTEN]		= TCP_CLOSE,
2616   [TCP_CLOSING]		= TCP_CLOSING,
2617   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2618 };
2619 
2620 static int tcp_close_state(struct sock *sk)
2621 {
2622 	int next = (int)new_state[sk->sk_state];
2623 	int ns = next & TCP_STATE_MASK;
2624 
2625 	tcp_set_state(sk, ns);
2626 
2627 	return next & TCP_ACTION_FIN;
2628 }
2629 
2630 /*
2631  *	Shutdown the sending side of a connection. Much like close except
2632  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2633  */
2634 
2635 void tcp_shutdown(struct sock *sk, int how)
2636 {
2637 	/*	We need to grab some memory, and put together a FIN,
2638 	 *	and then put it into the queue to be sent.
2639 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2640 	 */
2641 	if (!(how & SEND_SHUTDOWN))
2642 		return;
2643 
2644 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2645 	if ((1 << sk->sk_state) &
2646 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2647 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2648 		/* Clear out any half completed packets.  FIN if needed. */
2649 		if (tcp_close_state(sk))
2650 			tcp_send_fin(sk);
2651 	}
2652 }
2653 EXPORT_SYMBOL(tcp_shutdown);
2654 
2655 int tcp_orphan_count_sum(void)
2656 {
2657 	int i, total = 0;
2658 
2659 	for_each_possible_cpu(i)
2660 		total += per_cpu(tcp_orphan_count, i);
2661 
2662 	return max(total, 0);
2663 }
2664 
2665 static int tcp_orphan_cache;
2666 static struct timer_list tcp_orphan_timer;
2667 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2668 
2669 static void tcp_orphan_update(struct timer_list *unused)
2670 {
2671 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2672 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2673 }
2674 
2675 static bool tcp_too_many_orphans(int shift)
2676 {
2677 	return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2678 }
2679 
2680 bool tcp_check_oom(struct sock *sk, int shift)
2681 {
2682 	bool too_many_orphans, out_of_socket_memory;
2683 
2684 	too_many_orphans = tcp_too_many_orphans(shift);
2685 	out_of_socket_memory = tcp_out_of_memory(sk);
2686 
2687 	if (too_many_orphans)
2688 		net_info_ratelimited("too many orphaned sockets\n");
2689 	if (out_of_socket_memory)
2690 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2691 	return too_many_orphans || out_of_socket_memory;
2692 }
2693 
2694 void __tcp_close(struct sock *sk, long timeout)
2695 {
2696 	struct sk_buff *skb;
2697 	int data_was_unread = 0;
2698 	int state;
2699 
2700 	sk->sk_shutdown = SHUTDOWN_MASK;
2701 
2702 	if (sk->sk_state == TCP_LISTEN) {
2703 		tcp_set_state(sk, TCP_CLOSE);
2704 
2705 		/* Special case. */
2706 		inet_csk_listen_stop(sk);
2707 
2708 		goto adjudge_to_death;
2709 	}
2710 
2711 	/*  We need to flush the recv. buffs.  We do this only on the
2712 	 *  descriptor close, not protocol-sourced closes, because the
2713 	 *  reader process may not have drained the data yet!
2714 	 */
2715 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2716 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2717 
2718 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2719 			len--;
2720 		data_was_unread += len;
2721 		__kfree_skb(skb);
2722 	}
2723 
2724 	sk_mem_reclaim(sk);
2725 
2726 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2727 	if (sk->sk_state == TCP_CLOSE)
2728 		goto adjudge_to_death;
2729 
2730 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2731 	 * data was lost. To witness the awful effects of the old behavior of
2732 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2733 	 * GET in an FTP client, suspend the process, wait for the client to
2734 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2735 	 * Note: timeout is always zero in such a case.
2736 	 */
2737 	if (unlikely(tcp_sk(sk)->repair)) {
2738 		sk->sk_prot->disconnect(sk, 0);
2739 	} else if (data_was_unread) {
2740 		/* Unread data was tossed, zap the connection. */
2741 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2742 		tcp_set_state(sk, TCP_CLOSE);
2743 		tcp_send_active_reset(sk, sk->sk_allocation);
2744 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2745 		/* Check zero linger _after_ checking for unread data. */
2746 		sk->sk_prot->disconnect(sk, 0);
2747 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2748 	} else if (tcp_close_state(sk)) {
2749 		/* We FIN if the application ate all the data before
2750 		 * zapping the connection.
2751 		 */
2752 
2753 		/* RED-PEN. Formally speaking, we have broken TCP state
2754 		 * machine. State transitions:
2755 		 *
2756 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2757 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2758 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2759 		 *
2760 		 * are legal only when FIN has been sent (i.e. in window),
2761 		 * rather than queued out of window. Purists blame.
2762 		 *
2763 		 * F.e. "RFC state" is ESTABLISHED,
2764 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2765 		 *
2766 		 * The visible declinations are that sometimes
2767 		 * we enter time-wait state, when it is not required really
2768 		 * (harmless), do not send active resets, when they are
2769 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2770 		 * they look as CLOSING or LAST_ACK for Linux)
2771 		 * Probably, I missed some more holelets.
2772 		 * 						--ANK
2773 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2774 		 * in a single packet! (May consider it later but will
2775 		 * probably need API support or TCP_CORK SYN-ACK until
2776 		 * data is written and socket is closed.)
2777 		 */
2778 		tcp_send_fin(sk);
2779 	}
2780 
2781 	sk_stream_wait_close(sk, timeout);
2782 
2783 adjudge_to_death:
2784 	state = sk->sk_state;
2785 	sock_hold(sk);
2786 	sock_orphan(sk);
2787 
2788 	local_bh_disable();
2789 	bh_lock_sock(sk);
2790 	/* remove backlog if any, without releasing ownership. */
2791 	__release_sock(sk);
2792 
2793 	this_cpu_inc(tcp_orphan_count);
2794 
2795 	/* Have we already been destroyed by a softirq or backlog? */
2796 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2797 		goto out;
2798 
2799 	/*	This is a (useful) BSD violating of the RFC. There is a
2800 	 *	problem with TCP as specified in that the other end could
2801 	 *	keep a socket open forever with no application left this end.
2802 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2803 	 *	our end. If they send after that then tough - BUT: long enough
2804 	 *	that we won't make the old 4*rto = almost no time - whoops
2805 	 *	reset mistake.
2806 	 *
2807 	 *	Nope, it was not mistake. It is really desired behaviour
2808 	 *	f.e. on http servers, when such sockets are useless, but
2809 	 *	consume significant resources. Let's do it with special
2810 	 *	linger2	option.					--ANK
2811 	 */
2812 
2813 	if (sk->sk_state == TCP_FIN_WAIT2) {
2814 		struct tcp_sock *tp = tcp_sk(sk);
2815 		if (tp->linger2 < 0) {
2816 			tcp_set_state(sk, TCP_CLOSE);
2817 			tcp_send_active_reset(sk, GFP_ATOMIC);
2818 			__NET_INC_STATS(sock_net(sk),
2819 					LINUX_MIB_TCPABORTONLINGER);
2820 		} else {
2821 			const int tmo = tcp_fin_time(sk);
2822 
2823 			if (tmo > TCP_TIMEWAIT_LEN) {
2824 				inet_csk_reset_keepalive_timer(sk,
2825 						tmo - TCP_TIMEWAIT_LEN);
2826 			} else {
2827 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2828 				goto out;
2829 			}
2830 		}
2831 	}
2832 	if (sk->sk_state != TCP_CLOSE) {
2833 		sk_mem_reclaim(sk);
2834 		if (tcp_check_oom(sk, 0)) {
2835 			tcp_set_state(sk, TCP_CLOSE);
2836 			tcp_send_active_reset(sk, GFP_ATOMIC);
2837 			__NET_INC_STATS(sock_net(sk),
2838 					LINUX_MIB_TCPABORTONMEMORY);
2839 		} else if (!check_net(sock_net(sk))) {
2840 			/* Not possible to send reset; just close */
2841 			tcp_set_state(sk, TCP_CLOSE);
2842 		}
2843 	}
2844 
2845 	if (sk->sk_state == TCP_CLOSE) {
2846 		struct request_sock *req;
2847 
2848 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2849 						lockdep_sock_is_held(sk));
2850 		/* We could get here with a non-NULL req if the socket is
2851 		 * aborted (e.g., closed with unread data) before 3WHS
2852 		 * finishes.
2853 		 */
2854 		if (req)
2855 			reqsk_fastopen_remove(sk, req, false);
2856 		inet_csk_destroy_sock(sk);
2857 	}
2858 	/* Otherwise, socket is reprieved until protocol close. */
2859 
2860 out:
2861 	bh_unlock_sock(sk);
2862 	local_bh_enable();
2863 }
2864 
2865 void tcp_close(struct sock *sk, long timeout)
2866 {
2867 	lock_sock(sk);
2868 	__tcp_close(sk, timeout);
2869 	release_sock(sk);
2870 	sock_put(sk);
2871 }
2872 EXPORT_SYMBOL(tcp_close);
2873 
2874 /* These states need RST on ABORT according to RFC793 */
2875 
2876 static inline bool tcp_need_reset(int state)
2877 {
2878 	return (1 << state) &
2879 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2880 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2881 }
2882 
2883 static void tcp_rtx_queue_purge(struct sock *sk)
2884 {
2885 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2886 
2887 	tcp_sk(sk)->highest_sack = NULL;
2888 	while (p) {
2889 		struct sk_buff *skb = rb_to_skb(p);
2890 
2891 		p = rb_next(p);
2892 		/* Since we are deleting whole queue, no need to
2893 		 * list_del(&skb->tcp_tsorted_anchor)
2894 		 */
2895 		tcp_rtx_queue_unlink(skb, sk);
2896 		sk_wmem_free_skb(sk, skb);
2897 	}
2898 }
2899 
2900 void tcp_write_queue_purge(struct sock *sk)
2901 {
2902 	struct sk_buff *skb;
2903 
2904 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2905 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2906 		tcp_skb_tsorted_anchor_cleanup(skb);
2907 		sk_wmem_free_skb(sk, skb);
2908 	}
2909 	tcp_rtx_queue_purge(sk);
2910 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2911 	sk_mem_reclaim(sk);
2912 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2913 	tcp_sk(sk)->packets_out = 0;
2914 	inet_csk(sk)->icsk_backoff = 0;
2915 }
2916 
2917 int tcp_disconnect(struct sock *sk, int flags)
2918 {
2919 	struct inet_sock *inet = inet_sk(sk);
2920 	struct inet_connection_sock *icsk = inet_csk(sk);
2921 	struct tcp_sock *tp = tcp_sk(sk);
2922 	int old_state = sk->sk_state;
2923 	u32 seq;
2924 
2925 	if (old_state != TCP_CLOSE)
2926 		tcp_set_state(sk, TCP_CLOSE);
2927 
2928 	/* ABORT function of RFC793 */
2929 	if (old_state == TCP_LISTEN) {
2930 		inet_csk_listen_stop(sk);
2931 	} else if (unlikely(tp->repair)) {
2932 		sk->sk_err = ECONNABORTED;
2933 	} else if (tcp_need_reset(old_state) ||
2934 		   (tp->snd_nxt != tp->write_seq &&
2935 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2936 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2937 		 * states
2938 		 */
2939 		tcp_send_active_reset(sk, gfp_any());
2940 		sk->sk_err = ECONNRESET;
2941 	} else if (old_state == TCP_SYN_SENT)
2942 		sk->sk_err = ECONNRESET;
2943 
2944 	tcp_clear_xmit_timers(sk);
2945 	__skb_queue_purge(&sk->sk_receive_queue);
2946 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2947 	tp->urg_data = 0;
2948 	tcp_write_queue_purge(sk);
2949 	tcp_fastopen_active_disable_ofo_check(sk);
2950 	skb_rbtree_purge(&tp->out_of_order_queue);
2951 
2952 	inet->inet_dport = 0;
2953 
2954 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2955 		inet_reset_saddr(sk);
2956 
2957 	sk->sk_shutdown = 0;
2958 	sock_reset_flag(sk, SOCK_DONE);
2959 	tp->srtt_us = 0;
2960 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2961 	tp->rcv_rtt_last_tsecr = 0;
2962 
2963 	seq = tp->write_seq + tp->max_window + 2;
2964 	if (!seq)
2965 		seq = 1;
2966 	WRITE_ONCE(tp->write_seq, seq);
2967 
2968 	icsk->icsk_backoff = 0;
2969 	icsk->icsk_probes_out = 0;
2970 	icsk->icsk_probes_tstamp = 0;
2971 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2972 	icsk->icsk_rto_min = TCP_RTO_MIN;
2973 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2974 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2975 	tp->snd_cwnd = TCP_INIT_CWND;
2976 	tp->snd_cwnd_cnt = 0;
2977 	tp->window_clamp = 0;
2978 	tp->delivered = 0;
2979 	tp->delivered_ce = 0;
2980 	if (icsk->icsk_ca_ops->release)
2981 		icsk->icsk_ca_ops->release(sk);
2982 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2983 	icsk->icsk_ca_initialized = 0;
2984 	tcp_set_ca_state(sk, TCP_CA_Open);
2985 	tp->is_sack_reneg = 0;
2986 	tcp_clear_retrans(tp);
2987 	tp->total_retrans = 0;
2988 	inet_csk_delack_init(sk);
2989 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2990 	 * issue in __tcp_select_window()
2991 	 */
2992 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2993 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2994 	__sk_dst_reset(sk);
2995 	dst_release(sk->sk_rx_dst);
2996 	sk->sk_rx_dst = NULL;
2997 	tcp_saved_syn_free(tp);
2998 	tp->compressed_ack = 0;
2999 	tp->segs_in = 0;
3000 	tp->segs_out = 0;
3001 	tp->bytes_sent = 0;
3002 	tp->bytes_acked = 0;
3003 	tp->bytes_received = 0;
3004 	tp->bytes_retrans = 0;
3005 	tp->data_segs_in = 0;
3006 	tp->data_segs_out = 0;
3007 	tp->duplicate_sack[0].start_seq = 0;
3008 	tp->duplicate_sack[0].end_seq = 0;
3009 	tp->dsack_dups = 0;
3010 	tp->reord_seen = 0;
3011 	tp->retrans_out = 0;
3012 	tp->sacked_out = 0;
3013 	tp->tlp_high_seq = 0;
3014 	tp->last_oow_ack_time = 0;
3015 	/* There's a bubble in the pipe until at least the first ACK. */
3016 	tp->app_limited = ~0U;
3017 	tp->rack.mstamp = 0;
3018 	tp->rack.advanced = 0;
3019 	tp->rack.reo_wnd_steps = 1;
3020 	tp->rack.last_delivered = 0;
3021 	tp->rack.reo_wnd_persist = 0;
3022 	tp->rack.dsack_seen = 0;
3023 	tp->syn_data_acked = 0;
3024 	tp->rx_opt.saw_tstamp = 0;
3025 	tp->rx_opt.dsack = 0;
3026 	tp->rx_opt.num_sacks = 0;
3027 	tp->rcv_ooopack = 0;
3028 
3029 
3030 	/* Clean up fastopen related fields */
3031 	tcp_free_fastopen_req(tp);
3032 	inet->defer_connect = 0;
3033 	tp->fastopen_client_fail = 0;
3034 
3035 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3036 
3037 	if (sk->sk_frag.page) {
3038 		put_page(sk->sk_frag.page);
3039 		sk->sk_frag.page = NULL;
3040 		sk->sk_frag.offset = 0;
3041 	}
3042 
3043 	sk_error_report(sk);
3044 	return 0;
3045 }
3046 EXPORT_SYMBOL(tcp_disconnect);
3047 
3048 static inline bool tcp_can_repair_sock(const struct sock *sk)
3049 {
3050 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3051 		(sk->sk_state != TCP_LISTEN);
3052 }
3053 
3054 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3055 {
3056 	struct tcp_repair_window opt;
3057 
3058 	if (!tp->repair)
3059 		return -EPERM;
3060 
3061 	if (len != sizeof(opt))
3062 		return -EINVAL;
3063 
3064 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3065 		return -EFAULT;
3066 
3067 	if (opt.max_window < opt.snd_wnd)
3068 		return -EINVAL;
3069 
3070 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3071 		return -EINVAL;
3072 
3073 	if (after(opt.rcv_wup, tp->rcv_nxt))
3074 		return -EINVAL;
3075 
3076 	tp->snd_wl1	= opt.snd_wl1;
3077 	tp->snd_wnd	= opt.snd_wnd;
3078 	tp->max_window	= opt.max_window;
3079 
3080 	tp->rcv_wnd	= opt.rcv_wnd;
3081 	tp->rcv_wup	= opt.rcv_wup;
3082 
3083 	return 0;
3084 }
3085 
3086 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3087 		unsigned int len)
3088 {
3089 	struct tcp_sock *tp = tcp_sk(sk);
3090 	struct tcp_repair_opt opt;
3091 	size_t offset = 0;
3092 
3093 	while (len >= sizeof(opt)) {
3094 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3095 			return -EFAULT;
3096 
3097 		offset += sizeof(opt);
3098 		len -= sizeof(opt);
3099 
3100 		switch (opt.opt_code) {
3101 		case TCPOPT_MSS:
3102 			tp->rx_opt.mss_clamp = opt.opt_val;
3103 			tcp_mtup_init(sk);
3104 			break;
3105 		case TCPOPT_WINDOW:
3106 			{
3107 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3108 				u16 rcv_wscale = opt.opt_val >> 16;
3109 
3110 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3111 					return -EFBIG;
3112 
3113 				tp->rx_opt.snd_wscale = snd_wscale;
3114 				tp->rx_opt.rcv_wscale = rcv_wscale;
3115 				tp->rx_opt.wscale_ok = 1;
3116 			}
3117 			break;
3118 		case TCPOPT_SACK_PERM:
3119 			if (opt.opt_val != 0)
3120 				return -EINVAL;
3121 
3122 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3123 			break;
3124 		case TCPOPT_TIMESTAMP:
3125 			if (opt.opt_val != 0)
3126 				return -EINVAL;
3127 
3128 			tp->rx_opt.tstamp_ok = 1;
3129 			break;
3130 		}
3131 	}
3132 
3133 	return 0;
3134 }
3135 
3136 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3137 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3138 
3139 static void tcp_enable_tx_delay(void)
3140 {
3141 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3142 		static int __tcp_tx_delay_enabled = 0;
3143 
3144 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3145 			static_branch_enable(&tcp_tx_delay_enabled);
3146 			pr_info("TCP_TX_DELAY enabled\n");
3147 		}
3148 	}
3149 }
3150 
3151 /* When set indicates to always queue non-full frames.  Later the user clears
3152  * this option and we transmit any pending partial frames in the queue.  This is
3153  * meant to be used alongside sendfile() to get properly filled frames when the
3154  * user (for example) must write out headers with a write() call first and then
3155  * use sendfile to send out the data parts.
3156  *
3157  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3158  * TCP_NODELAY.
3159  */
3160 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3161 {
3162 	struct tcp_sock *tp = tcp_sk(sk);
3163 
3164 	if (on) {
3165 		tp->nonagle |= TCP_NAGLE_CORK;
3166 	} else {
3167 		tp->nonagle &= ~TCP_NAGLE_CORK;
3168 		if (tp->nonagle & TCP_NAGLE_OFF)
3169 			tp->nonagle |= TCP_NAGLE_PUSH;
3170 		tcp_push_pending_frames(sk);
3171 	}
3172 }
3173 
3174 void tcp_sock_set_cork(struct sock *sk, bool on)
3175 {
3176 	lock_sock(sk);
3177 	__tcp_sock_set_cork(sk, on);
3178 	release_sock(sk);
3179 }
3180 EXPORT_SYMBOL(tcp_sock_set_cork);
3181 
3182 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3183  * remembered, but it is not activated until cork is cleared.
3184  *
3185  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3186  * even TCP_CORK for currently queued segments.
3187  */
3188 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3189 {
3190 	if (on) {
3191 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3192 		tcp_push_pending_frames(sk);
3193 	} else {
3194 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3195 	}
3196 }
3197 
3198 void tcp_sock_set_nodelay(struct sock *sk)
3199 {
3200 	lock_sock(sk);
3201 	__tcp_sock_set_nodelay(sk, true);
3202 	release_sock(sk);
3203 }
3204 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3205 
3206 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3207 {
3208 	if (!val) {
3209 		inet_csk_enter_pingpong_mode(sk);
3210 		return;
3211 	}
3212 
3213 	inet_csk_exit_pingpong_mode(sk);
3214 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3215 	    inet_csk_ack_scheduled(sk)) {
3216 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3217 		tcp_cleanup_rbuf(sk, 1);
3218 		if (!(val & 1))
3219 			inet_csk_enter_pingpong_mode(sk);
3220 	}
3221 }
3222 
3223 void tcp_sock_set_quickack(struct sock *sk, int val)
3224 {
3225 	lock_sock(sk);
3226 	__tcp_sock_set_quickack(sk, val);
3227 	release_sock(sk);
3228 }
3229 EXPORT_SYMBOL(tcp_sock_set_quickack);
3230 
3231 int tcp_sock_set_syncnt(struct sock *sk, int val)
3232 {
3233 	if (val < 1 || val > MAX_TCP_SYNCNT)
3234 		return -EINVAL;
3235 
3236 	lock_sock(sk);
3237 	inet_csk(sk)->icsk_syn_retries = val;
3238 	release_sock(sk);
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3242 
3243 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3244 {
3245 	lock_sock(sk);
3246 	inet_csk(sk)->icsk_user_timeout = val;
3247 	release_sock(sk);
3248 }
3249 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3250 
3251 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3252 {
3253 	struct tcp_sock *tp = tcp_sk(sk);
3254 
3255 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3256 		return -EINVAL;
3257 
3258 	tp->keepalive_time = val * HZ;
3259 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3260 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3261 		u32 elapsed = keepalive_time_elapsed(tp);
3262 
3263 		if (tp->keepalive_time > elapsed)
3264 			elapsed = tp->keepalive_time - elapsed;
3265 		else
3266 			elapsed = 0;
3267 		inet_csk_reset_keepalive_timer(sk, elapsed);
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 int tcp_sock_set_keepidle(struct sock *sk, int val)
3274 {
3275 	int err;
3276 
3277 	lock_sock(sk);
3278 	err = tcp_sock_set_keepidle_locked(sk, val);
3279 	release_sock(sk);
3280 	return err;
3281 }
3282 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3283 
3284 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3285 {
3286 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3287 		return -EINVAL;
3288 
3289 	lock_sock(sk);
3290 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3291 	release_sock(sk);
3292 	return 0;
3293 }
3294 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3295 
3296 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3297 {
3298 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3299 		return -EINVAL;
3300 
3301 	lock_sock(sk);
3302 	tcp_sk(sk)->keepalive_probes = val;
3303 	release_sock(sk);
3304 	return 0;
3305 }
3306 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3307 
3308 int tcp_set_window_clamp(struct sock *sk, int val)
3309 {
3310 	struct tcp_sock *tp = tcp_sk(sk);
3311 
3312 	if (!val) {
3313 		if (sk->sk_state != TCP_CLOSE)
3314 			return -EINVAL;
3315 		tp->window_clamp = 0;
3316 	} else {
3317 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3318 			SOCK_MIN_RCVBUF / 2 : val;
3319 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3320 	}
3321 	return 0;
3322 }
3323 
3324 /*
3325  *	Socket option code for TCP.
3326  */
3327 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3328 		sockptr_t optval, unsigned int optlen)
3329 {
3330 	struct tcp_sock *tp = tcp_sk(sk);
3331 	struct inet_connection_sock *icsk = inet_csk(sk);
3332 	struct net *net = sock_net(sk);
3333 	int val;
3334 	int err = 0;
3335 
3336 	/* These are data/string values, all the others are ints */
3337 	switch (optname) {
3338 	case TCP_CONGESTION: {
3339 		char name[TCP_CA_NAME_MAX];
3340 
3341 		if (optlen < 1)
3342 			return -EINVAL;
3343 
3344 		val = strncpy_from_sockptr(name, optval,
3345 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3346 		if (val < 0)
3347 			return -EFAULT;
3348 		name[val] = 0;
3349 
3350 		lock_sock(sk);
3351 		err = tcp_set_congestion_control(sk, name, true,
3352 						 ns_capable(sock_net(sk)->user_ns,
3353 							    CAP_NET_ADMIN));
3354 		release_sock(sk);
3355 		return err;
3356 	}
3357 	case TCP_ULP: {
3358 		char name[TCP_ULP_NAME_MAX];
3359 
3360 		if (optlen < 1)
3361 			return -EINVAL;
3362 
3363 		val = strncpy_from_sockptr(name, optval,
3364 					min_t(long, TCP_ULP_NAME_MAX - 1,
3365 					      optlen));
3366 		if (val < 0)
3367 			return -EFAULT;
3368 		name[val] = 0;
3369 
3370 		lock_sock(sk);
3371 		err = tcp_set_ulp(sk, name);
3372 		release_sock(sk);
3373 		return err;
3374 	}
3375 	case TCP_FASTOPEN_KEY: {
3376 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3377 		__u8 *backup_key = NULL;
3378 
3379 		/* Allow a backup key as well to facilitate key rotation
3380 		 * First key is the active one.
3381 		 */
3382 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3383 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3384 			return -EINVAL;
3385 
3386 		if (copy_from_sockptr(key, optval, optlen))
3387 			return -EFAULT;
3388 
3389 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3390 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3391 
3392 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3393 	}
3394 	default:
3395 		/* fallthru */
3396 		break;
3397 	}
3398 
3399 	if (optlen < sizeof(int))
3400 		return -EINVAL;
3401 
3402 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3403 		return -EFAULT;
3404 
3405 	lock_sock(sk);
3406 
3407 	switch (optname) {
3408 	case TCP_MAXSEG:
3409 		/* Values greater than interface MTU won't take effect. However
3410 		 * at the point when this call is done we typically don't yet
3411 		 * know which interface is going to be used
3412 		 */
3413 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3414 			err = -EINVAL;
3415 			break;
3416 		}
3417 		tp->rx_opt.user_mss = val;
3418 		break;
3419 
3420 	case TCP_NODELAY:
3421 		__tcp_sock_set_nodelay(sk, val);
3422 		break;
3423 
3424 	case TCP_THIN_LINEAR_TIMEOUTS:
3425 		if (val < 0 || val > 1)
3426 			err = -EINVAL;
3427 		else
3428 			tp->thin_lto = val;
3429 		break;
3430 
3431 	case TCP_THIN_DUPACK:
3432 		if (val < 0 || val > 1)
3433 			err = -EINVAL;
3434 		break;
3435 
3436 	case TCP_REPAIR:
3437 		if (!tcp_can_repair_sock(sk))
3438 			err = -EPERM;
3439 		else if (val == TCP_REPAIR_ON) {
3440 			tp->repair = 1;
3441 			sk->sk_reuse = SK_FORCE_REUSE;
3442 			tp->repair_queue = TCP_NO_QUEUE;
3443 		} else if (val == TCP_REPAIR_OFF) {
3444 			tp->repair = 0;
3445 			sk->sk_reuse = SK_NO_REUSE;
3446 			tcp_send_window_probe(sk);
3447 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3448 			tp->repair = 0;
3449 			sk->sk_reuse = SK_NO_REUSE;
3450 		} else
3451 			err = -EINVAL;
3452 
3453 		break;
3454 
3455 	case TCP_REPAIR_QUEUE:
3456 		if (!tp->repair)
3457 			err = -EPERM;
3458 		else if ((unsigned int)val < TCP_QUEUES_NR)
3459 			tp->repair_queue = val;
3460 		else
3461 			err = -EINVAL;
3462 		break;
3463 
3464 	case TCP_QUEUE_SEQ:
3465 		if (sk->sk_state != TCP_CLOSE) {
3466 			err = -EPERM;
3467 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3468 			if (!tcp_rtx_queue_empty(sk))
3469 				err = -EPERM;
3470 			else
3471 				WRITE_ONCE(tp->write_seq, val);
3472 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3473 			if (tp->rcv_nxt != tp->copied_seq) {
3474 				err = -EPERM;
3475 			} else {
3476 				WRITE_ONCE(tp->rcv_nxt, val);
3477 				WRITE_ONCE(tp->copied_seq, val);
3478 			}
3479 		} else {
3480 			err = -EINVAL;
3481 		}
3482 		break;
3483 
3484 	case TCP_REPAIR_OPTIONS:
3485 		if (!tp->repair)
3486 			err = -EINVAL;
3487 		else if (sk->sk_state == TCP_ESTABLISHED)
3488 			err = tcp_repair_options_est(sk, optval, optlen);
3489 		else
3490 			err = -EPERM;
3491 		break;
3492 
3493 	case TCP_CORK:
3494 		__tcp_sock_set_cork(sk, val);
3495 		break;
3496 
3497 	case TCP_KEEPIDLE:
3498 		err = tcp_sock_set_keepidle_locked(sk, val);
3499 		break;
3500 	case TCP_KEEPINTVL:
3501 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3502 			err = -EINVAL;
3503 		else
3504 			tp->keepalive_intvl = val * HZ;
3505 		break;
3506 	case TCP_KEEPCNT:
3507 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3508 			err = -EINVAL;
3509 		else
3510 			tp->keepalive_probes = val;
3511 		break;
3512 	case TCP_SYNCNT:
3513 		if (val < 1 || val > MAX_TCP_SYNCNT)
3514 			err = -EINVAL;
3515 		else
3516 			icsk->icsk_syn_retries = val;
3517 		break;
3518 
3519 	case TCP_SAVE_SYN:
3520 		/* 0: disable, 1: enable, 2: start from ether_header */
3521 		if (val < 0 || val > 2)
3522 			err = -EINVAL;
3523 		else
3524 			tp->save_syn = val;
3525 		break;
3526 
3527 	case TCP_LINGER2:
3528 		if (val < 0)
3529 			tp->linger2 = -1;
3530 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3531 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3532 		else
3533 			tp->linger2 = val * HZ;
3534 		break;
3535 
3536 	case TCP_DEFER_ACCEPT:
3537 		/* Translate value in seconds to number of retransmits */
3538 		icsk->icsk_accept_queue.rskq_defer_accept =
3539 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3540 					TCP_RTO_MAX / HZ);
3541 		break;
3542 
3543 	case TCP_WINDOW_CLAMP:
3544 		err = tcp_set_window_clamp(sk, val);
3545 		break;
3546 
3547 	case TCP_QUICKACK:
3548 		__tcp_sock_set_quickack(sk, val);
3549 		break;
3550 
3551 #ifdef CONFIG_TCP_MD5SIG
3552 	case TCP_MD5SIG:
3553 	case TCP_MD5SIG_EXT:
3554 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3555 		break;
3556 #endif
3557 	case TCP_USER_TIMEOUT:
3558 		/* Cap the max time in ms TCP will retry or probe the window
3559 		 * before giving up and aborting (ETIMEDOUT) a connection.
3560 		 */
3561 		if (val < 0)
3562 			err = -EINVAL;
3563 		else
3564 			icsk->icsk_user_timeout = val;
3565 		break;
3566 
3567 	case TCP_FASTOPEN:
3568 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3569 		    TCPF_LISTEN))) {
3570 			tcp_fastopen_init_key_once(net);
3571 
3572 			fastopen_queue_tune(sk, val);
3573 		} else {
3574 			err = -EINVAL;
3575 		}
3576 		break;
3577 	case TCP_FASTOPEN_CONNECT:
3578 		if (val > 1 || val < 0) {
3579 			err = -EINVAL;
3580 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3581 			if (sk->sk_state == TCP_CLOSE)
3582 				tp->fastopen_connect = val;
3583 			else
3584 				err = -EINVAL;
3585 		} else {
3586 			err = -EOPNOTSUPP;
3587 		}
3588 		break;
3589 	case TCP_FASTOPEN_NO_COOKIE:
3590 		if (val > 1 || val < 0)
3591 			err = -EINVAL;
3592 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3593 			err = -EINVAL;
3594 		else
3595 			tp->fastopen_no_cookie = val;
3596 		break;
3597 	case TCP_TIMESTAMP:
3598 		if (!tp->repair)
3599 			err = -EPERM;
3600 		else
3601 			tp->tsoffset = val - tcp_time_stamp_raw();
3602 		break;
3603 	case TCP_REPAIR_WINDOW:
3604 		err = tcp_repair_set_window(tp, optval, optlen);
3605 		break;
3606 	case TCP_NOTSENT_LOWAT:
3607 		tp->notsent_lowat = val;
3608 		sk->sk_write_space(sk);
3609 		break;
3610 	case TCP_INQ:
3611 		if (val > 1 || val < 0)
3612 			err = -EINVAL;
3613 		else
3614 			tp->recvmsg_inq = val;
3615 		break;
3616 	case TCP_TX_DELAY:
3617 		if (val)
3618 			tcp_enable_tx_delay();
3619 		tp->tcp_tx_delay = val;
3620 		break;
3621 	default:
3622 		err = -ENOPROTOOPT;
3623 		break;
3624 	}
3625 
3626 	release_sock(sk);
3627 	return err;
3628 }
3629 
3630 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3631 		   unsigned int optlen)
3632 {
3633 	const struct inet_connection_sock *icsk = inet_csk(sk);
3634 
3635 	if (level != SOL_TCP)
3636 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3637 						     optval, optlen);
3638 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3639 }
3640 EXPORT_SYMBOL(tcp_setsockopt);
3641 
3642 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3643 				      struct tcp_info *info)
3644 {
3645 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3646 	enum tcp_chrono i;
3647 
3648 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3649 		stats[i] = tp->chrono_stat[i - 1];
3650 		if (i == tp->chrono_type)
3651 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3652 		stats[i] *= USEC_PER_SEC / HZ;
3653 		total += stats[i];
3654 	}
3655 
3656 	info->tcpi_busy_time = total;
3657 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3658 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3659 }
3660 
3661 /* Return information about state of tcp endpoint in API format. */
3662 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3663 {
3664 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3665 	const struct inet_connection_sock *icsk = inet_csk(sk);
3666 	unsigned long rate;
3667 	u32 now;
3668 	u64 rate64;
3669 	bool slow;
3670 
3671 	memset(info, 0, sizeof(*info));
3672 	if (sk->sk_type != SOCK_STREAM)
3673 		return;
3674 
3675 	info->tcpi_state = inet_sk_state_load(sk);
3676 
3677 	/* Report meaningful fields for all TCP states, including listeners */
3678 	rate = READ_ONCE(sk->sk_pacing_rate);
3679 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3680 	info->tcpi_pacing_rate = rate64;
3681 
3682 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3683 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3684 	info->tcpi_max_pacing_rate = rate64;
3685 
3686 	info->tcpi_reordering = tp->reordering;
3687 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3688 
3689 	if (info->tcpi_state == TCP_LISTEN) {
3690 		/* listeners aliased fields :
3691 		 * tcpi_unacked -> Number of children ready for accept()
3692 		 * tcpi_sacked  -> max backlog
3693 		 */
3694 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3695 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3696 		return;
3697 	}
3698 
3699 	slow = lock_sock_fast(sk);
3700 
3701 	info->tcpi_ca_state = icsk->icsk_ca_state;
3702 	info->tcpi_retransmits = icsk->icsk_retransmits;
3703 	info->tcpi_probes = icsk->icsk_probes_out;
3704 	info->tcpi_backoff = icsk->icsk_backoff;
3705 
3706 	if (tp->rx_opt.tstamp_ok)
3707 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3708 	if (tcp_is_sack(tp))
3709 		info->tcpi_options |= TCPI_OPT_SACK;
3710 	if (tp->rx_opt.wscale_ok) {
3711 		info->tcpi_options |= TCPI_OPT_WSCALE;
3712 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3713 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3714 	}
3715 
3716 	if (tp->ecn_flags & TCP_ECN_OK)
3717 		info->tcpi_options |= TCPI_OPT_ECN;
3718 	if (tp->ecn_flags & TCP_ECN_SEEN)
3719 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3720 	if (tp->syn_data_acked)
3721 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3722 
3723 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3724 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3725 	info->tcpi_snd_mss = tp->mss_cache;
3726 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3727 
3728 	info->tcpi_unacked = tp->packets_out;
3729 	info->tcpi_sacked = tp->sacked_out;
3730 
3731 	info->tcpi_lost = tp->lost_out;
3732 	info->tcpi_retrans = tp->retrans_out;
3733 
3734 	now = tcp_jiffies32;
3735 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3736 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3737 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3738 
3739 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3740 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3741 	info->tcpi_rtt = tp->srtt_us >> 3;
3742 	info->tcpi_rttvar = tp->mdev_us >> 2;
3743 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3744 	info->tcpi_advmss = tp->advmss;
3745 
3746 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3747 	info->tcpi_rcv_space = tp->rcvq_space.space;
3748 
3749 	info->tcpi_total_retrans = tp->total_retrans;
3750 
3751 	info->tcpi_bytes_acked = tp->bytes_acked;
3752 	info->tcpi_bytes_received = tp->bytes_received;
3753 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3754 	tcp_get_info_chrono_stats(tp, info);
3755 
3756 	info->tcpi_segs_out = tp->segs_out;
3757 	info->tcpi_segs_in = tp->segs_in;
3758 
3759 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3760 	info->tcpi_data_segs_in = tp->data_segs_in;
3761 	info->tcpi_data_segs_out = tp->data_segs_out;
3762 
3763 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3764 	rate64 = tcp_compute_delivery_rate(tp);
3765 	if (rate64)
3766 		info->tcpi_delivery_rate = rate64;
3767 	info->tcpi_delivered = tp->delivered;
3768 	info->tcpi_delivered_ce = tp->delivered_ce;
3769 	info->tcpi_bytes_sent = tp->bytes_sent;
3770 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3771 	info->tcpi_dsack_dups = tp->dsack_dups;
3772 	info->tcpi_reord_seen = tp->reord_seen;
3773 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3774 	info->tcpi_snd_wnd = tp->snd_wnd;
3775 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3776 	unlock_sock_fast(sk, slow);
3777 }
3778 EXPORT_SYMBOL_GPL(tcp_get_info);
3779 
3780 static size_t tcp_opt_stats_get_size(void)
3781 {
3782 	return
3783 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3784 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3785 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3786 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3787 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3788 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3789 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3790 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3791 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3792 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3793 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3794 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3795 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3796 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3797 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3798 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3799 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3800 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3801 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3802 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3803 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3804 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3805 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3806 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3807 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3808 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3809 		0;
3810 }
3811 
3812 /* Returns TTL or hop limit of an incoming packet from skb. */
3813 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3814 {
3815 	if (skb->protocol == htons(ETH_P_IP))
3816 		return ip_hdr(skb)->ttl;
3817 	else if (skb->protocol == htons(ETH_P_IPV6))
3818 		return ipv6_hdr(skb)->hop_limit;
3819 	else
3820 		return 0;
3821 }
3822 
3823 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3824 					       const struct sk_buff *orig_skb,
3825 					       const struct sk_buff *ack_skb)
3826 {
3827 	const struct tcp_sock *tp = tcp_sk(sk);
3828 	struct sk_buff *stats;
3829 	struct tcp_info info;
3830 	unsigned long rate;
3831 	u64 rate64;
3832 
3833 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3834 	if (!stats)
3835 		return NULL;
3836 
3837 	tcp_get_info_chrono_stats(tp, &info);
3838 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3839 			  info.tcpi_busy_time, TCP_NLA_PAD);
3840 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3841 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3842 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3843 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3844 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3845 			  tp->data_segs_out, TCP_NLA_PAD);
3846 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3847 			  tp->total_retrans, TCP_NLA_PAD);
3848 
3849 	rate = READ_ONCE(sk->sk_pacing_rate);
3850 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3851 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3852 
3853 	rate64 = tcp_compute_delivery_rate(tp);
3854 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3855 
3856 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3857 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3858 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3859 
3860 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3861 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3862 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3863 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3864 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3865 
3866 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3867 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3868 
3869 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3870 			  TCP_NLA_PAD);
3871 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3872 			  TCP_NLA_PAD);
3873 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3874 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3875 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3876 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3877 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3878 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3879 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3880 			  TCP_NLA_PAD);
3881 	if (ack_skb)
3882 		nla_put_u8(stats, TCP_NLA_TTL,
3883 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3884 
3885 	return stats;
3886 }
3887 
3888 static int do_tcp_getsockopt(struct sock *sk, int level,
3889 		int optname, char __user *optval, int __user *optlen)
3890 {
3891 	struct inet_connection_sock *icsk = inet_csk(sk);
3892 	struct tcp_sock *tp = tcp_sk(sk);
3893 	struct net *net = sock_net(sk);
3894 	int val, len;
3895 
3896 	if (get_user(len, optlen))
3897 		return -EFAULT;
3898 
3899 	len = min_t(unsigned int, len, sizeof(int));
3900 
3901 	if (len < 0)
3902 		return -EINVAL;
3903 
3904 	switch (optname) {
3905 	case TCP_MAXSEG:
3906 		val = tp->mss_cache;
3907 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3908 			val = tp->rx_opt.user_mss;
3909 		if (tp->repair)
3910 			val = tp->rx_opt.mss_clamp;
3911 		break;
3912 	case TCP_NODELAY:
3913 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3914 		break;
3915 	case TCP_CORK:
3916 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3917 		break;
3918 	case TCP_KEEPIDLE:
3919 		val = keepalive_time_when(tp) / HZ;
3920 		break;
3921 	case TCP_KEEPINTVL:
3922 		val = keepalive_intvl_when(tp) / HZ;
3923 		break;
3924 	case TCP_KEEPCNT:
3925 		val = keepalive_probes(tp);
3926 		break;
3927 	case TCP_SYNCNT:
3928 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3929 		break;
3930 	case TCP_LINGER2:
3931 		val = tp->linger2;
3932 		if (val >= 0)
3933 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3934 		break;
3935 	case TCP_DEFER_ACCEPT:
3936 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3937 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3938 		break;
3939 	case TCP_WINDOW_CLAMP:
3940 		val = tp->window_clamp;
3941 		break;
3942 	case TCP_INFO: {
3943 		struct tcp_info info;
3944 
3945 		if (get_user(len, optlen))
3946 			return -EFAULT;
3947 
3948 		tcp_get_info(sk, &info);
3949 
3950 		len = min_t(unsigned int, len, sizeof(info));
3951 		if (put_user(len, optlen))
3952 			return -EFAULT;
3953 		if (copy_to_user(optval, &info, len))
3954 			return -EFAULT;
3955 		return 0;
3956 	}
3957 	case TCP_CC_INFO: {
3958 		const struct tcp_congestion_ops *ca_ops;
3959 		union tcp_cc_info info;
3960 		size_t sz = 0;
3961 		int attr;
3962 
3963 		if (get_user(len, optlen))
3964 			return -EFAULT;
3965 
3966 		ca_ops = icsk->icsk_ca_ops;
3967 		if (ca_ops && ca_ops->get_info)
3968 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3969 
3970 		len = min_t(unsigned int, len, sz);
3971 		if (put_user(len, optlen))
3972 			return -EFAULT;
3973 		if (copy_to_user(optval, &info, len))
3974 			return -EFAULT;
3975 		return 0;
3976 	}
3977 	case TCP_QUICKACK:
3978 		val = !inet_csk_in_pingpong_mode(sk);
3979 		break;
3980 
3981 	case TCP_CONGESTION:
3982 		if (get_user(len, optlen))
3983 			return -EFAULT;
3984 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3985 		if (put_user(len, optlen))
3986 			return -EFAULT;
3987 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3988 			return -EFAULT;
3989 		return 0;
3990 
3991 	case TCP_ULP:
3992 		if (get_user(len, optlen))
3993 			return -EFAULT;
3994 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3995 		if (!icsk->icsk_ulp_ops) {
3996 			if (put_user(0, optlen))
3997 				return -EFAULT;
3998 			return 0;
3999 		}
4000 		if (put_user(len, optlen))
4001 			return -EFAULT;
4002 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4003 			return -EFAULT;
4004 		return 0;
4005 
4006 	case TCP_FASTOPEN_KEY: {
4007 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4008 		unsigned int key_len;
4009 
4010 		if (get_user(len, optlen))
4011 			return -EFAULT;
4012 
4013 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4014 				TCP_FASTOPEN_KEY_LENGTH;
4015 		len = min_t(unsigned int, len, key_len);
4016 		if (put_user(len, optlen))
4017 			return -EFAULT;
4018 		if (copy_to_user(optval, key, len))
4019 			return -EFAULT;
4020 		return 0;
4021 	}
4022 	case TCP_THIN_LINEAR_TIMEOUTS:
4023 		val = tp->thin_lto;
4024 		break;
4025 
4026 	case TCP_THIN_DUPACK:
4027 		val = 0;
4028 		break;
4029 
4030 	case TCP_REPAIR:
4031 		val = tp->repair;
4032 		break;
4033 
4034 	case TCP_REPAIR_QUEUE:
4035 		if (tp->repair)
4036 			val = tp->repair_queue;
4037 		else
4038 			return -EINVAL;
4039 		break;
4040 
4041 	case TCP_REPAIR_WINDOW: {
4042 		struct tcp_repair_window opt;
4043 
4044 		if (get_user(len, optlen))
4045 			return -EFAULT;
4046 
4047 		if (len != sizeof(opt))
4048 			return -EINVAL;
4049 
4050 		if (!tp->repair)
4051 			return -EPERM;
4052 
4053 		opt.snd_wl1	= tp->snd_wl1;
4054 		opt.snd_wnd	= tp->snd_wnd;
4055 		opt.max_window	= tp->max_window;
4056 		opt.rcv_wnd	= tp->rcv_wnd;
4057 		opt.rcv_wup	= tp->rcv_wup;
4058 
4059 		if (copy_to_user(optval, &opt, len))
4060 			return -EFAULT;
4061 		return 0;
4062 	}
4063 	case TCP_QUEUE_SEQ:
4064 		if (tp->repair_queue == TCP_SEND_QUEUE)
4065 			val = tp->write_seq;
4066 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4067 			val = tp->rcv_nxt;
4068 		else
4069 			return -EINVAL;
4070 		break;
4071 
4072 	case TCP_USER_TIMEOUT:
4073 		val = icsk->icsk_user_timeout;
4074 		break;
4075 
4076 	case TCP_FASTOPEN:
4077 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4078 		break;
4079 
4080 	case TCP_FASTOPEN_CONNECT:
4081 		val = tp->fastopen_connect;
4082 		break;
4083 
4084 	case TCP_FASTOPEN_NO_COOKIE:
4085 		val = tp->fastopen_no_cookie;
4086 		break;
4087 
4088 	case TCP_TX_DELAY:
4089 		val = tp->tcp_tx_delay;
4090 		break;
4091 
4092 	case TCP_TIMESTAMP:
4093 		val = tcp_time_stamp_raw() + tp->tsoffset;
4094 		break;
4095 	case TCP_NOTSENT_LOWAT:
4096 		val = tp->notsent_lowat;
4097 		break;
4098 	case TCP_INQ:
4099 		val = tp->recvmsg_inq;
4100 		break;
4101 	case TCP_SAVE_SYN:
4102 		val = tp->save_syn;
4103 		break;
4104 	case TCP_SAVED_SYN: {
4105 		if (get_user(len, optlen))
4106 			return -EFAULT;
4107 
4108 		lock_sock(sk);
4109 		if (tp->saved_syn) {
4110 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4111 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4112 					     optlen)) {
4113 					release_sock(sk);
4114 					return -EFAULT;
4115 				}
4116 				release_sock(sk);
4117 				return -EINVAL;
4118 			}
4119 			len = tcp_saved_syn_len(tp->saved_syn);
4120 			if (put_user(len, optlen)) {
4121 				release_sock(sk);
4122 				return -EFAULT;
4123 			}
4124 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4125 				release_sock(sk);
4126 				return -EFAULT;
4127 			}
4128 			tcp_saved_syn_free(tp);
4129 			release_sock(sk);
4130 		} else {
4131 			release_sock(sk);
4132 			len = 0;
4133 			if (put_user(len, optlen))
4134 				return -EFAULT;
4135 		}
4136 		return 0;
4137 	}
4138 #ifdef CONFIG_MMU
4139 	case TCP_ZEROCOPY_RECEIVE: {
4140 		struct scm_timestamping_internal tss;
4141 		struct tcp_zerocopy_receive zc = {};
4142 		int err;
4143 
4144 		if (get_user(len, optlen))
4145 			return -EFAULT;
4146 		if (len < 0 ||
4147 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4148 			return -EINVAL;
4149 		if (unlikely(len > sizeof(zc))) {
4150 			err = check_zeroed_user(optval + sizeof(zc),
4151 						len - sizeof(zc));
4152 			if (err < 1)
4153 				return err == 0 ? -EINVAL : err;
4154 			len = sizeof(zc);
4155 			if (put_user(len, optlen))
4156 				return -EFAULT;
4157 		}
4158 		if (copy_from_user(&zc, optval, len))
4159 			return -EFAULT;
4160 		if (zc.reserved)
4161 			return -EINVAL;
4162 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4163 			return -EINVAL;
4164 		lock_sock(sk);
4165 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4166 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4167 							  &zc, &len, err);
4168 		release_sock(sk);
4169 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4170 			goto zerocopy_rcv_cmsg;
4171 		switch (len) {
4172 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4173 			goto zerocopy_rcv_cmsg;
4174 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4175 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4176 		case offsetofend(struct tcp_zerocopy_receive, flags):
4177 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4178 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4179 		case offsetofend(struct tcp_zerocopy_receive, err):
4180 			goto zerocopy_rcv_sk_err;
4181 		case offsetofend(struct tcp_zerocopy_receive, inq):
4182 			goto zerocopy_rcv_inq;
4183 		case offsetofend(struct tcp_zerocopy_receive, length):
4184 		default:
4185 			goto zerocopy_rcv_out;
4186 		}
4187 zerocopy_rcv_cmsg:
4188 		if (zc.msg_flags & TCP_CMSG_TS)
4189 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4190 		else
4191 			zc.msg_flags = 0;
4192 zerocopy_rcv_sk_err:
4193 		if (!err)
4194 			zc.err = sock_error(sk);
4195 zerocopy_rcv_inq:
4196 		zc.inq = tcp_inq_hint(sk);
4197 zerocopy_rcv_out:
4198 		if (!err && copy_to_user(optval, &zc, len))
4199 			err = -EFAULT;
4200 		return err;
4201 	}
4202 #endif
4203 	default:
4204 		return -ENOPROTOOPT;
4205 	}
4206 
4207 	if (put_user(len, optlen))
4208 		return -EFAULT;
4209 	if (copy_to_user(optval, &val, len))
4210 		return -EFAULT;
4211 	return 0;
4212 }
4213 
4214 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4215 {
4216 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4217 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4218 	 */
4219 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4220 		return true;
4221 
4222 	return false;
4223 }
4224 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4225 
4226 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4227 		   int __user *optlen)
4228 {
4229 	struct inet_connection_sock *icsk = inet_csk(sk);
4230 
4231 	if (level != SOL_TCP)
4232 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4233 						     optval, optlen);
4234 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4235 }
4236 EXPORT_SYMBOL(tcp_getsockopt);
4237 
4238 #ifdef CONFIG_TCP_MD5SIG
4239 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4240 static DEFINE_MUTEX(tcp_md5sig_mutex);
4241 static bool tcp_md5sig_pool_populated = false;
4242 
4243 static void __tcp_alloc_md5sig_pool(void)
4244 {
4245 	struct crypto_ahash *hash;
4246 	int cpu;
4247 
4248 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4249 	if (IS_ERR(hash))
4250 		return;
4251 
4252 	for_each_possible_cpu(cpu) {
4253 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4254 		struct ahash_request *req;
4255 
4256 		if (!scratch) {
4257 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4258 					       sizeof(struct tcphdr),
4259 					       GFP_KERNEL,
4260 					       cpu_to_node(cpu));
4261 			if (!scratch)
4262 				return;
4263 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4264 		}
4265 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4266 			continue;
4267 
4268 		req = ahash_request_alloc(hash, GFP_KERNEL);
4269 		if (!req)
4270 			return;
4271 
4272 		ahash_request_set_callback(req, 0, NULL, NULL);
4273 
4274 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4275 	}
4276 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4277 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4278 	 */
4279 	smp_wmb();
4280 	tcp_md5sig_pool_populated = true;
4281 }
4282 
4283 bool tcp_alloc_md5sig_pool(void)
4284 {
4285 	if (unlikely(!tcp_md5sig_pool_populated)) {
4286 		mutex_lock(&tcp_md5sig_mutex);
4287 
4288 		if (!tcp_md5sig_pool_populated) {
4289 			__tcp_alloc_md5sig_pool();
4290 			if (tcp_md5sig_pool_populated)
4291 				static_branch_inc(&tcp_md5_needed);
4292 		}
4293 
4294 		mutex_unlock(&tcp_md5sig_mutex);
4295 	}
4296 	return tcp_md5sig_pool_populated;
4297 }
4298 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4299 
4300 
4301 /**
4302  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4303  *
4304  *	We use percpu structure, so if we succeed, we exit with preemption
4305  *	and BH disabled, to make sure another thread or softirq handling
4306  *	wont try to get same context.
4307  */
4308 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4309 {
4310 	local_bh_disable();
4311 
4312 	if (tcp_md5sig_pool_populated) {
4313 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4314 		smp_rmb();
4315 		return this_cpu_ptr(&tcp_md5sig_pool);
4316 	}
4317 	local_bh_enable();
4318 	return NULL;
4319 }
4320 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4321 
4322 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4323 			  const struct sk_buff *skb, unsigned int header_len)
4324 {
4325 	struct scatterlist sg;
4326 	const struct tcphdr *tp = tcp_hdr(skb);
4327 	struct ahash_request *req = hp->md5_req;
4328 	unsigned int i;
4329 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4330 					   skb_headlen(skb) - header_len : 0;
4331 	const struct skb_shared_info *shi = skb_shinfo(skb);
4332 	struct sk_buff *frag_iter;
4333 
4334 	sg_init_table(&sg, 1);
4335 
4336 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4337 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4338 	if (crypto_ahash_update(req))
4339 		return 1;
4340 
4341 	for (i = 0; i < shi->nr_frags; ++i) {
4342 		const skb_frag_t *f = &shi->frags[i];
4343 		unsigned int offset = skb_frag_off(f);
4344 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4345 
4346 		sg_set_page(&sg, page, skb_frag_size(f),
4347 			    offset_in_page(offset));
4348 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4349 		if (crypto_ahash_update(req))
4350 			return 1;
4351 	}
4352 
4353 	skb_walk_frags(skb, frag_iter)
4354 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4355 			return 1;
4356 
4357 	return 0;
4358 }
4359 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4360 
4361 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4362 {
4363 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4364 	struct scatterlist sg;
4365 
4366 	sg_init_one(&sg, key->key, keylen);
4367 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4368 
4369 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4370 	return data_race(crypto_ahash_update(hp->md5_req));
4371 }
4372 EXPORT_SYMBOL(tcp_md5_hash_key);
4373 
4374 #endif
4375 
4376 void tcp_done(struct sock *sk)
4377 {
4378 	struct request_sock *req;
4379 
4380 	/* We might be called with a new socket, after
4381 	 * inet_csk_prepare_forced_close() has been called
4382 	 * so we can not use lockdep_sock_is_held(sk)
4383 	 */
4384 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4385 
4386 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4387 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4388 
4389 	tcp_set_state(sk, TCP_CLOSE);
4390 	tcp_clear_xmit_timers(sk);
4391 	if (req)
4392 		reqsk_fastopen_remove(sk, req, false);
4393 
4394 	sk->sk_shutdown = SHUTDOWN_MASK;
4395 
4396 	if (!sock_flag(sk, SOCK_DEAD))
4397 		sk->sk_state_change(sk);
4398 	else
4399 		inet_csk_destroy_sock(sk);
4400 }
4401 EXPORT_SYMBOL_GPL(tcp_done);
4402 
4403 int tcp_abort(struct sock *sk, int err)
4404 {
4405 	if (!sk_fullsock(sk)) {
4406 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4407 			struct request_sock *req = inet_reqsk(sk);
4408 
4409 			local_bh_disable();
4410 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4411 			local_bh_enable();
4412 			return 0;
4413 		}
4414 		return -EOPNOTSUPP;
4415 	}
4416 
4417 	/* Don't race with userspace socket closes such as tcp_close. */
4418 	lock_sock(sk);
4419 
4420 	if (sk->sk_state == TCP_LISTEN) {
4421 		tcp_set_state(sk, TCP_CLOSE);
4422 		inet_csk_listen_stop(sk);
4423 	}
4424 
4425 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4426 	local_bh_disable();
4427 	bh_lock_sock(sk);
4428 
4429 	if (!sock_flag(sk, SOCK_DEAD)) {
4430 		sk->sk_err = err;
4431 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4432 		smp_wmb();
4433 		sk_error_report(sk);
4434 		if (tcp_need_reset(sk->sk_state))
4435 			tcp_send_active_reset(sk, GFP_ATOMIC);
4436 		tcp_done(sk);
4437 	}
4438 
4439 	bh_unlock_sock(sk);
4440 	local_bh_enable();
4441 	tcp_write_queue_purge(sk);
4442 	release_sock(sk);
4443 	return 0;
4444 }
4445 EXPORT_SYMBOL_GPL(tcp_abort);
4446 
4447 extern struct tcp_congestion_ops tcp_reno;
4448 
4449 static __initdata unsigned long thash_entries;
4450 static int __init set_thash_entries(char *str)
4451 {
4452 	ssize_t ret;
4453 
4454 	if (!str)
4455 		return 0;
4456 
4457 	ret = kstrtoul(str, 0, &thash_entries);
4458 	if (ret)
4459 		return 0;
4460 
4461 	return 1;
4462 }
4463 __setup("thash_entries=", set_thash_entries);
4464 
4465 static void __init tcp_init_mem(void)
4466 {
4467 	unsigned long limit = nr_free_buffer_pages() / 16;
4468 
4469 	limit = max(limit, 128UL);
4470 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4471 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4472 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4473 }
4474 
4475 void __init tcp_init(void)
4476 {
4477 	int max_rshare, max_wshare, cnt;
4478 	unsigned long limit;
4479 	unsigned int i;
4480 
4481 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4482 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4483 		     sizeof_field(struct sk_buff, cb));
4484 
4485 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4486 
4487 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4488 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4489 
4490 	inet_hashinfo_init(&tcp_hashinfo);
4491 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4492 			    thash_entries, 21,  /* one slot per 2 MB*/
4493 			    0, 64 * 1024);
4494 	tcp_hashinfo.bind_bucket_cachep =
4495 		kmem_cache_create("tcp_bind_bucket",
4496 				  sizeof(struct inet_bind_bucket), 0,
4497 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4498 				  SLAB_ACCOUNT,
4499 				  NULL);
4500 
4501 	/* Size and allocate the main established and bind bucket
4502 	 * hash tables.
4503 	 *
4504 	 * The methodology is similar to that of the buffer cache.
4505 	 */
4506 	tcp_hashinfo.ehash =
4507 		alloc_large_system_hash("TCP established",
4508 					sizeof(struct inet_ehash_bucket),
4509 					thash_entries,
4510 					17, /* one slot per 128 KB of memory */
4511 					0,
4512 					NULL,
4513 					&tcp_hashinfo.ehash_mask,
4514 					0,
4515 					thash_entries ? 0 : 512 * 1024);
4516 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4517 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4518 
4519 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4520 		panic("TCP: failed to alloc ehash_locks");
4521 	tcp_hashinfo.bhash =
4522 		alloc_large_system_hash("TCP bind",
4523 					sizeof(struct inet_bind_hashbucket),
4524 					tcp_hashinfo.ehash_mask + 1,
4525 					17, /* one slot per 128 KB of memory */
4526 					0,
4527 					&tcp_hashinfo.bhash_size,
4528 					NULL,
4529 					0,
4530 					64 * 1024);
4531 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4532 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4533 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4534 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4535 	}
4536 
4537 
4538 	cnt = tcp_hashinfo.ehash_mask + 1;
4539 	sysctl_tcp_max_orphans = cnt / 2;
4540 
4541 	tcp_init_mem();
4542 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4543 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4544 	max_wshare = min(4UL*1024*1024, limit);
4545 	max_rshare = min(6UL*1024*1024, limit);
4546 
4547 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4548 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4549 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4550 
4551 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4552 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4553 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4554 
4555 	pr_info("Hash tables configured (established %u bind %u)\n",
4556 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4557 
4558 	tcp_v4_init();
4559 	tcp_metrics_init();
4560 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4561 	tcp_tasklet_init();
4562 	mptcp_init();
4563 }
4564