1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 #include <linux/btf.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/mptcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 /* Track pending CMSGs. */ 285 enum { 286 TCP_CMSG_INQ = 1, 287 TCP_CMSG_TS = 2 288 }; 289 290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 EXPORT_SYMBOL(sysctl_tcp_mem); 295 296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 297 EXPORT_SYMBOL(tcp_memory_allocated); 298 299 #if IS_ENABLED(CONFIG_SMC) 300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 301 EXPORT_SYMBOL(tcp_have_smc); 302 #endif 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 unsigned long tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 327 328 void tcp_enter_memory_pressure(struct sock *sk) 329 { 330 unsigned long val; 331 332 if (READ_ONCE(tcp_memory_pressure)) 333 return; 334 val = jiffies; 335 336 if (!val) 337 val--; 338 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 340 } 341 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 342 343 void tcp_leave_memory_pressure(struct sock *sk) 344 { 345 unsigned long val; 346 347 if (!READ_ONCE(tcp_memory_pressure)) 348 return; 349 val = xchg(&tcp_memory_pressure, 0); 350 if (val) 351 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 352 jiffies_to_msecs(jiffies - val)); 353 } 354 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 355 356 /* Convert seconds to retransmits based on initial and max timeout */ 357 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 358 { 359 u8 res = 0; 360 361 if (seconds > 0) { 362 int period = timeout; 363 364 res = 1; 365 while (seconds > period && res < 255) { 366 res++; 367 timeout <<= 1; 368 if (timeout > rto_max) 369 timeout = rto_max; 370 period += timeout; 371 } 372 } 373 return res; 374 } 375 376 /* Convert retransmits to seconds based on initial and max timeout */ 377 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 378 { 379 int period = 0; 380 381 if (retrans > 0) { 382 period = timeout; 383 while (--retrans) { 384 timeout <<= 1; 385 if (timeout > rto_max) 386 timeout = rto_max; 387 period += timeout; 388 } 389 } 390 return period; 391 } 392 393 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 394 { 395 u32 rate = READ_ONCE(tp->rate_delivered); 396 u32 intv = READ_ONCE(tp->rate_interval_us); 397 u64 rate64 = 0; 398 399 if (rate && intv) { 400 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 401 do_div(rate64, intv); 402 } 403 return rate64; 404 } 405 406 /* Address-family independent initialization for a tcp_sock. 407 * 408 * NOTE: A lot of things set to zero explicitly by call to 409 * sk_alloc() so need not be done here. 410 */ 411 void tcp_init_sock(struct sock *sk) 412 { 413 struct inet_connection_sock *icsk = inet_csk(sk); 414 struct tcp_sock *tp = tcp_sk(sk); 415 416 tp->out_of_order_queue = RB_ROOT; 417 sk->tcp_rtx_queue = RB_ROOT; 418 tcp_init_xmit_timers(sk); 419 INIT_LIST_HEAD(&tp->tsq_node); 420 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 421 422 icsk->icsk_rto = TCP_TIMEOUT_INIT; 423 icsk->icsk_rto_min = TCP_RTO_MIN; 424 icsk->icsk_delack_max = TCP_DELACK_MAX; 425 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 426 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 427 428 /* So many TCP implementations out there (incorrectly) count the 429 * initial SYN frame in their delayed-ACK and congestion control 430 * algorithms that we must have the following bandaid to talk 431 * efficiently to them. -DaveM 432 */ 433 tp->snd_cwnd = TCP_INIT_CWND; 434 435 /* There's a bubble in the pipe until at least the first ACK. */ 436 tp->app_limited = ~0U; 437 438 /* See draft-stevens-tcpca-spec-01 for discussion of the 439 * initialization of these values. 440 */ 441 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 442 tp->snd_cwnd_clamp = ~0; 443 tp->mss_cache = TCP_MSS_DEFAULT; 444 445 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 446 tcp_assign_congestion_control(sk); 447 448 tp->tsoffset = 0; 449 tp->rack.reo_wnd_steps = 1; 450 451 sk->sk_write_space = sk_stream_write_space; 452 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 453 454 icsk->icsk_sync_mss = tcp_sync_mss; 455 456 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 457 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 458 459 sk_sockets_allocated_inc(sk); 460 sk->sk_route_forced_caps = NETIF_F_GSO; 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 551 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE) && 553 tp->urg_data) 554 target++; 555 556 if (tcp_stream_is_readable(sk, target)) 557 mask |= EPOLLIN | EPOLLRDNORM; 558 559 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 560 if (__sk_stream_is_writeable(sk, 1)) { 561 mask |= EPOLLOUT | EPOLLWRNORM; 562 } else { /* send SIGIO later */ 563 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 564 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 565 566 /* Race breaker. If space is freed after 567 * wspace test but before the flags are set, 568 * IO signal will be lost. Memory barrier 569 * pairs with the input side. 570 */ 571 smp_mb__after_atomic(); 572 if (__sk_stream_is_writeable(sk, 1)) 573 mask |= EPOLLOUT | EPOLLWRNORM; 574 } 575 } else 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 578 if (tp->urg_data & TCP_URG_VALID) 579 mask |= EPOLLPRI; 580 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 581 /* Active TCP fastopen socket with defer_connect 582 * Return EPOLLOUT so application can call write() 583 * in order for kernel to generate SYN+data 584 */ 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 } 587 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 588 smp_rmb(); 589 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 590 mask |= EPOLLERR; 591 592 return mask; 593 } 594 EXPORT_SYMBOL(tcp_poll); 595 596 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 597 { 598 struct tcp_sock *tp = tcp_sk(sk); 599 int answ; 600 bool slow; 601 602 switch (cmd) { 603 case SIOCINQ: 604 if (sk->sk_state == TCP_LISTEN) 605 return -EINVAL; 606 607 slow = lock_sock_fast(sk); 608 answ = tcp_inq(sk); 609 unlock_sock_fast(sk, slow); 610 break; 611 case SIOCATMARK: 612 answ = tp->urg_data && 613 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 614 break; 615 case SIOCOUTQ: 616 if (sk->sk_state == TCP_LISTEN) 617 return -EINVAL; 618 619 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 620 answ = 0; 621 else 622 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 623 break; 624 case SIOCOUTQNSD: 625 if (sk->sk_state == TCP_LISTEN) 626 return -EINVAL; 627 628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 629 answ = 0; 630 else 631 answ = READ_ONCE(tp->write_seq) - 632 READ_ONCE(tp->snd_nxt); 633 break; 634 default: 635 return -ENOIOCTLCMD; 636 } 637 638 return put_user(answ, (int __user *)arg); 639 } 640 EXPORT_SYMBOL(tcp_ioctl); 641 642 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 643 { 644 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 645 tp->pushed_seq = tp->write_seq; 646 } 647 648 static inline bool forced_push(const struct tcp_sock *tp) 649 { 650 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 651 } 652 653 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 654 { 655 struct tcp_sock *tp = tcp_sk(sk); 656 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 657 658 tcb->seq = tcb->end_seq = tp->write_seq; 659 tcb->tcp_flags = TCPHDR_ACK; 660 __skb_header_release(skb); 661 tcp_add_write_queue_tail(sk, skb); 662 sk_wmem_queued_add(sk, skb->truesize); 663 sk_mem_charge(sk, skb->truesize); 664 if (tp->nonagle & TCP_NAGLE_PUSH) 665 tp->nonagle &= ~TCP_NAGLE_PUSH; 666 667 tcp_slow_start_after_idle_check(sk); 668 } 669 670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 671 { 672 if (flags & MSG_OOB) 673 tp->snd_up = tp->write_seq; 674 } 675 676 /* If a not yet filled skb is pushed, do not send it if 677 * we have data packets in Qdisc or NIC queues : 678 * Because TX completion will happen shortly, it gives a chance 679 * to coalesce future sendmsg() payload into this skb, without 680 * need for a timer, and with no latency trade off. 681 * As packets containing data payload have a bigger truesize 682 * than pure acks (dataless) packets, the last checks prevent 683 * autocorking if we only have an ACK in Qdisc/NIC queues, 684 * or if TX completion was delayed after we processed ACK packet. 685 */ 686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 687 int size_goal) 688 { 689 return skb->len < size_goal && 690 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 691 !tcp_rtx_queue_empty(sk) && 692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 693 } 694 695 void tcp_push(struct sock *sk, int flags, int mss_now, 696 int nonagle, int size_goal) 697 { 698 struct tcp_sock *tp = tcp_sk(sk); 699 struct sk_buff *skb; 700 701 skb = tcp_write_queue_tail(sk); 702 if (!skb) 703 return; 704 if (!(flags & MSG_MORE) || forced_push(tp)) 705 tcp_mark_push(tp, skb); 706 707 tcp_mark_urg(tp, flags); 708 709 if (tcp_should_autocork(sk, skb, size_goal)) { 710 711 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 715 } 716 /* It is possible TX completion already happened 717 * before we set TSQ_THROTTLED. 718 */ 719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 720 return; 721 } 722 723 if (flags & MSG_MORE) 724 nonagle = TCP_NAGLE_CORK; 725 726 __tcp_push_pending_frames(sk, mss_now, nonagle); 727 } 728 729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 730 unsigned int offset, size_t len) 731 { 732 struct tcp_splice_state *tss = rd_desc->arg.data; 733 int ret; 734 735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 736 min(rd_desc->count, len), tss->flags); 737 if (ret > 0) 738 rd_desc->count -= ret; 739 return ret; 740 } 741 742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 743 { 744 /* Store TCP splice context information in read_descriptor_t. */ 745 read_descriptor_t rd_desc = { 746 .arg.data = tss, 747 .count = tss->len, 748 }; 749 750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 751 } 752 753 /** 754 * tcp_splice_read - splice data from TCP socket to a pipe 755 * @sock: socket to splice from 756 * @ppos: position (not valid) 757 * @pipe: pipe to splice to 758 * @len: number of bytes to splice 759 * @flags: splice modifier flags 760 * 761 * Description: 762 * Will read pages from given socket and fill them into a pipe. 763 * 764 **/ 765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 766 struct pipe_inode_info *pipe, size_t len, 767 unsigned int flags) 768 { 769 struct sock *sk = sock->sk; 770 struct tcp_splice_state tss = { 771 .pipe = pipe, 772 .len = len, 773 .flags = flags, 774 }; 775 long timeo; 776 ssize_t spliced; 777 int ret; 778 779 sock_rps_record_flow(sk); 780 /* 781 * We can't seek on a socket input 782 */ 783 if (unlikely(*ppos)) 784 return -ESPIPE; 785 786 ret = spliced = 0; 787 788 lock_sock(sk); 789 790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 791 while (tss.len) { 792 ret = __tcp_splice_read(sk, &tss); 793 if (ret < 0) 794 break; 795 else if (!ret) { 796 if (spliced) 797 break; 798 if (sock_flag(sk, SOCK_DONE)) 799 break; 800 if (sk->sk_err) { 801 ret = sock_error(sk); 802 break; 803 } 804 if (sk->sk_shutdown & RCV_SHUTDOWN) 805 break; 806 if (sk->sk_state == TCP_CLOSE) { 807 /* 808 * This occurs when user tries to read 809 * from never connected socket. 810 */ 811 ret = -ENOTCONN; 812 break; 813 } 814 if (!timeo) { 815 ret = -EAGAIN; 816 break; 817 } 818 /* if __tcp_splice_read() got nothing while we have 819 * an skb in receive queue, we do not want to loop. 820 * This might happen with URG data. 821 */ 822 if (!skb_queue_empty(&sk->sk_receive_queue)) 823 break; 824 sk_wait_data(sk, &timeo, NULL); 825 if (signal_pending(current)) { 826 ret = sock_intr_errno(timeo); 827 break; 828 } 829 continue; 830 } 831 tss.len -= ret; 832 spliced += ret; 833 834 if (!timeo) 835 break; 836 release_sock(sk); 837 lock_sock(sk); 838 839 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 840 (sk->sk_shutdown & RCV_SHUTDOWN) || 841 signal_pending(current)) 842 break; 843 } 844 845 release_sock(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (unlikely(tcp_under_memory_pressure(sk))) 860 sk_mem_reclaim_partial(sk); 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 897 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 898 899 /* We try hard to avoid divides here */ 900 size_goal = tp->gso_segs * mss_now; 901 if (unlikely(new_size_goal < size_goal || 902 new_size_goal >= size_goal + mss_now)) { 903 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 904 sk->sk_gso_max_segs); 905 size_goal = tp->gso_segs * mss_now; 906 } 907 908 return max(size_goal, mss_now); 909 } 910 911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 912 { 913 int mss_now; 914 915 mss_now = tcp_current_mss(sk); 916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 917 918 return mss_now; 919 } 920 921 /* In some cases, both sendpage() and sendmsg() could have added 922 * an skb to the write queue, but failed adding payload on it. 923 * We need to remove it to consume less memory, but more 924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 925 * users. 926 */ 927 void tcp_remove_empty_skb(struct sock *sk) 928 { 929 struct sk_buff *skb = tcp_write_queue_tail(sk); 930 931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 932 tcp_unlink_write_queue(skb, sk); 933 if (tcp_write_queue_empty(sk)) 934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 935 sk_wmem_free_skb(sk, skb); 936 } 937 } 938 939 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 940 struct page *page, int offset, size_t *size) 941 { 942 struct sk_buff *skb = tcp_write_queue_tail(sk); 943 struct tcp_sock *tp = tcp_sk(sk); 944 bool can_coalesce; 945 int copy, i; 946 947 if (!skb || (copy = size_goal - skb->len) <= 0 || 948 !tcp_skb_can_collapse_to(skb)) { 949 new_segment: 950 if (!sk_stream_memory_free(sk)) 951 return NULL; 952 953 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 954 tcp_rtx_and_write_queues_empty(sk)); 955 if (!skb) 956 return NULL; 957 958 #ifdef CONFIG_TLS_DEVICE 959 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 960 #endif 961 tcp_skb_entail(sk, skb); 962 copy = size_goal; 963 } 964 965 if (copy > *size) 966 copy = *size; 967 968 i = skb_shinfo(skb)->nr_frags; 969 can_coalesce = skb_can_coalesce(skb, i, page, offset); 970 if (!can_coalesce && i >= sysctl_max_skb_frags) { 971 tcp_mark_push(tp, skb); 972 goto new_segment; 973 } 974 if (!sk_wmem_schedule(sk, copy)) 975 return NULL; 976 977 if (can_coalesce) { 978 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 979 } else { 980 get_page(page); 981 skb_fill_page_desc(skb, i, page, offset, copy); 982 } 983 984 if (!(flags & MSG_NO_SHARED_FRAGS)) 985 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 986 987 skb->len += copy; 988 skb->data_len += copy; 989 skb->truesize += copy; 990 sk_wmem_queued_add(sk, copy); 991 sk_mem_charge(sk, copy); 992 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 993 TCP_SKB_CB(skb)->end_seq += copy; 994 tcp_skb_pcount_set(skb, 0); 995 996 *size = copy; 997 return skb; 998 } 999 1000 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1001 size_t size, int flags) 1002 { 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 int mss_now, size_goal; 1005 int err; 1006 ssize_t copied; 1007 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1008 1009 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1010 WARN_ONCE(!sendpage_ok(page), 1011 "page must not be a Slab one and have page_count > 0")) 1012 return -EINVAL; 1013 1014 /* Wait for a connection to finish. One exception is TCP Fast Open 1015 * (passive side) where data is allowed to be sent before a connection 1016 * is fully established. 1017 */ 1018 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1019 !tcp_passive_fastopen(sk)) { 1020 err = sk_stream_wait_connect(sk, &timeo); 1021 if (err != 0) 1022 goto out_err; 1023 } 1024 1025 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1026 1027 mss_now = tcp_send_mss(sk, &size_goal, flags); 1028 copied = 0; 1029 1030 err = -EPIPE; 1031 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1032 goto out_err; 1033 1034 while (size > 0) { 1035 struct sk_buff *skb; 1036 size_t copy = size; 1037 1038 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1039 if (!skb) 1040 goto wait_for_space; 1041 1042 if (!copied) 1043 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1044 1045 copied += copy; 1046 offset += copy; 1047 size -= copy; 1048 if (!size) 1049 goto out; 1050 1051 if (skb->len < size_goal || (flags & MSG_OOB)) 1052 continue; 1053 1054 if (forced_push(tp)) { 1055 tcp_mark_push(tp, skb); 1056 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1057 } else if (skb == tcp_send_head(sk)) 1058 tcp_push_one(sk, mss_now); 1059 continue; 1060 1061 wait_for_space: 1062 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1063 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1064 TCP_NAGLE_PUSH, size_goal); 1065 1066 err = sk_stream_wait_memory(sk, &timeo); 1067 if (err != 0) 1068 goto do_error; 1069 1070 mss_now = tcp_send_mss(sk, &size_goal, flags); 1071 } 1072 1073 out: 1074 if (copied) { 1075 tcp_tx_timestamp(sk, sk->sk_tsflags); 1076 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1077 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1078 } 1079 return copied; 1080 1081 do_error: 1082 tcp_remove_empty_skb(sk); 1083 if (copied) 1084 goto out; 1085 out_err: 1086 /* make sure we wake any epoll edge trigger waiter */ 1087 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1088 sk->sk_write_space(sk); 1089 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1090 } 1091 return sk_stream_error(sk, flags, err); 1092 } 1093 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1094 1095 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1096 size_t size, int flags) 1097 { 1098 if (!(sk->sk_route_caps & NETIF_F_SG)) 1099 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1100 1101 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1102 1103 return do_tcp_sendpages(sk, page, offset, size, flags); 1104 } 1105 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1106 1107 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1108 size_t size, int flags) 1109 { 1110 int ret; 1111 1112 lock_sock(sk); 1113 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1114 release_sock(sk); 1115 1116 return ret; 1117 } 1118 EXPORT_SYMBOL(tcp_sendpage); 1119 1120 void tcp_free_fastopen_req(struct tcp_sock *tp) 1121 { 1122 if (tp->fastopen_req) { 1123 kfree(tp->fastopen_req); 1124 tp->fastopen_req = NULL; 1125 } 1126 } 1127 1128 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1129 int *copied, size_t size, 1130 struct ubuf_info *uarg) 1131 { 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 struct inet_sock *inet = inet_sk(sk); 1134 struct sockaddr *uaddr = msg->msg_name; 1135 int err, flags; 1136 1137 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1138 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1139 uaddr->sa_family == AF_UNSPEC)) 1140 return -EOPNOTSUPP; 1141 if (tp->fastopen_req) 1142 return -EALREADY; /* Another Fast Open is in progress */ 1143 1144 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1145 sk->sk_allocation); 1146 if (unlikely(!tp->fastopen_req)) 1147 return -ENOBUFS; 1148 tp->fastopen_req->data = msg; 1149 tp->fastopen_req->size = size; 1150 tp->fastopen_req->uarg = uarg; 1151 1152 if (inet->defer_connect) { 1153 err = tcp_connect(sk); 1154 /* Same failure procedure as in tcp_v4/6_connect */ 1155 if (err) { 1156 tcp_set_state(sk, TCP_CLOSE); 1157 inet->inet_dport = 0; 1158 sk->sk_route_caps = 0; 1159 } 1160 } 1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1162 err = __inet_stream_connect(sk->sk_socket, uaddr, 1163 msg->msg_namelen, flags, 1); 1164 /* fastopen_req could already be freed in __inet_stream_connect 1165 * if the connection times out or gets rst 1166 */ 1167 if (tp->fastopen_req) { 1168 *copied = tp->fastopen_req->copied; 1169 tcp_free_fastopen_req(tp); 1170 inet->defer_connect = 0; 1171 } 1172 return err; 1173 } 1174 1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1176 { 1177 struct tcp_sock *tp = tcp_sk(sk); 1178 struct ubuf_info *uarg = NULL; 1179 struct sk_buff *skb; 1180 struct sockcm_cookie sockc; 1181 int flags, err, copied = 0; 1182 int mss_now = 0, size_goal, copied_syn = 0; 1183 int process_backlog = 0; 1184 bool zc = false; 1185 long timeo; 1186 1187 flags = msg->msg_flags; 1188 1189 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1190 skb = tcp_write_queue_tail(sk); 1191 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1192 if (!uarg) { 1193 err = -ENOBUFS; 1194 goto out_err; 1195 } 1196 1197 zc = sk->sk_route_caps & NETIF_F_SG; 1198 if (!zc) 1199 uarg->zerocopy = 0; 1200 } 1201 1202 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1203 !tp->repair) { 1204 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1205 if (err == -EINPROGRESS && copied_syn > 0) 1206 goto out; 1207 else if (err) 1208 goto out_err; 1209 } 1210 1211 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1212 1213 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1214 1215 /* Wait for a connection to finish. One exception is TCP Fast Open 1216 * (passive side) where data is allowed to be sent before a connection 1217 * is fully established. 1218 */ 1219 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1220 !tcp_passive_fastopen(sk)) { 1221 err = sk_stream_wait_connect(sk, &timeo); 1222 if (err != 0) 1223 goto do_error; 1224 } 1225 1226 if (unlikely(tp->repair)) { 1227 if (tp->repair_queue == TCP_RECV_QUEUE) { 1228 copied = tcp_send_rcvq(sk, msg, size); 1229 goto out_nopush; 1230 } 1231 1232 err = -EINVAL; 1233 if (tp->repair_queue == TCP_NO_QUEUE) 1234 goto out_err; 1235 1236 /* 'common' sending to sendq */ 1237 } 1238 1239 sockcm_init(&sockc, sk); 1240 if (msg->msg_controllen) { 1241 err = sock_cmsg_send(sk, msg, &sockc); 1242 if (unlikely(err)) { 1243 err = -EINVAL; 1244 goto out_err; 1245 } 1246 } 1247 1248 /* This should be in poll */ 1249 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1250 1251 /* Ok commence sending. */ 1252 copied = 0; 1253 1254 restart: 1255 mss_now = tcp_send_mss(sk, &size_goal, flags); 1256 1257 err = -EPIPE; 1258 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1259 goto do_error; 1260 1261 while (msg_data_left(msg)) { 1262 int copy = 0; 1263 1264 skb = tcp_write_queue_tail(sk); 1265 if (skb) 1266 copy = size_goal - skb->len; 1267 1268 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1269 bool first_skb; 1270 1271 new_segment: 1272 if (!sk_stream_memory_free(sk)) 1273 goto wait_for_space; 1274 1275 if (unlikely(process_backlog >= 16)) { 1276 process_backlog = 0; 1277 if (sk_flush_backlog(sk)) 1278 goto restart; 1279 } 1280 first_skb = tcp_rtx_and_write_queues_empty(sk); 1281 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1282 first_skb); 1283 if (!skb) 1284 goto wait_for_space; 1285 1286 process_backlog++; 1287 1288 tcp_skb_entail(sk, skb); 1289 copy = size_goal; 1290 1291 /* All packets are restored as if they have 1292 * already been sent. skb_mstamp_ns isn't set to 1293 * avoid wrong rtt estimation. 1294 */ 1295 if (tp->repair) 1296 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1297 } 1298 1299 /* Try to append data to the end of skb. */ 1300 if (copy > msg_data_left(msg)) 1301 copy = msg_data_left(msg); 1302 1303 if (!zc) { 1304 bool merge = true; 1305 int i = skb_shinfo(skb)->nr_frags; 1306 struct page_frag *pfrag = sk_page_frag(sk); 1307 1308 if (!sk_page_frag_refill(sk, pfrag)) 1309 goto wait_for_space; 1310 1311 if (!skb_can_coalesce(skb, i, pfrag->page, 1312 pfrag->offset)) { 1313 if (i >= sysctl_max_skb_frags) { 1314 tcp_mark_push(tp, skb); 1315 goto new_segment; 1316 } 1317 merge = false; 1318 } 1319 1320 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1321 1322 if (!sk_wmem_schedule(sk, copy)) 1323 goto wait_for_space; 1324 1325 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1326 pfrag->page, 1327 pfrag->offset, 1328 copy); 1329 if (err) 1330 goto do_error; 1331 1332 /* Update the skb. */ 1333 if (merge) { 1334 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1335 } else { 1336 skb_fill_page_desc(skb, i, pfrag->page, 1337 pfrag->offset, copy); 1338 page_ref_inc(pfrag->page); 1339 } 1340 pfrag->offset += copy; 1341 } else { 1342 if (!sk_wmem_schedule(sk, copy)) 1343 goto wait_for_space; 1344 1345 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1346 if (err == -EMSGSIZE || err == -EEXIST) { 1347 tcp_mark_push(tp, skb); 1348 goto new_segment; 1349 } 1350 if (err < 0) 1351 goto do_error; 1352 copy = err; 1353 } 1354 1355 if (!copied) 1356 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1357 1358 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1359 TCP_SKB_CB(skb)->end_seq += copy; 1360 tcp_skb_pcount_set(skb, 0); 1361 1362 copied += copy; 1363 if (!msg_data_left(msg)) { 1364 if (unlikely(flags & MSG_EOR)) 1365 TCP_SKB_CB(skb)->eor = 1; 1366 goto out; 1367 } 1368 1369 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1370 continue; 1371 1372 if (forced_push(tp)) { 1373 tcp_mark_push(tp, skb); 1374 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1375 } else if (skb == tcp_send_head(sk)) 1376 tcp_push_one(sk, mss_now); 1377 continue; 1378 1379 wait_for_space: 1380 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1381 if (copied) 1382 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1383 TCP_NAGLE_PUSH, size_goal); 1384 1385 err = sk_stream_wait_memory(sk, &timeo); 1386 if (err != 0) 1387 goto do_error; 1388 1389 mss_now = tcp_send_mss(sk, &size_goal, flags); 1390 } 1391 1392 out: 1393 if (copied) { 1394 tcp_tx_timestamp(sk, sockc.tsflags); 1395 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1396 } 1397 out_nopush: 1398 net_zcopy_put(uarg); 1399 return copied + copied_syn; 1400 1401 do_error: 1402 tcp_remove_empty_skb(sk); 1403 1404 if (copied + copied_syn) 1405 goto out; 1406 out_err: 1407 net_zcopy_put_abort(uarg, true); 1408 err = sk_stream_error(sk, flags, err); 1409 /* make sure we wake any epoll edge trigger waiter */ 1410 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1411 sk->sk_write_space(sk); 1412 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1413 } 1414 return err; 1415 } 1416 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1417 1418 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1419 { 1420 int ret; 1421 1422 lock_sock(sk); 1423 ret = tcp_sendmsg_locked(sk, msg, size); 1424 release_sock(sk); 1425 1426 return ret; 1427 } 1428 EXPORT_SYMBOL(tcp_sendmsg); 1429 1430 /* 1431 * Handle reading urgent data. BSD has very simple semantics for 1432 * this, no blocking and very strange errors 8) 1433 */ 1434 1435 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1436 { 1437 struct tcp_sock *tp = tcp_sk(sk); 1438 1439 /* No URG data to read. */ 1440 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1441 tp->urg_data == TCP_URG_READ) 1442 return -EINVAL; /* Yes this is right ! */ 1443 1444 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1445 return -ENOTCONN; 1446 1447 if (tp->urg_data & TCP_URG_VALID) { 1448 int err = 0; 1449 char c = tp->urg_data; 1450 1451 if (!(flags & MSG_PEEK)) 1452 tp->urg_data = TCP_URG_READ; 1453 1454 /* Read urgent data. */ 1455 msg->msg_flags |= MSG_OOB; 1456 1457 if (len > 0) { 1458 if (!(flags & MSG_TRUNC)) 1459 err = memcpy_to_msg(msg, &c, 1); 1460 len = 1; 1461 } else 1462 msg->msg_flags |= MSG_TRUNC; 1463 1464 return err ? -EFAULT : len; 1465 } 1466 1467 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1468 return 0; 1469 1470 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1471 * the available implementations agree in this case: 1472 * this call should never block, independent of the 1473 * blocking state of the socket. 1474 * Mike <pall@rz.uni-karlsruhe.de> 1475 */ 1476 return -EAGAIN; 1477 } 1478 1479 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1480 { 1481 struct sk_buff *skb; 1482 int copied = 0, err = 0; 1483 1484 /* XXX -- need to support SO_PEEK_OFF */ 1485 1486 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1487 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1488 if (err) 1489 return err; 1490 copied += skb->len; 1491 } 1492 1493 skb_queue_walk(&sk->sk_write_queue, skb) { 1494 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1495 if (err) 1496 break; 1497 1498 copied += skb->len; 1499 } 1500 1501 return err ?: copied; 1502 } 1503 1504 /* Clean up the receive buffer for full frames taken by the user, 1505 * then send an ACK if necessary. COPIED is the number of bytes 1506 * tcp_recvmsg has given to the user so far, it speeds up the 1507 * calculation of whether or not we must ACK for the sake of 1508 * a window update. 1509 */ 1510 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 bool time_to_ack = false; 1514 1515 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1516 1517 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1518 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1519 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1520 1521 if (inet_csk_ack_scheduled(sk)) { 1522 const struct inet_connection_sock *icsk = inet_csk(sk); 1523 1524 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1525 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1526 /* 1527 * If this read emptied read buffer, we send ACK, if 1528 * connection is not bidirectional, user drained 1529 * receive buffer and there was a small segment 1530 * in queue. 1531 */ 1532 (copied > 0 && 1533 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1534 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1535 !inet_csk_in_pingpong_mode(sk))) && 1536 !atomic_read(&sk->sk_rmem_alloc))) 1537 time_to_ack = true; 1538 } 1539 1540 /* We send an ACK if we can now advertise a non-zero window 1541 * which has been raised "significantly". 1542 * 1543 * Even if window raised up to infinity, do not send window open ACK 1544 * in states, where we will not receive more. It is useless. 1545 */ 1546 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1547 __u32 rcv_window_now = tcp_receive_window(tp); 1548 1549 /* Optimize, __tcp_select_window() is not cheap. */ 1550 if (2*rcv_window_now <= tp->window_clamp) { 1551 __u32 new_window = __tcp_select_window(sk); 1552 1553 /* Send ACK now, if this read freed lots of space 1554 * in our buffer. Certainly, new_window is new window. 1555 * We can advertise it now, if it is not less than current one. 1556 * "Lots" means "at least twice" here. 1557 */ 1558 if (new_window && new_window >= 2 * rcv_window_now) 1559 time_to_ack = true; 1560 } 1561 } 1562 if (time_to_ack) 1563 tcp_send_ack(sk); 1564 } 1565 1566 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1567 { 1568 struct sk_buff *skb; 1569 u32 offset; 1570 1571 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1572 offset = seq - TCP_SKB_CB(skb)->seq; 1573 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1574 pr_err_once("%s: found a SYN, please report !\n", __func__); 1575 offset--; 1576 } 1577 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1578 *off = offset; 1579 return skb; 1580 } 1581 /* This looks weird, but this can happen if TCP collapsing 1582 * splitted a fat GRO packet, while we released socket lock 1583 * in skb_splice_bits() 1584 */ 1585 sk_eat_skb(sk, skb); 1586 } 1587 return NULL; 1588 } 1589 1590 /* 1591 * This routine provides an alternative to tcp_recvmsg() for routines 1592 * that would like to handle copying from skbuffs directly in 'sendfile' 1593 * fashion. 1594 * Note: 1595 * - It is assumed that the socket was locked by the caller. 1596 * - The routine does not block. 1597 * - At present, there is no support for reading OOB data 1598 * or for 'peeking' the socket using this routine 1599 * (although both would be easy to implement). 1600 */ 1601 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1602 sk_read_actor_t recv_actor) 1603 { 1604 struct sk_buff *skb; 1605 struct tcp_sock *tp = tcp_sk(sk); 1606 u32 seq = tp->copied_seq; 1607 u32 offset; 1608 int copied = 0; 1609 1610 if (sk->sk_state == TCP_LISTEN) 1611 return -ENOTCONN; 1612 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1613 if (offset < skb->len) { 1614 int used; 1615 size_t len; 1616 1617 len = skb->len - offset; 1618 /* Stop reading if we hit a patch of urgent data */ 1619 if (tp->urg_data) { 1620 u32 urg_offset = tp->urg_seq - seq; 1621 if (urg_offset < len) 1622 len = urg_offset; 1623 if (!len) 1624 break; 1625 } 1626 used = recv_actor(desc, skb, offset, len); 1627 if (used <= 0) { 1628 if (!copied) 1629 copied = used; 1630 break; 1631 } else if (used <= len) { 1632 seq += used; 1633 copied += used; 1634 offset += used; 1635 } 1636 /* If recv_actor drops the lock (e.g. TCP splice 1637 * receive) the skb pointer might be invalid when 1638 * getting here: tcp_collapse might have deleted it 1639 * while aggregating skbs from the socket queue. 1640 */ 1641 skb = tcp_recv_skb(sk, seq - 1, &offset); 1642 if (!skb) 1643 break; 1644 /* TCP coalescing might have appended data to the skb. 1645 * Try to splice more frags 1646 */ 1647 if (offset + 1 != skb->len) 1648 continue; 1649 } 1650 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1651 sk_eat_skb(sk, skb); 1652 ++seq; 1653 break; 1654 } 1655 sk_eat_skb(sk, skb); 1656 if (!desc->count) 1657 break; 1658 WRITE_ONCE(tp->copied_seq, seq); 1659 } 1660 WRITE_ONCE(tp->copied_seq, seq); 1661 1662 tcp_rcv_space_adjust(sk); 1663 1664 /* Clean up data we have read: This will do ACK frames. */ 1665 if (copied > 0) { 1666 tcp_recv_skb(sk, seq, &offset); 1667 tcp_cleanup_rbuf(sk, copied); 1668 } 1669 return copied; 1670 } 1671 EXPORT_SYMBOL(tcp_read_sock); 1672 1673 int tcp_peek_len(struct socket *sock) 1674 { 1675 return tcp_inq(sock->sk); 1676 } 1677 EXPORT_SYMBOL(tcp_peek_len); 1678 1679 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1680 int tcp_set_rcvlowat(struct sock *sk, int val) 1681 { 1682 int cap; 1683 1684 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1685 cap = sk->sk_rcvbuf >> 1; 1686 else 1687 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1688 val = min(val, cap); 1689 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1690 1691 /* Check if we need to signal EPOLLIN right now */ 1692 tcp_data_ready(sk); 1693 1694 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1695 return 0; 1696 1697 val <<= 1; 1698 if (val > sk->sk_rcvbuf) { 1699 WRITE_ONCE(sk->sk_rcvbuf, val); 1700 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1701 } 1702 return 0; 1703 } 1704 EXPORT_SYMBOL(tcp_set_rcvlowat); 1705 1706 void tcp_update_recv_tstamps(struct sk_buff *skb, 1707 struct scm_timestamping_internal *tss) 1708 { 1709 if (skb->tstamp) 1710 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1711 else 1712 tss->ts[0] = (struct timespec64) {0}; 1713 1714 if (skb_hwtstamps(skb)->hwtstamp) 1715 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1716 else 1717 tss->ts[2] = (struct timespec64) {0}; 1718 } 1719 1720 #ifdef CONFIG_MMU 1721 static const struct vm_operations_struct tcp_vm_ops = { 1722 }; 1723 1724 int tcp_mmap(struct file *file, struct socket *sock, 1725 struct vm_area_struct *vma) 1726 { 1727 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1728 return -EPERM; 1729 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1730 1731 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1732 vma->vm_flags |= VM_MIXEDMAP; 1733 1734 vma->vm_ops = &tcp_vm_ops; 1735 return 0; 1736 } 1737 EXPORT_SYMBOL(tcp_mmap); 1738 1739 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1740 u32 *offset_frag) 1741 { 1742 skb_frag_t *frag; 1743 1744 offset_skb -= skb_headlen(skb); 1745 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1746 return NULL; 1747 1748 frag = skb_shinfo(skb)->frags; 1749 while (offset_skb) { 1750 if (skb_frag_size(frag) > offset_skb) { 1751 *offset_frag = offset_skb; 1752 return frag; 1753 } 1754 offset_skb -= skb_frag_size(frag); 1755 ++frag; 1756 } 1757 *offset_frag = 0; 1758 return frag; 1759 } 1760 1761 static bool can_map_frag(const skb_frag_t *frag) 1762 { 1763 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1764 } 1765 1766 static int find_next_mappable_frag(const skb_frag_t *frag, 1767 int remaining_in_skb) 1768 { 1769 int offset = 0; 1770 1771 if (likely(can_map_frag(frag))) 1772 return 0; 1773 1774 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1775 offset += skb_frag_size(frag); 1776 ++frag; 1777 } 1778 return offset; 1779 } 1780 1781 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1782 struct tcp_zerocopy_receive *zc, 1783 struct sk_buff *skb, u32 offset) 1784 { 1785 u32 frag_offset, partial_frag_remainder = 0; 1786 int mappable_offset; 1787 skb_frag_t *frag; 1788 1789 /* worst case: skip to next skb. try to improve on this case below */ 1790 zc->recv_skip_hint = skb->len - offset; 1791 1792 /* Find the frag containing this offset (and how far into that frag) */ 1793 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1794 if (!frag) 1795 return; 1796 1797 if (frag_offset) { 1798 struct skb_shared_info *info = skb_shinfo(skb); 1799 1800 /* We read part of the last frag, must recvmsg() rest of skb. */ 1801 if (frag == &info->frags[info->nr_frags - 1]) 1802 return; 1803 1804 /* Else, we must at least read the remainder in this frag. */ 1805 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1806 zc->recv_skip_hint -= partial_frag_remainder; 1807 ++frag; 1808 } 1809 1810 /* partial_frag_remainder: If part way through a frag, must read rest. 1811 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1812 * in partial_frag_remainder. 1813 */ 1814 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1815 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1816 } 1817 1818 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1819 int nonblock, int flags, 1820 struct scm_timestamping_internal *tss, 1821 int *cmsg_flags); 1822 static int receive_fallback_to_copy(struct sock *sk, 1823 struct tcp_zerocopy_receive *zc, int inq, 1824 struct scm_timestamping_internal *tss) 1825 { 1826 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1827 struct msghdr msg = {}; 1828 struct iovec iov; 1829 int err; 1830 1831 zc->length = 0; 1832 zc->recv_skip_hint = 0; 1833 1834 if (copy_address != zc->copybuf_address) 1835 return -EINVAL; 1836 1837 err = import_single_range(READ, (void __user *)copy_address, 1838 inq, &iov, &msg.msg_iter); 1839 if (err) 1840 return err; 1841 1842 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1843 tss, &zc->msg_flags); 1844 if (err < 0) 1845 return err; 1846 1847 zc->copybuf_len = err; 1848 if (likely(zc->copybuf_len)) { 1849 struct sk_buff *skb; 1850 u32 offset; 1851 1852 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1853 if (skb) 1854 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1855 } 1856 return 0; 1857 } 1858 1859 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1860 struct sk_buff *skb, u32 copylen, 1861 u32 *offset, u32 *seq) 1862 { 1863 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1864 struct msghdr msg = {}; 1865 struct iovec iov; 1866 int err; 1867 1868 if (copy_address != zc->copybuf_address) 1869 return -EINVAL; 1870 1871 err = import_single_range(READ, (void __user *)copy_address, 1872 copylen, &iov, &msg.msg_iter); 1873 if (err) 1874 return err; 1875 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1876 if (err) 1877 return err; 1878 zc->recv_skip_hint -= copylen; 1879 *offset += copylen; 1880 *seq += copylen; 1881 return (__s32)copylen; 1882 } 1883 1884 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1885 struct sock *sk, 1886 struct sk_buff *skb, 1887 u32 *seq, 1888 s32 copybuf_len, 1889 struct scm_timestamping_internal *tss) 1890 { 1891 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1892 1893 if (!copylen) 1894 return 0; 1895 /* skb is null if inq < PAGE_SIZE. */ 1896 if (skb) { 1897 offset = *seq - TCP_SKB_CB(skb)->seq; 1898 } else { 1899 skb = tcp_recv_skb(sk, *seq, &offset); 1900 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1901 tcp_update_recv_tstamps(skb, tss); 1902 zc->msg_flags |= TCP_CMSG_TS; 1903 } 1904 } 1905 1906 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1907 seq); 1908 return zc->copybuf_len < 0 ? 0 : copylen; 1909 } 1910 1911 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1912 struct page **pending_pages, 1913 unsigned long pages_remaining, 1914 unsigned long *address, 1915 u32 *length, 1916 u32 *seq, 1917 struct tcp_zerocopy_receive *zc, 1918 u32 total_bytes_to_map, 1919 int err) 1920 { 1921 /* At least one page did not map. Try zapping if we skipped earlier. */ 1922 if (err == -EBUSY && 1923 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1924 u32 maybe_zap_len; 1925 1926 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1927 *length + /* Mapped or pending */ 1928 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1929 zap_page_range(vma, *address, maybe_zap_len); 1930 err = 0; 1931 } 1932 1933 if (!err) { 1934 unsigned long leftover_pages = pages_remaining; 1935 int bytes_mapped; 1936 1937 /* We called zap_page_range, try to reinsert. */ 1938 err = vm_insert_pages(vma, *address, 1939 pending_pages, 1940 &pages_remaining); 1941 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1942 *seq += bytes_mapped; 1943 *address += bytes_mapped; 1944 } 1945 if (err) { 1946 /* Either we were unable to zap, OR we zapped, retried an 1947 * insert, and still had an issue. Either ways, pages_remaining 1948 * is the number of pages we were unable to map, and we unroll 1949 * some state we speculatively touched before. 1950 */ 1951 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1952 1953 *length -= bytes_not_mapped; 1954 zc->recv_skip_hint += bytes_not_mapped; 1955 } 1956 return err; 1957 } 1958 1959 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1960 struct page **pages, 1961 unsigned int pages_to_map, 1962 unsigned long *address, 1963 u32 *length, 1964 u32 *seq, 1965 struct tcp_zerocopy_receive *zc, 1966 u32 total_bytes_to_map) 1967 { 1968 unsigned long pages_remaining = pages_to_map; 1969 unsigned int pages_mapped; 1970 unsigned int bytes_mapped; 1971 int err; 1972 1973 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1974 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1975 bytes_mapped = PAGE_SIZE * pages_mapped; 1976 /* Even if vm_insert_pages fails, it may have partially succeeded in 1977 * mapping (some but not all of the pages). 1978 */ 1979 *seq += bytes_mapped; 1980 *address += bytes_mapped; 1981 1982 if (likely(!err)) 1983 return 0; 1984 1985 /* Error: maybe zap and retry + rollback state for failed inserts. */ 1986 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 1987 pages_remaining, address, length, seq, zc, total_bytes_to_map, 1988 err); 1989 } 1990 1991 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 1992 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 1993 struct tcp_zerocopy_receive *zc, 1994 struct scm_timestamping_internal *tss) 1995 { 1996 unsigned long msg_control_addr; 1997 struct msghdr cmsg_dummy; 1998 1999 msg_control_addr = (unsigned long)zc->msg_control; 2000 cmsg_dummy.msg_control = (void *)msg_control_addr; 2001 cmsg_dummy.msg_controllen = 2002 (__kernel_size_t)zc->msg_controllen; 2003 cmsg_dummy.msg_flags = in_compat_syscall() 2004 ? MSG_CMSG_COMPAT : 0; 2005 cmsg_dummy.msg_control_is_user = true; 2006 zc->msg_flags = 0; 2007 if (zc->msg_control == msg_control_addr && 2008 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2009 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2010 zc->msg_control = (__u64) 2011 ((uintptr_t)cmsg_dummy.msg_control); 2012 zc->msg_controllen = 2013 (__u64)cmsg_dummy.msg_controllen; 2014 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2015 } 2016 } 2017 2018 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2019 static int tcp_zerocopy_receive(struct sock *sk, 2020 struct tcp_zerocopy_receive *zc, 2021 struct scm_timestamping_internal *tss) 2022 { 2023 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2024 unsigned long address = (unsigned long)zc->address; 2025 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2026 s32 copybuf_len = zc->copybuf_len; 2027 struct tcp_sock *tp = tcp_sk(sk); 2028 const skb_frag_t *frags = NULL; 2029 unsigned int pages_to_map = 0; 2030 struct vm_area_struct *vma; 2031 struct sk_buff *skb = NULL; 2032 u32 seq = tp->copied_seq; 2033 u32 total_bytes_to_map; 2034 int inq = tcp_inq(sk); 2035 int ret; 2036 2037 zc->copybuf_len = 0; 2038 zc->msg_flags = 0; 2039 2040 if (address & (PAGE_SIZE - 1) || address != zc->address) 2041 return -EINVAL; 2042 2043 if (sk->sk_state == TCP_LISTEN) 2044 return -ENOTCONN; 2045 2046 sock_rps_record_flow(sk); 2047 2048 if (inq && inq <= copybuf_len) 2049 return receive_fallback_to_copy(sk, zc, inq, tss); 2050 2051 if (inq < PAGE_SIZE) { 2052 zc->length = 0; 2053 zc->recv_skip_hint = inq; 2054 if (!inq && sock_flag(sk, SOCK_DONE)) 2055 return -EIO; 2056 return 0; 2057 } 2058 2059 mmap_read_lock(current->mm); 2060 2061 vma = vma_lookup(current->mm, address); 2062 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2063 mmap_read_unlock(current->mm); 2064 return -EINVAL; 2065 } 2066 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2067 avail_len = min_t(u32, vma_len, inq); 2068 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2069 if (total_bytes_to_map) { 2070 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2071 zap_page_range(vma, address, total_bytes_to_map); 2072 zc->length = total_bytes_to_map; 2073 zc->recv_skip_hint = 0; 2074 } else { 2075 zc->length = avail_len; 2076 zc->recv_skip_hint = avail_len; 2077 } 2078 ret = 0; 2079 while (length + PAGE_SIZE <= zc->length) { 2080 int mappable_offset; 2081 struct page *page; 2082 2083 if (zc->recv_skip_hint < PAGE_SIZE) { 2084 u32 offset_frag; 2085 2086 if (skb) { 2087 if (zc->recv_skip_hint > 0) 2088 break; 2089 skb = skb->next; 2090 offset = seq - TCP_SKB_CB(skb)->seq; 2091 } else { 2092 skb = tcp_recv_skb(sk, seq, &offset); 2093 } 2094 2095 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2096 tcp_update_recv_tstamps(skb, tss); 2097 zc->msg_flags |= TCP_CMSG_TS; 2098 } 2099 zc->recv_skip_hint = skb->len - offset; 2100 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2101 if (!frags || offset_frag) 2102 break; 2103 } 2104 2105 mappable_offset = find_next_mappable_frag(frags, 2106 zc->recv_skip_hint); 2107 if (mappable_offset) { 2108 zc->recv_skip_hint = mappable_offset; 2109 break; 2110 } 2111 page = skb_frag_page(frags); 2112 prefetchw(page); 2113 pages[pages_to_map++] = page; 2114 length += PAGE_SIZE; 2115 zc->recv_skip_hint -= PAGE_SIZE; 2116 frags++; 2117 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2118 zc->recv_skip_hint < PAGE_SIZE) { 2119 /* Either full batch, or we're about to go to next skb 2120 * (and we cannot unroll failed ops across skbs). 2121 */ 2122 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2123 pages_to_map, 2124 &address, &length, 2125 &seq, zc, 2126 total_bytes_to_map); 2127 if (ret) 2128 goto out; 2129 pages_to_map = 0; 2130 } 2131 } 2132 if (pages_to_map) { 2133 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2134 &address, &length, &seq, 2135 zc, total_bytes_to_map); 2136 } 2137 out: 2138 mmap_read_unlock(current->mm); 2139 /* Try to copy straggler data. */ 2140 if (!ret) 2141 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2142 2143 if (length + copylen) { 2144 WRITE_ONCE(tp->copied_seq, seq); 2145 tcp_rcv_space_adjust(sk); 2146 2147 /* Clean up data we have read: This will do ACK frames. */ 2148 tcp_recv_skb(sk, seq, &offset); 2149 tcp_cleanup_rbuf(sk, length + copylen); 2150 ret = 0; 2151 if (length == zc->length) 2152 zc->recv_skip_hint = 0; 2153 } else { 2154 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2155 ret = -EIO; 2156 } 2157 zc->length = length; 2158 return ret; 2159 } 2160 #endif 2161 2162 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2163 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2164 struct scm_timestamping_internal *tss) 2165 { 2166 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2167 bool has_timestamping = false; 2168 2169 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2170 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2171 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2172 if (new_tstamp) { 2173 struct __kernel_timespec kts = { 2174 .tv_sec = tss->ts[0].tv_sec, 2175 .tv_nsec = tss->ts[0].tv_nsec, 2176 }; 2177 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2178 sizeof(kts), &kts); 2179 } else { 2180 struct __kernel_old_timespec ts_old = { 2181 .tv_sec = tss->ts[0].tv_sec, 2182 .tv_nsec = tss->ts[0].tv_nsec, 2183 }; 2184 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2185 sizeof(ts_old), &ts_old); 2186 } 2187 } else { 2188 if (new_tstamp) { 2189 struct __kernel_sock_timeval stv = { 2190 .tv_sec = tss->ts[0].tv_sec, 2191 .tv_usec = tss->ts[0].tv_nsec / 1000, 2192 }; 2193 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2194 sizeof(stv), &stv); 2195 } else { 2196 struct __kernel_old_timeval tv = { 2197 .tv_sec = tss->ts[0].tv_sec, 2198 .tv_usec = tss->ts[0].tv_nsec / 1000, 2199 }; 2200 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2201 sizeof(tv), &tv); 2202 } 2203 } 2204 } 2205 2206 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2207 has_timestamping = true; 2208 else 2209 tss->ts[0] = (struct timespec64) {0}; 2210 } 2211 2212 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2213 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2214 has_timestamping = true; 2215 else 2216 tss->ts[2] = (struct timespec64) {0}; 2217 } 2218 2219 if (has_timestamping) { 2220 tss->ts[1] = (struct timespec64) {0}; 2221 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2222 put_cmsg_scm_timestamping64(msg, tss); 2223 else 2224 put_cmsg_scm_timestamping(msg, tss); 2225 } 2226 } 2227 2228 static int tcp_inq_hint(struct sock *sk) 2229 { 2230 const struct tcp_sock *tp = tcp_sk(sk); 2231 u32 copied_seq = READ_ONCE(tp->copied_seq); 2232 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2233 int inq; 2234 2235 inq = rcv_nxt - copied_seq; 2236 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2237 lock_sock(sk); 2238 inq = tp->rcv_nxt - tp->copied_seq; 2239 release_sock(sk); 2240 } 2241 /* After receiving a FIN, tell the user-space to continue reading 2242 * by returning a non-zero inq. 2243 */ 2244 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2245 inq = 1; 2246 return inq; 2247 } 2248 2249 /* 2250 * This routine copies from a sock struct into the user buffer. 2251 * 2252 * Technical note: in 2.3 we work on _locked_ socket, so that 2253 * tricks with *seq access order and skb->users are not required. 2254 * Probably, code can be easily improved even more. 2255 */ 2256 2257 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2258 int nonblock, int flags, 2259 struct scm_timestamping_internal *tss, 2260 int *cmsg_flags) 2261 { 2262 struct tcp_sock *tp = tcp_sk(sk); 2263 int copied = 0; 2264 u32 peek_seq; 2265 u32 *seq; 2266 unsigned long used; 2267 int err; 2268 int target; /* Read at least this many bytes */ 2269 long timeo; 2270 struct sk_buff *skb, *last; 2271 u32 urg_hole = 0; 2272 2273 err = -ENOTCONN; 2274 if (sk->sk_state == TCP_LISTEN) 2275 goto out; 2276 2277 if (tp->recvmsg_inq) 2278 *cmsg_flags = TCP_CMSG_INQ; 2279 timeo = sock_rcvtimeo(sk, nonblock); 2280 2281 /* Urgent data needs to be handled specially. */ 2282 if (flags & MSG_OOB) 2283 goto recv_urg; 2284 2285 if (unlikely(tp->repair)) { 2286 err = -EPERM; 2287 if (!(flags & MSG_PEEK)) 2288 goto out; 2289 2290 if (tp->repair_queue == TCP_SEND_QUEUE) 2291 goto recv_sndq; 2292 2293 err = -EINVAL; 2294 if (tp->repair_queue == TCP_NO_QUEUE) 2295 goto out; 2296 2297 /* 'common' recv queue MSG_PEEK-ing */ 2298 } 2299 2300 seq = &tp->copied_seq; 2301 if (flags & MSG_PEEK) { 2302 peek_seq = tp->copied_seq; 2303 seq = &peek_seq; 2304 } 2305 2306 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2307 2308 do { 2309 u32 offset; 2310 2311 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2312 if (tp->urg_data && tp->urg_seq == *seq) { 2313 if (copied) 2314 break; 2315 if (signal_pending(current)) { 2316 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2317 break; 2318 } 2319 } 2320 2321 /* Next get a buffer. */ 2322 2323 last = skb_peek_tail(&sk->sk_receive_queue); 2324 skb_queue_walk(&sk->sk_receive_queue, skb) { 2325 last = skb; 2326 /* Now that we have two receive queues this 2327 * shouldn't happen. 2328 */ 2329 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2330 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2331 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2332 flags)) 2333 break; 2334 2335 offset = *seq - TCP_SKB_CB(skb)->seq; 2336 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2337 pr_err_once("%s: found a SYN, please report !\n", __func__); 2338 offset--; 2339 } 2340 if (offset < skb->len) 2341 goto found_ok_skb; 2342 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2343 goto found_fin_ok; 2344 WARN(!(flags & MSG_PEEK), 2345 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2346 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2347 } 2348 2349 /* Well, if we have backlog, try to process it now yet. */ 2350 2351 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2352 break; 2353 2354 if (copied) { 2355 if (sk->sk_err || 2356 sk->sk_state == TCP_CLOSE || 2357 (sk->sk_shutdown & RCV_SHUTDOWN) || 2358 !timeo || 2359 signal_pending(current)) 2360 break; 2361 } else { 2362 if (sock_flag(sk, SOCK_DONE)) 2363 break; 2364 2365 if (sk->sk_err) { 2366 copied = sock_error(sk); 2367 break; 2368 } 2369 2370 if (sk->sk_shutdown & RCV_SHUTDOWN) 2371 break; 2372 2373 if (sk->sk_state == TCP_CLOSE) { 2374 /* This occurs when user tries to read 2375 * from never connected socket. 2376 */ 2377 copied = -ENOTCONN; 2378 break; 2379 } 2380 2381 if (!timeo) { 2382 copied = -EAGAIN; 2383 break; 2384 } 2385 2386 if (signal_pending(current)) { 2387 copied = sock_intr_errno(timeo); 2388 break; 2389 } 2390 } 2391 2392 tcp_cleanup_rbuf(sk, copied); 2393 2394 if (copied >= target) { 2395 /* Do not sleep, just process backlog. */ 2396 release_sock(sk); 2397 lock_sock(sk); 2398 } else { 2399 sk_wait_data(sk, &timeo, last); 2400 } 2401 2402 if ((flags & MSG_PEEK) && 2403 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2404 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2405 current->comm, 2406 task_pid_nr(current)); 2407 peek_seq = tp->copied_seq; 2408 } 2409 continue; 2410 2411 found_ok_skb: 2412 /* Ok so how much can we use? */ 2413 used = skb->len - offset; 2414 if (len < used) 2415 used = len; 2416 2417 /* Do we have urgent data here? */ 2418 if (tp->urg_data) { 2419 u32 urg_offset = tp->urg_seq - *seq; 2420 if (urg_offset < used) { 2421 if (!urg_offset) { 2422 if (!sock_flag(sk, SOCK_URGINLINE)) { 2423 WRITE_ONCE(*seq, *seq + 1); 2424 urg_hole++; 2425 offset++; 2426 used--; 2427 if (!used) 2428 goto skip_copy; 2429 } 2430 } else 2431 used = urg_offset; 2432 } 2433 } 2434 2435 if (!(flags & MSG_TRUNC)) { 2436 err = skb_copy_datagram_msg(skb, offset, msg, used); 2437 if (err) { 2438 /* Exception. Bailout! */ 2439 if (!copied) 2440 copied = -EFAULT; 2441 break; 2442 } 2443 } 2444 2445 WRITE_ONCE(*seq, *seq + used); 2446 copied += used; 2447 len -= used; 2448 2449 tcp_rcv_space_adjust(sk); 2450 2451 skip_copy: 2452 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2453 tp->urg_data = 0; 2454 tcp_fast_path_check(sk); 2455 } 2456 2457 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2458 tcp_update_recv_tstamps(skb, tss); 2459 *cmsg_flags |= TCP_CMSG_TS; 2460 } 2461 2462 if (used + offset < skb->len) 2463 continue; 2464 2465 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2466 goto found_fin_ok; 2467 if (!(flags & MSG_PEEK)) 2468 sk_eat_skb(sk, skb); 2469 continue; 2470 2471 found_fin_ok: 2472 /* Process the FIN. */ 2473 WRITE_ONCE(*seq, *seq + 1); 2474 if (!(flags & MSG_PEEK)) 2475 sk_eat_skb(sk, skb); 2476 break; 2477 } while (len > 0); 2478 2479 /* According to UNIX98, msg_name/msg_namelen are ignored 2480 * on connected socket. I was just happy when found this 8) --ANK 2481 */ 2482 2483 /* Clean up data we have read: This will do ACK frames. */ 2484 tcp_cleanup_rbuf(sk, copied); 2485 return copied; 2486 2487 out: 2488 return err; 2489 2490 recv_urg: 2491 err = tcp_recv_urg(sk, msg, len, flags); 2492 goto out; 2493 2494 recv_sndq: 2495 err = tcp_peek_sndq(sk, msg, len); 2496 goto out; 2497 } 2498 2499 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2500 int flags, int *addr_len) 2501 { 2502 int cmsg_flags = 0, ret, inq; 2503 struct scm_timestamping_internal tss; 2504 2505 if (unlikely(flags & MSG_ERRQUEUE)) 2506 return inet_recv_error(sk, msg, len, addr_len); 2507 2508 if (sk_can_busy_loop(sk) && 2509 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2510 sk->sk_state == TCP_ESTABLISHED) 2511 sk_busy_loop(sk, nonblock); 2512 2513 lock_sock(sk); 2514 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2515 &cmsg_flags); 2516 release_sock(sk); 2517 2518 if (cmsg_flags && ret >= 0) { 2519 if (cmsg_flags & TCP_CMSG_TS) 2520 tcp_recv_timestamp(msg, sk, &tss); 2521 if (cmsg_flags & TCP_CMSG_INQ) { 2522 inq = tcp_inq_hint(sk); 2523 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2524 } 2525 } 2526 return ret; 2527 } 2528 EXPORT_SYMBOL(tcp_recvmsg); 2529 2530 void tcp_set_state(struct sock *sk, int state) 2531 { 2532 int oldstate = sk->sk_state; 2533 2534 /* We defined a new enum for TCP states that are exported in BPF 2535 * so as not force the internal TCP states to be frozen. The 2536 * following checks will detect if an internal state value ever 2537 * differs from the BPF value. If this ever happens, then we will 2538 * need to remap the internal value to the BPF value before calling 2539 * tcp_call_bpf_2arg. 2540 */ 2541 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2542 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2543 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2544 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2545 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2546 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2547 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2548 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2549 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2550 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2551 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2552 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2553 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2554 2555 /* bpf uapi header bpf.h defines an anonymous enum with values 2556 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2557 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2558 * But clang built vmlinux does not have this enum in DWARF 2559 * since clang removes the above code before generating IR/debuginfo. 2560 * Let us explicitly emit the type debuginfo to ensure the 2561 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2562 * regardless of which compiler is used. 2563 */ 2564 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2565 2566 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2567 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2568 2569 switch (state) { 2570 case TCP_ESTABLISHED: 2571 if (oldstate != TCP_ESTABLISHED) 2572 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2573 break; 2574 2575 case TCP_CLOSE: 2576 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2577 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2578 2579 sk->sk_prot->unhash(sk); 2580 if (inet_csk(sk)->icsk_bind_hash && 2581 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2582 inet_put_port(sk); 2583 fallthrough; 2584 default: 2585 if (oldstate == TCP_ESTABLISHED) 2586 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2587 } 2588 2589 /* Change state AFTER socket is unhashed to avoid closed 2590 * socket sitting in hash tables. 2591 */ 2592 inet_sk_state_store(sk, state); 2593 } 2594 EXPORT_SYMBOL_GPL(tcp_set_state); 2595 2596 /* 2597 * State processing on a close. This implements the state shift for 2598 * sending our FIN frame. Note that we only send a FIN for some 2599 * states. A shutdown() may have already sent the FIN, or we may be 2600 * closed. 2601 */ 2602 2603 static const unsigned char new_state[16] = { 2604 /* current state: new state: action: */ 2605 [0 /* (Invalid) */] = TCP_CLOSE, 2606 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2607 [TCP_SYN_SENT] = TCP_CLOSE, 2608 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2609 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2610 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2611 [TCP_TIME_WAIT] = TCP_CLOSE, 2612 [TCP_CLOSE] = TCP_CLOSE, 2613 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2614 [TCP_LAST_ACK] = TCP_LAST_ACK, 2615 [TCP_LISTEN] = TCP_CLOSE, 2616 [TCP_CLOSING] = TCP_CLOSING, 2617 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2618 }; 2619 2620 static int tcp_close_state(struct sock *sk) 2621 { 2622 int next = (int)new_state[sk->sk_state]; 2623 int ns = next & TCP_STATE_MASK; 2624 2625 tcp_set_state(sk, ns); 2626 2627 return next & TCP_ACTION_FIN; 2628 } 2629 2630 /* 2631 * Shutdown the sending side of a connection. Much like close except 2632 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2633 */ 2634 2635 void tcp_shutdown(struct sock *sk, int how) 2636 { 2637 /* We need to grab some memory, and put together a FIN, 2638 * and then put it into the queue to be sent. 2639 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2640 */ 2641 if (!(how & SEND_SHUTDOWN)) 2642 return; 2643 2644 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2645 if ((1 << sk->sk_state) & 2646 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2647 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2648 /* Clear out any half completed packets. FIN if needed. */ 2649 if (tcp_close_state(sk)) 2650 tcp_send_fin(sk); 2651 } 2652 } 2653 EXPORT_SYMBOL(tcp_shutdown); 2654 2655 int tcp_orphan_count_sum(void) 2656 { 2657 int i, total = 0; 2658 2659 for_each_possible_cpu(i) 2660 total += per_cpu(tcp_orphan_count, i); 2661 2662 return max(total, 0); 2663 } 2664 2665 static int tcp_orphan_cache; 2666 static struct timer_list tcp_orphan_timer; 2667 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2668 2669 static void tcp_orphan_update(struct timer_list *unused) 2670 { 2671 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2672 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2673 } 2674 2675 static bool tcp_too_many_orphans(int shift) 2676 { 2677 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2678 } 2679 2680 bool tcp_check_oom(struct sock *sk, int shift) 2681 { 2682 bool too_many_orphans, out_of_socket_memory; 2683 2684 too_many_orphans = tcp_too_many_orphans(shift); 2685 out_of_socket_memory = tcp_out_of_memory(sk); 2686 2687 if (too_many_orphans) 2688 net_info_ratelimited("too many orphaned sockets\n"); 2689 if (out_of_socket_memory) 2690 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2691 return too_many_orphans || out_of_socket_memory; 2692 } 2693 2694 void __tcp_close(struct sock *sk, long timeout) 2695 { 2696 struct sk_buff *skb; 2697 int data_was_unread = 0; 2698 int state; 2699 2700 sk->sk_shutdown = SHUTDOWN_MASK; 2701 2702 if (sk->sk_state == TCP_LISTEN) { 2703 tcp_set_state(sk, TCP_CLOSE); 2704 2705 /* Special case. */ 2706 inet_csk_listen_stop(sk); 2707 2708 goto adjudge_to_death; 2709 } 2710 2711 /* We need to flush the recv. buffs. We do this only on the 2712 * descriptor close, not protocol-sourced closes, because the 2713 * reader process may not have drained the data yet! 2714 */ 2715 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2716 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2717 2718 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2719 len--; 2720 data_was_unread += len; 2721 __kfree_skb(skb); 2722 } 2723 2724 sk_mem_reclaim(sk); 2725 2726 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2727 if (sk->sk_state == TCP_CLOSE) 2728 goto adjudge_to_death; 2729 2730 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2731 * data was lost. To witness the awful effects of the old behavior of 2732 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2733 * GET in an FTP client, suspend the process, wait for the client to 2734 * advertise a zero window, then kill -9 the FTP client, wheee... 2735 * Note: timeout is always zero in such a case. 2736 */ 2737 if (unlikely(tcp_sk(sk)->repair)) { 2738 sk->sk_prot->disconnect(sk, 0); 2739 } else if (data_was_unread) { 2740 /* Unread data was tossed, zap the connection. */ 2741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2742 tcp_set_state(sk, TCP_CLOSE); 2743 tcp_send_active_reset(sk, sk->sk_allocation); 2744 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2745 /* Check zero linger _after_ checking for unread data. */ 2746 sk->sk_prot->disconnect(sk, 0); 2747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2748 } else if (tcp_close_state(sk)) { 2749 /* We FIN if the application ate all the data before 2750 * zapping the connection. 2751 */ 2752 2753 /* RED-PEN. Formally speaking, we have broken TCP state 2754 * machine. State transitions: 2755 * 2756 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2757 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2758 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2759 * 2760 * are legal only when FIN has been sent (i.e. in window), 2761 * rather than queued out of window. Purists blame. 2762 * 2763 * F.e. "RFC state" is ESTABLISHED, 2764 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2765 * 2766 * The visible declinations are that sometimes 2767 * we enter time-wait state, when it is not required really 2768 * (harmless), do not send active resets, when they are 2769 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2770 * they look as CLOSING or LAST_ACK for Linux) 2771 * Probably, I missed some more holelets. 2772 * --ANK 2773 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2774 * in a single packet! (May consider it later but will 2775 * probably need API support or TCP_CORK SYN-ACK until 2776 * data is written and socket is closed.) 2777 */ 2778 tcp_send_fin(sk); 2779 } 2780 2781 sk_stream_wait_close(sk, timeout); 2782 2783 adjudge_to_death: 2784 state = sk->sk_state; 2785 sock_hold(sk); 2786 sock_orphan(sk); 2787 2788 local_bh_disable(); 2789 bh_lock_sock(sk); 2790 /* remove backlog if any, without releasing ownership. */ 2791 __release_sock(sk); 2792 2793 this_cpu_inc(tcp_orphan_count); 2794 2795 /* Have we already been destroyed by a softirq or backlog? */ 2796 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2797 goto out; 2798 2799 /* This is a (useful) BSD violating of the RFC. There is a 2800 * problem with TCP as specified in that the other end could 2801 * keep a socket open forever with no application left this end. 2802 * We use a 1 minute timeout (about the same as BSD) then kill 2803 * our end. If they send after that then tough - BUT: long enough 2804 * that we won't make the old 4*rto = almost no time - whoops 2805 * reset mistake. 2806 * 2807 * Nope, it was not mistake. It is really desired behaviour 2808 * f.e. on http servers, when such sockets are useless, but 2809 * consume significant resources. Let's do it with special 2810 * linger2 option. --ANK 2811 */ 2812 2813 if (sk->sk_state == TCP_FIN_WAIT2) { 2814 struct tcp_sock *tp = tcp_sk(sk); 2815 if (tp->linger2 < 0) { 2816 tcp_set_state(sk, TCP_CLOSE); 2817 tcp_send_active_reset(sk, GFP_ATOMIC); 2818 __NET_INC_STATS(sock_net(sk), 2819 LINUX_MIB_TCPABORTONLINGER); 2820 } else { 2821 const int tmo = tcp_fin_time(sk); 2822 2823 if (tmo > TCP_TIMEWAIT_LEN) { 2824 inet_csk_reset_keepalive_timer(sk, 2825 tmo - TCP_TIMEWAIT_LEN); 2826 } else { 2827 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2828 goto out; 2829 } 2830 } 2831 } 2832 if (sk->sk_state != TCP_CLOSE) { 2833 sk_mem_reclaim(sk); 2834 if (tcp_check_oom(sk, 0)) { 2835 tcp_set_state(sk, TCP_CLOSE); 2836 tcp_send_active_reset(sk, GFP_ATOMIC); 2837 __NET_INC_STATS(sock_net(sk), 2838 LINUX_MIB_TCPABORTONMEMORY); 2839 } else if (!check_net(sock_net(sk))) { 2840 /* Not possible to send reset; just close */ 2841 tcp_set_state(sk, TCP_CLOSE); 2842 } 2843 } 2844 2845 if (sk->sk_state == TCP_CLOSE) { 2846 struct request_sock *req; 2847 2848 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2849 lockdep_sock_is_held(sk)); 2850 /* We could get here with a non-NULL req if the socket is 2851 * aborted (e.g., closed with unread data) before 3WHS 2852 * finishes. 2853 */ 2854 if (req) 2855 reqsk_fastopen_remove(sk, req, false); 2856 inet_csk_destroy_sock(sk); 2857 } 2858 /* Otherwise, socket is reprieved until protocol close. */ 2859 2860 out: 2861 bh_unlock_sock(sk); 2862 local_bh_enable(); 2863 } 2864 2865 void tcp_close(struct sock *sk, long timeout) 2866 { 2867 lock_sock(sk); 2868 __tcp_close(sk, timeout); 2869 release_sock(sk); 2870 sock_put(sk); 2871 } 2872 EXPORT_SYMBOL(tcp_close); 2873 2874 /* These states need RST on ABORT according to RFC793 */ 2875 2876 static inline bool tcp_need_reset(int state) 2877 { 2878 return (1 << state) & 2879 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2880 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2881 } 2882 2883 static void tcp_rtx_queue_purge(struct sock *sk) 2884 { 2885 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2886 2887 tcp_sk(sk)->highest_sack = NULL; 2888 while (p) { 2889 struct sk_buff *skb = rb_to_skb(p); 2890 2891 p = rb_next(p); 2892 /* Since we are deleting whole queue, no need to 2893 * list_del(&skb->tcp_tsorted_anchor) 2894 */ 2895 tcp_rtx_queue_unlink(skb, sk); 2896 sk_wmem_free_skb(sk, skb); 2897 } 2898 } 2899 2900 void tcp_write_queue_purge(struct sock *sk) 2901 { 2902 struct sk_buff *skb; 2903 2904 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2905 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2906 tcp_skb_tsorted_anchor_cleanup(skb); 2907 sk_wmem_free_skb(sk, skb); 2908 } 2909 tcp_rtx_queue_purge(sk); 2910 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2911 sk_mem_reclaim(sk); 2912 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2913 tcp_sk(sk)->packets_out = 0; 2914 inet_csk(sk)->icsk_backoff = 0; 2915 } 2916 2917 int tcp_disconnect(struct sock *sk, int flags) 2918 { 2919 struct inet_sock *inet = inet_sk(sk); 2920 struct inet_connection_sock *icsk = inet_csk(sk); 2921 struct tcp_sock *tp = tcp_sk(sk); 2922 int old_state = sk->sk_state; 2923 u32 seq; 2924 2925 if (old_state != TCP_CLOSE) 2926 tcp_set_state(sk, TCP_CLOSE); 2927 2928 /* ABORT function of RFC793 */ 2929 if (old_state == TCP_LISTEN) { 2930 inet_csk_listen_stop(sk); 2931 } else if (unlikely(tp->repair)) { 2932 sk->sk_err = ECONNABORTED; 2933 } else if (tcp_need_reset(old_state) || 2934 (tp->snd_nxt != tp->write_seq && 2935 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2936 /* The last check adjusts for discrepancy of Linux wrt. RFC 2937 * states 2938 */ 2939 tcp_send_active_reset(sk, gfp_any()); 2940 sk->sk_err = ECONNRESET; 2941 } else if (old_state == TCP_SYN_SENT) 2942 sk->sk_err = ECONNRESET; 2943 2944 tcp_clear_xmit_timers(sk); 2945 __skb_queue_purge(&sk->sk_receive_queue); 2946 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2947 tp->urg_data = 0; 2948 tcp_write_queue_purge(sk); 2949 tcp_fastopen_active_disable_ofo_check(sk); 2950 skb_rbtree_purge(&tp->out_of_order_queue); 2951 2952 inet->inet_dport = 0; 2953 2954 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2955 inet_reset_saddr(sk); 2956 2957 sk->sk_shutdown = 0; 2958 sock_reset_flag(sk, SOCK_DONE); 2959 tp->srtt_us = 0; 2960 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2961 tp->rcv_rtt_last_tsecr = 0; 2962 2963 seq = tp->write_seq + tp->max_window + 2; 2964 if (!seq) 2965 seq = 1; 2966 WRITE_ONCE(tp->write_seq, seq); 2967 2968 icsk->icsk_backoff = 0; 2969 icsk->icsk_probes_out = 0; 2970 icsk->icsk_probes_tstamp = 0; 2971 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2972 icsk->icsk_rto_min = TCP_RTO_MIN; 2973 icsk->icsk_delack_max = TCP_DELACK_MAX; 2974 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2975 tp->snd_cwnd = TCP_INIT_CWND; 2976 tp->snd_cwnd_cnt = 0; 2977 tp->window_clamp = 0; 2978 tp->delivered = 0; 2979 tp->delivered_ce = 0; 2980 if (icsk->icsk_ca_ops->release) 2981 icsk->icsk_ca_ops->release(sk); 2982 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2983 icsk->icsk_ca_initialized = 0; 2984 tcp_set_ca_state(sk, TCP_CA_Open); 2985 tp->is_sack_reneg = 0; 2986 tcp_clear_retrans(tp); 2987 tp->total_retrans = 0; 2988 inet_csk_delack_init(sk); 2989 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2990 * issue in __tcp_select_window() 2991 */ 2992 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2993 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2994 __sk_dst_reset(sk); 2995 dst_release(sk->sk_rx_dst); 2996 sk->sk_rx_dst = NULL; 2997 tcp_saved_syn_free(tp); 2998 tp->compressed_ack = 0; 2999 tp->segs_in = 0; 3000 tp->segs_out = 0; 3001 tp->bytes_sent = 0; 3002 tp->bytes_acked = 0; 3003 tp->bytes_received = 0; 3004 tp->bytes_retrans = 0; 3005 tp->data_segs_in = 0; 3006 tp->data_segs_out = 0; 3007 tp->duplicate_sack[0].start_seq = 0; 3008 tp->duplicate_sack[0].end_seq = 0; 3009 tp->dsack_dups = 0; 3010 tp->reord_seen = 0; 3011 tp->retrans_out = 0; 3012 tp->sacked_out = 0; 3013 tp->tlp_high_seq = 0; 3014 tp->last_oow_ack_time = 0; 3015 /* There's a bubble in the pipe until at least the first ACK. */ 3016 tp->app_limited = ~0U; 3017 tp->rack.mstamp = 0; 3018 tp->rack.advanced = 0; 3019 tp->rack.reo_wnd_steps = 1; 3020 tp->rack.last_delivered = 0; 3021 tp->rack.reo_wnd_persist = 0; 3022 tp->rack.dsack_seen = 0; 3023 tp->syn_data_acked = 0; 3024 tp->rx_opt.saw_tstamp = 0; 3025 tp->rx_opt.dsack = 0; 3026 tp->rx_opt.num_sacks = 0; 3027 tp->rcv_ooopack = 0; 3028 3029 3030 /* Clean up fastopen related fields */ 3031 tcp_free_fastopen_req(tp); 3032 inet->defer_connect = 0; 3033 tp->fastopen_client_fail = 0; 3034 3035 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3036 3037 if (sk->sk_frag.page) { 3038 put_page(sk->sk_frag.page); 3039 sk->sk_frag.page = NULL; 3040 sk->sk_frag.offset = 0; 3041 } 3042 3043 sk_error_report(sk); 3044 return 0; 3045 } 3046 EXPORT_SYMBOL(tcp_disconnect); 3047 3048 static inline bool tcp_can_repair_sock(const struct sock *sk) 3049 { 3050 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3051 (sk->sk_state != TCP_LISTEN); 3052 } 3053 3054 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3055 { 3056 struct tcp_repair_window opt; 3057 3058 if (!tp->repair) 3059 return -EPERM; 3060 3061 if (len != sizeof(opt)) 3062 return -EINVAL; 3063 3064 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3065 return -EFAULT; 3066 3067 if (opt.max_window < opt.snd_wnd) 3068 return -EINVAL; 3069 3070 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3071 return -EINVAL; 3072 3073 if (after(opt.rcv_wup, tp->rcv_nxt)) 3074 return -EINVAL; 3075 3076 tp->snd_wl1 = opt.snd_wl1; 3077 tp->snd_wnd = opt.snd_wnd; 3078 tp->max_window = opt.max_window; 3079 3080 tp->rcv_wnd = opt.rcv_wnd; 3081 tp->rcv_wup = opt.rcv_wup; 3082 3083 return 0; 3084 } 3085 3086 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3087 unsigned int len) 3088 { 3089 struct tcp_sock *tp = tcp_sk(sk); 3090 struct tcp_repair_opt opt; 3091 size_t offset = 0; 3092 3093 while (len >= sizeof(opt)) { 3094 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3095 return -EFAULT; 3096 3097 offset += sizeof(opt); 3098 len -= sizeof(opt); 3099 3100 switch (opt.opt_code) { 3101 case TCPOPT_MSS: 3102 tp->rx_opt.mss_clamp = opt.opt_val; 3103 tcp_mtup_init(sk); 3104 break; 3105 case TCPOPT_WINDOW: 3106 { 3107 u16 snd_wscale = opt.opt_val & 0xFFFF; 3108 u16 rcv_wscale = opt.opt_val >> 16; 3109 3110 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3111 return -EFBIG; 3112 3113 tp->rx_opt.snd_wscale = snd_wscale; 3114 tp->rx_opt.rcv_wscale = rcv_wscale; 3115 tp->rx_opt.wscale_ok = 1; 3116 } 3117 break; 3118 case TCPOPT_SACK_PERM: 3119 if (opt.opt_val != 0) 3120 return -EINVAL; 3121 3122 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3123 break; 3124 case TCPOPT_TIMESTAMP: 3125 if (opt.opt_val != 0) 3126 return -EINVAL; 3127 3128 tp->rx_opt.tstamp_ok = 1; 3129 break; 3130 } 3131 } 3132 3133 return 0; 3134 } 3135 3136 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3137 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3138 3139 static void tcp_enable_tx_delay(void) 3140 { 3141 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3142 static int __tcp_tx_delay_enabled = 0; 3143 3144 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3145 static_branch_enable(&tcp_tx_delay_enabled); 3146 pr_info("TCP_TX_DELAY enabled\n"); 3147 } 3148 } 3149 } 3150 3151 /* When set indicates to always queue non-full frames. Later the user clears 3152 * this option and we transmit any pending partial frames in the queue. This is 3153 * meant to be used alongside sendfile() to get properly filled frames when the 3154 * user (for example) must write out headers with a write() call first and then 3155 * use sendfile to send out the data parts. 3156 * 3157 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3158 * TCP_NODELAY. 3159 */ 3160 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3161 { 3162 struct tcp_sock *tp = tcp_sk(sk); 3163 3164 if (on) { 3165 tp->nonagle |= TCP_NAGLE_CORK; 3166 } else { 3167 tp->nonagle &= ~TCP_NAGLE_CORK; 3168 if (tp->nonagle & TCP_NAGLE_OFF) 3169 tp->nonagle |= TCP_NAGLE_PUSH; 3170 tcp_push_pending_frames(sk); 3171 } 3172 } 3173 3174 void tcp_sock_set_cork(struct sock *sk, bool on) 3175 { 3176 lock_sock(sk); 3177 __tcp_sock_set_cork(sk, on); 3178 release_sock(sk); 3179 } 3180 EXPORT_SYMBOL(tcp_sock_set_cork); 3181 3182 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3183 * remembered, but it is not activated until cork is cleared. 3184 * 3185 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3186 * even TCP_CORK for currently queued segments. 3187 */ 3188 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3189 { 3190 if (on) { 3191 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3192 tcp_push_pending_frames(sk); 3193 } else { 3194 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3195 } 3196 } 3197 3198 void tcp_sock_set_nodelay(struct sock *sk) 3199 { 3200 lock_sock(sk); 3201 __tcp_sock_set_nodelay(sk, true); 3202 release_sock(sk); 3203 } 3204 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3205 3206 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3207 { 3208 if (!val) { 3209 inet_csk_enter_pingpong_mode(sk); 3210 return; 3211 } 3212 3213 inet_csk_exit_pingpong_mode(sk); 3214 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3215 inet_csk_ack_scheduled(sk)) { 3216 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3217 tcp_cleanup_rbuf(sk, 1); 3218 if (!(val & 1)) 3219 inet_csk_enter_pingpong_mode(sk); 3220 } 3221 } 3222 3223 void tcp_sock_set_quickack(struct sock *sk, int val) 3224 { 3225 lock_sock(sk); 3226 __tcp_sock_set_quickack(sk, val); 3227 release_sock(sk); 3228 } 3229 EXPORT_SYMBOL(tcp_sock_set_quickack); 3230 3231 int tcp_sock_set_syncnt(struct sock *sk, int val) 3232 { 3233 if (val < 1 || val > MAX_TCP_SYNCNT) 3234 return -EINVAL; 3235 3236 lock_sock(sk); 3237 inet_csk(sk)->icsk_syn_retries = val; 3238 release_sock(sk); 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3242 3243 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3244 { 3245 lock_sock(sk); 3246 inet_csk(sk)->icsk_user_timeout = val; 3247 release_sock(sk); 3248 } 3249 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3250 3251 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3252 { 3253 struct tcp_sock *tp = tcp_sk(sk); 3254 3255 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3256 return -EINVAL; 3257 3258 tp->keepalive_time = val * HZ; 3259 if (sock_flag(sk, SOCK_KEEPOPEN) && 3260 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3261 u32 elapsed = keepalive_time_elapsed(tp); 3262 3263 if (tp->keepalive_time > elapsed) 3264 elapsed = tp->keepalive_time - elapsed; 3265 else 3266 elapsed = 0; 3267 inet_csk_reset_keepalive_timer(sk, elapsed); 3268 } 3269 3270 return 0; 3271 } 3272 3273 int tcp_sock_set_keepidle(struct sock *sk, int val) 3274 { 3275 int err; 3276 3277 lock_sock(sk); 3278 err = tcp_sock_set_keepidle_locked(sk, val); 3279 release_sock(sk); 3280 return err; 3281 } 3282 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3283 3284 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3285 { 3286 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3287 return -EINVAL; 3288 3289 lock_sock(sk); 3290 tcp_sk(sk)->keepalive_intvl = val * HZ; 3291 release_sock(sk); 3292 return 0; 3293 } 3294 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3295 3296 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3297 { 3298 if (val < 1 || val > MAX_TCP_KEEPCNT) 3299 return -EINVAL; 3300 3301 lock_sock(sk); 3302 tcp_sk(sk)->keepalive_probes = val; 3303 release_sock(sk); 3304 return 0; 3305 } 3306 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3307 3308 int tcp_set_window_clamp(struct sock *sk, int val) 3309 { 3310 struct tcp_sock *tp = tcp_sk(sk); 3311 3312 if (!val) { 3313 if (sk->sk_state != TCP_CLOSE) 3314 return -EINVAL; 3315 tp->window_clamp = 0; 3316 } else { 3317 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3318 SOCK_MIN_RCVBUF / 2 : val; 3319 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3320 } 3321 return 0; 3322 } 3323 3324 /* 3325 * Socket option code for TCP. 3326 */ 3327 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3328 sockptr_t optval, unsigned int optlen) 3329 { 3330 struct tcp_sock *tp = tcp_sk(sk); 3331 struct inet_connection_sock *icsk = inet_csk(sk); 3332 struct net *net = sock_net(sk); 3333 int val; 3334 int err = 0; 3335 3336 /* These are data/string values, all the others are ints */ 3337 switch (optname) { 3338 case TCP_CONGESTION: { 3339 char name[TCP_CA_NAME_MAX]; 3340 3341 if (optlen < 1) 3342 return -EINVAL; 3343 3344 val = strncpy_from_sockptr(name, optval, 3345 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3346 if (val < 0) 3347 return -EFAULT; 3348 name[val] = 0; 3349 3350 lock_sock(sk); 3351 err = tcp_set_congestion_control(sk, name, true, 3352 ns_capable(sock_net(sk)->user_ns, 3353 CAP_NET_ADMIN)); 3354 release_sock(sk); 3355 return err; 3356 } 3357 case TCP_ULP: { 3358 char name[TCP_ULP_NAME_MAX]; 3359 3360 if (optlen < 1) 3361 return -EINVAL; 3362 3363 val = strncpy_from_sockptr(name, optval, 3364 min_t(long, TCP_ULP_NAME_MAX - 1, 3365 optlen)); 3366 if (val < 0) 3367 return -EFAULT; 3368 name[val] = 0; 3369 3370 lock_sock(sk); 3371 err = tcp_set_ulp(sk, name); 3372 release_sock(sk); 3373 return err; 3374 } 3375 case TCP_FASTOPEN_KEY: { 3376 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3377 __u8 *backup_key = NULL; 3378 3379 /* Allow a backup key as well to facilitate key rotation 3380 * First key is the active one. 3381 */ 3382 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3383 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3384 return -EINVAL; 3385 3386 if (copy_from_sockptr(key, optval, optlen)) 3387 return -EFAULT; 3388 3389 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3390 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3391 3392 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3393 } 3394 default: 3395 /* fallthru */ 3396 break; 3397 } 3398 3399 if (optlen < sizeof(int)) 3400 return -EINVAL; 3401 3402 if (copy_from_sockptr(&val, optval, sizeof(val))) 3403 return -EFAULT; 3404 3405 lock_sock(sk); 3406 3407 switch (optname) { 3408 case TCP_MAXSEG: 3409 /* Values greater than interface MTU won't take effect. However 3410 * at the point when this call is done we typically don't yet 3411 * know which interface is going to be used 3412 */ 3413 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3414 err = -EINVAL; 3415 break; 3416 } 3417 tp->rx_opt.user_mss = val; 3418 break; 3419 3420 case TCP_NODELAY: 3421 __tcp_sock_set_nodelay(sk, val); 3422 break; 3423 3424 case TCP_THIN_LINEAR_TIMEOUTS: 3425 if (val < 0 || val > 1) 3426 err = -EINVAL; 3427 else 3428 tp->thin_lto = val; 3429 break; 3430 3431 case TCP_THIN_DUPACK: 3432 if (val < 0 || val > 1) 3433 err = -EINVAL; 3434 break; 3435 3436 case TCP_REPAIR: 3437 if (!tcp_can_repair_sock(sk)) 3438 err = -EPERM; 3439 else if (val == TCP_REPAIR_ON) { 3440 tp->repair = 1; 3441 sk->sk_reuse = SK_FORCE_REUSE; 3442 tp->repair_queue = TCP_NO_QUEUE; 3443 } else if (val == TCP_REPAIR_OFF) { 3444 tp->repair = 0; 3445 sk->sk_reuse = SK_NO_REUSE; 3446 tcp_send_window_probe(sk); 3447 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3448 tp->repair = 0; 3449 sk->sk_reuse = SK_NO_REUSE; 3450 } else 3451 err = -EINVAL; 3452 3453 break; 3454 3455 case TCP_REPAIR_QUEUE: 3456 if (!tp->repair) 3457 err = -EPERM; 3458 else if ((unsigned int)val < TCP_QUEUES_NR) 3459 tp->repair_queue = val; 3460 else 3461 err = -EINVAL; 3462 break; 3463 3464 case TCP_QUEUE_SEQ: 3465 if (sk->sk_state != TCP_CLOSE) { 3466 err = -EPERM; 3467 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3468 if (!tcp_rtx_queue_empty(sk)) 3469 err = -EPERM; 3470 else 3471 WRITE_ONCE(tp->write_seq, val); 3472 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3473 if (tp->rcv_nxt != tp->copied_seq) { 3474 err = -EPERM; 3475 } else { 3476 WRITE_ONCE(tp->rcv_nxt, val); 3477 WRITE_ONCE(tp->copied_seq, val); 3478 } 3479 } else { 3480 err = -EINVAL; 3481 } 3482 break; 3483 3484 case TCP_REPAIR_OPTIONS: 3485 if (!tp->repair) 3486 err = -EINVAL; 3487 else if (sk->sk_state == TCP_ESTABLISHED) 3488 err = tcp_repair_options_est(sk, optval, optlen); 3489 else 3490 err = -EPERM; 3491 break; 3492 3493 case TCP_CORK: 3494 __tcp_sock_set_cork(sk, val); 3495 break; 3496 3497 case TCP_KEEPIDLE: 3498 err = tcp_sock_set_keepidle_locked(sk, val); 3499 break; 3500 case TCP_KEEPINTVL: 3501 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3502 err = -EINVAL; 3503 else 3504 tp->keepalive_intvl = val * HZ; 3505 break; 3506 case TCP_KEEPCNT: 3507 if (val < 1 || val > MAX_TCP_KEEPCNT) 3508 err = -EINVAL; 3509 else 3510 tp->keepalive_probes = val; 3511 break; 3512 case TCP_SYNCNT: 3513 if (val < 1 || val > MAX_TCP_SYNCNT) 3514 err = -EINVAL; 3515 else 3516 icsk->icsk_syn_retries = val; 3517 break; 3518 3519 case TCP_SAVE_SYN: 3520 /* 0: disable, 1: enable, 2: start from ether_header */ 3521 if (val < 0 || val > 2) 3522 err = -EINVAL; 3523 else 3524 tp->save_syn = val; 3525 break; 3526 3527 case TCP_LINGER2: 3528 if (val < 0) 3529 tp->linger2 = -1; 3530 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3531 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3532 else 3533 tp->linger2 = val * HZ; 3534 break; 3535 3536 case TCP_DEFER_ACCEPT: 3537 /* Translate value in seconds to number of retransmits */ 3538 icsk->icsk_accept_queue.rskq_defer_accept = 3539 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3540 TCP_RTO_MAX / HZ); 3541 break; 3542 3543 case TCP_WINDOW_CLAMP: 3544 err = tcp_set_window_clamp(sk, val); 3545 break; 3546 3547 case TCP_QUICKACK: 3548 __tcp_sock_set_quickack(sk, val); 3549 break; 3550 3551 #ifdef CONFIG_TCP_MD5SIG 3552 case TCP_MD5SIG: 3553 case TCP_MD5SIG_EXT: 3554 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3555 break; 3556 #endif 3557 case TCP_USER_TIMEOUT: 3558 /* Cap the max time in ms TCP will retry or probe the window 3559 * before giving up and aborting (ETIMEDOUT) a connection. 3560 */ 3561 if (val < 0) 3562 err = -EINVAL; 3563 else 3564 icsk->icsk_user_timeout = val; 3565 break; 3566 3567 case TCP_FASTOPEN: 3568 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3569 TCPF_LISTEN))) { 3570 tcp_fastopen_init_key_once(net); 3571 3572 fastopen_queue_tune(sk, val); 3573 } else { 3574 err = -EINVAL; 3575 } 3576 break; 3577 case TCP_FASTOPEN_CONNECT: 3578 if (val > 1 || val < 0) { 3579 err = -EINVAL; 3580 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3581 if (sk->sk_state == TCP_CLOSE) 3582 tp->fastopen_connect = val; 3583 else 3584 err = -EINVAL; 3585 } else { 3586 err = -EOPNOTSUPP; 3587 } 3588 break; 3589 case TCP_FASTOPEN_NO_COOKIE: 3590 if (val > 1 || val < 0) 3591 err = -EINVAL; 3592 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3593 err = -EINVAL; 3594 else 3595 tp->fastopen_no_cookie = val; 3596 break; 3597 case TCP_TIMESTAMP: 3598 if (!tp->repair) 3599 err = -EPERM; 3600 else 3601 tp->tsoffset = val - tcp_time_stamp_raw(); 3602 break; 3603 case TCP_REPAIR_WINDOW: 3604 err = tcp_repair_set_window(tp, optval, optlen); 3605 break; 3606 case TCP_NOTSENT_LOWAT: 3607 tp->notsent_lowat = val; 3608 sk->sk_write_space(sk); 3609 break; 3610 case TCP_INQ: 3611 if (val > 1 || val < 0) 3612 err = -EINVAL; 3613 else 3614 tp->recvmsg_inq = val; 3615 break; 3616 case TCP_TX_DELAY: 3617 if (val) 3618 tcp_enable_tx_delay(); 3619 tp->tcp_tx_delay = val; 3620 break; 3621 default: 3622 err = -ENOPROTOOPT; 3623 break; 3624 } 3625 3626 release_sock(sk); 3627 return err; 3628 } 3629 3630 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3631 unsigned int optlen) 3632 { 3633 const struct inet_connection_sock *icsk = inet_csk(sk); 3634 3635 if (level != SOL_TCP) 3636 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3637 optval, optlen); 3638 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3639 } 3640 EXPORT_SYMBOL(tcp_setsockopt); 3641 3642 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3643 struct tcp_info *info) 3644 { 3645 u64 stats[__TCP_CHRONO_MAX], total = 0; 3646 enum tcp_chrono i; 3647 3648 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3649 stats[i] = tp->chrono_stat[i - 1]; 3650 if (i == tp->chrono_type) 3651 stats[i] += tcp_jiffies32 - tp->chrono_start; 3652 stats[i] *= USEC_PER_SEC / HZ; 3653 total += stats[i]; 3654 } 3655 3656 info->tcpi_busy_time = total; 3657 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3658 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3659 } 3660 3661 /* Return information about state of tcp endpoint in API format. */ 3662 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3663 { 3664 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3665 const struct inet_connection_sock *icsk = inet_csk(sk); 3666 unsigned long rate; 3667 u32 now; 3668 u64 rate64; 3669 bool slow; 3670 3671 memset(info, 0, sizeof(*info)); 3672 if (sk->sk_type != SOCK_STREAM) 3673 return; 3674 3675 info->tcpi_state = inet_sk_state_load(sk); 3676 3677 /* Report meaningful fields for all TCP states, including listeners */ 3678 rate = READ_ONCE(sk->sk_pacing_rate); 3679 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3680 info->tcpi_pacing_rate = rate64; 3681 3682 rate = READ_ONCE(sk->sk_max_pacing_rate); 3683 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3684 info->tcpi_max_pacing_rate = rate64; 3685 3686 info->tcpi_reordering = tp->reordering; 3687 info->tcpi_snd_cwnd = tp->snd_cwnd; 3688 3689 if (info->tcpi_state == TCP_LISTEN) { 3690 /* listeners aliased fields : 3691 * tcpi_unacked -> Number of children ready for accept() 3692 * tcpi_sacked -> max backlog 3693 */ 3694 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3695 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3696 return; 3697 } 3698 3699 slow = lock_sock_fast(sk); 3700 3701 info->tcpi_ca_state = icsk->icsk_ca_state; 3702 info->tcpi_retransmits = icsk->icsk_retransmits; 3703 info->tcpi_probes = icsk->icsk_probes_out; 3704 info->tcpi_backoff = icsk->icsk_backoff; 3705 3706 if (tp->rx_opt.tstamp_ok) 3707 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3708 if (tcp_is_sack(tp)) 3709 info->tcpi_options |= TCPI_OPT_SACK; 3710 if (tp->rx_opt.wscale_ok) { 3711 info->tcpi_options |= TCPI_OPT_WSCALE; 3712 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3713 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3714 } 3715 3716 if (tp->ecn_flags & TCP_ECN_OK) 3717 info->tcpi_options |= TCPI_OPT_ECN; 3718 if (tp->ecn_flags & TCP_ECN_SEEN) 3719 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3720 if (tp->syn_data_acked) 3721 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3722 3723 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3724 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3725 info->tcpi_snd_mss = tp->mss_cache; 3726 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3727 3728 info->tcpi_unacked = tp->packets_out; 3729 info->tcpi_sacked = tp->sacked_out; 3730 3731 info->tcpi_lost = tp->lost_out; 3732 info->tcpi_retrans = tp->retrans_out; 3733 3734 now = tcp_jiffies32; 3735 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3736 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3737 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3738 3739 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3740 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3741 info->tcpi_rtt = tp->srtt_us >> 3; 3742 info->tcpi_rttvar = tp->mdev_us >> 2; 3743 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3744 info->tcpi_advmss = tp->advmss; 3745 3746 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3747 info->tcpi_rcv_space = tp->rcvq_space.space; 3748 3749 info->tcpi_total_retrans = tp->total_retrans; 3750 3751 info->tcpi_bytes_acked = tp->bytes_acked; 3752 info->tcpi_bytes_received = tp->bytes_received; 3753 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3754 tcp_get_info_chrono_stats(tp, info); 3755 3756 info->tcpi_segs_out = tp->segs_out; 3757 info->tcpi_segs_in = tp->segs_in; 3758 3759 info->tcpi_min_rtt = tcp_min_rtt(tp); 3760 info->tcpi_data_segs_in = tp->data_segs_in; 3761 info->tcpi_data_segs_out = tp->data_segs_out; 3762 3763 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3764 rate64 = tcp_compute_delivery_rate(tp); 3765 if (rate64) 3766 info->tcpi_delivery_rate = rate64; 3767 info->tcpi_delivered = tp->delivered; 3768 info->tcpi_delivered_ce = tp->delivered_ce; 3769 info->tcpi_bytes_sent = tp->bytes_sent; 3770 info->tcpi_bytes_retrans = tp->bytes_retrans; 3771 info->tcpi_dsack_dups = tp->dsack_dups; 3772 info->tcpi_reord_seen = tp->reord_seen; 3773 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3774 info->tcpi_snd_wnd = tp->snd_wnd; 3775 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3776 unlock_sock_fast(sk, slow); 3777 } 3778 EXPORT_SYMBOL_GPL(tcp_get_info); 3779 3780 static size_t tcp_opt_stats_get_size(void) 3781 { 3782 return 3783 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3784 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3785 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3786 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3787 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3788 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3789 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3790 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3791 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3792 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3793 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3794 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3795 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3796 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3797 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3798 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3799 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3800 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3801 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3802 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3803 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3804 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3805 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3806 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3808 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3809 0; 3810 } 3811 3812 /* Returns TTL or hop limit of an incoming packet from skb. */ 3813 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3814 { 3815 if (skb->protocol == htons(ETH_P_IP)) 3816 return ip_hdr(skb)->ttl; 3817 else if (skb->protocol == htons(ETH_P_IPV6)) 3818 return ipv6_hdr(skb)->hop_limit; 3819 else 3820 return 0; 3821 } 3822 3823 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3824 const struct sk_buff *orig_skb, 3825 const struct sk_buff *ack_skb) 3826 { 3827 const struct tcp_sock *tp = tcp_sk(sk); 3828 struct sk_buff *stats; 3829 struct tcp_info info; 3830 unsigned long rate; 3831 u64 rate64; 3832 3833 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3834 if (!stats) 3835 return NULL; 3836 3837 tcp_get_info_chrono_stats(tp, &info); 3838 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3839 info.tcpi_busy_time, TCP_NLA_PAD); 3840 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3841 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3842 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3843 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3844 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3845 tp->data_segs_out, TCP_NLA_PAD); 3846 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3847 tp->total_retrans, TCP_NLA_PAD); 3848 3849 rate = READ_ONCE(sk->sk_pacing_rate); 3850 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3851 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3852 3853 rate64 = tcp_compute_delivery_rate(tp); 3854 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3855 3856 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3857 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3858 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3859 3860 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3861 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3862 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3863 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3864 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3865 3866 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3867 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3868 3869 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3870 TCP_NLA_PAD); 3871 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3872 TCP_NLA_PAD); 3873 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3874 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3875 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3876 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3877 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3878 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3879 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3880 TCP_NLA_PAD); 3881 if (ack_skb) 3882 nla_put_u8(stats, TCP_NLA_TTL, 3883 tcp_skb_ttl_or_hop_limit(ack_skb)); 3884 3885 return stats; 3886 } 3887 3888 static int do_tcp_getsockopt(struct sock *sk, int level, 3889 int optname, char __user *optval, int __user *optlen) 3890 { 3891 struct inet_connection_sock *icsk = inet_csk(sk); 3892 struct tcp_sock *tp = tcp_sk(sk); 3893 struct net *net = sock_net(sk); 3894 int val, len; 3895 3896 if (get_user(len, optlen)) 3897 return -EFAULT; 3898 3899 len = min_t(unsigned int, len, sizeof(int)); 3900 3901 if (len < 0) 3902 return -EINVAL; 3903 3904 switch (optname) { 3905 case TCP_MAXSEG: 3906 val = tp->mss_cache; 3907 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3908 val = tp->rx_opt.user_mss; 3909 if (tp->repair) 3910 val = tp->rx_opt.mss_clamp; 3911 break; 3912 case TCP_NODELAY: 3913 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3914 break; 3915 case TCP_CORK: 3916 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3917 break; 3918 case TCP_KEEPIDLE: 3919 val = keepalive_time_when(tp) / HZ; 3920 break; 3921 case TCP_KEEPINTVL: 3922 val = keepalive_intvl_when(tp) / HZ; 3923 break; 3924 case TCP_KEEPCNT: 3925 val = keepalive_probes(tp); 3926 break; 3927 case TCP_SYNCNT: 3928 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3929 break; 3930 case TCP_LINGER2: 3931 val = tp->linger2; 3932 if (val >= 0) 3933 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3934 break; 3935 case TCP_DEFER_ACCEPT: 3936 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3937 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3938 break; 3939 case TCP_WINDOW_CLAMP: 3940 val = tp->window_clamp; 3941 break; 3942 case TCP_INFO: { 3943 struct tcp_info info; 3944 3945 if (get_user(len, optlen)) 3946 return -EFAULT; 3947 3948 tcp_get_info(sk, &info); 3949 3950 len = min_t(unsigned int, len, sizeof(info)); 3951 if (put_user(len, optlen)) 3952 return -EFAULT; 3953 if (copy_to_user(optval, &info, len)) 3954 return -EFAULT; 3955 return 0; 3956 } 3957 case TCP_CC_INFO: { 3958 const struct tcp_congestion_ops *ca_ops; 3959 union tcp_cc_info info; 3960 size_t sz = 0; 3961 int attr; 3962 3963 if (get_user(len, optlen)) 3964 return -EFAULT; 3965 3966 ca_ops = icsk->icsk_ca_ops; 3967 if (ca_ops && ca_ops->get_info) 3968 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3969 3970 len = min_t(unsigned int, len, sz); 3971 if (put_user(len, optlen)) 3972 return -EFAULT; 3973 if (copy_to_user(optval, &info, len)) 3974 return -EFAULT; 3975 return 0; 3976 } 3977 case TCP_QUICKACK: 3978 val = !inet_csk_in_pingpong_mode(sk); 3979 break; 3980 3981 case TCP_CONGESTION: 3982 if (get_user(len, optlen)) 3983 return -EFAULT; 3984 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3985 if (put_user(len, optlen)) 3986 return -EFAULT; 3987 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3988 return -EFAULT; 3989 return 0; 3990 3991 case TCP_ULP: 3992 if (get_user(len, optlen)) 3993 return -EFAULT; 3994 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3995 if (!icsk->icsk_ulp_ops) { 3996 if (put_user(0, optlen)) 3997 return -EFAULT; 3998 return 0; 3999 } 4000 if (put_user(len, optlen)) 4001 return -EFAULT; 4002 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4003 return -EFAULT; 4004 return 0; 4005 4006 case TCP_FASTOPEN_KEY: { 4007 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4008 unsigned int key_len; 4009 4010 if (get_user(len, optlen)) 4011 return -EFAULT; 4012 4013 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4014 TCP_FASTOPEN_KEY_LENGTH; 4015 len = min_t(unsigned int, len, key_len); 4016 if (put_user(len, optlen)) 4017 return -EFAULT; 4018 if (copy_to_user(optval, key, len)) 4019 return -EFAULT; 4020 return 0; 4021 } 4022 case TCP_THIN_LINEAR_TIMEOUTS: 4023 val = tp->thin_lto; 4024 break; 4025 4026 case TCP_THIN_DUPACK: 4027 val = 0; 4028 break; 4029 4030 case TCP_REPAIR: 4031 val = tp->repair; 4032 break; 4033 4034 case TCP_REPAIR_QUEUE: 4035 if (tp->repair) 4036 val = tp->repair_queue; 4037 else 4038 return -EINVAL; 4039 break; 4040 4041 case TCP_REPAIR_WINDOW: { 4042 struct tcp_repair_window opt; 4043 4044 if (get_user(len, optlen)) 4045 return -EFAULT; 4046 4047 if (len != sizeof(opt)) 4048 return -EINVAL; 4049 4050 if (!tp->repair) 4051 return -EPERM; 4052 4053 opt.snd_wl1 = tp->snd_wl1; 4054 opt.snd_wnd = tp->snd_wnd; 4055 opt.max_window = tp->max_window; 4056 opt.rcv_wnd = tp->rcv_wnd; 4057 opt.rcv_wup = tp->rcv_wup; 4058 4059 if (copy_to_user(optval, &opt, len)) 4060 return -EFAULT; 4061 return 0; 4062 } 4063 case TCP_QUEUE_SEQ: 4064 if (tp->repair_queue == TCP_SEND_QUEUE) 4065 val = tp->write_seq; 4066 else if (tp->repair_queue == TCP_RECV_QUEUE) 4067 val = tp->rcv_nxt; 4068 else 4069 return -EINVAL; 4070 break; 4071 4072 case TCP_USER_TIMEOUT: 4073 val = icsk->icsk_user_timeout; 4074 break; 4075 4076 case TCP_FASTOPEN: 4077 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4078 break; 4079 4080 case TCP_FASTOPEN_CONNECT: 4081 val = tp->fastopen_connect; 4082 break; 4083 4084 case TCP_FASTOPEN_NO_COOKIE: 4085 val = tp->fastopen_no_cookie; 4086 break; 4087 4088 case TCP_TX_DELAY: 4089 val = tp->tcp_tx_delay; 4090 break; 4091 4092 case TCP_TIMESTAMP: 4093 val = tcp_time_stamp_raw() + tp->tsoffset; 4094 break; 4095 case TCP_NOTSENT_LOWAT: 4096 val = tp->notsent_lowat; 4097 break; 4098 case TCP_INQ: 4099 val = tp->recvmsg_inq; 4100 break; 4101 case TCP_SAVE_SYN: 4102 val = tp->save_syn; 4103 break; 4104 case TCP_SAVED_SYN: { 4105 if (get_user(len, optlen)) 4106 return -EFAULT; 4107 4108 lock_sock(sk); 4109 if (tp->saved_syn) { 4110 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4111 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4112 optlen)) { 4113 release_sock(sk); 4114 return -EFAULT; 4115 } 4116 release_sock(sk); 4117 return -EINVAL; 4118 } 4119 len = tcp_saved_syn_len(tp->saved_syn); 4120 if (put_user(len, optlen)) { 4121 release_sock(sk); 4122 return -EFAULT; 4123 } 4124 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4125 release_sock(sk); 4126 return -EFAULT; 4127 } 4128 tcp_saved_syn_free(tp); 4129 release_sock(sk); 4130 } else { 4131 release_sock(sk); 4132 len = 0; 4133 if (put_user(len, optlen)) 4134 return -EFAULT; 4135 } 4136 return 0; 4137 } 4138 #ifdef CONFIG_MMU 4139 case TCP_ZEROCOPY_RECEIVE: { 4140 struct scm_timestamping_internal tss; 4141 struct tcp_zerocopy_receive zc = {}; 4142 int err; 4143 4144 if (get_user(len, optlen)) 4145 return -EFAULT; 4146 if (len < 0 || 4147 len < offsetofend(struct tcp_zerocopy_receive, length)) 4148 return -EINVAL; 4149 if (unlikely(len > sizeof(zc))) { 4150 err = check_zeroed_user(optval + sizeof(zc), 4151 len - sizeof(zc)); 4152 if (err < 1) 4153 return err == 0 ? -EINVAL : err; 4154 len = sizeof(zc); 4155 if (put_user(len, optlen)) 4156 return -EFAULT; 4157 } 4158 if (copy_from_user(&zc, optval, len)) 4159 return -EFAULT; 4160 if (zc.reserved) 4161 return -EINVAL; 4162 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4163 return -EINVAL; 4164 lock_sock(sk); 4165 err = tcp_zerocopy_receive(sk, &zc, &tss); 4166 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4167 &zc, &len, err); 4168 release_sock(sk); 4169 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4170 goto zerocopy_rcv_cmsg; 4171 switch (len) { 4172 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4173 goto zerocopy_rcv_cmsg; 4174 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4175 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4176 case offsetofend(struct tcp_zerocopy_receive, flags): 4177 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4178 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4179 case offsetofend(struct tcp_zerocopy_receive, err): 4180 goto zerocopy_rcv_sk_err; 4181 case offsetofend(struct tcp_zerocopy_receive, inq): 4182 goto zerocopy_rcv_inq; 4183 case offsetofend(struct tcp_zerocopy_receive, length): 4184 default: 4185 goto zerocopy_rcv_out; 4186 } 4187 zerocopy_rcv_cmsg: 4188 if (zc.msg_flags & TCP_CMSG_TS) 4189 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4190 else 4191 zc.msg_flags = 0; 4192 zerocopy_rcv_sk_err: 4193 if (!err) 4194 zc.err = sock_error(sk); 4195 zerocopy_rcv_inq: 4196 zc.inq = tcp_inq_hint(sk); 4197 zerocopy_rcv_out: 4198 if (!err && copy_to_user(optval, &zc, len)) 4199 err = -EFAULT; 4200 return err; 4201 } 4202 #endif 4203 default: 4204 return -ENOPROTOOPT; 4205 } 4206 4207 if (put_user(len, optlen)) 4208 return -EFAULT; 4209 if (copy_to_user(optval, &val, len)) 4210 return -EFAULT; 4211 return 0; 4212 } 4213 4214 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4215 { 4216 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4217 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4218 */ 4219 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4220 return true; 4221 4222 return false; 4223 } 4224 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4225 4226 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4227 int __user *optlen) 4228 { 4229 struct inet_connection_sock *icsk = inet_csk(sk); 4230 4231 if (level != SOL_TCP) 4232 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4233 optval, optlen); 4234 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4235 } 4236 EXPORT_SYMBOL(tcp_getsockopt); 4237 4238 #ifdef CONFIG_TCP_MD5SIG 4239 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4240 static DEFINE_MUTEX(tcp_md5sig_mutex); 4241 static bool tcp_md5sig_pool_populated = false; 4242 4243 static void __tcp_alloc_md5sig_pool(void) 4244 { 4245 struct crypto_ahash *hash; 4246 int cpu; 4247 4248 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4249 if (IS_ERR(hash)) 4250 return; 4251 4252 for_each_possible_cpu(cpu) { 4253 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4254 struct ahash_request *req; 4255 4256 if (!scratch) { 4257 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4258 sizeof(struct tcphdr), 4259 GFP_KERNEL, 4260 cpu_to_node(cpu)); 4261 if (!scratch) 4262 return; 4263 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4264 } 4265 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4266 continue; 4267 4268 req = ahash_request_alloc(hash, GFP_KERNEL); 4269 if (!req) 4270 return; 4271 4272 ahash_request_set_callback(req, 0, NULL, NULL); 4273 4274 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4275 } 4276 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4277 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4278 */ 4279 smp_wmb(); 4280 tcp_md5sig_pool_populated = true; 4281 } 4282 4283 bool tcp_alloc_md5sig_pool(void) 4284 { 4285 if (unlikely(!tcp_md5sig_pool_populated)) { 4286 mutex_lock(&tcp_md5sig_mutex); 4287 4288 if (!tcp_md5sig_pool_populated) { 4289 __tcp_alloc_md5sig_pool(); 4290 if (tcp_md5sig_pool_populated) 4291 static_branch_inc(&tcp_md5_needed); 4292 } 4293 4294 mutex_unlock(&tcp_md5sig_mutex); 4295 } 4296 return tcp_md5sig_pool_populated; 4297 } 4298 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4299 4300 4301 /** 4302 * tcp_get_md5sig_pool - get md5sig_pool for this user 4303 * 4304 * We use percpu structure, so if we succeed, we exit with preemption 4305 * and BH disabled, to make sure another thread or softirq handling 4306 * wont try to get same context. 4307 */ 4308 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4309 { 4310 local_bh_disable(); 4311 4312 if (tcp_md5sig_pool_populated) { 4313 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4314 smp_rmb(); 4315 return this_cpu_ptr(&tcp_md5sig_pool); 4316 } 4317 local_bh_enable(); 4318 return NULL; 4319 } 4320 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4321 4322 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4323 const struct sk_buff *skb, unsigned int header_len) 4324 { 4325 struct scatterlist sg; 4326 const struct tcphdr *tp = tcp_hdr(skb); 4327 struct ahash_request *req = hp->md5_req; 4328 unsigned int i; 4329 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4330 skb_headlen(skb) - header_len : 0; 4331 const struct skb_shared_info *shi = skb_shinfo(skb); 4332 struct sk_buff *frag_iter; 4333 4334 sg_init_table(&sg, 1); 4335 4336 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4337 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4338 if (crypto_ahash_update(req)) 4339 return 1; 4340 4341 for (i = 0; i < shi->nr_frags; ++i) { 4342 const skb_frag_t *f = &shi->frags[i]; 4343 unsigned int offset = skb_frag_off(f); 4344 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4345 4346 sg_set_page(&sg, page, skb_frag_size(f), 4347 offset_in_page(offset)); 4348 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4349 if (crypto_ahash_update(req)) 4350 return 1; 4351 } 4352 4353 skb_walk_frags(skb, frag_iter) 4354 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4355 return 1; 4356 4357 return 0; 4358 } 4359 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4360 4361 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4362 { 4363 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4364 struct scatterlist sg; 4365 4366 sg_init_one(&sg, key->key, keylen); 4367 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4368 4369 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4370 return data_race(crypto_ahash_update(hp->md5_req)); 4371 } 4372 EXPORT_SYMBOL(tcp_md5_hash_key); 4373 4374 #endif 4375 4376 void tcp_done(struct sock *sk) 4377 { 4378 struct request_sock *req; 4379 4380 /* We might be called with a new socket, after 4381 * inet_csk_prepare_forced_close() has been called 4382 * so we can not use lockdep_sock_is_held(sk) 4383 */ 4384 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4385 4386 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4387 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4388 4389 tcp_set_state(sk, TCP_CLOSE); 4390 tcp_clear_xmit_timers(sk); 4391 if (req) 4392 reqsk_fastopen_remove(sk, req, false); 4393 4394 sk->sk_shutdown = SHUTDOWN_MASK; 4395 4396 if (!sock_flag(sk, SOCK_DEAD)) 4397 sk->sk_state_change(sk); 4398 else 4399 inet_csk_destroy_sock(sk); 4400 } 4401 EXPORT_SYMBOL_GPL(tcp_done); 4402 4403 int tcp_abort(struct sock *sk, int err) 4404 { 4405 if (!sk_fullsock(sk)) { 4406 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4407 struct request_sock *req = inet_reqsk(sk); 4408 4409 local_bh_disable(); 4410 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4411 local_bh_enable(); 4412 return 0; 4413 } 4414 return -EOPNOTSUPP; 4415 } 4416 4417 /* Don't race with userspace socket closes such as tcp_close. */ 4418 lock_sock(sk); 4419 4420 if (sk->sk_state == TCP_LISTEN) { 4421 tcp_set_state(sk, TCP_CLOSE); 4422 inet_csk_listen_stop(sk); 4423 } 4424 4425 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4426 local_bh_disable(); 4427 bh_lock_sock(sk); 4428 4429 if (!sock_flag(sk, SOCK_DEAD)) { 4430 sk->sk_err = err; 4431 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4432 smp_wmb(); 4433 sk_error_report(sk); 4434 if (tcp_need_reset(sk->sk_state)) 4435 tcp_send_active_reset(sk, GFP_ATOMIC); 4436 tcp_done(sk); 4437 } 4438 4439 bh_unlock_sock(sk); 4440 local_bh_enable(); 4441 tcp_write_queue_purge(sk); 4442 release_sock(sk); 4443 return 0; 4444 } 4445 EXPORT_SYMBOL_GPL(tcp_abort); 4446 4447 extern struct tcp_congestion_ops tcp_reno; 4448 4449 static __initdata unsigned long thash_entries; 4450 static int __init set_thash_entries(char *str) 4451 { 4452 ssize_t ret; 4453 4454 if (!str) 4455 return 0; 4456 4457 ret = kstrtoul(str, 0, &thash_entries); 4458 if (ret) 4459 return 0; 4460 4461 return 1; 4462 } 4463 __setup("thash_entries=", set_thash_entries); 4464 4465 static void __init tcp_init_mem(void) 4466 { 4467 unsigned long limit = nr_free_buffer_pages() / 16; 4468 4469 limit = max(limit, 128UL); 4470 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4471 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4472 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4473 } 4474 4475 void __init tcp_init(void) 4476 { 4477 int max_rshare, max_wshare, cnt; 4478 unsigned long limit; 4479 unsigned int i; 4480 4481 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4482 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4483 sizeof_field(struct sk_buff, cb)); 4484 4485 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4486 4487 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4488 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4489 4490 inet_hashinfo_init(&tcp_hashinfo); 4491 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4492 thash_entries, 21, /* one slot per 2 MB*/ 4493 0, 64 * 1024); 4494 tcp_hashinfo.bind_bucket_cachep = 4495 kmem_cache_create("tcp_bind_bucket", 4496 sizeof(struct inet_bind_bucket), 0, 4497 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4498 SLAB_ACCOUNT, 4499 NULL); 4500 4501 /* Size and allocate the main established and bind bucket 4502 * hash tables. 4503 * 4504 * The methodology is similar to that of the buffer cache. 4505 */ 4506 tcp_hashinfo.ehash = 4507 alloc_large_system_hash("TCP established", 4508 sizeof(struct inet_ehash_bucket), 4509 thash_entries, 4510 17, /* one slot per 128 KB of memory */ 4511 0, 4512 NULL, 4513 &tcp_hashinfo.ehash_mask, 4514 0, 4515 thash_entries ? 0 : 512 * 1024); 4516 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4517 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4518 4519 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4520 panic("TCP: failed to alloc ehash_locks"); 4521 tcp_hashinfo.bhash = 4522 alloc_large_system_hash("TCP bind", 4523 sizeof(struct inet_bind_hashbucket), 4524 tcp_hashinfo.ehash_mask + 1, 4525 17, /* one slot per 128 KB of memory */ 4526 0, 4527 &tcp_hashinfo.bhash_size, 4528 NULL, 4529 0, 4530 64 * 1024); 4531 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4532 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4533 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4534 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4535 } 4536 4537 4538 cnt = tcp_hashinfo.ehash_mask + 1; 4539 sysctl_tcp_max_orphans = cnt / 2; 4540 4541 tcp_init_mem(); 4542 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4543 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4544 max_wshare = min(4UL*1024*1024, limit); 4545 max_rshare = min(6UL*1024*1024, limit); 4546 4547 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4548 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4549 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4550 4551 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4552 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4553 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4554 4555 pr_info("Hash tables configured (established %u bind %u)\n", 4556 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4557 4558 tcp_v4_init(); 4559 tcp_metrics_init(); 4560 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4561 tcp_tasklet_init(); 4562 mptcp_init(); 4563 } 4564