xref: /openbmc/linux/net/ipv4/tcp.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 struct percpu_counter tcp_orphan_count;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count);
285 
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 
289 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320 
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323 
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	unsigned long val;
329 
330 	if (READ_ONCE(tcp_memory_pressure))
331 		return;
332 	val = jiffies;
333 
334 	if (!val)
335 		val--;
336 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340 
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 	unsigned long val;
344 
345 	if (!READ_ONCE(tcp_memory_pressure))
346 		return;
347 	val = xchg(&tcp_memory_pressure, 0);
348 	if (val)
349 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 			      jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353 
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 	u8 res = 0;
358 
359 	if (seconds > 0) {
360 		int period = timeout;
361 
362 		res = 1;
363 		while (seconds > period && res < 255) {
364 			res++;
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return res;
372 }
373 
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 	int period = 0;
378 
379 	if (retrans > 0) {
380 		period = timeout;
381 		while (--retrans) {
382 			timeout <<= 1;
383 			if (timeout > rto_max)
384 				timeout = rto_max;
385 			period += timeout;
386 		}
387 	}
388 	return period;
389 }
390 
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 	u32 rate = READ_ONCE(tp->rate_delivered);
394 	u32 intv = READ_ONCE(tp->rate_interval_us);
395 	u64 rate64 = 0;
396 
397 	if (rate && intv) {
398 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 		do_div(rate64, intv);
400 	}
401 	return rate64;
402 }
403 
404 /* Address-family independent initialization for a tcp_sock.
405  *
406  * NOTE: A lot of things set to zero explicitly by call to
407  *       sk_alloc() so need not be done here.
408  */
409 void tcp_init_sock(struct sock *sk)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	struct tcp_sock *tp = tcp_sk(sk);
413 
414 	tp->out_of_order_queue = RB_ROOT;
415 	sk->tcp_rtx_queue = RB_ROOT;
416 	tcp_init_xmit_timers(sk);
417 	INIT_LIST_HEAD(&tp->tsq_node);
418 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419 
420 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 	icsk->icsk_rto_min = TCP_RTO_MIN;
422 	icsk->icsk_delack_max = TCP_DELACK_MAX;
423 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
424 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
425 
426 	/* So many TCP implementations out there (incorrectly) count the
427 	 * initial SYN frame in their delayed-ACK and congestion control
428 	 * algorithms that we must have the following bandaid to talk
429 	 * efficiently to them.  -DaveM
430 	 */
431 	tp->snd_cwnd = TCP_INIT_CWND;
432 
433 	/* There's a bubble in the pipe until at least the first ACK. */
434 	tp->app_limited = ~0U;
435 
436 	/* See draft-stevens-tcpca-spec-01 for discussion of the
437 	 * initialization of these values.
438 	 */
439 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440 	tp->snd_cwnd_clamp = ~0;
441 	tp->mss_cache = TCP_MSS_DEFAULT;
442 
443 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
444 	tcp_assign_congestion_control(sk);
445 
446 	tp->tsoffset = 0;
447 	tp->rack.reo_wnd_steps = 1;
448 
449 	sk->sk_write_space = sk_stream_write_space;
450 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451 
452 	icsk->icsk_sync_mss = tcp_sync_mss;
453 
454 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
455 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
456 
457 	sk_sockets_allocated_inc(sk);
458 	sk->sk_route_forced_caps = NETIF_F_GSO;
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461 
462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 	struct sk_buff *skb = tcp_write_queue_tail(sk);
465 
466 	if (tsflags && skb) {
467 		struct skb_shared_info *shinfo = skb_shinfo(skb);
468 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469 
470 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 			tcb->txstamp_ack = 1;
473 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 	}
476 }
477 
478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
479 					  int target, struct sock *sk)
480 {
481 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
482 
483 	if (avail > 0) {
484 		if (avail >= target)
485 			return true;
486 		if (tcp_rmem_pressure(sk))
487 			return true;
488 	}
489 	if (sk->sk_prot->stream_memory_read)
490 		return sk->sk_prot->stream_memory_read(sk);
491 	return false;
492 }
493 
494 /*
495  *	Wait for a TCP event.
496  *
497  *	Note that we don't need to lock the socket, as the upper poll layers
498  *	take care of normal races (between the test and the event) and we don't
499  *	go look at any of the socket buffers directly.
500  */
501 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
502 {
503 	__poll_t mask;
504 	struct sock *sk = sock->sk;
505 	const struct tcp_sock *tp = tcp_sk(sk);
506 	int state;
507 
508 	sock_poll_wait(file, sock, wait);
509 
510 	state = inet_sk_state_load(sk);
511 	if (state == TCP_LISTEN)
512 		return inet_csk_listen_poll(sk);
513 
514 	/* Socket is not locked. We are protected from async events
515 	 * by poll logic and correct handling of state changes
516 	 * made by other threads is impossible in any case.
517 	 */
518 
519 	mask = 0;
520 
521 	/*
522 	 * EPOLLHUP is certainly not done right. But poll() doesn't
523 	 * have a notion of HUP in just one direction, and for a
524 	 * socket the read side is more interesting.
525 	 *
526 	 * Some poll() documentation says that EPOLLHUP is incompatible
527 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
528 	 * all. But careful, it tends to be safer to return too many
529 	 * bits than too few, and you can easily break real applications
530 	 * if you don't tell them that something has hung up!
531 	 *
532 	 * Check-me.
533 	 *
534 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
535 	 * our fs/select.c). It means that after we received EOF,
536 	 * poll always returns immediately, making impossible poll() on write()
537 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
538 	 * if and only if shutdown has been made in both directions.
539 	 * Actually, it is interesting to look how Solaris and DUX
540 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
541 	 * then we could set it on SND_SHUTDOWN. BTW examples given
542 	 * in Stevens' books assume exactly this behaviour, it explains
543 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
544 	 *
545 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
546 	 * blocking on fresh not-connected or disconnected socket. --ANK
547 	 */
548 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
549 		mask |= EPOLLHUP;
550 	if (sk->sk_shutdown & RCV_SHUTDOWN)
551 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
552 
553 	/* Connected or passive Fast Open socket? */
554 	if (state != TCP_SYN_SENT &&
555 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
556 		int target = sock_rcvlowat(sk, 0, INT_MAX);
557 
558 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE) &&
560 		    tp->urg_data)
561 			target++;
562 
563 		if (tcp_stream_is_readable(tp, target, sk))
564 			mask |= EPOLLIN | EPOLLRDNORM;
565 
566 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
567 			if (__sk_stream_is_writeable(sk, 1)) {
568 				mask |= EPOLLOUT | EPOLLWRNORM;
569 			} else {  /* send SIGIO later */
570 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
571 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
572 
573 				/* Race breaker. If space is freed after
574 				 * wspace test but before the flags are set,
575 				 * IO signal will be lost. Memory barrier
576 				 * pairs with the input side.
577 				 */
578 				smp_mb__after_atomic();
579 				if (__sk_stream_is_writeable(sk, 1))
580 					mask |= EPOLLOUT | EPOLLWRNORM;
581 			}
582 		} else
583 			mask |= EPOLLOUT | EPOLLWRNORM;
584 
585 		if (tp->urg_data & TCP_URG_VALID)
586 			mask |= EPOLLPRI;
587 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
588 		/* Active TCP fastopen socket with defer_connect
589 		 * Return EPOLLOUT so application can call write()
590 		 * in order for kernel to generate SYN+data
591 		 */
592 		mask |= EPOLLOUT | EPOLLWRNORM;
593 	}
594 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
595 	smp_rmb();
596 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
597 		mask |= EPOLLERR;
598 
599 	return mask;
600 }
601 EXPORT_SYMBOL(tcp_poll);
602 
603 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	int answ;
607 	bool slow;
608 
609 	switch (cmd) {
610 	case SIOCINQ:
611 		if (sk->sk_state == TCP_LISTEN)
612 			return -EINVAL;
613 
614 		slow = lock_sock_fast(sk);
615 		answ = tcp_inq(sk);
616 		unlock_sock_fast(sk, slow);
617 		break;
618 	case SIOCATMARK:
619 		answ = tp->urg_data &&
620 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
621 		break;
622 	case SIOCOUTQ:
623 		if (sk->sk_state == TCP_LISTEN)
624 			return -EINVAL;
625 
626 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
627 			answ = 0;
628 		else
629 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
630 		break;
631 	case SIOCOUTQNSD:
632 		if (sk->sk_state == TCP_LISTEN)
633 			return -EINVAL;
634 
635 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
636 			answ = 0;
637 		else
638 			answ = READ_ONCE(tp->write_seq) -
639 			       READ_ONCE(tp->snd_nxt);
640 		break;
641 	default:
642 		return -ENOIOCTLCMD;
643 	}
644 
645 	return put_user(answ, (int __user *)arg);
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	skb->csum    = 0;
666 	tcb->seq     = tcb->end_seq = tp->write_seq;
667 	tcb->tcp_flags = TCPHDR_ACK;
668 	tcb->sacked  = 0;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk_wmem_queued_add(sk, skb->truesize);
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702 }
703 
704 void tcp_push(struct sock *sk, int flags, int mss_now,
705 	      int nonagle, int size_goal)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	struct sk_buff *skb;
709 
710 	skb = tcp_write_queue_tail(sk);
711 	if (!skb)
712 		return;
713 	if (!(flags & MSG_MORE) || forced_push(tp))
714 		tcp_mark_push(tp, skb);
715 
716 	tcp_mark_urg(tp, flags);
717 
718 	if (tcp_should_autocork(sk, skb, size_goal)) {
719 
720 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
721 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 		}
725 		/* It is possible TX completion already happened
726 		 * before we set TSQ_THROTTLED.
727 		 */
728 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 			return;
730 	}
731 
732 	if (flags & MSG_MORE)
733 		nonagle = TCP_NAGLE_CORK;
734 
735 	__tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737 
738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 				unsigned int offset, size_t len)
740 {
741 	struct tcp_splice_state *tss = rd_desc->arg.data;
742 	int ret;
743 
744 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 			      min(rd_desc->count, len), tss->flags);
746 	if (ret > 0)
747 		rd_desc->count -= ret;
748 	return ret;
749 }
750 
751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 	/* Store TCP splice context information in read_descriptor_t. */
754 	read_descriptor_t rd_desc = {
755 		.arg.data = tss,
756 		.count	  = tss->len,
757 	};
758 
759 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761 
762 /**
763  *  tcp_splice_read - splice data from TCP socket to a pipe
764  * @sock:	socket to splice from
765  * @ppos:	position (not valid)
766  * @pipe:	pipe to splice to
767  * @len:	number of bytes to splice
768  * @flags:	splice modifier flags
769  *
770  * Description:
771  *    Will read pages from given socket and fill them into a pipe.
772  *
773  **/
774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 			struct pipe_inode_info *pipe, size_t len,
776 			unsigned int flags)
777 {
778 	struct sock *sk = sock->sk;
779 	struct tcp_splice_state tss = {
780 		.pipe = pipe,
781 		.len = len,
782 		.flags = flags,
783 	};
784 	long timeo;
785 	ssize_t spliced;
786 	int ret;
787 
788 	sock_rps_record_flow(sk);
789 	/*
790 	 * We can't seek on a socket input
791 	 */
792 	if (unlikely(*ppos))
793 		return -ESPIPE;
794 
795 	ret = spliced = 0;
796 
797 	lock_sock(sk);
798 
799 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 	while (tss.len) {
801 		ret = __tcp_splice_read(sk, &tss);
802 		if (ret < 0)
803 			break;
804 		else if (!ret) {
805 			if (spliced)
806 				break;
807 			if (sock_flag(sk, SOCK_DONE))
808 				break;
809 			if (sk->sk_err) {
810 				ret = sock_error(sk);
811 				break;
812 			}
813 			if (sk->sk_shutdown & RCV_SHUTDOWN)
814 				break;
815 			if (sk->sk_state == TCP_CLOSE) {
816 				/*
817 				 * This occurs when user tries to read
818 				 * from never connected socket.
819 				 */
820 				ret = -ENOTCONN;
821 				break;
822 			}
823 			if (!timeo) {
824 				ret = -EAGAIN;
825 				break;
826 			}
827 			/* if __tcp_splice_read() got nothing while we have
828 			 * an skb in receive queue, we do not want to loop.
829 			 * This might happen with URG data.
830 			 */
831 			if (!skb_queue_empty(&sk->sk_receive_queue))
832 				break;
833 			sk_wait_data(sk, &timeo, NULL);
834 			if (signal_pending(current)) {
835 				ret = sock_intr_errno(timeo);
836 				break;
837 			}
838 			continue;
839 		}
840 		tss.len -= ret;
841 		spliced += ret;
842 
843 		if (!timeo)
844 			break;
845 		release_sock(sk);
846 		lock_sock(sk);
847 
848 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 		    signal_pending(current))
851 			break;
852 	}
853 
854 	release_sock(sk);
855 
856 	if (spliced)
857 		return spliced;
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL(tcp_splice_read);
862 
863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
864 				    bool force_schedule)
865 {
866 	struct sk_buff *skb;
867 
868 	if (likely(!size)) {
869 		skb = sk->sk_tx_skb_cache;
870 		if (skb) {
871 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
872 			sk->sk_tx_skb_cache = NULL;
873 			pskb_trim(skb, 0);
874 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
875 			skb_shinfo(skb)->tx_flags = 0;
876 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
877 			return skb;
878 		}
879 	}
880 	/* The TCP header must be at least 32-bit aligned.  */
881 	size = ALIGN(size, 4);
882 
883 	if (unlikely(tcp_under_memory_pressure(sk)))
884 		sk_mem_reclaim_partial(sk);
885 
886 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
887 	if (likely(skb)) {
888 		bool mem_scheduled;
889 
890 		if (force_schedule) {
891 			mem_scheduled = true;
892 			sk_forced_mem_schedule(sk, skb->truesize);
893 		} else {
894 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
895 		}
896 		if (likely(mem_scheduled)) {
897 			skb_reserve(skb, sk->sk_prot->max_header);
898 			/*
899 			 * Make sure that we have exactly size bytes
900 			 * available to the caller, no more, no less.
901 			 */
902 			skb->reserved_tailroom = skb->end - skb->tail - size;
903 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
904 			return skb;
905 		}
906 		__kfree_skb(skb);
907 	} else {
908 		sk->sk_prot->enter_memory_pressure(sk);
909 		sk_stream_moderate_sndbuf(sk);
910 	}
911 	return NULL;
912 }
913 
914 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
915 				       int large_allowed)
916 {
917 	struct tcp_sock *tp = tcp_sk(sk);
918 	u32 new_size_goal, size_goal;
919 
920 	if (!large_allowed)
921 		return mss_now;
922 
923 	/* Note : tcp_tso_autosize() will eventually split this later */
924 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
925 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
926 
927 	/* We try hard to avoid divides here */
928 	size_goal = tp->gso_segs * mss_now;
929 	if (unlikely(new_size_goal < size_goal ||
930 		     new_size_goal >= size_goal + mss_now)) {
931 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
932 				     sk->sk_gso_max_segs);
933 		size_goal = tp->gso_segs * mss_now;
934 	}
935 
936 	return max(size_goal, mss_now);
937 }
938 
939 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
940 {
941 	int mss_now;
942 
943 	mss_now = tcp_current_mss(sk);
944 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
945 
946 	return mss_now;
947 }
948 
949 /* In some cases, both sendpage() and sendmsg() could have added
950  * an skb to the write queue, but failed adding payload on it.
951  * We need to remove it to consume less memory, but more
952  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
953  * users.
954  */
955 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
956 {
957 	if (skb && !skb->len) {
958 		tcp_unlink_write_queue(skb, sk);
959 		if (tcp_write_queue_empty(sk))
960 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
961 		sk_wmem_free_skb(sk, skb);
962 	}
963 }
964 
965 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
966 			 size_t size, int flags)
967 {
968 	struct tcp_sock *tp = tcp_sk(sk);
969 	int mss_now, size_goal;
970 	int err;
971 	ssize_t copied;
972 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
973 
974 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
975 	    WARN_ONCE(!sendpage_ok(page),
976 		      "page must not be a Slab one and have page_count > 0"))
977 		return -EINVAL;
978 
979 	/* Wait for a connection to finish. One exception is TCP Fast Open
980 	 * (passive side) where data is allowed to be sent before a connection
981 	 * is fully established.
982 	 */
983 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
984 	    !tcp_passive_fastopen(sk)) {
985 		err = sk_stream_wait_connect(sk, &timeo);
986 		if (err != 0)
987 			goto out_err;
988 	}
989 
990 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
991 
992 	mss_now = tcp_send_mss(sk, &size_goal, flags);
993 	copied = 0;
994 
995 	err = -EPIPE;
996 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
997 		goto out_err;
998 
999 	while (size > 0) {
1000 		struct sk_buff *skb = tcp_write_queue_tail(sk);
1001 		int copy, i;
1002 		bool can_coalesce;
1003 
1004 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1005 		    !tcp_skb_can_collapse_to(skb)) {
1006 new_segment:
1007 			if (!sk_stream_memory_free(sk))
1008 				goto wait_for_space;
1009 
1010 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1011 					tcp_rtx_and_write_queues_empty(sk));
1012 			if (!skb)
1013 				goto wait_for_space;
1014 
1015 #ifdef CONFIG_TLS_DEVICE
1016 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1017 #endif
1018 			skb_entail(sk, skb);
1019 			copy = size_goal;
1020 		}
1021 
1022 		if (copy > size)
1023 			copy = size;
1024 
1025 		i = skb_shinfo(skb)->nr_frags;
1026 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1027 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1028 			tcp_mark_push(tp, skb);
1029 			goto new_segment;
1030 		}
1031 		if (!sk_wmem_schedule(sk, copy))
1032 			goto wait_for_space;
1033 
1034 		if (can_coalesce) {
1035 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1036 		} else {
1037 			get_page(page);
1038 			skb_fill_page_desc(skb, i, page, offset, copy);
1039 		}
1040 
1041 		if (!(flags & MSG_NO_SHARED_FRAGS))
1042 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1043 
1044 		skb->len += copy;
1045 		skb->data_len += copy;
1046 		skb->truesize += copy;
1047 		sk_wmem_queued_add(sk, copy);
1048 		sk_mem_charge(sk, copy);
1049 		skb->ip_summed = CHECKSUM_PARTIAL;
1050 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1051 		TCP_SKB_CB(skb)->end_seq += copy;
1052 		tcp_skb_pcount_set(skb, 0);
1053 
1054 		if (!copied)
1055 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1056 
1057 		copied += copy;
1058 		offset += copy;
1059 		size -= copy;
1060 		if (!size)
1061 			goto out;
1062 
1063 		if (skb->len < size_goal || (flags & MSG_OOB))
1064 			continue;
1065 
1066 		if (forced_push(tp)) {
1067 			tcp_mark_push(tp, skb);
1068 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1069 		} else if (skb == tcp_send_head(sk))
1070 			tcp_push_one(sk, mss_now);
1071 		continue;
1072 
1073 wait_for_space:
1074 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1075 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1076 			 TCP_NAGLE_PUSH, size_goal);
1077 
1078 		err = sk_stream_wait_memory(sk, &timeo);
1079 		if (err != 0)
1080 			goto do_error;
1081 
1082 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1083 	}
1084 
1085 out:
1086 	if (copied) {
1087 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1088 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1089 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1090 	}
1091 	return copied;
1092 
1093 do_error:
1094 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1095 	if (copied)
1096 		goto out;
1097 out_err:
1098 	/* make sure we wake any epoll edge trigger waiter */
1099 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1100 		sk->sk_write_space(sk);
1101 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1102 	}
1103 	return sk_stream_error(sk, flags, err);
1104 }
1105 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1106 
1107 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1108 			size_t size, int flags)
1109 {
1110 	if (!(sk->sk_route_caps & NETIF_F_SG))
1111 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1112 
1113 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1114 
1115 	return do_tcp_sendpages(sk, page, offset, size, flags);
1116 }
1117 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1118 
1119 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1120 		 size_t size, int flags)
1121 {
1122 	int ret;
1123 
1124 	lock_sock(sk);
1125 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1126 	release_sock(sk);
1127 
1128 	return ret;
1129 }
1130 EXPORT_SYMBOL(tcp_sendpage);
1131 
1132 void tcp_free_fastopen_req(struct tcp_sock *tp)
1133 {
1134 	if (tp->fastopen_req) {
1135 		kfree(tp->fastopen_req);
1136 		tp->fastopen_req = NULL;
1137 	}
1138 }
1139 
1140 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1141 				int *copied, size_t size,
1142 				struct ubuf_info *uarg)
1143 {
1144 	struct tcp_sock *tp = tcp_sk(sk);
1145 	struct inet_sock *inet = inet_sk(sk);
1146 	struct sockaddr *uaddr = msg->msg_name;
1147 	int err, flags;
1148 
1149 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1150 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1151 	     uaddr->sa_family == AF_UNSPEC))
1152 		return -EOPNOTSUPP;
1153 	if (tp->fastopen_req)
1154 		return -EALREADY; /* Another Fast Open is in progress */
1155 
1156 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1157 				   sk->sk_allocation);
1158 	if (unlikely(!tp->fastopen_req))
1159 		return -ENOBUFS;
1160 	tp->fastopen_req->data = msg;
1161 	tp->fastopen_req->size = size;
1162 	tp->fastopen_req->uarg = uarg;
1163 
1164 	if (inet->defer_connect) {
1165 		err = tcp_connect(sk);
1166 		/* Same failure procedure as in tcp_v4/6_connect */
1167 		if (err) {
1168 			tcp_set_state(sk, TCP_CLOSE);
1169 			inet->inet_dport = 0;
1170 			sk->sk_route_caps = 0;
1171 		}
1172 	}
1173 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1174 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1175 				    msg->msg_namelen, flags, 1);
1176 	/* fastopen_req could already be freed in __inet_stream_connect
1177 	 * if the connection times out or gets rst
1178 	 */
1179 	if (tp->fastopen_req) {
1180 		*copied = tp->fastopen_req->copied;
1181 		tcp_free_fastopen_req(tp);
1182 		inet->defer_connect = 0;
1183 	}
1184 	return err;
1185 }
1186 
1187 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1188 {
1189 	struct tcp_sock *tp = tcp_sk(sk);
1190 	struct ubuf_info *uarg = NULL;
1191 	struct sk_buff *skb;
1192 	struct sockcm_cookie sockc;
1193 	int flags, err, copied = 0;
1194 	int mss_now = 0, size_goal, copied_syn = 0;
1195 	int process_backlog = 0;
1196 	bool zc = false;
1197 	long timeo;
1198 
1199 	flags = msg->msg_flags;
1200 
1201 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1202 		skb = tcp_write_queue_tail(sk);
1203 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1204 		if (!uarg) {
1205 			err = -ENOBUFS;
1206 			goto out_err;
1207 		}
1208 
1209 		zc = sk->sk_route_caps & NETIF_F_SG;
1210 		if (!zc)
1211 			uarg->zerocopy = 0;
1212 	}
1213 
1214 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1215 	    !tp->repair) {
1216 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1217 		if (err == -EINPROGRESS && copied_syn > 0)
1218 			goto out;
1219 		else if (err)
1220 			goto out_err;
1221 	}
1222 
1223 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1224 
1225 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1226 
1227 	/* Wait for a connection to finish. One exception is TCP Fast Open
1228 	 * (passive side) where data is allowed to be sent before a connection
1229 	 * is fully established.
1230 	 */
1231 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1232 	    !tcp_passive_fastopen(sk)) {
1233 		err = sk_stream_wait_connect(sk, &timeo);
1234 		if (err != 0)
1235 			goto do_error;
1236 	}
1237 
1238 	if (unlikely(tp->repair)) {
1239 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1240 			copied = tcp_send_rcvq(sk, msg, size);
1241 			goto out_nopush;
1242 		}
1243 
1244 		err = -EINVAL;
1245 		if (tp->repair_queue == TCP_NO_QUEUE)
1246 			goto out_err;
1247 
1248 		/* 'common' sending to sendq */
1249 	}
1250 
1251 	sockcm_init(&sockc, sk);
1252 	if (msg->msg_controllen) {
1253 		err = sock_cmsg_send(sk, msg, &sockc);
1254 		if (unlikely(err)) {
1255 			err = -EINVAL;
1256 			goto out_err;
1257 		}
1258 	}
1259 
1260 	/* This should be in poll */
1261 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1262 
1263 	/* Ok commence sending. */
1264 	copied = 0;
1265 
1266 restart:
1267 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1268 
1269 	err = -EPIPE;
1270 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1271 		goto do_error;
1272 
1273 	while (msg_data_left(msg)) {
1274 		int copy = 0;
1275 
1276 		skb = tcp_write_queue_tail(sk);
1277 		if (skb)
1278 			copy = size_goal - skb->len;
1279 
1280 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1281 			bool first_skb;
1282 
1283 new_segment:
1284 			if (!sk_stream_memory_free(sk))
1285 				goto wait_for_space;
1286 
1287 			if (unlikely(process_backlog >= 16)) {
1288 				process_backlog = 0;
1289 				if (sk_flush_backlog(sk))
1290 					goto restart;
1291 			}
1292 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1293 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1294 						  first_skb);
1295 			if (!skb)
1296 				goto wait_for_space;
1297 
1298 			process_backlog++;
1299 			skb->ip_summed = CHECKSUM_PARTIAL;
1300 
1301 			skb_entail(sk, skb);
1302 			copy = size_goal;
1303 
1304 			/* All packets are restored as if they have
1305 			 * already been sent. skb_mstamp_ns isn't set to
1306 			 * avoid wrong rtt estimation.
1307 			 */
1308 			if (tp->repair)
1309 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1310 		}
1311 
1312 		/* Try to append data to the end of skb. */
1313 		if (copy > msg_data_left(msg))
1314 			copy = msg_data_left(msg);
1315 
1316 		/* Where to copy to? */
1317 		if (skb_availroom(skb) > 0 && !zc) {
1318 			/* We have some space in skb head. Superb! */
1319 			copy = min_t(int, copy, skb_availroom(skb));
1320 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1321 			if (err)
1322 				goto do_fault;
1323 		} else if (!zc) {
1324 			bool merge = true;
1325 			int i = skb_shinfo(skb)->nr_frags;
1326 			struct page_frag *pfrag = sk_page_frag(sk);
1327 
1328 			if (!sk_page_frag_refill(sk, pfrag))
1329 				goto wait_for_space;
1330 
1331 			if (!skb_can_coalesce(skb, i, pfrag->page,
1332 					      pfrag->offset)) {
1333 				if (i >= sysctl_max_skb_frags) {
1334 					tcp_mark_push(tp, skb);
1335 					goto new_segment;
1336 				}
1337 				merge = false;
1338 			}
1339 
1340 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1341 
1342 			if (!sk_wmem_schedule(sk, copy))
1343 				goto wait_for_space;
1344 
1345 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1346 						       pfrag->page,
1347 						       pfrag->offset,
1348 						       copy);
1349 			if (err)
1350 				goto do_error;
1351 
1352 			/* Update the skb. */
1353 			if (merge) {
1354 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1355 			} else {
1356 				skb_fill_page_desc(skb, i, pfrag->page,
1357 						   pfrag->offset, copy);
1358 				page_ref_inc(pfrag->page);
1359 			}
1360 			pfrag->offset += copy;
1361 		} else {
1362 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1363 			if (err == -EMSGSIZE || err == -EEXIST) {
1364 				tcp_mark_push(tp, skb);
1365 				goto new_segment;
1366 			}
1367 			if (err < 0)
1368 				goto do_error;
1369 			copy = err;
1370 		}
1371 
1372 		if (!copied)
1373 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1374 
1375 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1376 		TCP_SKB_CB(skb)->end_seq += copy;
1377 		tcp_skb_pcount_set(skb, 0);
1378 
1379 		copied += copy;
1380 		if (!msg_data_left(msg)) {
1381 			if (unlikely(flags & MSG_EOR))
1382 				TCP_SKB_CB(skb)->eor = 1;
1383 			goto out;
1384 		}
1385 
1386 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1387 			continue;
1388 
1389 		if (forced_push(tp)) {
1390 			tcp_mark_push(tp, skb);
1391 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1392 		} else if (skb == tcp_send_head(sk))
1393 			tcp_push_one(sk, mss_now);
1394 		continue;
1395 
1396 wait_for_space:
1397 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1398 		if (copied)
1399 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1400 				 TCP_NAGLE_PUSH, size_goal);
1401 
1402 		err = sk_stream_wait_memory(sk, &timeo);
1403 		if (err != 0)
1404 			goto do_error;
1405 
1406 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1407 	}
1408 
1409 out:
1410 	if (copied) {
1411 		tcp_tx_timestamp(sk, sockc.tsflags);
1412 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1413 	}
1414 out_nopush:
1415 	sock_zerocopy_put(uarg);
1416 	return copied + copied_syn;
1417 
1418 do_error:
1419 	skb = tcp_write_queue_tail(sk);
1420 do_fault:
1421 	tcp_remove_empty_skb(sk, skb);
1422 
1423 	if (copied + copied_syn)
1424 		goto out;
1425 out_err:
1426 	sock_zerocopy_put_abort(uarg, true);
1427 	err = sk_stream_error(sk, flags, err);
1428 	/* make sure we wake any epoll edge trigger waiter */
1429 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1430 		sk->sk_write_space(sk);
1431 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1432 	}
1433 	return err;
1434 }
1435 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1436 
1437 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1438 {
1439 	int ret;
1440 
1441 	lock_sock(sk);
1442 	ret = tcp_sendmsg_locked(sk, msg, size);
1443 	release_sock(sk);
1444 
1445 	return ret;
1446 }
1447 EXPORT_SYMBOL(tcp_sendmsg);
1448 
1449 /*
1450  *	Handle reading urgent data. BSD has very simple semantics for
1451  *	this, no blocking and very strange errors 8)
1452  */
1453 
1454 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1455 {
1456 	struct tcp_sock *tp = tcp_sk(sk);
1457 
1458 	/* No URG data to read. */
1459 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1460 	    tp->urg_data == TCP_URG_READ)
1461 		return -EINVAL;	/* Yes this is right ! */
1462 
1463 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1464 		return -ENOTCONN;
1465 
1466 	if (tp->urg_data & TCP_URG_VALID) {
1467 		int err = 0;
1468 		char c = tp->urg_data;
1469 
1470 		if (!(flags & MSG_PEEK))
1471 			tp->urg_data = TCP_URG_READ;
1472 
1473 		/* Read urgent data. */
1474 		msg->msg_flags |= MSG_OOB;
1475 
1476 		if (len > 0) {
1477 			if (!(flags & MSG_TRUNC))
1478 				err = memcpy_to_msg(msg, &c, 1);
1479 			len = 1;
1480 		} else
1481 			msg->msg_flags |= MSG_TRUNC;
1482 
1483 		return err ? -EFAULT : len;
1484 	}
1485 
1486 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1487 		return 0;
1488 
1489 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1490 	 * the available implementations agree in this case:
1491 	 * this call should never block, independent of the
1492 	 * blocking state of the socket.
1493 	 * Mike <pall@rz.uni-karlsruhe.de>
1494 	 */
1495 	return -EAGAIN;
1496 }
1497 
1498 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1499 {
1500 	struct sk_buff *skb;
1501 	int copied = 0, err = 0;
1502 
1503 	/* XXX -- need to support SO_PEEK_OFF */
1504 
1505 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1506 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1507 		if (err)
1508 			return err;
1509 		copied += skb->len;
1510 	}
1511 
1512 	skb_queue_walk(&sk->sk_write_queue, skb) {
1513 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1514 		if (err)
1515 			break;
1516 
1517 		copied += skb->len;
1518 	}
1519 
1520 	return err ?: copied;
1521 }
1522 
1523 /* Clean up the receive buffer for full frames taken by the user,
1524  * then send an ACK if necessary.  COPIED is the number of bytes
1525  * tcp_recvmsg has given to the user so far, it speeds up the
1526  * calculation of whether or not we must ACK for the sake of
1527  * a window update.
1528  */
1529 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1530 {
1531 	struct tcp_sock *tp = tcp_sk(sk);
1532 	bool time_to_ack = false;
1533 
1534 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1535 
1536 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1537 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1538 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1539 
1540 	if (inet_csk_ack_scheduled(sk)) {
1541 		const struct inet_connection_sock *icsk = inet_csk(sk);
1542 
1543 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1544 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1545 		    /*
1546 		     * If this read emptied read buffer, we send ACK, if
1547 		     * connection is not bidirectional, user drained
1548 		     * receive buffer and there was a small segment
1549 		     * in queue.
1550 		     */
1551 		    (copied > 0 &&
1552 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1553 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1554 		       !inet_csk_in_pingpong_mode(sk))) &&
1555 		      !atomic_read(&sk->sk_rmem_alloc)))
1556 			time_to_ack = true;
1557 	}
1558 
1559 	/* We send an ACK if we can now advertise a non-zero window
1560 	 * which has been raised "significantly".
1561 	 *
1562 	 * Even if window raised up to infinity, do not send window open ACK
1563 	 * in states, where we will not receive more. It is useless.
1564 	 */
1565 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1566 		__u32 rcv_window_now = tcp_receive_window(tp);
1567 
1568 		/* Optimize, __tcp_select_window() is not cheap. */
1569 		if (2*rcv_window_now <= tp->window_clamp) {
1570 			__u32 new_window = __tcp_select_window(sk);
1571 
1572 			/* Send ACK now, if this read freed lots of space
1573 			 * in our buffer. Certainly, new_window is new window.
1574 			 * We can advertise it now, if it is not less than current one.
1575 			 * "Lots" means "at least twice" here.
1576 			 */
1577 			if (new_window && new_window >= 2 * rcv_window_now)
1578 				time_to_ack = true;
1579 		}
1580 	}
1581 	if (time_to_ack)
1582 		tcp_send_ack(sk);
1583 }
1584 
1585 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1586 {
1587 	struct sk_buff *skb;
1588 	u32 offset;
1589 
1590 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1591 		offset = seq - TCP_SKB_CB(skb)->seq;
1592 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1593 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1594 			offset--;
1595 		}
1596 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1597 			*off = offset;
1598 			return skb;
1599 		}
1600 		/* This looks weird, but this can happen if TCP collapsing
1601 		 * splitted a fat GRO packet, while we released socket lock
1602 		 * in skb_splice_bits()
1603 		 */
1604 		sk_eat_skb(sk, skb);
1605 	}
1606 	return NULL;
1607 }
1608 
1609 /*
1610  * This routine provides an alternative to tcp_recvmsg() for routines
1611  * that would like to handle copying from skbuffs directly in 'sendfile'
1612  * fashion.
1613  * Note:
1614  *	- It is assumed that the socket was locked by the caller.
1615  *	- The routine does not block.
1616  *	- At present, there is no support for reading OOB data
1617  *	  or for 'peeking' the socket using this routine
1618  *	  (although both would be easy to implement).
1619  */
1620 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1621 		  sk_read_actor_t recv_actor)
1622 {
1623 	struct sk_buff *skb;
1624 	struct tcp_sock *tp = tcp_sk(sk);
1625 	u32 seq = tp->copied_seq;
1626 	u32 offset;
1627 	int copied = 0;
1628 
1629 	if (sk->sk_state == TCP_LISTEN)
1630 		return -ENOTCONN;
1631 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1632 		if (offset < skb->len) {
1633 			int used;
1634 			size_t len;
1635 
1636 			len = skb->len - offset;
1637 			/* Stop reading if we hit a patch of urgent data */
1638 			if (tp->urg_data) {
1639 				u32 urg_offset = tp->urg_seq - seq;
1640 				if (urg_offset < len)
1641 					len = urg_offset;
1642 				if (!len)
1643 					break;
1644 			}
1645 			used = recv_actor(desc, skb, offset, len);
1646 			if (used <= 0) {
1647 				if (!copied)
1648 					copied = used;
1649 				break;
1650 			} else if (used <= len) {
1651 				seq += used;
1652 				copied += used;
1653 				offset += used;
1654 			}
1655 			/* If recv_actor drops the lock (e.g. TCP splice
1656 			 * receive) the skb pointer might be invalid when
1657 			 * getting here: tcp_collapse might have deleted it
1658 			 * while aggregating skbs from the socket queue.
1659 			 */
1660 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1661 			if (!skb)
1662 				break;
1663 			/* TCP coalescing might have appended data to the skb.
1664 			 * Try to splice more frags
1665 			 */
1666 			if (offset + 1 != skb->len)
1667 				continue;
1668 		}
1669 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1670 			sk_eat_skb(sk, skb);
1671 			++seq;
1672 			break;
1673 		}
1674 		sk_eat_skb(sk, skb);
1675 		if (!desc->count)
1676 			break;
1677 		WRITE_ONCE(tp->copied_seq, seq);
1678 	}
1679 	WRITE_ONCE(tp->copied_seq, seq);
1680 
1681 	tcp_rcv_space_adjust(sk);
1682 
1683 	/* Clean up data we have read: This will do ACK frames. */
1684 	if (copied > 0) {
1685 		tcp_recv_skb(sk, seq, &offset);
1686 		tcp_cleanup_rbuf(sk, copied);
1687 	}
1688 	return copied;
1689 }
1690 EXPORT_SYMBOL(tcp_read_sock);
1691 
1692 int tcp_peek_len(struct socket *sock)
1693 {
1694 	return tcp_inq(sock->sk);
1695 }
1696 EXPORT_SYMBOL(tcp_peek_len);
1697 
1698 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1699 int tcp_set_rcvlowat(struct sock *sk, int val)
1700 {
1701 	int cap;
1702 
1703 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1704 		cap = sk->sk_rcvbuf >> 1;
1705 	else
1706 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1707 	val = min(val, cap);
1708 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1709 
1710 	/* Check if we need to signal EPOLLIN right now */
1711 	tcp_data_ready(sk);
1712 
1713 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1714 		return 0;
1715 
1716 	val <<= 1;
1717 	if (val > sk->sk_rcvbuf) {
1718 		WRITE_ONCE(sk->sk_rcvbuf, val);
1719 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1720 	}
1721 	return 0;
1722 }
1723 EXPORT_SYMBOL(tcp_set_rcvlowat);
1724 
1725 #ifdef CONFIG_MMU
1726 static const struct vm_operations_struct tcp_vm_ops = {
1727 };
1728 
1729 int tcp_mmap(struct file *file, struct socket *sock,
1730 	     struct vm_area_struct *vma)
1731 {
1732 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1733 		return -EPERM;
1734 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1735 
1736 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1737 	vma->vm_flags |= VM_MIXEDMAP;
1738 
1739 	vma->vm_ops = &tcp_vm_ops;
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL(tcp_mmap);
1743 
1744 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1745 					struct page **pages,
1746 					unsigned long pages_to_map,
1747 					unsigned long *insert_addr,
1748 					u32 *length_with_pending,
1749 					u32 *seq,
1750 					struct tcp_zerocopy_receive *zc)
1751 {
1752 	unsigned long pages_remaining = pages_to_map;
1753 	int bytes_mapped;
1754 	int ret;
1755 
1756 	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1757 	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1758 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1759 	 * mapping (some but not all of the pages).
1760 	 */
1761 	*seq += bytes_mapped;
1762 	*insert_addr += bytes_mapped;
1763 	if (ret) {
1764 		/* But if vm_insert_pages did fail, we have to unroll some state
1765 		 * we speculatively touched before.
1766 		 */
1767 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1768 		*length_with_pending -= bytes_not_mapped;
1769 		zc->recv_skip_hint += bytes_not_mapped;
1770 	}
1771 	return ret;
1772 }
1773 
1774 static int tcp_zerocopy_receive(struct sock *sk,
1775 				struct tcp_zerocopy_receive *zc)
1776 {
1777 	unsigned long address = (unsigned long)zc->address;
1778 	u32 length = 0, seq, offset, zap_len;
1779 	#define PAGE_BATCH_SIZE 8
1780 	struct page *pages[PAGE_BATCH_SIZE];
1781 	const skb_frag_t *frags = NULL;
1782 	struct vm_area_struct *vma;
1783 	struct sk_buff *skb = NULL;
1784 	unsigned long pg_idx = 0;
1785 	unsigned long curr_addr;
1786 	struct tcp_sock *tp;
1787 	int inq;
1788 	int ret;
1789 
1790 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1791 		return -EINVAL;
1792 
1793 	if (sk->sk_state == TCP_LISTEN)
1794 		return -ENOTCONN;
1795 
1796 	sock_rps_record_flow(sk);
1797 
1798 	tp = tcp_sk(sk);
1799 
1800 	mmap_read_lock(current->mm);
1801 
1802 	vma = find_vma(current->mm, address);
1803 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1804 		mmap_read_unlock(current->mm);
1805 		return -EINVAL;
1806 	}
1807 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1808 
1809 	seq = tp->copied_seq;
1810 	inq = tcp_inq(sk);
1811 	zc->length = min_t(u32, zc->length, inq);
1812 	zap_len = zc->length & ~(PAGE_SIZE - 1);
1813 	if (zap_len) {
1814 		zap_page_range(vma, address, zap_len);
1815 		zc->recv_skip_hint = 0;
1816 	} else {
1817 		zc->recv_skip_hint = zc->length;
1818 	}
1819 	ret = 0;
1820 	curr_addr = address;
1821 	while (length + PAGE_SIZE <= zc->length) {
1822 		if (zc->recv_skip_hint < PAGE_SIZE) {
1823 			/* If we're here, finish the current batch. */
1824 			if (pg_idx) {
1825 				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1826 								   pg_idx,
1827 								   &curr_addr,
1828 								   &length,
1829 								   &seq, zc);
1830 				if (ret)
1831 					goto out;
1832 				pg_idx = 0;
1833 			}
1834 			if (skb) {
1835 				if (zc->recv_skip_hint > 0)
1836 					break;
1837 				skb = skb->next;
1838 				offset = seq - TCP_SKB_CB(skb)->seq;
1839 			} else {
1840 				skb = tcp_recv_skb(sk, seq, &offset);
1841 			}
1842 			zc->recv_skip_hint = skb->len - offset;
1843 			offset -= skb_headlen(skb);
1844 			if ((int)offset < 0 || skb_has_frag_list(skb))
1845 				break;
1846 			frags = skb_shinfo(skb)->frags;
1847 			while (offset) {
1848 				if (skb_frag_size(frags) > offset)
1849 					goto out;
1850 				offset -= skb_frag_size(frags);
1851 				frags++;
1852 			}
1853 		}
1854 		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1855 			int remaining = zc->recv_skip_hint;
1856 
1857 			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1858 					     skb_frag_off(frags))) {
1859 				remaining -= skb_frag_size(frags);
1860 				frags++;
1861 			}
1862 			zc->recv_skip_hint -= remaining;
1863 			break;
1864 		}
1865 		pages[pg_idx] = skb_frag_page(frags);
1866 		pg_idx++;
1867 		length += PAGE_SIZE;
1868 		zc->recv_skip_hint -= PAGE_SIZE;
1869 		frags++;
1870 		if (pg_idx == PAGE_BATCH_SIZE) {
1871 			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1872 							   &curr_addr, &length,
1873 							   &seq, zc);
1874 			if (ret)
1875 				goto out;
1876 			pg_idx = 0;
1877 		}
1878 	}
1879 	if (pg_idx) {
1880 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1881 						   &curr_addr, &length, &seq,
1882 						   zc);
1883 	}
1884 out:
1885 	mmap_read_unlock(current->mm);
1886 	if (length) {
1887 		WRITE_ONCE(tp->copied_seq, seq);
1888 		tcp_rcv_space_adjust(sk);
1889 
1890 		/* Clean up data we have read: This will do ACK frames. */
1891 		tcp_recv_skb(sk, seq, &offset);
1892 		tcp_cleanup_rbuf(sk, length);
1893 		ret = 0;
1894 		if (length == zc->length)
1895 			zc->recv_skip_hint = 0;
1896 	} else {
1897 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1898 			ret = -EIO;
1899 	}
1900 	zc->length = length;
1901 	return ret;
1902 }
1903 #endif
1904 
1905 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1906 				    struct scm_timestamping_internal *tss)
1907 {
1908 	if (skb->tstamp)
1909 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1910 	else
1911 		tss->ts[0] = (struct timespec64) {0};
1912 
1913 	if (skb_hwtstamps(skb)->hwtstamp)
1914 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1915 	else
1916 		tss->ts[2] = (struct timespec64) {0};
1917 }
1918 
1919 /* Similar to __sock_recv_timestamp, but does not require an skb */
1920 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1921 			       struct scm_timestamping_internal *tss)
1922 {
1923 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1924 	bool has_timestamping = false;
1925 
1926 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1927 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1928 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1929 				if (new_tstamp) {
1930 					struct __kernel_timespec kts = {
1931 						.tv_sec = tss->ts[0].tv_sec,
1932 						.tv_nsec = tss->ts[0].tv_nsec,
1933 					};
1934 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1935 						 sizeof(kts), &kts);
1936 				} else {
1937 					struct __kernel_old_timespec ts_old = {
1938 						.tv_sec = tss->ts[0].tv_sec,
1939 						.tv_nsec = tss->ts[0].tv_nsec,
1940 					};
1941 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1942 						 sizeof(ts_old), &ts_old);
1943 				}
1944 			} else {
1945 				if (new_tstamp) {
1946 					struct __kernel_sock_timeval stv = {
1947 						.tv_sec = tss->ts[0].tv_sec,
1948 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1949 					};
1950 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1951 						 sizeof(stv), &stv);
1952 				} else {
1953 					struct __kernel_old_timeval tv = {
1954 						.tv_sec = tss->ts[0].tv_sec,
1955 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1956 					};
1957 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1958 						 sizeof(tv), &tv);
1959 				}
1960 			}
1961 		}
1962 
1963 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1964 			has_timestamping = true;
1965 		else
1966 			tss->ts[0] = (struct timespec64) {0};
1967 	}
1968 
1969 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1970 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1971 			has_timestamping = true;
1972 		else
1973 			tss->ts[2] = (struct timespec64) {0};
1974 	}
1975 
1976 	if (has_timestamping) {
1977 		tss->ts[1] = (struct timespec64) {0};
1978 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1979 			put_cmsg_scm_timestamping64(msg, tss);
1980 		else
1981 			put_cmsg_scm_timestamping(msg, tss);
1982 	}
1983 }
1984 
1985 static int tcp_inq_hint(struct sock *sk)
1986 {
1987 	const struct tcp_sock *tp = tcp_sk(sk);
1988 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1989 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1990 	int inq;
1991 
1992 	inq = rcv_nxt - copied_seq;
1993 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1994 		lock_sock(sk);
1995 		inq = tp->rcv_nxt - tp->copied_seq;
1996 		release_sock(sk);
1997 	}
1998 	/* After receiving a FIN, tell the user-space to continue reading
1999 	 * by returning a non-zero inq.
2000 	 */
2001 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2002 		inq = 1;
2003 	return inq;
2004 }
2005 
2006 /*
2007  *	This routine copies from a sock struct into the user buffer.
2008  *
2009  *	Technical note: in 2.3 we work on _locked_ socket, so that
2010  *	tricks with *seq access order and skb->users are not required.
2011  *	Probably, code can be easily improved even more.
2012  */
2013 
2014 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2015 		int flags, int *addr_len)
2016 {
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 	int copied = 0;
2019 	u32 peek_seq;
2020 	u32 *seq;
2021 	unsigned long used;
2022 	int err, inq;
2023 	int target;		/* Read at least this many bytes */
2024 	long timeo;
2025 	struct sk_buff *skb, *last;
2026 	u32 urg_hole = 0;
2027 	struct scm_timestamping_internal tss;
2028 	int cmsg_flags;
2029 
2030 	if (unlikely(flags & MSG_ERRQUEUE))
2031 		return inet_recv_error(sk, msg, len, addr_len);
2032 
2033 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2034 	    (sk->sk_state == TCP_ESTABLISHED))
2035 		sk_busy_loop(sk, nonblock);
2036 
2037 	lock_sock(sk);
2038 
2039 	err = -ENOTCONN;
2040 	if (sk->sk_state == TCP_LISTEN)
2041 		goto out;
2042 
2043 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2044 	timeo = sock_rcvtimeo(sk, nonblock);
2045 
2046 	/* Urgent data needs to be handled specially. */
2047 	if (flags & MSG_OOB)
2048 		goto recv_urg;
2049 
2050 	if (unlikely(tp->repair)) {
2051 		err = -EPERM;
2052 		if (!(flags & MSG_PEEK))
2053 			goto out;
2054 
2055 		if (tp->repair_queue == TCP_SEND_QUEUE)
2056 			goto recv_sndq;
2057 
2058 		err = -EINVAL;
2059 		if (tp->repair_queue == TCP_NO_QUEUE)
2060 			goto out;
2061 
2062 		/* 'common' recv queue MSG_PEEK-ing */
2063 	}
2064 
2065 	seq = &tp->copied_seq;
2066 	if (flags & MSG_PEEK) {
2067 		peek_seq = tp->copied_seq;
2068 		seq = &peek_seq;
2069 	}
2070 
2071 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2072 
2073 	do {
2074 		u32 offset;
2075 
2076 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2077 		if (tp->urg_data && tp->urg_seq == *seq) {
2078 			if (copied)
2079 				break;
2080 			if (signal_pending(current)) {
2081 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2082 				break;
2083 			}
2084 		}
2085 
2086 		/* Next get a buffer. */
2087 
2088 		last = skb_peek_tail(&sk->sk_receive_queue);
2089 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2090 			last = skb;
2091 			/* Now that we have two receive queues this
2092 			 * shouldn't happen.
2093 			 */
2094 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2095 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2096 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2097 				 flags))
2098 				break;
2099 
2100 			offset = *seq - TCP_SKB_CB(skb)->seq;
2101 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2102 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2103 				offset--;
2104 			}
2105 			if (offset < skb->len)
2106 				goto found_ok_skb;
2107 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2108 				goto found_fin_ok;
2109 			WARN(!(flags & MSG_PEEK),
2110 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2111 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2112 		}
2113 
2114 		/* Well, if we have backlog, try to process it now yet. */
2115 
2116 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2117 			break;
2118 
2119 		if (copied) {
2120 			if (sk->sk_err ||
2121 			    sk->sk_state == TCP_CLOSE ||
2122 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2123 			    !timeo ||
2124 			    signal_pending(current))
2125 				break;
2126 		} else {
2127 			if (sock_flag(sk, SOCK_DONE))
2128 				break;
2129 
2130 			if (sk->sk_err) {
2131 				copied = sock_error(sk);
2132 				break;
2133 			}
2134 
2135 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2136 				break;
2137 
2138 			if (sk->sk_state == TCP_CLOSE) {
2139 				/* This occurs when user tries to read
2140 				 * from never connected socket.
2141 				 */
2142 				copied = -ENOTCONN;
2143 				break;
2144 			}
2145 
2146 			if (!timeo) {
2147 				copied = -EAGAIN;
2148 				break;
2149 			}
2150 
2151 			if (signal_pending(current)) {
2152 				copied = sock_intr_errno(timeo);
2153 				break;
2154 			}
2155 		}
2156 
2157 		tcp_cleanup_rbuf(sk, copied);
2158 
2159 		if (copied >= target) {
2160 			/* Do not sleep, just process backlog. */
2161 			release_sock(sk);
2162 			lock_sock(sk);
2163 		} else {
2164 			sk_wait_data(sk, &timeo, last);
2165 		}
2166 
2167 		if ((flags & MSG_PEEK) &&
2168 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2169 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2170 					    current->comm,
2171 					    task_pid_nr(current));
2172 			peek_seq = tp->copied_seq;
2173 		}
2174 		continue;
2175 
2176 found_ok_skb:
2177 		/* Ok so how much can we use? */
2178 		used = skb->len - offset;
2179 		if (len < used)
2180 			used = len;
2181 
2182 		/* Do we have urgent data here? */
2183 		if (tp->urg_data) {
2184 			u32 urg_offset = tp->urg_seq - *seq;
2185 			if (urg_offset < used) {
2186 				if (!urg_offset) {
2187 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2188 						WRITE_ONCE(*seq, *seq + 1);
2189 						urg_hole++;
2190 						offset++;
2191 						used--;
2192 						if (!used)
2193 							goto skip_copy;
2194 					}
2195 				} else
2196 					used = urg_offset;
2197 			}
2198 		}
2199 
2200 		if (!(flags & MSG_TRUNC)) {
2201 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2202 			if (err) {
2203 				/* Exception. Bailout! */
2204 				if (!copied)
2205 					copied = -EFAULT;
2206 				break;
2207 			}
2208 		}
2209 
2210 		WRITE_ONCE(*seq, *seq + used);
2211 		copied += used;
2212 		len -= used;
2213 
2214 		tcp_rcv_space_adjust(sk);
2215 
2216 skip_copy:
2217 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2218 			tp->urg_data = 0;
2219 			tcp_fast_path_check(sk);
2220 		}
2221 
2222 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2223 			tcp_update_recv_tstamps(skb, &tss);
2224 			cmsg_flags |= 2;
2225 		}
2226 
2227 		if (used + offset < skb->len)
2228 			continue;
2229 
2230 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2231 			goto found_fin_ok;
2232 		if (!(flags & MSG_PEEK))
2233 			sk_eat_skb(sk, skb);
2234 		continue;
2235 
2236 found_fin_ok:
2237 		/* Process the FIN. */
2238 		WRITE_ONCE(*seq, *seq + 1);
2239 		if (!(flags & MSG_PEEK))
2240 			sk_eat_skb(sk, skb);
2241 		break;
2242 	} while (len > 0);
2243 
2244 	/* According to UNIX98, msg_name/msg_namelen are ignored
2245 	 * on connected socket. I was just happy when found this 8) --ANK
2246 	 */
2247 
2248 	/* Clean up data we have read: This will do ACK frames. */
2249 	tcp_cleanup_rbuf(sk, copied);
2250 
2251 	release_sock(sk);
2252 
2253 	if (cmsg_flags) {
2254 		if (cmsg_flags & 2)
2255 			tcp_recv_timestamp(msg, sk, &tss);
2256 		if (cmsg_flags & 1) {
2257 			inq = tcp_inq_hint(sk);
2258 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2259 		}
2260 	}
2261 
2262 	return copied;
2263 
2264 out:
2265 	release_sock(sk);
2266 	return err;
2267 
2268 recv_urg:
2269 	err = tcp_recv_urg(sk, msg, len, flags);
2270 	goto out;
2271 
2272 recv_sndq:
2273 	err = tcp_peek_sndq(sk, msg, len);
2274 	goto out;
2275 }
2276 EXPORT_SYMBOL(tcp_recvmsg);
2277 
2278 void tcp_set_state(struct sock *sk, int state)
2279 {
2280 	int oldstate = sk->sk_state;
2281 
2282 	/* We defined a new enum for TCP states that are exported in BPF
2283 	 * so as not force the internal TCP states to be frozen. The
2284 	 * following checks will detect if an internal state value ever
2285 	 * differs from the BPF value. If this ever happens, then we will
2286 	 * need to remap the internal value to the BPF value before calling
2287 	 * tcp_call_bpf_2arg.
2288 	 */
2289 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2290 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2291 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2292 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2293 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2294 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2295 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2296 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2297 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2298 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2299 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2300 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2301 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2302 
2303 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2304 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2305 
2306 	switch (state) {
2307 	case TCP_ESTABLISHED:
2308 		if (oldstate != TCP_ESTABLISHED)
2309 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2310 		break;
2311 
2312 	case TCP_CLOSE:
2313 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2314 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2315 
2316 		sk->sk_prot->unhash(sk);
2317 		if (inet_csk(sk)->icsk_bind_hash &&
2318 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2319 			inet_put_port(sk);
2320 		fallthrough;
2321 	default:
2322 		if (oldstate == TCP_ESTABLISHED)
2323 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2324 	}
2325 
2326 	/* Change state AFTER socket is unhashed to avoid closed
2327 	 * socket sitting in hash tables.
2328 	 */
2329 	inet_sk_state_store(sk, state);
2330 }
2331 EXPORT_SYMBOL_GPL(tcp_set_state);
2332 
2333 /*
2334  *	State processing on a close. This implements the state shift for
2335  *	sending our FIN frame. Note that we only send a FIN for some
2336  *	states. A shutdown() may have already sent the FIN, or we may be
2337  *	closed.
2338  */
2339 
2340 static const unsigned char new_state[16] = {
2341   /* current state:        new state:      action:	*/
2342   [0 /* (Invalid) */]	= TCP_CLOSE,
2343   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2344   [TCP_SYN_SENT]	= TCP_CLOSE,
2345   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2346   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2347   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2348   [TCP_TIME_WAIT]	= TCP_CLOSE,
2349   [TCP_CLOSE]		= TCP_CLOSE,
2350   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2351   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2352   [TCP_LISTEN]		= TCP_CLOSE,
2353   [TCP_CLOSING]		= TCP_CLOSING,
2354   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2355 };
2356 
2357 static int tcp_close_state(struct sock *sk)
2358 {
2359 	int next = (int)new_state[sk->sk_state];
2360 	int ns = next & TCP_STATE_MASK;
2361 
2362 	tcp_set_state(sk, ns);
2363 
2364 	return next & TCP_ACTION_FIN;
2365 }
2366 
2367 /*
2368  *	Shutdown the sending side of a connection. Much like close except
2369  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2370  */
2371 
2372 void tcp_shutdown(struct sock *sk, int how)
2373 {
2374 	/*	We need to grab some memory, and put together a FIN,
2375 	 *	and then put it into the queue to be sent.
2376 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2377 	 */
2378 	if (!(how & SEND_SHUTDOWN))
2379 		return;
2380 
2381 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2382 	if ((1 << sk->sk_state) &
2383 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2384 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2385 		/* Clear out any half completed packets.  FIN if needed. */
2386 		if (tcp_close_state(sk))
2387 			tcp_send_fin(sk);
2388 	}
2389 }
2390 EXPORT_SYMBOL(tcp_shutdown);
2391 
2392 bool tcp_check_oom(struct sock *sk, int shift)
2393 {
2394 	bool too_many_orphans, out_of_socket_memory;
2395 
2396 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2397 	out_of_socket_memory = tcp_out_of_memory(sk);
2398 
2399 	if (too_many_orphans)
2400 		net_info_ratelimited("too many orphaned sockets\n");
2401 	if (out_of_socket_memory)
2402 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2403 	return too_many_orphans || out_of_socket_memory;
2404 }
2405 
2406 void tcp_close(struct sock *sk, long timeout)
2407 {
2408 	struct sk_buff *skb;
2409 	int data_was_unread = 0;
2410 	int state;
2411 
2412 	lock_sock(sk);
2413 	sk->sk_shutdown = SHUTDOWN_MASK;
2414 
2415 	if (sk->sk_state == TCP_LISTEN) {
2416 		tcp_set_state(sk, TCP_CLOSE);
2417 
2418 		/* Special case. */
2419 		inet_csk_listen_stop(sk);
2420 
2421 		goto adjudge_to_death;
2422 	}
2423 
2424 	/*  We need to flush the recv. buffs.  We do this only on the
2425 	 *  descriptor close, not protocol-sourced closes, because the
2426 	 *  reader process may not have drained the data yet!
2427 	 */
2428 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2429 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2430 
2431 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2432 			len--;
2433 		data_was_unread += len;
2434 		__kfree_skb(skb);
2435 	}
2436 
2437 	sk_mem_reclaim(sk);
2438 
2439 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2440 	if (sk->sk_state == TCP_CLOSE)
2441 		goto adjudge_to_death;
2442 
2443 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2444 	 * data was lost. To witness the awful effects of the old behavior of
2445 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2446 	 * GET in an FTP client, suspend the process, wait for the client to
2447 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2448 	 * Note: timeout is always zero in such a case.
2449 	 */
2450 	if (unlikely(tcp_sk(sk)->repair)) {
2451 		sk->sk_prot->disconnect(sk, 0);
2452 	} else if (data_was_unread) {
2453 		/* Unread data was tossed, zap the connection. */
2454 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2455 		tcp_set_state(sk, TCP_CLOSE);
2456 		tcp_send_active_reset(sk, sk->sk_allocation);
2457 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2458 		/* Check zero linger _after_ checking for unread data. */
2459 		sk->sk_prot->disconnect(sk, 0);
2460 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2461 	} else if (tcp_close_state(sk)) {
2462 		/* We FIN if the application ate all the data before
2463 		 * zapping the connection.
2464 		 */
2465 
2466 		/* RED-PEN. Formally speaking, we have broken TCP state
2467 		 * machine. State transitions:
2468 		 *
2469 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2470 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2471 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2472 		 *
2473 		 * are legal only when FIN has been sent (i.e. in window),
2474 		 * rather than queued out of window. Purists blame.
2475 		 *
2476 		 * F.e. "RFC state" is ESTABLISHED,
2477 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2478 		 *
2479 		 * The visible declinations are that sometimes
2480 		 * we enter time-wait state, when it is not required really
2481 		 * (harmless), do not send active resets, when they are
2482 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2483 		 * they look as CLOSING or LAST_ACK for Linux)
2484 		 * Probably, I missed some more holelets.
2485 		 * 						--ANK
2486 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2487 		 * in a single packet! (May consider it later but will
2488 		 * probably need API support or TCP_CORK SYN-ACK until
2489 		 * data is written and socket is closed.)
2490 		 */
2491 		tcp_send_fin(sk);
2492 	}
2493 
2494 	sk_stream_wait_close(sk, timeout);
2495 
2496 adjudge_to_death:
2497 	state = sk->sk_state;
2498 	sock_hold(sk);
2499 	sock_orphan(sk);
2500 
2501 	local_bh_disable();
2502 	bh_lock_sock(sk);
2503 	/* remove backlog if any, without releasing ownership. */
2504 	__release_sock(sk);
2505 
2506 	percpu_counter_inc(sk->sk_prot->orphan_count);
2507 
2508 	/* Have we already been destroyed by a softirq or backlog? */
2509 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2510 		goto out;
2511 
2512 	/*	This is a (useful) BSD violating of the RFC. There is a
2513 	 *	problem with TCP as specified in that the other end could
2514 	 *	keep a socket open forever with no application left this end.
2515 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2516 	 *	our end. If they send after that then tough - BUT: long enough
2517 	 *	that we won't make the old 4*rto = almost no time - whoops
2518 	 *	reset mistake.
2519 	 *
2520 	 *	Nope, it was not mistake. It is really desired behaviour
2521 	 *	f.e. on http servers, when such sockets are useless, but
2522 	 *	consume significant resources. Let's do it with special
2523 	 *	linger2	option.					--ANK
2524 	 */
2525 
2526 	if (sk->sk_state == TCP_FIN_WAIT2) {
2527 		struct tcp_sock *tp = tcp_sk(sk);
2528 		if (tp->linger2 < 0) {
2529 			tcp_set_state(sk, TCP_CLOSE);
2530 			tcp_send_active_reset(sk, GFP_ATOMIC);
2531 			__NET_INC_STATS(sock_net(sk),
2532 					LINUX_MIB_TCPABORTONLINGER);
2533 		} else {
2534 			const int tmo = tcp_fin_time(sk);
2535 
2536 			if (tmo > TCP_TIMEWAIT_LEN) {
2537 				inet_csk_reset_keepalive_timer(sk,
2538 						tmo - TCP_TIMEWAIT_LEN);
2539 			} else {
2540 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2541 				goto out;
2542 			}
2543 		}
2544 	}
2545 	if (sk->sk_state != TCP_CLOSE) {
2546 		sk_mem_reclaim(sk);
2547 		if (tcp_check_oom(sk, 0)) {
2548 			tcp_set_state(sk, TCP_CLOSE);
2549 			tcp_send_active_reset(sk, GFP_ATOMIC);
2550 			__NET_INC_STATS(sock_net(sk),
2551 					LINUX_MIB_TCPABORTONMEMORY);
2552 		} else if (!check_net(sock_net(sk))) {
2553 			/* Not possible to send reset; just close */
2554 			tcp_set_state(sk, TCP_CLOSE);
2555 		}
2556 	}
2557 
2558 	if (sk->sk_state == TCP_CLOSE) {
2559 		struct request_sock *req;
2560 
2561 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2562 						lockdep_sock_is_held(sk));
2563 		/* We could get here with a non-NULL req if the socket is
2564 		 * aborted (e.g., closed with unread data) before 3WHS
2565 		 * finishes.
2566 		 */
2567 		if (req)
2568 			reqsk_fastopen_remove(sk, req, false);
2569 		inet_csk_destroy_sock(sk);
2570 	}
2571 	/* Otherwise, socket is reprieved until protocol close. */
2572 
2573 out:
2574 	bh_unlock_sock(sk);
2575 	local_bh_enable();
2576 	release_sock(sk);
2577 	sock_put(sk);
2578 }
2579 EXPORT_SYMBOL(tcp_close);
2580 
2581 /* These states need RST on ABORT according to RFC793 */
2582 
2583 static inline bool tcp_need_reset(int state)
2584 {
2585 	return (1 << state) &
2586 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2587 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2588 }
2589 
2590 static void tcp_rtx_queue_purge(struct sock *sk)
2591 {
2592 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2593 
2594 	tcp_sk(sk)->highest_sack = NULL;
2595 	while (p) {
2596 		struct sk_buff *skb = rb_to_skb(p);
2597 
2598 		p = rb_next(p);
2599 		/* Since we are deleting whole queue, no need to
2600 		 * list_del(&skb->tcp_tsorted_anchor)
2601 		 */
2602 		tcp_rtx_queue_unlink(skb, sk);
2603 		sk_wmem_free_skb(sk, skb);
2604 	}
2605 }
2606 
2607 void tcp_write_queue_purge(struct sock *sk)
2608 {
2609 	struct sk_buff *skb;
2610 
2611 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2612 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2613 		tcp_skb_tsorted_anchor_cleanup(skb);
2614 		sk_wmem_free_skb(sk, skb);
2615 	}
2616 	tcp_rtx_queue_purge(sk);
2617 	skb = sk->sk_tx_skb_cache;
2618 	if (skb) {
2619 		__kfree_skb(skb);
2620 		sk->sk_tx_skb_cache = NULL;
2621 	}
2622 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2623 	sk_mem_reclaim(sk);
2624 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2625 	tcp_sk(sk)->packets_out = 0;
2626 	inet_csk(sk)->icsk_backoff = 0;
2627 }
2628 
2629 int tcp_disconnect(struct sock *sk, int flags)
2630 {
2631 	struct inet_sock *inet = inet_sk(sk);
2632 	struct inet_connection_sock *icsk = inet_csk(sk);
2633 	struct tcp_sock *tp = tcp_sk(sk);
2634 	int old_state = sk->sk_state;
2635 	u32 seq;
2636 
2637 	if (old_state != TCP_CLOSE)
2638 		tcp_set_state(sk, TCP_CLOSE);
2639 
2640 	/* ABORT function of RFC793 */
2641 	if (old_state == TCP_LISTEN) {
2642 		inet_csk_listen_stop(sk);
2643 	} else if (unlikely(tp->repair)) {
2644 		sk->sk_err = ECONNABORTED;
2645 	} else if (tcp_need_reset(old_state) ||
2646 		   (tp->snd_nxt != tp->write_seq &&
2647 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2648 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2649 		 * states
2650 		 */
2651 		tcp_send_active_reset(sk, gfp_any());
2652 		sk->sk_err = ECONNRESET;
2653 	} else if (old_state == TCP_SYN_SENT)
2654 		sk->sk_err = ECONNRESET;
2655 
2656 	tcp_clear_xmit_timers(sk);
2657 	__skb_queue_purge(&sk->sk_receive_queue);
2658 	if (sk->sk_rx_skb_cache) {
2659 		__kfree_skb(sk->sk_rx_skb_cache);
2660 		sk->sk_rx_skb_cache = NULL;
2661 	}
2662 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2663 	tp->urg_data = 0;
2664 	tcp_write_queue_purge(sk);
2665 	tcp_fastopen_active_disable_ofo_check(sk);
2666 	skb_rbtree_purge(&tp->out_of_order_queue);
2667 
2668 	inet->inet_dport = 0;
2669 
2670 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2671 		inet_reset_saddr(sk);
2672 
2673 	sk->sk_shutdown = 0;
2674 	sock_reset_flag(sk, SOCK_DONE);
2675 	tp->srtt_us = 0;
2676 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2677 	tp->rcv_rtt_last_tsecr = 0;
2678 
2679 	seq = tp->write_seq + tp->max_window + 2;
2680 	if (!seq)
2681 		seq = 1;
2682 	WRITE_ONCE(tp->write_seq, seq);
2683 
2684 	icsk->icsk_backoff = 0;
2685 	icsk->icsk_probes_out = 0;
2686 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2687 	icsk->icsk_rto_min = TCP_RTO_MIN;
2688 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2689 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2690 	tp->snd_cwnd = TCP_INIT_CWND;
2691 	tp->snd_cwnd_cnt = 0;
2692 	tp->window_clamp = 0;
2693 	tp->delivered = 0;
2694 	tp->delivered_ce = 0;
2695 	if (icsk->icsk_ca_ops->release)
2696 		icsk->icsk_ca_ops->release(sk);
2697 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2698 	icsk->icsk_ca_initialized = 0;
2699 	tcp_set_ca_state(sk, TCP_CA_Open);
2700 	tp->is_sack_reneg = 0;
2701 	tcp_clear_retrans(tp);
2702 	tp->total_retrans = 0;
2703 	inet_csk_delack_init(sk);
2704 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2705 	 * issue in __tcp_select_window()
2706 	 */
2707 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2708 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2709 	__sk_dst_reset(sk);
2710 	dst_release(sk->sk_rx_dst);
2711 	sk->sk_rx_dst = NULL;
2712 	tcp_saved_syn_free(tp);
2713 	tp->compressed_ack = 0;
2714 	tp->segs_in = 0;
2715 	tp->segs_out = 0;
2716 	tp->bytes_sent = 0;
2717 	tp->bytes_acked = 0;
2718 	tp->bytes_received = 0;
2719 	tp->bytes_retrans = 0;
2720 	tp->data_segs_in = 0;
2721 	tp->data_segs_out = 0;
2722 	tp->duplicate_sack[0].start_seq = 0;
2723 	tp->duplicate_sack[0].end_seq = 0;
2724 	tp->dsack_dups = 0;
2725 	tp->reord_seen = 0;
2726 	tp->retrans_out = 0;
2727 	tp->sacked_out = 0;
2728 	tp->tlp_high_seq = 0;
2729 	tp->last_oow_ack_time = 0;
2730 	/* There's a bubble in the pipe until at least the first ACK. */
2731 	tp->app_limited = ~0U;
2732 	tp->rack.mstamp = 0;
2733 	tp->rack.advanced = 0;
2734 	tp->rack.reo_wnd_steps = 1;
2735 	tp->rack.last_delivered = 0;
2736 	tp->rack.reo_wnd_persist = 0;
2737 	tp->rack.dsack_seen = 0;
2738 	tp->syn_data_acked = 0;
2739 	tp->rx_opt.saw_tstamp = 0;
2740 	tp->rx_opt.dsack = 0;
2741 	tp->rx_opt.num_sacks = 0;
2742 	tp->rcv_ooopack = 0;
2743 
2744 
2745 	/* Clean up fastopen related fields */
2746 	tcp_free_fastopen_req(tp);
2747 	inet->defer_connect = 0;
2748 	tp->fastopen_client_fail = 0;
2749 
2750 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2751 
2752 	if (sk->sk_frag.page) {
2753 		put_page(sk->sk_frag.page);
2754 		sk->sk_frag.page = NULL;
2755 		sk->sk_frag.offset = 0;
2756 	}
2757 
2758 	sk->sk_error_report(sk);
2759 	return 0;
2760 }
2761 EXPORT_SYMBOL(tcp_disconnect);
2762 
2763 static inline bool tcp_can_repair_sock(const struct sock *sk)
2764 {
2765 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2766 		(sk->sk_state != TCP_LISTEN);
2767 }
2768 
2769 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2770 {
2771 	struct tcp_repair_window opt;
2772 
2773 	if (!tp->repair)
2774 		return -EPERM;
2775 
2776 	if (len != sizeof(opt))
2777 		return -EINVAL;
2778 
2779 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2780 		return -EFAULT;
2781 
2782 	if (opt.max_window < opt.snd_wnd)
2783 		return -EINVAL;
2784 
2785 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2786 		return -EINVAL;
2787 
2788 	if (after(opt.rcv_wup, tp->rcv_nxt))
2789 		return -EINVAL;
2790 
2791 	tp->snd_wl1	= opt.snd_wl1;
2792 	tp->snd_wnd	= opt.snd_wnd;
2793 	tp->max_window	= opt.max_window;
2794 
2795 	tp->rcv_wnd	= opt.rcv_wnd;
2796 	tp->rcv_wup	= opt.rcv_wup;
2797 
2798 	return 0;
2799 }
2800 
2801 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2802 		unsigned int len)
2803 {
2804 	struct tcp_sock *tp = tcp_sk(sk);
2805 	struct tcp_repair_opt opt;
2806 	size_t offset = 0;
2807 
2808 	while (len >= sizeof(opt)) {
2809 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2810 			return -EFAULT;
2811 
2812 		offset += sizeof(opt);
2813 		len -= sizeof(opt);
2814 
2815 		switch (opt.opt_code) {
2816 		case TCPOPT_MSS:
2817 			tp->rx_opt.mss_clamp = opt.opt_val;
2818 			tcp_mtup_init(sk);
2819 			break;
2820 		case TCPOPT_WINDOW:
2821 			{
2822 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2823 				u16 rcv_wscale = opt.opt_val >> 16;
2824 
2825 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2826 					return -EFBIG;
2827 
2828 				tp->rx_opt.snd_wscale = snd_wscale;
2829 				tp->rx_opt.rcv_wscale = rcv_wscale;
2830 				tp->rx_opt.wscale_ok = 1;
2831 			}
2832 			break;
2833 		case TCPOPT_SACK_PERM:
2834 			if (opt.opt_val != 0)
2835 				return -EINVAL;
2836 
2837 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2838 			break;
2839 		case TCPOPT_TIMESTAMP:
2840 			if (opt.opt_val != 0)
2841 				return -EINVAL;
2842 
2843 			tp->rx_opt.tstamp_ok = 1;
2844 			break;
2845 		}
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2852 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2853 
2854 static void tcp_enable_tx_delay(void)
2855 {
2856 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2857 		static int __tcp_tx_delay_enabled = 0;
2858 
2859 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2860 			static_branch_enable(&tcp_tx_delay_enabled);
2861 			pr_info("TCP_TX_DELAY enabled\n");
2862 		}
2863 	}
2864 }
2865 
2866 /* When set indicates to always queue non-full frames.  Later the user clears
2867  * this option and we transmit any pending partial frames in the queue.  This is
2868  * meant to be used alongside sendfile() to get properly filled frames when the
2869  * user (for example) must write out headers with a write() call first and then
2870  * use sendfile to send out the data parts.
2871  *
2872  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2873  * TCP_NODELAY.
2874  */
2875 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2876 {
2877 	struct tcp_sock *tp = tcp_sk(sk);
2878 
2879 	if (on) {
2880 		tp->nonagle |= TCP_NAGLE_CORK;
2881 	} else {
2882 		tp->nonagle &= ~TCP_NAGLE_CORK;
2883 		if (tp->nonagle & TCP_NAGLE_OFF)
2884 			tp->nonagle |= TCP_NAGLE_PUSH;
2885 		tcp_push_pending_frames(sk);
2886 	}
2887 }
2888 
2889 void tcp_sock_set_cork(struct sock *sk, bool on)
2890 {
2891 	lock_sock(sk);
2892 	__tcp_sock_set_cork(sk, on);
2893 	release_sock(sk);
2894 }
2895 EXPORT_SYMBOL(tcp_sock_set_cork);
2896 
2897 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
2898  * remembered, but it is not activated until cork is cleared.
2899  *
2900  * However, when TCP_NODELAY is set we make an explicit push, which overrides
2901  * even TCP_CORK for currently queued segments.
2902  */
2903 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
2904 {
2905 	if (on) {
2906 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2907 		tcp_push_pending_frames(sk);
2908 	} else {
2909 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
2910 	}
2911 }
2912 
2913 void tcp_sock_set_nodelay(struct sock *sk)
2914 {
2915 	lock_sock(sk);
2916 	__tcp_sock_set_nodelay(sk, true);
2917 	release_sock(sk);
2918 }
2919 EXPORT_SYMBOL(tcp_sock_set_nodelay);
2920 
2921 static void __tcp_sock_set_quickack(struct sock *sk, int val)
2922 {
2923 	if (!val) {
2924 		inet_csk_enter_pingpong_mode(sk);
2925 		return;
2926 	}
2927 
2928 	inet_csk_exit_pingpong_mode(sk);
2929 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2930 	    inet_csk_ack_scheduled(sk)) {
2931 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
2932 		tcp_cleanup_rbuf(sk, 1);
2933 		if (!(val & 1))
2934 			inet_csk_enter_pingpong_mode(sk);
2935 	}
2936 }
2937 
2938 void tcp_sock_set_quickack(struct sock *sk, int val)
2939 {
2940 	lock_sock(sk);
2941 	__tcp_sock_set_quickack(sk, val);
2942 	release_sock(sk);
2943 }
2944 EXPORT_SYMBOL(tcp_sock_set_quickack);
2945 
2946 int tcp_sock_set_syncnt(struct sock *sk, int val)
2947 {
2948 	if (val < 1 || val > MAX_TCP_SYNCNT)
2949 		return -EINVAL;
2950 
2951 	lock_sock(sk);
2952 	inet_csk(sk)->icsk_syn_retries = val;
2953 	release_sock(sk);
2954 	return 0;
2955 }
2956 EXPORT_SYMBOL(tcp_sock_set_syncnt);
2957 
2958 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
2959 {
2960 	lock_sock(sk);
2961 	inet_csk(sk)->icsk_user_timeout = val;
2962 	release_sock(sk);
2963 }
2964 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
2965 
2966 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
2967 {
2968 	struct tcp_sock *tp = tcp_sk(sk);
2969 
2970 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
2971 		return -EINVAL;
2972 
2973 	tp->keepalive_time = val * HZ;
2974 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
2975 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
2976 		u32 elapsed = keepalive_time_elapsed(tp);
2977 
2978 		if (tp->keepalive_time > elapsed)
2979 			elapsed = tp->keepalive_time - elapsed;
2980 		else
2981 			elapsed = 0;
2982 		inet_csk_reset_keepalive_timer(sk, elapsed);
2983 	}
2984 
2985 	return 0;
2986 }
2987 
2988 int tcp_sock_set_keepidle(struct sock *sk, int val)
2989 {
2990 	int err;
2991 
2992 	lock_sock(sk);
2993 	err = tcp_sock_set_keepidle_locked(sk, val);
2994 	release_sock(sk);
2995 	return err;
2996 }
2997 EXPORT_SYMBOL(tcp_sock_set_keepidle);
2998 
2999 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3000 {
3001 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3002 		return -EINVAL;
3003 
3004 	lock_sock(sk);
3005 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3006 	release_sock(sk);
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3010 
3011 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3012 {
3013 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3014 		return -EINVAL;
3015 
3016 	lock_sock(sk);
3017 	tcp_sk(sk)->keepalive_probes = val;
3018 	release_sock(sk);
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3022 
3023 /*
3024  *	Socket option code for TCP.
3025  */
3026 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3027 		sockptr_t optval, unsigned int optlen)
3028 {
3029 	struct tcp_sock *tp = tcp_sk(sk);
3030 	struct inet_connection_sock *icsk = inet_csk(sk);
3031 	struct net *net = sock_net(sk);
3032 	int val;
3033 	int err = 0;
3034 
3035 	/* These are data/string values, all the others are ints */
3036 	switch (optname) {
3037 	case TCP_CONGESTION: {
3038 		char name[TCP_CA_NAME_MAX];
3039 
3040 		if (optlen < 1)
3041 			return -EINVAL;
3042 
3043 		val = strncpy_from_sockptr(name, optval,
3044 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3045 		if (val < 0)
3046 			return -EFAULT;
3047 		name[val] = 0;
3048 
3049 		lock_sock(sk);
3050 		err = tcp_set_congestion_control(sk, name, true,
3051 						 ns_capable(sock_net(sk)->user_ns,
3052 							    CAP_NET_ADMIN));
3053 		release_sock(sk);
3054 		return err;
3055 	}
3056 	case TCP_ULP: {
3057 		char name[TCP_ULP_NAME_MAX];
3058 
3059 		if (optlen < 1)
3060 			return -EINVAL;
3061 
3062 		val = strncpy_from_sockptr(name, optval,
3063 					min_t(long, TCP_ULP_NAME_MAX - 1,
3064 					      optlen));
3065 		if (val < 0)
3066 			return -EFAULT;
3067 		name[val] = 0;
3068 
3069 		lock_sock(sk);
3070 		err = tcp_set_ulp(sk, name);
3071 		release_sock(sk);
3072 		return err;
3073 	}
3074 	case TCP_FASTOPEN_KEY: {
3075 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3076 		__u8 *backup_key = NULL;
3077 
3078 		/* Allow a backup key as well to facilitate key rotation
3079 		 * First key is the active one.
3080 		 */
3081 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3082 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3083 			return -EINVAL;
3084 
3085 		if (copy_from_sockptr(key, optval, optlen))
3086 			return -EFAULT;
3087 
3088 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3089 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3090 
3091 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3092 	}
3093 	default:
3094 		/* fallthru */
3095 		break;
3096 	}
3097 
3098 	if (optlen < sizeof(int))
3099 		return -EINVAL;
3100 
3101 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3102 		return -EFAULT;
3103 
3104 	lock_sock(sk);
3105 
3106 	switch (optname) {
3107 	case TCP_MAXSEG:
3108 		/* Values greater than interface MTU won't take effect. However
3109 		 * at the point when this call is done we typically don't yet
3110 		 * know which interface is going to be used
3111 		 */
3112 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3113 			err = -EINVAL;
3114 			break;
3115 		}
3116 		tp->rx_opt.user_mss = val;
3117 		break;
3118 
3119 	case TCP_NODELAY:
3120 		__tcp_sock_set_nodelay(sk, val);
3121 		break;
3122 
3123 	case TCP_THIN_LINEAR_TIMEOUTS:
3124 		if (val < 0 || val > 1)
3125 			err = -EINVAL;
3126 		else
3127 			tp->thin_lto = val;
3128 		break;
3129 
3130 	case TCP_THIN_DUPACK:
3131 		if (val < 0 || val > 1)
3132 			err = -EINVAL;
3133 		break;
3134 
3135 	case TCP_REPAIR:
3136 		if (!tcp_can_repair_sock(sk))
3137 			err = -EPERM;
3138 		else if (val == TCP_REPAIR_ON) {
3139 			tp->repair = 1;
3140 			sk->sk_reuse = SK_FORCE_REUSE;
3141 			tp->repair_queue = TCP_NO_QUEUE;
3142 		} else if (val == TCP_REPAIR_OFF) {
3143 			tp->repair = 0;
3144 			sk->sk_reuse = SK_NO_REUSE;
3145 			tcp_send_window_probe(sk);
3146 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3147 			tp->repair = 0;
3148 			sk->sk_reuse = SK_NO_REUSE;
3149 		} else
3150 			err = -EINVAL;
3151 
3152 		break;
3153 
3154 	case TCP_REPAIR_QUEUE:
3155 		if (!tp->repair)
3156 			err = -EPERM;
3157 		else if ((unsigned int)val < TCP_QUEUES_NR)
3158 			tp->repair_queue = val;
3159 		else
3160 			err = -EINVAL;
3161 		break;
3162 
3163 	case TCP_QUEUE_SEQ:
3164 		if (sk->sk_state != TCP_CLOSE)
3165 			err = -EPERM;
3166 		else if (tp->repair_queue == TCP_SEND_QUEUE)
3167 			WRITE_ONCE(tp->write_seq, val);
3168 		else if (tp->repair_queue == TCP_RECV_QUEUE) {
3169 			WRITE_ONCE(tp->rcv_nxt, val);
3170 			WRITE_ONCE(tp->copied_seq, val);
3171 		}
3172 		else
3173 			err = -EINVAL;
3174 		break;
3175 
3176 	case TCP_REPAIR_OPTIONS:
3177 		if (!tp->repair)
3178 			err = -EINVAL;
3179 		else if (sk->sk_state == TCP_ESTABLISHED)
3180 			err = tcp_repair_options_est(sk, optval, optlen);
3181 		else
3182 			err = -EPERM;
3183 		break;
3184 
3185 	case TCP_CORK:
3186 		__tcp_sock_set_cork(sk, val);
3187 		break;
3188 
3189 	case TCP_KEEPIDLE:
3190 		err = tcp_sock_set_keepidle_locked(sk, val);
3191 		break;
3192 	case TCP_KEEPINTVL:
3193 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3194 			err = -EINVAL;
3195 		else
3196 			tp->keepalive_intvl = val * HZ;
3197 		break;
3198 	case TCP_KEEPCNT:
3199 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3200 			err = -EINVAL;
3201 		else
3202 			tp->keepalive_probes = val;
3203 		break;
3204 	case TCP_SYNCNT:
3205 		if (val < 1 || val > MAX_TCP_SYNCNT)
3206 			err = -EINVAL;
3207 		else
3208 			icsk->icsk_syn_retries = val;
3209 		break;
3210 
3211 	case TCP_SAVE_SYN:
3212 		/* 0: disable, 1: enable, 2: start from ether_header */
3213 		if (val < 0 || val > 2)
3214 			err = -EINVAL;
3215 		else
3216 			tp->save_syn = val;
3217 		break;
3218 
3219 	case TCP_LINGER2:
3220 		if (val < 0)
3221 			tp->linger2 = -1;
3222 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3223 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3224 		else
3225 			tp->linger2 = val * HZ;
3226 		break;
3227 
3228 	case TCP_DEFER_ACCEPT:
3229 		/* Translate value in seconds to number of retransmits */
3230 		icsk->icsk_accept_queue.rskq_defer_accept =
3231 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3232 					TCP_RTO_MAX / HZ);
3233 		break;
3234 
3235 	case TCP_WINDOW_CLAMP:
3236 		if (!val) {
3237 			if (sk->sk_state != TCP_CLOSE) {
3238 				err = -EINVAL;
3239 				break;
3240 			}
3241 			tp->window_clamp = 0;
3242 		} else
3243 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3244 						SOCK_MIN_RCVBUF / 2 : val;
3245 		break;
3246 
3247 	case TCP_QUICKACK:
3248 		__tcp_sock_set_quickack(sk, val);
3249 		break;
3250 
3251 #ifdef CONFIG_TCP_MD5SIG
3252 	case TCP_MD5SIG:
3253 	case TCP_MD5SIG_EXT:
3254 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3255 		break;
3256 #endif
3257 	case TCP_USER_TIMEOUT:
3258 		/* Cap the max time in ms TCP will retry or probe the window
3259 		 * before giving up and aborting (ETIMEDOUT) a connection.
3260 		 */
3261 		if (val < 0)
3262 			err = -EINVAL;
3263 		else
3264 			icsk->icsk_user_timeout = val;
3265 		break;
3266 
3267 	case TCP_FASTOPEN:
3268 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3269 		    TCPF_LISTEN))) {
3270 			tcp_fastopen_init_key_once(net);
3271 
3272 			fastopen_queue_tune(sk, val);
3273 		} else {
3274 			err = -EINVAL;
3275 		}
3276 		break;
3277 	case TCP_FASTOPEN_CONNECT:
3278 		if (val > 1 || val < 0) {
3279 			err = -EINVAL;
3280 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3281 			if (sk->sk_state == TCP_CLOSE)
3282 				tp->fastopen_connect = val;
3283 			else
3284 				err = -EINVAL;
3285 		} else {
3286 			err = -EOPNOTSUPP;
3287 		}
3288 		break;
3289 	case TCP_FASTOPEN_NO_COOKIE:
3290 		if (val > 1 || val < 0)
3291 			err = -EINVAL;
3292 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3293 			err = -EINVAL;
3294 		else
3295 			tp->fastopen_no_cookie = val;
3296 		break;
3297 	case TCP_TIMESTAMP:
3298 		if (!tp->repair)
3299 			err = -EPERM;
3300 		else
3301 			tp->tsoffset = val - tcp_time_stamp_raw();
3302 		break;
3303 	case TCP_REPAIR_WINDOW:
3304 		err = tcp_repair_set_window(tp, optval, optlen);
3305 		break;
3306 	case TCP_NOTSENT_LOWAT:
3307 		tp->notsent_lowat = val;
3308 		sk->sk_write_space(sk);
3309 		break;
3310 	case TCP_INQ:
3311 		if (val > 1 || val < 0)
3312 			err = -EINVAL;
3313 		else
3314 			tp->recvmsg_inq = val;
3315 		break;
3316 	case TCP_TX_DELAY:
3317 		if (val)
3318 			tcp_enable_tx_delay();
3319 		tp->tcp_tx_delay = val;
3320 		break;
3321 	default:
3322 		err = -ENOPROTOOPT;
3323 		break;
3324 	}
3325 
3326 	release_sock(sk);
3327 	return err;
3328 }
3329 
3330 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3331 		   unsigned int optlen)
3332 {
3333 	const struct inet_connection_sock *icsk = inet_csk(sk);
3334 
3335 	if (level != SOL_TCP)
3336 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3337 						     optval, optlen);
3338 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3339 }
3340 EXPORT_SYMBOL(tcp_setsockopt);
3341 
3342 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3343 				      struct tcp_info *info)
3344 {
3345 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3346 	enum tcp_chrono i;
3347 
3348 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3349 		stats[i] = tp->chrono_stat[i - 1];
3350 		if (i == tp->chrono_type)
3351 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3352 		stats[i] *= USEC_PER_SEC / HZ;
3353 		total += stats[i];
3354 	}
3355 
3356 	info->tcpi_busy_time = total;
3357 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3358 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3359 }
3360 
3361 /* Return information about state of tcp endpoint in API format. */
3362 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3363 {
3364 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3365 	const struct inet_connection_sock *icsk = inet_csk(sk);
3366 	unsigned long rate;
3367 	u32 now;
3368 	u64 rate64;
3369 	bool slow;
3370 
3371 	memset(info, 0, sizeof(*info));
3372 	if (sk->sk_type != SOCK_STREAM)
3373 		return;
3374 
3375 	info->tcpi_state = inet_sk_state_load(sk);
3376 
3377 	/* Report meaningful fields for all TCP states, including listeners */
3378 	rate = READ_ONCE(sk->sk_pacing_rate);
3379 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3380 	info->tcpi_pacing_rate = rate64;
3381 
3382 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3383 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3384 	info->tcpi_max_pacing_rate = rate64;
3385 
3386 	info->tcpi_reordering = tp->reordering;
3387 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3388 
3389 	if (info->tcpi_state == TCP_LISTEN) {
3390 		/* listeners aliased fields :
3391 		 * tcpi_unacked -> Number of children ready for accept()
3392 		 * tcpi_sacked  -> max backlog
3393 		 */
3394 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3395 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3396 		return;
3397 	}
3398 
3399 	slow = lock_sock_fast(sk);
3400 
3401 	info->tcpi_ca_state = icsk->icsk_ca_state;
3402 	info->tcpi_retransmits = icsk->icsk_retransmits;
3403 	info->tcpi_probes = icsk->icsk_probes_out;
3404 	info->tcpi_backoff = icsk->icsk_backoff;
3405 
3406 	if (tp->rx_opt.tstamp_ok)
3407 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3408 	if (tcp_is_sack(tp))
3409 		info->tcpi_options |= TCPI_OPT_SACK;
3410 	if (tp->rx_opt.wscale_ok) {
3411 		info->tcpi_options |= TCPI_OPT_WSCALE;
3412 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3413 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3414 	}
3415 
3416 	if (tp->ecn_flags & TCP_ECN_OK)
3417 		info->tcpi_options |= TCPI_OPT_ECN;
3418 	if (tp->ecn_flags & TCP_ECN_SEEN)
3419 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3420 	if (tp->syn_data_acked)
3421 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3422 
3423 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3424 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3425 	info->tcpi_snd_mss = tp->mss_cache;
3426 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3427 
3428 	info->tcpi_unacked = tp->packets_out;
3429 	info->tcpi_sacked = tp->sacked_out;
3430 
3431 	info->tcpi_lost = tp->lost_out;
3432 	info->tcpi_retrans = tp->retrans_out;
3433 
3434 	now = tcp_jiffies32;
3435 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3436 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3437 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3438 
3439 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3440 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3441 	info->tcpi_rtt = tp->srtt_us >> 3;
3442 	info->tcpi_rttvar = tp->mdev_us >> 2;
3443 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3444 	info->tcpi_advmss = tp->advmss;
3445 
3446 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3447 	info->tcpi_rcv_space = tp->rcvq_space.space;
3448 
3449 	info->tcpi_total_retrans = tp->total_retrans;
3450 
3451 	info->tcpi_bytes_acked = tp->bytes_acked;
3452 	info->tcpi_bytes_received = tp->bytes_received;
3453 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3454 	tcp_get_info_chrono_stats(tp, info);
3455 
3456 	info->tcpi_segs_out = tp->segs_out;
3457 	info->tcpi_segs_in = tp->segs_in;
3458 
3459 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3460 	info->tcpi_data_segs_in = tp->data_segs_in;
3461 	info->tcpi_data_segs_out = tp->data_segs_out;
3462 
3463 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3464 	rate64 = tcp_compute_delivery_rate(tp);
3465 	if (rate64)
3466 		info->tcpi_delivery_rate = rate64;
3467 	info->tcpi_delivered = tp->delivered;
3468 	info->tcpi_delivered_ce = tp->delivered_ce;
3469 	info->tcpi_bytes_sent = tp->bytes_sent;
3470 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3471 	info->tcpi_dsack_dups = tp->dsack_dups;
3472 	info->tcpi_reord_seen = tp->reord_seen;
3473 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3474 	info->tcpi_snd_wnd = tp->snd_wnd;
3475 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3476 	unlock_sock_fast(sk, slow);
3477 }
3478 EXPORT_SYMBOL_GPL(tcp_get_info);
3479 
3480 static size_t tcp_opt_stats_get_size(void)
3481 {
3482 	return
3483 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3484 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3485 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3486 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3487 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3488 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3489 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3490 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3491 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3492 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3493 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3494 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3495 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3496 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3497 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3498 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3499 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3500 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3501 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3502 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3503 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3504 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3505 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3506 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3507 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3508 		0;
3509 }
3510 
3511 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3512 					       const struct sk_buff *orig_skb)
3513 {
3514 	const struct tcp_sock *tp = tcp_sk(sk);
3515 	struct sk_buff *stats;
3516 	struct tcp_info info;
3517 	unsigned long rate;
3518 	u64 rate64;
3519 
3520 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3521 	if (!stats)
3522 		return NULL;
3523 
3524 	tcp_get_info_chrono_stats(tp, &info);
3525 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3526 			  info.tcpi_busy_time, TCP_NLA_PAD);
3527 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3528 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3529 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3530 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3531 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3532 			  tp->data_segs_out, TCP_NLA_PAD);
3533 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3534 			  tp->total_retrans, TCP_NLA_PAD);
3535 
3536 	rate = READ_ONCE(sk->sk_pacing_rate);
3537 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3538 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3539 
3540 	rate64 = tcp_compute_delivery_rate(tp);
3541 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3542 
3543 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3544 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3545 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3546 
3547 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3548 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3549 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3550 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3551 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3552 
3553 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3554 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3555 
3556 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3557 			  TCP_NLA_PAD);
3558 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3559 			  TCP_NLA_PAD);
3560 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3561 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3562 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3563 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3564 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3565 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3566 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3567 			  TCP_NLA_PAD);
3568 
3569 	return stats;
3570 }
3571 
3572 static int do_tcp_getsockopt(struct sock *sk, int level,
3573 		int optname, char __user *optval, int __user *optlen)
3574 {
3575 	struct inet_connection_sock *icsk = inet_csk(sk);
3576 	struct tcp_sock *tp = tcp_sk(sk);
3577 	struct net *net = sock_net(sk);
3578 	int val, len;
3579 
3580 	if (get_user(len, optlen))
3581 		return -EFAULT;
3582 
3583 	len = min_t(unsigned int, len, sizeof(int));
3584 
3585 	if (len < 0)
3586 		return -EINVAL;
3587 
3588 	switch (optname) {
3589 	case TCP_MAXSEG:
3590 		val = tp->mss_cache;
3591 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3592 			val = tp->rx_opt.user_mss;
3593 		if (tp->repair)
3594 			val = tp->rx_opt.mss_clamp;
3595 		break;
3596 	case TCP_NODELAY:
3597 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3598 		break;
3599 	case TCP_CORK:
3600 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3601 		break;
3602 	case TCP_KEEPIDLE:
3603 		val = keepalive_time_when(tp) / HZ;
3604 		break;
3605 	case TCP_KEEPINTVL:
3606 		val = keepalive_intvl_when(tp) / HZ;
3607 		break;
3608 	case TCP_KEEPCNT:
3609 		val = keepalive_probes(tp);
3610 		break;
3611 	case TCP_SYNCNT:
3612 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3613 		break;
3614 	case TCP_LINGER2:
3615 		val = tp->linger2;
3616 		if (val >= 0)
3617 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3618 		break;
3619 	case TCP_DEFER_ACCEPT:
3620 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3621 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3622 		break;
3623 	case TCP_WINDOW_CLAMP:
3624 		val = tp->window_clamp;
3625 		break;
3626 	case TCP_INFO: {
3627 		struct tcp_info info;
3628 
3629 		if (get_user(len, optlen))
3630 			return -EFAULT;
3631 
3632 		tcp_get_info(sk, &info);
3633 
3634 		len = min_t(unsigned int, len, sizeof(info));
3635 		if (put_user(len, optlen))
3636 			return -EFAULT;
3637 		if (copy_to_user(optval, &info, len))
3638 			return -EFAULT;
3639 		return 0;
3640 	}
3641 	case TCP_CC_INFO: {
3642 		const struct tcp_congestion_ops *ca_ops;
3643 		union tcp_cc_info info;
3644 		size_t sz = 0;
3645 		int attr;
3646 
3647 		if (get_user(len, optlen))
3648 			return -EFAULT;
3649 
3650 		ca_ops = icsk->icsk_ca_ops;
3651 		if (ca_ops && ca_ops->get_info)
3652 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3653 
3654 		len = min_t(unsigned int, len, sz);
3655 		if (put_user(len, optlen))
3656 			return -EFAULT;
3657 		if (copy_to_user(optval, &info, len))
3658 			return -EFAULT;
3659 		return 0;
3660 	}
3661 	case TCP_QUICKACK:
3662 		val = !inet_csk_in_pingpong_mode(sk);
3663 		break;
3664 
3665 	case TCP_CONGESTION:
3666 		if (get_user(len, optlen))
3667 			return -EFAULT;
3668 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3669 		if (put_user(len, optlen))
3670 			return -EFAULT;
3671 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3672 			return -EFAULT;
3673 		return 0;
3674 
3675 	case TCP_ULP:
3676 		if (get_user(len, optlen))
3677 			return -EFAULT;
3678 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3679 		if (!icsk->icsk_ulp_ops) {
3680 			if (put_user(0, optlen))
3681 				return -EFAULT;
3682 			return 0;
3683 		}
3684 		if (put_user(len, optlen))
3685 			return -EFAULT;
3686 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3687 			return -EFAULT;
3688 		return 0;
3689 
3690 	case TCP_FASTOPEN_KEY: {
3691 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3692 		unsigned int key_len;
3693 
3694 		if (get_user(len, optlen))
3695 			return -EFAULT;
3696 
3697 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3698 				TCP_FASTOPEN_KEY_LENGTH;
3699 		len = min_t(unsigned int, len, key_len);
3700 		if (put_user(len, optlen))
3701 			return -EFAULT;
3702 		if (copy_to_user(optval, key, len))
3703 			return -EFAULT;
3704 		return 0;
3705 	}
3706 	case TCP_THIN_LINEAR_TIMEOUTS:
3707 		val = tp->thin_lto;
3708 		break;
3709 
3710 	case TCP_THIN_DUPACK:
3711 		val = 0;
3712 		break;
3713 
3714 	case TCP_REPAIR:
3715 		val = tp->repair;
3716 		break;
3717 
3718 	case TCP_REPAIR_QUEUE:
3719 		if (tp->repair)
3720 			val = tp->repair_queue;
3721 		else
3722 			return -EINVAL;
3723 		break;
3724 
3725 	case TCP_REPAIR_WINDOW: {
3726 		struct tcp_repair_window opt;
3727 
3728 		if (get_user(len, optlen))
3729 			return -EFAULT;
3730 
3731 		if (len != sizeof(opt))
3732 			return -EINVAL;
3733 
3734 		if (!tp->repair)
3735 			return -EPERM;
3736 
3737 		opt.snd_wl1	= tp->snd_wl1;
3738 		opt.snd_wnd	= tp->snd_wnd;
3739 		opt.max_window	= tp->max_window;
3740 		opt.rcv_wnd	= tp->rcv_wnd;
3741 		opt.rcv_wup	= tp->rcv_wup;
3742 
3743 		if (copy_to_user(optval, &opt, len))
3744 			return -EFAULT;
3745 		return 0;
3746 	}
3747 	case TCP_QUEUE_SEQ:
3748 		if (tp->repair_queue == TCP_SEND_QUEUE)
3749 			val = tp->write_seq;
3750 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3751 			val = tp->rcv_nxt;
3752 		else
3753 			return -EINVAL;
3754 		break;
3755 
3756 	case TCP_USER_TIMEOUT:
3757 		val = icsk->icsk_user_timeout;
3758 		break;
3759 
3760 	case TCP_FASTOPEN:
3761 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3762 		break;
3763 
3764 	case TCP_FASTOPEN_CONNECT:
3765 		val = tp->fastopen_connect;
3766 		break;
3767 
3768 	case TCP_FASTOPEN_NO_COOKIE:
3769 		val = tp->fastopen_no_cookie;
3770 		break;
3771 
3772 	case TCP_TX_DELAY:
3773 		val = tp->tcp_tx_delay;
3774 		break;
3775 
3776 	case TCP_TIMESTAMP:
3777 		val = tcp_time_stamp_raw() + tp->tsoffset;
3778 		break;
3779 	case TCP_NOTSENT_LOWAT:
3780 		val = tp->notsent_lowat;
3781 		break;
3782 	case TCP_INQ:
3783 		val = tp->recvmsg_inq;
3784 		break;
3785 	case TCP_SAVE_SYN:
3786 		val = tp->save_syn;
3787 		break;
3788 	case TCP_SAVED_SYN: {
3789 		if (get_user(len, optlen))
3790 			return -EFAULT;
3791 
3792 		lock_sock(sk);
3793 		if (tp->saved_syn) {
3794 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
3795 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
3796 					     optlen)) {
3797 					release_sock(sk);
3798 					return -EFAULT;
3799 				}
3800 				release_sock(sk);
3801 				return -EINVAL;
3802 			}
3803 			len = tcp_saved_syn_len(tp->saved_syn);
3804 			if (put_user(len, optlen)) {
3805 				release_sock(sk);
3806 				return -EFAULT;
3807 			}
3808 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
3809 				release_sock(sk);
3810 				return -EFAULT;
3811 			}
3812 			tcp_saved_syn_free(tp);
3813 			release_sock(sk);
3814 		} else {
3815 			release_sock(sk);
3816 			len = 0;
3817 			if (put_user(len, optlen))
3818 				return -EFAULT;
3819 		}
3820 		return 0;
3821 	}
3822 #ifdef CONFIG_MMU
3823 	case TCP_ZEROCOPY_RECEIVE: {
3824 		struct tcp_zerocopy_receive zc;
3825 		int err;
3826 
3827 		if (get_user(len, optlen))
3828 			return -EFAULT;
3829 		if (len < offsetofend(struct tcp_zerocopy_receive, length))
3830 			return -EINVAL;
3831 		if (len > sizeof(zc)) {
3832 			len = sizeof(zc);
3833 			if (put_user(len, optlen))
3834 				return -EFAULT;
3835 		}
3836 		if (copy_from_user(&zc, optval, len))
3837 			return -EFAULT;
3838 		lock_sock(sk);
3839 		err = tcp_zerocopy_receive(sk, &zc);
3840 		release_sock(sk);
3841 		if (len == sizeof(zc))
3842 			goto zerocopy_rcv_sk_err;
3843 		switch (len) {
3844 		case offsetofend(struct tcp_zerocopy_receive, err):
3845 			goto zerocopy_rcv_sk_err;
3846 		case offsetofend(struct tcp_zerocopy_receive, inq):
3847 			goto zerocopy_rcv_inq;
3848 		case offsetofend(struct tcp_zerocopy_receive, length):
3849 		default:
3850 			goto zerocopy_rcv_out;
3851 		}
3852 zerocopy_rcv_sk_err:
3853 		if (!err)
3854 			zc.err = sock_error(sk);
3855 zerocopy_rcv_inq:
3856 		zc.inq = tcp_inq_hint(sk);
3857 zerocopy_rcv_out:
3858 		if (!err && copy_to_user(optval, &zc, len))
3859 			err = -EFAULT;
3860 		return err;
3861 	}
3862 #endif
3863 	default:
3864 		return -ENOPROTOOPT;
3865 	}
3866 
3867 	if (put_user(len, optlen))
3868 		return -EFAULT;
3869 	if (copy_to_user(optval, &val, len))
3870 		return -EFAULT;
3871 	return 0;
3872 }
3873 
3874 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3875 		   int __user *optlen)
3876 {
3877 	struct inet_connection_sock *icsk = inet_csk(sk);
3878 
3879 	if (level != SOL_TCP)
3880 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3881 						     optval, optlen);
3882 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3883 }
3884 EXPORT_SYMBOL(tcp_getsockopt);
3885 
3886 #ifdef CONFIG_TCP_MD5SIG
3887 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3888 static DEFINE_MUTEX(tcp_md5sig_mutex);
3889 static bool tcp_md5sig_pool_populated = false;
3890 
3891 static void __tcp_alloc_md5sig_pool(void)
3892 {
3893 	struct crypto_ahash *hash;
3894 	int cpu;
3895 
3896 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3897 	if (IS_ERR(hash))
3898 		return;
3899 
3900 	for_each_possible_cpu(cpu) {
3901 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3902 		struct ahash_request *req;
3903 
3904 		if (!scratch) {
3905 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3906 					       sizeof(struct tcphdr),
3907 					       GFP_KERNEL,
3908 					       cpu_to_node(cpu));
3909 			if (!scratch)
3910 				return;
3911 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3912 		}
3913 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3914 			continue;
3915 
3916 		req = ahash_request_alloc(hash, GFP_KERNEL);
3917 		if (!req)
3918 			return;
3919 
3920 		ahash_request_set_callback(req, 0, NULL, NULL);
3921 
3922 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3923 	}
3924 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3925 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3926 	 */
3927 	smp_wmb();
3928 	tcp_md5sig_pool_populated = true;
3929 }
3930 
3931 bool tcp_alloc_md5sig_pool(void)
3932 {
3933 	if (unlikely(!tcp_md5sig_pool_populated)) {
3934 		mutex_lock(&tcp_md5sig_mutex);
3935 
3936 		if (!tcp_md5sig_pool_populated) {
3937 			__tcp_alloc_md5sig_pool();
3938 			if (tcp_md5sig_pool_populated)
3939 				static_branch_inc(&tcp_md5_needed);
3940 		}
3941 
3942 		mutex_unlock(&tcp_md5sig_mutex);
3943 	}
3944 	return tcp_md5sig_pool_populated;
3945 }
3946 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3947 
3948 
3949 /**
3950  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3951  *
3952  *	We use percpu structure, so if we succeed, we exit with preemption
3953  *	and BH disabled, to make sure another thread or softirq handling
3954  *	wont try to get same context.
3955  */
3956 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3957 {
3958 	local_bh_disable();
3959 
3960 	if (tcp_md5sig_pool_populated) {
3961 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3962 		smp_rmb();
3963 		return this_cpu_ptr(&tcp_md5sig_pool);
3964 	}
3965 	local_bh_enable();
3966 	return NULL;
3967 }
3968 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3969 
3970 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3971 			  const struct sk_buff *skb, unsigned int header_len)
3972 {
3973 	struct scatterlist sg;
3974 	const struct tcphdr *tp = tcp_hdr(skb);
3975 	struct ahash_request *req = hp->md5_req;
3976 	unsigned int i;
3977 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3978 					   skb_headlen(skb) - header_len : 0;
3979 	const struct skb_shared_info *shi = skb_shinfo(skb);
3980 	struct sk_buff *frag_iter;
3981 
3982 	sg_init_table(&sg, 1);
3983 
3984 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3985 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3986 	if (crypto_ahash_update(req))
3987 		return 1;
3988 
3989 	for (i = 0; i < shi->nr_frags; ++i) {
3990 		const skb_frag_t *f = &shi->frags[i];
3991 		unsigned int offset = skb_frag_off(f);
3992 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3993 
3994 		sg_set_page(&sg, page, skb_frag_size(f),
3995 			    offset_in_page(offset));
3996 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3997 		if (crypto_ahash_update(req))
3998 			return 1;
3999 	}
4000 
4001 	skb_walk_frags(skb, frag_iter)
4002 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4003 			return 1;
4004 
4005 	return 0;
4006 }
4007 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4008 
4009 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4010 {
4011 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4012 	struct scatterlist sg;
4013 
4014 	sg_init_one(&sg, key->key, keylen);
4015 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4016 
4017 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4018 	return data_race(crypto_ahash_update(hp->md5_req));
4019 }
4020 EXPORT_SYMBOL(tcp_md5_hash_key);
4021 
4022 #endif
4023 
4024 void tcp_done(struct sock *sk)
4025 {
4026 	struct request_sock *req;
4027 
4028 	/* We might be called with a new socket, after
4029 	 * inet_csk_prepare_forced_close() has been called
4030 	 * so we can not use lockdep_sock_is_held(sk)
4031 	 */
4032 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4033 
4034 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4035 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4036 
4037 	tcp_set_state(sk, TCP_CLOSE);
4038 	tcp_clear_xmit_timers(sk);
4039 	if (req)
4040 		reqsk_fastopen_remove(sk, req, false);
4041 
4042 	sk->sk_shutdown = SHUTDOWN_MASK;
4043 
4044 	if (!sock_flag(sk, SOCK_DEAD))
4045 		sk->sk_state_change(sk);
4046 	else
4047 		inet_csk_destroy_sock(sk);
4048 }
4049 EXPORT_SYMBOL_GPL(tcp_done);
4050 
4051 int tcp_abort(struct sock *sk, int err)
4052 {
4053 	if (!sk_fullsock(sk)) {
4054 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4055 			struct request_sock *req = inet_reqsk(sk);
4056 
4057 			local_bh_disable();
4058 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4059 			local_bh_enable();
4060 			return 0;
4061 		}
4062 		return -EOPNOTSUPP;
4063 	}
4064 
4065 	/* Don't race with userspace socket closes such as tcp_close. */
4066 	lock_sock(sk);
4067 
4068 	if (sk->sk_state == TCP_LISTEN) {
4069 		tcp_set_state(sk, TCP_CLOSE);
4070 		inet_csk_listen_stop(sk);
4071 	}
4072 
4073 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4074 	local_bh_disable();
4075 	bh_lock_sock(sk);
4076 
4077 	if (!sock_flag(sk, SOCK_DEAD)) {
4078 		sk->sk_err = err;
4079 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4080 		smp_wmb();
4081 		sk->sk_error_report(sk);
4082 		if (tcp_need_reset(sk->sk_state))
4083 			tcp_send_active_reset(sk, GFP_ATOMIC);
4084 		tcp_done(sk);
4085 	}
4086 
4087 	bh_unlock_sock(sk);
4088 	local_bh_enable();
4089 	tcp_write_queue_purge(sk);
4090 	release_sock(sk);
4091 	return 0;
4092 }
4093 EXPORT_SYMBOL_GPL(tcp_abort);
4094 
4095 extern struct tcp_congestion_ops tcp_reno;
4096 
4097 static __initdata unsigned long thash_entries;
4098 static int __init set_thash_entries(char *str)
4099 {
4100 	ssize_t ret;
4101 
4102 	if (!str)
4103 		return 0;
4104 
4105 	ret = kstrtoul(str, 0, &thash_entries);
4106 	if (ret)
4107 		return 0;
4108 
4109 	return 1;
4110 }
4111 __setup("thash_entries=", set_thash_entries);
4112 
4113 static void __init tcp_init_mem(void)
4114 {
4115 	unsigned long limit = nr_free_buffer_pages() / 16;
4116 
4117 	limit = max(limit, 128UL);
4118 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4119 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4120 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4121 }
4122 
4123 void __init tcp_init(void)
4124 {
4125 	int max_rshare, max_wshare, cnt;
4126 	unsigned long limit;
4127 	unsigned int i;
4128 
4129 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4130 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4131 		     sizeof_field(struct sk_buff, cb));
4132 
4133 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4134 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4135 	inet_hashinfo_init(&tcp_hashinfo);
4136 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4137 			    thash_entries, 21,  /* one slot per 2 MB*/
4138 			    0, 64 * 1024);
4139 	tcp_hashinfo.bind_bucket_cachep =
4140 		kmem_cache_create("tcp_bind_bucket",
4141 				  sizeof(struct inet_bind_bucket), 0,
4142 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4143 
4144 	/* Size and allocate the main established and bind bucket
4145 	 * hash tables.
4146 	 *
4147 	 * The methodology is similar to that of the buffer cache.
4148 	 */
4149 	tcp_hashinfo.ehash =
4150 		alloc_large_system_hash("TCP established",
4151 					sizeof(struct inet_ehash_bucket),
4152 					thash_entries,
4153 					17, /* one slot per 128 KB of memory */
4154 					0,
4155 					NULL,
4156 					&tcp_hashinfo.ehash_mask,
4157 					0,
4158 					thash_entries ? 0 : 512 * 1024);
4159 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4160 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4161 
4162 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4163 		panic("TCP: failed to alloc ehash_locks");
4164 	tcp_hashinfo.bhash =
4165 		alloc_large_system_hash("TCP bind",
4166 					sizeof(struct inet_bind_hashbucket),
4167 					tcp_hashinfo.ehash_mask + 1,
4168 					17, /* one slot per 128 KB of memory */
4169 					0,
4170 					&tcp_hashinfo.bhash_size,
4171 					NULL,
4172 					0,
4173 					64 * 1024);
4174 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4175 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4176 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4177 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4178 	}
4179 
4180 
4181 	cnt = tcp_hashinfo.ehash_mask + 1;
4182 	sysctl_tcp_max_orphans = cnt / 2;
4183 
4184 	tcp_init_mem();
4185 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4186 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4187 	max_wshare = min(4UL*1024*1024, limit);
4188 	max_rshare = min(6UL*1024*1024, limit);
4189 
4190 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4191 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4192 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4193 
4194 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4195 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4196 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4197 
4198 	pr_info("Hash tables configured (established %u bind %u)\n",
4199 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4200 
4201 	tcp_v4_init();
4202 	tcp_metrics_init();
4203 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4204 	tcp_tasklet_init();
4205 	mptcp_init();
4206 }
4207