1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static bool tcp_stream_is_readable(struct sock *sk, int target) 479 { 480 if (tcp_epollin_ready(sk, target)) 481 return true; 482 return sk_is_readable(sk); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 u16 urg_data = READ_ONCE(tp->urg_data); 549 550 if (unlikely(urg_data) && 551 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE)) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = READ_ONCE(tp->urg_data) && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 sk_defer_free_flush(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (unlikely(tcp_under_memory_pressure(sk))) 860 sk_mem_reclaim_partial(sk); 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 867 if (force_schedule) { 868 mem_scheduled = true; 869 sk_forced_mem_schedule(sk, skb->truesize); 870 } else { 871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 872 } 873 if (likely(mem_scheduled)) { 874 skb_reserve(skb, MAX_TCP_HEADER); 875 skb->ip_summed = CHECKSUM_PARTIAL; 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 return skb; 878 } 879 __kfree_skb(skb); 880 } else { 881 sk->sk_prot->enter_memory_pressure(sk); 882 sk_stream_moderate_sndbuf(sk); 883 } 884 return NULL; 885 } 886 887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 888 int large_allowed) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 u32 new_size_goal, size_goal; 892 893 if (!large_allowed) 894 return mss_now; 895 896 /* Note : tcp_tso_autosize() will eventually split this later */ 897 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 898 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 899 900 /* We try hard to avoid divides here */ 901 size_goal = tp->gso_segs * mss_now; 902 if (unlikely(new_size_goal < size_goal || 903 new_size_goal >= size_goal + mss_now)) { 904 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 905 sk->sk_gso_max_segs); 906 size_goal = tp->gso_segs * mss_now; 907 } 908 909 return max(size_goal, mss_now); 910 } 911 912 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 913 { 914 int mss_now; 915 916 mss_now = tcp_current_mss(sk); 917 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 918 919 return mss_now; 920 } 921 922 /* In some cases, both sendpage() and sendmsg() could have added 923 * an skb to the write queue, but failed adding payload on it. 924 * We need to remove it to consume less memory, but more 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 926 * users. 927 */ 928 void tcp_remove_empty_skb(struct sock *sk) 929 { 930 struct sk_buff *skb = tcp_write_queue_tail(sk); 931 932 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 933 tcp_unlink_write_queue(skb, sk); 934 if (tcp_write_queue_empty(sk)) 935 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 936 tcp_wmem_free_skb(sk, skb); 937 } 938 } 939 940 /* skb changing from pure zc to mixed, must charge zc */ 941 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 942 { 943 if (unlikely(skb_zcopy_pure(skb))) { 944 u32 extra = skb->truesize - 945 SKB_TRUESIZE(skb_end_offset(skb)); 946 947 if (!sk_wmem_schedule(sk, extra)) 948 return -ENOMEM; 949 950 sk_mem_charge(sk, extra); 951 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 952 } 953 return 0; 954 } 955 956 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 957 struct page *page, int offset, size_t *size) 958 { 959 struct sk_buff *skb = tcp_write_queue_tail(sk); 960 struct tcp_sock *tp = tcp_sk(sk); 961 bool can_coalesce; 962 int copy, i; 963 964 if (!skb || (copy = size_goal - skb->len) <= 0 || 965 !tcp_skb_can_collapse_to(skb)) { 966 new_segment: 967 if (!sk_stream_memory_free(sk)) 968 return NULL; 969 970 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 971 tcp_rtx_and_write_queues_empty(sk)); 972 if (!skb) 973 return NULL; 974 975 #ifdef CONFIG_TLS_DEVICE 976 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 977 #endif 978 tcp_skb_entail(sk, skb); 979 copy = size_goal; 980 } 981 982 if (copy > *size) 983 copy = *size; 984 985 i = skb_shinfo(skb)->nr_frags; 986 can_coalesce = skb_can_coalesce(skb, i, page, offset); 987 if (!can_coalesce && i >= sysctl_max_skb_frags) { 988 tcp_mark_push(tp, skb); 989 goto new_segment; 990 } 991 if (tcp_downgrade_zcopy_pure(sk, skb) || !sk_wmem_schedule(sk, copy)) 992 return NULL; 993 994 if (can_coalesce) { 995 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 996 } else { 997 get_page(page); 998 skb_fill_page_desc(skb, i, page, offset, copy); 999 } 1000 1001 if (!(flags & MSG_NO_SHARED_FRAGS)) 1002 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1003 1004 skb->len += copy; 1005 skb->data_len += copy; 1006 skb->truesize += copy; 1007 sk_wmem_queued_add(sk, copy); 1008 sk_mem_charge(sk, copy); 1009 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1010 TCP_SKB_CB(skb)->end_seq += copy; 1011 tcp_skb_pcount_set(skb, 0); 1012 1013 *size = copy; 1014 return skb; 1015 } 1016 1017 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1018 size_t size, int flags) 1019 { 1020 struct tcp_sock *tp = tcp_sk(sk); 1021 int mss_now, size_goal; 1022 int err; 1023 ssize_t copied; 1024 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1025 1026 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1027 WARN_ONCE(!sendpage_ok(page), 1028 "page must not be a Slab one and have page_count > 0")) 1029 return -EINVAL; 1030 1031 /* Wait for a connection to finish. One exception is TCP Fast Open 1032 * (passive side) where data is allowed to be sent before a connection 1033 * is fully established. 1034 */ 1035 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1036 !tcp_passive_fastopen(sk)) { 1037 err = sk_stream_wait_connect(sk, &timeo); 1038 if (err != 0) 1039 goto out_err; 1040 } 1041 1042 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1043 1044 mss_now = tcp_send_mss(sk, &size_goal, flags); 1045 copied = 0; 1046 1047 err = -EPIPE; 1048 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1049 goto out_err; 1050 1051 while (size > 0) { 1052 struct sk_buff *skb; 1053 size_t copy = size; 1054 1055 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1056 if (!skb) 1057 goto wait_for_space; 1058 1059 if (!copied) 1060 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1061 1062 copied += copy; 1063 offset += copy; 1064 size -= copy; 1065 if (!size) 1066 goto out; 1067 1068 if (skb->len < size_goal || (flags & MSG_OOB)) 1069 continue; 1070 1071 if (forced_push(tp)) { 1072 tcp_mark_push(tp, skb); 1073 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1074 } else if (skb == tcp_send_head(sk)) 1075 tcp_push_one(sk, mss_now); 1076 continue; 1077 1078 wait_for_space: 1079 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1080 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1081 TCP_NAGLE_PUSH, size_goal); 1082 1083 err = sk_stream_wait_memory(sk, &timeo); 1084 if (err != 0) 1085 goto do_error; 1086 1087 mss_now = tcp_send_mss(sk, &size_goal, flags); 1088 } 1089 1090 out: 1091 if (copied) { 1092 tcp_tx_timestamp(sk, sk->sk_tsflags); 1093 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1094 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1095 } 1096 return copied; 1097 1098 do_error: 1099 tcp_remove_empty_skb(sk); 1100 if (copied) 1101 goto out; 1102 out_err: 1103 /* make sure we wake any epoll edge trigger waiter */ 1104 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1105 sk->sk_write_space(sk); 1106 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1107 } 1108 return sk_stream_error(sk, flags, err); 1109 } 1110 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1111 1112 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1113 size_t size, int flags) 1114 { 1115 if (!(sk->sk_route_caps & NETIF_F_SG)) 1116 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1117 1118 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1119 1120 return do_tcp_sendpages(sk, page, offset, size, flags); 1121 } 1122 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1123 1124 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1125 size_t size, int flags) 1126 { 1127 int ret; 1128 1129 lock_sock(sk); 1130 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1131 release_sock(sk); 1132 1133 return ret; 1134 } 1135 EXPORT_SYMBOL(tcp_sendpage); 1136 1137 void tcp_free_fastopen_req(struct tcp_sock *tp) 1138 { 1139 if (tp->fastopen_req) { 1140 kfree(tp->fastopen_req); 1141 tp->fastopen_req = NULL; 1142 } 1143 } 1144 1145 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1146 int *copied, size_t size, 1147 struct ubuf_info *uarg) 1148 { 1149 struct tcp_sock *tp = tcp_sk(sk); 1150 struct inet_sock *inet = inet_sk(sk); 1151 struct sockaddr *uaddr = msg->msg_name; 1152 int err, flags; 1153 1154 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1155 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1156 uaddr->sa_family == AF_UNSPEC)) 1157 return -EOPNOTSUPP; 1158 if (tp->fastopen_req) 1159 return -EALREADY; /* Another Fast Open is in progress */ 1160 1161 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1162 sk->sk_allocation); 1163 if (unlikely(!tp->fastopen_req)) 1164 return -ENOBUFS; 1165 tp->fastopen_req->data = msg; 1166 tp->fastopen_req->size = size; 1167 tp->fastopen_req->uarg = uarg; 1168 1169 if (inet->defer_connect) { 1170 err = tcp_connect(sk); 1171 /* Same failure procedure as in tcp_v4/6_connect */ 1172 if (err) { 1173 tcp_set_state(sk, TCP_CLOSE); 1174 inet->inet_dport = 0; 1175 sk->sk_route_caps = 0; 1176 } 1177 } 1178 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1179 err = __inet_stream_connect(sk->sk_socket, uaddr, 1180 msg->msg_namelen, flags, 1); 1181 /* fastopen_req could already be freed in __inet_stream_connect 1182 * if the connection times out or gets rst 1183 */ 1184 if (tp->fastopen_req) { 1185 *copied = tp->fastopen_req->copied; 1186 tcp_free_fastopen_req(tp); 1187 inet->defer_connect = 0; 1188 } 1189 return err; 1190 } 1191 1192 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1193 { 1194 struct tcp_sock *tp = tcp_sk(sk); 1195 struct ubuf_info *uarg = NULL; 1196 struct sk_buff *skb; 1197 struct sockcm_cookie sockc; 1198 int flags, err, copied = 0; 1199 int mss_now = 0, size_goal, copied_syn = 0; 1200 int process_backlog = 0; 1201 bool zc = false; 1202 long timeo; 1203 1204 flags = msg->msg_flags; 1205 1206 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1207 skb = tcp_write_queue_tail(sk); 1208 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1209 if (!uarg) { 1210 err = -ENOBUFS; 1211 goto out_err; 1212 } 1213 1214 zc = sk->sk_route_caps & NETIF_F_SG; 1215 if (!zc) 1216 uarg->zerocopy = 0; 1217 } 1218 1219 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1220 !tp->repair) { 1221 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1222 if (err == -EINPROGRESS && copied_syn > 0) 1223 goto out; 1224 else if (err) 1225 goto out_err; 1226 } 1227 1228 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1229 1230 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1231 1232 /* Wait for a connection to finish. One exception is TCP Fast Open 1233 * (passive side) where data is allowed to be sent before a connection 1234 * is fully established. 1235 */ 1236 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1237 !tcp_passive_fastopen(sk)) { 1238 err = sk_stream_wait_connect(sk, &timeo); 1239 if (err != 0) 1240 goto do_error; 1241 } 1242 1243 if (unlikely(tp->repair)) { 1244 if (tp->repair_queue == TCP_RECV_QUEUE) { 1245 copied = tcp_send_rcvq(sk, msg, size); 1246 goto out_nopush; 1247 } 1248 1249 err = -EINVAL; 1250 if (tp->repair_queue == TCP_NO_QUEUE) 1251 goto out_err; 1252 1253 /* 'common' sending to sendq */ 1254 } 1255 1256 sockcm_init(&sockc, sk); 1257 if (msg->msg_controllen) { 1258 err = sock_cmsg_send(sk, msg, &sockc); 1259 if (unlikely(err)) { 1260 err = -EINVAL; 1261 goto out_err; 1262 } 1263 } 1264 1265 /* This should be in poll */ 1266 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1267 1268 /* Ok commence sending. */ 1269 copied = 0; 1270 1271 restart: 1272 mss_now = tcp_send_mss(sk, &size_goal, flags); 1273 1274 err = -EPIPE; 1275 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1276 goto do_error; 1277 1278 while (msg_data_left(msg)) { 1279 int copy = 0; 1280 1281 skb = tcp_write_queue_tail(sk); 1282 if (skb) 1283 copy = size_goal - skb->len; 1284 1285 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1286 bool first_skb; 1287 1288 new_segment: 1289 if (!sk_stream_memory_free(sk)) 1290 goto wait_for_space; 1291 1292 if (unlikely(process_backlog >= 16)) { 1293 process_backlog = 0; 1294 if (sk_flush_backlog(sk)) 1295 goto restart; 1296 } 1297 first_skb = tcp_rtx_and_write_queues_empty(sk); 1298 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1299 first_skb); 1300 if (!skb) 1301 goto wait_for_space; 1302 1303 process_backlog++; 1304 1305 tcp_skb_entail(sk, skb); 1306 copy = size_goal; 1307 1308 /* All packets are restored as if they have 1309 * already been sent. skb_mstamp_ns isn't set to 1310 * avoid wrong rtt estimation. 1311 */ 1312 if (tp->repair) 1313 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1314 } 1315 1316 /* Try to append data to the end of skb. */ 1317 if (copy > msg_data_left(msg)) 1318 copy = msg_data_left(msg); 1319 1320 if (!zc) { 1321 bool merge = true; 1322 int i = skb_shinfo(skb)->nr_frags; 1323 struct page_frag *pfrag = sk_page_frag(sk); 1324 1325 if (!sk_page_frag_refill(sk, pfrag)) 1326 goto wait_for_space; 1327 1328 if (!skb_can_coalesce(skb, i, pfrag->page, 1329 pfrag->offset)) { 1330 if (i >= sysctl_max_skb_frags) { 1331 tcp_mark_push(tp, skb); 1332 goto new_segment; 1333 } 1334 merge = false; 1335 } 1336 1337 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1338 1339 if (tcp_downgrade_zcopy_pure(sk, skb) || 1340 !sk_wmem_schedule(sk, copy)) 1341 goto wait_for_space; 1342 1343 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1344 pfrag->page, 1345 pfrag->offset, 1346 copy); 1347 if (err) 1348 goto do_error; 1349 1350 /* Update the skb. */ 1351 if (merge) { 1352 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1353 } else { 1354 skb_fill_page_desc(skb, i, pfrag->page, 1355 pfrag->offset, copy); 1356 page_ref_inc(pfrag->page); 1357 } 1358 pfrag->offset += copy; 1359 } else { 1360 /* First append to a fragless skb builds initial 1361 * pure zerocopy skb 1362 */ 1363 if (!skb->len) 1364 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1365 1366 if (!skb_zcopy_pure(skb)) { 1367 if (!sk_wmem_schedule(sk, copy)) 1368 goto wait_for_space; 1369 } 1370 1371 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1372 if (err == -EMSGSIZE || err == -EEXIST) { 1373 tcp_mark_push(tp, skb); 1374 goto new_segment; 1375 } 1376 if (err < 0) 1377 goto do_error; 1378 copy = err; 1379 } 1380 1381 if (!copied) 1382 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1383 1384 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1385 TCP_SKB_CB(skb)->end_seq += copy; 1386 tcp_skb_pcount_set(skb, 0); 1387 1388 copied += copy; 1389 if (!msg_data_left(msg)) { 1390 if (unlikely(flags & MSG_EOR)) 1391 TCP_SKB_CB(skb)->eor = 1; 1392 goto out; 1393 } 1394 1395 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1396 continue; 1397 1398 if (forced_push(tp)) { 1399 tcp_mark_push(tp, skb); 1400 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1401 } else if (skb == tcp_send_head(sk)) 1402 tcp_push_one(sk, mss_now); 1403 continue; 1404 1405 wait_for_space: 1406 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1407 if (copied) 1408 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1409 TCP_NAGLE_PUSH, size_goal); 1410 1411 err = sk_stream_wait_memory(sk, &timeo); 1412 if (err != 0) 1413 goto do_error; 1414 1415 mss_now = tcp_send_mss(sk, &size_goal, flags); 1416 } 1417 1418 out: 1419 if (copied) { 1420 tcp_tx_timestamp(sk, sockc.tsflags); 1421 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1422 } 1423 out_nopush: 1424 net_zcopy_put(uarg); 1425 return copied + copied_syn; 1426 1427 do_error: 1428 tcp_remove_empty_skb(sk); 1429 1430 if (copied + copied_syn) 1431 goto out; 1432 out_err: 1433 net_zcopy_put_abort(uarg, true); 1434 err = sk_stream_error(sk, flags, err); 1435 /* make sure we wake any epoll edge trigger waiter */ 1436 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1437 sk->sk_write_space(sk); 1438 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1439 } 1440 return err; 1441 } 1442 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1443 1444 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1445 { 1446 int ret; 1447 1448 lock_sock(sk); 1449 ret = tcp_sendmsg_locked(sk, msg, size); 1450 release_sock(sk); 1451 1452 return ret; 1453 } 1454 EXPORT_SYMBOL(tcp_sendmsg); 1455 1456 /* 1457 * Handle reading urgent data. BSD has very simple semantics for 1458 * this, no blocking and very strange errors 8) 1459 */ 1460 1461 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1462 { 1463 struct tcp_sock *tp = tcp_sk(sk); 1464 1465 /* No URG data to read. */ 1466 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1467 tp->urg_data == TCP_URG_READ) 1468 return -EINVAL; /* Yes this is right ! */ 1469 1470 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1471 return -ENOTCONN; 1472 1473 if (tp->urg_data & TCP_URG_VALID) { 1474 int err = 0; 1475 char c = tp->urg_data; 1476 1477 if (!(flags & MSG_PEEK)) 1478 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1479 1480 /* Read urgent data. */ 1481 msg->msg_flags |= MSG_OOB; 1482 1483 if (len > 0) { 1484 if (!(flags & MSG_TRUNC)) 1485 err = memcpy_to_msg(msg, &c, 1); 1486 len = 1; 1487 } else 1488 msg->msg_flags |= MSG_TRUNC; 1489 1490 return err ? -EFAULT : len; 1491 } 1492 1493 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1494 return 0; 1495 1496 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1497 * the available implementations agree in this case: 1498 * this call should never block, independent of the 1499 * blocking state of the socket. 1500 * Mike <pall@rz.uni-karlsruhe.de> 1501 */ 1502 return -EAGAIN; 1503 } 1504 1505 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1506 { 1507 struct sk_buff *skb; 1508 int copied = 0, err = 0; 1509 1510 /* XXX -- need to support SO_PEEK_OFF */ 1511 1512 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1513 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1514 if (err) 1515 return err; 1516 copied += skb->len; 1517 } 1518 1519 skb_queue_walk(&sk->sk_write_queue, skb) { 1520 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1521 if (err) 1522 break; 1523 1524 copied += skb->len; 1525 } 1526 1527 return err ?: copied; 1528 } 1529 1530 /* Clean up the receive buffer for full frames taken by the user, 1531 * then send an ACK if necessary. COPIED is the number of bytes 1532 * tcp_recvmsg has given to the user so far, it speeds up the 1533 * calculation of whether or not we must ACK for the sake of 1534 * a window update. 1535 */ 1536 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 bool time_to_ack = false; 1540 1541 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1542 1543 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1544 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1545 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1546 1547 if (inet_csk_ack_scheduled(sk)) { 1548 const struct inet_connection_sock *icsk = inet_csk(sk); 1549 1550 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1551 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1552 /* 1553 * If this read emptied read buffer, we send ACK, if 1554 * connection is not bidirectional, user drained 1555 * receive buffer and there was a small segment 1556 * in queue. 1557 */ 1558 (copied > 0 && 1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1560 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1561 !inet_csk_in_pingpong_mode(sk))) && 1562 !atomic_read(&sk->sk_rmem_alloc))) 1563 time_to_ack = true; 1564 } 1565 1566 /* We send an ACK if we can now advertise a non-zero window 1567 * which has been raised "significantly". 1568 * 1569 * Even if window raised up to infinity, do not send window open ACK 1570 * in states, where we will not receive more. It is useless. 1571 */ 1572 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1573 __u32 rcv_window_now = tcp_receive_window(tp); 1574 1575 /* Optimize, __tcp_select_window() is not cheap. */ 1576 if (2*rcv_window_now <= tp->window_clamp) { 1577 __u32 new_window = __tcp_select_window(sk); 1578 1579 /* Send ACK now, if this read freed lots of space 1580 * in our buffer. Certainly, new_window is new window. 1581 * We can advertise it now, if it is not less than current one. 1582 * "Lots" means "at least twice" here. 1583 */ 1584 if (new_window && new_window >= 2 * rcv_window_now) 1585 time_to_ack = true; 1586 } 1587 } 1588 if (time_to_ack) 1589 tcp_send_ack(sk); 1590 } 1591 1592 void __sk_defer_free_flush(struct sock *sk) 1593 { 1594 struct llist_node *head; 1595 struct sk_buff *skb, *n; 1596 1597 head = llist_del_all(&sk->defer_list); 1598 llist_for_each_entry_safe(skb, n, head, ll_node) { 1599 prefetch(n); 1600 skb_mark_not_on_list(skb); 1601 __kfree_skb(skb); 1602 } 1603 } 1604 EXPORT_SYMBOL(__sk_defer_free_flush); 1605 1606 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1607 { 1608 __skb_unlink(skb, &sk->sk_receive_queue); 1609 if (likely(skb->destructor == sock_rfree)) { 1610 sock_rfree(skb); 1611 skb->destructor = NULL; 1612 skb->sk = NULL; 1613 if (!skb_queue_empty(&sk->sk_receive_queue) || 1614 !llist_empty(&sk->defer_list)) { 1615 llist_add(&skb->ll_node, &sk->defer_list); 1616 return; 1617 } 1618 } 1619 __kfree_skb(skb); 1620 } 1621 1622 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1623 { 1624 struct sk_buff *skb; 1625 u32 offset; 1626 1627 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1628 offset = seq - TCP_SKB_CB(skb)->seq; 1629 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1630 pr_err_once("%s: found a SYN, please report !\n", __func__); 1631 offset--; 1632 } 1633 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1634 *off = offset; 1635 return skb; 1636 } 1637 /* This looks weird, but this can happen if TCP collapsing 1638 * splitted a fat GRO packet, while we released socket lock 1639 * in skb_splice_bits() 1640 */ 1641 tcp_eat_recv_skb(sk, skb); 1642 } 1643 return NULL; 1644 } 1645 1646 /* 1647 * This routine provides an alternative to tcp_recvmsg() for routines 1648 * that would like to handle copying from skbuffs directly in 'sendfile' 1649 * fashion. 1650 * Note: 1651 * - It is assumed that the socket was locked by the caller. 1652 * - The routine does not block. 1653 * - At present, there is no support for reading OOB data 1654 * or for 'peeking' the socket using this routine 1655 * (although both would be easy to implement). 1656 */ 1657 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1658 sk_read_actor_t recv_actor) 1659 { 1660 struct sk_buff *skb; 1661 struct tcp_sock *tp = tcp_sk(sk); 1662 u32 seq = tp->copied_seq; 1663 u32 offset; 1664 int copied = 0; 1665 1666 if (sk->sk_state == TCP_LISTEN) 1667 return -ENOTCONN; 1668 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1669 if (offset < skb->len) { 1670 int used; 1671 size_t len; 1672 1673 len = skb->len - offset; 1674 /* Stop reading if we hit a patch of urgent data */ 1675 if (unlikely(tp->urg_data)) { 1676 u32 urg_offset = tp->urg_seq - seq; 1677 if (urg_offset < len) 1678 len = urg_offset; 1679 if (!len) 1680 break; 1681 } 1682 used = recv_actor(desc, skb, offset, len); 1683 if (used <= 0) { 1684 if (!copied) 1685 copied = used; 1686 break; 1687 } else if (used <= len) { 1688 seq += used; 1689 copied += used; 1690 offset += used; 1691 } 1692 /* If recv_actor drops the lock (e.g. TCP splice 1693 * receive) the skb pointer might be invalid when 1694 * getting here: tcp_collapse might have deleted it 1695 * while aggregating skbs from the socket queue. 1696 */ 1697 skb = tcp_recv_skb(sk, seq - 1, &offset); 1698 if (!skb) 1699 break; 1700 /* TCP coalescing might have appended data to the skb. 1701 * Try to splice more frags 1702 */ 1703 if (offset + 1 != skb->len) 1704 continue; 1705 } 1706 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1707 tcp_eat_recv_skb(sk, skb); 1708 ++seq; 1709 break; 1710 } 1711 tcp_eat_recv_skb(sk, skb); 1712 if (!desc->count) 1713 break; 1714 WRITE_ONCE(tp->copied_seq, seq); 1715 } 1716 WRITE_ONCE(tp->copied_seq, seq); 1717 1718 tcp_rcv_space_adjust(sk); 1719 1720 /* Clean up data we have read: This will do ACK frames. */ 1721 if (copied > 0) { 1722 tcp_recv_skb(sk, seq, &offset); 1723 tcp_cleanup_rbuf(sk, copied); 1724 } 1725 return copied; 1726 } 1727 EXPORT_SYMBOL(tcp_read_sock); 1728 1729 int tcp_peek_len(struct socket *sock) 1730 { 1731 return tcp_inq(sock->sk); 1732 } 1733 EXPORT_SYMBOL(tcp_peek_len); 1734 1735 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1736 int tcp_set_rcvlowat(struct sock *sk, int val) 1737 { 1738 int cap; 1739 1740 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1741 cap = sk->sk_rcvbuf >> 1; 1742 else 1743 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1744 val = min(val, cap); 1745 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1746 1747 /* Check if we need to signal EPOLLIN right now */ 1748 tcp_data_ready(sk); 1749 1750 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1751 return 0; 1752 1753 val <<= 1; 1754 if (val > sk->sk_rcvbuf) { 1755 WRITE_ONCE(sk->sk_rcvbuf, val); 1756 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1757 } 1758 return 0; 1759 } 1760 EXPORT_SYMBOL(tcp_set_rcvlowat); 1761 1762 void tcp_update_recv_tstamps(struct sk_buff *skb, 1763 struct scm_timestamping_internal *tss) 1764 { 1765 if (skb->tstamp) 1766 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1767 else 1768 tss->ts[0] = (struct timespec64) {0}; 1769 1770 if (skb_hwtstamps(skb)->hwtstamp) 1771 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1772 else 1773 tss->ts[2] = (struct timespec64) {0}; 1774 } 1775 1776 #ifdef CONFIG_MMU 1777 static const struct vm_operations_struct tcp_vm_ops = { 1778 }; 1779 1780 int tcp_mmap(struct file *file, struct socket *sock, 1781 struct vm_area_struct *vma) 1782 { 1783 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1784 return -EPERM; 1785 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1786 1787 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1788 vma->vm_flags |= VM_MIXEDMAP; 1789 1790 vma->vm_ops = &tcp_vm_ops; 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(tcp_mmap); 1794 1795 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1796 u32 *offset_frag) 1797 { 1798 skb_frag_t *frag; 1799 1800 if (unlikely(offset_skb >= skb->len)) 1801 return NULL; 1802 1803 offset_skb -= skb_headlen(skb); 1804 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1805 return NULL; 1806 1807 frag = skb_shinfo(skb)->frags; 1808 while (offset_skb) { 1809 if (skb_frag_size(frag) > offset_skb) { 1810 *offset_frag = offset_skb; 1811 return frag; 1812 } 1813 offset_skb -= skb_frag_size(frag); 1814 ++frag; 1815 } 1816 *offset_frag = 0; 1817 return frag; 1818 } 1819 1820 static bool can_map_frag(const skb_frag_t *frag) 1821 { 1822 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1823 } 1824 1825 static int find_next_mappable_frag(const skb_frag_t *frag, 1826 int remaining_in_skb) 1827 { 1828 int offset = 0; 1829 1830 if (likely(can_map_frag(frag))) 1831 return 0; 1832 1833 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1834 offset += skb_frag_size(frag); 1835 ++frag; 1836 } 1837 return offset; 1838 } 1839 1840 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1841 struct tcp_zerocopy_receive *zc, 1842 struct sk_buff *skb, u32 offset) 1843 { 1844 u32 frag_offset, partial_frag_remainder = 0; 1845 int mappable_offset; 1846 skb_frag_t *frag; 1847 1848 /* worst case: skip to next skb. try to improve on this case below */ 1849 zc->recv_skip_hint = skb->len - offset; 1850 1851 /* Find the frag containing this offset (and how far into that frag) */ 1852 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1853 if (!frag) 1854 return; 1855 1856 if (frag_offset) { 1857 struct skb_shared_info *info = skb_shinfo(skb); 1858 1859 /* We read part of the last frag, must recvmsg() rest of skb. */ 1860 if (frag == &info->frags[info->nr_frags - 1]) 1861 return; 1862 1863 /* Else, we must at least read the remainder in this frag. */ 1864 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1865 zc->recv_skip_hint -= partial_frag_remainder; 1866 ++frag; 1867 } 1868 1869 /* partial_frag_remainder: If part way through a frag, must read rest. 1870 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1871 * in partial_frag_remainder. 1872 */ 1873 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1874 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1875 } 1876 1877 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1878 int nonblock, int flags, 1879 struct scm_timestamping_internal *tss, 1880 int *cmsg_flags); 1881 static int receive_fallback_to_copy(struct sock *sk, 1882 struct tcp_zerocopy_receive *zc, int inq, 1883 struct scm_timestamping_internal *tss) 1884 { 1885 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1886 struct msghdr msg = {}; 1887 struct iovec iov; 1888 int err; 1889 1890 zc->length = 0; 1891 zc->recv_skip_hint = 0; 1892 1893 if (copy_address != zc->copybuf_address) 1894 return -EINVAL; 1895 1896 err = import_single_range(READ, (void __user *)copy_address, 1897 inq, &iov, &msg.msg_iter); 1898 if (err) 1899 return err; 1900 1901 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1902 tss, &zc->msg_flags); 1903 if (err < 0) 1904 return err; 1905 1906 zc->copybuf_len = err; 1907 if (likely(zc->copybuf_len)) { 1908 struct sk_buff *skb; 1909 u32 offset; 1910 1911 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1912 if (skb) 1913 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1914 } 1915 return 0; 1916 } 1917 1918 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1919 struct sk_buff *skb, u32 copylen, 1920 u32 *offset, u32 *seq) 1921 { 1922 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1923 struct msghdr msg = {}; 1924 struct iovec iov; 1925 int err; 1926 1927 if (copy_address != zc->copybuf_address) 1928 return -EINVAL; 1929 1930 err = import_single_range(READ, (void __user *)copy_address, 1931 copylen, &iov, &msg.msg_iter); 1932 if (err) 1933 return err; 1934 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1935 if (err) 1936 return err; 1937 zc->recv_skip_hint -= copylen; 1938 *offset += copylen; 1939 *seq += copylen; 1940 return (__s32)copylen; 1941 } 1942 1943 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1944 struct sock *sk, 1945 struct sk_buff *skb, 1946 u32 *seq, 1947 s32 copybuf_len, 1948 struct scm_timestamping_internal *tss) 1949 { 1950 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1951 1952 if (!copylen) 1953 return 0; 1954 /* skb is null if inq < PAGE_SIZE. */ 1955 if (skb) { 1956 offset = *seq - TCP_SKB_CB(skb)->seq; 1957 } else { 1958 skb = tcp_recv_skb(sk, *seq, &offset); 1959 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1960 tcp_update_recv_tstamps(skb, tss); 1961 zc->msg_flags |= TCP_CMSG_TS; 1962 } 1963 } 1964 1965 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1966 seq); 1967 return zc->copybuf_len < 0 ? 0 : copylen; 1968 } 1969 1970 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1971 struct page **pending_pages, 1972 unsigned long pages_remaining, 1973 unsigned long *address, 1974 u32 *length, 1975 u32 *seq, 1976 struct tcp_zerocopy_receive *zc, 1977 u32 total_bytes_to_map, 1978 int err) 1979 { 1980 /* At least one page did not map. Try zapping if we skipped earlier. */ 1981 if (err == -EBUSY && 1982 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1983 u32 maybe_zap_len; 1984 1985 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1986 *length + /* Mapped or pending */ 1987 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1988 zap_page_range(vma, *address, maybe_zap_len); 1989 err = 0; 1990 } 1991 1992 if (!err) { 1993 unsigned long leftover_pages = pages_remaining; 1994 int bytes_mapped; 1995 1996 /* We called zap_page_range, try to reinsert. */ 1997 err = vm_insert_pages(vma, *address, 1998 pending_pages, 1999 &pages_remaining); 2000 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2001 *seq += bytes_mapped; 2002 *address += bytes_mapped; 2003 } 2004 if (err) { 2005 /* Either we were unable to zap, OR we zapped, retried an 2006 * insert, and still had an issue. Either ways, pages_remaining 2007 * is the number of pages we were unable to map, and we unroll 2008 * some state we speculatively touched before. 2009 */ 2010 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2011 2012 *length -= bytes_not_mapped; 2013 zc->recv_skip_hint += bytes_not_mapped; 2014 } 2015 return err; 2016 } 2017 2018 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2019 struct page **pages, 2020 unsigned int pages_to_map, 2021 unsigned long *address, 2022 u32 *length, 2023 u32 *seq, 2024 struct tcp_zerocopy_receive *zc, 2025 u32 total_bytes_to_map) 2026 { 2027 unsigned long pages_remaining = pages_to_map; 2028 unsigned int pages_mapped; 2029 unsigned int bytes_mapped; 2030 int err; 2031 2032 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2033 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2034 bytes_mapped = PAGE_SIZE * pages_mapped; 2035 /* Even if vm_insert_pages fails, it may have partially succeeded in 2036 * mapping (some but not all of the pages). 2037 */ 2038 *seq += bytes_mapped; 2039 *address += bytes_mapped; 2040 2041 if (likely(!err)) 2042 return 0; 2043 2044 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2045 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2046 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2047 err); 2048 } 2049 2050 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2051 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2052 struct tcp_zerocopy_receive *zc, 2053 struct scm_timestamping_internal *tss) 2054 { 2055 unsigned long msg_control_addr; 2056 struct msghdr cmsg_dummy; 2057 2058 msg_control_addr = (unsigned long)zc->msg_control; 2059 cmsg_dummy.msg_control = (void *)msg_control_addr; 2060 cmsg_dummy.msg_controllen = 2061 (__kernel_size_t)zc->msg_controllen; 2062 cmsg_dummy.msg_flags = in_compat_syscall() 2063 ? MSG_CMSG_COMPAT : 0; 2064 cmsg_dummy.msg_control_is_user = true; 2065 zc->msg_flags = 0; 2066 if (zc->msg_control == msg_control_addr && 2067 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2068 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2069 zc->msg_control = (__u64) 2070 ((uintptr_t)cmsg_dummy.msg_control); 2071 zc->msg_controllen = 2072 (__u64)cmsg_dummy.msg_controllen; 2073 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2074 } 2075 } 2076 2077 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2078 static int tcp_zerocopy_receive(struct sock *sk, 2079 struct tcp_zerocopy_receive *zc, 2080 struct scm_timestamping_internal *tss) 2081 { 2082 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2083 unsigned long address = (unsigned long)zc->address; 2084 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2085 s32 copybuf_len = zc->copybuf_len; 2086 struct tcp_sock *tp = tcp_sk(sk); 2087 const skb_frag_t *frags = NULL; 2088 unsigned int pages_to_map = 0; 2089 struct vm_area_struct *vma; 2090 struct sk_buff *skb = NULL; 2091 u32 seq = tp->copied_seq; 2092 u32 total_bytes_to_map; 2093 int inq = tcp_inq(sk); 2094 int ret; 2095 2096 zc->copybuf_len = 0; 2097 zc->msg_flags = 0; 2098 2099 if (address & (PAGE_SIZE - 1) || address != zc->address) 2100 return -EINVAL; 2101 2102 if (sk->sk_state == TCP_LISTEN) 2103 return -ENOTCONN; 2104 2105 sock_rps_record_flow(sk); 2106 2107 if (inq && inq <= copybuf_len) 2108 return receive_fallback_to_copy(sk, zc, inq, tss); 2109 2110 if (inq < PAGE_SIZE) { 2111 zc->length = 0; 2112 zc->recv_skip_hint = inq; 2113 if (!inq && sock_flag(sk, SOCK_DONE)) 2114 return -EIO; 2115 return 0; 2116 } 2117 2118 mmap_read_lock(current->mm); 2119 2120 vma = vma_lookup(current->mm, address); 2121 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2122 mmap_read_unlock(current->mm); 2123 return -EINVAL; 2124 } 2125 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2126 avail_len = min_t(u32, vma_len, inq); 2127 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2128 if (total_bytes_to_map) { 2129 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2130 zap_page_range(vma, address, total_bytes_to_map); 2131 zc->length = total_bytes_to_map; 2132 zc->recv_skip_hint = 0; 2133 } else { 2134 zc->length = avail_len; 2135 zc->recv_skip_hint = avail_len; 2136 } 2137 ret = 0; 2138 while (length + PAGE_SIZE <= zc->length) { 2139 int mappable_offset; 2140 struct page *page; 2141 2142 if (zc->recv_skip_hint < PAGE_SIZE) { 2143 u32 offset_frag; 2144 2145 if (skb) { 2146 if (zc->recv_skip_hint > 0) 2147 break; 2148 skb = skb->next; 2149 offset = seq - TCP_SKB_CB(skb)->seq; 2150 } else { 2151 skb = tcp_recv_skb(sk, seq, &offset); 2152 } 2153 2154 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2155 tcp_update_recv_tstamps(skb, tss); 2156 zc->msg_flags |= TCP_CMSG_TS; 2157 } 2158 zc->recv_skip_hint = skb->len - offset; 2159 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2160 if (!frags || offset_frag) 2161 break; 2162 } 2163 2164 mappable_offset = find_next_mappable_frag(frags, 2165 zc->recv_skip_hint); 2166 if (mappable_offset) { 2167 zc->recv_skip_hint = mappable_offset; 2168 break; 2169 } 2170 page = skb_frag_page(frags); 2171 prefetchw(page); 2172 pages[pages_to_map++] = page; 2173 length += PAGE_SIZE; 2174 zc->recv_skip_hint -= PAGE_SIZE; 2175 frags++; 2176 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2177 zc->recv_skip_hint < PAGE_SIZE) { 2178 /* Either full batch, or we're about to go to next skb 2179 * (and we cannot unroll failed ops across skbs). 2180 */ 2181 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2182 pages_to_map, 2183 &address, &length, 2184 &seq, zc, 2185 total_bytes_to_map); 2186 if (ret) 2187 goto out; 2188 pages_to_map = 0; 2189 } 2190 } 2191 if (pages_to_map) { 2192 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2193 &address, &length, &seq, 2194 zc, total_bytes_to_map); 2195 } 2196 out: 2197 mmap_read_unlock(current->mm); 2198 /* Try to copy straggler data. */ 2199 if (!ret) 2200 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2201 2202 if (length + copylen) { 2203 WRITE_ONCE(tp->copied_seq, seq); 2204 tcp_rcv_space_adjust(sk); 2205 2206 /* Clean up data we have read: This will do ACK frames. */ 2207 tcp_recv_skb(sk, seq, &offset); 2208 tcp_cleanup_rbuf(sk, length + copylen); 2209 ret = 0; 2210 if (length == zc->length) 2211 zc->recv_skip_hint = 0; 2212 } else { 2213 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2214 ret = -EIO; 2215 } 2216 zc->length = length; 2217 return ret; 2218 } 2219 #endif 2220 2221 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2222 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2223 struct scm_timestamping_internal *tss) 2224 { 2225 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2226 bool has_timestamping = false; 2227 2228 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2229 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2230 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2231 if (new_tstamp) { 2232 struct __kernel_timespec kts = { 2233 .tv_sec = tss->ts[0].tv_sec, 2234 .tv_nsec = tss->ts[0].tv_nsec, 2235 }; 2236 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2237 sizeof(kts), &kts); 2238 } else { 2239 struct __kernel_old_timespec ts_old = { 2240 .tv_sec = tss->ts[0].tv_sec, 2241 .tv_nsec = tss->ts[0].tv_nsec, 2242 }; 2243 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2244 sizeof(ts_old), &ts_old); 2245 } 2246 } else { 2247 if (new_tstamp) { 2248 struct __kernel_sock_timeval stv = { 2249 .tv_sec = tss->ts[0].tv_sec, 2250 .tv_usec = tss->ts[0].tv_nsec / 1000, 2251 }; 2252 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2253 sizeof(stv), &stv); 2254 } else { 2255 struct __kernel_old_timeval tv = { 2256 .tv_sec = tss->ts[0].tv_sec, 2257 .tv_usec = tss->ts[0].tv_nsec / 1000, 2258 }; 2259 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2260 sizeof(tv), &tv); 2261 } 2262 } 2263 } 2264 2265 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2266 has_timestamping = true; 2267 else 2268 tss->ts[0] = (struct timespec64) {0}; 2269 } 2270 2271 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2272 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2273 has_timestamping = true; 2274 else 2275 tss->ts[2] = (struct timespec64) {0}; 2276 } 2277 2278 if (has_timestamping) { 2279 tss->ts[1] = (struct timespec64) {0}; 2280 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2281 put_cmsg_scm_timestamping64(msg, tss); 2282 else 2283 put_cmsg_scm_timestamping(msg, tss); 2284 } 2285 } 2286 2287 static int tcp_inq_hint(struct sock *sk) 2288 { 2289 const struct tcp_sock *tp = tcp_sk(sk); 2290 u32 copied_seq = READ_ONCE(tp->copied_seq); 2291 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2292 int inq; 2293 2294 inq = rcv_nxt - copied_seq; 2295 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2296 lock_sock(sk); 2297 inq = tp->rcv_nxt - tp->copied_seq; 2298 release_sock(sk); 2299 } 2300 /* After receiving a FIN, tell the user-space to continue reading 2301 * by returning a non-zero inq. 2302 */ 2303 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2304 inq = 1; 2305 return inq; 2306 } 2307 2308 /* 2309 * This routine copies from a sock struct into the user buffer. 2310 * 2311 * Technical note: in 2.3 we work on _locked_ socket, so that 2312 * tricks with *seq access order and skb->users are not required. 2313 * Probably, code can be easily improved even more. 2314 */ 2315 2316 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2317 int nonblock, int flags, 2318 struct scm_timestamping_internal *tss, 2319 int *cmsg_flags) 2320 { 2321 struct tcp_sock *tp = tcp_sk(sk); 2322 int copied = 0; 2323 u32 peek_seq; 2324 u32 *seq; 2325 unsigned long used; 2326 int err; 2327 int target; /* Read at least this many bytes */ 2328 long timeo; 2329 struct sk_buff *skb, *last; 2330 u32 urg_hole = 0; 2331 2332 err = -ENOTCONN; 2333 if (sk->sk_state == TCP_LISTEN) 2334 goto out; 2335 2336 if (tp->recvmsg_inq) 2337 *cmsg_flags = TCP_CMSG_INQ; 2338 timeo = sock_rcvtimeo(sk, nonblock); 2339 2340 /* Urgent data needs to be handled specially. */ 2341 if (flags & MSG_OOB) 2342 goto recv_urg; 2343 2344 if (unlikely(tp->repair)) { 2345 err = -EPERM; 2346 if (!(flags & MSG_PEEK)) 2347 goto out; 2348 2349 if (tp->repair_queue == TCP_SEND_QUEUE) 2350 goto recv_sndq; 2351 2352 err = -EINVAL; 2353 if (tp->repair_queue == TCP_NO_QUEUE) 2354 goto out; 2355 2356 /* 'common' recv queue MSG_PEEK-ing */ 2357 } 2358 2359 seq = &tp->copied_seq; 2360 if (flags & MSG_PEEK) { 2361 peek_seq = tp->copied_seq; 2362 seq = &peek_seq; 2363 } 2364 2365 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2366 2367 do { 2368 u32 offset; 2369 2370 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2371 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2372 if (copied) 2373 break; 2374 if (signal_pending(current)) { 2375 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2376 break; 2377 } 2378 } 2379 2380 /* Next get a buffer. */ 2381 2382 last = skb_peek_tail(&sk->sk_receive_queue); 2383 skb_queue_walk(&sk->sk_receive_queue, skb) { 2384 last = skb; 2385 /* Now that we have two receive queues this 2386 * shouldn't happen. 2387 */ 2388 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2389 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2390 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2391 flags)) 2392 break; 2393 2394 offset = *seq - TCP_SKB_CB(skb)->seq; 2395 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2396 pr_err_once("%s: found a SYN, please report !\n", __func__); 2397 offset--; 2398 } 2399 if (offset < skb->len) 2400 goto found_ok_skb; 2401 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2402 goto found_fin_ok; 2403 WARN(!(flags & MSG_PEEK), 2404 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2405 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2406 } 2407 2408 /* Well, if we have backlog, try to process it now yet. */ 2409 2410 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2411 break; 2412 2413 if (copied) { 2414 if (!timeo || 2415 sk->sk_err || 2416 sk->sk_state == TCP_CLOSE || 2417 (sk->sk_shutdown & RCV_SHUTDOWN) || 2418 signal_pending(current)) 2419 break; 2420 } else { 2421 if (sock_flag(sk, SOCK_DONE)) 2422 break; 2423 2424 if (sk->sk_err) { 2425 copied = sock_error(sk); 2426 break; 2427 } 2428 2429 if (sk->sk_shutdown & RCV_SHUTDOWN) 2430 break; 2431 2432 if (sk->sk_state == TCP_CLOSE) { 2433 /* This occurs when user tries to read 2434 * from never connected socket. 2435 */ 2436 copied = -ENOTCONN; 2437 break; 2438 } 2439 2440 if (!timeo) { 2441 copied = -EAGAIN; 2442 break; 2443 } 2444 2445 if (signal_pending(current)) { 2446 copied = sock_intr_errno(timeo); 2447 break; 2448 } 2449 } 2450 2451 if (copied >= target) { 2452 /* Do not sleep, just process backlog. */ 2453 __sk_flush_backlog(sk); 2454 } else { 2455 tcp_cleanup_rbuf(sk, copied); 2456 sk_defer_free_flush(sk); 2457 sk_wait_data(sk, &timeo, last); 2458 } 2459 2460 if ((flags & MSG_PEEK) && 2461 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2462 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2463 current->comm, 2464 task_pid_nr(current)); 2465 peek_seq = tp->copied_seq; 2466 } 2467 continue; 2468 2469 found_ok_skb: 2470 /* Ok so how much can we use? */ 2471 used = skb->len - offset; 2472 if (len < used) 2473 used = len; 2474 2475 /* Do we have urgent data here? */ 2476 if (unlikely(tp->urg_data)) { 2477 u32 urg_offset = tp->urg_seq - *seq; 2478 if (urg_offset < used) { 2479 if (!urg_offset) { 2480 if (!sock_flag(sk, SOCK_URGINLINE)) { 2481 WRITE_ONCE(*seq, *seq + 1); 2482 urg_hole++; 2483 offset++; 2484 used--; 2485 if (!used) 2486 goto skip_copy; 2487 } 2488 } else 2489 used = urg_offset; 2490 } 2491 } 2492 2493 if (!(flags & MSG_TRUNC)) { 2494 err = skb_copy_datagram_msg(skb, offset, msg, used); 2495 if (err) { 2496 /* Exception. Bailout! */ 2497 if (!copied) 2498 copied = -EFAULT; 2499 break; 2500 } 2501 } 2502 2503 WRITE_ONCE(*seq, *seq + used); 2504 copied += used; 2505 len -= used; 2506 2507 tcp_rcv_space_adjust(sk); 2508 2509 skip_copy: 2510 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2511 WRITE_ONCE(tp->urg_data, 0); 2512 tcp_fast_path_check(sk); 2513 } 2514 2515 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2516 tcp_update_recv_tstamps(skb, tss); 2517 *cmsg_flags |= TCP_CMSG_TS; 2518 } 2519 2520 if (used + offset < skb->len) 2521 continue; 2522 2523 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2524 goto found_fin_ok; 2525 if (!(flags & MSG_PEEK)) 2526 tcp_eat_recv_skb(sk, skb); 2527 continue; 2528 2529 found_fin_ok: 2530 /* Process the FIN. */ 2531 WRITE_ONCE(*seq, *seq + 1); 2532 if (!(flags & MSG_PEEK)) 2533 tcp_eat_recv_skb(sk, skb); 2534 break; 2535 } while (len > 0); 2536 2537 /* According to UNIX98, msg_name/msg_namelen are ignored 2538 * on connected socket. I was just happy when found this 8) --ANK 2539 */ 2540 2541 /* Clean up data we have read: This will do ACK frames. */ 2542 tcp_cleanup_rbuf(sk, copied); 2543 return copied; 2544 2545 out: 2546 return err; 2547 2548 recv_urg: 2549 err = tcp_recv_urg(sk, msg, len, flags); 2550 goto out; 2551 2552 recv_sndq: 2553 err = tcp_peek_sndq(sk, msg, len); 2554 goto out; 2555 } 2556 2557 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2558 int flags, int *addr_len) 2559 { 2560 int cmsg_flags = 0, ret, inq; 2561 struct scm_timestamping_internal tss; 2562 2563 if (unlikely(flags & MSG_ERRQUEUE)) 2564 return inet_recv_error(sk, msg, len, addr_len); 2565 2566 if (sk_can_busy_loop(sk) && 2567 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2568 sk->sk_state == TCP_ESTABLISHED) 2569 sk_busy_loop(sk, nonblock); 2570 2571 lock_sock(sk); 2572 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2573 &cmsg_flags); 2574 release_sock(sk); 2575 sk_defer_free_flush(sk); 2576 2577 if (cmsg_flags && ret >= 0) { 2578 if (cmsg_flags & TCP_CMSG_TS) 2579 tcp_recv_timestamp(msg, sk, &tss); 2580 if (cmsg_flags & TCP_CMSG_INQ) { 2581 inq = tcp_inq_hint(sk); 2582 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2583 } 2584 } 2585 return ret; 2586 } 2587 EXPORT_SYMBOL(tcp_recvmsg); 2588 2589 void tcp_set_state(struct sock *sk, int state) 2590 { 2591 int oldstate = sk->sk_state; 2592 2593 /* We defined a new enum for TCP states that are exported in BPF 2594 * so as not force the internal TCP states to be frozen. The 2595 * following checks will detect if an internal state value ever 2596 * differs from the BPF value. If this ever happens, then we will 2597 * need to remap the internal value to the BPF value before calling 2598 * tcp_call_bpf_2arg. 2599 */ 2600 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2601 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2602 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2603 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2604 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2605 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2606 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2607 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2608 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2609 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2610 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2611 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2612 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2613 2614 /* bpf uapi header bpf.h defines an anonymous enum with values 2615 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2616 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2617 * But clang built vmlinux does not have this enum in DWARF 2618 * since clang removes the above code before generating IR/debuginfo. 2619 * Let us explicitly emit the type debuginfo to ensure the 2620 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2621 * regardless of which compiler is used. 2622 */ 2623 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2624 2625 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2626 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2627 2628 switch (state) { 2629 case TCP_ESTABLISHED: 2630 if (oldstate != TCP_ESTABLISHED) 2631 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2632 break; 2633 2634 case TCP_CLOSE: 2635 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2636 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2637 2638 sk->sk_prot->unhash(sk); 2639 if (inet_csk(sk)->icsk_bind_hash && 2640 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2641 inet_put_port(sk); 2642 fallthrough; 2643 default: 2644 if (oldstate == TCP_ESTABLISHED) 2645 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2646 } 2647 2648 /* Change state AFTER socket is unhashed to avoid closed 2649 * socket sitting in hash tables. 2650 */ 2651 inet_sk_state_store(sk, state); 2652 } 2653 EXPORT_SYMBOL_GPL(tcp_set_state); 2654 2655 /* 2656 * State processing on a close. This implements the state shift for 2657 * sending our FIN frame. Note that we only send a FIN for some 2658 * states. A shutdown() may have already sent the FIN, or we may be 2659 * closed. 2660 */ 2661 2662 static const unsigned char new_state[16] = { 2663 /* current state: new state: action: */ 2664 [0 /* (Invalid) */] = TCP_CLOSE, 2665 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2666 [TCP_SYN_SENT] = TCP_CLOSE, 2667 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2668 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2669 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2670 [TCP_TIME_WAIT] = TCP_CLOSE, 2671 [TCP_CLOSE] = TCP_CLOSE, 2672 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2673 [TCP_LAST_ACK] = TCP_LAST_ACK, 2674 [TCP_LISTEN] = TCP_CLOSE, 2675 [TCP_CLOSING] = TCP_CLOSING, 2676 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2677 }; 2678 2679 static int tcp_close_state(struct sock *sk) 2680 { 2681 int next = (int)new_state[sk->sk_state]; 2682 int ns = next & TCP_STATE_MASK; 2683 2684 tcp_set_state(sk, ns); 2685 2686 return next & TCP_ACTION_FIN; 2687 } 2688 2689 /* 2690 * Shutdown the sending side of a connection. Much like close except 2691 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2692 */ 2693 2694 void tcp_shutdown(struct sock *sk, int how) 2695 { 2696 /* We need to grab some memory, and put together a FIN, 2697 * and then put it into the queue to be sent. 2698 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2699 */ 2700 if (!(how & SEND_SHUTDOWN)) 2701 return; 2702 2703 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2704 if ((1 << sk->sk_state) & 2705 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2706 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2707 /* Clear out any half completed packets. FIN if needed. */ 2708 if (tcp_close_state(sk)) 2709 tcp_send_fin(sk); 2710 } 2711 } 2712 EXPORT_SYMBOL(tcp_shutdown); 2713 2714 int tcp_orphan_count_sum(void) 2715 { 2716 int i, total = 0; 2717 2718 for_each_possible_cpu(i) 2719 total += per_cpu(tcp_orphan_count, i); 2720 2721 return max(total, 0); 2722 } 2723 2724 static int tcp_orphan_cache; 2725 static struct timer_list tcp_orphan_timer; 2726 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2727 2728 static void tcp_orphan_update(struct timer_list *unused) 2729 { 2730 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2731 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2732 } 2733 2734 static bool tcp_too_many_orphans(int shift) 2735 { 2736 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2737 } 2738 2739 bool tcp_check_oom(struct sock *sk, int shift) 2740 { 2741 bool too_many_orphans, out_of_socket_memory; 2742 2743 too_many_orphans = tcp_too_many_orphans(shift); 2744 out_of_socket_memory = tcp_out_of_memory(sk); 2745 2746 if (too_many_orphans) 2747 net_info_ratelimited("too many orphaned sockets\n"); 2748 if (out_of_socket_memory) 2749 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2750 return too_many_orphans || out_of_socket_memory; 2751 } 2752 2753 void __tcp_close(struct sock *sk, long timeout) 2754 { 2755 struct sk_buff *skb; 2756 int data_was_unread = 0; 2757 int state; 2758 2759 sk->sk_shutdown = SHUTDOWN_MASK; 2760 2761 if (sk->sk_state == TCP_LISTEN) { 2762 tcp_set_state(sk, TCP_CLOSE); 2763 2764 /* Special case. */ 2765 inet_csk_listen_stop(sk); 2766 2767 goto adjudge_to_death; 2768 } 2769 2770 /* We need to flush the recv. buffs. We do this only on the 2771 * descriptor close, not protocol-sourced closes, because the 2772 * reader process may not have drained the data yet! 2773 */ 2774 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2775 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2776 2777 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2778 len--; 2779 data_was_unread += len; 2780 __kfree_skb(skb); 2781 } 2782 2783 sk_mem_reclaim(sk); 2784 2785 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2786 if (sk->sk_state == TCP_CLOSE) 2787 goto adjudge_to_death; 2788 2789 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2790 * data was lost. To witness the awful effects of the old behavior of 2791 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2792 * GET in an FTP client, suspend the process, wait for the client to 2793 * advertise a zero window, then kill -9 the FTP client, wheee... 2794 * Note: timeout is always zero in such a case. 2795 */ 2796 if (unlikely(tcp_sk(sk)->repair)) { 2797 sk->sk_prot->disconnect(sk, 0); 2798 } else if (data_was_unread) { 2799 /* Unread data was tossed, zap the connection. */ 2800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2801 tcp_set_state(sk, TCP_CLOSE); 2802 tcp_send_active_reset(sk, sk->sk_allocation); 2803 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2804 /* Check zero linger _after_ checking for unread data. */ 2805 sk->sk_prot->disconnect(sk, 0); 2806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2807 } else if (tcp_close_state(sk)) { 2808 /* We FIN if the application ate all the data before 2809 * zapping the connection. 2810 */ 2811 2812 /* RED-PEN. Formally speaking, we have broken TCP state 2813 * machine. State transitions: 2814 * 2815 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2816 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2817 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2818 * 2819 * are legal only when FIN has been sent (i.e. in window), 2820 * rather than queued out of window. Purists blame. 2821 * 2822 * F.e. "RFC state" is ESTABLISHED, 2823 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2824 * 2825 * The visible declinations are that sometimes 2826 * we enter time-wait state, when it is not required really 2827 * (harmless), do not send active resets, when they are 2828 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2829 * they look as CLOSING or LAST_ACK for Linux) 2830 * Probably, I missed some more holelets. 2831 * --ANK 2832 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2833 * in a single packet! (May consider it later but will 2834 * probably need API support or TCP_CORK SYN-ACK until 2835 * data is written and socket is closed.) 2836 */ 2837 tcp_send_fin(sk); 2838 } 2839 2840 sk_stream_wait_close(sk, timeout); 2841 2842 adjudge_to_death: 2843 state = sk->sk_state; 2844 sock_hold(sk); 2845 sock_orphan(sk); 2846 2847 local_bh_disable(); 2848 bh_lock_sock(sk); 2849 /* remove backlog if any, without releasing ownership. */ 2850 __release_sock(sk); 2851 2852 this_cpu_inc(tcp_orphan_count); 2853 2854 /* Have we already been destroyed by a softirq or backlog? */ 2855 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2856 goto out; 2857 2858 /* This is a (useful) BSD violating of the RFC. There is a 2859 * problem with TCP as specified in that the other end could 2860 * keep a socket open forever with no application left this end. 2861 * We use a 1 minute timeout (about the same as BSD) then kill 2862 * our end. If they send after that then tough - BUT: long enough 2863 * that we won't make the old 4*rto = almost no time - whoops 2864 * reset mistake. 2865 * 2866 * Nope, it was not mistake. It is really desired behaviour 2867 * f.e. on http servers, when such sockets are useless, but 2868 * consume significant resources. Let's do it with special 2869 * linger2 option. --ANK 2870 */ 2871 2872 if (sk->sk_state == TCP_FIN_WAIT2) { 2873 struct tcp_sock *tp = tcp_sk(sk); 2874 if (tp->linger2 < 0) { 2875 tcp_set_state(sk, TCP_CLOSE); 2876 tcp_send_active_reset(sk, GFP_ATOMIC); 2877 __NET_INC_STATS(sock_net(sk), 2878 LINUX_MIB_TCPABORTONLINGER); 2879 } else { 2880 const int tmo = tcp_fin_time(sk); 2881 2882 if (tmo > TCP_TIMEWAIT_LEN) { 2883 inet_csk_reset_keepalive_timer(sk, 2884 tmo - TCP_TIMEWAIT_LEN); 2885 } else { 2886 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2887 goto out; 2888 } 2889 } 2890 } 2891 if (sk->sk_state != TCP_CLOSE) { 2892 sk_mem_reclaim(sk); 2893 if (tcp_check_oom(sk, 0)) { 2894 tcp_set_state(sk, TCP_CLOSE); 2895 tcp_send_active_reset(sk, GFP_ATOMIC); 2896 __NET_INC_STATS(sock_net(sk), 2897 LINUX_MIB_TCPABORTONMEMORY); 2898 } else if (!check_net(sock_net(sk))) { 2899 /* Not possible to send reset; just close */ 2900 tcp_set_state(sk, TCP_CLOSE); 2901 } 2902 } 2903 2904 if (sk->sk_state == TCP_CLOSE) { 2905 struct request_sock *req; 2906 2907 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2908 lockdep_sock_is_held(sk)); 2909 /* We could get here with a non-NULL req if the socket is 2910 * aborted (e.g., closed with unread data) before 3WHS 2911 * finishes. 2912 */ 2913 if (req) 2914 reqsk_fastopen_remove(sk, req, false); 2915 inet_csk_destroy_sock(sk); 2916 } 2917 /* Otherwise, socket is reprieved until protocol close. */ 2918 2919 out: 2920 bh_unlock_sock(sk); 2921 local_bh_enable(); 2922 } 2923 2924 void tcp_close(struct sock *sk, long timeout) 2925 { 2926 lock_sock(sk); 2927 __tcp_close(sk, timeout); 2928 release_sock(sk); 2929 sock_put(sk); 2930 } 2931 EXPORT_SYMBOL(tcp_close); 2932 2933 /* These states need RST on ABORT according to RFC793 */ 2934 2935 static inline bool tcp_need_reset(int state) 2936 { 2937 return (1 << state) & 2938 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2939 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2940 } 2941 2942 static void tcp_rtx_queue_purge(struct sock *sk) 2943 { 2944 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2945 2946 tcp_sk(sk)->highest_sack = NULL; 2947 while (p) { 2948 struct sk_buff *skb = rb_to_skb(p); 2949 2950 p = rb_next(p); 2951 /* Since we are deleting whole queue, no need to 2952 * list_del(&skb->tcp_tsorted_anchor) 2953 */ 2954 tcp_rtx_queue_unlink(skb, sk); 2955 tcp_wmem_free_skb(sk, skb); 2956 } 2957 } 2958 2959 void tcp_write_queue_purge(struct sock *sk) 2960 { 2961 struct sk_buff *skb; 2962 2963 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2964 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2965 tcp_skb_tsorted_anchor_cleanup(skb); 2966 tcp_wmem_free_skb(sk, skb); 2967 } 2968 tcp_rtx_queue_purge(sk); 2969 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2970 sk_mem_reclaim(sk); 2971 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2972 tcp_sk(sk)->packets_out = 0; 2973 inet_csk(sk)->icsk_backoff = 0; 2974 } 2975 2976 int tcp_disconnect(struct sock *sk, int flags) 2977 { 2978 struct inet_sock *inet = inet_sk(sk); 2979 struct inet_connection_sock *icsk = inet_csk(sk); 2980 struct tcp_sock *tp = tcp_sk(sk); 2981 int old_state = sk->sk_state; 2982 u32 seq; 2983 2984 if (old_state != TCP_CLOSE) 2985 tcp_set_state(sk, TCP_CLOSE); 2986 2987 /* ABORT function of RFC793 */ 2988 if (old_state == TCP_LISTEN) { 2989 inet_csk_listen_stop(sk); 2990 } else if (unlikely(tp->repair)) { 2991 sk->sk_err = ECONNABORTED; 2992 } else if (tcp_need_reset(old_state) || 2993 (tp->snd_nxt != tp->write_seq && 2994 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2995 /* The last check adjusts for discrepancy of Linux wrt. RFC 2996 * states 2997 */ 2998 tcp_send_active_reset(sk, gfp_any()); 2999 sk->sk_err = ECONNRESET; 3000 } else if (old_state == TCP_SYN_SENT) 3001 sk->sk_err = ECONNRESET; 3002 3003 tcp_clear_xmit_timers(sk); 3004 __skb_queue_purge(&sk->sk_receive_queue); 3005 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3006 WRITE_ONCE(tp->urg_data, 0); 3007 tcp_write_queue_purge(sk); 3008 tcp_fastopen_active_disable_ofo_check(sk); 3009 skb_rbtree_purge(&tp->out_of_order_queue); 3010 3011 inet->inet_dport = 0; 3012 3013 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3014 inet_reset_saddr(sk); 3015 3016 sk->sk_shutdown = 0; 3017 sock_reset_flag(sk, SOCK_DONE); 3018 tp->srtt_us = 0; 3019 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3020 tp->rcv_rtt_last_tsecr = 0; 3021 3022 seq = tp->write_seq + tp->max_window + 2; 3023 if (!seq) 3024 seq = 1; 3025 WRITE_ONCE(tp->write_seq, seq); 3026 3027 icsk->icsk_backoff = 0; 3028 icsk->icsk_probes_out = 0; 3029 icsk->icsk_probes_tstamp = 0; 3030 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3031 icsk->icsk_rto_min = TCP_RTO_MIN; 3032 icsk->icsk_delack_max = TCP_DELACK_MAX; 3033 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3034 tp->snd_cwnd = TCP_INIT_CWND; 3035 tp->snd_cwnd_cnt = 0; 3036 tp->window_clamp = 0; 3037 tp->delivered = 0; 3038 tp->delivered_ce = 0; 3039 if (icsk->icsk_ca_ops->release) 3040 icsk->icsk_ca_ops->release(sk); 3041 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3042 icsk->icsk_ca_initialized = 0; 3043 tcp_set_ca_state(sk, TCP_CA_Open); 3044 tp->is_sack_reneg = 0; 3045 tcp_clear_retrans(tp); 3046 tp->total_retrans = 0; 3047 inet_csk_delack_init(sk); 3048 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3049 * issue in __tcp_select_window() 3050 */ 3051 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3052 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3053 __sk_dst_reset(sk); 3054 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3055 tcp_saved_syn_free(tp); 3056 tp->compressed_ack = 0; 3057 tp->segs_in = 0; 3058 tp->segs_out = 0; 3059 tp->bytes_sent = 0; 3060 tp->bytes_acked = 0; 3061 tp->bytes_received = 0; 3062 tp->bytes_retrans = 0; 3063 tp->data_segs_in = 0; 3064 tp->data_segs_out = 0; 3065 tp->duplicate_sack[0].start_seq = 0; 3066 tp->duplicate_sack[0].end_seq = 0; 3067 tp->dsack_dups = 0; 3068 tp->reord_seen = 0; 3069 tp->retrans_out = 0; 3070 tp->sacked_out = 0; 3071 tp->tlp_high_seq = 0; 3072 tp->last_oow_ack_time = 0; 3073 /* There's a bubble in the pipe until at least the first ACK. */ 3074 tp->app_limited = ~0U; 3075 tp->rack.mstamp = 0; 3076 tp->rack.advanced = 0; 3077 tp->rack.reo_wnd_steps = 1; 3078 tp->rack.last_delivered = 0; 3079 tp->rack.reo_wnd_persist = 0; 3080 tp->rack.dsack_seen = 0; 3081 tp->syn_data_acked = 0; 3082 tp->rx_opt.saw_tstamp = 0; 3083 tp->rx_opt.dsack = 0; 3084 tp->rx_opt.num_sacks = 0; 3085 tp->rcv_ooopack = 0; 3086 3087 3088 /* Clean up fastopen related fields */ 3089 tcp_free_fastopen_req(tp); 3090 inet->defer_connect = 0; 3091 tp->fastopen_client_fail = 0; 3092 3093 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3094 3095 if (sk->sk_frag.page) { 3096 put_page(sk->sk_frag.page); 3097 sk->sk_frag.page = NULL; 3098 sk->sk_frag.offset = 0; 3099 } 3100 sk_defer_free_flush(sk); 3101 sk_error_report(sk); 3102 return 0; 3103 } 3104 EXPORT_SYMBOL(tcp_disconnect); 3105 3106 static inline bool tcp_can_repair_sock(const struct sock *sk) 3107 { 3108 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3109 (sk->sk_state != TCP_LISTEN); 3110 } 3111 3112 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3113 { 3114 struct tcp_repair_window opt; 3115 3116 if (!tp->repair) 3117 return -EPERM; 3118 3119 if (len != sizeof(opt)) 3120 return -EINVAL; 3121 3122 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3123 return -EFAULT; 3124 3125 if (opt.max_window < opt.snd_wnd) 3126 return -EINVAL; 3127 3128 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3129 return -EINVAL; 3130 3131 if (after(opt.rcv_wup, tp->rcv_nxt)) 3132 return -EINVAL; 3133 3134 tp->snd_wl1 = opt.snd_wl1; 3135 tp->snd_wnd = opt.snd_wnd; 3136 tp->max_window = opt.max_window; 3137 3138 tp->rcv_wnd = opt.rcv_wnd; 3139 tp->rcv_wup = opt.rcv_wup; 3140 3141 return 0; 3142 } 3143 3144 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3145 unsigned int len) 3146 { 3147 struct tcp_sock *tp = tcp_sk(sk); 3148 struct tcp_repair_opt opt; 3149 size_t offset = 0; 3150 3151 while (len >= sizeof(opt)) { 3152 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3153 return -EFAULT; 3154 3155 offset += sizeof(opt); 3156 len -= sizeof(opt); 3157 3158 switch (opt.opt_code) { 3159 case TCPOPT_MSS: 3160 tp->rx_opt.mss_clamp = opt.opt_val; 3161 tcp_mtup_init(sk); 3162 break; 3163 case TCPOPT_WINDOW: 3164 { 3165 u16 snd_wscale = opt.opt_val & 0xFFFF; 3166 u16 rcv_wscale = opt.opt_val >> 16; 3167 3168 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3169 return -EFBIG; 3170 3171 tp->rx_opt.snd_wscale = snd_wscale; 3172 tp->rx_opt.rcv_wscale = rcv_wscale; 3173 tp->rx_opt.wscale_ok = 1; 3174 } 3175 break; 3176 case TCPOPT_SACK_PERM: 3177 if (opt.opt_val != 0) 3178 return -EINVAL; 3179 3180 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3181 break; 3182 case TCPOPT_TIMESTAMP: 3183 if (opt.opt_val != 0) 3184 return -EINVAL; 3185 3186 tp->rx_opt.tstamp_ok = 1; 3187 break; 3188 } 3189 } 3190 3191 return 0; 3192 } 3193 3194 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3195 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3196 3197 static void tcp_enable_tx_delay(void) 3198 { 3199 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3200 static int __tcp_tx_delay_enabled = 0; 3201 3202 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3203 static_branch_enable(&tcp_tx_delay_enabled); 3204 pr_info("TCP_TX_DELAY enabled\n"); 3205 } 3206 } 3207 } 3208 3209 /* When set indicates to always queue non-full frames. Later the user clears 3210 * this option and we transmit any pending partial frames in the queue. This is 3211 * meant to be used alongside sendfile() to get properly filled frames when the 3212 * user (for example) must write out headers with a write() call first and then 3213 * use sendfile to send out the data parts. 3214 * 3215 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3216 * TCP_NODELAY. 3217 */ 3218 void __tcp_sock_set_cork(struct sock *sk, bool on) 3219 { 3220 struct tcp_sock *tp = tcp_sk(sk); 3221 3222 if (on) { 3223 tp->nonagle |= TCP_NAGLE_CORK; 3224 } else { 3225 tp->nonagle &= ~TCP_NAGLE_CORK; 3226 if (tp->nonagle & TCP_NAGLE_OFF) 3227 tp->nonagle |= TCP_NAGLE_PUSH; 3228 tcp_push_pending_frames(sk); 3229 } 3230 } 3231 3232 void tcp_sock_set_cork(struct sock *sk, bool on) 3233 { 3234 lock_sock(sk); 3235 __tcp_sock_set_cork(sk, on); 3236 release_sock(sk); 3237 } 3238 EXPORT_SYMBOL(tcp_sock_set_cork); 3239 3240 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3241 * remembered, but it is not activated until cork is cleared. 3242 * 3243 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3244 * even TCP_CORK for currently queued segments. 3245 */ 3246 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3247 { 3248 if (on) { 3249 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3250 tcp_push_pending_frames(sk); 3251 } else { 3252 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3253 } 3254 } 3255 3256 void tcp_sock_set_nodelay(struct sock *sk) 3257 { 3258 lock_sock(sk); 3259 __tcp_sock_set_nodelay(sk, true); 3260 release_sock(sk); 3261 } 3262 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3263 3264 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3265 { 3266 if (!val) { 3267 inet_csk_enter_pingpong_mode(sk); 3268 return; 3269 } 3270 3271 inet_csk_exit_pingpong_mode(sk); 3272 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3273 inet_csk_ack_scheduled(sk)) { 3274 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3275 tcp_cleanup_rbuf(sk, 1); 3276 if (!(val & 1)) 3277 inet_csk_enter_pingpong_mode(sk); 3278 } 3279 } 3280 3281 void tcp_sock_set_quickack(struct sock *sk, int val) 3282 { 3283 lock_sock(sk); 3284 __tcp_sock_set_quickack(sk, val); 3285 release_sock(sk); 3286 } 3287 EXPORT_SYMBOL(tcp_sock_set_quickack); 3288 3289 int tcp_sock_set_syncnt(struct sock *sk, int val) 3290 { 3291 if (val < 1 || val > MAX_TCP_SYNCNT) 3292 return -EINVAL; 3293 3294 lock_sock(sk); 3295 inet_csk(sk)->icsk_syn_retries = val; 3296 release_sock(sk); 3297 return 0; 3298 } 3299 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3300 3301 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3302 { 3303 lock_sock(sk); 3304 inet_csk(sk)->icsk_user_timeout = val; 3305 release_sock(sk); 3306 } 3307 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3308 3309 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3310 { 3311 struct tcp_sock *tp = tcp_sk(sk); 3312 3313 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3314 return -EINVAL; 3315 3316 tp->keepalive_time = val * HZ; 3317 if (sock_flag(sk, SOCK_KEEPOPEN) && 3318 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3319 u32 elapsed = keepalive_time_elapsed(tp); 3320 3321 if (tp->keepalive_time > elapsed) 3322 elapsed = tp->keepalive_time - elapsed; 3323 else 3324 elapsed = 0; 3325 inet_csk_reset_keepalive_timer(sk, elapsed); 3326 } 3327 3328 return 0; 3329 } 3330 3331 int tcp_sock_set_keepidle(struct sock *sk, int val) 3332 { 3333 int err; 3334 3335 lock_sock(sk); 3336 err = tcp_sock_set_keepidle_locked(sk, val); 3337 release_sock(sk); 3338 return err; 3339 } 3340 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3341 3342 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3343 { 3344 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3345 return -EINVAL; 3346 3347 lock_sock(sk); 3348 tcp_sk(sk)->keepalive_intvl = val * HZ; 3349 release_sock(sk); 3350 return 0; 3351 } 3352 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3353 3354 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3355 { 3356 if (val < 1 || val > MAX_TCP_KEEPCNT) 3357 return -EINVAL; 3358 3359 lock_sock(sk); 3360 tcp_sk(sk)->keepalive_probes = val; 3361 release_sock(sk); 3362 return 0; 3363 } 3364 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3365 3366 int tcp_set_window_clamp(struct sock *sk, int val) 3367 { 3368 struct tcp_sock *tp = tcp_sk(sk); 3369 3370 if (!val) { 3371 if (sk->sk_state != TCP_CLOSE) 3372 return -EINVAL; 3373 tp->window_clamp = 0; 3374 } else { 3375 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3376 SOCK_MIN_RCVBUF / 2 : val; 3377 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3378 } 3379 return 0; 3380 } 3381 3382 /* 3383 * Socket option code for TCP. 3384 */ 3385 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3386 sockptr_t optval, unsigned int optlen) 3387 { 3388 struct tcp_sock *tp = tcp_sk(sk); 3389 struct inet_connection_sock *icsk = inet_csk(sk); 3390 struct net *net = sock_net(sk); 3391 int val; 3392 int err = 0; 3393 3394 /* These are data/string values, all the others are ints */ 3395 switch (optname) { 3396 case TCP_CONGESTION: { 3397 char name[TCP_CA_NAME_MAX]; 3398 3399 if (optlen < 1) 3400 return -EINVAL; 3401 3402 val = strncpy_from_sockptr(name, optval, 3403 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3404 if (val < 0) 3405 return -EFAULT; 3406 name[val] = 0; 3407 3408 lock_sock(sk); 3409 err = tcp_set_congestion_control(sk, name, true, 3410 ns_capable(sock_net(sk)->user_ns, 3411 CAP_NET_ADMIN)); 3412 release_sock(sk); 3413 return err; 3414 } 3415 case TCP_ULP: { 3416 char name[TCP_ULP_NAME_MAX]; 3417 3418 if (optlen < 1) 3419 return -EINVAL; 3420 3421 val = strncpy_from_sockptr(name, optval, 3422 min_t(long, TCP_ULP_NAME_MAX - 1, 3423 optlen)); 3424 if (val < 0) 3425 return -EFAULT; 3426 name[val] = 0; 3427 3428 lock_sock(sk); 3429 err = tcp_set_ulp(sk, name); 3430 release_sock(sk); 3431 return err; 3432 } 3433 case TCP_FASTOPEN_KEY: { 3434 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3435 __u8 *backup_key = NULL; 3436 3437 /* Allow a backup key as well to facilitate key rotation 3438 * First key is the active one. 3439 */ 3440 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3441 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3442 return -EINVAL; 3443 3444 if (copy_from_sockptr(key, optval, optlen)) 3445 return -EFAULT; 3446 3447 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3448 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3449 3450 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3451 } 3452 default: 3453 /* fallthru */ 3454 break; 3455 } 3456 3457 if (optlen < sizeof(int)) 3458 return -EINVAL; 3459 3460 if (copy_from_sockptr(&val, optval, sizeof(val))) 3461 return -EFAULT; 3462 3463 lock_sock(sk); 3464 3465 switch (optname) { 3466 case TCP_MAXSEG: 3467 /* Values greater than interface MTU won't take effect. However 3468 * at the point when this call is done we typically don't yet 3469 * know which interface is going to be used 3470 */ 3471 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3472 err = -EINVAL; 3473 break; 3474 } 3475 tp->rx_opt.user_mss = val; 3476 break; 3477 3478 case TCP_NODELAY: 3479 __tcp_sock_set_nodelay(sk, val); 3480 break; 3481 3482 case TCP_THIN_LINEAR_TIMEOUTS: 3483 if (val < 0 || val > 1) 3484 err = -EINVAL; 3485 else 3486 tp->thin_lto = val; 3487 break; 3488 3489 case TCP_THIN_DUPACK: 3490 if (val < 0 || val > 1) 3491 err = -EINVAL; 3492 break; 3493 3494 case TCP_REPAIR: 3495 if (!tcp_can_repair_sock(sk)) 3496 err = -EPERM; 3497 else if (val == TCP_REPAIR_ON) { 3498 tp->repair = 1; 3499 sk->sk_reuse = SK_FORCE_REUSE; 3500 tp->repair_queue = TCP_NO_QUEUE; 3501 } else if (val == TCP_REPAIR_OFF) { 3502 tp->repair = 0; 3503 sk->sk_reuse = SK_NO_REUSE; 3504 tcp_send_window_probe(sk); 3505 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3506 tp->repair = 0; 3507 sk->sk_reuse = SK_NO_REUSE; 3508 } else 3509 err = -EINVAL; 3510 3511 break; 3512 3513 case TCP_REPAIR_QUEUE: 3514 if (!tp->repair) 3515 err = -EPERM; 3516 else if ((unsigned int)val < TCP_QUEUES_NR) 3517 tp->repair_queue = val; 3518 else 3519 err = -EINVAL; 3520 break; 3521 3522 case TCP_QUEUE_SEQ: 3523 if (sk->sk_state != TCP_CLOSE) { 3524 err = -EPERM; 3525 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3526 if (!tcp_rtx_queue_empty(sk)) 3527 err = -EPERM; 3528 else 3529 WRITE_ONCE(tp->write_seq, val); 3530 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3531 if (tp->rcv_nxt != tp->copied_seq) { 3532 err = -EPERM; 3533 } else { 3534 WRITE_ONCE(tp->rcv_nxt, val); 3535 WRITE_ONCE(tp->copied_seq, val); 3536 } 3537 } else { 3538 err = -EINVAL; 3539 } 3540 break; 3541 3542 case TCP_REPAIR_OPTIONS: 3543 if (!tp->repair) 3544 err = -EINVAL; 3545 else if (sk->sk_state == TCP_ESTABLISHED) 3546 err = tcp_repair_options_est(sk, optval, optlen); 3547 else 3548 err = -EPERM; 3549 break; 3550 3551 case TCP_CORK: 3552 __tcp_sock_set_cork(sk, val); 3553 break; 3554 3555 case TCP_KEEPIDLE: 3556 err = tcp_sock_set_keepidle_locked(sk, val); 3557 break; 3558 case TCP_KEEPINTVL: 3559 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3560 err = -EINVAL; 3561 else 3562 tp->keepalive_intvl = val * HZ; 3563 break; 3564 case TCP_KEEPCNT: 3565 if (val < 1 || val > MAX_TCP_KEEPCNT) 3566 err = -EINVAL; 3567 else 3568 tp->keepalive_probes = val; 3569 break; 3570 case TCP_SYNCNT: 3571 if (val < 1 || val > MAX_TCP_SYNCNT) 3572 err = -EINVAL; 3573 else 3574 icsk->icsk_syn_retries = val; 3575 break; 3576 3577 case TCP_SAVE_SYN: 3578 /* 0: disable, 1: enable, 2: start from ether_header */ 3579 if (val < 0 || val > 2) 3580 err = -EINVAL; 3581 else 3582 tp->save_syn = val; 3583 break; 3584 3585 case TCP_LINGER2: 3586 if (val < 0) 3587 tp->linger2 = -1; 3588 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3589 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3590 else 3591 tp->linger2 = val * HZ; 3592 break; 3593 3594 case TCP_DEFER_ACCEPT: 3595 /* Translate value in seconds to number of retransmits */ 3596 icsk->icsk_accept_queue.rskq_defer_accept = 3597 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3598 TCP_RTO_MAX / HZ); 3599 break; 3600 3601 case TCP_WINDOW_CLAMP: 3602 err = tcp_set_window_clamp(sk, val); 3603 break; 3604 3605 case TCP_QUICKACK: 3606 __tcp_sock_set_quickack(sk, val); 3607 break; 3608 3609 #ifdef CONFIG_TCP_MD5SIG 3610 case TCP_MD5SIG: 3611 case TCP_MD5SIG_EXT: 3612 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3613 break; 3614 #endif 3615 case TCP_USER_TIMEOUT: 3616 /* Cap the max time in ms TCP will retry or probe the window 3617 * before giving up and aborting (ETIMEDOUT) a connection. 3618 */ 3619 if (val < 0) 3620 err = -EINVAL; 3621 else 3622 icsk->icsk_user_timeout = val; 3623 break; 3624 3625 case TCP_FASTOPEN: 3626 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3627 TCPF_LISTEN))) { 3628 tcp_fastopen_init_key_once(net); 3629 3630 fastopen_queue_tune(sk, val); 3631 } else { 3632 err = -EINVAL; 3633 } 3634 break; 3635 case TCP_FASTOPEN_CONNECT: 3636 if (val > 1 || val < 0) { 3637 err = -EINVAL; 3638 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3639 if (sk->sk_state == TCP_CLOSE) 3640 tp->fastopen_connect = val; 3641 else 3642 err = -EINVAL; 3643 } else { 3644 err = -EOPNOTSUPP; 3645 } 3646 break; 3647 case TCP_FASTOPEN_NO_COOKIE: 3648 if (val > 1 || val < 0) 3649 err = -EINVAL; 3650 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3651 err = -EINVAL; 3652 else 3653 tp->fastopen_no_cookie = val; 3654 break; 3655 case TCP_TIMESTAMP: 3656 if (!tp->repair) 3657 err = -EPERM; 3658 else 3659 tp->tsoffset = val - tcp_time_stamp_raw(); 3660 break; 3661 case TCP_REPAIR_WINDOW: 3662 err = tcp_repair_set_window(tp, optval, optlen); 3663 break; 3664 case TCP_NOTSENT_LOWAT: 3665 tp->notsent_lowat = val; 3666 sk->sk_write_space(sk); 3667 break; 3668 case TCP_INQ: 3669 if (val > 1 || val < 0) 3670 err = -EINVAL; 3671 else 3672 tp->recvmsg_inq = val; 3673 break; 3674 case TCP_TX_DELAY: 3675 if (val) 3676 tcp_enable_tx_delay(); 3677 tp->tcp_tx_delay = val; 3678 break; 3679 default: 3680 err = -ENOPROTOOPT; 3681 break; 3682 } 3683 3684 release_sock(sk); 3685 return err; 3686 } 3687 3688 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3689 unsigned int optlen) 3690 { 3691 const struct inet_connection_sock *icsk = inet_csk(sk); 3692 3693 if (level != SOL_TCP) 3694 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3695 optval, optlen); 3696 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3697 } 3698 EXPORT_SYMBOL(tcp_setsockopt); 3699 3700 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3701 struct tcp_info *info) 3702 { 3703 u64 stats[__TCP_CHRONO_MAX], total = 0; 3704 enum tcp_chrono i; 3705 3706 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3707 stats[i] = tp->chrono_stat[i - 1]; 3708 if (i == tp->chrono_type) 3709 stats[i] += tcp_jiffies32 - tp->chrono_start; 3710 stats[i] *= USEC_PER_SEC / HZ; 3711 total += stats[i]; 3712 } 3713 3714 info->tcpi_busy_time = total; 3715 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3716 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3717 } 3718 3719 /* Return information about state of tcp endpoint in API format. */ 3720 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3721 { 3722 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3723 const struct inet_connection_sock *icsk = inet_csk(sk); 3724 unsigned long rate; 3725 u32 now; 3726 u64 rate64; 3727 bool slow; 3728 3729 memset(info, 0, sizeof(*info)); 3730 if (sk->sk_type != SOCK_STREAM) 3731 return; 3732 3733 info->tcpi_state = inet_sk_state_load(sk); 3734 3735 /* Report meaningful fields for all TCP states, including listeners */ 3736 rate = READ_ONCE(sk->sk_pacing_rate); 3737 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3738 info->tcpi_pacing_rate = rate64; 3739 3740 rate = READ_ONCE(sk->sk_max_pacing_rate); 3741 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3742 info->tcpi_max_pacing_rate = rate64; 3743 3744 info->tcpi_reordering = tp->reordering; 3745 info->tcpi_snd_cwnd = tp->snd_cwnd; 3746 3747 if (info->tcpi_state == TCP_LISTEN) { 3748 /* listeners aliased fields : 3749 * tcpi_unacked -> Number of children ready for accept() 3750 * tcpi_sacked -> max backlog 3751 */ 3752 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3753 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3754 return; 3755 } 3756 3757 slow = lock_sock_fast(sk); 3758 3759 info->tcpi_ca_state = icsk->icsk_ca_state; 3760 info->tcpi_retransmits = icsk->icsk_retransmits; 3761 info->tcpi_probes = icsk->icsk_probes_out; 3762 info->tcpi_backoff = icsk->icsk_backoff; 3763 3764 if (tp->rx_opt.tstamp_ok) 3765 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3766 if (tcp_is_sack(tp)) 3767 info->tcpi_options |= TCPI_OPT_SACK; 3768 if (tp->rx_opt.wscale_ok) { 3769 info->tcpi_options |= TCPI_OPT_WSCALE; 3770 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3771 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3772 } 3773 3774 if (tp->ecn_flags & TCP_ECN_OK) 3775 info->tcpi_options |= TCPI_OPT_ECN; 3776 if (tp->ecn_flags & TCP_ECN_SEEN) 3777 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3778 if (tp->syn_data_acked) 3779 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3780 3781 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3782 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3783 info->tcpi_snd_mss = tp->mss_cache; 3784 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3785 3786 info->tcpi_unacked = tp->packets_out; 3787 info->tcpi_sacked = tp->sacked_out; 3788 3789 info->tcpi_lost = tp->lost_out; 3790 info->tcpi_retrans = tp->retrans_out; 3791 3792 now = tcp_jiffies32; 3793 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3794 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3795 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3796 3797 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3798 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3799 info->tcpi_rtt = tp->srtt_us >> 3; 3800 info->tcpi_rttvar = tp->mdev_us >> 2; 3801 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3802 info->tcpi_advmss = tp->advmss; 3803 3804 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3805 info->tcpi_rcv_space = tp->rcvq_space.space; 3806 3807 info->tcpi_total_retrans = tp->total_retrans; 3808 3809 info->tcpi_bytes_acked = tp->bytes_acked; 3810 info->tcpi_bytes_received = tp->bytes_received; 3811 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3812 tcp_get_info_chrono_stats(tp, info); 3813 3814 info->tcpi_segs_out = tp->segs_out; 3815 3816 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3817 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3818 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3819 3820 info->tcpi_min_rtt = tcp_min_rtt(tp); 3821 info->tcpi_data_segs_out = tp->data_segs_out; 3822 3823 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3824 rate64 = tcp_compute_delivery_rate(tp); 3825 if (rate64) 3826 info->tcpi_delivery_rate = rate64; 3827 info->tcpi_delivered = tp->delivered; 3828 info->tcpi_delivered_ce = tp->delivered_ce; 3829 info->tcpi_bytes_sent = tp->bytes_sent; 3830 info->tcpi_bytes_retrans = tp->bytes_retrans; 3831 info->tcpi_dsack_dups = tp->dsack_dups; 3832 info->tcpi_reord_seen = tp->reord_seen; 3833 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3834 info->tcpi_snd_wnd = tp->snd_wnd; 3835 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3836 unlock_sock_fast(sk, slow); 3837 } 3838 EXPORT_SYMBOL_GPL(tcp_get_info); 3839 3840 static size_t tcp_opt_stats_get_size(void) 3841 { 3842 return 3843 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3844 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3845 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3847 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3848 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3849 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3851 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3852 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3853 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3854 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3855 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3856 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3859 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3860 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3861 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3862 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3863 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3865 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3867 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3868 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3869 0; 3870 } 3871 3872 /* Returns TTL or hop limit of an incoming packet from skb. */ 3873 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3874 { 3875 if (skb->protocol == htons(ETH_P_IP)) 3876 return ip_hdr(skb)->ttl; 3877 else if (skb->protocol == htons(ETH_P_IPV6)) 3878 return ipv6_hdr(skb)->hop_limit; 3879 else 3880 return 0; 3881 } 3882 3883 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3884 const struct sk_buff *orig_skb, 3885 const struct sk_buff *ack_skb) 3886 { 3887 const struct tcp_sock *tp = tcp_sk(sk); 3888 struct sk_buff *stats; 3889 struct tcp_info info; 3890 unsigned long rate; 3891 u64 rate64; 3892 3893 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3894 if (!stats) 3895 return NULL; 3896 3897 tcp_get_info_chrono_stats(tp, &info); 3898 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3899 info.tcpi_busy_time, TCP_NLA_PAD); 3900 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3901 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3902 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3903 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3904 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3905 tp->data_segs_out, TCP_NLA_PAD); 3906 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3907 tp->total_retrans, TCP_NLA_PAD); 3908 3909 rate = READ_ONCE(sk->sk_pacing_rate); 3910 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3911 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3912 3913 rate64 = tcp_compute_delivery_rate(tp); 3914 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3915 3916 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3917 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3918 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3919 3920 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3921 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3922 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3923 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3924 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3925 3926 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3927 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3928 3929 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3930 TCP_NLA_PAD); 3931 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3932 TCP_NLA_PAD); 3933 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3934 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3935 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3936 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3937 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3938 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3939 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3940 TCP_NLA_PAD); 3941 if (ack_skb) 3942 nla_put_u8(stats, TCP_NLA_TTL, 3943 tcp_skb_ttl_or_hop_limit(ack_skb)); 3944 3945 return stats; 3946 } 3947 3948 static int do_tcp_getsockopt(struct sock *sk, int level, 3949 int optname, char __user *optval, int __user *optlen) 3950 { 3951 struct inet_connection_sock *icsk = inet_csk(sk); 3952 struct tcp_sock *tp = tcp_sk(sk); 3953 struct net *net = sock_net(sk); 3954 int val, len; 3955 3956 if (get_user(len, optlen)) 3957 return -EFAULT; 3958 3959 len = min_t(unsigned int, len, sizeof(int)); 3960 3961 if (len < 0) 3962 return -EINVAL; 3963 3964 switch (optname) { 3965 case TCP_MAXSEG: 3966 val = tp->mss_cache; 3967 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3968 val = tp->rx_opt.user_mss; 3969 if (tp->repair) 3970 val = tp->rx_opt.mss_clamp; 3971 break; 3972 case TCP_NODELAY: 3973 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3974 break; 3975 case TCP_CORK: 3976 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3977 break; 3978 case TCP_KEEPIDLE: 3979 val = keepalive_time_when(tp) / HZ; 3980 break; 3981 case TCP_KEEPINTVL: 3982 val = keepalive_intvl_when(tp) / HZ; 3983 break; 3984 case TCP_KEEPCNT: 3985 val = keepalive_probes(tp); 3986 break; 3987 case TCP_SYNCNT: 3988 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3989 break; 3990 case TCP_LINGER2: 3991 val = tp->linger2; 3992 if (val >= 0) 3993 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3994 break; 3995 case TCP_DEFER_ACCEPT: 3996 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3997 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3998 break; 3999 case TCP_WINDOW_CLAMP: 4000 val = tp->window_clamp; 4001 break; 4002 case TCP_INFO: { 4003 struct tcp_info info; 4004 4005 if (get_user(len, optlen)) 4006 return -EFAULT; 4007 4008 tcp_get_info(sk, &info); 4009 4010 len = min_t(unsigned int, len, sizeof(info)); 4011 if (put_user(len, optlen)) 4012 return -EFAULT; 4013 if (copy_to_user(optval, &info, len)) 4014 return -EFAULT; 4015 return 0; 4016 } 4017 case TCP_CC_INFO: { 4018 const struct tcp_congestion_ops *ca_ops; 4019 union tcp_cc_info info; 4020 size_t sz = 0; 4021 int attr; 4022 4023 if (get_user(len, optlen)) 4024 return -EFAULT; 4025 4026 ca_ops = icsk->icsk_ca_ops; 4027 if (ca_ops && ca_ops->get_info) 4028 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4029 4030 len = min_t(unsigned int, len, sz); 4031 if (put_user(len, optlen)) 4032 return -EFAULT; 4033 if (copy_to_user(optval, &info, len)) 4034 return -EFAULT; 4035 return 0; 4036 } 4037 case TCP_QUICKACK: 4038 val = !inet_csk_in_pingpong_mode(sk); 4039 break; 4040 4041 case TCP_CONGESTION: 4042 if (get_user(len, optlen)) 4043 return -EFAULT; 4044 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4045 if (put_user(len, optlen)) 4046 return -EFAULT; 4047 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4048 return -EFAULT; 4049 return 0; 4050 4051 case TCP_ULP: 4052 if (get_user(len, optlen)) 4053 return -EFAULT; 4054 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4055 if (!icsk->icsk_ulp_ops) { 4056 if (put_user(0, optlen)) 4057 return -EFAULT; 4058 return 0; 4059 } 4060 if (put_user(len, optlen)) 4061 return -EFAULT; 4062 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4063 return -EFAULT; 4064 return 0; 4065 4066 case TCP_FASTOPEN_KEY: { 4067 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4068 unsigned int key_len; 4069 4070 if (get_user(len, optlen)) 4071 return -EFAULT; 4072 4073 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4074 TCP_FASTOPEN_KEY_LENGTH; 4075 len = min_t(unsigned int, len, key_len); 4076 if (put_user(len, optlen)) 4077 return -EFAULT; 4078 if (copy_to_user(optval, key, len)) 4079 return -EFAULT; 4080 return 0; 4081 } 4082 case TCP_THIN_LINEAR_TIMEOUTS: 4083 val = tp->thin_lto; 4084 break; 4085 4086 case TCP_THIN_DUPACK: 4087 val = 0; 4088 break; 4089 4090 case TCP_REPAIR: 4091 val = tp->repair; 4092 break; 4093 4094 case TCP_REPAIR_QUEUE: 4095 if (tp->repair) 4096 val = tp->repair_queue; 4097 else 4098 return -EINVAL; 4099 break; 4100 4101 case TCP_REPAIR_WINDOW: { 4102 struct tcp_repair_window opt; 4103 4104 if (get_user(len, optlen)) 4105 return -EFAULT; 4106 4107 if (len != sizeof(opt)) 4108 return -EINVAL; 4109 4110 if (!tp->repair) 4111 return -EPERM; 4112 4113 opt.snd_wl1 = tp->snd_wl1; 4114 opt.snd_wnd = tp->snd_wnd; 4115 opt.max_window = tp->max_window; 4116 opt.rcv_wnd = tp->rcv_wnd; 4117 opt.rcv_wup = tp->rcv_wup; 4118 4119 if (copy_to_user(optval, &opt, len)) 4120 return -EFAULT; 4121 return 0; 4122 } 4123 case TCP_QUEUE_SEQ: 4124 if (tp->repair_queue == TCP_SEND_QUEUE) 4125 val = tp->write_seq; 4126 else if (tp->repair_queue == TCP_RECV_QUEUE) 4127 val = tp->rcv_nxt; 4128 else 4129 return -EINVAL; 4130 break; 4131 4132 case TCP_USER_TIMEOUT: 4133 val = icsk->icsk_user_timeout; 4134 break; 4135 4136 case TCP_FASTOPEN: 4137 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4138 break; 4139 4140 case TCP_FASTOPEN_CONNECT: 4141 val = tp->fastopen_connect; 4142 break; 4143 4144 case TCP_FASTOPEN_NO_COOKIE: 4145 val = tp->fastopen_no_cookie; 4146 break; 4147 4148 case TCP_TX_DELAY: 4149 val = tp->tcp_tx_delay; 4150 break; 4151 4152 case TCP_TIMESTAMP: 4153 val = tcp_time_stamp_raw() + tp->tsoffset; 4154 break; 4155 case TCP_NOTSENT_LOWAT: 4156 val = tp->notsent_lowat; 4157 break; 4158 case TCP_INQ: 4159 val = tp->recvmsg_inq; 4160 break; 4161 case TCP_SAVE_SYN: 4162 val = tp->save_syn; 4163 break; 4164 case TCP_SAVED_SYN: { 4165 if (get_user(len, optlen)) 4166 return -EFAULT; 4167 4168 lock_sock(sk); 4169 if (tp->saved_syn) { 4170 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4171 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4172 optlen)) { 4173 release_sock(sk); 4174 return -EFAULT; 4175 } 4176 release_sock(sk); 4177 return -EINVAL; 4178 } 4179 len = tcp_saved_syn_len(tp->saved_syn); 4180 if (put_user(len, optlen)) { 4181 release_sock(sk); 4182 return -EFAULT; 4183 } 4184 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4185 release_sock(sk); 4186 return -EFAULT; 4187 } 4188 tcp_saved_syn_free(tp); 4189 release_sock(sk); 4190 } else { 4191 release_sock(sk); 4192 len = 0; 4193 if (put_user(len, optlen)) 4194 return -EFAULT; 4195 } 4196 return 0; 4197 } 4198 #ifdef CONFIG_MMU 4199 case TCP_ZEROCOPY_RECEIVE: { 4200 struct scm_timestamping_internal tss; 4201 struct tcp_zerocopy_receive zc = {}; 4202 int err; 4203 4204 if (get_user(len, optlen)) 4205 return -EFAULT; 4206 if (len < 0 || 4207 len < offsetofend(struct tcp_zerocopy_receive, length)) 4208 return -EINVAL; 4209 if (unlikely(len > sizeof(zc))) { 4210 err = check_zeroed_user(optval + sizeof(zc), 4211 len - sizeof(zc)); 4212 if (err < 1) 4213 return err == 0 ? -EINVAL : err; 4214 len = sizeof(zc); 4215 if (put_user(len, optlen)) 4216 return -EFAULT; 4217 } 4218 if (copy_from_user(&zc, optval, len)) 4219 return -EFAULT; 4220 if (zc.reserved) 4221 return -EINVAL; 4222 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4223 return -EINVAL; 4224 lock_sock(sk); 4225 err = tcp_zerocopy_receive(sk, &zc, &tss); 4226 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4227 &zc, &len, err); 4228 release_sock(sk); 4229 sk_defer_free_flush(sk); 4230 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4231 goto zerocopy_rcv_cmsg; 4232 switch (len) { 4233 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4234 goto zerocopy_rcv_cmsg; 4235 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4236 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4237 case offsetofend(struct tcp_zerocopy_receive, flags): 4238 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4239 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4240 case offsetofend(struct tcp_zerocopy_receive, err): 4241 goto zerocopy_rcv_sk_err; 4242 case offsetofend(struct tcp_zerocopy_receive, inq): 4243 goto zerocopy_rcv_inq; 4244 case offsetofend(struct tcp_zerocopy_receive, length): 4245 default: 4246 goto zerocopy_rcv_out; 4247 } 4248 zerocopy_rcv_cmsg: 4249 if (zc.msg_flags & TCP_CMSG_TS) 4250 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4251 else 4252 zc.msg_flags = 0; 4253 zerocopy_rcv_sk_err: 4254 if (!err) 4255 zc.err = sock_error(sk); 4256 zerocopy_rcv_inq: 4257 zc.inq = tcp_inq_hint(sk); 4258 zerocopy_rcv_out: 4259 if (!err && copy_to_user(optval, &zc, len)) 4260 err = -EFAULT; 4261 return err; 4262 } 4263 #endif 4264 default: 4265 return -ENOPROTOOPT; 4266 } 4267 4268 if (put_user(len, optlen)) 4269 return -EFAULT; 4270 if (copy_to_user(optval, &val, len)) 4271 return -EFAULT; 4272 return 0; 4273 } 4274 4275 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4276 { 4277 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4278 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4279 */ 4280 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4281 return true; 4282 4283 return false; 4284 } 4285 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4286 4287 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4288 int __user *optlen) 4289 { 4290 struct inet_connection_sock *icsk = inet_csk(sk); 4291 4292 if (level != SOL_TCP) 4293 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4294 optval, optlen); 4295 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4296 } 4297 EXPORT_SYMBOL(tcp_getsockopt); 4298 4299 #ifdef CONFIG_TCP_MD5SIG 4300 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4301 static DEFINE_MUTEX(tcp_md5sig_mutex); 4302 static bool tcp_md5sig_pool_populated = false; 4303 4304 static void __tcp_alloc_md5sig_pool(void) 4305 { 4306 struct crypto_ahash *hash; 4307 int cpu; 4308 4309 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4310 if (IS_ERR(hash)) 4311 return; 4312 4313 for_each_possible_cpu(cpu) { 4314 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4315 struct ahash_request *req; 4316 4317 if (!scratch) { 4318 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4319 sizeof(struct tcphdr), 4320 GFP_KERNEL, 4321 cpu_to_node(cpu)); 4322 if (!scratch) 4323 return; 4324 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4325 } 4326 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4327 continue; 4328 4329 req = ahash_request_alloc(hash, GFP_KERNEL); 4330 if (!req) 4331 return; 4332 4333 ahash_request_set_callback(req, 0, NULL, NULL); 4334 4335 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4336 } 4337 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4338 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4339 */ 4340 smp_wmb(); 4341 tcp_md5sig_pool_populated = true; 4342 } 4343 4344 bool tcp_alloc_md5sig_pool(void) 4345 { 4346 if (unlikely(!tcp_md5sig_pool_populated)) { 4347 mutex_lock(&tcp_md5sig_mutex); 4348 4349 if (!tcp_md5sig_pool_populated) { 4350 __tcp_alloc_md5sig_pool(); 4351 if (tcp_md5sig_pool_populated) 4352 static_branch_inc(&tcp_md5_needed); 4353 } 4354 4355 mutex_unlock(&tcp_md5sig_mutex); 4356 } 4357 return tcp_md5sig_pool_populated; 4358 } 4359 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4360 4361 4362 /** 4363 * tcp_get_md5sig_pool - get md5sig_pool for this user 4364 * 4365 * We use percpu structure, so if we succeed, we exit with preemption 4366 * and BH disabled, to make sure another thread or softirq handling 4367 * wont try to get same context. 4368 */ 4369 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4370 { 4371 local_bh_disable(); 4372 4373 if (tcp_md5sig_pool_populated) { 4374 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4375 smp_rmb(); 4376 return this_cpu_ptr(&tcp_md5sig_pool); 4377 } 4378 local_bh_enable(); 4379 return NULL; 4380 } 4381 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4382 4383 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4384 const struct sk_buff *skb, unsigned int header_len) 4385 { 4386 struct scatterlist sg; 4387 const struct tcphdr *tp = tcp_hdr(skb); 4388 struct ahash_request *req = hp->md5_req; 4389 unsigned int i; 4390 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4391 skb_headlen(skb) - header_len : 0; 4392 const struct skb_shared_info *shi = skb_shinfo(skb); 4393 struct sk_buff *frag_iter; 4394 4395 sg_init_table(&sg, 1); 4396 4397 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4398 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4399 if (crypto_ahash_update(req)) 4400 return 1; 4401 4402 for (i = 0; i < shi->nr_frags; ++i) { 4403 const skb_frag_t *f = &shi->frags[i]; 4404 unsigned int offset = skb_frag_off(f); 4405 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4406 4407 sg_set_page(&sg, page, skb_frag_size(f), 4408 offset_in_page(offset)); 4409 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4410 if (crypto_ahash_update(req)) 4411 return 1; 4412 } 4413 4414 skb_walk_frags(skb, frag_iter) 4415 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4416 return 1; 4417 4418 return 0; 4419 } 4420 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4421 4422 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4423 { 4424 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4425 struct scatterlist sg; 4426 4427 sg_init_one(&sg, key->key, keylen); 4428 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4429 4430 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4431 return data_race(crypto_ahash_update(hp->md5_req)); 4432 } 4433 EXPORT_SYMBOL(tcp_md5_hash_key); 4434 4435 #endif 4436 4437 void tcp_done(struct sock *sk) 4438 { 4439 struct request_sock *req; 4440 4441 /* We might be called with a new socket, after 4442 * inet_csk_prepare_forced_close() has been called 4443 * so we can not use lockdep_sock_is_held(sk) 4444 */ 4445 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4446 4447 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4448 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4449 4450 tcp_set_state(sk, TCP_CLOSE); 4451 tcp_clear_xmit_timers(sk); 4452 if (req) 4453 reqsk_fastopen_remove(sk, req, false); 4454 4455 sk->sk_shutdown = SHUTDOWN_MASK; 4456 4457 if (!sock_flag(sk, SOCK_DEAD)) 4458 sk->sk_state_change(sk); 4459 else 4460 inet_csk_destroy_sock(sk); 4461 } 4462 EXPORT_SYMBOL_GPL(tcp_done); 4463 4464 int tcp_abort(struct sock *sk, int err) 4465 { 4466 if (!sk_fullsock(sk)) { 4467 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4468 struct request_sock *req = inet_reqsk(sk); 4469 4470 local_bh_disable(); 4471 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4472 local_bh_enable(); 4473 return 0; 4474 } 4475 return -EOPNOTSUPP; 4476 } 4477 4478 /* Don't race with userspace socket closes such as tcp_close. */ 4479 lock_sock(sk); 4480 4481 if (sk->sk_state == TCP_LISTEN) { 4482 tcp_set_state(sk, TCP_CLOSE); 4483 inet_csk_listen_stop(sk); 4484 } 4485 4486 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4487 local_bh_disable(); 4488 bh_lock_sock(sk); 4489 4490 if (!sock_flag(sk, SOCK_DEAD)) { 4491 sk->sk_err = err; 4492 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4493 smp_wmb(); 4494 sk_error_report(sk); 4495 if (tcp_need_reset(sk->sk_state)) 4496 tcp_send_active_reset(sk, GFP_ATOMIC); 4497 tcp_done(sk); 4498 } 4499 4500 bh_unlock_sock(sk); 4501 local_bh_enable(); 4502 tcp_write_queue_purge(sk); 4503 release_sock(sk); 4504 return 0; 4505 } 4506 EXPORT_SYMBOL_GPL(tcp_abort); 4507 4508 extern struct tcp_congestion_ops tcp_reno; 4509 4510 static __initdata unsigned long thash_entries; 4511 static int __init set_thash_entries(char *str) 4512 { 4513 ssize_t ret; 4514 4515 if (!str) 4516 return 0; 4517 4518 ret = kstrtoul(str, 0, &thash_entries); 4519 if (ret) 4520 return 0; 4521 4522 return 1; 4523 } 4524 __setup("thash_entries=", set_thash_entries); 4525 4526 static void __init tcp_init_mem(void) 4527 { 4528 unsigned long limit = nr_free_buffer_pages() / 16; 4529 4530 limit = max(limit, 128UL); 4531 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4532 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4533 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4534 } 4535 4536 void __init tcp_init(void) 4537 { 4538 int max_rshare, max_wshare, cnt; 4539 unsigned long limit; 4540 unsigned int i; 4541 4542 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4543 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4544 sizeof_field(struct sk_buff, cb)); 4545 4546 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4547 4548 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4549 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4550 4551 inet_hashinfo_init(&tcp_hashinfo); 4552 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4553 thash_entries, 21, /* one slot per 2 MB*/ 4554 0, 64 * 1024); 4555 tcp_hashinfo.bind_bucket_cachep = 4556 kmem_cache_create("tcp_bind_bucket", 4557 sizeof(struct inet_bind_bucket), 0, 4558 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4559 SLAB_ACCOUNT, 4560 NULL); 4561 4562 /* Size and allocate the main established and bind bucket 4563 * hash tables. 4564 * 4565 * The methodology is similar to that of the buffer cache. 4566 */ 4567 tcp_hashinfo.ehash = 4568 alloc_large_system_hash("TCP established", 4569 sizeof(struct inet_ehash_bucket), 4570 thash_entries, 4571 17, /* one slot per 128 KB of memory */ 4572 0, 4573 NULL, 4574 &tcp_hashinfo.ehash_mask, 4575 0, 4576 thash_entries ? 0 : 512 * 1024); 4577 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4578 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4579 4580 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4581 panic("TCP: failed to alloc ehash_locks"); 4582 tcp_hashinfo.bhash = 4583 alloc_large_system_hash("TCP bind", 4584 sizeof(struct inet_bind_hashbucket), 4585 tcp_hashinfo.ehash_mask + 1, 4586 17, /* one slot per 128 KB of memory */ 4587 0, 4588 &tcp_hashinfo.bhash_size, 4589 NULL, 4590 0, 4591 64 * 1024); 4592 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4593 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4594 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4595 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4596 } 4597 4598 4599 cnt = tcp_hashinfo.ehash_mask + 1; 4600 sysctl_tcp_max_orphans = cnt / 2; 4601 4602 tcp_init_mem(); 4603 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4604 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4605 max_wshare = min(4UL*1024*1024, limit); 4606 max_rshare = min(6UL*1024*1024, limit); 4607 4608 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4609 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4610 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4611 4612 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4613 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4614 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4615 4616 pr_info("Hash tables configured (established %u bind %u)\n", 4617 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4618 4619 tcp_v4_init(); 4620 tcp_metrics_init(); 4621 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4622 tcp_tasklet_init(); 4623 mptcp_init(); 4624 } 4625