1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 328 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 329 330 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 331 332 void tcp_enter_memory_pressure(struct sock *sk) 333 { 334 unsigned long val; 335 336 if (READ_ONCE(tcp_memory_pressure)) 337 return; 338 val = jiffies; 339 340 if (!val) 341 val--; 342 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 343 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 344 } 345 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 346 347 void tcp_leave_memory_pressure(struct sock *sk) 348 { 349 unsigned long val; 350 351 if (!READ_ONCE(tcp_memory_pressure)) 352 return; 353 val = xchg(&tcp_memory_pressure, 0); 354 if (val) 355 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 356 jiffies_to_msecs(jiffies - val)); 357 } 358 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 359 360 /* Convert seconds to retransmits based on initial and max timeout */ 361 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 362 { 363 u8 res = 0; 364 365 if (seconds > 0) { 366 int period = timeout; 367 368 res = 1; 369 while (seconds > period && res < 255) { 370 res++; 371 timeout <<= 1; 372 if (timeout > rto_max) 373 timeout = rto_max; 374 period += timeout; 375 } 376 } 377 return res; 378 } 379 380 /* Convert retransmits to seconds based on initial and max timeout */ 381 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 382 { 383 int period = 0; 384 385 if (retrans > 0) { 386 period = timeout; 387 while (--retrans) { 388 timeout <<= 1; 389 if (timeout > rto_max) 390 timeout = rto_max; 391 period += timeout; 392 } 393 } 394 return period; 395 } 396 397 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 398 { 399 u32 rate = READ_ONCE(tp->rate_delivered); 400 u32 intv = READ_ONCE(tp->rate_interval_us); 401 u64 rate64 = 0; 402 403 if (rate && intv) { 404 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 405 do_div(rate64, intv); 406 } 407 return rate64; 408 } 409 410 /* Address-family independent initialization for a tcp_sock. 411 * 412 * NOTE: A lot of things set to zero explicitly by call to 413 * sk_alloc() so need not be done here. 414 */ 415 void tcp_init_sock(struct sock *sk) 416 { 417 struct inet_connection_sock *icsk = inet_csk(sk); 418 struct tcp_sock *tp = tcp_sk(sk); 419 420 tp->out_of_order_queue = RB_ROOT; 421 sk->tcp_rtx_queue = RB_ROOT; 422 tcp_init_xmit_timers(sk); 423 INIT_LIST_HEAD(&tp->tsq_node); 424 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 425 426 icsk->icsk_rto = TCP_TIMEOUT_INIT; 427 icsk->icsk_rto_min = TCP_RTO_MIN; 428 icsk->icsk_delack_max = TCP_DELACK_MAX; 429 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 430 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 431 432 /* So many TCP implementations out there (incorrectly) count the 433 * initial SYN frame in their delayed-ACK and congestion control 434 * algorithms that we must have the following bandaid to talk 435 * efficiently to them. -DaveM 436 */ 437 tp->snd_cwnd = TCP_INIT_CWND; 438 439 /* There's a bubble in the pipe until at least the first ACK. */ 440 tp->app_limited = ~0U; 441 442 /* See draft-stevens-tcpca-spec-01 for discussion of the 443 * initialization of these values. 444 */ 445 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 446 tp->snd_cwnd_clamp = ~0; 447 tp->mss_cache = TCP_MSS_DEFAULT; 448 449 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 450 tcp_assign_congestion_control(sk); 451 452 tp->tsoffset = 0; 453 tp->rack.reo_wnd_steps = 1; 454 455 sk->sk_write_space = sk_stream_write_space; 456 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 457 458 icsk->icsk_sync_mss = tcp_sync_mss; 459 460 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 461 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 462 463 sk_sockets_allocated_inc(sk); 464 sk->sk_route_forced_caps = NETIF_F_GSO; 465 } 466 EXPORT_SYMBOL(tcp_init_sock); 467 468 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 469 { 470 struct sk_buff *skb = tcp_write_queue_tail(sk); 471 472 if (tsflags && skb) { 473 struct skb_shared_info *shinfo = skb_shinfo(skb); 474 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 475 476 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 477 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 478 tcb->txstamp_ack = 1; 479 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 480 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 481 } 482 } 483 484 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 485 int target, struct sock *sk) 486 { 487 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 488 489 if (avail > 0) { 490 if (avail >= target) 491 return true; 492 if (tcp_rmem_pressure(sk)) 493 return true; 494 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss) 495 return true; 496 } 497 if (sk->sk_prot->stream_memory_read) 498 return sk->sk_prot->stream_memory_read(sk); 499 return false; 500 } 501 502 /* 503 * Wait for a TCP event. 504 * 505 * Note that we don't need to lock the socket, as the upper poll layers 506 * take care of normal races (between the test and the event) and we don't 507 * go look at any of the socket buffers directly. 508 */ 509 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 510 { 511 __poll_t mask; 512 struct sock *sk = sock->sk; 513 const struct tcp_sock *tp = tcp_sk(sk); 514 int state; 515 516 sock_poll_wait(file, sock, wait); 517 518 state = inet_sk_state_load(sk); 519 if (state == TCP_LISTEN) 520 return inet_csk_listen_poll(sk); 521 522 /* Socket is not locked. We are protected from async events 523 * by poll logic and correct handling of state changes 524 * made by other threads is impossible in any case. 525 */ 526 527 mask = 0; 528 529 /* 530 * EPOLLHUP is certainly not done right. But poll() doesn't 531 * have a notion of HUP in just one direction, and for a 532 * socket the read side is more interesting. 533 * 534 * Some poll() documentation says that EPOLLHUP is incompatible 535 * with the EPOLLOUT/POLLWR flags, so somebody should check this 536 * all. But careful, it tends to be safer to return too many 537 * bits than too few, and you can easily break real applications 538 * if you don't tell them that something has hung up! 539 * 540 * Check-me. 541 * 542 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 543 * our fs/select.c). It means that after we received EOF, 544 * poll always returns immediately, making impossible poll() on write() 545 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 546 * if and only if shutdown has been made in both directions. 547 * Actually, it is interesting to look how Solaris and DUX 548 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 549 * then we could set it on SND_SHUTDOWN. BTW examples given 550 * in Stevens' books assume exactly this behaviour, it explains 551 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 552 * 553 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 554 * blocking on fresh not-connected or disconnected socket. --ANK 555 */ 556 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 557 mask |= EPOLLHUP; 558 if (sk->sk_shutdown & RCV_SHUTDOWN) 559 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 560 561 /* Connected or passive Fast Open socket? */ 562 if (state != TCP_SYN_SENT && 563 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 564 int target = sock_rcvlowat(sk, 0, INT_MAX); 565 566 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 567 !sock_flag(sk, SOCK_URGINLINE) && 568 tp->urg_data) 569 target++; 570 571 if (tcp_stream_is_readable(tp, target, sk)) 572 mask |= EPOLLIN | EPOLLRDNORM; 573 574 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 575 if (__sk_stream_is_writeable(sk, 1)) { 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 } else { /* send SIGIO later */ 578 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 579 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 580 581 /* Race breaker. If space is freed after 582 * wspace test but before the flags are set, 583 * IO signal will be lost. Memory barrier 584 * pairs with the input side. 585 */ 586 smp_mb__after_atomic(); 587 if (__sk_stream_is_writeable(sk, 1)) 588 mask |= EPOLLOUT | EPOLLWRNORM; 589 } 590 } else 591 mask |= EPOLLOUT | EPOLLWRNORM; 592 593 if (tp->urg_data & TCP_URG_VALID) 594 mask |= EPOLLPRI; 595 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 596 /* Active TCP fastopen socket with defer_connect 597 * Return EPOLLOUT so application can call write() 598 * in order for kernel to generate SYN+data 599 */ 600 mask |= EPOLLOUT | EPOLLWRNORM; 601 } 602 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 603 smp_rmb(); 604 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 605 mask |= EPOLLERR; 606 607 return mask; 608 } 609 EXPORT_SYMBOL(tcp_poll); 610 611 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 612 { 613 struct tcp_sock *tp = tcp_sk(sk); 614 int answ; 615 bool slow; 616 617 switch (cmd) { 618 case SIOCINQ: 619 if (sk->sk_state == TCP_LISTEN) 620 return -EINVAL; 621 622 slow = lock_sock_fast(sk); 623 answ = tcp_inq(sk); 624 unlock_sock_fast(sk, slow); 625 break; 626 case SIOCATMARK: 627 answ = tp->urg_data && 628 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 629 break; 630 case SIOCOUTQ: 631 if (sk->sk_state == TCP_LISTEN) 632 return -EINVAL; 633 634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 635 answ = 0; 636 else 637 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 638 break; 639 case SIOCOUTQNSD: 640 if (sk->sk_state == TCP_LISTEN) 641 return -EINVAL; 642 643 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 644 answ = 0; 645 else 646 answ = READ_ONCE(tp->write_seq) - 647 READ_ONCE(tp->snd_nxt); 648 break; 649 default: 650 return -ENOIOCTLCMD; 651 } 652 653 return put_user(answ, (int __user *)arg); 654 } 655 EXPORT_SYMBOL(tcp_ioctl); 656 657 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 658 { 659 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 660 tp->pushed_seq = tp->write_seq; 661 } 662 663 static inline bool forced_push(const struct tcp_sock *tp) 664 { 665 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 666 } 667 668 static void skb_entail(struct sock *sk, struct sk_buff *skb) 669 { 670 struct tcp_sock *tp = tcp_sk(sk); 671 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 672 673 skb->csum = 0; 674 tcb->seq = tcb->end_seq = tp->write_seq; 675 tcb->tcp_flags = TCPHDR_ACK; 676 tcb->sacked = 0; 677 __skb_header_release(skb); 678 tcp_add_write_queue_tail(sk, skb); 679 sk_wmem_queued_add(sk, skb->truesize); 680 sk_mem_charge(sk, skb->truesize); 681 if (tp->nonagle & TCP_NAGLE_PUSH) 682 tp->nonagle &= ~TCP_NAGLE_PUSH; 683 684 tcp_slow_start_after_idle_check(sk); 685 } 686 687 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 688 { 689 if (flags & MSG_OOB) 690 tp->snd_up = tp->write_seq; 691 } 692 693 /* If a not yet filled skb is pushed, do not send it if 694 * we have data packets in Qdisc or NIC queues : 695 * Because TX completion will happen shortly, it gives a chance 696 * to coalesce future sendmsg() payload into this skb, without 697 * need for a timer, and with no latency trade off. 698 * As packets containing data payload have a bigger truesize 699 * than pure acks (dataless) packets, the last checks prevent 700 * autocorking if we only have an ACK in Qdisc/NIC queues, 701 * or if TX completion was delayed after we processed ACK packet. 702 */ 703 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 704 int size_goal) 705 { 706 return skb->len < size_goal && 707 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 708 !tcp_rtx_queue_empty(sk) && 709 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 710 } 711 712 void tcp_push(struct sock *sk, int flags, int mss_now, 713 int nonagle, int size_goal) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 struct sk_buff *skb; 717 718 skb = tcp_write_queue_tail(sk); 719 if (!skb) 720 return; 721 if (!(flags & MSG_MORE) || forced_push(tp)) 722 tcp_mark_push(tp, skb); 723 724 tcp_mark_urg(tp, flags); 725 726 if (tcp_should_autocork(sk, skb, size_goal)) { 727 728 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 729 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 731 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 732 } 733 /* It is possible TX completion already happened 734 * before we set TSQ_THROTTLED. 735 */ 736 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 737 return; 738 } 739 740 if (flags & MSG_MORE) 741 nonagle = TCP_NAGLE_CORK; 742 743 __tcp_push_pending_frames(sk, mss_now, nonagle); 744 } 745 746 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 747 unsigned int offset, size_t len) 748 { 749 struct tcp_splice_state *tss = rd_desc->arg.data; 750 int ret; 751 752 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 753 min(rd_desc->count, len), tss->flags); 754 if (ret > 0) 755 rd_desc->count -= ret; 756 return ret; 757 } 758 759 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 760 { 761 /* Store TCP splice context information in read_descriptor_t. */ 762 read_descriptor_t rd_desc = { 763 .arg.data = tss, 764 .count = tss->len, 765 }; 766 767 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 768 } 769 770 /** 771 * tcp_splice_read - splice data from TCP socket to a pipe 772 * @sock: socket to splice from 773 * @ppos: position (not valid) 774 * @pipe: pipe to splice to 775 * @len: number of bytes to splice 776 * @flags: splice modifier flags 777 * 778 * Description: 779 * Will read pages from given socket and fill them into a pipe. 780 * 781 **/ 782 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 783 struct pipe_inode_info *pipe, size_t len, 784 unsigned int flags) 785 { 786 struct sock *sk = sock->sk; 787 struct tcp_splice_state tss = { 788 .pipe = pipe, 789 .len = len, 790 .flags = flags, 791 }; 792 long timeo; 793 ssize_t spliced; 794 int ret; 795 796 sock_rps_record_flow(sk); 797 /* 798 * We can't seek on a socket input 799 */ 800 if (unlikely(*ppos)) 801 return -ESPIPE; 802 803 ret = spliced = 0; 804 805 lock_sock(sk); 806 807 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 808 while (tss.len) { 809 ret = __tcp_splice_read(sk, &tss); 810 if (ret < 0) 811 break; 812 else if (!ret) { 813 if (spliced) 814 break; 815 if (sock_flag(sk, SOCK_DONE)) 816 break; 817 if (sk->sk_err) { 818 ret = sock_error(sk); 819 break; 820 } 821 if (sk->sk_shutdown & RCV_SHUTDOWN) 822 break; 823 if (sk->sk_state == TCP_CLOSE) { 824 /* 825 * This occurs when user tries to read 826 * from never connected socket. 827 */ 828 ret = -ENOTCONN; 829 break; 830 } 831 if (!timeo) { 832 ret = -EAGAIN; 833 break; 834 } 835 /* if __tcp_splice_read() got nothing while we have 836 * an skb in receive queue, we do not want to loop. 837 * This might happen with URG data. 838 */ 839 if (!skb_queue_empty(&sk->sk_receive_queue)) 840 break; 841 sk_wait_data(sk, &timeo, NULL); 842 if (signal_pending(current)) { 843 ret = sock_intr_errno(timeo); 844 break; 845 } 846 continue; 847 } 848 tss.len -= ret; 849 spliced += ret; 850 851 if (!timeo) 852 break; 853 release_sock(sk); 854 lock_sock(sk); 855 856 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 857 (sk->sk_shutdown & RCV_SHUTDOWN) || 858 signal_pending(current)) 859 break; 860 } 861 862 release_sock(sk); 863 864 if (spliced) 865 return spliced; 866 867 return ret; 868 } 869 EXPORT_SYMBOL(tcp_splice_read); 870 871 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 872 bool force_schedule) 873 { 874 struct sk_buff *skb; 875 876 if (likely(!size)) { 877 skb = sk->sk_tx_skb_cache; 878 if (skb) { 879 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 880 sk->sk_tx_skb_cache = NULL; 881 pskb_trim(skb, 0); 882 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 883 skb_shinfo(skb)->tx_flags = 0; 884 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 885 return skb; 886 } 887 } 888 /* The TCP header must be at least 32-bit aligned. */ 889 size = ALIGN(size, 4); 890 891 if (unlikely(tcp_under_memory_pressure(sk))) 892 sk_mem_reclaim_partial(sk); 893 894 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 895 if (likely(skb)) { 896 bool mem_scheduled; 897 898 if (force_schedule) { 899 mem_scheduled = true; 900 sk_forced_mem_schedule(sk, skb->truesize); 901 } else { 902 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 903 } 904 if (likely(mem_scheduled)) { 905 skb_reserve(skb, sk->sk_prot->max_header); 906 /* 907 * Make sure that we have exactly size bytes 908 * available to the caller, no more, no less. 909 */ 910 skb->reserved_tailroom = skb->end - skb->tail - size; 911 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 912 return skb; 913 } 914 __kfree_skb(skb); 915 } else { 916 sk->sk_prot->enter_memory_pressure(sk); 917 sk_stream_moderate_sndbuf(sk); 918 } 919 return NULL; 920 } 921 922 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 923 int large_allowed) 924 { 925 struct tcp_sock *tp = tcp_sk(sk); 926 u32 new_size_goal, size_goal; 927 928 if (!large_allowed) 929 return mss_now; 930 931 /* Note : tcp_tso_autosize() will eventually split this later */ 932 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 933 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 934 935 /* We try hard to avoid divides here */ 936 size_goal = tp->gso_segs * mss_now; 937 if (unlikely(new_size_goal < size_goal || 938 new_size_goal >= size_goal + mss_now)) { 939 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 940 sk->sk_gso_max_segs); 941 size_goal = tp->gso_segs * mss_now; 942 } 943 944 return max(size_goal, mss_now); 945 } 946 947 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 948 { 949 int mss_now; 950 951 mss_now = tcp_current_mss(sk); 952 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 953 954 return mss_now; 955 } 956 957 /* In some cases, both sendpage() and sendmsg() could have added 958 * an skb to the write queue, but failed adding payload on it. 959 * We need to remove it to consume less memory, but more 960 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 961 * users. 962 */ 963 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 964 { 965 if (skb && !skb->len) { 966 tcp_unlink_write_queue(skb, sk); 967 if (tcp_write_queue_empty(sk)) 968 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 969 sk_wmem_free_skb(sk, skb); 970 } 971 } 972 973 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 974 struct page *page, int offset, size_t *size) 975 { 976 struct sk_buff *skb = tcp_write_queue_tail(sk); 977 struct tcp_sock *tp = tcp_sk(sk); 978 bool can_coalesce; 979 int copy, i; 980 981 if (!skb || (copy = size_goal - skb->len) <= 0 || 982 !tcp_skb_can_collapse_to(skb)) { 983 new_segment: 984 if (!sk_stream_memory_free(sk)) 985 return NULL; 986 987 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 988 tcp_rtx_and_write_queues_empty(sk)); 989 if (!skb) 990 return NULL; 991 992 #ifdef CONFIG_TLS_DEVICE 993 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 994 #endif 995 skb_entail(sk, skb); 996 copy = size_goal; 997 } 998 999 if (copy > *size) 1000 copy = *size; 1001 1002 i = skb_shinfo(skb)->nr_frags; 1003 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1004 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1005 tcp_mark_push(tp, skb); 1006 goto new_segment; 1007 } 1008 if (!sk_wmem_schedule(sk, copy)) 1009 return NULL; 1010 1011 if (can_coalesce) { 1012 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1013 } else { 1014 get_page(page); 1015 skb_fill_page_desc(skb, i, page, offset, copy); 1016 } 1017 1018 if (!(flags & MSG_NO_SHARED_FRAGS)) 1019 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1020 1021 skb->len += copy; 1022 skb->data_len += copy; 1023 skb->truesize += copy; 1024 sk_wmem_queued_add(sk, copy); 1025 sk_mem_charge(sk, copy); 1026 skb->ip_summed = CHECKSUM_PARTIAL; 1027 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1028 TCP_SKB_CB(skb)->end_seq += copy; 1029 tcp_skb_pcount_set(skb, 0); 1030 1031 *size = copy; 1032 return skb; 1033 } 1034 1035 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1036 size_t size, int flags) 1037 { 1038 struct tcp_sock *tp = tcp_sk(sk); 1039 int mss_now, size_goal; 1040 int err; 1041 ssize_t copied; 1042 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1043 1044 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1045 WARN_ONCE(!sendpage_ok(page), 1046 "page must not be a Slab one and have page_count > 0")) 1047 return -EINVAL; 1048 1049 /* Wait for a connection to finish. One exception is TCP Fast Open 1050 * (passive side) where data is allowed to be sent before a connection 1051 * is fully established. 1052 */ 1053 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1054 !tcp_passive_fastopen(sk)) { 1055 err = sk_stream_wait_connect(sk, &timeo); 1056 if (err != 0) 1057 goto out_err; 1058 } 1059 1060 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1061 1062 mss_now = tcp_send_mss(sk, &size_goal, flags); 1063 copied = 0; 1064 1065 err = -EPIPE; 1066 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1067 goto out_err; 1068 1069 while (size > 0) { 1070 struct sk_buff *skb; 1071 size_t copy = size; 1072 1073 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1074 if (!skb) 1075 goto wait_for_space; 1076 1077 if (!copied) 1078 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1079 1080 copied += copy; 1081 offset += copy; 1082 size -= copy; 1083 if (!size) 1084 goto out; 1085 1086 if (skb->len < size_goal || (flags & MSG_OOB)) 1087 continue; 1088 1089 if (forced_push(tp)) { 1090 tcp_mark_push(tp, skb); 1091 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1092 } else if (skb == tcp_send_head(sk)) 1093 tcp_push_one(sk, mss_now); 1094 continue; 1095 1096 wait_for_space: 1097 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1098 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1099 TCP_NAGLE_PUSH, size_goal); 1100 1101 err = sk_stream_wait_memory(sk, &timeo); 1102 if (err != 0) 1103 goto do_error; 1104 1105 mss_now = tcp_send_mss(sk, &size_goal, flags); 1106 } 1107 1108 out: 1109 if (copied) { 1110 tcp_tx_timestamp(sk, sk->sk_tsflags); 1111 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1112 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1113 } 1114 return copied; 1115 1116 do_error: 1117 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1118 if (copied) 1119 goto out; 1120 out_err: 1121 /* make sure we wake any epoll edge trigger waiter */ 1122 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1123 sk->sk_write_space(sk); 1124 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1125 } 1126 return sk_stream_error(sk, flags, err); 1127 } 1128 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1129 1130 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1131 size_t size, int flags) 1132 { 1133 if (!(sk->sk_route_caps & NETIF_F_SG)) 1134 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1135 1136 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1137 1138 return do_tcp_sendpages(sk, page, offset, size, flags); 1139 } 1140 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1141 1142 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1143 size_t size, int flags) 1144 { 1145 int ret; 1146 1147 lock_sock(sk); 1148 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1149 release_sock(sk); 1150 1151 return ret; 1152 } 1153 EXPORT_SYMBOL(tcp_sendpage); 1154 1155 void tcp_free_fastopen_req(struct tcp_sock *tp) 1156 { 1157 if (tp->fastopen_req) { 1158 kfree(tp->fastopen_req); 1159 tp->fastopen_req = NULL; 1160 } 1161 } 1162 1163 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1164 int *copied, size_t size, 1165 struct ubuf_info *uarg) 1166 { 1167 struct tcp_sock *tp = tcp_sk(sk); 1168 struct inet_sock *inet = inet_sk(sk); 1169 struct sockaddr *uaddr = msg->msg_name; 1170 int err, flags; 1171 1172 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1173 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1174 uaddr->sa_family == AF_UNSPEC)) 1175 return -EOPNOTSUPP; 1176 if (tp->fastopen_req) 1177 return -EALREADY; /* Another Fast Open is in progress */ 1178 1179 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1180 sk->sk_allocation); 1181 if (unlikely(!tp->fastopen_req)) 1182 return -ENOBUFS; 1183 tp->fastopen_req->data = msg; 1184 tp->fastopen_req->size = size; 1185 tp->fastopen_req->uarg = uarg; 1186 1187 if (inet->defer_connect) { 1188 err = tcp_connect(sk); 1189 /* Same failure procedure as in tcp_v4/6_connect */ 1190 if (err) { 1191 tcp_set_state(sk, TCP_CLOSE); 1192 inet->inet_dport = 0; 1193 sk->sk_route_caps = 0; 1194 } 1195 } 1196 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1197 err = __inet_stream_connect(sk->sk_socket, uaddr, 1198 msg->msg_namelen, flags, 1); 1199 /* fastopen_req could already be freed in __inet_stream_connect 1200 * if the connection times out or gets rst 1201 */ 1202 if (tp->fastopen_req) { 1203 *copied = tp->fastopen_req->copied; 1204 tcp_free_fastopen_req(tp); 1205 inet->defer_connect = 0; 1206 } 1207 return err; 1208 } 1209 1210 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1211 { 1212 struct tcp_sock *tp = tcp_sk(sk); 1213 struct ubuf_info *uarg = NULL; 1214 struct sk_buff *skb; 1215 struct sockcm_cookie sockc; 1216 int flags, err, copied = 0; 1217 int mss_now = 0, size_goal, copied_syn = 0; 1218 int process_backlog = 0; 1219 bool zc = false; 1220 long timeo; 1221 1222 flags = msg->msg_flags; 1223 1224 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1225 skb = tcp_write_queue_tail(sk); 1226 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1227 if (!uarg) { 1228 err = -ENOBUFS; 1229 goto out_err; 1230 } 1231 1232 zc = sk->sk_route_caps & NETIF_F_SG; 1233 if (!zc) 1234 uarg->zerocopy = 0; 1235 } 1236 1237 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1238 !tp->repair) { 1239 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1240 if (err == -EINPROGRESS && copied_syn > 0) 1241 goto out; 1242 else if (err) 1243 goto out_err; 1244 } 1245 1246 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1247 1248 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1249 1250 /* Wait for a connection to finish. One exception is TCP Fast Open 1251 * (passive side) where data is allowed to be sent before a connection 1252 * is fully established. 1253 */ 1254 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1255 !tcp_passive_fastopen(sk)) { 1256 err = sk_stream_wait_connect(sk, &timeo); 1257 if (err != 0) 1258 goto do_error; 1259 } 1260 1261 if (unlikely(tp->repair)) { 1262 if (tp->repair_queue == TCP_RECV_QUEUE) { 1263 copied = tcp_send_rcvq(sk, msg, size); 1264 goto out_nopush; 1265 } 1266 1267 err = -EINVAL; 1268 if (tp->repair_queue == TCP_NO_QUEUE) 1269 goto out_err; 1270 1271 /* 'common' sending to sendq */ 1272 } 1273 1274 sockcm_init(&sockc, sk); 1275 if (msg->msg_controllen) { 1276 err = sock_cmsg_send(sk, msg, &sockc); 1277 if (unlikely(err)) { 1278 err = -EINVAL; 1279 goto out_err; 1280 } 1281 } 1282 1283 /* This should be in poll */ 1284 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1285 1286 /* Ok commence sending. */ 1287 copied = 0; 1288 1289 restart: 1290 mss_now = tcp_send_mss(sk, &size_goal, flags); 1291 1292 err = -EPIPE; 1293 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1294 goto do_error; 1295 1296 while (msg_data_left(msg)) { 1297 int copy = 0; 1298 1299 skb = tcp_write_queue_tail(sk); 1300 if (skb) 1301 copy = size_goal - skb->len; 1302 1303 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1304 bool first_skb; 1305 1306 new_segment: 1307 if (!sk_stream_memory_free(sk)) 1308 goto wait_for_space; 1309 1310 if (unlikely(process_backlog >= 16)) { 1311 process_backlog = 0; 1312 if (sk_flush_backlog(sk)) 1313 goto restart; 1314 } 1315 first_skb = tcp_rtx_and_write_queues_empty(sk); 1316 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1317 first_skb); 1318 if (!skb) 1319 goto wait_for_space; 1320 1321 process_backlog++; 1322 skb->ip_summed = CHECKSUM_PARTIAL; 1323 1324 skb_entail(sk, skb); 1325 copy = size_goal; 1326 1327 /* All packets are restored as if they have 1328 * already been sent. skb_mstamp_ns isn't set to 1329 * avoid wrong rtt estimation. 1330 */ 1331 if (tp->repair) 1332 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1333 } 1334 1335 /* Try to append data to the end of skb. */ 1336 if (copy > msg_data_left(msg)) 1337 copy = msg_data_left(msg); 1338 1339 /* Where to copy to? */ 1340 if (skb_availroom(skb) > 0 && !zc) { 1341 /* We have some space in skb head. Superb! */ 1342 copy = min_t(int, copy, skb_availroom(skb)); 1343 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1344 if (err) 1345 goto do_fault; 1346 } else if (!zc) { 1347 bool merge = true; 1348 int i = skb_shinfo(skb)->nr_frags; 1349 struct page_frag *pfrag = sk_page_frag(sk); 1350 1351 if (!sk_page_frag_refill(sk, pfrag)) 1352 goto wait_for_space; 1353 1354 if (!skb_can_coalesce(skb, i, pfrag->page, 1355 pfrag->offset)) { 1356 if (i >= sysctl_max_skb_frags) { 1357 tcp_mark_push(tp, skb); 1358 goto new_segment; 1359 } 1360 merge = false; 1361 } 1362 1363 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1364 1365 if (!sk_wmem_schedule(sk, copy)) 1366 goto wait_for_space; 1367 1368 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1369 pfrag->page, 1370 pfrag->offset, 1371 copy); 1372 if (err) 1373 goto do_error; 1374 1375 /* Update the skb. */ 1376 if (merge) { 1377 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1378 } else { 1379 skb_fill_page_desc(skb, i, pfrag->page, 1380 pfrag->offset, copy); 1381 page_ref_inc(pfrag->page); 1382 } 1383 pfrag->offset += copy; 1384 } else { 1385 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1386 if (err == -EMSGSIZE || err == -EEXIST) { 1387 tcp_mark_push(tp, skb); 1388 goto new_segment; 1389 } 1390 if (err < 0) 1391 goto do_error; 1392 copy = err; 1393 } 1394 1395 if (!copied) 1396 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1397 1398 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1399 TCP_SKB_CB(skb)->end_seq += copy; 1400 tcp_skb_pcount_set(skb, 0); 1401 1402 copied += copy; 1403 if (!msg_data_left(msg)) { 1404 if (unlikely(flags & MSG_EOR)) 1405 TCP_SKB_CB(skb)->eor = 1; 1406 goto out; 1407 } 1408 1409 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1410 continue; 1411 1412 if (forced_push(tp)) { 1413 tcp_mark_push(tp, skb); 1414 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1415 } else if (skb == tcp_send_head(sk)) 1416 tcp_push_one(sk, mss_now); 1417 continue; 1418 1419 wait_for_space: 1420 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1421 if (copied) 1422 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1423 TCP_NAGLE_PUSH, size_goal); 1424 1425 err = sk_stream_wait_memory(sk, &timeo); 1426 if (err != 0) 1427 goto do_error; 1428 1429 mss_now = tcp_send_mss(sk, &size_goal, flags); 1430 } 1431 1432 out: 1433 if (copied) { 1434 tcp_tx_timestamp(sk, sockc.tsflags); 1435 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1436 } 1437 out_nopush: 1438 net_zcopy_put(uarg); 1439 return copied + copied_syn; 1440 1441 do_error: 1442 skb = tcp_write_queue_tail(sk); 1443 do_fault: 1444 tcp_remove_empty_skb(sk, skb); 1445 1446 if (copied + copied_syn) 1447 goto out; 1448 out_err: 1449 net_zcopy_put_abort(uarg, true); 1450 err = sk_stream_error(sk, flags, err); 1451 /* make sure we wake any epoll edge trigger waiter */ 1452 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1453 sk->sk_write_space(sk); 1454 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1455 } 1456 return err; 1457 } 1458 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1459 1460 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1461 { 1462 int ret; 1463 1464 lock_sock(sk); 1465 ret = tcp_sendmsg_locked(sk, msg, size); 1466 release_sock(sk); 1467 1468 return ret; 1469 } 1470 EXPORT_SYMBOL(tcp_sendmsg); 1471 1472 /* 1473 * Handle reading urgent data. BSD has very simple semantics for 1474 * this, no blocking and very strange errors 8) 1475 */ 1476 1477 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1478 { 1479 struct tcp_sock *tp = tcp_sk(sk); 1480 1481 /* No URG data to read. */ 1482 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1483 tp->urg_data == TCP_URG_READ) 1484 return -EINVAL; /* Yes this is right ! */ 1485 1486 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1487 return -ENOTCONN; 1488 1489 if (tp->urg_data & TCP_URG_VALID) { 1490 int err = 0; 1491 char c = tp->urg_data; 1492 1493 if (!(flags & MSG_PEEK)) 1494 tp->urg_data = TCP_URG_READ; 1495 1496 /* Read urgent data. */ 1497 msg->msg_flags |= MSG_OOB; 1498 1499 if (len > 0) { 1500 if (!(flags & MSG_TRUNC)) 1501 err = memcpy_to_msg(msg, &c, 1); 1502 len = 1; 1503 } else 1504 msg->msg_flags |= MSG_TRUNC; 1505 1506 return err ? -EFAULT : len; 1507 } 1508 1509 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1510 return 0; 1511 1512 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1513 * the available implementations agree in this case: 1514 * this call should never block, independent of the 1515 * blocking state of the socket. 1516 * Mike <pall@rz.uni-karlsruhe.de> 1517 */ 1518 return -EAGAIN; 1519 } 1520 1521 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1522 { 1523 struct sk_buff *skb; 1524 int copied = 0, err = 0; 1525 1526 /* XXX -- need to support SO_PEEK_OFF */ 1527 1528 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1530 if (err) 1531 return err; 1532 copied += skb->len; 1533 } 1534 1535 skb_queue_walk(&sk->sk_write_queue, skb) { 1536 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1537 if (err) 1538 break; 1539 1540 copied += skb->len; 1541 } 1542 1543 return err ?: copied; 1544 } 1545 1546 /* Clean up the receive buffer for full frames taken by the user, 1547 * then send an ACK if necessary. COPIED is the number of bytes 1548 * tcp_recvmsg has given to the user so far, it speeds up the 1549 * calculation of whether or not we must ACK for the sake of 1550 * a window update. 1551 */ 1552 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1553 { 1554 struct tcp_sock *tp = tcp_sk(sk); 1555 bool time_to_ack = false; 1556 1557 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1558 1559 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1560 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1561 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1562 1563 if (inet_csk_ack_scheduled(sk)) { 1564 const struct inet_connection_sock *icsk = inet_csk(sk); 1565 1566 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1567 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1568 /* 1569 * If this read emptied read buffer, we send ACK, if 1570 * connection is not bidirectional, user drained 1571 * receive buffer and there was a small segment 1572 * in queue. 1573 */ 1574 (copied > 0 && 1575 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1576 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1577 !inet_csk_in_pingpong_mode(sk))) && 1578 !atomic_read(&sk->sk_rmem_alloc))) 1579 time_to_ack = true; 1580 } 1581 1582 /* We send an ACK if we can now advertise a non-zero window 1583 * which has been raised "significantly". 1584 * 1585 * Even if window raised up to infinity, do not send window open ACK 1586 * in states, where we will not receive more. It is useless. 1587 */ 1588 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1589 __u32 rcv_window_now = tcp_receive_window(tp); 1590 1591 /* Optimize, __tcp_select_window() is not cheap. */ 1592 if (2*rcv_window_now <= tp->window_clamp) { 1593 __u32 new_window = __tcp_select_window(sk); 1594 1595 /* Send ACK now, if this read freed lots of space 1596 * in our buffer. Certainly, new_window is new window. 1597 * We can advertise it now, if it is not less than current one. 1598 * "Lots" means "at least twice" here. 1599 */ 1600 if (new_window && new_window >= 2 * rcv_window_now) 1601 time_to_ack = true; 1602 } 1603 } 1604 if (time_to_ack) 1605 tcp_send_ack(sk); 1606 } 1607 1608 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1609 { 1610 struct sk_buff *skb; 1611 u32 offset; 1612 1613 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1614 offset = seq - TCP_SKB_CB(skb)->seq; 1615 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1616 pr_err_once("%s: found a SYN, please report !\n", __func__); 1617 offset--; 1618 } 1619 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1620 *off = offset; 1621 return skb; 1622 } 1623 /* This looks weird, but this can happen if TCP collapsing 1624 * splitted a fat GRO packet, while we released socket lock 1625 * in skb_splice_bits() 1626 */ 1627 sk_eat_skb(sk, skb); 1628 } 1629 return NULL; 1630 } 1631 1632 /* 1633 * This routine provides an alternative to tcp_recvmsg() for routines 1634 * that would like to handle copying from skbuffs directly in 'sendfile' 1635 * fashion. 1636 * Note: 1637 * - It is assumed that the socket was locked by the caller. 1638 * - The routine does not block. 1639 * - At present, there is no support for reading OOB data 1640 * or for 'peeking' the socket using this routine 1641 * (although both would be easy to implement). 1642 */ 1643 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1644 sk_read_actor_t recv_actor) 1645 { 1646 struct sk_buff *skb; 1647 struct tcp_sock *tp = tcp_sk(sk); 1648 u32 seq = tp->copied_seq; 1649 u32 offset; 1650 int copied = 0; 1651 1652 if (sk->sk_state == TCP_LISTEN) 1653 return -ENOTCONN; 1654 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1655 if (offset < skb->len) { 1656 int used; 1657 size_t len; 1658 1659 len = skb->len - offset; 1660 /* Stop reading if we hit a patch of urgent data */ 1661 if (tp->urg_data) { 1662 u32 urg_offset = tp->urg_seq - seq; 1663 if (urg_offset < len) 1664 len = urg_offset; 1665 if (!len) 1666 break; 1667 } 1668 used = recv_actor(desc, skb, offset, len); 1669 if (used <= 0) { 1670 if (!copied) 1671 copied = used; 1672 break; 1673 } else if (used <= len) { 1674 seq += used; 1675 copied += used; 1676 offset += used; 1677 } 1678 /* If recv_actor drops the lock (e.g. TCP splice 1679 * receive) the skb pointer might be invalid when 1680 * getting here: tcp_collapse might have deleted it 1681 * while aggregating skbs from the socket queue. 1682 */ 1683 skb = tcp_recv_skb(sk, seq - 1, &offset); 1684 if (!skb) 1685 break; 1686 /* TCP coalescing might have appended data to the skb. 1687 * Try to splice more frags 1688 */ 1689 if (offset + 1 != skb->len) 1690 continue; 1691 } 1692 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1693 sk_eat_skb(sk, skb); 1694 ++seq; 1695 break; 1696 } 1697 sk_eat_skb(sk, skb); 1698 if (!desc->count) 1699 break; 1700 WRITE_ONCE(tp->copied_seq, seq); 1701 } 1702 WRITE_ONCE(tp->copied_seq, seq); 1703 1704 tcp_rcv_space_adjust(sk); 1705 1706 /* Clean up data we have read: This will do ACK frames. */ 1707 if (copied > 0) { 1708 tcp_recv_skb(sk, seq, &offset); 1709 tcp_cleanup_rbuf(sk, copied); 1710 } 1711 return copied; 1712 } 1713 EXPORT_SYMBOL(tcp_read_sock); 1714 1715 int tcp_peek_len(struct socket *sock) 1716 { 1717 return tcp_inq(sock->sk); 1718 } 1719 EXPORT_SYMBOL(tcp_peek_len); 1720 1721 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1722 int tcp_set_rcvlowat(struct sock *sk, int val) 1723 { 1724 int cap; 1725 1726 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1727 cap = sk->sk_rcvbuf >> 1; 1728 else 1729 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1730 val = min(val, cap); 1731 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1732 1733 /* Check if we need to signal EPOLLIN right now */ 1734 tcp_data_ready(sk); 1735 1736 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1737 return 0; 1738 1739 val <<= 1; 1740 if (val > sk->sk_rcvbuf) { 1741 WRITE_ONCE(sk->sk_rcvbuf, val); 1742 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1743 } 1744 return 0; 1745 } 1746 EXPORT_SYMBOL(tcp_set_rcvlowat); 1747 1748 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1749 struct scm_timestamping_internal *tss) 1750 { 1751 if (skb->tstamp) 1752 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1753 else 1754 tss->ts[0] = (struct timespec64) {0}; 1755 1756 if (skb_hwtstamps(skb)->hwtstamp) 1757 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1758 else 1759 tss->ts[2] = (struct timespec64) {0}; 1760 } 1761 1762 #ifdef CONFIG_MMU 1763 static const struct vm_operations_struct tcp_vm_ops = { 1764 }; 1765 1766 int tcp_mmap(struct file *file, struct socket *sock, 1767 struct vm_area_struct *vma) 1768 { 1769 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1770 return -EPERM; 1771 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1772 1773 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1774 vma->vm_flags |= VM_MIXEDMAP; 1775 1776 vma->vm_ops = &tcp_vm_ops; 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(tcp_mmap); 1780 1781 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1782 u32 *offset_frag) 1783 { 1784 skb_frag_t *frag; 1785 1786 offset_skb -= skb_headlen(skb); 1787 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1788 return NULL; 1789 1790 frag = skb_shinfo(skb)->frags; 1791 while (offset_skb) { 1792 if (skb_frag_size(frag) > offset_skb) { 1793 *offset_frag = offset_skb; 1794 return frag; 1795 } 1796 offset_skb -= skb_frag_size(frag); 1797 ++frag; 1798 } 1799 *offset_frag = 0; 1800 return frag; 1801 } 1802 1803 static bool can_map_frag(const skb_frag_t *frag) 1804 { 1805 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1806 } 1807 1808 static int find_next_mappable_frag(const skb_frag_t *frag, 1809 int remaining_in_skb) 1810 { 1811 int offset = 0; 1812 1813 if (likely(can_map_frag(frag))) 1814 return 0; 1815 1816 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1817 offset += skb_frag_size(frag); 1818 ++frag; 1819 } 1820 return offset; 1821 } 1822 1823 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1824 struct tcp_zerocopy_receive *zc, 1825 struct sk_buff *skb, u32 offset) 1826 { 1827 u32 frag_offset, partial_frag_remainder = 0; 1828 int mappable_offset; 1829 skb_frag_t *frag; 1830 1831 /* worst case: skip to next skb. try to improve on this case below */ 1832 zc->recv_skip_hint = skb->len - offset; 1833 1834 /* Find the frag containing this offset (and how far into that frag) */ 1835 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1836 if (!frag) 1837 return; 1838 1839 if (frag_offset) { 1840 struct skb_shared_info *info = skb_shinfo(skb); 1841 1842 /* We read part of the last frag, must recvmsg() rest of skb. */ 1843 if (frag == &info->frags[info->nr_frags - 1]) 1844 return; 1845 1846 /* Else, we must at least read the remainder in this frag. */ 1847 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1848 zc->recv_skip_hint -= partial_frag_remainder; 1849 ++frag; 1850 } 1851 1852 /* partial_frag_remainder: If part way through a frag, must read rest. 1853 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1854 * in partial_frag_remainder. 1855 */ 1856 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1857 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1858 } 1859 1860 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1861 int nonblock, int flags, 1862 struct scm_timestamping_internal *tss, 1863 int *cmsg_flags); 1864 static int receive_fallback_to_copy(struct sock *sk, 1865 struct tcp_zerocopy_receive *zc, int inq, 1866 struct scm_timestamping_internal *tss) 1867 { 1868 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1869 struct msghdr msg = {}; 1870 struct iovec iov; 1871 int err; 1872 1873 zc->length = 0; 1874 zc->recv_skip_hint = 0; 1875 1876 if (copy_address != zc->copybuf_address) 1877 return -EINVAL; 1878 1879 err = import_single_range(READ, (void __user *)copy_address, 1880 inq, &iov, &msg.msg_iter); 1881 if (err) 1882 return err; 1883 1884 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1885 tss, &zc->msg_flags); 1886 if (err < 0) 1887 return err; 1888 1889 zc->copybuf_len = err; 1890 if (likely(zc->copybuf_len)) { 1891 struct sk_buff *skb; 1892 u32 offset; 1893 1894 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1895 if (skb) 1896 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1897 } 1898 return 0; 1899 } 1900 1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1902 struct sk_buff *skb, u32 copylen, 1903 u32 *offset, u32 *seq) 1904 { 1905 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1906 struct msghdr msg = {}; 1907 struct iovec iov; 1908 int err; 1909 1910 if (copy_address != zc->copybuf_address) 1911 return -EINVAL; 1912 1913 err = import_single_range(READ, (void __user *)copy_address, 1914 copylen, &iov, &msg.msg_iter); 1915 if (err) 1916 return err; 1917 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1918 if (err) 1919 return err; 1920 zc->recv_skip_hint -= copylen; 1921 *offset += copylen; 1922 *seq += copylen; 1923 return (__s32)copylen; 1924 } 1925 1926 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1927 struct sock *sk, 1928 struct sk_buff *skb, 1929 u32 *seq, 1930 s32 copybuf_len, 1931 struct scm_timestamping_internal *tss) 1932 { 1933 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1934 1935 if (!copylen) 1936 return 0; 1937 /* skb is null if inq < PAGE_SIZE. */ 1938 if (skb) { 1939 offset = *seq - TCP_SKB_CB(skb)->seq; 1940 } else { 1941 skb = tcp_recv_skb(sk, *seq, &offset); 1942 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1943 tcp_update_recv_tstamps(skb, tss); 1944 zc->msg_flags |= TCP_CMSG_TS; 1945 } 1946 } 1947 1948 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1949 seq); 1950 return zc->copybuf_len < 0 ? 0 : copylen; 1951 } 1952 1953 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1954 struct page **pending_pages, 1955 unsigned long pages_remaining, 1956 unsigned long *address, 1957 u32 *length, 1958 u32 *seq, 1959 struct tcp_zerocopy_receive *zc, 1960 u32 total_bytes_to_map, 1961 int err) 1962 { 1963 /* At least one page did not map. Try zapping if we skipped earlier. */ 1964 if (err == -EBUSY && 1965 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1966 u32 maybe_zap_len; 1967 1968 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1969 *length + /* Mapped or pending */ 1970 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1971 zap_page_range(vma, *address, maybe_zap_len); 1972 err = 0; 1973 } 1974 1975 if (!err) { 1976 unsigned long leftover_pages = pages_remaining; 1977 int bytes_mapped; 1978 1979 /* We called zap_page_range, try to reinsert. */ 1980 err = vm_insert_pages(vma, *address, 1981 pending_pages, 1982 &pages_remaining); 1983 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1984 *seq += bytes_mapped; 1985 *address += bytes_mapped; 1986 } 1987 if (err) { 1988 /* Either we were unable to zap, OR we zapped, retried an 1989 * insert, and still had an issue. Either ways, pages_remaining 1990 * is the number of pages we were unable to map, and we unroll 1991 * some state we speculatively touched before. 1992 */ 1993 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1994 1995 *length -= bytes_not_mapped; 1996 zc->recv_skip_hint += bytes_not_mapped; 1997 } 1998 return err; 1999 } 2000 2001 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2002 struct page **pages, 2003 unsigned int pages_to_map, 2004 unsigned long *address, 2005 u32 *length, 2006 u32 *seq, 2007 struct tcp_zerocopy_receive *zc, 2008 u32 total_bytes_to_map) 2009 { 2010 unsigned long pages_remaining = pages_to_map; 2011 unsigned int pages_mapped; 2012 unsigned int bytes_mapped; 2013 int err; 2014 2015 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2016 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2017 bytes_mapped = PAGE_SIZE * pages_mapped; 2018 /* Even if vm_insert_pages fails, it may have partially succeeded in 2019 * mapping (some but not all of the pages). 2020 */ 2021 *seq += bytes_mapped; 2022 *address += bytes_mapped; 2023 2024 if (likely(!err)) 2025 return 0; 2026 2027 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2028 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2029 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2030 err); 2031 } 2032 2033 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2034 struct scm_timestamping_internal *tss); 2035 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2036 struct tcp_zerocopy_receive *zc, 2037 struct scm_timestamping_internal *tss) 2038 { 2039 unsigned long msg_control_addr; 2040 struct msghdr cmsg_dummy; 2041 2042 msg_control_addr = (unsigned long)zc->msg_control; 2043 cmsg_dummy.msg_control = (void *)msg_control_addr; 2044 cmsg_dummy.msg_controllen = 2045 (__kernel_size_t)zc->msg_controllen; 2046 cmsg_dummy.msg_flags = in_compat_syscall() 2047 ? MSG_CMSG_COMPAT : 0; 2048 zc->msg_flags = 0; 2049 if (zc->msg_control == msg_control_addr && 2050 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2051 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2052 zc->msg_control = (__u64) 2053 ((uintptr_t)cmsg_dummy.msg_control); 2054 zc->msg_controllen = 2055 (__u64)cmsg_dummy.msg_controllen; 2056 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2057 } 2058 } 2059 2060 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2061 static int tcp_zerocopy_receive(struct sock *sk, 2062 struct tcp_zerocopy_receive *zc, 2063 struct scm_timestamping_internal *tss) 2064 { 2065 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2066 unsigned long address = (unsigned long)zc->address; 2067 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2068 s32 copybuf_len = zc->copybuf_len; 2069 struct tcp_sock *tp = tcp_sk(sk); 2070 const skb_frag_t *frags = NULL; 2071 unsigned int pages_to_map = 0; 2072 struct vm_area_struct *vma; 2073 struct sk_buff *skb = NULL; 2074 u32 seq = tp->copied_seq; 2075 u32 total_bytes_to_map; 2076 int inq = tcp_inq(sk); 2077 int ret; 2078 2079 zc->copybuf_len = 0; 2080 zc->msg_flags = 0; 2081 2082 if (address & (PAGE_SIZE - 1) || address != zc->address) 2083 return -EINVAL; 2084 2085 if (sk->sk_state == TCP_LISTEN) 2086 return -ENOTCONN; 2087 2088 sock_rps_record_flow(sk); 2089 2090 if (inq && inq <= copybuf_len) 2091 return receive_fallback_to_copy(sk, zc, inq, tss); 2092 2093 if (inq < PAGE_SIZE) { 2094 zc->length = 0; 2095 zc->recv_skip_hint = inq; 2096 if (!inq && sock_flag(sk, SOCK_DONE)) 2097 return -EIO; 2098 return 0; 2099 } 2100 2101 mmap_read_lock(current->mm); 2102 2103 vma = find_vma(current->mm, address); 2104 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 2105 mmap_read_unlock(current->mm); 2106 return -EINVAL; 2107 } 2108 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2109 avail_len = min_t(u32, vma_len, inq); 2110 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2111 if (total_bytes_to_map) { 2112 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2113 zap_page_range(vma, address, total_bytes_to_map); 2114 zc->length = total_bytes_to_map; 2115 zc->recv_skip_hint = 0; 2116 } else { 2117 zc->length = avail_len; 2118 zc->recv_skip_hint = avail_len; 2119 } 2120 ret = 0; 2121 while (length + PAGE_SIZE <= zc->length) { 2122 int mappable_offset; 2123 struct page *page; 2124 2125 if (zc->recv_skip_hint < PAGE_SIZE) { 2126 u32 offset_frag; 2127 2128 if (skb) { 2129 if (zc->recv_skip_hint > 0) 2130 break; 2131 skb = skb->next; 2132 offset = seq - TCP_SKB_CB(skb)->seq; 2133 } else { 2134 skb = tcp_recv_skb(sk, seq, &offset); 2135 } 2136 2137 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2138 tcp_update_recv_tstamps(skb, tss); 2139 zc->msg_flags |= TCP_CMSG_TS; 2140 } 2141 zc->recv_skip_hint = skb->len - offset; 2142 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2143 if (!frags || offset_frag) 2144 break; 2145 } 2146 2147 mappable_offset = find_next_mappable_frag(frags, 2148 zc->recv_skip_hint); 2149 if (mappable_offset) { 2150 zc->recv_skip_hint = mappable_offset; 2151 break; 2152 } 2153 page = skb_frag_page(frags); 2154 prefetchw(page); 2155 pages[pages_to_map++] = page; 2156 length += PAGE_SIZE; 2157 zc->recv_skip_hint -= PAGE_SIZE; 2158 frags++; 2159 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2160 zc->recv_skip_hint < PAGE_SIZE) { 2161 /* Either full batch, or we're about to go to next skb 2162 * (and we cannot unroll failed ops across skbs). 2163 */ 2164 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2165 pages_to_map, 2166 &address, &length, 2167 &seq, zc, 2168 total_bytes_to_map); 2169 if (ret) 2170 goto out; 2171 pages_to_map = 0; 2172 } 2173 } 2174 if (pages_to_map) { 2175 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2176 &address, &length, &seq, 2177 zc, total_bytes_to_map); 2178 } 2179 out: 2180 mmap_read_unlock(current->mm); 2181 /* Try to copy straggler data. */ 2182 if (!ret) 2183 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2184 2185 if (length + copylen) { 2186 WRITE_ONCE(tp->copied_seq, seq); 2187 tcp_rcv_space_adjust(sk); 2188 2189 /* Clean up data we have read: This will do ACK frames. */ 2190 tcp_recv_skb(sk, seq, &offset); 2191 tcp_cleanup_rbuf(sk, length + copylen); 2192 ret = 0; 2193 if (length == zc->length) 2194 zc->recv_skip_hint = 0; 2195 } else { 2196 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2197 ret = -EIO; 2198 } 2199 zc->length = length; 2200 return ret; 2201 } 2202 #endif 2203 2204 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2205 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2206 struct scm_timestamping_internal *tss) 2207 { 2208 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2209 bool has_timestamping = false; 2210 2211 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2212 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2213 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2214 if (new_tstamp) { 2215 struct __kernel_timespec kts = { 2216 .tv_sec = tss->ts[0].tv_sec, 2217 .tv_nsec = tss->ts[0].tv_nsec, 2218 }; 2219 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2220 sizeof(kts), &kts); 2221 } else { 2222 struct __kernel_old_timespec ts_old = { 2223 .tv_sec = tss->ts[0].tv_sec, 2224 .tv_nsec = tss->ts[0].tv_nsec, 2225 }; 2226 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2227 sizeof(ts_old), &ts_old); 2228 } 2229 } else { 2230 if (new_tstamp) { 2231 struct __kernel_sock_timeval stv = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_usec = tss->ts[0].tv_nsec / 1000, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2236 sizeof(stv), &stv); 2237 } else { 2238 struct __kernel_old_timeval tv = { 2239 .tv_sec = tss->ts[0].tv_sec, 2240 .tv_usec = tss->ts[0].tv_nsec / 1000, 2241 }; 2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2243 sizeof(tv), &tv); 2244 } 2245 } 2246 } 2247 2248 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2249 has_timestamping = true; 2250 else 2251 tss->ts[0] = (struct timespec64) {0}; 2252 } 2253 2254 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2255 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2256 has_timestamping = true; 2257 else 2258 tss->ts[2] = (struct timespec64) {0}; 2259 } 2260 2261 if (has_timestamping) { 2262 tss->ts[1] = (struct timespec64) {0}; 2263 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2264 put_cmsg_scm_timestamping64(msg, tss); 2265 else 2266 put_cmsg_scm_timestamping(msg, tss); 2267 } 2268 } 2269 2270 static int tcp_inq_hint(struct sock *sk) 2271 { 2272 const struct tcp_sock *tp = tcp_sk(sk); 2273 u32 copied_seq = READ_ONCE(tp->copied_seq); 2274 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2275 int inq; 2276 2277 inq = rcv_nxt - copied_seq; 2278 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2279 lock_sock(sk); 2280 inq = tp->rcv_nxt - tp->copied_seq; 2281 release_sock(sk); 2282 } 2283 /* After receiving a FIN, tell the user-space to continue reading 2284 * by returning a non-zero inq. 2285 */ 2286 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2287 inq = 1; 2288 return inq; 2289 } 2290 2291 /* 2292 * This routine copies from a sock struct into the user buffer. 2293 * 2294 * Technical note: in 2.3 we work on _locked_ socket, so that 2295 * tricks with *seq access order and skb->users are not required. 2296 * Probably, code can be easily improved even more. 2297 */ 2298 2299 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2300 int nonblock, int flags, 2301 struct scm_timestamping_internal *tss, 2302 int *cmsg_flags) 2303 { 2304 struct tcp_sock *tp = tcp_sk(sk); 2305 int copied = 0; 2306 u32 peek_seq; 2307 u32 *seq; 2308 unsigned long used; 2309 int err; 2310 int target; /* Read at least this many bytes */ 2311 long timeo; 2312 struct sk_buff *skb, *last; 2313 u32 urg_hole = 0; 2314 2315 err = -ENOTCONN; 2316 if (sk->sk_state == TCP_LISTEN) 2317 goto out; 2318 2319 if (tp->recvmsg_inq) 2320 *cmsg_flags = TCP_CMSG_INQ; 2321 timeo = sock_rcvtimeo(sk, nonblock); 2322 2323 /* Urgent data needs to be handled specially. */ 2324 if (flags & MSG_OOB) 2325 goto recv_urg; 2326 2327 if (unlikely(tp->repair)) { 2328 err = -EPERM; 2329 if (!(flags & MSG_PEEK)) 2330 goto out; 2331 2332 if (tp->repair_queue == TCP_SEND_QUEUE) 2333 goto recv_sndq; 2334 2335 err = -EINVAL; 2336 if (tp->repair_queue == TCP_NO_QUEUE) 2337 goto out; 2338 2339 /* 'common' recv queue MSG_PEEK-ing */ 2340 } 2341 2342 seq = &tp->copied_seq; 2343 if (flags & MSG_PEEK) { 2344 peek_seq = tp->copied_seq; 2345 seq = &peek_seq; 2346 } 2347 2348 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2349 2350 do { 2351 u32 offset; 2352 2353 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2354 if (tp->urg_data && tp->urg_seq == *seq) { 2355 if (copied) 2356 break; 2357 if (signal_pending(current)) { 2358 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2359 break; 2360 } 2361 } 2362 2363 /* Next get a buffer. */ 2364 2365 last = skb_peek_tail(&sk->sk_receive_queue); 2366 skb_queue_walk(&sk->sk_receive_queue, skb) { 2367 last = skb; 2368 /* Now that we have two receive queues this 2369 * shouldn't happen. 2370 */ 2371 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2372 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2373 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2374 flags)) 2375 break; 2376 2377 offset = *seq - TCP_SKB_CB(skb)->seq; 2378 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2379 pr_err_once("%s: found a SYN, please report !\n", __func__); 2380 offset--; 2381 } 2382 if (offset < skb->len) 2383 goto found_ok_skb; 2384 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2385 goto found_fin_ok; 2386 WARN(!(flags & MSG_PEEK), 2387 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2388 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2389 } 2390 2391 /* Well, if we have backlog, try to process it now yet. */ 2392 2393 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2394 break; 2395 2396 if (copied) { 2397 if (sk->sk_err || 2398 sk->sk_state == TCP_CLOSE || 2399 (sk->sk_shutdown & RCV_SHUTDOWN) || 2400 !timeo || 2401 signal_pending(current)) 2402 break; 2403 } else { 2404 if (sock_flag(sk, SOCK_DONE)) 2405 break; 2406 2407 if (sk->sk_err) { 2408 copied = sock_error(sk); 2409 break; 2410 } 2411 2412 if (sk->sk_shutdown & RCV_SHUTDOWN) 2413 break; 2414 2415 if (sk->sk_state == TCP_CLOSE) { 2416 /* This occurs when user tries to read 2417 * from never connected socket. 2418 */ 2419 copied = -ENOTCONN; 2420 break; 2421 } 2422 2423 if (!timeo) { 2424 copied = -EAGAIN; 2425 break; 2426 } 2427 2428 if (signal_pending(current)) { 2429 copied = sock_intr_errno(timeo); 2430 break; 2431 } 2432 } 2433 2434 tcp_cleanup_rbuf(sk, copied); 2435 2436 if (copied >= target) { 2437 /* Do not sleep, just process backlog. */ 2438 release_sock(sk); 2439 lock_sock(sk); 2440 } else { 2441 sk_wait_data(sk, &timeo, last); 2442 } 2443 2444 if ((flags & MSG_PEEK) && 2445 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2446 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2447 current->comm, 2448 task_pid_nr(current)); 2449 peek_seq = tp->copied_seq; 2450 } 2451 continue; 2452 2453 found_ok_skb: 2454 /* Ok so how much can we use? */ 2455 used = skb->len - offset; 2456 if (len < used) 2457 used = len; 2458 2459 /* Do we have urgent data here? */ 2460 if (tp->urg_data) { 2461 u32 urg_offset = tp->urg_seq - *seq; 2462 if (urg_offset < used) { 2463 if (!urg_offset) { 2464 if (!sock_flag(sk, SOCK_URGINLINE)) { 2465 WRITE_ONCE(*seq, *seq + 1); 2466 urg_hole++; 2467 offset++; 2468 used--; 2469 if (!used) 2470 goto skip_copy; 2471 } 2472 } else 2473 used = urg_offset; 2474 } 2475 } 2476 2477 if (!(flags & MSG_TRUNC)) { 2478 err = skb_copy_datagram_msg(skb, offset, msg, used); 2479 if (err) { 2480 /* Exception. Bailout! */ 2481 if (!copied) 2482 copied = -EFAULT; 2483 break; 2484 } 2485 } 2486 2487 WRITE_ONCE(*seq, *seq + used); 2488 copied += used; 2489 len -= used; 2490 2491 tcp_rcv_space_adjust(sk); 2492 2493 skip_copy: 2494 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2495 tp->urg_data = 0; 2496 tcp_fast_path_check(sk); 2497 } 2498 2499 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2500 tcp_update_recv_tstamps(skb, tss); 2501 *cmsg_flags |= TCP_CMSG_TS; 2502 } 2503 2504 if (used + offset < skb->len) 2505 continue; 2506 2507 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2508 goto found_fin_ok; 2509 if (!(flags & MSG_PEEK)) 2510 sk_eat_skb(sk, skb); 2511 continue; 2512 2513 found_fin_ok: 2514 /* Process the FIN. */ 2515 WRITE_ONCE(*seq, *seq + 1); 2516 if (!(flags & MSG_PEEK)) 2517 sk_eat_skb(sk, skb); 2518 break; 2519 } while (len > 0); 2520 2521 /* According to UNIX98, msg_name/msg_namelen are ignored 2522 * on connected socket. I was just happy when found this 8) --ANK 2523 */ 2524 2525 /* Clean up data we have read: This will do ACK frames. */ 2526 tcp_cleanup_rbuf(sk, copied); 2527 return copied; 2528 2529 out: 2530 return err; 2531 2532 recv_urg: 2533 err = tcp_recv_urg(sk, msg, len, flags); 2534 goto out; 2535 2536 recv_sndq: 2537 err = tcp_peek_sndq(sk, msg, len); 2538 goto out; 2539 } 2540 2541 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2542 int flags, int *addr_len) 2543 { 2544 int cmsg_flags = 0, ret, inq; 2545 struct scm_timestamping_internal tss; 2546 2547 if (unlikely(flags & MSG_ERRQUEUE)) 2548 return inet_recv_error(sk, msg, len, addr_len); 2549 2550 if (sk_can_busy_loop(sk) && 2551 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2552 sk->sk_state == TCP_ESTABLISHED) 2553 sk_busy_loop(sk, nonblock); 2554 2555 lock_sock(sk); 2556 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2557 &cmsg_flags); 2558 release_sock(sk); 2559 2560 if (cmsg_flags && ret >= 0) { 2561 if (cmsg_flags & TCP_CMSG_TS) 2562 tcp_recv_timestamp(msg, sk, &tss); 2563 if (cmsg_flags & TCP_CMSG_INQ) { 2564 inq = tcp_inq_hint(sk); 2565 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2566 } 2567 } 2568 return ret; 2569 } 2570 EXPORT_SYMBOL(tcp_recvmsg); 2571 2572 void tcp_set_state(struct sock *sk, int state) 2573 { 2574 int oldstate = sk->sk_state; 2575 2576 /* We defined a new enum for TCP states that are exported in BPF 2577 * so as not force the internal TCP states to be frozen. The 2578 * following checks will detect if an internal state value ever 2579 * differs from the BPF value. If this ever happens, then we will 2580 * need to remap the internal value to the BPF value before calling 2581 * tcp_call_bpf_2arg. 2582 */ 2583 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2584 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2585 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2586 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2587 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2588 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2589 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2590 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2591 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2592 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2593 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2594 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2595 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2596 2597 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2598 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2599 2600 switch (state) { 2601 case TCP_ESTABLISHED: 2602 if (oldstate != TCP_ESTABLISHED) 2603 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2604 break; 2605 2606 case TCP_CLOSE: 2607 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2608 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2609 2610 sk->sk_prot->unhash(sk); 2611 if (inet_csk(sk)->icsk_bind_hash && 2612 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2613 inet_put_port(sk); 2614 fallthrough; 2615 default: 2616 if (oldstate == TCP_ESTABLISHED) 2617 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2618 } 2619 2620 /* Change state AFTER socket is unhashed to avoid closed 2621 * socket sitting in hash tables. 2622 */ 2623 inet_sk_state_store(sk, state); 2624 } 2625 EXPORT_SYMBOL_GPL(tcp_set_state); 2626 2627 /* 2628 * State processing on a close. This implements the state shift for 2629 * sending our FIN frame. Note that we only send a FIN for some 2630 * states. A shutdown() may have already sent the FIN, or we may be 2631 * closed. 2632 */ 2633 2634 static const unsigned char new_state[16] = { 2635 /* current state: new state: action: */ 2636 [0 /* (Invalid) */] = TCP_CLOSE, 2637 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2638 [TCP_SYN_SENT] = TCP_CLOSE, 2639 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2640 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2641 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2642 [TCP_TIME_WAIT] = TCP_CLOSE, 2643 [TCP_CLOSE] = TCP_CLOSE, 2644 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2645 [TCP_LAST_ACK] = TCP_LAST_ACK, 2646 [TCP_LISTEN] = TCP_CLOSE, 2647 [TCP_CLOSING] = TCP_CLOSING, 2648 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2649 }; 2650 2651 static int tcp_close_state(struct sock *sk) 2652 { 2653 int next = (int)new_state[sk->sk_state]; 2654 int ns = next & TCP_STATE_MASK; 2655 2656 tcp_set_state(sk, ns); 2657 2658 return next & TCP_ACTION_FIN; 2659 } 2660 2661 /* 2662 * Shutdown the sending side of a connection. Much like close except 2663 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2664 */ 2665 2666 void tcp_shutdown(struct sock *sk, int how) 2667 { 2668 /* We need to grab some memory, and put together a FIN, 2669 * and then put it into the queue to be sent. 2670 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2671 */ 2672 if (!(how & SEND_SHUTDOWN)) 2673 return; 2674 2675 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2676 if ((1 << sk->sk_state) & 2677 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2678 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2679 /* Clear out any half completed packets. FIN if needed. */ 2680 if (tcp_close_state(sk)) 2681 tcp_send_fin(sk); 2682 } 2683 } 2684 EXPORT_SYMBOL(tcp_shutdown); 2685 2686 bool tcp_check_oom(struct sock *sk, int shift) 2687 { 2688 bool too_many_orphans, out_of_socket_memory; 2689 2690 too_many_orphans = tcp_too_many_orphans(sk, shift); 2691 out_of_socket_memory = tcp_out_of_memory(sk); 2692 2693 if (too_many_orphans) 2694 net_info_ratelimited("too many orphaned sockets\n"); 2695 if (out_of_socket_memory) 2696 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2697 return too_many_orphans || out_of_socket_memory; 2698 } 2699 2700 void __tcp_close(struct sock *sk, long timeout) 2701 { 2702 struct sk_buff *skb; 2703 int data_was_unread = 0; 2704 int state; 2705 2706 sk->sk_shutdown = SHUTDOWN_MASK; 2707 2708 if (sk->sk_state == TCP_LISTEN) { 2709 tcp_set_state(sk, TCP_CLOSE); 2710 2711 /* Special case. */ 2712 inet_csk_listen_stop(sk); 2713 2714 goto adjudge_to_death; 2715 } 2716 2717 /* We need to flush the recv. buffs. We do this only on the 2718 * descriptor close, not protocol-sourced closes, because the 2719 * reader process may not have drained the data yet! 2720 */ 2721 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2722 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2723 2724 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2725 len--; 2726 data_was_unread += len; 2727 __kfree_skb(skb); 2728 } 2729 2730 sk_mem_reclaim(sk); 2731 2732 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2733 if (sk->sk_state == TCP_CLOSE) 2734 goto adjudge_to_death; 2735 2736 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2737 * data was lost. To witness the awful effects of the old behavior of 2738 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2739 * GET in an FTP client, suspend the process, wait for the client to 2740 * advertise a zero window, then kill -9 the FTP client, wheee... 2741 * Note: timeout is always zero in such a case. 2742 */ 2743 if (unlikely(tcp_sk(sk)->repair)) { 2744 sk->sk_prot->disconnect(sk, 0); 2745 } else if (data_was_unread) { 2746 /* Unread data was tossed, zap the connection. */ 2747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2748 tcp_set_state(sk, TCP_CLOSE); 2749 tcp_send_active_reset(sk, sk->sk_allocation); 2750 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2751 /* Check zero linger _after_ checking for unread data. */ 2752 sk->sk_prot->disconnect(sk, 0); 2753 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2754 } else if (tcp_close_state(sk)) { 2755 /* We FIN if the application ate all the data before 2756 * zapping the connection. 2757 */ 2758 2759 /* RED-PEN. Formally speaking, we have broken TCP state 2760 * machine. State transitions: 2761 * 2762 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2763 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2764 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2765 * 2766 * are legal only when FIN has been sent (i.e. in window), 2767 * rather than queued out of window. Purists blame. 2768 * 2769 * F.e. "RFC state" is ESTABLISHED, 2770 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2771 * 2772 * The visible declinations are that sometimes 2773 * we enter time-wait state, when it is not required really 2774 * (harmless), do not send active resets, when they are 2775 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2776 * they look as CLOSING or LAST_ACK for Linux) 2777 * Probably, I missed some more holelets. 2778 * --ANK 2779 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2780 * in a single packet! (May consider it later but will 2781 * probably need API support or TCP_CORK SYN-ACK until 2782 * data is written and socket is closed.) 2783 */ 2784 tcp_send_fin(sk); 2785 } 2786 2787 sk_stream_wait_close(sk, timeout); 2788 2789 adjudge_to_death: 2790 state = sk->sk_state; 2791 sock_hold(sk); 2792 sock_orphan(sk); 2793 2794 local_bh_disable(); 2795 bh_lock_sock(sk); 2796 /* remove backlog if any, without releasing ownership. */ 2797 __release_sock(sk); 2798 2799 percpu_counter_inc(sk->sk_prot->orphan_count); 2800 2801 /* Have we already been destroyed by a softirq or backlog? */ 2802 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2803 goto out; 2804 2805 /* This is a (useful) BSD violating of the RFC. There is a 2806 * problem with TCP as specified in that the other end could 2807 * keep a socket open forever with no application left this end. 2808 * We use a 1 minute timeout (about the same as BSD) then kill 2809 * our end. If they send after that then tough - BUT: long enough 2810 * that we won't make the old 4*rto = almost no time - whoops 2811 * reset mistake. 2812 * 2813 * Nope, it was not mistake. It is really desired behaviour 2814 * f.e. on http servers, when such sockets are useless, but 2815 * consume significant resources. Let's do it with special 2816 * linger2 option. --ANK 2817 */ 2818 2819 if (sk->sk_state == TCP_FIN_WAIT2) { 2820 struct tcp_sock *tp = tcp_sk(sk); 2821 if (tp->linger2 < 0) { 2822 tcp_set_state(sk, TCP_CLOSE); 2823 tcp_send_active_reset(sk, GFP_ATOMIC); 2824 __NET_INC_STATS(sock_net(sk), 2825 LINUX_MIB_TCPABORTONLINGER); 2826 } else { 2827 const int tmo = tcp_fin_time(sk); 2828 2829 if (tmo > TCP_TIMEWAIT_LEN) { 2830 inet_csk_reset_keepalive_timer(sk, 2831 tmo - TCP_TIMEWAIT_LEN); 2832 } else { 2833 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2834 goto out; 2835 } 2836 } 2837 } 2838 if (sk->sk_state != TCP_CLOSE) { 2839 sk_mem_reclaim(sk); 2840 if (tcp_check_oom(sk, 0)) { 2841 tcp_set_state(sk, TCP_CLOSE); 2842 tcp_send_active_reset(sk, GFP_ATOMIC); 2843 __NET_INC_STATS(sock_net(sk), 2844 LINUX_MIB_TCPABORTONMEMORY); 2845 } else if (!check_net(sock_net(sk))) { 2846 /* Not possible to send reset; just close */ 2847 tcp_set_state(sk, TCP_CLOSE); 2848 } 2849 } 2850 2851 if (sk->sk_state == TCP_CLOSE) { 2852 struct request_sock *req; 2853 2854 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2855 lockdep_sock_is_held(sk)); 2856 /* We could get here with a non-NULL req if the socket is 2857 * aborted (e.g., closed with unread data) before 3WHS 2858 * finishes. 2859 */ 2860 if (req) 2861 reqsk_fastopen_remove(sk, req, false); 2862 inet_csk_destroy_sock(sk); 2863 } 2864 /* Otherwise, socket is reprieved until protocol close. */ 2865 2866 out: 2867 bh_unlock_sock(sk); 2868 local_bh_enable(); 2869 } 2870 2871 void tcp_close(struct sock *sk, long timeout) 2872 { 2873 lock_sock(sk); 2874 __tcp_close(sk, timeout); 2875 release_sock(sk); 2876 sock_put(sk); 2877 } 2878 EXPORT_SYMBOL(tcp_close); 2879 2880 /* These states need RST on ABORT according to RFC793 */ 2881 2882 static inline bool tcp_need_reset(int state) 2883 { 2884 return (1 << state) & 2885 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2886 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2887 } 2888 2889 static void tcp_rtx_queue_purge(struct sock *sk) 2890 { 2891 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2892 2893 tcp_sk(sk)->highest_sack = NULL; 2894 while (p) { 2895 struct sk_buff *skb = rb_to_skb(p); 2896 2897 p = rb_next(p); 2898 /* Since we are deleting whole queue, no need to 2899 * list_del(&skb->tcp_tsorted_anchor) 2900 */ 2901 tcp_rtx_queue_unlink(skb, sk); 2902 sk_wmem_free_skb(sk, skb); 2903 } 2904 } 2905 2906 void tcp_write_queue_purge(struct sock *sk) 2907 { 2908 struct sk_buff *skb; 2909 2910 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2911 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2912 tcp_skb_tsorted_anchor_cleanup(skb); 2913 sk_wmem_free_skb(sk, skb); 2914 } 2915 tcp_rtx_queue_purge(sk); 2916 skb = sk->sk_tx_skb_cache; 2917 if (skb) { 2918 __kfree_skb(skb); 2919 sk->sk_tx_skb_cache = NULL; 2920 } 2921 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2922 sk_mem_reclaim(sk); 2923 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2924 tcp_sk(sk)->packets_out = 0; 2925 inet_csk(sk)->icsk_backoff = 0; 2926 } 2927 2928 int tcp_disconnect(struct sock *sk, int flags) 2929 { 2930 struct inet_sock *inet = inet_sk(sk); 2931 struct inet_connection_sock *icsk = inet_csk(sk); 2932 struct tcp_sock *tp = tcp_sk(sk); 2933 int old_state = sk->sk_state; 2934 u32 seq; 2935 2936 if (old_state != TCP_CLOSE) 2937 tcp_set_state(sk, TCP_CLOSE); 2938 2939 /* ABORT function of RFC793 */ 2940 if (old_state == TCP_LISTEN) { 2941 inet_csk_listen_stop(sk); 2942 } else if (unlikely(tp->repair)) { 2943 sk->sk_err = ECONNABORTED; 2944 } else if (tcp_need_reset(old_state) || 2945 (tp->snd_nxt != tp->write_seq && 2946 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2947 /* The last check adjusts for discrepancy of Linux wrt. RFC 2948 * states 2949 */ 2950 tcp_send_active_reset(sk, gfp_any()); 2951 sk->sk_err = ECONNRESET; 2952 } else if (old_state == TCP_SYN_SENT) 2953 sk->sk_err = ECONNRESET; 2954 2955 tcp_clear_xmit_timers(sk); 2956 __skb_queue_purge(&sk->sk_receive_queue); 2957 if (sk->sk_rx_skb_cache) { 2958 __kfree_skb(sk->sk_rx_skb_cache); 2959 sk->sk_rx_skb_cache = NULL; 2960 } 2961 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2962 tp->urg_data = 0; 2963 tcp_write_queue_purge(sk); 2964 tcp_fastopen_active_disable_ofo_check(sk); 2965 skb_rbtree_purge(&tp->out_of_order_queue); 2966 2967 inet->inet_dport = 0; 2968 2969 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2970 inet_reset_saddr(sk); 2971 2972 sk->sk_shutdown = 0; 2973 sock_reset_flag(sk, SOCK_DONE); 2974 tp->srtt_us = 0; 2975 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2976 tp->rcv_rtt_last_tsecr = 0; 2977 2978 seq = tp->write_seq + tp->max_window + 2; 2979 if (!seq) 2980 seq = 1; 2981 WRITE_ONCE(tp->write_seq, seq); 2982 2983 icsk->icsk_backoff = 0; 2984 icsk->icsk_probes_out = 0; 2985 icsk->icsk_probes_tstamp = 0; 2986 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2987 icsk->icsk_rto_min = TCP_RTO_MIN; 2988 icsk->icsk_delack_max = TCP_DELACK_MAX; 2989 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2990 tp->snd_cwnd = TCP_INIT_CWND; 2991 tp->snd_cwnd_cnt = 0; 2992 tp->window_clamp = 0; 2993 tp->delivered = 0; 2994 tp->delivered_ce = 0; 2995 if (icsk->icsk_ca_ops->release) 2996 icsk->icsk_ca_ops->release(sk); 2997 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2998 icsk->icsk_ca_initialized = 0; 2999 tcp_set_ca_state(sk, TCP_CA_Open); 3000 tp->is_sack_reneg = 0; 3001 tcp_clear_retrans(tp); 3002 tp->total_retrans = 0; 3003 inet_csk_delack_init(sk); 3004 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3005 * issue in __tcp_select_window() 3006 */ 3007 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3008 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3009 __sk_dst_reset(sk); 3010 dst_release(sk->sk_rx_dst); 3011 sk->sk_rx_dst = NULL; 3012 tcp_saved_syn_free(tp); 3013 tp->compressed_ack = 0; 3014 tp->segs_in = 0; 3015 tp->segs_out = 0; 3016 tp->bytes_sent = 0; 3017 tp->bytes_acked = 0; 3018 tp->bytes_received = 0; 3019 tp->bytes_retrans = 0; 3020 tp->data_segs_in = 0; 3021 tp->data_segs_out = 0; 3022 tp->duplicate_sack[0].start_seq = 0; 3023 tp->duplicate_sack[0].end_seq = 0; 3024 tp->dsack_dups = 0; 3025 tp->reord_seen = 0; 3026 tp->retrans_out = 0; 3027 tp->sacked_out = 0; 3028 tp->tlp_high_seq = 0; 3029 tp->last_oow_ack_time = 0; 3030 /* There's a bubble in the pipe until at least the first ACK. */ 3031 tp->app_limited = ~0U; 3032 tp->rack.mstamp = 0; 3033 tp->rack.advanced = 0; 3034 tp->rack.reo_wnd_steps = 1; 3035 tp->rack.last_delivered = 0; 3036 tp->rack.reo_wnd_persist = 0; 3037 tp->rack.dsack_seen = 0; 3038 tp->syn_data_acked = 0; 3039 tp->rx_opt.saw_tstamp = 0; 3040 tp->rx_opt.dsack = 0; 3041 tp->rx_opt.num_sacks = 0; 3042 tp->rcv_ooopack = 0; 3043 3044 3045 /* Clean up fastopen related fields */ 3046 tcp_free_fastopen_req(tp); 3047 inet->defer_connect = 0; 3048 tp->fastopen_client_fail = 0; 3049 3050 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3051 3052 if (sk->sk_frag.page) { 3053 put_page(sk->sk_frag.page); 3054 sk->sk_frag.page = NULL; 3055 sk->sk_frag.offset = 0; 3056 } 3057 3058 sk->sk_error_report(sk); 3059 return 0; 3060 } 3061 EXPORT_SYMBOL(tcp_disconnect); 3062 3063 static inline bool tcp_can_repair_sock(const struct sock *sk) 3064 { 3065 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3066 (sk->sk_state != TCP_LISTEN); 3067 } 3068 3069 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3070 { 3071 struct tcp_repair_window opt; 3072 3073 if (!tp->repair) 3074 return -EPERM; 3075 3076 if (len != sizeof(opt)) 3077 return -EINVAL; 3078 3079 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3080 return -EFAULT; 3081 3082 if (opt.max_window < opt.snd_wnd) 3083 return -EINVAL; 3084 3085 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3086 return -EINVAL; 3087 3088 if (after(opt.rcv_wup, tp->rcv_nxt)) 3089 return -EINVAL; 3090 3091 tp->snd_wl1 = opt.snd_wl1; 3092 tp->snd_wnd = opt.snd_wnd; 3093 tp->max_window = opt.max_window; 3094 3095 tp->rcv_wnd = opt.rcv_wnd; 3096 tp->rcv_wup = opt.rcv_wup; 3097 3098 return 0; 3099 } 3100 3101 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3102 unsigned int len) 3103 { 3104 struct tcp_sock *tp = tcp_sk(sk); 3105 struct tcp_repair_opt opt; 3106 size_t offset = 0; 3107 3108 while (len >= sizeof(opt)) { 3109 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3110 return -EFAULT; 3111 3112 offset += sizeof(opt); 3113 len -= sizeof(opt); 3114 3115 switch (opt.opt_code) { 3116 case TCPOPT_MSS: 3117 tp->rx_opt.mss_clamp = opt.opt_val; 3118 tcp_mtup_init(sk); 3119 break; 3120 case TCPOPT_WINDOW: 3121 { 3122 u16 snd_wscale = opt.opt_val & 0xFFFF; 3123 u16 rcv_wscale = opt.opt_val >> 16; 3124 3125 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3126 return -EFBIG; 3127 3128 tp->rx_opt.snd_wscale = snd_wscale; 3129 tp->rx_opt.rcv_wscale = rcv_wscale; 3130 tp->rx_opt.wscale_ok = 1; 3131 } 3132 break; 3133 case TCPOPT_SACK_PERM: 3134 if (opt.opt_val != 0) 3135 return -EINVAL; 3136 3137 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3138 break; 3139 case TCPOPT_TIMESTAMP: 3140 if (opt.opt_val != 0) 3141 return -EINVAL; 3142 3143 tp->rx_opt.tstamp_ok = 1; 3144 break; 3145 } 3146 } 3147 3148 return 0; 3149 } 3150 3151 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3152 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3153 3154 static void tcp_enable_tx_delay(void) 3155 { 3156 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3157 static int __tcp_tx_delay_enabled = 0; 3158 3159 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3160 static_branch_enable(&tcp_tx_delay_enabled); 3161 pr_info("TCP_TX_DELAY enabled\n"); 3162 } 3163 } 3164 } 3165 3166 /* When set indicates to always queue non-full frames. Later the user clears 3167 * this option and we transmit any pending partial frames in the queue. This is 3168 * meant to be used alongside sendfile() to get properly filled frames when the 3169 * user (for example) must write out headers with a write() call first and then 3170 * use sendfile to send out the data parts. 3171 * 3172 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3173 * TCP_NODELAY. 3174 */ 3175 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3176 { 3177 struct tcp_sock *tp = tcp_sk(sk); 3178 3179 if (on) { 3180 tp->nonagle |= TCP_NAGLE_CORK; 3181 } else { 3182 tp->nonagle &= ~TCP_NAGLE_CORK; 3183 if (tp->nonagle & TCP_NAGLE_OFF) 3184 tp->nonagle |= TCP_NAGLE_PUSH; 3185 tcp_push_pending_frames(sk); 3186 } 3187 } 3188 3189 void tcp_sock_set_cork(struct sock *sk, bool on) 3190 { 3191 lock_sock(sk); 3192 __tcp_sock_set_cork(sk, on); 3193 release_sock(sk); 3194 } 3195 EXPORT_SYMBOL(tcp_sock_set_cork); 3196 3197 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3198 * remembered, but it is not activated until cork is cleared. 3199 * 3200 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3201 * even TCP_CORK for currently queued segments. 3202 */ 3203 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3204 { 3205 if (on) { 3206 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3207 tcp_push_pending_frames(sk); 3208 } else { 3209 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3210 } 3211 } 3212 3213 void tcp_sock_set_nodelay(struct sock *sk) 3214 { 3215 lock_sock(sk); 3216 __tcp_sock_set_nodelay(sk, true); 3217 release_sock(sk); 3218 } 3219 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3220 3221 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3222 { 3223 if (!val) { 3224 inet_csk_enter_pingpong_mode(sk); 3225 return; 3226 } 3227 3228 inet_csk_exit_pingpong_mode(sk); 3229 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3230 inet_csk_ack_scheduled(sk)) { 3231 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3232 tcp_cleanup_rbuf(sk, 1); 3233 if (!(val & 1)) 3234 inet_csk_enter_pingpong_mode(sk); 3235 } 3236 } 3237 3238 void tcp_sock_set_quickack(struct sock *sk, int val) 3239 { 3240 lock_sock(sk); 3241 __tcp_sock_set_quickack(sk, val); 3242 release_sock(sk); 3243 } 3244 EXPORT_SYMBOL(tcp_sock_set_quickack); 3245 3246 int tcp_sock_set_syncnt(struct sock *sk, int val) 3247 { 3248 if (val < 1 || val > MAX_TCP_SYNCNT) 3249 return -EINVAL; 3250 3251 lock_sock(sk); 3252 inet_csk(sk)->icsk_syn_retries = val; 3253 release_sock(sk); 3254 return 0; 3255 } 3256 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3257 3258 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3259 { 3260 lock_sock(sk); 3261 inet_csk(sk)->icsk_user_timeout = val; 3262 release_sock(sk); 3263 } 3264 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3265 3266 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3267 { 3268 struct tcp_sock *tp = tcp_sk(sk); 3269 3270 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3271 return -EINVAL; 3272 3273 tp->keepalive_time = val * HZ; 3274 if (sock_flag(sk, SOCK_KEEPOPEN) && 3275 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3276 u32 elapsed = keepalive_time_elapsed(tp); 3277 3278 if (tp->keepalive_time > elapsed) 3279 elapsed = tp->keepalive_time - elapsed; 3280 else 3281 elapsed = 0; 3282 inet_csk_reset_keepalive_timer(sk, elapsed); 3283 } 3284 3285 return 0; 3286 } 3287 3288 int tcp_sock_set_keepidle(struct sock *sk, int val) 3289 { 3290 int err; 3291 3292 lock_sock(sk); 3293 err = tcp_sock_set_keepidle_locked(sk, val); 3294 release_sock(sk); 3295 return err; 3296 } 3297 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3298 3299 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3300 { 3301 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3302 return -EINVAL; 3303 3304 lock_sock(sk); 3305 tcp_sk(sk)->keepalive_intvl = val * HZ; 3306 release_sock(sk); 3307 return 0; 3308 } 3309 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3310 3311 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3312 { 3313 if (val < 1 || val > MAX_TCP_KEEPCNT) 3314 return -EINVAL; 3315 3316 lock_sock(sk); 3317 tcp_sk(sk)->keepalive_probes = val; 3318 release_sock(sk); 3319 return 0; 3320 } 3321 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3322 3323 int tcp_set_window_clamp(struct sock *sk, int val) 3324 { 3325 struct tcp_sock *tp = tcp_sk(sk); 3326 3327 if (!val) { 3328 if (sk->sk_state != TCP_CLOSE) 3329 return -EINVAL; 3330 tp->window_clamp = 0; 3331 } else { 3332 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3333 SOCK_MIN_RCVBUF / 2 : val; 3334 } 3335 return 0; 3336 } 3337 3338 /* 3339 * Socket option code for TCP. 3340 */ 3341 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3342 sockptr_t optval, unsigned int optlen) 3343 { 3344 struct tcp_sock *tp = tcp_sk(sk); 3345 struct inet_connection_sock *icsk = inet_csk(sk); 3346 struct net *net = sock_net(sk); 3347 int val; 3348 int err = 0; 3349 3350 /* These are data/string values, all the others are ints */ 3351 switch (optname) { 3352 case TCP_CONGESTION: { 3353 char name[TCP_CA_NAME_MAX]; 3354 3355 if (optlen < 1) 3356 return -EINVAL; 3357 3358 val = strncpy_from_sockptr(name, optval, 3359 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3360 if (val < 0) 3361 return -EFAULT; 3362 name[val] = 0; 3363 3364 lock_sock(sk); 3365 err = tcp_set_congestion_control(sk, name, true, 3366 ns_capable(sock_net(sk)->user_ns, 3367 CAP_NET_ADMIN)); 3368 release_sock(sk); 3369 return err; 3370 } 3371 case TCP_ULP: { 3372 char name[TCP_ULP_NAME_MAX]; 3373 3374 if (optlen < 1) 3375 return -EINVAL; 3376 3377 val = strncpy_from_sockptr(name, optval, 3378 min_t(long, TCP_ULP_NAME_MAX - 1, 3379 optlen)); 3380 if (val < 0) 3381 return -EFAULT; 3382 name[val] = 0; 3383 3384 lock_sock(sk); 3385 err = tcp_set_ulp(sk, name); 3386 release_sock(sk); 3387 return err; 3388 } 3389 case TCP_FASTOPEN_KEY: { 3390 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3391 __u8 *backup_key = NULL; 3392 3393 /* Allow a backup key as well to facilitate key rotation 3394 * First key is the active one. 3395 */ 3396 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3397 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3398 return -EINVAL; 3399 3400 if (copy_from_sockptr(key, optval, optlen)) 3401 return -EFAULT; 3402 3403 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3404 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3405 3406 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3407 } 3408 default: 3409 /* fallthru */ 3410 break; 3411 } 3412 3413 if (optlen < sizeof(int)) 3414 return -EINVAL; 3415 3416 if (copy_from_sockptr(&val, optval, sizeof(val))) 3417 return -EFAULT; 3418 3419 lock_sock(sk); 3420 3421 switch (optname) { 3422 case TCP_MAXSEG: 3423 /* Values greater than interface MTU won't take effect. However 3424 * at the point when this call is done we typically don't yet 3425 * know which interface is going to be used 3426 */ 3427 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3428 err = -EINVAL; 3429 break; 3430 } 3431 tp->rx_opt.user_mss = val; 3432 break; 3433 3434 case TCP_NODELAY: 3435 __tcp_sock_set_nodelay(sk, val); 3436 break; 3437 3438 case TCP_THIN_LINEAR_TIMEOUTS: 3439 if (val < 0 || val > 1) 3440 err = -EINVAL; 3441 else 3442 tp->thin_lto = val; 3443 break; 3444 3445 case TCP_THIN_DUPACK: 3446 if (val < 0 || val > 1) 3447 err = -EINVAL; 3448 break; 3449 3450 case TCP_REPAIR: 3451 if (!tcp_can_repair_sock(sk)) 3452 err = -EPERM; 3453 else if (val == TCP_REPAIR_ON) { 3454 tp->repair = 1; 3455 sk->sk_reuse = SK_FORCE_REUSE; 3456 tp->repair_queue = TCP_NO_QUEUE; 3457 } else if (val == TCP_REPAIR_OFF) { 3458 tp->repair = 0; 3459 sk->sk_reuse = SK_NO_REUSE; 3460 tcp_send_window_probe(sk); 3461 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3462 tp->repair = 0; 3463 sk->sk_reuse = SK_NO_REUSE; 3464 } else 3465 err = -EINVAL; 3466 3467 break; 3468 3469 case TCP_REPAIR_QUEUE: 3470 if (!tp->repair) 3471 err = -EPERM; 3472 else if ((unsigned int)val < TCP_QUEUES_NR) 3473 tp->repair_queue = val; 3474 else 3475 err = -EINVAL; 3476 break; 3477 3478 case TCP_QUEUE_SEQ: 3479 if (sk->sk_state != TCP_CLOSE) 3480 err = -EPERM; 3481 else if (tp->repair_queue == TCP_SEND_QUEUE) 3482 WRITE_ONCE(tp->write_seq, val); 3483 else if (tp->repair_queue == TCP_RECV_QUEUE) { 3484 WRITE_ONCE(tp->rcv_nxt, val); 3485 WRITE_ONCE(tp->copied_seq, val); 3486 } 3487 else 3488 err = -EINVAL; 3489 break; 3490 3491 case TCP_REPAIR_OPTIONS: 3492 if (!tp->repair) 3493 err = -EINVAL; 3494 else if (sk->sk_state == TCP_ESTABLISHED) 3495 err = tcp_repair_options_est(sk, optval, optlen); 3496 else 3497 err = -EPERM; 3498 break; 3499 3500 case TCP_CORK: 3501 __tcp_sock_set_cork(sk, val); 3502 break; 3503 3504 case TCP_KEEPIDLE: 3505 err = tcp_sock_set_keepidle_locked(sk, val); 3506 break; 3507 case TCP_KEEPINTVL: 3508 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3509 err = -EINVAL; 3510 else 3511 tp->keepalive_intvl = val * HZ; 3512 break; 3513 case TCP_KEEPCNT: 3514 if (val < 1 || val > MAX_TCP_KEEPCNT) 3515 err = -EINVAL; 3516 else 3517 tp->keepalive_probes = val; 3518 break; 3519 case TCP_SYNCNT: 3520 if (val < 1 || val > MAX_TCP_SYNCNT) 3521 err = -EINVAL; 3522 else 3523 icsk->icsk_syn_retries = val; 3524 break; 3525 3526 case TCP_SAVE_SYN: 3527 /* 0: disable, 1: enable, 2: start from ether_header */ 3528 if (val < 0 || val > 2) 3529 err = -EINVAL; 3530 else 3531 tp->save_syn = val; 3532 break; 3533 3534 case TCP_LINGER2: 3535 if (val < 0) 3536 tp->linger2 = -1; 3537 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3538 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3539 else 3540 tp->linger2 = val * HZ; 3541 break; 3542 3543 case TCP_DEFER_ACCEPT: 3544 /* Translate value in seconds to number of retransmits */ 3545 icsk->icsk_accept_queue.rskq_defer_accept = 3546 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3547 TCP_RTO_MAX / HZ); 3548 break; 3549 3550 case TCP_WINDOW_CLAMP: 3551 err = tcp_set_window_clamp(sk, val); 3552 break; 3553 3554 case TCP_QUICKACK: 3555 __tcp_sock_set_quickack(sk, val); 3556 break; 3557 3558 #ifdef CONFIG_TCP_MD5SIG 3559 case TCP_MD5SIG: 3560 case TCP_MD5SIG_EXT: 3561 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3562 break; 3563 #endif 3564 case TCP_USER_TIMEOUT: 3565 /* Cap the max time in ms TCP will retry or probe the window 3566 * before giving up and aborting (ETIMEDOUT) a connection. 3567 */ 3568 if (val < 0) 3569 err = -EINVAL; 3570 else 3571 icsk->icsk_user_timeout = val; 3572 break; 3573 3574 case TCP_FASTOPEN: 3575 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3576 TCPF_LISTEN))) { 3577 tcp_fastopen_init_key_once(net); 3578 3579 fastopen_queue_tune(sk, val); 3580 } else { 3581 err = -EINVAL; 3582 } 3583 break; 3584 case TCP_FASTOPEN_CONNECT: 3585 if (val > 1 || val < 0) { 3586 err = -EINVAL; 3587 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3588 if (sk->sk_state == TCP_CLOSE) 3589 tp->fastopen_connect = val; 3590 else 3591 err = -EINVAL; 3592 } else { 3593 err = -EOPNOTSUPP; 3594 } 3595 break; 3596 case TCP_FASTOPEN_NO_COOKIE: 3597 if (val > 1 || val < 0) 3598 err = -EINVAL; 3599 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3600 err = -EINVAL; 3601 else 3602 tp->fastopen_no_cookie = val; 3603 break; 3604 case TCP_TIMESTAMP: 3605 if (!tp->repair) 3606 err = -EPERM; 3607 else 3608 tp->tsoffset = val - tcp_time_stamp_raw(); 3609 break; 3610 case TCP_REPAIR_WINDOW: 3611 err = tcp_repair_set_window(tp, optval, optlen); 3612 break; 3613 case TCP_NOTSENT_LOWAT: 3614 tp->notsent_lowat = val; 3615 sk->sk_write_space(sk); 3616 break; 3617 case TCP_INQ: 3618 if (val > 1 || val < 0) 3619 err = -EINVAL; 3620 else 3621 tp->recvmsg_inq = val; 3622 break; 3623 case TCP_TX_DELAY: 3624 if (val) 3625 tcp_enable_tx_delay(); 3626 tp->tcp_tx_delay = val; 3627 break; 3628 default: 3629 err = -ENOPROTOOPT; 3630 break; 3631 } 3632 3633 release_sock(sk); 3634 return err; 3635 } 3636 3637 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3638 unsigned int optlen) 3639 { 3640 const struct inet_connection_sock *icsk = inet_csk(sk); 3641 3642 if (level != SOL_TCP) 3643 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3644 optval, optlen); 3645 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3646 } 3647 EXPORT_SYMBOL(tcp_setsockopt); 3648 3649 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3650 struct tcp_info *info) 3651 { 3652 u64 stats[__TCP_CHRONO_MAX], total = 0; 3653 enum tcp_chrono i; 3654 3655 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3656 stats[i] = tp->chrono_stat[i - 1]; 3657 if (i == tp->chrono_type) 3658 stats[i] += tcp_jiffies32 - tp->chrono_start; 3659 stats[i] *= USEC_PER_SEC / HZ; 3660 total += stats[i]; 3661 } 3662 3663 info->tcpi_busy_time = total; 3664 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3665 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3666 } 3667 3668 /* Return information about state of tcp endpoint in API format. */ 3669 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3670 { 3671 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3672 const struct inet_connection_sock *icsk = inet_csk(sk); 3673 unsigned long rate; 3674 u32 now; 3675 u64 rate64; 3676 bool slow; 3677 3678 memset(info, 0, sizeof(*info)); 3679 if (sk->sk_type != SOCK_STREAM) 3680 return; 3681 3682 info->tcpi_state = inet_sk_state_load(sk); 3683 3684 /* Report meaningful fields for all TCP states, including listeners */ 3685 rate = READ_ONCE(sk->sk_pacing_rate); 3686 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3687 info->tcpi_pacing_rate = rate64; 3688 3689 rate = READ_ONCE(sk->sk_max_pacing_rate); 3690 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3691 info->tcpi_max_pacing_rate = rate64; 3692 3693 info->tcpi_reordering = tp->reordering; 3694 info->tcpi_snd_cwnd = tp->snd_cwnd; 3695 3696 if (info->tcpi_state == TCP_LISTEN) { 3697 /* listeners aliased fields : 3698 * tcpi_unacked -> Number of children ready for accept() 3699 * tcpi_sacked -> max backlog 3700 */ 3701 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3702 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3703 return; 3704 } 3705 3706 slow = lock_sock_fast(sk); 3707 3708 info->tcpi_ca_state = icsk->icsk_ca_state; 3709 info->tcpi_retransmits = icsk->icsk_retransmits; 3710 info->tcpi_probes = icsk->icsk_probes_out; 3711 info->tcpi_backoff = icsk->icsk_backoff; 3712 3713 if (tp->rx_opt.tstamp_ok) 3714 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3715 if (tcp_is_sack(tp)) 3716 info->tcpi_options |= TCPI_OPT_SACK; 3717 if (tp->rx_opt.wscale_ok) { 3718 info->tcpi_options |= TCPI_OPT_WSCALE; 3719 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3720 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3721 } 3722 3723 if (tp->ecn_flags & TCP_ECN_OK) 3724 info->tcpi_options |= TCPI_OPT_ECN; 3725 if (tp->ecn_flags & TCP_ECN_SEEN) 3726 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3727 if (tp->syn_data_acked) 3728 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3729 3730 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3731 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3732 info->tcpi_snd_mss = tp->mss_cache; 3733 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3734 3735 info->tcpi_unacked = tp->packets_out; 3736 info->tcpi_sacked = tp->sacked_out; 3737 3738 info->tcpi_lost = tp->lost_out; 3739 info->tcpi_retrans = tp->retrans_out; 3740 3741 now = tcp_jiffies32; 3742 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3743 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3744 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3745 3746 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3747 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3748 info->tcpi_rtt = tp->srtt_us >> 3; 3749 info->tcpi_rttvar = tp->mdev_us >> 2; 3750 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3751 info->tcpi_advmss = tp->advmss; 3752 3753 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3754 info->tcpi_rcv_space = tp->rcvq_space.space; 3755 3756 info->tcpi_total_retrans = tp->total_retrans; 3757 3758 info->tcpi_bytes_acked = tp->bytes_acked; 3759 info->tcpi_bytes_received = tp->bytes_received; 3760 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3761 tcp_get_info_chrono_stats(tp, info); 3762 3763 info->tcpi_segs_out = tp->segs_out; 3764 info->tcpi_segs_in = tp->segs_in; 3765 3766 info->tcpi_min_rtt = tcp_min_rtt(tp); 3767 info->tcpi_data_segs_in = tp->data_segs_in; 3768 info->tcpi_data_segs_out = tp->data_segs_out; 3769 3770 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3771 rate64 = tcp_compute_delivery_rate(tp); 3772 if (rate64) 3773 info->tcpi_delivery_rate = rate64; 3774 info->tcpi_delivered = tp->delivered; 3775 info->tcpi_delivered_ce = tp->delivered_ce; 3776 info->tcpi_bytes_sent = tp->bytes_sent; 3777 info->tcpi_bytes_retrans = tp->bytes_retrans; 3778 info->tcpi_dsack_dups = tp->dsack_dups; 3779 info->tcpi_reord_seen = tp->reord_seen; 3780 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3781 info->tcpi_snd_wnd = tp->snd_wnd; 3782 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3783 unlock_sock_fast(sk, slow); 3784 } 3785 EXPORT_SYMBOL_GPL(tcp_get_info); 3786 3787 static size_t tcp_opt_stats_get_size(void) 3788 { 3789 return 3790 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3791 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3792 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3793 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3794 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3795 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3796 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3797 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3798 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3799 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3800 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3801 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3802 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3803 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3804 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3805 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3806 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3812 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3813 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3814 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3815 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3816 0; 3817 } 3818 3819 /* Returns TTL or hop limit of an incoming packet from skb. */ 3820 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3821 { 3822 if (skb->protocol == htons(ETH_P_IP)) 3823 return ip_hdr(skb)->ttl; 3824 else if (skb->protocol == htons(ETH_P_IPV6)) 3825 return ipv6_hdr(skb)->hop_limit; 3826 else 3827 return 0; 3828 } 3829 3830 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3831 const struct sk_buff *orig_skb, 3832 const struct sk_buff *ack_skb) 3833 { 3834 const struct tcp_sock *tp = tcp_sk(sk); 3835 struct sk_buff *stats; 3836 struct tcp_info info; 3837 unsigned long rate; 3838 u64 rate64; 3839 3840 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3841 if (!stats) 3842 return NULL; 3843 3844 tcp_get_info_chrono_stats(tp, &info); 3845 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3846 info.tcpi_busy_time, TCP_NLA_PAD); 3847 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3848 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3849 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3850 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3851 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3852 tp->data_segs_out, TCP_NLA_PAD); 3853 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3854 tp->total_retrans, TCP_NLA_PAD); 3855 3856 rate = READ_ONCE(sk->sk_pacing_rate); 3857 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3858 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3859 3860 rate64 = tcp_compute_delivery_rate(tp); 3861 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3862 3863 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3864 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3865 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3866 3867 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3868 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3869 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3870 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3871 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3872 3873 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3874 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3875 3876 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3877 TCP_NLA_PAD); 3878 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3879 TCP_NLA_PAD); 3880 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3881 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3882 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3883 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3884 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3885 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3886 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3887 TCP_NLA_PAD); 3888 if (ack_skb) 3889 nla_put_u8(stats, TCP_NLA_TTL, 3890 tcp_skb_ttl_or_hop_limit(ack_skb)); 3891 3892 return stats; 3893 } 3894 3895 static int do_tcp_getsockopt(struct sock *sk, int level, 3896 int optname, char __user *optval, int __user *optlen) 3897 { 3898 struct inet_connection_sock *icsk = inet_csk(sk); 3899 struct tcp_sock *tp = tcp_sk(sk); 3900 struct net *net = sock_net(sk); 3901 int val, len; 3902 3903 if (get_user(len, optlen)) 3904 return -EFAULT; 3905 3906 len = min_t(unsigned int, len, sizeof(int)); 3907 3908 if (len < 0) 3909 return -EINVAL; 3910 3911 switch (optname) { 3912 case TCP_MAXSEG: 3913 val = tp->mss_cache; 3914 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3915 val = tp->rx_opt.user_mss; 3916 if (tp->repair) 3917 val = tp->rx_opt.mss_clamp; 3918 break; 3919 case TCP_NODELAY: 3920 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3921 break; 3922 case TCP_CORK: 3923 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3924 break; 3925 case TCP_KEEPIDLE: 3926 val = keepalive_time_when(tp) / HZ; 3927 break; 3928 case TCP_KEEPINTVL: 3929 val = keepalive_intvl_when(tp) / HZ; 3930 break; 3931 case TCP_KEEPCNT: 3932 val = keepalive_probes(tp); 3933 break; 3934 case TCP_SYNCNT: 3935 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3936 break; 3937 case TCP_LINGER2: 3938 val = tp->linger2; 3939 if (val >= 0) 3940 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3941 break; 3942 case TCP_DEFER_ACCEPT: 3943 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3944 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3945 break; 3946 case TCP_WINDOW_CLAMP: 3947 val = tp->window_clamp; 3948 break; 3949 case TCP_INFO: { 3950 struct tcp_info info; 3951 3952 if (get_user(len, optlen)) 3953 return -EFAULT; 3954 3955 tcp_get_info(sk, &info); 3956 3957 len = min_t(unsigned int, len, sizeof(info)); 3958 if (put_user(len, optlen)) 3959 return -EFAULT; 3960 if (copy_to_user(optval, &info, len)) 3961 return -EFAULT; 3962 return 0; 3963 } 3964 case TCP_CC_INFO: { 3965 const struct tcp_congestion_ops *ca_ops; 3966 union tcp_cc_info info; 3967 size_t sz = 0; 3968 int attr; 3969 3970 if (get_user(len, optlen)) 3971 return -EFAULT; 3972 3973 ca_ops = icsk->icsk_ca_ops; 3974 if (ca_ops && ca_ops->get_info) 3975 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3976 3977 len = min_t(unsigned int, len, sz); 3978 if (put_user(len, optlen)) 3979 return -EFAULT; 3980 if (copy_to_user(optval, &info, len)) 3981 return -EFAULT; 3982 return 0; 3983 } 3984 case TCP_QUICKACK: 3985 val = !inet_csk_in_pingpong_mode(sk); 3986 break; 3987 3988 case TCP_CONGESTION: 3989 if (get_user(len, optlen)) 3990 return -EFAULT; 3991 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3992 if (put_user(len, optlen)) 3993 return -EFAULT; 3994 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3995 return -EFAULT; 3996 return 0; 3997 3998 case TCP_ULP: 3999 if (get_user(len, optlen)) 4000 return -EFAULT; 4001 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4002 if (!icsk->icsk_ulp_ops) { 4003 if (put_user(0, optlen)) 4004 return -EFAULT; 4005 return 0; 4006 } 4007 if (put_user(len, optlen)) 4008 return -EFAULT; 4009 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4010 return -EFAULT; 4011 return 0; 4012 4013 case TCP_FASTOPEN_KEY: { 4014 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4015 unsigned int key_len; 4016 4017 if (get_user(len, optlen)) 4018 return -EFAULT; 4019 4020 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4021 TCP_FASTOPEN_KEY_LENGTH; 4022 len = min_t(unsigned int, len, key_len); 4023 if (put_user(len, optlen)) 4024 return -EFAULT; 4025 if (copy_to_user(optval, key, len)) 4026 return -EFAULT; 4027 return 0; 4028 } 4029 case TCP_THIN_LINEAR_TIMEOUTS: 4030 val = tp->thin_lto; 4031 break; 4032 4033 case TCP_THIN_DUPACK: 4034 val = 0; 4035 break; 4036 4037 case TCP_REPAIR: 4038 val = tp->repair; 4039 break; 4040 4041 case TCP_REPAIR_QUEUE: 4042 if (tp->repair) 4043 val = tp->repair_queue; 4044 else 4045 return -EINVAL; 4046 break; 4047 4048 case TCP_REPAIR_WINDOW: { 4049 struct tcp_repair_window opt; 4050 4051 if (get_user(len, optlen)) 4052 return -EFAULT; 4053 4054 if (len != sizeof(opt)) 4055 return -EINVAL; 4056 4057 if (!tp->repair) 4058 return -EPERM; 4059 4060 opt.snd_wl1 = tp->snd_wl1; 4061 opt.snd_wnd = tp->snd_wnd; 4062 opt.max_window = tp->max_window; 4063 opt.rcv_wnd = tp->rcv_wnd; 4064 opt.rcv_wup = tp->rcv_wup; 4065 4066 if (copy_to_user(optval, &opt, len)) 4067 return -EFAULT; 4068 return 0; 4069 } 4070 case TCP_QUEUE_SEQ: 4071 if (tp->repair_queue == TCP_SEND_QUEUE) 4072 val = tp->write_seq; 4073 else if (tp->repair_queue == TCP_RECV_QUEUE) 4074 val = tp->rcv_nxt; 4075 else 4076 return -EINVAL; 4077 break; 4078 4079 case TCP_USER_TIMEOUT: 4080 val = icsk->icsk_user_timeout; 4081 break; 4082 4083 case TCP_FASTOPEN: 4084 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4085 break; 4086 4087 case TCP_FASTOPEN_CONNECT: 4088 val = tp->fastopen_connect; 4089 break; 4090 4091 case TCP_FASTOPEN_NO_COOKIE: 4092 val = tp->fastopen_no_cookie; 4093 break; 4094 4095 case TCP_TX_DELAY: 4096 val = tp->tcp_tx_delay; 4097 break; 4098 4099 case TCP_TIMESTAMP: 4100 val = tcp_time_stamp_raw() + tp->tsoffset; 4101 break; 4102 case TCP_NOTSENT_LOWAT: 4103 val = tp->notsent_lowat; 4104 break; 4105 case TCP_INQ: 4106 val = tp->recvmsg_inq; 4107 break; 4108 case TCP_SAVE_SYN: 4109 val = tp->save_syn; 4110 break; 4111 case TCP_SAVED_SYN: { 4112 if (get_user(len, optlen)) 4113 return -EFAULT; 4114 4115 lock_sock(sk); 4116 if (tp->saved_syn) { 4117 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4118 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4119 optlen)) { 4120 release_sock(sk); 4121 return -EFAULT; 4122 } 4123 release_sock(sk); 4124 return -EINVAL; 4125 } 4126 len = tcp_saved_syn_len(tp->saved_syn); 4127 if (put_user(len, optlen)) { 4128 release_sock(sk); 4129 return -EFAULT; 4130 } 4131 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4132 release_sock(sk); 4133 return -EFAULT; 4134 } 4135 tcp_saved_syn_free(tp); 4136 release_sock(sk); 4137 } else { 4138 release_sock(sk); 4139 len = 0; 4140 if (put_user(len, optlen)) 4141 return -EFAULT; 4142 } 4143 return 0; 4144 } 4145 #ifdef CONFIG_MMU 4146 case TCP_ZEROCOPY_RECEIVE: { 4147 struct scm_timestamping_internal tss; 4148 struct tcp_zerocopy_receive zc = {}; 4149 int err; 4150 4151 if (get_user(len, optlen)) 4152 return -EFAULT; 4153 if (len < offsetofend(struct tcp_zerocopy_receive, length)) 4154 return -EINVAL; 4155 if (len > sizeof(zc)) { 4156 len = sizeof(zc); 4157 if (put_user(len, optlen)) 4158 return -EFAULT; 4159 } 4160 if (copy_from_user(&zc, optval, len)) 4161 return -EFAULT; 4162 lock_sock(sk); 4163 err = tcp_zerocopy_receive(sk, &zc, &tss); 4164 release_sock(sk); 4165 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4166 goto zerocopy_rcv_cmsg; 4167 switch (len) { 4168 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4169 goto zerocopy_rcv_cmsg; 4170 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4171 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4172 case offsetofend(struct tcp_zerocopy_receive, flags): 4173 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4174 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4175 case offsetofend(struct tcp_zerocopy_receive, err): 4176 goto zerocopy_rcv_sk_err; 4177 case offsetofend(struct tcp_zerocopy_receive, inq): 4178 goto zerocopy_rcv_inq; 4179 case offsetofend(struct tcp_zerocopy_receive, length): 4180 default: 4181 goto zerocopy_rcv_out; 4182 } 4183 zerocopy_rcv_cmsg: 4184 if (zc.msg_flags & TCP_CMSG_TS) 4185 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4186 else 4187 zc.msg_flags = 0; 4188 zerocopy_rcv_sk_err: 4189 if (!err) 4190 zc.err = sock_error(sk); 4191 zerocopy_rcv_inq: 4192 zc.inq = tcp_inq_hint(sk); 4193 zerocopy_rcv_out: 4194 if (!err && copy_to_user(optval, &zc, len)) 4195 err = -EFAULT; 4196 return err; 4197 } 4198 #endif 4199 default: 4200 return -ENOPROTOOPT; 4201 } 4202 4203 if (put_user(len, optlen)) 4204 return -EFAULT; 4205 if (copy_to_user(optval, &val, len)) 4206 return -EFAULT; 4207 return 0; 4208 } 4209 4210 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4211 int __user *optlen) 4212 { 4213 struct inet_connection_sock *icsk = inet_csk(sk); 4214 4215 if (level != SOL_TCP) 4216 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4217 optval, optlen); 4218 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4219 } 4220 EXPORT_SYMBOL(tcp_getsockopt); 4221 4222 #ifdef CONFIG_TCP_MD5SIG 4223 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4224 static DEFINE_MUTEX(tcp_md5sig_mutex); 4225 static bool tcp_md5sig_pool_populated = false; 4226 4227 static void __tcp_alloc_md5sig_pool(void) 4228 { 4229 struct crypto_ahash *hash; 4230 int cpu; 4231 4232 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4233 if (IS_ERR(hash)) 4234 return; 4235 4236 for_each_possible_cpu(cpu) { 4237 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4238 struct ahash_request *req; 4239 4240 if (!scratch) { 4241 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4242 sizeof(struct tcphdr), 4243 GFP_KERNEL, 4244 cpu_to_node(cpu)); 4245 if (!scratch) 4246 return; 4247 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4248 } 4249 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4250 continue; 4251 4252 req = ahash_request_alloc(hash, GFP_KERNEL); 4253 if (!req) 4254 return; 4255 4256 ahash_request_set_callback(req, 0, NULL, NULL); 4257 4258 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4259 } 4260 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4261 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4262 */ 4263 smp_wmb(); 4264 tcp_md5sig_pool_populated = true; 4265 } 4266 4267 bool tcp_alloc_md5sig_pool(void) 4268 { 4269 if (unlikely(!tcp_md5sig_pool_populated)) { 4270 mutex_lock(&tcp_md5sig_mutex); 4271 4272 if (!tcp_md5sig_pool_populated) { 4273 __tcp_alloc_md5sig_pool(); 4274 if (tcp_md5sig_pool_populated) 4275 static_branch_inc(&tcp_md5_needed); 4276 } 4277 4278 mutex_unlock(&tcp_md5sig_mutex); 4279 } 4280 return tcp_md5sig_pool_populated; 4281 } 4282 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4283 4284 4285 /** 4286 * tcp_get_md5sig_pool - get md5sig_pool for this user 4287 * 4288 * We use percpu structure, so if we succeed, we exit with preemption 4289 * and BH disabled, to make sure another thread or softirq handling 4290 * wont try to get same context. 4291 */ 4292 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4293 { 4294 local_bh_disable(); 4295 4296 if (tcp_md5sig_pool_populated) { 4297 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4298 smp_rmb(); 4299 return this_cpu_ptr(&tcp_md5sig_pool); 4300 } 4301 local_bh_enable(); 4302 return NULL; 4303 } 4304 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4305 4306 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4307 const struct sk_buff *skb, unsigned int header_len) 4308 { 4309 struct scatterlist sg; 4310 const struct tcphdr *tp = tcp_hdr(skb); 4311 struct ahash_request *req = hp->md5_req; 4312 unsigned int i; 4313 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4314 skb_headlen(skb) - header_len : 0; 4315 const struct skb_shared_info *shi = skb_shinfo(skb); 4316 struct sk_buff *frag_iter; 4317 4318 sg_init_table(&sg, 1); 4319 4320 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4321 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4322 if (crypto_ahash_update(req)) 4323 return 1; 4324 4325 for (i = 0; i < shi->nr_frags; ++i) { 4326 const skb_frag_t *f = &shi->frags[i]; 4327 unsigned int offset = skb_frag_off(f); 4328 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4329 4330 sg_set_page(&sg, page, skb_frag_size(f), 4331 offset_in_page(offset)); 4332 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4333 if (crypto_ahash_update(req)) 4334 return 1; 4335 } 4336 4337 skb_walk_frags(skb, frag_iter) 4338 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4339 return 1; 4340 4341 return 0; 4342 } 4343 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4344 4345 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4346 { 4347 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4348 struct scatterlist sg; 4349 4350 sg_init_one(&sg, key->key, keylen); 4351 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4352 4353 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4354 return data_race(crypto_ahash_update(hp->md5_req)); 4355 } 4356 EXPORT_SYMBOL(tcp_md5_hash_key); 4357 4358 #endif 4359 4360 void tcp_done(struct sock *sk) 4361 { 4362 struct request_sock *req; 4363 4364 /* We might be called with a new socket, after 4365 * inet_csk_prepare_forced_close() has been called 4366 * so we can not use lockdep_sock_is_held(sk) 4367 */ 4368 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4369 4370 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4371 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4372 4373 tcp_set_state(sk, TCP_CLOSE); 4374 tcp_clear_xmit_timers(sk); 4375 if (req) 4376 reqsk_fastopen_remove(sk, req, false); 4377 4378 sk->sk_shutdown = SHUTDOWN_MASK; 4379 4380 if (!sock_flag(sk, SOCK_DEAD)) 4381 sk->sk_state_change(sk); 4382 else 4383 inet_csk_destroy_sock(sk); 4384 } 4385 EXPORT_SYMBOL_GPL(tcp_done); 4386 4387 int tcp_abort(struct sock *sk, int err) 4388 { 4389 if (!sk_fullsock(sk)) { 4390 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4391 struct request_sock *req = inet_reqsk(sk); 4392 4393 local_bh_disable(); 4394 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4395 local_bh_enable(); 4396 return 0; 4397 } 4398 return -EOPNOTSUPP; 4399 } 4400 4401 /* Don't race with userspace socket closes such as tcp_close. */ 4402 lock_sock(sk); 4403 4404 if (sk->sk_state == TCP_LISTEN) { 4405 tcp_set_state(sk, TCP_CLOSE); 4406 inet_csk_listen_stop(sk); 4407 } 4408 4409 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4410 local_bh_disable(); 4411 bh_lock_sock(sk); 4412 4413 if (!sock_flag(sk, SOCK_DEAD)) { 4414 sk->sk_err = err; 4415 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4416 smp_wmb(); 4417 sk->sk_error_report(sk); 4418 if (tcp_need_reset(sk->sk_state)) 4419 tcp_send_active_reset(sk, GFP_ATOMIC); 4420 tcp_done(sk); 4421 } 4422 4423 bh_unlock_sock(sk); 4424 local_bh_enable(); 4425 tcp_write_queue_purge(sk); 4426 release_sock(sk); 4427 return 0; 4428 } 4429 EXPORT_SYMBOL_GPL(tcp_abort); 4430 4431 extern struct tcp_congestion_ops tcp_reno; 4432 4433 static __initdata unsigned long thash_entries; 4434 static int __init set_thash_entries(char *str) 4435 { 4436 ssize_t ret; 4437 4438 if (!str) 4439 return 0; 4440 4441 ret = kstrtoul(str, 0, &thash_entries); 4442 if (ret) 4443 return 0; 4444 4445 return 1; 4446 } 4447 __setup("thash_entries=", set_thash_entries); 4448 4449 static void __init tcp_init_mem(void) 4450 { 4451 unsigned long limit = nr_free_buffer_pages() / 16; 4452 4453 limit = max(limit, 128UL); 4454 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4455 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4456 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4457 } 4458 4459 void __init tcp_init(void) 4460 { 4461 int max_rshare, max_wshare, cnt; 4462 unsigned long limit; 4463 unsigned int i; 4464 4465 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4466 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4467 sizeof_field(struct sk_buff, cb)); 4468 4469 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4470 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 4471 inet_hashinfo_init(&tcp_hashinfo); 4472 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4473 thash_entries, 21, /* one slot per 2 MB*/ 4474 0, 64 * 1024); 4475 tcp_hashinfo.bind_bucket_cachep = 4476 kmem_cache_create("tcp_bind_bucket", 4477 sizeof(struct inet_bind_bucket), 0, 4478 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4479 4480 /* Size and allocate the main established and bind bucket 4481 * hash tables. 4482 * 4483 * The methodology is similar to that of the buffer cache. 4484 */ 4485 tcp_hashinfo.ehash = 4486 alloc_large_system_hash("TCP established", 4487 sizeof(struct inet_ehash_bucket), 4488 thash_entries, 4489 17, /* one slot per 128 KB of memory */ 4490 0, 4491 NULL, 4492 &tcp_hashinfo.ehash_mask, 4493 0, 4494 thash_entries ? 0 : 512 * 1024); 4495 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4496 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4497 4498 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4499 panic("TCP: failed to alloc ehash_locks"); 4500 tcp_hashinfo.bhash = 4501 alloc_large_system_hash("TCP bind", 4502 sizeof(struct inet_bind_hashbucket), 4503 tcp_hashinfo.ehash_mask + 1, 4504 17, /* one slot per 128 KB of memory */ 4505 0, 4506 &tcp_hashinfo.bhash_size, 4507 NULL, 4508 0, 4509 64 * 1024); 4510 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4511 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4512 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4513 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4514 } 4515 4516 4517 cnt = tcp_hashinfo.ehash_mask + 1; 4518 sysctl_tcp_max_orphans = cnt / 2; 4519 4520 tcp_init_mem(); 4521 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4522 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4523 max_wshare = min(4UL*1024*1024, limit); 4524 max_rshare = min(6UL*1024*1024, limit); 4525 4526 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4527 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4528 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4529 4530 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4531 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4532 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4533 4534 pr_info("Hash tables configured (established %u bind %u)\n", 4535 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4536 4537 tcp_v4_init(); 4538 tcp_metrics_init(); 4539 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4540 tcp_tasklet_init(); 4541 mptcp_init(); 4542 } 4543