xref: /openbmc/linux/net/ipv4/tcp.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
327 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
328 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
329 
330 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
331 
332 void tcp_enter_memory_pressure(struct sock *sk)
333 {
334 	unsigned long val;
335 
336 	if (READ_ONCE(tcp_memory_pressure))
337 		return;
338 	val = jiffies;
339 
340 	if (!val)
341 		val--;
342 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
343 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
344 }
345 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
346 
347 void tcp_leave_memory_pressure(struct sock *sk)
348 {
349 	unsigned long val;
350 
351 	if (!READ_ONCE(tcp_memory_pressure))
352 		return;
353 	val = xchg(&tcp_memory_pressure, 0);
354 	if (val)
355 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
356 			      jiffies_to_msecs(jiffies - val));
357 }
358 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
359 
360 /* Convert seconds to retransmits based on initial and max timeout */
361 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
362 {
363 	u8 res = 0;
364 
365 	if (seconds > 0) {
366 		int period = timeout;
367 
368 		res = 1;
369 		while (seconds > period && res < 255) {
370 			res++;
371 			timeout <<= 1;
372 			if (timeout > rto_max)
373 				timeout = rto_max;
374 			period += timeout;
375 		}
376 	}
377 	return res;
378 }
379 
380 /* Convert retransmits to seconds based on initial and max timeout */
381 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
382 {
383 	int period = 0;
384 
385 	if (retrans > 0) {
386 		period = timeout;
387 		while (--retrans) {
388 			timeout <<= 1;
389 			if (timeout > rto_max)
390 				timeout = rto_max;
391 			period += timeout;
392 		}
393 	}
394 	return period;
395 }
396 
397 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
398 {
399 	u32 rate = READ_ONCE(tp->rate_delivered);
400 	u32 intv = READ_ONCE(tp->rate_interval_us);
401 	u64 rate64 = 0;
402 
403 	if (rate && intv) {
404 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
405 		do_div(rate64, intv);
406 	}
407 	return rate64;
408 }
409 
410 /* Address-family independent initialization for a tcp_sock.
411  *
412  * NOTE: A lot of things set to zero explicitly by call to
413  *       sk_alloc() so need not be done here.
414  */
415 void tcp_init_sock(struct sock *sk)
416 {
417 	struct inet_connection_sock *icsk = inet_csk(sk);
418 	struct tcp_sock *tp = tcp_sk(sk);
419 
420 	tp->out_of_order_queue = RB_ROOT;
421 	sk->tcp_rtx_queue = RB_ROOT;
422 	tcp_init_xmit_timers(sk);
423 	INIT_LIST_HEAD(&tp->tsq_node);
424 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
425 
426 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
427 	icsk->icsk_rto_min = TCP_RTO_MIN;
428 	icsk->icsk_delack_max = TCP_DELACK_MAX;
429 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
430 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
431 
432 	/* So many TCP implementations out there (incorrectly) count the
433 	 * initial SYN frame in their delayed-ACK and congestion control
434 	 * algorithms that we must have the following bandaid to talk
435 	 * efficiently to them.  -DaveM
436 	 */
437 	tp->snd_cwnd = TCP_INIT_CWND;
438 
439 	/* There's a bubble in the pipe until at least the first ACK. */
440 	tp->app_limited = ~0U;
441 
442 	/* See draft-stevens-tcpca-spec-01 for discussion of the
443 	 * initialization of these values.
444 	 */
445 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
446 	tp->snd_cwnd_clamp = ~0;
447 	tp->mss_cache = TCP_MSS_DEFAULT;
448 
449 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
450 	tcp_assign_congestion_control(sk);
451 
452 	tp->tsoffset = 0;
453 	tp->rack.reo_wnd_steps = 1;
454 
455 	sk->sk_write_space = sk_stream_write_space;
456 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
457 
458 	icsk->icsk_sync_mss = tcp_sync_mss;
459 
460 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
461 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
462 
463 	sk_sockets_allocated_inc(sk);
464 	sk->sk_route_forced_caps = NETIF_F_GSO;
465 }
466 EXPORT_SYMBOL(tcp_init_sock);
467 
468 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
469 {
470 	struct sk_buff *skb = tcp_write_queue_tail(sk);
471 
472 	if (tsflags && skb) {
473 		struct skb_shared_info *shinfo = skb_shinfo(skb);
474 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
475 
476 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
477 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
478 			tcb->txstamp_ack = 1;
479 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
480 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
481 	}
482 }
483 
484 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
485 					  int target, struct sock *sk)
486 {
487 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
488 
489 	if (avail > 0) {
490 		if (avail >= target)
491 			return true;
492 		if (tcp_rmem_pressure(sk))
493 			return true;
494 		if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
495 			return true;
496 	}
497 	if (sk->sk_prot->stream_memory_read)
498 		return sk->sk_prot->stream_memory_read(sk);
499 	return false;
500 }
501 
502 /*
503  *	Wait for a TCP event.
504  *
505  *	Note that we don't need to lock the socket, as the upper poll layers
506  *	take care of normal races (between the test and the event) and we don't
507  *	go look at any of the socket buffers directly.
508  */
509 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
510 {
511 	__poll_t mask;
512 	struct sock *sk = sock->sk;
513 	const struct tcp_sock *tp = tcp_sk(sk);
514 	int state;
515 
516 	sock_poll_wait(file, sock, wait);
517 
518 	state = inet_sk_state_load(sk);
519 	if (state == TCP_LISTEN)
520 		return inet_csk_listen_poll(sk);
521 
522 	/* Socket is not locked. We are protected from async events
523 	 * by poll logic and correct handling of state changes
524 	 * made by other threads is impossible in any case.
525 	 */
526 
527 	mask = 0;
528 
529 	/*
530 	 * EPOLLHUP is certainly not done right. But poll() doesn't
531 	 * have a notion of HUP in just one direction, and for a
532 	 * socket the read side is more interesting.
533 	 *
534 	 * Some poll() documentation says that EPOLLHUP is incompatible
535 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
536 	 * all. But careful, it tends to be safer to return too many
537 	 * bits than too few, and you can easily break real applications
538 	 * if you don't tell them that something has hung up!
539 	 *
540 	 * Check-me.
541 	 *
542 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
543 	 * our fs/select.c). It means that after we received EOF,
544 	 * poll always returns immediately, making impossible poll() on write()
545 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
546 	 * if and only if shutdown has been made in both directions.
547 	 * Actually, it is interesting to look how Solaris and DUX
548 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
549 	 * then we could set it on SND_SHUTDOWN. BTW examples given
550 	 * in Stevens' books assume exactly this behaviour, it explains
551 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
552 	 *
553 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
554 	 * blocking on fresh not-connected or disconnected socket. --ANK
555 	 */
556 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
557 		mask |= EPOLLHUP;
558 	if (sk->sk_shutdown & RCV_SHUTDOWN)
559 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
560 
561 	/* Connected or passive Fast Open socket? */
562 	if (state != TCP_SYN_SENT &&
563 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
564 		int target = sock_rcvlowat(sk, 0, INT_MAX);
565 
566 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
567 		    !sock_flag(sk, SOCK_URGINLINE) &&
568 		    tp->urg_data)
569 			target++;
570 
571 		if (tcp_stream_is_readable(tp, target, sk))
572 			mask |= EPOLLIN | EPOLLRDNORM;
573 
574 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
575 			if (__sk_stream_is_writeable(sk, 1)) {
576 				mask |= EPOLLOUT | EPOLLWRNORM;
577 			} else {  /* send SIGIO later */
578 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
579 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
580 
581 				/* Race breaker. If space is freed after
582 				 * wspace test but before the flags are set,
583 				 * IO signal will be lost. Memory barrier
584 				 * pairs with the input side.
585 				 */
586 				smp_mb__after_atomic();
587 				if (__sk_stream_is_writeable(sk, 1))
588 					mask |= EPOLLOUT | EPOLLWRNORM;
589 			}
590 		} else
591 			mask |= EPOLLOUT | EPOLLWRNORM;
592 
593 		if (tp->urg_data & TCP_URG_VALID)
594 			mask |= EPOLLPRI;
595 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
596 		/* Active TCP fastopen socket with defer_connect
597 		 * Return EPOLLOUT so application can call write()
598 		 * in order for kernel to generate SYN+data
599 		 */
600 		mask |= EPOLLOUT | EPOLLWRNORM;
601 	}
602 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
603 	smp_rmb();
604 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
605 		mask |= EPOLLERR;
606 
607 	return mask;
608 }
609 EXPORT_SYMBOL(tcp_poll);
610 
611 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
612 {
613 	struct tcp_sock *tp = tcp_sk(sk);
614 	int answ;
615 	bool slow;
616 
617 	switch (cmd) {
618 	case SIOCINQ:
619 		if (sk->sk_state == TCP_LISTEN)
620 			return -EINVAL;
621 
622 		slow = lock_sock_fast(sk);
623 		answ = tcp_inq(sk);
624 		unlock_sock_fast(sk, slow);
625 		break;
626 	case SIOCATMARK:
627 		answ = tp->urg_data &&
628 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
629 		break;
630 	case SIOCOUTQ:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
638 		break;
639 	case SIOCOUTQNSD:
640 		if (sk->sk_state == TCP_LISTEN)
641 			return -EINVAL;
642 
643 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
644 			answ = 0;
645 		else
646 			answ = READ_ONCE(tp->write_seq) -
647 			       READ_ONCE(tp->snd_nxt);
648 		break;
649 	default:
650 		return -ENOIOCTLCMD;
651 	}
652 
653 	return put_user(answ, (int __user *)arg);
654 }
655 EXPORT_SYMBOL(tcp_ioctl);
656 
657 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
658 {
659 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
660 	tp->pushed_seq = tp->write_seq;
661 }
662 
663 static inline bool forced_push(const struct tcp_sock *tp)
664 {
665 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
666 }
667 
668 static void skb_entail(struct sock *sk, struct sk_buff *skb)
669 {
670 	struct tcp_sock *tp = tcp_sk(sk);
671 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
672 
673 	skb->csum    = 0;
674 	tcb->seq     = tcb->end_seq = tp->write_seq;
675 	tcb->tcp_flags = TCPHDR_ACK;
676 	tcb->sacked  = 0;
677 	__skb_header_release(skb);
678 	tcp_add_write_queue_tail(sk, skb);
679 	sk_wmem_queued_add(sk, skb->truesize);
680 	sk_mem_charge(sk, skb->truesize);
681 	if (tp->nonagle & TCP_NAGLE_PUSH)
682 		tp->nonagle &= ~TCP_NAGLE_PUSH;
683 
684 	tcp_slow_start_after_idle_check(sk);
685 }
686 
687 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
688 {
689 	if (flags & MSG_OOB)
690 		tp->snd_up = tp->write_seq;
691 }
692 
693 /* If a not yet filled skb is pushed, do not send it if
694  * we have data packets in Qdisc or NIC queues :
695  * Because TX completion will happen shortly, it gives a chance
696  * to coalesce future sendmsg() payload into this skb, without
697  * need for a timer, and with no latency trade off.
698  * As packets containing data payload have a bigger truesize
699  * than pure acks (dataless) packets, the last checks prevent
700  * autocorking if we only have an ACK in Qdisc/NIC queues,
701  * or if TX completion was delayed after we processed ACK packet.
702  */
703 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
704 				int size_goal)
705 {
706 	return skb->len < size_goal &&
707 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
708 	       !tcp_rtx_queue_empty(sk) &&
709 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
710 }
711 
712 void tcp_push(struct sock *sk, int flags, int mss_now,
713 	      int nonagle, int size_goal)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	struct sk_buff *skb;
717 
718 	skb = tcp_write_queue_tail(sk);
719 	if (!skb)
720 		return;
721 	if (!(flags & MSG_MORE) || forced_push(tp))
722 		tcp_mark_push(tp, skb);
723 
724 	tcp_mark_urg(tp, flags);
725 
726 	if (tcp_should_autocork(sk, skb, size_goal)) {
727 
728 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
729 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
730 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
731 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
732 		}
733 		/* It is possible TX completion already happened
734 		 * before we set TSQ_THROTTLED.
735 		 */
736 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
737 			return;
738 	}
739 
740 	if (flags & MSG_MORE)
741 		nonagle = TCP_NAGLE_CORK;
742 
743 	__tcp_push_pending_frames(sk, mss_now, nonagle);
744 }
745 
746 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
747 				unsigned int offset, size_t len)
748 {
749 	struct tcp_splice_state *tss = rd_desc->arg.data;
750 	int ret;
751 
752 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
753 			      min(rd_desc->count, len), tss->flags);
754 	if (ret > 0)
755 		rd_desc->count -= ret;
756 	return ret;
757 }
758 
759 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
760 {
761 	/* Store TCP splice context information in read_descriptor_t. */
762 	read_descriptor_t rd_desc = {
763 		.arg.data = tss,
764 		.count	  = tss->len,
765 	};
766 
767 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
768 }
769 
770 /**
771  *  tcp_splice_read - splice data from TCP socket to a pipe
772  * @sock:	socket to splice from
773  * @ppos:	position (not valid)
774  * @pipe:	pipe to splice to
775  * @len:	number of bytes to splice
776  * @flags:	splice modifier flags
777  *
778  * Description:
779  *    Will read pages from given socket and fill them into a pipe.
780  *
781  **/
782 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
783 			struct pipe_inode_info *pipe, size_t len,
784 			unsigned int flags)
785 {
786 	struct sock *sk = sock->sk;
787 	struct tcp_splice_state tss = {
788 		.pipe = pipe,
789 		.len = len,
790 		.flags = flags,
791 	};
792 	long timeo;
793 	ssize_t spliced;
794 	int ret;
795 
796 	sock_rps_record_flow(sk);
797 	/*
798 	 * We can't seek on a socket input
799 	 */
800 	if (unlikely(*ppos))
801 		return -ESPIPE;
802 
803 	ret = spliced = 0;
804 
805 	lock_sock(sk);
806 
807 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
808 	while (tss.len) {
809 		ret = __tcp_splice_read(sk, &tss);
810 		if (ret < 0)
811 			break;
812 		else if (!ret) {
813 			if (spliced)
814 				break;
815 			if (sock_flag(sk, SOCK_DONE))
816 				break;
817 			if (sk->sk_err) {
818 				ret = sock_error(sk);
819 				break;
820 			}
821 			if (sk->sk_shutdown & RCV_SHUTDOWN)
822 				break;
823 			if (sk->sk_state == TCP_CLOSE) {
824 				/*
825 				 * This occurs when user tries to read
826 				 * from never connected socket.
827 				 */
828 				ret = -ENOTCONN;
829 				break;
830 			}
831 			if (!timeo) {
832 				ret = -EAGAIN;
833 				break;
834 			}
835 			/* if __tcp_splice_read() got nothing while we have
836 			 * an skb in receive queue, we do not want to loop.
837 			 * This might happen with URG data.
838 			 */
839 			if (!skb_queue_empty(&sk->sk_receive_queue))
840 				break;
841 			sk_wait_data(sk, &timeo, NULL);
842 			if (signal_pending(current)) {
843 				ret = sock_intr_errno(timeo);
844 				break;
845 			}
846 			continue;
847 		}
848 		tss.len -= ret;
849 		spliced += ret;
850 
851 		if (!timeo)
852 			break;
853 		release_sock(sk);
854 		lock_sock(sk);
855 
856 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
857 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
858 		    signal_pending(current))
859 			break;
860 	}
861 
862 	release_sock(sk);
863 
864 	if (spliced)
865 		return spliced;
866 
867 	return ret;
868 }
869 EXPORT_SYMBOL(tcp_splice_read);
870 
871 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
872 				    bool force_schedule)
873 {
874 	struct sk_buff *skb;
875 
876 	if (likely(!size)) {
877 		skb = sk->sk_tx_skb_cache;
878 		if (skb) {
879 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
880 			sk->sk_tx_skb_cache = NULL;
881 			pskb_trim(skb, 0);
882 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
883 			skb_shinfo(skb)->tx_flags = 0;
884 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
885 			return skb;
886 		}
887 	}
888 	/* The TCP header must be at least 32-bit aligned.  */
889 	size = ALIGN(size, 4);
890 
891 	if (unlikely(tcp_under_memory_pressure(sk)))
892 		sk_mem_reclaim_partial(sk);
893 
894 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
895 	if (likely(skb)) {
896 		bool mem_scheduled;
897 
898 		if (force_schedule) {
899 			mem_scheduled = true;
900 			sk_forced_mem_schedule(sk, skb->truesize);
901 		} else {
902 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
903 		}
904 		if (likely(mem_scheduled)) {
905 			skb_reserve(skb, sk->sk_prot->max_header);
906 			/*
907 			 * Make sure that we have exactly size bytes
908 			 * available to the caller, no more, no less.
909 			 */
910 			skb->reserved_tailroom = skb->end - skb->tail - size;
911 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
912 			return skb;
913 		}
914 		__kfree_skb(skb);
915 	} else {
916 		sk->sk_prot->enter_memory_pressure(sk);
917 		sk_stream_moderate_sndbuf(sk);
918 	}
919 	return NULL;
920 }
921 
922 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
923 				       int large_allowed)
924 {
925 	struct tcp_sock *tp = tcp_sk(sk);
926 	u32 new_size_goal, size_goal;
927 
928 	if (!large_allowed)
929 		return mss_now;
930 
931 	/* Note : tcp_tso_autosize() will eventually split this later */
932 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
933 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
934 
935 	/* We try hard to avoid divides here */
936 	size_goal = tp->gso_segs * mss_now;
937 	if (unlikely(new_size_goal < size_goal ||
938 		     new_size_goal >= size_goal + mss_now)) {
939 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
940 				     sk->sk_gso_max_segs);
941 		size_goal = tp->gso_segs * mss_now;
942 	}
943 
944 	return max(size_goal, mss_now);
945 }
946 
947 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
948 {
949 	int mss_now;
950 
951 	mss_now = tcp_current_mss(sk);
952 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
953 
954 	return mss_now;
955 }
956 
957 /* In some cases, both sendpage() and sendmsg() could have added
958  * an skb to the write queue, but failed adding payload on it.
959  * We need to remove it to consume less memory, but more
960  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
961  * users.
962  */
963 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
964 {
965 	if (skb && !skb->len) {
966 		tcp_unlink_write_queue(skb, sk);
967 		if (tcp_write_queue_empty(sk))
968 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
969 		sk_wmem_free_skb(sk, skb);
970 	}
971 }
972 
973 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
974 			       struct page *page, int offset, size_t *size)
975 {
976 	struct sk_buff *skb = tcp_write_queue_tail(sk);
977 	struct tcp_sock *tp = tcp_sk(sk);
978 	bool can_coalesce;
979 	int copy, i;
980 
981 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
982 	    !tcp_skb_can_collapse_to(skb)) {
983 new_segment:
984 		if (!sk_stream_memory_free(sk))
985 			return NULL;
986 
987 		skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
988 					  tcp_rtx_and_write_queues_empty(sk));
989 		if (!skb)
990 			return NULL;
991 
992 #ifdef CONFIG_TLS_DEVICE
993 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
994 #endif
995 		skb_entail(sk, skb);
996 		copy = size_goal;
997 	}
998 
999 	if (copy > *size)
1000 		copy = *size;
1001 
1002 	i = skb_shinfo(skb)->nr_frags;
1003 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1004 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
1005 		tcp_mark_push(tp, skb);
1006 		goto new_segment;
1007 	}
1008 	if (!sk_wmem_schedule(sk, copy))
1009 		return NULL;
1010 
1011 	if (can_coalesce) {
1012 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1013 	} else {
1014 		get_page(page);
1015 		skb_fill_page_desc(skb, i, page, offset, copy);
1016 	}
1017 
1018 	if (!(flags & MSG_NO_SHARED_FRAGS))
1019 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1020 
1021 	skb->len += copy;
1022 	skb->data_len += copy;
1023 	skb->truesize += copy;
1024 	sk_wmem_queued_add(sk, copy);
1025 	sk_mem_charge(sk, copy);
1026 	skb->ip_summed = CHECKSUM_PARTIAL;
1027 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1028 	TCP_SKB_CB(skb)->end_seq += copy;
1029 	tcp_skb_pcount_set(skb, 0);
1030 
1031 	*size = copy;
1032 	return skb;
1033 }
1034 
1035 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1036 			 size_t size, int flags)
1037 {
1038 	struct tcp_sock *tp = tcp_sk(sk);
1039 	int mss_now, size_goal;
1040 	int err;
1041 	ssize_t copied;
1042 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1043 
1044 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1045 	    WARN_ONCE(!sendpage_ok(page),
1046 		      "page must not be a Slab one and have page_count > 0"))
1047 		return -EINVAL;
1048 
1049 	/* Wait for a connection to finish. One exception is TCP Fast Open
1050 	 * (passive side) where data is allowed to be sent before a connection
1051 	 * is fully established.
1052 	 */
1053 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1054 	    !tcp_passive_fastopen(sk)) {
1055 		err = sk_stream_wait_connect(sk, &timeo);
1056 		if (err != 0)
1057 			goto out_err;
1058 	}
1059 
1060 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1061 
1062 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1063 	copied = 0;
1064 
1065 	err = -EPIPE;
1066 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1067 		goto out_err;
1068 
1069 	while (size > 0) {
1070 		struct sk_buff *skb;
1071 		size_t copy = size;
1072 
1073 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1074 		if (!skb)
1075 			goto wait_for_space;
1076 
1077 		if (!copied)
1078 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1079 
1080 		copied += copy;
1081 		offset += copy;
1082 		size -= copy;
1083 		if (!size)
1084 			goto out;
1085 
1086 		if (skb->len < size_goal || (flags & MSG_OOB))
1087 			continue;
1088 
1089 		if (forced_push(tp)) {
1090 			tcp_mark_push(tp, skb);
1091 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1092 		} else if (skb == tcp_send_head(sk))
1093 			tcp_push_one(sk, mss_now);
1094 		continue;
1095 
1096 wait_for_space:
1097 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1098 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1099 			 TCP_NAGLE_PUSH, size_goal);
1100 
1101 		err = sk_stream_wait_memory(sk, &timeo);
1102 		if (err != 0)
1103 			goto do_error;
1104 
1105 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1106 	}
1107 
1108 out:
1109 	if (copied) {
1110 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1111 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1112 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1113 	}
1114 	return copied;
1115 
1116 do_error:
1117 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1118 	if (copied)
1119 		goto out;
1120 out_err:
1121 	/* make sure we wake any epoll edge trigger waiter */
1122 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1123 		sk->sk_write_space(sk);
1124 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1125 	}
1126 	return sk_stream_error(sk, flags, err);
1127 }
1128 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1129 
1130 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1131 			size_t size, int flags)
1132 {
1133 	if (!(sk->sk_route_caps & NETIF_F_SG))
1134 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1135 
1136 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1137 
1138 	return do_tcp_sendpages(sk, page, offset, size, flags);
1139 }
1140 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1141 
1142 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1143 		 size_t size, int flags)
1144 {
1145 	int ret;
1146 
1147 	lock_sock(sk);
1148 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1149 	release_sock(sk);
1150 
1151 	return ret;
1152 }
1153 EXPORT_SYMBOL(tcp_sendpage);
1154 
1155 void tcp_free_fastopen_req(struct tcp_sock *tp)
1156 {
1157 	if (tp->fastopen_req) {
1158 		kfree(tp->fastopen_req);
1159 		tp->fastopen_req = NULL;
1160 	}
1161 }
1162 
1163 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1164 				int *copied, size_t size,
1165 				struct ubuf_info *uarg)
1166 {
1167 	struct tcp_sock *tp = tcp_sk(sk);
1168 	struct inet_sock *inet = inet_sk(sk);
1169 	struct sockaddr *uaddr = msg->msg_name;
1170 	int err, flags;
1171 
1172 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1173 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1174 	     uaddr->sa_family == AF_UNSPEC))
1175 		return -EOPNOTSUPP;
1176 	if (tp->fastopen_req)
1177 		return -EALREADY; /* Another Fast Open is in progress */
1178 
1179 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1180 				   sk->sk_allocation);
1181 	if (unlikely(!tp->fastopen_req))
1182 		return -ENOBUFS;
1183 	tp->fastopen_req->data = msg;
1184 	tp->fastopen_req->size = size;
1185 	tp->fastopen_req->uarg = uarg;
1186 
1187 	if (inet->defer_connect) {
1188 		err = tcp_connect(sk);
1189 		/* Same failure procedure as in tcp_v4/6_connect */
1190 		if (err) {
1191 			tcp_set_state(sk, TCP_CLOSE);
1192 			inet->inet_dport = 0;
1193 			sk->sk_route_caps = 0;
1194 		}
1195 	}
1196 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1197 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1198 				    msg->msg_namelen, flags, 1);
1199 	/* fastopen_req could already be freed in __inet_stream_connect
1200 	 * if the connection times out or gets rst
1201 	 */
1202 	if (tp->fastopen_req) {
1203 		*copied = tp->fastopen_req->copied;
1204 		tcp_free_fastopen_req(tp);
1205 		inet->defer_connect = 0;
1206 	}
1207 	return err;
1208 }
1209 
1210 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1211 {
1212 	struct tcp_sock *tp = tcp_sk(sk);
1213 	struct ubuf_info *uarg = NULL;
1214 	struct sk_buff *skb;
1215 	struct sockcm_cookie sockc;
1216 	int flags, err, copied = 0;
1217 	int mss_now = 0, size_goal, copied_syn = 0;
1218 	int process_backlog = 0;
1219 	bool zc = false;
1220 	long timeo;
1221 
1222 	flags = msg->msg_flags;
1223 
1224 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1225 		skb = tcp_write_queue_tail(sk);
1226 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1227 		if (!uarg) {
1228 			err = -ENOBUFS;
1229 			goto out_err;
1230 		}
1231 
1232 		zc = sk->sk_route_caps & NETIF_F_SG;
1233 		if (!zc)
1234 			uarg->zerocopy = 0;
1235 	}
1236 
1237 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1238 	    !tp->repair) {
1239 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1240 		if (err == -EINPROGRESS && copied_syn > 0)
1241 			goto out;
1242 		else if (err)
1243 			goto out_err;
1244 	}
1245 
1246 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1247 
1248 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1249 
1250 	/* Wait for a connection to finish. One exception is TCP Fast Open
1251 	 * (passive side) where data is allowed to be sent before a connection
1252 	 * is fully established.
1253 	 */
1254 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1255 	    !tcp_passive_fastopen(sk)) {
1256 		err = sk_stream_wait_connect(sk, &timeo);
1257 		if (err != 0)
1258 			goto do_error;
1259 	}
1260 
1261 	if (unlikely(tp->repair)) {
1262 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1263 			copied = tcp_send_rcvq(sk, msg, size);
1264 			goto out_nopush;
1265 		}
1266 
1267 		err = -EINVAL;
1268 		if (tp->repair_queue == TCP_NO_QUEUE)
1269 			goto out_err;
1270 
1271 		/* 'common' sending to sendq */
1272 	}
1273 
1274 	sockcm_init(&sockc, sk);
1275 	if (msg->msg_controllen) {
1276 		err = sock_cmsg_send(sk, msg, &sockc);
1277 		if (unlikely(err)) {
1278 			err = -EINVAL;
1279 			goto out_err;
1280 		}
1281 	}
1282 
1283 	/* This should be in poll */
1284 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1285 
1286 	/* Ok commence sending. */
1287 	copied = 0;
1288 
1289 restart:
1290 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1291 
1292 	err = -EPIPE;
1293 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1294 		goto do_error;
1295 
1296 	while (msg_data_left(msg)) {
1297 		int copy = 0;
1298 
1299 		skb = tcp_write_queue_tail(sk);
1300 		if (skb)
1301 			copy = size_goal - skb->len;
1302 
1303 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1304 			bool first_skb;
1305 
1306 new_segment:
1307 			if (!sk_stream_memory_free(sk))
1308 				goto wait_for_space;
1309 
1310 			if (unlikely(process_backlog >= 16)) {
1311 				process_backlog = 0;
1312 				if (sk_flush_backlog(sk))
1313 					goto restart;
1314 			}
1315 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1316 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1317 						  first_skb);
1318 			if (!skb)
1319 				goto wait_for_space;
1320 
1321 			process_backlog++;
1322 			skb->ip_summed = CHECKSUM_PARTIAL;
1323 
1324 			skb_entail(sk, skb);
1325 			copy = size_goal;
1326 
1327 			/* All packets are restored as if they have
1328 			 * already been sent. skb_mstamp_ns isn't set to
1329 			 * avoid wrong rtt estimation.
1330 			 */
1331 			if (tp->repair)
1332 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1333 		}
1334 
1335 		/* Try to append data to the end of skb. */
1336 		if (copy > msg_data_left(msg))
1337 			copy = msg_data_left(msg);
1338 
1339 		/* Where to copy to? */
1340 		if (skb_availroom(skb) > 0 && !zc) {
1341 			/* We have some space in skb head. Superb! */
1342 			copy = min_t(int, copy, skb_availroom(skb));
1343 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1344 			if (err)
1345 				goto do_fault;
1346 		} else if (!zc) {
1347 			bool merge = true;
1348 			int i = skb_shinfo(skb)->nr_frags;
1349 			struct page_frag *pfrag = sk_page_frag(sk);
1350 
1351 			if (!sk_page_frag_refill(sk, pfrag))
1352 				goto wait_for_space;
1353 
1354 			if (!skb_can_coalesce(skb, i, pfrag->page,
1355 					      pfrag->offset)) {
1356 				if (i >= sysctl_max_skb_frags) {
1357 					tcp_mark_push(tp, skb);
1358 					goto new_segment;
1359 				}
1360 				merge = false;
1361 			}
1362 
1363 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1364 
1365 			if (!sk_wmem_schedule(sk, copy))
1366 				goto wait_for_space;
1367 
1368 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1369 						       pfrag->page,
1370 						       pfrag->offset,
1371 						       copy);
1372 			if (err)
1373 				goto do_error;
1374 
1375 			/* Update the skb. */
1376 			if (merge) {
1377 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1378 			} else {
1379 				skb_fill_page_desc(skb, i, pfrag->page,
1380 						   pfrag->offset, copy);
1381 				page_ref_inc(pfrag->page);
1382 			}
1383 			pfrag->offset += copy;
1384 		} else {
1385 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1386 			if (err == -EMSGSIZE || err == -EEXIST) {
1387 				tcp_mark_push(tp, skb);
1388 				goto new_segment;
1389 			}
1390 			if (err < 0)
1391 				goto do_error;
1392 			copy = err;
1393 		}
1394 
1395 		if (!copied)
1396 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1397 
1398 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1399 		TCP_SKB_CB(skb)->end_seq += copy;
1400 		tcp_skb_pcount_set(skb, 0);
1401 
1402 		copied += copy;
1403 		if (!msg_data_left(msg)) {
1404 			if (unlikely(flags & MSG_EOR))
1405 				TCP_SKB_CB(skb)->eor = 1;
1406 			goto out;
1407 		}
1408 
1409 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1410 			continue;
1411 
1412 		if (forced_push(tp)) {
1413 			tcp_mark_push(tp, skb);
1414 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1415 		} else if (skb == tcp_send_head(sk))
1416 			tcp_push_one(sk, mss_now);
1417 		continue;
1418 
1419 wait_for_space:
1420 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1421 		if (copied)
1422 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1423 				 TCP_NAGLE_PUSH, size_goal);
1424 
1425 		err = sk_stream_wait_memory(sk, &timeo);
1426 		if (err != 0)
1427 			goto do_error;
1428 
1429 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1430 	}
1431 
1432 out:
1433 	if (copied) {
1434 		tcp_tx_timestamp(sk, sockc.tsflags);
1435 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1436 	}
1437 out_nopush:
1438 	net_zcopy_put(uarg);
1439 	return copied + copied_syn;
1440 
1441 do_error:
1442 	skb = tcp_write_queue_tail(sk);
1443 do_fault:
1444 	tcp_remove_empty_skb(sk, skb);
1445 
1446 	if (copied + copied_syn)
1447 		goto out;
1448 out_err:
1449 	net_zcopy_put_abort(uarg, true);
1450 	err = sk_stream_error(sk, flags, err);
1451 	/* make sure we wake any epoll edge trigger waiter */
1452 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1453 		sk->sk_write_space(sk);
1454 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1455 	}
1456 	return err;
1457 }
1458 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1459 
1460 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1461 {
1462 	int ret;
1463 
1464 	lock_sock(sk);
1465 	ret = tcp_sendmsg_locked(sk, msg, size);
1466 	release_sock(sk);
1467 
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL(tcp_sendmsg);
1471 
1472 /*
1473  *	Handle reading urgent data. BSD has very simple semantics for
1474  *	this, no blocking and very strange errors 8)
1475  */
1476 
1477 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1478 {
1479 	struct tcp_sock *tp = tcp_sk(sk);
1480 
1481 	/* No URG data to read. */
1482 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1483 	    tp->urg_data == TCP_URG_READ)
1484 		return -EINVAL;	/* Yes this is right ! */
1485 
1486 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1487 		return -ENOTCONN;
1488 
1489 	if (tp->urg_data & TCP_URG_VALID) {
1490 		int err = 0;
1491 		char c = tp->urg_data;
1492 
1493 		if (!(flags & MSG_PEEK))
1494 			tp->urg_data = TCP_URG_READ;
1495 
1496 		/* Read urgent data. */
1497 		msg->msg_flags |= MSG_OOB;
1498 
1499 		if (len > 0) {
1500 			if (!(flags & MSG_TRUNC))
1501 				err = memcpy_to_msg(msg, &c, 1);
1502 			len = 1;
1503 		} else
1504 			msg->msg_flags |= MSG_TRUNC;
1505 
1506 		return err ? -EFAULT : len;
1507 	}
1508 
1509 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1510 		return 0;
1511 
1512 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1513 	 * the available implementations agree in this case:
1514 	 * this call should never block, independent of the
1515 	 * blocking state of the socket.
1516 	 * Mike <pall@rz.uni-karlsruhe.de>
1517 	 */
1518 	return -EAGAIN;
1519 }
1520 
1521 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1522 {
1523 	struct sk_buff *skb;
1524 	int copied = 0, err = 0;
1525 
1526 	/* XXX -- need to support SO_PEEK_OFF */
1527 
1528 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1529 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530 		if (err)
1531 			return err;
1532 		copied += skb->len;
1533 	}
1534 
1535 	skb_queue_walk(&sk->sk_write_queue, skb) {
1536 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1537 		if (err)
1538 			break;
1539 
1540 		copied += skb->len;
1541 	}
1542 
1543 	return err ?: copied;
1544 }
1545 
1546 /* Clean up the receive buffer for full frames taken by the user,
1547  * then send an ACK if necessary.  COPIED is the number of bytes
1548  * tcp_recvmsg has given to the user so far, it speeds up the
1549  * calculation of whether or not we must ACK for the sake of
1550  * a window update.
1551  */
1552 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1553 {
1554 	struct tcp_sock *tp = tcp_sk(sk);
1555 	bool time_to_ack = false;
1556 
1557 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1558 
1559 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1560 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1561 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1562 
1563 	if (inet_csk_ack_scheduled(sk)) {
1564 		const struct inet_connection_sock *icsk = inet_csk(sk);
1565 
1566 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1567 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1568 		    /*
1569 		     * If this read emptied read buffer, we send ACK, if
1570 		     * connection is not bidirectional, user drained
1571 		     * receive buffer and there was a small segment
1572 		     * in queue.
1573 		     */
1574 		    (copied > 0 &&
1575 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1576 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1577 		       !inet_csk_in_pingpong_mode(sk))) &&
1578 		      !atomic_read(&sk->sk_rmem_alloc)))
1579 			time_to_ack = true;
1580 	}
1581 
1582 	/* We send an ACK if we can now advertise a non-zero window
1583 	 * which has been raised "significantly".
1584 	 *
1585 	 * Even if window raised up to infinity, do not send window open ACK
1586 	 * in states, where we will not receive more. It is useless.
1587 	 */
1588 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1589 		__u32 rcv_window_now = tcp_receive_window(tp);
1590 
1591 		/* Optimize, __tcp_select_window() is not cheap. */
1592 		if (2*rcv_window_now <= tp->window_clamp) {
1593 			__u32 new_window = __tcp_select_window(sk);
1594 
1595 			/* Send ACK now, if this read freed lots of space
1596 			 * in our buffer. Certainly, new_window is new window.
1597 			 * We can advertise it now, if it is not less than current one.
1598 			 * "Lots" means "at least twice" here.
1599 			 */
1600 			if (new_window && new_window >= 2 * rcv_window_now)
1601 				time_to_ack = true;
1602 		}
1603 	}
1604 	if (time_to_ack)
1605 		tcp_send_ack(sk);
1606 }
1607 
1608 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1609 {
1610 	struct sk_buff *skb;
1611 	u32 offset;
1612 
1613 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1614 		offset = seq - TCP_SKB_CB(skb)->seq;
1615 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1616 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1617 			offset--;
1618 		}
1619 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1620 			*off = offset;
1621 			return skb;
1622 		}
1623 		/* This looks weird, but this can happen if TCP collapsing
1624 		 * splitted a fat GRO packet, while we released socket lock
1625 		 * in skb_splice_bits()
1626 		 */
1627 		sk_eat_skb(sk, skb);
1628 	}
1629 	return NULL;
1630 }
1631 
1632 /*
1633  * This routine provides an alternative to tcp_recvmsg() for routines
1634  * that would like to handle copying from skbuffs directly in 'sendfile'
1635  * fashion.
1636  * Note:
1637  *	- It is assumed that the socket was locked by the caller.
1638  *	- The routine does not block.
1639  *	- At present, there is no support for reading OOB data
1640  *	  or for 'peeking' the socket using this routine
1641  *	  (although both would be easy to implement).
1642  */
1643 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1644 		  sk_read_actor_t recv_actor)
1645 {
1646 	struct sk_buff *skb;
1647 	struct tcp_sock *tp = tcp_sk(sk);
1648 	u32 seq = tp->copied_seq;
1649 	u32 offset;
1650 	int copied = 0;
1651 
1652 	if (sk->sk_state == TCP_LISTEN)
1653 		return -ENOTCONN;
1654 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1655 		if (offset < skb->len) {
1656 			int used;
1657 			size_t len;
1658 
1659 			len = skb->len - offset;
1660 			/* Stop reading if we hit a patch of urgent data */
1661 			if (tp->urg_data) {
1662 				u32 urg_offset = tp->urg_seq - seq;
1663 				if (urg_offset < len)
1664 					len = urg_offset;
1665 				if (!len)
1666 					break;
1667 			}
1668 			used = recv_actor(desc, skb, offset, len);
1669 			if (used <= 0) {
1670 				if (!copied)
1671 					copied = used;
1672 				break;
1673 			} else if (used <= len) {
1674 				seq += used;
1675 				copied += used;
1676 				offset += used;
1677 			}
1678 			/* If recv_actor drops the lock (e.g. TCP splice
1679 			 * receive) the skb pointer might be invalid when
1680 			 * getting here: tcp_collapse might have deleted it
1681 			 * while aggregating skbs from the socket queue.
1682 			 */
1683 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1684 			if (!skb)
1685 				break;
1686 			/* TCP coalescing might have appended data to the skb.
1687 			 * Try to splice more frags
1688 			 */
1689 			if (offset + 1 != skb->len)
1690 				continue;
1691 		}
1692 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1693 			sk_eat_skb(sk, skb);
1694 			++seq;
1695 			break;
1696 		}
1697 		sk_eat_skb(sk, skb);
1698 		if (!desc->count)
1699 			break;
1700 		WRITE_ONCE(tp->copied_seq, seq);
1701 	}
1702 	WRITE_ONCE(tp->copied_seq, seq);
1703 
1704 	tcp_rcv_space_adjust(sk);
1705 
1706 	/* Clean up data we have read: This will do ACK frames. */
1707 	if (copied > 0) {
1708 		tcp_recv_skb(sk, seq, &offset);
1709 		tcp_cleanup_rbuf(sk, copied);
1710 	}
1711 	return copied;
1712 }
1713 EXPORT_SYMBOL(tcp_read_sock);
1714 
1715 int tcp_peek_len(struct socket *sock)
1716 {
1717 	return tcp_inq(sock->sk);
1718 }
1719 EXPORT_SYMBOL(tcp_peek_len);
1720 
1721 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1722 int tcp_set_rcvlowat(struct sock *sk, int val)
1723 {
1724 	int cap;
1725 
1726 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1727 		cap = sk->sk_rcvbuf >> 1;
1728 	else
1729 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1730 	val = min(val, cap);
1731 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1732 
1733 	/* Check if we need to signal EPOLLIN right now */
1734 	tcp_data_ready(sk);
1735 
1736 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1737 		return 0;
1738 
1739 	val <<= 1;
1740 	if (val > sk->sk_rcvbuf) {
1741 		WRITE_ONCE(sk->sk_rcvbuf, val);
1742 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1743 	}
1744 	return 0;
1745 }
1746 EXPORT_SYMBOL(tcp_set_rcvlowat);
1747 
1748 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1749 				    struct scm_timestamping_internal *tss)
1750 {
1751 	if (skb->tstamp)
1752 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1753 	else
1754 		tss->ts[0] = (struct timespec64) {0};
1755 
1756 	if (skb_hwtstamps(skb)->hwtstamp)
1757 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1758 	else
1759 		tss->ts[2] = (struct timespec64) {0};
1760 }
1761 
1762 #ifdef CONFIG_MMU
1763 static const struct vm_operations_struct tcp_vm_ops = {
1764 };
1765 
1766 int tcp_mmap(struct file *file, struct socket *sock,
1767 	     struct vm_area_struct *vma)
1768 {
1769 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1770 		return -EPERM;
1771 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1772 
1773 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1774 	vma->vm_flags |= VM_MIXEDMAP;
1775 
1776 	vma->vm_ops = &tcp_vm_ops;
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(tcp_mmap);
1780 
1781 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1782 				       u32 *offset_frag)
1783 {
1784 	skb_frag_t *frag;
1785 
1786 	offset_skb -= skb_headlen(skb);
1787 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1788 		return NULL;
1789 
1790 	frag = skb_shinfo(skb)->frags;
1791 	while (offset_skb) {
1792 		if (skb_frag_size(frag) > offset_skb) {
1793 			*offset_frag = offset_skb;
1794 			return frag;
1795 		}
1796 		offset_skb -= skb_frag_size(frag);
1797 		++frag;
1798 	}
1799 	*offset_frag = 0;
1800 	return frag;
1801 }
1802 
1803 static bool can_map_frag(const skb_frag_t *frag)
1804 {
1805 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1806 }
1807 
1808 static int find_next_mappable_frag(const skb_frag_t *frag,
1809 				   int remaining_in_skb)
1810 {
1811 	int offset = 0;
1812 
1813 	if (likely(can_map_frag(frag)))
1814 		return 0;
1815 
1816 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1817 		offset += skb_frag_size(frag);
1818 		++frag;
1819 	}
1820 	return offset;
1821 }
1822 
1823 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1824 					  struct tcp_zerocopy_receive *zc,
1825 					  struct sk_buff *skb, u32 offset)
1826 {
1827 	u32 frag_offset, partial_frag_remainder = 0;
1828 	int mappable_offset;
1829 	skb_frag_t *frag;
1830 
1831 	/* worst case: skip to next skb. try to improve on this case below */
1832 	zc->recv_skip_hint = skb->len - offset;
1833 
1834 	/* Find the frag containing this offset (and how far into that frag) */
1835 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1836 	if (!frag)
1837 		return;
1838 
1839 	if (frag_offset) {
1840 		struct skb_shared_info *info = skb_shinfo(skb);
1841 
1842 		/* We read part of the last frag, must recvmsg() rest of skb. */
1843 		if (frag == &info->frags[info->nr_frags - 1])
1844 			return;
1845 
1846 		/* Else, we must at least read the remainder in this frag. */
1847 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1848 		zc->recv_skip_hint -= partial_frag_remainder;
1849 		++frag;
1850 	}
1851 
1852 	/* partial_frag_remainder: If part way through a frag, must read rest.
1853 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1854 	 * in partial_frag_remainder.
1855 	 */
1856 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1857 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1858 }
1859 
1860 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1861 			      int nonblock, int flags,
1862 			      struct scm_timestamping_internal *tss,
1863 			      int *cmsg_flags);
1864 static int receive_fallback_to_copy(struct sock *sk,
1865 				    struct tcp_zerocopy_receive *zc, int inq,
1866 				    struct scm_timestamping_internal *tss)
1867 {
1868 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1869 	struct msghdr msg = {};
1870 	struct iovec iov;
1871 	int err;
1872 
1873 	zc->length = 0;
1874 	zc->recv_skip_hint = 0;
1875 
1876 	if (copy_address != zc->copybuf_address)
1877 		return -EINVAL;
1878 
1879 	err = import_single_range(READ, (void __user *)copy_address,
1880 				  inq, &iov, &msg.msg_iter);
1881 	if (err)
1882 		return err;
1883 
1884 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1885 				 tss, &zc->msg_flags);
1886 	if (err < 0)
1887 		return err;
1888 
1889 	zc->copybuf_len = err;
1890 	if (likely(zc->copybuf_len)) {
1891 		struct sk_buff *skb;
1892 		u32 offset;
1893 
1894 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1895 		if (skb)
1896 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1897 	}
1898 	return 0;
1899 }
1900 
1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1902 				   struct sk_buff *skb, u32 copylen,
1903 				   u32 *offset, u32 *seq)
1904 {
1905 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1906 	struct msghdr msg = {};
1907 	struct iovec iov;
1908 	int err;
1909 
1910 	if (copy_address != zc->copybuf_address)
1911 		return -EINVAL;
1912 
1913 	err = import_single_range(READ, (void __user *)copy_address,
1914 				  copylen, &iov, &msg.msg_iter);
1915 	if (err)
1916 		return err;
1917 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1918 	if (err)
1919 		return err;
1920 	zc->recv_skip_hint -= copylen;
1921 	*offset += copylen;
1922 	*seq += copylen;
1923 	return (__s32)copylen;
1924 }
1925 
1926 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1927 				  struct sock *sk,
1928 				  struct sk_buff *skb,
1929 				  u32 *seq,
1930 				  s32 copybuf_len,
1931 				  struct scm_timestamping_internal *tss)
1932 {
1933 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1934 
1935 	if (!copylen)
1936 		return 0;
1937 	/* skb is null if inq < PAGE_SIZE. */
1938 	if (skb) {
1939 		offset = *seq - TCP_SKB_CB(skb)->seq;
1940 	} else {
1941 		skb = tcp_recv_skb(sk, *seq, &offset);
1942 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1943 			tcp_update_recv_tstamps(skb, tss);
1944 			zc->msg_flags |= TCP_CMSG_TS;
1945 		}
1946 	}
1947 
1948 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1949 						  seq);
1950 	return zc->copybuf_len < 0 ? 0 : copylen;
1951 }
1952 
1953 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1954 					      struct page **pending_pages,
1955 					      unsigned long pages_remaining,
1956 					      unsigned long *address,
1957 					      u32 *length,
1958 					      u32 *seq,
1959 					      struct tcp_zerocopy_receive *zc,
1960 					      u32 total_bytes_to_map,
1961 					      int err)
1962 {
1963 	/* At least one page did not map. Try zapping if we skipped earlier. */
1964 	if (err == -EBUSY &&
1965 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1966 		u32 maybe_zap_len;
1967 
1968 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1969 				*length + /* Mapped or pending */
1970 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1971 		zap_page_range(vma, *address, maybe_zap_len);
1972 		err = 0;
1973 	}
1974 
1975 	if (!err) {
1976 		unsigned long leftover_pages = pages_remaining;
1977 		int bytes_mapped;
1978 
1979 		/* We called zap_page_range, try to reinsert. */
1980 		err = vm_insert_pages(vma, *address,
1981 				      pending_pages,
1982 				      &pages_remaining);
1983 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1984 		*seq += bytes_mapped;
1985 		*address += bytes_mapped;
1986 	}
1987 	if (err) {
1988 		/* Either we were unable to zap, OR we zapped, retried an
1989 		 * insert, and still had an issue. Either ways, pages_remaining
1990 		 * is the number of pages we were unable to map, and we unroll
1991 		 * some state we speculatively touched before.
1992 		 */
1993 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1994 
1995 		*length -= bytes_not_mapped;
1996 		zc->recv_skip_hint += bytes_not_mapped;
1997 	}
1998 	return err;
1999 }
2000 
2001 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2002 					struct page **pages,
2003 					unsigned int pages_to_map,
2004 					unsigned long *address,
2005 					u32 *length,
2006 					u32 *seq,
2007 					struct tcp_zerocopy_receive *zc,
2008 					u32 total_bytes_to_map)
2009 {
2010 	unsigned long pages_remaining = pages_to_map;
2011 	unsigned int pages_mapped;
2012 	unsigned int bytes_mapped;
2013 	int err;
2014 
2015 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2016 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2017 	bytes_mapped = PAGE_SIZE * pages_mapped;
2018 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2019 	 * mapping (some but not all of the pages).
2020 	 */
2021 	*seq += bytes_mapped;
2022 	*address += bytes_mapped;
2023 
2024 	if (likely(!err))
2025 		return 0;
2026 
2027 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2028 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2029 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2030 		err);
2031 }
2032 
2033 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2034 			       struct scm_timestamping_internal *tss);
2035 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2036 				      struct tcp_zerocopy_receive *zc,
2037 				      struct scm_timestamping_internal *tss)
2038 {
2039 	unsigned long msg_control_addr;
2040 	struct msghdr cmsg_dummy;
2041 
2042 	msg_control_addr = (unsigned long)zc->msg_control;
2043 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2044 	cmsg_dummy.msg_controllen =
2045 		(__kernel_size_t)zc->msg_controllen;
2046 	cmsg_dummy.msg_flags = in_compat_syscall()
2047 		? MSG_CMSG_COMPAT : 0;
2048 	zc->msg_flags = 0;
2049 	if (zc->msg_control == msg_control_addr &&
2050 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2051 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2052 		zc->msg_control = (__u64)
2053 			((uintptr_t)cmsg_dummy.msg_control);
2054 		zc->msg_controllen =
2055 			(__u64)cmsg_dummy.msg_controllen;
2056 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2057 	}
2058 }
2059 
2060 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2061 static int tcp_zerocopy_receive(struct sock *sk,
2062 				struct tcp_zerocopy_receive *zc,
2063 				struct scm_timestamping_internal *tss)
2064 {
2065 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2066 	unsigned long address = (unsigned long)zc->address;
2067 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2068 	s32 copybuf_len = zc->copybuf_len;
2069 	struct tcp_sock *tp = tcp_sk(sk);
2070 	const skb_frag_t *frags = NULL;
2071 	unsigned int pages_to_map = 0;
2072 	struct vm_area_struct *vma;
2073 	struct sk_buff *skb = NULL;
2074 	u32 seq = tp->copied_seq;
2075 	u32 total_bytes_to_map;
2076 	int inq = tcp_inq(sk);
2077 	int ret;
2078 
2079 	zc->copybuf_len = 0;
2080 	zc->msg_flags = 0;
2081 
2082 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2083 		return -EINVAL;
2084 
2085 	if (sk->sk_state == TCP_LISTEN)
2086 		return -ENOTCONN;
2087 
2088 	sock_rps_record_flow(sk);
2089 
2090 	if (inq && inq <= copybuf_len)
2091 		return receive_fallback_to_copy(sk, zc, inq, tss);
2092 
2093 	if (inq < PAGE_SIZE) {
2094 		zc->length = 0;
2095 		zc->recv_skip_hint = inq;
2096 		if (!inq && sock_flag(sk, SOCK_DONE))
2097 			return -EIO;
2098 		return 0;
2099 	}
2100 
2101 	mmap_read_lock(current->mm);
2102 
2103 	vma = find_vma(current->mm, address);
2104 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
2105 		mmap_read_unlock(current->mm);
2106 		return -EINVAL;
2107 	}
2108 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2109 	avail_len = min_t(u32, vma_len, inq);
2110 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2111 	if (total_bytes_to_map) {
2112 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2113 			zap_page_range(vma, address, total_bytes_to_map);
2114 		zc->length = total_bytes_to_map;
2115 		zc->recv_skip_hint = 0;
2116 	} else {
2117 		zc->length = avail_len;
2118 		zc->recv_skip_hint = avail_len;
2119 	}
2120 	ret = 0;
2121 	while (length + PAGE_SIZE <= zc->length) {
2122 		int mappable_offset;
2123 		struct page *page;
2124 
2125 		if (zc->recv_skip_hint < PAGE_SIZE) {
2126 			u32 offset_frag;
2127 
2128 			if (skb) {
2129 				if (zc->recv_skip_hint > 0)
2130 					break;
2131 				skb = skb->next;
2132 				offset = seq - TCP_SKB_CB(skb)->seq;
2133 			} else {
2134 				skb = tcp_recv_skb(sk, seq, &offset);
2135 			}
2136 
2137 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2138 				tcp_update_recv_tstamps(skb, tss);
2139 				zc->msg_flags |= TCP_CMSG_TS;
2140 			}
2141 			zc->recv_skip_hint = skb->len - offset;
2142 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2143 			if (!frags || offset_frag)
2144 				break;
2145 		}
2146 
2147 		mappable_offset = find_next_mappable_frag(frags,
2148 							  zc->recv_skip_hint);
2149 		if (mappable_offset) {
2150 			zc->recv_skip_hint = mappable_offset;
2151 			break;
2152 		}
2153 		page = skb_frag_page(frags);
2154 		prefetchw(page);
2155 		pages[pages_to_map++] = page;
2156 		length += PAGE_SIZE;
2157 		zc->recv_skip_hint -= PAGE_SIZE;
2158 		frags++;
2159 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2160 		    zc->recv_skip_hint < PAGE_SIZE) {
2161 			/* Either full batch, or we're about to go to next skb
2162 			 * (and we cannot unroll failed ops across skbs).
2163 			 */
2164 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2165 							   pages_to_map,
2166 							   &address, &length,
2167 							   &seq, zc,
2168 							   total_bytes_to_map);
2169 			if (ret)
2170 				goto out;
2171 			pages_to_map = 0;
2172 		}
2173 	}
2174 	if (pages_to_map) {
2175 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2176 						   &address, &length, &seq,
2177 						   zc, total_bytes_to_map);
2178 	}
2179 out:
2180 	mmap_read_unlock(current->mm);
2181 	/* Try to copy straggler data. */
2182 	if (!ret)
2183 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2184 
2185 	if (length + copylen) {
2186 		WRITE_ONCE(tp->copied_seq, seq);
2187 		tcp_rcv_space_adjust(sk);
2188 
2189 		/* Clean up data we have read: This will do ACK frames. */
2190 		tcp_recv_skb(sk, seq, &offset);
2191 		tcp_cleanup_rbuf(sk, length + copylen);
2192 		ret = 0;
2193 		if (length == zc->length)
2194 			zc->recv_skip_hint = 0;
2195 	} else {
2196 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2197 			ret = -EIO;
2198 	}
2199 	zc->length = length;
2200 	return ret;
2201 }
2202 #endif
2203 
2204 /* Similar to __sock_recv_timestamp, but does not require an skb */
2205 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2206 			       struct scm_timestamping_internal *tss)
2207 {
2208 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2209 	bool has_timestamping = false;
2210 
2211 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2212 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2213 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2214 				if (new_tstamp) {
2215 					struct __kernel_timespec kts = {
2216 						.tv_sec = tss->ts[0].tv_sec,
2217 						.tv_nsec = tss->ts[0].tv_nsec,
2218 					};
2219 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2220 						 sizeof(kts), &kts);
2221 				} else {
2222 					struct __kernel_old_timespec ts_old = {
2223 						.tv_sec = tss->ts[0].tv_sec,
2224 						.tv_nsec = tss->ts[0].tv_nsec,
2225 					};
2226 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2227 						 sizeof(ts_old), &ts_old);
2228 				}
2229 			} else {
2230 				if (new_tstamp) {
2231 					struct __kernel_sock_timeval stv = {
2232 						.tv_sec = tss->ts[0].tv_sec,
2233 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2234 					};
2235 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2236 						 sizeof(stv), &stv);
2237 				} else {
2238 					struct __kernel_old_timeval tv = {
2239 						.tv_sec = tss->ts[0].tv_sec,
2240 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2241 					};
2242 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2243 						 sizeof(tv), &tv);
2244 				}
2245 			}
2246 		}
2247 
2248 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2249 			has_timestamping = true;
2250 		else
2251 			tss->ts[0] = (struct timespec64) {0};
2252 	}
2253 
2254 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2255 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2256 			has_timestamping = true;
2257 		else
2258 			tss->ts[2] = (struct timespec64) {0};
2259 	}
2260 
2261 	if (has_timestamping) {
2262 		tss->ts[1] = (struct timespec64) {0};
2263 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2264 			put_cmsg_scm_timestamping64(msg, tss);
2265 		else
2266 			put_cmsg_scm_timestamping(msg, tss);
2267 	}
2268 }
2269 
2270 static int tcp_inq_hint(struct sock *sk)
2271 {
2272 	const struct tcp_sock *tp = tcp_sk(sk);
2273 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2274 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2275 	int inq;
2276 
2277 	inq = rcv_nxt - copied_seq;
2278 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2279 		lock_sock(sk);
2280 		inq = tp->rcv_nxt - tp->copied_seq;
2281 		release_sock(sk);
2282 	}
2283 	/* After receiving a FIN, tell the user-space to continue reading
2284 	 * by returning a non-zero inq.
2285 	 */
2286 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2287 		inq = 1;
2288 	return inq;
2289 }
2290 
2291 /*
2292  *	This routine copies from a sock struct into the user buffer.
2293  *
2294  *	Technical note: in 2.3 we work on _locked_ socket, so that
2295  *	tricks with *seq access order and skb->users are not required.
2296  *	Probably, code can be easily improved even more.
2297  */
2298 
2299 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2300 			      int nonblock, int flags,
2301 			      struct scm_timestamping_internal *tss,
2302 			      int *cmsg_flags)
2303 {
2304 	struct tcp_sock *tp = tcp_sk(sk);
2305 	int copied = 0;
2306 	u32 peek_seq;
2307 	u32 *seq;
2308 	unsigned long used;
2309 	int err;
2310 	int target;		/* Read at least this many bytes */
2311 	long timeo;
2312 	struct sk_buff *skb, *last;
2313 	u32 urg_hole = 0;
2314 
2315 	err = -ENOTCONN;
2316 	if (sk->sk_state == TCP_LISTEN)
2317 		goto out;
2318 
2319 	if (tp->recvmsg_inq)
2320 		*cmsg_flags = TCP_CMSG_INQ;
2321 	timeo = sock_rcvtimeo(sk, nonblock);
2322 
2323 	/* Urgent data needs to be handled specially. */
2324 	if (flags & MSG_OOB)
2325 		goto recv_urg;
2326 
2327 	if (unlikely(tp->repair)) {
2328 		err = -EPERM;
2329 		if (!(flags & MSG_PEEK))
2330 			goto out;
2331 
2332 		if (tp->repair_queue == TCP_SEND_QUEUE)
2333 			goto recv_sndq;
2334 
2335 		err = -EINVAL;
2336 		if (tp->repair_queue == TCP_NO_QUEUE)
2337 			goto out;
2338 
2339 		/* 'common' recv queue MSG_PEEK-ing */
2340 	}
2341 
2342 	seq = &tp->copied_seq;
2343 	if (flags & MSG_PEEK) {
2344 		peek_seq = tp->copied_seq;
2345 		seq = &peek_seq;
2346 	}
2347 
2348 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2349 
2350 	do {
2351 		u32 offset;
2352 
2353 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2354 		if (tp->urg_data && tp->urg_seq == *seq) {
2355 			if (copied)
2356 				break;
2357 			if (signal_pending(current)) {
2358 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2359 				break;
2360 			}
2361 		}
2362 
2363 		/* Next get a buffer. */
2364 
2365 		last = skb_peek_tail(&sk->sk_receive_queue);
2366 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2367 			last = skb;
2368 			/* Now that we have two receive queues this
2369 			 * shouldn't happen.
2370 			 */
2371 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2372 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2373 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2374 				 flags))
2375 				break;
2376 
2377 			offset = *seq - TCP_SKB_CB(skb)->seq;
2378 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2379 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2380 				offset--;
2381 			}
2382 			if (offset < skb->len)
2383 				goto found_ok_skb;
2384 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2385 				goto found_fin_ok;
2386 			WARN(!(flags & MSG_PEEK),
2387 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2388 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2389 		}
2390 
2391 		/* Well, if we have backlog, try to process it now yet. */
2392 
2393 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2394 			break;
2395 
2396 		if (copied) {
2397 			if (sk->sk_err ||
2398 			    sk->sk_state == TCP_CLOSE ||
2399 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2400 			    !timeo ||
2401 			    signal_pending(current))
2402 				break;
2403 		} else {
2404 			if (sock_flag(sk, SOCK_DONE))
2405 				break;
2406 
2407 			if (sk->sk_err) {
2408 				copied = sock_error(sk);
2409 				break;
2410 			}
2411 
2412 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2413 				break;
2414 
2415 			if (sk->sk_state == TCP_CLOSE) {
2416 				/* This occurs when user tries to read
2417 				 * from never connected socket.
2418 				 */
2419 				copied = -ENOTCONN;
2420 				break;
2421 			}
2422 
2423 			if (!timeo) {
2424 				copied = -EAGAIN;
2425 				break;
2426 			}
2427 
2428 			if (signal_pending(current)) {
2429 				copied = sock_intr_errno(timeo);
2430 				break;
2431 			}
2432 		}
2433 
2434 		tcp_cleanup_rbuf(sk, copied);
2435 
2436 		if (copied >= target) {
2437 			/* Do not sleep, just process backlog. */
2438 			release_sock(sk);
2439 			lock_sock(sk);
2440 		} else {
2441 			sk_wait_data(sk, &timeo, last);
2442 		}
2443 
2444 		if ((flags & MSG_PEEK) &&
2445 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2446 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2447 					    current->comm,
2448 					    task_pid_nr(current));
2449 			peek_seq = tp->copied_seq;
2450 		}
2451 		continue;
2452 
2453 found_ok_skb:
2454 		/* Ok so how much can we use? */
2455 		used = skb->len - offset;
2456 		if (len < used)
2457 			used = len;
2458 
2459 		/* Do we have urgent data here? */
2460 		if (tp->urg_data) {
2461 			u32 urg_offset = tp->urg_seq - *seq;
2462 			if (urg_offset < used) {
2463 				if (!urg_offset) {
2464 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2465 						WRITE_ONCE(*seq, *seq + 1);
2466 						urg_hole++;
2467 						offset++;
2468 						used--;
2469 						if (!used)
2470 							goto skip_copy;
2471 					}
2472 				} else
2473 					used = urg_offset;
2474 			}
2475 		}
2476 
2477 		if (!(flags & MSG_TRUNC)) {
2478 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2479 			if (err) {
2480 				/* Exception. Bailout! */
2481 				if (!copied)
2482 					copied = -EFAULT;
2483 				break;
2484 			}
2485 		}
2486 
2487 		WRITE_ONCE(*seq, *seq + used);
2488 		copied += used;
2489 		len -= used;
2490 
2491 		tcp_rcv_space_adjust(sk);
2492 
2493 skip_copy:
2494 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2495 			tp->urg_data = 0;
2496 			tcp_fast_path_check(sk);
2497 		}
2498 
2499 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2500 			tcp_update_recv_tstamps(skb, tss);
2501 			*cmsg_flags |= TCP_CMSG_TS;
2502 		}
2503 
2504 		if (used + offset < skb->len)
2505 			continue;
2506 
2507 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2508 			goto found_fin_ok;
2509 		if (!(flags & MSG_PEEK))
2510 			sk_eat_skb(sk, skb);
2511 		continue;
2512 
2513 found_fin_ok:
2514 		/* Process the FIN. */
2515 		WRITE_ONCE(*seq, *seq + 1);
2516 		if (!(flags & MSG_PEEK))
2517 			sk_eat_skb(sk, skb);
2518 		break;
2519 	} while (len > 0);
2520 
2521 	/* According to UNIX98, msg_name/msg_namelen are ignored
2522 	 * on connected socket. I was just happy when found this 8) --ANK
2523 	 */
2524 
2525 	/* Clean up data we have read: This will do ACK frames. */
2526 	tcp_cleanup_rbuf(sk, copied);
2527 	return copied;
2528 
2529 out:
2530 	return err;
2531 
2532 recv_urg:
2533 	err = tcp_recv_urg(sk, msg, len, flags);
2534 	goto out;
2535 
2536 recv_sndq:
2537 	err = tcp_peek_sndq(sk, msg, len);
2538 	goto out;
2539 }
2540 
2541 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2542 		int flags, int *addr_len)
2543 {
2544 	int cmsg_flags = 0, ret, inq;
2545 	struct scm_timestamping_internal tss;
2546 
2547 	if (unlikely(flags & MSG_ERRQUEUE))
2548 		return inet_recv_error(sk, msg, len, addr_len);
2549 
2550 	if (sk_can_busy_loop(sk) &&
2551 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2552 	    sk->sk_state == TCP_ESTABLISHED)
2553 		sk_busy_loop(sk, nonblock);
2554 
2555 	lock_sock(sk);
2556 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2557 				 &cmsg_flags);
2558 	release_sock(sk);
2559 
2560 	if (cmsg_flags && ret >= 0) {
2561 		if (cmsg_flags & TCP_CMSG_TS)
2562 			tcp_recv_timestamp(msg, sk, &tss);
2563 		if (cmsg_flags & TCP_CMSG_INQ) {
2564 			inq = tcp_inq_hint(sk);
2565 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2566 		}
2567 	}
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL(tcp_recvmsg);
2571 
2572 void tcp_set_state(struct sock *sk, int state)
2573 {
2574 	int oldstate = sk->sk_state;
2575 
2576 	/* We defined a new enum for TCP states that are exported in BPF
2577 	 * so as not force the internal TCP states to be frozen. The
2578 	 * following checks will detect if an internal state value ever
2579 	 * differs from the BPF value. If this ever happens, then we will
2580 	 * need to remap the internal value to the BPF value before calling
2581 	 * tcp_call_bpf_2arg.
2582 	 */
2583 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2584 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2585 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2586 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2587 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2588 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2589 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2590 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2591 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2592 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2593 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2594 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2595 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2596 
2597 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2598 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2599 
2600 	switch (state) {
2601 	case TCP_ESTABLISHED:
2602 		if (oldstate != TCP_ESTABLISHED)
2603 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2604 		break;
2605 
2606 	case TCP_CLOSE:
2607 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2608 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2609 
2610 		sk->sk_prot->unhash(sk);
2611 		if (inet_csk(sk)->icsk_bind_hash &&
2612 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2613 			inet_put_port(sk);
2614 		fallthrough;
2615 	default:
2616 		if (oldstate == TCP_ESTABLISHED)
2617 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2618 	}
2619 
2620 	/* Change state AFTER socket is unhashed to avoid closed
2621 	 * socket sitting in hash tables.
2622 	 */
2623 	inet_sk_state_store(sk, state);
2624 }
2625 EXPORT_SYMBOL_GPL(tcp_set_state);
2626 
2627 /*
2628  *	State processing on a close. This implements the state shift for
2629  *	sending our FIN frame. Note that we only send a FIN for some
2630  *	states. A shutdown() may have already sent the FIN, or we may be
2631  *	closed.
2632  */
2633 
2634 static const unsigned char new_state[16] = {
2635   /* current state:        new state:      action:	*/
2636   [0 /* (Invalid) */]	= TCP_CLOSE,
2637   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2638   [TCP_SYN_SENT]	= TCP_CLOSE,
2639   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2640   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2641   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2642   [TCP_TIME_WAIT]	= TCP_CLOSE,
2643   [TCP_CLOSE]		= TCP_CLOSE,
2644   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2645   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2646   [TCP_LISTEN]		= TCP_CLOSE,
2647   [TCP_CLOSING]		= TCP_CLOSING,
2648   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2649 };
2650 
2651 static int tcp_close_state(struct sock *sk)
2652 {
2653 	int next = (int)new_state[sk->sk_state];
2654 	int ns = next & TCP_STATE_MASK;
2655 
2656 	tcp_set_state(sk, ns);
2657 
2658 	return next & TCP_ACTION_FIN;
2659 }
2660 
2661 /*
2662  *	Shutdown the sending side of a connection. Much like close except
2663  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2664  */
2665 
2666 void tcp_shutdown(struct sock *sk, int how)
2667 {
2668 	/*	We need to grab some memory, and put together a FIN,
2669 	 *	and then put it into the queue to be sent.
2670 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2671 	 */
2672 	if (!(how & SEND_SHUTDOWN))
2673 		return;
2674 
2675 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2676 	if ((1 << sk->sk_state) &
2677 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2678 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2679 		/* Clear out any half completed packets.  FIN if needed. */
2680 		if (tcp_close_state(sk))
2681 			tcp_send_fin(sk);
2682 	}
2683 }
2684 EXPORT_SYMBOL(tcp_shutdown);
2685 
2686 bool tcp_check_oom(struct sock *sk, int shift)
2687 {
2688 	bool too_many_orphans, out_of_socket_memory;
2689 
2690 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2691 	out_of_socket_memory = tcp_out_of_memory(sk);
2692 
2693 	if (too_many_orphans)
2694 		net_info_ratelimited("too many orphaned sockets\n");
2695 	if (out_of_socket_memory)
2696 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2697 	return too_many_orphans || out_of_socket_memory;
2698 }
2699 
2700 void __tcp_close(struct sock *sk, long timeout)
2701 {
2702 	struct sk_buff *skb;
2703 	int data_was_unread = 0;
2704 	int state;
2705 
2706 	sk->sk_shutdown = SHUTDOWN_MASK;
2707 
2708 	if (sk->sk_state == TCP_LISTEN) {
2709 		tcp_set_state(sk, TCP_CLOSE);
2710 
2711 		/* Special case. */
2712 		inet_csk_listen_stop(sk);
2713 
2714 		goto adjudge_to_death;
2715 	}
2716 
2717 	/*  We need to flush the recv. buffs.  We do this only on the
2718 	 *  descriptor close, not protocol-sourced closes, because the
2719 	 *  reader process may not have drained the data yet!
2720 	 */
2721 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2722 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2723 
2724 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2725 			len--;
2726 		data_was_unread += len;
2727 		__kfree_skb(skb);
2728 	}
2729 
2730 	sk_mem_reclaim(sk);
2731 
2732 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2733 	if (sk->sk_state == TCP_CLOSE)
2734 		goto adjudge_to_death;
2735 
2736 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2737 	 * data was lost. To witness the awful effects of the old behavior of
2738 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2739 	 * GET in an FTP client, suspend the process, wait for the client to
2740 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2741 	 * Note: timeout is always zero in such a case.
2742 	 */
2743 	if (unlikely(tcp_sk(sk)->repair)) {
2744 		sk->sk_prot->disconnect(sk, 0);
2745 	} else if (data_was_unread) {
2746 		/* Unread data was tossed, zap the connection. */
2747 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2748 		tcp_set_state(sk, TCP_CLOSE);
2749 		tcp_send_active_reset(sk, sk->sk_allocation);
2750 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2751 		/* Check zero linger _after_ checking for unread data. */
2752 		sk->sk_prot->disconnect(sk, 0);
2753 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2754 	} else if (tcp_close_state(sk)) {
2755 		/* We FIN if the application ate all the data before
2756 		 * zapping the connection.
2757 		 */
2758 
2759 		/* RED-PEN. Formally speaking, we have broken TCP state
2760 		 * machine. State transitions:
2761 		 *
2762 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2763 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2764 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2765 		 *
2766 		 * are legal only when FIN has been sent (i.e. in window),
2767 		 * rather than queued out of window. Purists blame.
2768 		 *
2769 		 * F.e. "RFC state" is ESTABLISHED,
2770 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2771 		 *
2772 		 * The visible declinations are that sometimes
2773 		 * we enter time-wait state, when it is not required really
2774 		 * (harmless), do not send active resets, when they are
2775 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2776 		 * they look as CLOSING or LAST_ACK for Linux)
2777 		 * Probably, I missed some more holelets.
2778 		 * 						--ANK
2779 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2780 		 * in a single packet! (May consider it later but will
2781 		 * probably need API support or TCP_CORK SYN-ACK until
2782 		 * data is written and socket is closed.)
2783 		 */
2784 		tcp_send_fin(sk);
2785 	}
2786 
2787 	sk_stream_wait_close(sk, timeout);
2788 
2789 adjudge_to_death:
2790 	state = sk->sk_state;
2791 	sock_hold(sk);
2792 	sock_orphan(sk);
2793 
2794 	local_bh_disable();
2795 	bh_lock_sock(sk);
2796 	/* remove backlog if any, without releasing ownership. */
2797 	__release_sock(sk);
2798 
2799 	percpu_counter_inc(sk->sk_prot->orphan_count);
2800 
2801 	/* Have we already been destroyed by a softirq or backlog? */
2802 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2803 		goto out;
2804 
2805 	/*	This is a (useful) BSD violating of the RFC. There is a
2806 	 *	problem with TCP as specified in that the other end could
2807 	 *	keep a socket open forever with no application left this end.
2808 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2809 	 *	our end. If they send after that then tough - BUT: long enough
2810 	 *	that we won't make the old 4*rto = almost no time - whoops
2811 	 *	reset mistake.
2812 	 *
2813 	 *	Nope, it was not mistake. It is really desired behaviour
2814 	 *	f.e. on http servers, when such sockets are useless, but
2815 	 *	consume significant resources. Let's do it with special
2816 	 *	linger2	option.					--ANK
2817 	 */
2818 
2819 	if (sk->sk_state == TCP_FIN_WAIT2) {
2820 		struct tcp_sock *tp = tcp_sk(sk);
2821 		if (tp->linger2 < 0) {
2822 			tcp_set_state(sk, TCP_CLOSE);
2823 			tcp_send_active_reset(sk, GFP_ATOMIC);
2824 			__NET_INC_STATS(sock_net(sk),
2825 					LINUX_MIB_TCPABORTONLINGER);
2826 		} else {
2827 			const int tmo = tcp_fin_time(sk);
2828 
2829 			if (tmo > TCP_TIMEWAIT_LEN) {
2830 				inet_csk_reset_keepalive_timer(sk,
2831 						tmo - TCP_TIMEWAIT_LEN);
2832 			} else {
2833 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2834 				goto out;
2835 			}
2836 		}
2837 	}
2838 	if (sk->sk_state != TCP_CLOSE) {
2839 		sk_mem_reclaim(sk);
2840 		if (tcp_check_oom(sk, 0)) {
2841 			tcp_set_state(sk, TCP_CLOSE);
2842 			tcp_send_active_reset(sk, GFP_ATOMIC);
2843 			__NET_INC_STATS(sock_net(sk),
2844 					LINUX_MIB_TCPABORTONMEMORY);
2845 		} else if (!check_net(sock_net(sk))) {
2846 			/* Not possible to send reset; just close */
2847 			tcp_set_state(sk, TCP_CLOSE);
2848 		}
2849 	}
2850 
2851 	if (sk->sk_state == TCP_CLOSE) {
2852 		struct request_sock *req;
2853 
2854 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2855 						lockdep_sock_is_held(sk));
2856 		/* We could get here with a non-NULL req if the socket is
2857 		 * aborted (e.g., closed with unread data) before 3WHS
2858 		 * finishes.
2859 		 */
2860 		if (req)
2861 			reqsk_fastopen_remove(sk, req, false);
2862 		inet_csk_destroy_sock(sk);
2863 	}
2864 	/* Otherwise, socket is reprieved until protocol close. */
2865 
2866 out:
2867 	bh_unlock_sock(sk);
2868 	local_bh_enable();
2869 }
2870 
2871 void tcp_close(struct sock *sk, long timeout)
2872 {
2873 	lock_sock(sk);
2874 	__tcp_close(sk, timeout);
2875 	release_sock(sk);
2876 	sock_put(sk);
2877 }
2878 EXPORT_SYMBOL(tcp_close);
2879 
2880 /* These states need RST on ABORT according to RFC793 */
2881 
2882 static inline bool tcp_need_reset(int state)
2883 {
2884 	return (1 << state) &
2885 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2886 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2887 }
2888 
2889 static void tcp_rtx_queue_purge(struct sock *sk)
2890 {
2891 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2892 
2893 	tcp_sk(sk)->highest_sack = NULL;
2894 	while (p) {
2895 		struct sk_buff *skb = rb_to_skb(p);
2896 
2897 		p = rb_next(p);
2898 		/* Since we are deleting whole queue, no need to
2899 		 * list_del(&skb->tcp_tsorted_anchor)
2900 		 */
2901 		tcp_rtx_queue_unlink(skb, sk);
2902 		sk_wmem_free_skb(sk, skb);
2903 	}
2904 }
2905 
2906 void tcp_write_queue_purge(struct sock *sk)
2907 {
2908 	struct sk_buff *skb;
2909 
2910 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2911 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2912 		tcp_skb_tsorted_anchor_cleanup(skb);
2913 		sk_wmem_free_skb(sk, skb);
2914 	}
2915 	tcp_rtx_queue_purge(sk);
2916 	skb = sk->sk_tx_skb_cache;
2917 	if (skb) {
2918 		__kfree_skb(skb);
2919 		sk->sk_tx_skb_cache = NULL;
2920 	}
2921 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2922 	sk_mem_reclaim(sk);
2923 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2924 	tcp_sk(sk)->packets_out = 0;
2925 	inet_csk(sk)->icsk_backoff = 0;
2926 }
2927 
2928 int tcp_disconnect(struct sock *sk, int flags)
2929 {
2930 	struct inet_sock *inet = inet_sk(sk);
2931 	struct inet_connection_sock *icsk = inet_csk(sk);
2932 	struct tcp_sock *tp = tcp_sk(sk);
2933 	int old_state = sk->sk_state;
2934 	u32 seq;
2935 
2936 	if (old_state != TCP_CLOSE)
2937 		tcp_set_state(sk, TCP_CLOSE);
2938 
2939 	/* ABORT function of RFC793 */
2940 	if (old_state == TCP_LISTEN) {
2941 		inet_csk_listen_stop(sk);
2942 	} else if (unlikely(tp->repair)) {
2943 		sk->sk_err = ECONNABORTED;
2944 	} else if (tcp_need_reset(old_state) ||
2945 		   (tp->snd_nxt != tp->write_seq &&
2946 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2947 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2948 		 * states
2949 		 */
2950 		tcp_send_active_reset(sk, gfp_any());
2951 		sk->sk_err = ECONNRESET;
2952 	} else if (old_state == TCP_SYN_SENT)
2953 		sk->sk_err = ECONNRESET;
2954 
2955 	tcp_clear_xmit_timers(sk);
2956 	__skb_queue_purge(&sk->sk_receive_queue);
2957 	if (sk->sk_rx_skb_cache) {
2958 		__kfree_skb(sk->sk_rx_skb_cache);
2959 		sk->sk_rx_skb_cache = NULL;
2960 	}
2961 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2962 	tp->urg_data = 0;
2963 	tcp_write_queue_purge(sk);
2964 	tcp_fastopen_active_disable_ofo_check(sk);
2965 	skb_rbtree_purge(&tp->out_of_order_queue);
2966 
2967 	inet->inet_dport = 0;
2968 
2969 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2970 		inet_reset_saddr(sk);
2971 
2972 	sk->sk_shutdown = 0;
2973 	sock_reset_flag(sk, SOCK_DONE);
2974 	tp->srtt_us = 0;
2975 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2976 	tp->rcv_rtt_last_tsecr = 0;
2977 
2978 	seq = tp->write_seq + tp->max_window + 2;
2979 	if (!seq)
2980 		seq = 1;
2981 	WRITE_ONCE(tp->write_seq, seq);
2982 
2983 	icsk->icsk_backoff = 0;
2984 	icsk->icsk_probes_out = 0;
2985 	icsk->icsk_probes_tstamp = 0;
2986 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2987 	icsk->icsk_rto_min = TCP_RTO_MIN;
2988 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2989 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2990 	tp->snd_cwnd = TCP_INIT_CWND;
2991 	tp->snd_cwnd_cnt = 0;
2992 	tp->window_clamp = 0;
2993 	tp->delivered = 0;
2994 	tp->delivered_ce = 0;
2995 	if (icsk->icsk_ca_ops->release)
2996 		icsk->icsk_ca_ops->release(sk);
2997 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2998 	icsk->icsk_ca_initialized = 0;
2999 	tcp_set_ca_state(sk, TCP_CA_Open);
3000 	tp->is_sack_reneg = 0;
3001 	tcp_clear_retrans(tp);
3002 	tp->total_retrans = 0;
3003 	inet_csk_delack_init(sk);
3004 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3005 	 * issue in __tcp_select_window()
3006 	 */
3007 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3008 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3009 	__sk_dst_reset(sk);
3010 	dst_release(sk->sk_rx_dst);
3011 	sk->sk_rx_dst = NULL;
3012 	tcp_saved_syn_free(tp);
3013 	tp->compressed_ack = 0;
3014 	tp->segs_in = 0;
3015 	tp->segs_out = 0;
3016 	tp->bytes_sent = 0;
3017 	tp->bytes_acked = 0;
3018 	tp->bytes_received = 0;
3019 	tp->bytes_retrans = 0;
3020 	tp->data_segs_in = 0;
3021 	tp->data_segs_out = 0;
3022 	tp->duplicate_sack[0].start_seq = 0;
3023 	tp->duplicate_sack[0].end_seq = 0;
3024 	tp->dsack_dups = 0;
3025 	tp->reord_seen = 0;
3026 	tp->retrans_out = 0;
3027 	tp->sacked_out = 0;
3028 	tp->tlp_high_seq = 0;
3029 	tp->last_oow_ack_time = 0;
3030 	/* There's a bubble in the pipe until at least the first ACK. */
3031 	tp->app_limited = ~0U;
3032 	tp->rack.mstamp = 0;
3033 	tp->rack.advanced = 0;
3034 	tp->rack.reo_wnd_steps = 1;
3035 	tp->rack.last_delivered = 0;
3036 	tp->rack.reo_wnd_persist = 0;
3037 	tp->rack.dsack_seen = 0;
3038 	tp->syn_data_acked = 0;
3039 	tp->rx_opt.saw_tstamp = 0;
3040 	tp->rx_opt.dsack = 0;
3041 	tp->rx_opt.num_sacks = 0;
3042 	tp->rcv_ooopack = 0;
3043 
3044 
3045 	/* Clean up fastopen related fields */
3046 	tcp_free_fastopen_req(tp);
3047 	inet->defer_connect = 0;
3048 	tp->fastopen_client_fail = 0;
3049 
3050 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3051 
3052 	if (sk->sk_frag.page) {
3053 		put_page(sk->sk_frag.page);
3054 		sk->sk_frag.page = NULL;
3055 		sk->sk_frag.offset = 0;
3056 	}
3057 
3058 	sk->sk_error_report(sk);
3059 	return 0;
3060 }
3061 EXPORT_SYMBOL(tcp_disconnect);
3062 
3063 static inline bool tcp_can_repair_sock(const struct sock *sk)
3064 {
3065 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3066 		(sk->sk_state != TCP_LISTEN);
3067 }
3068 
3069 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3070 {
3071 	struct tcp_repair_window opt;
3072 
3073 	if (!tp->repair)
3074 		return -EPERM;
3075 
3076 	if (len != sizeof(opt))
3077 		return -EINVAL;
3078 
3079 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3080 		return -EFAULT;
3081 
3082 	if (opt.max_window < opt.snd_wnd)
3083 		return -EINVAL;
3084 
3085 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3086 		return -EINVAL;
3087 
3088 	if (after(opt.rcv_wup, tp->rcv_nxt))
3089 		return -EINVAL;
3090 
3091 	tp->snd_wl1	= opt.snd_wl1;
3092 	tp->snd_wnd	= opt.snd_wnd;
3093 	tp->max_window	= opt.max_window;
3094 
3095 	tp->rcv_wnd	= opt.rcv_wnd;
3096 	tp->rcv_wup	= opt.rcv_wup;
3097 
3098 	return 0;
3099 }
3100 
3101 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3102 		unsigned int len)
3103 {
3104 	struct tcp_sock *tp = tcp_sk(sk);
3105 	struct tcp_repair_opt opt;
3106 	size_t offset = 0;
3107 
3108 	while (len >= sizeof(opt)) {
3109 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3110 			return -EFAULT;
3111 
3112 		offset += sizeof(opt);
3113 		len -= sizeof(opt);
3114 
3115 		switch (opt.opt_code) {
3116 		case TCPOPT_MSS:
3117 			tp->rx_opt.mss_clamp = opt.opt_val;
3118 			tcp_mtup_init(sk);
3119 			break;
3120 		case TCPOPT_WINDOW:
3121 			{
3122 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3123 				u16 rcv_wscale = opt.opt_val >> 16;
3124 
3125 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3126 					return -EFBIG;
3127 
3128 				tp->rx_opt.snd_wscale = snd_wscale;
3129 				tp->rx_opt.rcv_wscale = rcv_wscale;
3130 				tp->rx_opt.wscale_ok = 1;
3131 			}
3132 			break;
3133 		case TCPOPT_SACK_PERM:
3134 			if (opt.opt_val != 0)
3135 				return -EINVAL;
3136 
3137 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3138 			break;
3139 		case TCPOPT_TIMESTAMP:
3140 			if (opt.opt_val != 0)
3141 				return -EINVAL;
3142 
3143 			tp->rx_opt.tstamp_ok = 1;
3144 			break;
3145 		}
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3152 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3153 
3154 static void tcp_enable_tx_delay(void)
3155 {
3156 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3157 		static int __tcp_tx_delay_enabled = 0;
3158 
3159 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3160 			static_branch_enable(&tcp_tx_delay_enabled);
3161 			pr_info("TCP_TX_DELAY enabled\n");
3162 		}
3163 	}
3164 }
3165 
3166 /* When set indicates to always queue non-full frames.  Later the user clears
3167  * this option and we transmit any pending partial frames in the queue.  This is
3168  * meant to be used alongside sendfile() to get properly filled frames when the
3169  * user (for example) must write out headers with a write() call first and then
3170  * use sendfile to send out the data parts.
3171  *
3172  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3173  * TCP_NODELAY.
3174  */
3175 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3176 {
3177 	struct tcp_sock *tp = tcp_sk(sk);
3178 
3179 	if (on) {
3180 		tp->nonagle |= TCP_NAGLE_CORK;
3181 	} else {
3182 		tp->nonagle &= ~TCP_NAGLE_CORK;
3183 		if (tp->nonagle & TCP_NAGLE_OFF)
3184 			tp->nonagle |= TCP_NAGLE_PUSH;
3185 		tcp_push_pending_frames(sk);
3186 	}
3187 }
3188 
3189 void tcp_sock_set_cork(struct sock *sk, bool on)
3190 {
3191 	lock_sock(sk);
3192 	__tcp_sock_set_cork(sk, on);
3193 	release_sock(sk);
3194 }
3195 EXPORT_SYMBOL(tcp_sock_set_cork);
3196 
3197 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3198  * remembered, but it is not activated until cork is cleared.
3199  *
3200  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3201  * even TCP_CORK for currently queued segments.
3202  */
3203 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3204 {
3205 	if (on) {
3206 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3207 		tcp_push_pending_frames(sk);
3208 	} else {
3209 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3210 	}
3211 }
3212 
3213 void tcp_sock_set_nodelay(struct sock *sk)
3214 {
3215 	lock_sock(sk);
3216 	__tcp_sock_set_nodelay(sk, true);
3217 	release_sock(sk);
3218 }
3219 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3220 
3221 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3222 {
3223 	if (!val) {
3224 		inet_csk_enter_pingpong_mode(sk);
3225 		return;
3226 	}
3227 
3228 	inet_csk_exit_pingpong_mode(sk);
3229 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3230 	    inet_csk_ack_scheduled(sk)) {
3231 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3232 		tcp_cleanup_rbuf(sk, 1);
3233 		if (!(val & 1))
3234 			inet_csk_enter_pingpong_mode(sk);
3235 	}
3236 }
3237 
3238 void tcp_sock_set_quickack(struct sock *sk, int val)
3239 {
3240 	lock_sock(sk);
3241 	__tcp_sock_set_quickack(sk, val);
3242 	release_sock(sk);
3243 }
3244 EXPORT_SYMBOL(tcp_sock_set_quickack);
3245 
3246 int tcp_sock_set_syncnt(struct sock *sk, int val)
3247 {
3248 	if (val < 1 || val > MAX_TCP_SYNCNT)
3249 		return -EINVAL;
3250 
3251 	lock_sock(sk);
3252 	inet_csk(sk)->icsk_syn_retries = val;
3253 	release_sock(sk);
3254 	return 0;
3255 }
3256 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3257 
3258 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3259 {
3260 	lock_sock(sk);
3261 	inet_csk(sk)->icsk_user_timeout = val;
3262 	release_sock(sk);
3263 }
3264 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3265 
3266 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3267 {
3268 	struct tcp_sock *tp = tcp_sk(sk);
3269 
3270 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3271 		return -EINVAL;
3272 
3273 	tp->keepalive_time = val * HZ;
3274 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3275 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3276 		u32 elapsed = keepalive_time_elapsed(tp);
3277 
3278 		if (tp->keepalive_time > elapsed)
3279 			elapsed = tp->keepalive_time - elapsed;
3280 		else
3281 			elapsed = 0;
3282 		inet_csk_reset_keepalive_timer(sk, elapsed);
3283 	}
3284 
3285 	return 0;
3286 }
3287 
3288 int tcp_sock_set_keepidle(struct sock *sk, int val)
3289 {
3290 	int err;
3291 
3292 	lock_sock(sk);
3293 	err = tcp_sock_set_keepidle_locked(sk, val);
3294 	release_sock(sk);
3295 	return err;
3296 }
3297 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3298 
3299 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3300 {
3301 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3302 		return -EINVAL;
3303 
3304 	lock_sock(sk);
3305 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3306 	release_sock(sk);
3307 	return 0;
3308 }
3309 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3310 
3311 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3312 {
3313 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3314 		return -EINVAL;
3315 
3316 	lock_sock(sk);
3317 	tcp_sk(sk)->keepalive_probes = val;
3318 	release_sock(sk);
3319 	return 0;
3320 }
3321 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3322 
3323 int tcp_set_window_clamp(struct sock *sk, int val)
3324 {
3325 	struct tcp_sock *tp = tcp_sk(sk);
3326 
3327 	if (!val) {
3328 		if (sk->sk_state != TCP_CLOSE)
3329 			return -EINVAL;
3330 		tp->window_clamp = 0;
3331 	} else {
3332 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3333 			SOCK_MIN_RCVBUF / 2 : val;
3334 	}
3335 	return 0;
3336 }
3337 
3338 /*
3339  *	Socket option code for TCP.
3340  */
3341 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3342 		sockptr_t optval, unsigned int optlen)
3343 {
3344 	struct tcp_sock *tp = tcp_sk(sk);
3345 	struct inet_connection_sock *icsk = inet_csk(sk);
3346 	struct net *net = sock_net(sk);
3347 	int val;
3348 	int err = 0;
3349 
3350 	/* These are data/string values, all the others are ints */
3351 	switch (optname) {
3352 	case TCP_CONGESTION: {
3353 		char name[TCP_CA_NAME_MAX];
3354 
3355 		if (optlen < 1)
3356 			return -EINVAL;
3357 
3358 		val = strncpy_from_sockptr(name, optval,
3359 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3360 		if (val < 0)
3361 			return -EFAULT;
3362 		name[val] = 0;
3363 
3364 		lock_sock(sk);
3365 		err = tcp_set_congestion_control(sk, name, true,
3366 						 ns_capable(sock_net(sk)->user_ns,
3367 							    CAP_NET_ADMIN));
3368 		release_sock(sk);
3369 		return err;
3370 	}
3371 	case TCP_ULP: {
3372 		char name[TCP_ULP_NAME_MAX];
3373 
3374 		if (optlen < 1)
3375 			return -EINVAL;
3376 
3377 		val = strncpy_from_sockptr(name, optval,
3378 					min_t(long, TCP_ULP_NAME_MAX - 1,
3379 					      optlen));
3380 		if (val < 0)
3381 			return -EFAULT;
3382 		name[val] = 0;
3383 
3384 		lock_sock(sk);
3385 		err = tcp_set_ulp(sk, name);
3386 		release_sock(sk);
3387 		return err;
3388 	}
3389 	case TCP_FASTOPEN_KEY: {
3390 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3391 		__u8 *backup_key = NULL;
3392 
3393 		/* Allow a backup key as well to facilitate key rotation
3394 		 * First key is the active one.
3395 		 */
3396 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3397 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3398 			return -EINVAL;
3399 
3400 		if (copy_from_sockptr(key, optval, optlen))
3401 			return -EFAULT;
3402 
3403 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3404 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3405 
3406 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3407 	}
3408 	default:
3409 		/* fallthru */
3410 		break;
3411 	}
3412 
3413 	if (optlen < sizeof(int))
3414 		return -EINVAL;
3415 
3416 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3417 		return -EFAULT;
3418 
3419 	lock_sock(sk);
3420 
3421 	switch (optname) {
3422 	case TCP_MAXSEG:
3423 		/* Values greater than interface MTU won't take effect. However
3424 		 * at the point when this call is done we typically don't yet
3425 		 * know which interface is going to be used
3426 		 */
3427 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3428 			err = -EINVAL;
3429 			break;
3430 		}
3431 		tp->rx_opt.user_mss = val;
3432 		break;
3433 
3434 	case TCP_NODELAY:
3435 		__tcp_sock_set_nodelay(sk, val);
3436 		break;
3437 
3438 	case TCP_THIN_LINEAR_TIMEOUTS:
3439 		if (val < 0 || val > 1)
3440 			err = -EINVAL;
3441 		else
3442 			tp->thin_lto = val;
3443 		break;
3444 
3445 	case TCP_THIN_DUPACK:
3446 		if (val < 0 || val > 1)
3447 			err = -EINVAL;
3448 		break;
3449 
3450 	case TCP_REPAIR:
3451 		if (!tcp_can_repair_sock(sk))
3452 			err = -EPERM;
3453 		else if (val == TCP_REPAIR_ON) {
3454 			tp->repair = 1;
3455 			sk->sk_reuse = SK_FORCE_REUSE;
3456 			tp->repair_queue = TCP_NO_QUEUE;
3457 		} else if (val == TCP_REPAIR_OFF) {
3458 			tp->repair = 0;
3459 			sk->sk_reuse = SK_NO_REUSE;
3460 			tcp_send_window_probe(sk);
3461 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3462 			tp->repair = 0;
3463 			sk->sk_reuse = SK_NO_REUSE;
3464 		} else
3465 			err = -EINVAL;
3466 
3467 		break;
3468 
3469 	case TCP_REPAIR_QUEUE:
3470 		if (!tp->repair)
3471 			err = -EPERM;
3472 		else if ((unsigned int)val < TCP_QUEUES_NR)
3473 			tp->repair_queue = val;
3474 		else
3475 			err = -EINVAL;
3476 		break;
3477 
3478 	case TCP_QUEUE_SEQ:
3479 		if (sk->sk_state != TCP_CLOSE)
3480 			err = -EPERM;
3481 		else if (tp->repair_queue == TCP_SEND_QUEUE)
3482 			WRITE_ONCE(tp->write_seq, val);
3483 		else if (tp->repair_queue == TCP_RECV_QUEUE) {
3484 			WRITE_ONCE(tp->rcv_nxt, val);
3485 			WRITE_ONCE(tp->copied_seq, val);
3486 		}
3487 		else
3488 			err = -EINVAL;
3489 		break;
3490 
3491 	case TCP_REPAIR_OPTIONS:
3492 		if (!tp->repair)
3493 			err = -EINVAL;
3494 		else if (sk->sk_state == TCP_ESTABLISHED)
3495 			err = tcp_repair_options_est(sk, optval, optlen);
3496 		else
3497 			err = -EPERM;
3498 		break;
3499 
3500 	case TCP_CORK:
3501 		__tcp_sock_set_cork(sk, val);
3502 		break;
3503 
3504 	case TCP_KEEPIDLE:
3505 		err = tcp_sock_set_keepidle_locked(sk, val);
3506 		break;
3507 	case TCP_KEEPINTVL:
3508 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3509 			err = -EINVAL;
3510 		else
3511 			tp->keepalive_intvl = val * HZ;
3512 		break;
3513 	case TCP_KEEPCNT:
3514 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3515 			err = -EINVAL;
3516 		else
3517 			tp->keepalive_probes = val;
3518 		break;
3519 	case TCP_SYNCNT:
3520 		if (val < 1 || val > MAX_TCP_SYNCNT)
3521 			err = -EINVAL;
3522 		else
3523 			icsk->icsk_syn_retries = val;
3524 		break;
3525 
3526 	case TCP_SAVE_SYN:
3527 		/* 0: disable, 1: enable, 2: start from ether_header */
3528 		if (val < 0 || val > 2)
3529 			err = -EINVAL;
3530 		else
3531 			tp->save_syn = val;
3532 		break;
3533 
3534 	case TCP_LINGER2:
3535 		if (val < 0)
3536 			tp->linger2 = -1;
3537 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3538 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3539 		else
3540 			tp->linger2 = val * HZ;
3541 		break;
3542 
3543 	case TCP_DEFER_ACCEPT:
3544 		/* Translate value in seconds to number of retransmits */
3545 		icsk->icsk_accept_queue.rskq_defer_accept =
3546 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3547 					TCP_RTO_MAX / HZ);
3548 		break;
3549 
3550 	case TCP_WINDOW_CLAMP:
3551 		err = tcp_set_window_clamp(sk, val);
3552 		break;
3553 
3554 	case TCP_QUICKACK:
3555 		__tcp_sock_set_quickack(sk, val);
3556 		break;
3557 
3558 #ifdef CONFIG_TCP_MD5SIG
3559 	case TCP_MD5SIG:
3560 	case TCP_MD5SIG_EXT:
3561 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3562 		break;
3563 #endif
3564 	case TCP_USER_TIMEOUT:
3565 		/* Cap the max time in ms TCP will retry or probe the window
3566 		 * before giving up and aborting (ETIMEDOUT) a connection.
3567 		 */
3568 		if (val < 0)
3569 			err = -EINVAL;
3570 		else
3571 			icsk->icsk_user_timeout = val;
3572 		break;
3573 
3574 	case TCP_FASTOPEN:
3575 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3576 		    TCPF_LISTEN))) {
3577 			tcp_fastopen_init_key_once(net);
3578 
3579 			fastopen_queue_tune(sk, val);
3580 		} else {
3581 			err = -EINVAL;
3582 		}
3583 		break;
3584 	case TCP_FASTOPEN_CONNECT:
3585 		if (val > 1 || val < 0) {
3586 			err = -EINVAL;
3587 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3588 			if (sk->sk_state == TCP_CLOSE)
3589 				tp->fastopen_connect = val;
3590 			else
3591 				err = -EINVAL;
3592 		} else {
3593 			err = -EOPNOTSUPP;
3594 		}
3595 		break;
3596 	case TCP_FASTOPEN_NO_COOKIE:
3597 		if (val > 1 || val < 0)
3598 			err = -EINVAL;
3599 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3600 			err = -EINVAL;
3601 		else
3602 			tp->fastopen_no_cookie = val;
3603 		break;
3604 	case TCP_TIMESTAMP:
3605 		if (!tp->repair)
3606 			err = -EPERM;
3607 		else
3608 			tp->tsoffset = val - tcp_time_stamp_raw();
3609 		break;
3610 	case TCP_REPAIR_WINDOW:
3611 		err = tcp_repair_set_window(tp, optval, optlen);
3612 		break;
3613 	case TCP_NOTSENT_LOWAT:
3614 		tp->notsent_lowat = val;
3615 		sk->sk_write_space(sk);
3616 		break;
3617 	case TCP_INQ:
3618 		if (val > 1 || val < 0)
3619 			err = -EINVAL;
3620 		else
3621 			tp->recvmsg_inq = val;
3622 		break;
3623 	case TCP_TX_DELAY:
3624 		if (val)
3625 			tcp_enable_tx_delay();
3626 		tp->tcp_tx_delay = val;
3627 		break;
3628 	default:
3629 		err = -ENOPROTOOPT;
3630 		break;
3631 	}
3632 
3633 	release_sock(sk);
3634 	return err;
3635 }
3636 
3637 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3638 		   unsigned int optlen)
3639 {
3640 	const struct inet_connection_sock *icsk = inet_csk(sk);
3641 
3642 	if (level != SOL_TCP)
3643 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3644 						     optval, optlen);
3645 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3646 }
3647 EXPORT_SYMBOL(tcp_setsockopt);
3648 
3649 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3650 				      struct tcp_info *info)
3651 {
3652 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3653 	enum tcp_chrono i;
3654 
3655 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3656 		stats[i] = tp->chrono_stat[i - 1];
3657 		if (i == tp->chrono_type)
3658 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3659 		stats[i] *= USEC_PER_SEC / HZ;
3660 		total += stats[i];
3661 	}
3662 
3663 	info->tcpi_busy_time = total;
3664 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3665 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3666 }
3667 
3668 /* Return information about state of tcp endpoint in API format. */
3669 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3670 {
3671 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3672 	const struct inet_connection_sock *icsk = inet_csk(sk);
3673 	unsigned long rate;
3674 	u32 now;
3675 	u64 rate64;
3676 	bool slow;
3677 
3678 	memset(info, 0, sizeof(*info));
3679 	if (sk->sk_type != SOCK_STREAM)
3680 		return;
3681 
3682 	info->tcpi_state = inet_sk_state_load(sk);
3683 
3684 	/* Report meaningful fields for all TCP states, including listeners */
3685 	rate = READ_ONCE(sk->sk_pacing_rate);
3686 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3687 	info->tcpi_pacing_rate = rate64;
3688 
3689 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3690 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3691 	info->tcpi_max_pacing_rate = rate64;
3692 
3693 	info->tcpi_reordering = tp->reordering;
3694 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3695 
3696 	if (info->tcpi_state == TCP_LISTEN) {
3697 		/* listeners aliased fields :
3698 		 * tcpi_unacked -> Number of children ready for accept()
3699 		 * tcpi_sacked  -> max backlog
3700 		 */
3701 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3702 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3703 		return;
3704 	}
3705 
3706 	slow = lock_sock_fast(sk);
3707 
3708 	info->tcpi_ca_state = icsk->icsk_ca_state;
3709 	info->tcpi_retransmits = icsk->icsk_retransmits;
3710 	info->tcpi_probes = icsk->icsk_probes_out;
3711 	info->tcpi_backoff = icsk->icsk_backoff;
3712 
3713 	if (tp->rx_opt.tstamp_ok)
3714 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3715 	if (tcp_is_sack(tp))
3716 		info->tcpi_options |= TCPI_OPT_SACK;
3717 	if (tp->rx_opt.wscale_ok) {
3718 		info->tcpi_options |= TCPI_OPT_WSCALE;
3719 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3720 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3721 	}
3722 
3723 	if (tp->ecn_flags & TCP_ECN_OK)
3724 		info->tcpi_options |= TCPI_OPT_ECN;
3725 	if (tp->ecn_flags & TCP_ECN_SEEN)
3726 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3727 	if (tp->syn_data_acked)
3728 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3729 
3730 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3731 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3732 	info->tcpi_snd_mss = tp->mss_cache;
3733 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3734 
3735 	info->tcpi_unacked = tp->packets_out;
3736 	info->tcpi_sacked = tp->sacked_out;
3737 
3738 	info->tcpi_lost = tp->lost_out;
3739 	info->tcpi_retrans = tp->retrans_out;
3740 
3741 	now = tcp_jiffies32;
3742 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3743 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3744 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3745 
3746 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3747 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3748 	info->tcpi_rtt = tp->srtt_us >> 3;
3749 	info->tcpi_rttvar = tp->mdev_us >> 2;
3750 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3751 	info->tcpi_advmss = tp->advmss;
3752 
3753 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3754 	info->tcpi_rcv_space = tp->rcvq_space.space;
3755 
3756 	info->tcpi_total_retrans = tp->total_retrans;
3757 
3758 	info->tcpi_bytes_acked = tp->bytes_acked;
3759 	info->tcpi_bytes_received = tp->bytes_received;
3760 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3761 	tcp_get_info_chrono_stats(tp, info);
3762 
3763 	info->tcpi_segs_out = tp->segs_out;
3764 	info->tcpi_segs_in = tp->segs_in;
3765 
3766 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3767 	info->tcpi_data_segs_in = tp->data_segs_in;
3768 	info->tcpi_data_segs_out = tp->data_segs_out;
3769 
3770 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3771 	rate64 = tcp_compute_delivery_rate(tp);
3772 	if (rate64)
3773 		info->tcpi_delivery_rate = rate64;
3774 	info->tcpi_delivered = tp->delivered;
3775 	info->tcpi_delivered_ce = tp->delivered_ce;
3776 	info->tcpi_bytes_sent = tp->bytes_sent;
3777 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3778 	info->tcpi_dsack_dups = tp->dsack_dups;
3779 	info->tcpi_reord_seen = tp->reord_seen;
3780 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3781 	info->tcpi_snd_wnd = tp->snd_wnd;
3782 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3783 	unlock_sock_fast(sk, slow);
3784 }
3785 EXPORT_SYMBOL_GPL(tcp_get_info);
3786 
3787 static size_t tcp_opt_stats_get_size(void)
3788 {
3789 	return
3790 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3791 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3792 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3793 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3794 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3795 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3796 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3797 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3798 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3799 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3800 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3801 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3802 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3803 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3804 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3805 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3806 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3807 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3808 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3809 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3810 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3811 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3812 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3813 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3814 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3815 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3816 		0;
3817 }
3818 
3819 /* Returns TTL or hop limit of an incoming packet from skb. */
3820 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3821 {
3822 	if (skb->protocol == htons(ETH_P_IP))
3823 		return ip_hdr(skb)->ttl;
3824 	else if (skb->protocol == htons(ETH_P_IPV6))
3825 		return ipv6_hdr(skb)->hop_limit;
3826 	else
3827 		return 0;
3828 }
3829 
3830 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3831 					       const struct sk_buff *orig_skb,
3832 					       const struct sk_buff *ack_skb)
3833 {
3834 	const struct tcp_sock *tp = tcp_sk(sk);
3835 	struct sk_buff *stats;
3836 	struct tcp_info info;
3837 	unsigned long rate;
3838 	u64 rate64;
3839 
3840 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3841 	if (!stats)
3842 		return NULL;
3843 
3844 	tcp_get_info_chrono_stats(tp, &info);
3845 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3846 			  info.tcpi_busy_time, TCP_NLA_PAD);
3847 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3848 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3849 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3850 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3851 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3852 			  tp->data_segs_out, TCP_NLA_PAD);
3853 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3854 			  tp->total_retrans, TCP_NLA_PAD);
3855 
3856 	rate = READ_ONCE(sk->sk_pacing_rate);
3857 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3858 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3859 
3860 	rate64 = tcp_compute_delivery_rate(tp);
3861 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3862 
3863 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3864 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3865 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3866 
3867 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3868 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3869 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3870 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3871 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3872 
3873 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3874 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3875 
3876 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3877 			  TCP_NLA_PAD);
3878 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3879 			  TCP_NLA_PAD);
3880 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3881 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3882 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3883 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3884 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3885 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3886 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3887 			  TCP_NLA_PAD);
3888 	if (ack_skb)
3889 		nla_put_u8(stats, TCP_NLA_TTL,
3890 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3891 
3892 	return stats;
3893 }
3894 
3895 static int do_tcp_getsockopt(struct sock *sk, int level,
3896 		int optname, char __user *optval, int __user *optlen)
3897 {
3898 	struct inet_connection_sock *icsk = inet_csk(sk);
3899 	struct tcp_sock *tp = tcp_sk(sk);
3900 	struct net *net = sock_net(sk);
3901 	int val, len;
3902 
3903 	if (get_user(len, optlen))
3904 		return -EFAULT;
3905 
3906 	len = min_t(unsigned int, len, sizeof(int));
3907 
3908 	if (len < 0)
3909 		return -EINVAL;
3910 
3911 	switch (optname) {
3912 	case TCP_MAXSEG:
3913 		val = tp->mss_cache;
3914 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3915 			val = tp->rx_opt.user_mss;
3916 		if (tp->repair)
3917 			val = tp->rx_opt.mss_clamp;
3918 		break;
3919 	case TCP_NODELAY:
3920 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3921 		break;
3922 	case TCP_CORK:
3923 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3924 		break;
3925 	case TCP_KEEPIDLE:
3926 		val = keepalive_time_when(tp) / HZ;
3927 		break;
3928 	case TCP_KEEPINTVL:
3929 		val = keepalive_intvl_when(tp) / HZ;
3930 		break;
3931 	case TCP_KEEPCNT:
3932 		val = keepalive_probes(tp);
3933 		break;
3934 	case TCP_SYNCNT:
3935 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3936 		break;
3937 	case TCP_LINGER2:
3938 		val = tp->linger2;
3939 		if (val >= 0)
3940 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3941 		break;
3942 	case TCP_DEFER_ACCEPT:
3943 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3944 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3945 		break;
3946 	case TCP_WINDOW_CLAMP:
3947 		val = tp->window_clamp;
3948 		break;
3949 	case TCP_INFO: {
3950 		struct tcp_info info;
3951 
3952 		if (get_user(len, optlen))
3953 			return -EFAULT;
3954 
3955 		tcp_get_info(sk, &info);
3956 
3957 		len = min_t(unsigned int, len, sizeof(info));
3958 		if (put_user(len, optlen))
3959 			return -EFAULT;
3960 		if (copy_to_user(optval, &info, len))
3961 			return -EFAULT;
3962 		return 0;
3963 	}
3964 	case TCP_CC_INFO: {
3965 		const struct tcp_congestion_ops *ca_ops;
3966 		union tcp_cc_info info;
3967 		size_t sz = 0;
3968 		int attr;
3969 
3970 		if (get_user(len, optlen))
3971 			return -EFAULT;
3972 
3973 		ca_ops = icsk->icsk_ca_ops;
3974 		if (ca_ops && ca_ops->get_info)
3975 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3976 
3977 		len = min_t(unsigned int, len, sz);
3978 		if (put_user(len, optlen))
3979 			return -EFAULT;
3980 		if (copy_to_user(optval, &info, len))
3981 			return -EFAULT;
3982 		return 0;
3983 	}
3984 	case TCP_QUICKACK:
3985 		val = !inet_csk_in_pingpong_mode(sk);
3986 		break;
3987 
3988 	case TCP_CONGESTION:
3989 		if (get_user(len, optlen))
3990 			return -EFAULT;
3991 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3992 		if (put_user(len, optlen))
3993 			return -EFAULT;
3994 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3995 			return -EFAULT;
3996 		return 0;
3997 
3998 	case TCP_ULP:
3999 		if (get_user(len, optlen))
4000 			return -EFAULT;
4001 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4002 		if (!icsk->icsk_ulp_ops) {
4003 			if (put_user(0, optlen))
4004 				return -EFAULT;
4005 			return 0;
4006 		}
4007 		if (put_user(len, optlen))
4008 			return -EFAULT;
4009 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4010 			return -EFAULT;
4011 		return 0;
4012 
4013 	case TCP_FASTOPEN_KEY: {
4014 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4015 		unsigned int key_len;
4016 
4017 		if (get_user(len, optlen))
4018 			return -EFAULT;
4019 
4020 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4021 				TCP_FASTOPEN_KEY_LENGTH;
4022 		len = min_t(unsigned int, len, key_len);
4023 		if (put_user(len, optlen))
4024 			return -EFAULT;
4025 		if (copy_to_user(optval, key, len))
4026 			return -EFAULT;
4027 		return 0;
4028 	}
4029 	case TCP_THIN_LINEAR_TIMEOUTS:
4030 		val = tp->thin_lto;
4031 		break;
4032 
4033 	case TCP_THIN_DUPACK:
4034 		val = 0;
4035 		break;
4036 
4037 	case TCP_REPAIR:
4038 		val = tp->repair;
4039 		break;
4040 
4041 	case TCP_REPAIR_QUEUE:
4042 		if (tp->repair)
4043 			val = tp->repair_queue;
4044 		else
4045 			return -EINVAL;
4046 		break;
4047 
4048 	case TCP_REPAIR_WINDOW: {
4049 		struct tcp_repair_window opt;
4050 
4051 		if (get_user(len, optlen))
4052 			return -EFAULT;
4053 
4054 		if (len != sizeof(opt))
4055 			return -EINVAL;
4056 
4057 		if (!tp->repair)
4058 			return -EPERM;
4059 
4060 		opt.snd_wl1	= tp->snd_wl1;
4061 		opt.snd_wnd	= tp->snd_wnd;
4062 		opt.max_window	= tp->max_window;
4063 		opt.rcv_wnd	= tp->rcv_wnd;
4064 		opt.rcv_wup	= tp->rcv_wup;
4065 
4066 		if (copy_to_user(optval, &opt, len))
4067 			return -EFAULT;
4068 		return 0;
4069 	}
4070 	case TCP_QUEUE_SEQ:
4071 		if (tp->repair_queue == TCP_SEND_QUEUE)
4072 			val = tp->write_seq;
4073 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4074 			val = tp->rcv_nxt;
4075 		else
4076 			return -EINVAL;
4077 		break;
4078 
4079 	case TCP_USER_TIMEOUT:
4080 		val = icsk->icsk_user_timeout;
4081 		break;
4082 
4083 	case TCP_FASTOPEN:
4084 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4085 		break;
4086 
4087 	case TCP_FASTOPEN_CONNECT:
4088 		val = tp->fastopen_connect;
4089 		break;
4090 
4091 	case TCP_FASTOPEN_NO_COOKIE:
4092 		val = tp->fastopen_no_cookie;
4093 		break;
4094 
4095 	case TCP_TX_DELAY:
4096 		val = tp->tcp_tx_delay;
4097 		break;
4098 
4099 	case TCP_TIMESTAMP:
4100 		val = tcp_time_stamp_raw() + tp->tsoffset;
4101 		break;
4102 	case TCP_NOTSENT_LOWAT:
4103 		val = tp->notsent_lowat;
4104 		break;
4105 	case TCP_INQ:
4106 		val = tp->recvmsg_inq;
4107 		break;
4108 	case TCP_SAVE_SYN:
4109 		val = tp->save_syn;
4110 		break;
4111 	case TCP_SAVED_SYN: {
4112 		if (get_user(len, optlen))
4113 			return -EFAULT;
4114 
4115 		lock_sock(sk);
4116 		if (tp->saved_syn) {
4117 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4118 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4119 					     optlen)) {
4120 					release_sock(sk);
4121 					return -EFAULT;
4122 				}
4123 				release_sock(sk);
4124 				return -EINVAL;
4125 			}
4126 			len = tcp_saved_syn_len(tp->saved_syn);
4127 			if (put_user(len, optlen)) {
4128 				release_sock(sk);
4129 				return -EFAULT;
4130 			}
4131 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4132 				release_sock(sk);
4133 				return -EFAULT;
4134 			}
4135 			tcp_saved_syn_free(tp);
4136 			release_sock(sk);
4137 		} else {
4138 			release_sock(sk);
4139 			len = 0;
4140 			if (put_user(len, optlen))
4141 				return -EFAULT;
4142 		}
4143 		return 0;
4144 	}
4145 #ifdef CONFIG_MMU
4146 	case TCP_ZEROCOPY_RECEIVE: {
4147 		struct scm_timestamping_internal tss;
4148 		struct tcp_zerocopy_receive zc = {};
4149 		int err;
4150 
4151 		if (get_user(len, optlen))
4152 			return -EFAULT;
4153 		if (len < offsetofend(struct tcp_zerocopy_receive, length))
4154 			return -EINVAL;
4155 		if (len > sizeof(zc)) {
4156 			len = sizeof(zc);
4157 			if (put_user(len, optlen))
4158 				return -EFAULT;
4159 		}
4160 		if (copy_from_user(&zc, optval, len))
4161 			return -EFAULT;
4162 		lock_sock(sk);
4163 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4164 		release_sock(sk);
4165 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4166 			goto zerocopy_rcv_cmsg;
4167 		switch (len) {
4168 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4169 			goto zerocopy_rcv_cmsg;
4170 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4171 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4172 		case offsetofend(struct tcp_zerocopy_receive, flags):
4173 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4174 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4175 		case offsetofend(struct tcp_zerocopy_receive, err):
4176 			goto zerocopy_rcv_sk_err;
4177 		case offsetofend(struct tcp_zerocopy_receive, inq):
4178 			goto zerocopy_rcv_inq;
4179 		case offsetofend(struct tcp_zerocopy_receive, length):
4180 		default:
4181 			goto zerocopy_rcv_out;
4182 		}
4183 zerocopy_rcv_cmsg:
4184 		if (zc.msg_flags & TCP_CMSG_TS)
4185 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4186 		else
4187 			zc.msg_flags = 0;
4188 zerocopy_rcv_sk_err:
4189 		if (!err)
4190 			zc.err = sock_error(sk);
4191 zerocopy_rcv_inq:
4192 		zc.inq = tcp_inq_hint(sk);
4193 zerocopy_rcv_out:
4194 		if (!err && copy_to_user(optval, &zc, len))
4195 			err = -EFAULT;
4196 		return err;
4197 	}
4198 #endif
4199 	default:
4200 		return -ENOPROTOOPT;
4201 	}
4202 
4203 	if (put_user(len, optlen))
4204 		return -EFAULT;
4205 	if (copy_to_user(optval, &val, len))
4206 		return -EFAULT;
4207 	return 0;
4208 }
4209 
4210 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4211 		   int __user *optlen)
4212 {
4213 	struct inet_connection_sock *icsk = inet_csk(sk);
4214 
4215 	if (level != SOL_TCP)
4216 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4217 						     optval, optlen);
4218 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4219 }
4220 EXPORT_SYMBOL(tcp_getsockopt);
4221 
4222 #ifdef CONFIG_TCP_MD5SIG
4223 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4224 static DEFINE_MUTEX(tcp_md5sig_mutex);
4225 static bool tcp_md5sig_pool_populated = false;
4226 
4227 static void __tcp_alloc_md5sig_pool(void)
4228 {
4229 	struct crypto_ahash *hash;
4230 	int cpu;
4231 
4232 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4233 	if (IS_ERR(hash))
4234 		return;
4235 
4236 	for_each_possible_cpu(cpu) {
4237 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4238 		struct ahash_request *req;
4239 
4240 		if (!scratch) {
4241 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4242 					       sizeof(struct tcphdr),
4243 					       GFP_KERNEL,
4244 					       cpu_to_node(cpu));
4245 			if (!scratch)
4246 				return;
4247 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4248 		}
4249 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4250 			continue;
4251 
4252 		req = ahash_request_alloc(hash, GFP_KERNEL);
4253 		if (!req)
4254 			return;
4255 
4256 		ahash_request_set_callback(req, 0, NULL, NULL);
4257 
4258 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4259 	}
4260 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4261 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4262 	 */
4263 	smp_wmb();
4264 	tcp_md5sig_pool_populated = true;
4265 }
4266 
4267 bool tcp_alloc_md5sig_pool(void)
4268 {
4269 	if (unlikely(!tcp_md5sig_pool_populated)) {
4270 		mutex_lock(&tcp_md5sig_mutex);
4271 
4272 		if (!tcp_md5sig_pool_populated) {
4273 			__tcp_alloc_md5sig_pool();
4274 			if (tcp_md5sig_pool_populated)
4275 				static_branch_inc(&tcp_md5_needed);
4276 		}
4277 
4278 		mutex_unlock(&tcp_md5sig_mutex);
4279 	}
4280 	return tcp_md5sig_pool_populated;
4281 }
4282 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4283 
4284 
4285 /**
4286  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4287  *
4288  *	We use percpu structure, so if we succeed, we exit with preemption
4289  *	and BH disabled, to make sure another thread or softirq handling
4290  *	wont try to get same context.
4291  */
4292 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4293 {
4294 	local_bh_disable();
4295 
4296 	if (tcp_md5sig_pool_populated) {
4297 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4298 		smp_rmb();
4299 		return this_cpu_ptr(&tcp_md5sig_pool);
4300 	}
4301 	local_bh_enable();
4302 	return NULL;
4303 }
4304 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4305 
4306 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4307 			  const struct sk_buff *skb, unsigned int header_len)
4308 {
4309 	struct scatterlist sg;
4310 	const struct tcphdr *tp = tcp_hdr(skb);
4311 	struct ahash_request *req = hp->md5_req;
4312 	unsigned int i;
4313 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4314 					   skb_headlen(skb) - header_len : 0;
4315 	const struct skb_shared_info *shi = skb_shinfo(skb);
4316 	struct sk_buff *frag_iter;
4317 
4318 	sg_init_table(&sg, 1);
4319 
4320 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4321 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4322 	if (crypto_ahash_update(req))
4323 		return 1;
4324 
4325 	for (i = 0; i < shi->nr_frags; ++i) {
4326 		const skb_frag_t *f = &shi->frags[i];
4327 		unsigned int offset = skb_frag_off(f);
4328 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4329 
4330 		sg_set_page(&sg, page, skb_frag_size(f),
4331 			    offset_in_page(offset));
4332 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4333 		if (crypto_ahash_update(req))
4334 			return 1;
4335 	}
4336 
4337 	skb_walk_frags(skb, frag_iter)
4338 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4339 			return 1;
4340 
4341 	return 0;
4342 }
4343 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4344 
4345 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4346 {
4347 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4348 	struct scatterlist sg;
4349 
4350 	sg_init_one(&sg, key->key, keylen);
4351 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4352 
4353 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4354 	return data_race(crypto_ahash_update(hp->md5_req));
4355 }
4356 EXPORT_SYMBOL(tcp_md5_hash_key);
4357 
4358 #endif
4359 
4360 void tcp_done(struct sock *sk)
4361 {
4362 	struct request_sock *req;
4363 
4364 	/* We might be called with a new socket, after
4365 	 * inet_csk_prepare_forced_close() has been called
4366 	 * so we can not use lockdep_sock_is_held(sk)
4367 	 */
4368 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4369 
4370 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4371 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4372 
4373 	tcp_set_state(sk, TCP_CLOSE);
4374 	tcp_clear_xmit_timers(sk);
4375 	if (req)
4376 		reqsk_fastopen_remove(sk, req, false);
4377 
4378 	sk->sk_shutdown = SHUTDOWN_MASK;
4379 
4380 	if (!sock_flag(sk, SOCK_DEAD))
4381 		sk->sk_state_change(sk);
4382 	else
4383 		inet_csk_destroy_sock(sk);
4384 }
4385 EXPORT_SYMBOL_GPL(tcp_done);
4386 
4387 int tcp_abort(struct sock *sk, int err)
4388 {
4389 	if (!sk_fullsock(sk)) {
4390 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4391 			struct request_sock *req = inet_reqsk(sk);
4392 
4393 			local_bh_disable();
4394 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4395 			local_bh_enable();
4396 			return 0;
4397 		}
4398 		return -EOPNOTSUPP;
4399 	}
4400 
4401 	/* Don't race with userspace socket closes such as tcp_close. */
4402 	lock_sock(sk);
4403 
4404 	if (sk->sk_state == TCP_LISTEN) {
4405 		tcp_set_state(sk, TCP_CLOSE);
4406 		inet_csk_listen_stop(sk);
4407 	}
4408 
4409 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4410 	local_bh_disable();
4411 	bh_lock_sock(sk);
4412 
4413 	if (!sock_flag(sk, SOCK_DEAD)) {
4414 		sk->sk_err = err;
4415 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4416 		smp_wmb();
4417 		sk->sk_error_report(sk);
4418 		if (tcp_need_reset(sk->sk_state))
4419 			tcp_send_active_reset(sk, GFP_ATOMIC);
4420 		tcp_done(sk);
4421 	}
4422 
4423 	bh_unlock_sock(sk);
4424 	local_bh_enable();
4425 	tcp_write_queue_purge(sk);
4426 	release_sock(sk);
4427 	return 0;
4428 }
4429 EXPORT_SYMBOL_GPL(tcp_abort);
4430 
4431 extern struct tcp_congestion_ops tcp_reno;
4432 
4433 static __initdata unsigned long thash_entries;
4434 static int __init set_thash_entries(char *str)
4435 {
4436 	ssize_t ret;
4437 
4438 	if (!str)
4439 		return 0;
4440 
4441 	ret = kstrtoul(str, 0, &thash_entries);
4442 	if (ret)
4443 		return 0;
4444 
4445 	return 1;
4446 }
4447 __setup("thash_entries=", set_thash_entries);
4448 
4449 static void __init tcp_init_mem(void)
4450 {
4451 	unsigned long limit = nr_free_buffer_pages() / 16;
4452 
4453 	limit = max(limit, 128UL);
4454 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4455 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4456 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4457 }
4458 
4459 void __init tcp_init(void)
4460 {
4461 	int max_rshare, max_wshare, cnt;
4462 	unsigned long limit;
4463 	unsigned int i;
4464 
4465 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4466 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4467 		     sizeof_field(struct sk_buff, cb));
4468 
4469 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4470 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4471 	inet_hashinfo_init(&tcp_hashinfo);
4472 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4473 			    thash_entries, 21,  /* one slot per 2 MB*/
4474 			    0, 64 * 1024);
4475 	tcp_hashinfo.bind_bucket_cachep =
4476 		kmem_cache_create("tcp_bind_bucket",
4477 				  sizeof(struct inet_bind_bucket), 0,
4478 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4479 
4480 	/* Size and allocate the main established and bind bucket
4481 	 * hash tables.
4482 	 *
4483 	 * The methodology is similar to that of the buffer cache.
4484 	 */
4485 	tcp_hashinfo.ehash =
4486 		alloc_large_system_hash("TCP established",
4487 					sizeof(struct inet_ehash_bucket),
4488 					thash_entries,
4489 					17, /* one slot per 128 KB of memory */
4490 					0,
4491 					NULL,
4492 					&tcp_hashinfo.ehash_mask,
4493 					0,
4494 					thash_entries ? 0 : 512 * 1024);
4495 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4496 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4497 
4498 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4499 		panic("TCP: failed to alloc ehash_locks");
4500 	tcp_hashinfo.bhash =
4501 		alloc_large_system_hash("TCP bind",
4502 					sizeof(struct inet_bind_hashbucket),
4503 					tcp_hashinfo.ehash_mask + 1,
4504 					17, /* one slot per 128 KB of memory */
4505 					0,
4506 					&tcp_hashinfo.bhash_size,
4507 					NULL,
4508 					0,
4509 					64 * 1024);
4510 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4511 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4512 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4513 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4514 	}
4515 
4516 
4517 	cnt = tcp_hashinfo.ehash_mask + 1;
4518 	sysctl_tcp_max_orphans = cnt / 2;
4519 
4520 	tcp_init_mem();
4521 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4522 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4523 	max_wshare = min(4UL*1024*1024, limit);
4524 	max_rshare = min(6UL*1024*1024, limit);
4525 
4526 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4527 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4528 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4529 
4530 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4531 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4532 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4533 
4534 	pr_info("Hash tables configured (established %u bind %u)\n",
4535 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4536 
4537 	tcp_v4_init();
4538 	tcp_metrics_init();
4539 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4540 	tcp_tasklet_init();
4541 	mptcp_init();
4542 }
4543