1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #include <linux/kernel.h> 249 #include <linux/module.h> 250 #include <linux/types.h> 251 #include <linux/fcntl.h> 252 #include <linux/poll.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/bootmem.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/crypto.h> 267 268 #include <net/icmp.h> 269 #include <net/tcp.h> 270 #include <net/xfrm.h> 271 #include <net/ip.h> 272 #include <net/netdma.h> 273 #include <net/sock.h> 274 275 #include <asm/uaccess.h> 276 #include <asm/ioctls.h> 277 278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 279 280 struct percpu_counter tcp_orphan_count; 281 EXPORT_SYMBOL_GPL(tcp_orphan_count); 282 283 int sysctl_tcp_mem[3] __read_mostly; 284 int sysctl_tcp_wmem[3] __read_mostly; 285 int sysctl_tcp_rmem[3] __read_mostly; 286 287 EXPORT_SYMBOL(sysctl_tcp_mem); 288 EXPORT_SYMBOL(sysctl_tcp_rmem); 289 EXPORT_SYMBOL(sysctl_tcp_wmem); 290 291 atomic_t tcp_memory_allocated; /* Current allocated memory. */ 292 EXPORT_SYMBOL(tcp_memory_allocated); 293 294 /* 295 * Current number of TCP sockets. 296 */ 297 struct percpu_counter tcp_sockets_allocated; 298 EXPORT_SYMBOL(tcp_sockets_allocated); 299 300 /* 301 * TCP splice context 302 */ 303 struct tcp_splice_state { 304 struct pipe_inode_info *pipe; 305 size_t len; 306 unsigned int flags; 307 }; 308 309 /* 310 * Pressure flag: try to collapse. 311 * Technical note: it is used by multiple contexts non atomically. 312 * All the __sk_mem_schedule() is of this nature: accounting 313 * is strict, actions are advisory and have some latency. 314 */ 315 int tcp_memory_pressure __read_mostly; 316 317 EXPORT_SYMBOL(tcp_memory_pressure); 318 319 void tcp_enter_memory_pressure(struct sock *sk) 320 { 321 if (!tcp_memory_pressure) { 322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 323 tcp_memory_pressure = 1; 324 } 325 } 326 327 EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329 /* 330 * Wait for a TCP event. 331 * 332 * Note that we don't need to lock the socket, as the upper poll layers 333 * take care of normal races (between the test and the event) and we don't 334 * go look at any of the socket buffers directly. 335 */ 336 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 337 { 338 unsigned int mask; 339 struct sock *sk = sock->sk; 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 poll_wait(file, sk->sk_sleep, wait); 343 if (sk->sk_state == TCP_LISTEN) 344 return inet_csk_listen_poll(sk); 345 346 /* Socket is not locked. We are protected from async events 347 * by poll logic and correct handling of state changes 348 * made by other threads is impossible in any case. 349 */ 350 351 mask = 0; 352 if (sk->sk_err) 353 mask = POLLERR; 354 355 /* 356 * POLLHUP is certainly not done right. But poll() doesn't 357 * have a notion of HUP in just one direction, and for a 358 * socket the read side is more interesting. 359 * 360 * Some poll() documentation says that POLLHUP is incompatible 361 * with the POLLOUT/POLLWR flags, so somebody should check this 362 * all. But careful, it tends to be safer to return too many 363 * bits than too few, and you can easily break real applications 364 * if you don't tell them that something has hung up! 365 * 366 * Check-me. 367 * 368 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 369 * our fs/select.c). It means that after we received EOF, 370 * poll always returns immediately, making impossible poll() on write() 371 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 372 * if and only if shutdown has been made in both directions. 373 * Actually, it is interesting to look how Solaris and DUX 374 * solve this dilemma. I would prefer, if POLLHUP were maskable, 375 * then we could set it on SND_SHUTDOWN. BTW examples given 376 * in Stevens' books assume exactly this behaviour, it explains 377 * why POLLHUP is incompatible with POLLOUT. --ANK 378 * 379 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 380 * blocking on fresh not-connected or disconnected socket. --ANK 381 */ 382 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 383 mask |= POLLHUP; 384 if (sk->sk_shutdown & RCV_SHUTDOWN) 385 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 386 387 /* Connected? */ 388 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 389 int target = sock_rcvlowat(sk, 0, INT_MAX); 390 391 if (tp->urg_seq == tp->copied_seq && 392 !sock_flag(sk, SOCK_URGINLINE) && 393 tp->urg_data) 394 target--; 395 396 /* Potential race condition. If read of tp below will 397 * escape above sk->sk_state, we can be illegally awaken 398 * in SYN_* states. */ 399 if (tp->rcv_nxt - tp->copied_seq >= target) 400 mask |= POLLIN | POLLRDNORM; 401 402 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 403 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 404 mask |= POLLOUT | POLLWRNORM; 405 } else { /* send SIGIO later */ 406 set_bit(SOCK_ASYNC_NOSPACE, 407 &sk->sk_socket->flags); 408 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 409 410 /* Race breaker. If space is freed after 411 * wspace test but before the flags are set, 412 * IO signal will be lost. 413 */ 414 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 415 mask |= POLLOUT | POLLWRNORM; 416 } 417 } 418 419 if (tp->urg_data & TCP_URG_VALID) 420 mask |= POLLPRI; 421 } 422 return mask; 423 } 424 425 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 426 { 427 struct tcp_sock *tp = tcp_sk(sk); 428 int answ; 429 430 switch (cmd) { 431 case SIOCINQ: 432 if (sk->sk_state == TCP_LISTEN) 433 return -EINVAL; 434 435 lock_sock(sk); 436 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 437 answ = 0; 438 else if (sock_flag(sk, SOCK_URGINLINE) || 439 !tp->urg_data || 440 before(tp->urg_seq, tp->copied_seq) || 441 !before(tp->urg_seq, tp->rcv_nxt)) { 442 answ = tp->rcv_nxt - tp->copied_seq; 443 444 /* Subtract 1, if FIN is in queue. */ 445 if (answ && !skb_queue_empty(&sk->sk_receive_queue)) 446 answ -= 447 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin; 448 } else 449 answ = tp->urg_seq - tp->copied_seq; 450 release_sock(sk); 451 break; 452 case SIOCATMARK: 453 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 454 break; 455 case SIOCOUTQ: 456 if (sk->sk_state == TCP_LISTEN) 457 return -EINVAL; 458 459 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 460 answ = 0; 461 else 462 answ = tp->write_seq - tp->snd_una; 463 break; 464 default: 465 return -ENOIOCTLCMD; 466 } 467 468 return put_user(answ, (int __user *)arg); 469 } 470 471 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 472 { 473 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 474 tp->pushed_seq = tp->write_seq; 475 } 476 477 static inline int forced_push(struct tcp_sock *tp) 478 { 479 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 480 } 481 482 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 483 { 484 struct tcp_sock *tp = tcp_sk(sk); 485 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 486 487 skb->csum = 0; 488 tcb->seq = tcb->end_seq = tp->write_seq; 489 tcb->flags = TCPCB_FLAG_ACK; 490 tcb->sacked = 0; 491 skb_header_release(skb); 492 tcp_add_write_queue_tail(sk, skb); 493 sk->sk_wmem_queued += skb->truesize; 494 sk_mem_charge(sk, skb->truesize); 495 if (tp->nonagle & TCP_NAGLE_PUSH) 496 tp->nonagle &= ~TCP_NAGLE_PUSH; 497 } 498 499 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags, 500 struct sk_buff *skb) 501 { 502 if (flags & MSG_OOB) 503 tp->snd_up = tp->write_seq; 504 } 505 506 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 507 int nonagle) 508 { 509 struct tcp_sock *tp = tcp_sk(sk); 510 511 if (tcp_send_head(sk)) { 512 struct sk_buff *skb = tcp_write_queue_tail(sk); 513 if (!(flags & MSG_MORE) || forced_push(tp)) 514 tcp_mark_push(tp, skb); 515 tcp_mark_urg(tp, flags, skb); 516 __tcp_push_pending_frames(sk, mss_now, 517 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 518 } 519 } 520 521 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 522 unsigned int offset, size_t len) 523 { 524 struct tcp_splice_state *tss = rd_desc->arg.data; 525 int ret; 526 527 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 528 tss->flags); 529 if (ret > 0) 530 rd_desc->count -= ret; 531 return ret; 532 } 533 534 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 535 { 536 /* Store TCP splice context information in read_descriptor_t. */ 537 read_descriptor_t rd_desc = { 538 .arg.data = tss, 539 .count = tss->len, 540 }; 541 542 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 543 } 544 545 /** 546 * tcp_splice_read - splice data from TCP socket to a pipe 547 * @sock: socket to splice from 548 * @ppos: position (not valid) 549 * @pipe: pipe to splice to 550 * @len: number of bytes to splice 551 * @flags: splice modifier flags 552 * 553 * Description: 554 * Will read pages from given socket and fill them into a pipe. 555 * 556 **/ 557 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 558 struct pipe_inode_info *pipe, size_t len, 559 unsigned int flags) 560 { 561 struct sock *sk = sock->sk; 562 struct tcp_splice_state tss = { 563 .pipe = pipe, 564 .len = len, 565 .flags = flags, 566 }; 567 long timeo; 568 ssize_t spliced; 569 int ret; 570 571 /* 572 * We can't seek on a socket input 573 */ 574 if (unlikely(*ppos)) 575 return -ESPIPE; 576 577 ret = spliced = 0; 578 579 lock_sock(sk); 580 581 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK); 582 while (tss.len) { 583 ret = __tcp_splice_read(sk, &tss); 584 if (ret < 0) 585 break; 586 else if (!ret) { 587 if (spliced) 588 break; 589 if (sock_flag(sk, SOCK_DONE)) 590 break; 591 if (sk->sk_err) { 592 ret = sock_error(sk); 593 break; 594 } 595 if (sk->sk_shutdown & RCV_SHUTDOWN) 596 break; 597 if (sk->sk_state == TCP_CLOSE) { 598 /* 599 * This occurs when user tries to read 600 * from never connected socket. 601 */ 602 if (!sock_flag(sk, SOCK_DONE)) 603 ret = -ENOTCONN; 604 break; 605 } 606 if (!timeo) { 607 ret = -EAGAIN; 608 break; 609 } 610 sk_wait_data(sk, &timeo); 611 if (signal_pending(current)) { 612 ret = sock_intr_errno(timeo); 613 break; 614 } 615 continue; 616 } 617 tss.len -= ret; 618 spliced += ret; 619 620 if (!timeo) 621 break; 622 release_sock(sk); 623 lock_sock(sk); 624 625 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 626 (sk->sk_shutdown & RCV_SHUTDOWN) || 627 signal_pending(current)) 628 break; 629 } 630 631 release_sock(sk); 632 633 if (spliced) 634 return spliced; 635 636 return ret; 637 } 638 639 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 640 { 641 struct sk_buff *skb; 642 643 /* The TCP header must be at least 32-bit aligned. */ 644 size = ALIGN(size, 4); 645 646 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 647 if (skb) { 648 if (sk_wmem_schedule(sk, skb->truesize)) { 649 /* 650 * Make sure that we have exactly size bytes 651 * available to the caller, no more, no less. 652 */ 653 skb_reserve(skb, skb_tailroom(skb) - size); 654 return skb; 655 } 656 __kfree_skb(skb); 657 } else { 658 sk->sk_prot->enter_memory_pressure(sk); 659 sk_stream_moderate_sndbuf(sk); 660 } 661 return NULL; 662 } 663 664 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 665 int large_allowed) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 u32 xmit_size_goal, old_size_goal; 669 670 xmit_size_goal = mss_now; 671 672 if (large_allowed && sk_can_gso(sk)) { 673 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 674 inet_csk(sk)->icsk_af_ops->net_header_len - 675 inet_csk(sk)->icsk_ext_hdr_len - 676 tp->tcp_header_len); 677 678 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 679 680 /* We try hard to avoid divides here */ 681 old_size_goal = tp->xmit_size_goal_segs * mss_now; 682 683 if (likely(old_size_goal <= xmit_size_goal && 684 old_size_goal + mss_now > xmit_size_goal)) { 685 xmit_size_goal = old_size_goal; 686 } else { 687 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 688 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 689 } 690 } 691 692 return max(xmit_size_goal, mss_now); 693 } 694 695 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 696 { 697 int mss_now; 698 699 mss_now = tcp_current_mss(sk); 700 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 701 702 return mss_now; 703 } 704 705 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 706 size_t psize, int flags) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 int mss_now, size_goal; 710 int err; 711 ssize_t copied; 712 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 713 714 /* Wait for a connection to finish. */ 715 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 716 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 717 goto out_err; 718 719 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 720 721 mss_now = tcp_send_mss(sk, &size_goal, flags); 722 copied = 0; 723 724 err = -EPIPE; 725 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 726 goto out_err; 727 728 while (psize > 0) { 729 struct sk_buff *skb = tcp_write_queue_tail(sk); 730 struct page *page = pages[poffset / PAGE_SIZE]; 731 int copy, i, can_coalesce; 732 int offset = poffset % PAGE_SIZE; 733 int size = min_t(size_t, psize, PAGE_SIZE - offset); 734 735 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 736 new_segment: 737 if (!sk_stream_memory_free(sk)) 738 goto wait_for_sndbuf; 739 740 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 741 if (!skb) 742 goto wait_for_memory; 743 744 skb_entail(sk, skb); 745 copy = size_goal; 746 } 747 748 if (copy > size) 749 copy = size; 750 751 i = skb_shinfo(skb)->nr_frags; 752 can_coalesce = skb_can_coalesce(skb, i, page, offset); 753 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 754 tcp_mark_push(tp, skb); 755 goto new_segment; 756 } 757 if (!sk_wmem_schedule(sk, copy)) 758 goto wait_for_memory; 759 760 if (can_coalesce) { 761 skb_shinfo(skb)->frags[i - 1].size += copy; 762 } else { 763 get_page(page); 764 skb_fill_page_desc(skb, i, page, offset, copy); 765 } 766 767 skb->len += copy; 768 skb->data_len += copy; 769 skb->truesize += copy; 770 sk->sk_wmem_queued += copy; 771 sk_mem_charge(sk, copy); 772 skb->ip_summed = CHECKSUM_PARTIAL; 773 tp->write_seq += copy; 774 TCP_SKB_CB(skb)->end_seq += copy; 775 skb_shinfo(skb)->gso_segs = 0; 776 777 if (!copied) 778 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 779 780 copied += copy; 781 poffset += copy; 782 if (!(psize -= copy)) 783 goto out; 784 785 if (skb->len < size_goal || (flags & MSG_OOB)) 786 continue; 787 788 if (forced_push(tp)) { 789 tcp_mark_push(tp, skb); 790 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 791 } else if (skb == tcp_send_head(sk)) 792 tcp_push_one(sk, mss_now); 793 continue; 794 795 wait_for_sndbuf: 796 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 797 wait_for_memory: 798 if (copied) 799 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 800 801 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 802 goto do_error; 803 804 mss_now = tcp_send_mss(sk, &size_goal, flags); 805 } 806 807 out: 808 if (copied) 809 tcp_push(sk, flags, mss_now, tp->nonagle); 810 return copied; 811 812 do_error: 813 if (copied) 814 goto out; 815 out_err: 816 return sk_stream_error(sk, flags, err); 817 } 818 819 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, 820 size_t size, int flags) 821 { 822 ssize_t res; 823 struct sock *sk = sock->sk; 824 825 if (!(sk->sk_route_caps & NETIF_F_SG) || 826 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 827 return sock_no_sendpage(sock, page, offset, size, flags); 828 829 lock_sock(sk); 830 TCP_CHECK_TIMER(sk); 831 res = do_tcp_sendpages(sk, &page, offset, size, flags); 832 TCP_CHECK_TIMER(sk); 833 release_sock(sk); 834 return res; 835 } 836 837 #define TCP_PAGE(sk) (sk->sk_sndmsg_page) 838 #define TCP_OFF(sk) (sk->sk_sndmsg_off) 839 840 static inline int select_size(struct sock *sk) 841 { 842 struct tcp_sock *tp = tcp_sk(sk); 843 int tmp = tp->mss_cache; 844 845 if (sk->sk_route_caps & NETIF_F_SG) { 846 if (sk_can_gso(sk)) 847 tmp = 0; 848 else { 849 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 850 851 if (tmp >= pgbreak && 852 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 853 tmp = pgbreak; 854 } 855 } 856 857 return tmp; 858 } 859 860 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 861 size_t size) 862 { 863 struct sock *sk = sock->sk; 864 struct iovec *iov; 865 struct tcp_sock *tp = tcp_sk(sk); 866 struct sk_buff *skb; 867 int iovlen, flags; 868 int mss_now, size_goal; 869 int err, copied; 870 long timeo; 871 872 lock_sock(sk); 873 TCP_CHECK_TIMER(sk); 874 875 flags = msg->msg_flags; 876 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 877 878 /* Wait for a connection to finish. */ 879 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 880 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 881 goto out_err; 882 883 /* This should be in poll */ 884 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 885 886 mss_now = tcp_send_mss(sk, &size_goal, flags); 887 888 /* Ok commence sending. */ 889 iovlen = msg->msg_iovlen; 890 iov = msg->msg_iov; 891 copied = 0; 892 893 err = -EPIPE; 894 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 895 goto out_err; 896 897 while (--iovlen >= 0) { 898 int seglen = iov->iov_len; 899 unsigned char __user *from = iov->iov_base; 900 901 iov++; 902 903 while (seglen > 0) { 904 int copy; 905 906 skb = tcp_write_queue_tail(sk); 907 908 if (!tcp_send_head(sk) || 909 (copy = size_goal - skb->len) <= 0) { 910 911 new_segment: 912 /* Allocate new segment. If the interface is SG, 913 * allocate skb fitting to single page. 914 */ 915 if (!sk_stream_memory_free(sk)) 916 goto wait_for_sndbuf; 917 918 skb = sk_stream_alloc_skb(sk, select_size(sk), 919 sk->sk_allocation); 920 if (!skb) 921 goto wait_for_memory; 922 923 /* 924 * Check whether we can use HW checksum. 925 */ 926 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 927 skb->ip_summed = CHECKSUM_PARTIAL; 928 929 skb_entail(sk, skb); 930 copy = size_goal; 931 } 932 933 /* Try to append data to the end of skb. */ 934 if (copy > seglen) 935 copy = seglen; 936 937 /* Where to copy to? */ 938 if (skb_tailroom(skb) > 0) { 939 /* We have some space in skb head. Superb! */ 940 if (copy > skb_tailroom(skb)) 941 copy = skb_tailroom(skb); 942 if ((err = skb_add_data(skb, from, copy)) != 0) 943 goto do_fault; 944 } else { 945 int merge = 0; 946 int i = skb_shinfo(skb)->nr_frags; 947 struct page *page = TCP_PAGE(sk); 948 int off = TCP_OFF(sk); 949 950 if (skb_can_coalesce(skb, i, page, off) && 951 off != PAGE_SIZE) { 952 /* We can extend the last page 953 * fragment. */ 954 merge = 1; 955 } else if (i == MAX_SKB_FRAGS || 956 (!i && 957 !(sk->sk_route_caps & NETIF_F_SG))) { 958 /* Need to add new fragment and cannot 959 * do this because interface is non-SG, 960 * or because all the page slots are 961 * busy. */ 962 tcp_mark_push(tp, skb); 963 goto new_segment; 964 } else if (page) { 965 if (off == PAGE_SIZE) { 966 put_page(page); 967 TCP_PAGE(sk) = page = NULL; 968 off = 0; 969 } 970 } else 971 off = 0; 972 973 if (copy > PAGE_SIZE - off) 974 copy = PAGE_SIZE - off; 975 976 if (!sk_wmem_schedule(sk, copy)) 977 goto wait_for_memory; 978 979 if (!page) { 980 /* Allocate new cache page. */ 981 if (!(page = sk_stream_alloc_page(sk))) 982 goto wait_for_memory; 983 } 984 985 /* Time to copy data. We are close to 986 * the end! */ 987 err = skb_copy_to_page(sk, from, skb, page, 988 off, copy); 989 if (err) { 990 /* If this page was new, give it to the 991 * socket so it does not get leaked. 992 */ 993 if (!TCP_PAGE(sk)) { 994 TCP_PAGE(sk) = page; 995 TCP_OFF(sk) = 0; 996 } 997 goto do_error; 998 } 999 1000 /* Update the skb. */ 1001 if (merge) { 1002 skb_shinfo(skb)->frags[i - 1].size += 1003 copy; 1004 } else { 1005 skb_fill_page_desc(skb, i, page, off, copy); 1006 if (TCP_PAGE(sk)) { 1007 get_page(page); 1008 } else if (off + copy < PAGE_SIZE) { 1009 get_page(page); 1010 TCP_PAGE(sk) = page; 1011 } 1012 } 1013 1014 TCP_OFF(sk) = off + copy; 1015 } 1016 1017 if (!copied) 1018 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 1019 1020 tp->write_seq += copy; 1021 TCP_SKB_CB(skb)->end_seq += copy; 1022 skb_shinfo(skb)->gso_segs = 0; 1023 1024 from += copy; 1025 copied += copy; 1026 if ((seglen -= copy) == 0 && iovlen == 0) 1027 goto out; 1028 1029 if (skb->len < size_goal || (flags & MSG_OOB)) 1030 continue; 1031 1032 if (forced_push(tp)) { 1033 tcp_mark_push(tp, skb); 1034 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1035 } else if (skb == tcp_send_head(sk)) 1036 tcp_push_one(sk, mss_now); 1037 continue; 1038 1039 wait_for_sndbuf: 1040 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1041 wait_for_memory: 1042 if (copied) 1043 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1044 1045 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1046 goto do_error; 1047 1048 mss_now = tcp_send_mss(sk, &size_goal, flags); 1049 } 1050 } 1051 1052 out: 1053 if (copied) 1054 tcp_push(sk, flags, mss_now, tp->nonagle); 1055 TCP_CHECK_TIMER(sk); 1056 release_sock(sk); 1057 return copied; 1058 1059 do_fault: 1060 if (!skb->len) { 1061 tcp_unlink_write_queue(skb, sk); 1062 /* It is the one place in all of TCP, except connection 1063 * reset, where we can be unlinking the send_head. 1064 */ 1065 tcp_check_send_head(sk, skb); 1066 sk_wmem_free_skb(sk, skb); 1067 } 1068 1069 do_error: 1070 if (copied) 1071 goto out; 1072 out_err: 1073 err = sk_stream_error(sk, flags, err); 1074 TCP_CHECK_TIMER(sk); 1075 release_sock(sk); 1076 return err; 1077 } 1078 1079 /* 1080 * Handle reading urgent data. BSD has very simple semantics for 1081 * this, no blocking and very strange errors 8) 1082 */ 1083 1084 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1085 { 1086 struct tcp_sock *tp = tcp_sk(sk); 1087 1088 /* No URG data to read. */ 1089 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1090 tp->urg_data == TCP_URG_READ) 1091 return -EINVAL; /* Yes this is right ! */ 1092 1093 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1094 return -ENOTCONN; 1095 1096 if (tp->urg_data & TCP_URG_VALID) { 1097 int err = 0; 1098 char c = tp->urg_data; 1099 1100 if (!(flags & MSG_PEEK)) 1101 tp->urg_data = TCP_URG_READ; 1102 1103 /* Read urgent data. */ 1104 msg->msg_flags |= MSG_OOB; 1105 1106 if (len > 0) { 1107 if (!(flags & MSG_TRUNC)) 1108 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1109 len = 1; 1110 } else 1111 msg->msg_flags |= MSG_TRUNC; 1112 1113 return err ? -EFAULT : len; 1114 } 1115 1116 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1117 return 0; 1118 1119 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1120 * the available implementations agree in this case: 1121 * this call should never block, independent of the 1122 * blocking state of the socket. 1123 * Mike <pall@rz.uni-karlsruhe.de> 1124 */ 1125 return -EAGAIN; 1126 } 1127 1128 /* Clean up the receive buffer for full frames taken by the user, 1129 * then send an ACK if necessary. COPIED is the number of bytes 1130 * tcp_recvmsg has given to the user so far, it speeds up the 1131 * calculation of whether or not we must ACK for the sake of 1132 * a window update. 1133 */ 1134 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1135 { 1136 struct tcp_sock *tp = tcp_sk(sk); 1137 int time_to_ack = 0; 1138 1139 #if TCP_DEBUG 1140 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1141 1142 WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)); 1143 #endif 1144 1145 if (inet_csk_ack_scheduled(sk)) { 1146 const struct inet_connection_sock *icsk = inet_csk(sk); 1147 /* Delayed ACKs frequently hit locked sockets during bulk 1148 * receive. */ 1149 if (icsk->icsk_ack.blocked || 1150 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1151 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1152 /* 1153 * If this read emptied read buffer, we send ACK, if 1154 * connection is not bidirectional, user drained 1155 * receive buffer and there was a small segment 1156 * in queue. 1157 */ 1158 (copied > 0 && 1159 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1160 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1161 !icsk->icsk_ack.pingpong)) && 1162 !atomic_read(&sk->sk_rmem_alloc))) 1163 time_to_ack = 1; 1164 } 1165 1166 /* We send an ACK if we can now advertise a non-zero window 1167 * which has been raised "significantly". 1168 * 1169 * Even if window raised up to infinity, do not send window open ACK 1170 * in states, where we will not receive more. It is useless. 1171 */ 1172 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1173 __u32 rcv_window_now = tcp_receive_window(tp); 1174 1175 /* Optimize, __tcp_select_window() is not cheap. */ 1176 if (2*rcv_window_now <= tp->window_clamp) { 1177 __u32 new_window = __tcp_select_window(sk); 1178 1179 /* Send ACK now, if this read freed lots of space 1180 * in our buffer. Certainly, new_window is new window. 1181 * We can advertise it now, if it is not less than current one. 1182 * "Lots" means "at least twice" here. 1183 */ 1184 if (new_window && new_window >= 2 * rcv_window_now) 1185 time_to_ack = 1; 1186 } 1187 } 1188 if (time_to_ack) 1189 tcp_send_ack(sk); 1190 } 1191 1192 static void tcp_prequeue_process(struct sock *sk) 1193 { 1194 struct sk_buff *skb; 1195 struct tcp_sock *tp = tcp_sk(sk); 1196 1197 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1198 1199 /* RX process wants to run with disabled BHs, though it is not 1200 * necessary */ 1201 local_bh_disable(); 1202 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1203 sk_backlog_rcv(sk, skb); 1204 local_bh_enable(); 1205 1206 /* Clear memory counter. */ 1207 tp->ucopy.memory = 0; 1208 } 1209 1210 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1211 { 1212 struct sk_buff *skb; 1213 u32 offset; 1214 1215 skb_queue_walk(&sk->sk_receive_queue, skb) { 1216 offset = seq - TCP_SKB_CB(skb)->seq; 1217 if (tcp_hdr(skb)->syn) 1218 offset--; 1219 if (offset < skb->len || tcp_hdr(skb)->fin) { 1220 *off = offset; 1221 return skb; 1222 } 1223 } 1224 return NULL; 1225 } 1226 1227 /* 1228 * This routine provides an alternative to tcp_recvmsg() for routines 1229 * that would like to handle copying from skbuffs directly in 'sendfile' 1230 * fashion. 1231 * Note: 1232 * - It is assumed that the socket was locked by the caller. 1233 * - The routine does not block. 1234 * - At present, there is no support for reading OOB data 1235 * or for 'peeking' the socket using this routine 1236 * (although both would be easy to implement). 1237 */ 1238 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1239 sk_read_actor_t recv_actor) 1240 { 1241 struct sk_buff *skb; 1242 struct tcp_sock *tp = tcp_sk(sk); 1243 u32 seq = tp->copied_seq; 1244 u32 offset; 1245 int copied = 0; 1246 1247 if (sk->sk_state == TCP_LISTEN) 1248 return -ENOTCONN; 1249 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1250 if (offset < skb->len) { 1251 int used; 1252 size_t len; 1253 1254 len = skb->len - offset; 1255 /* Stop reading if we hit a patch of urgent data */ 1256 if (tp->urg_data) { 1257 u32 urg_offset = tp->urg_seq - seq; 1258 if (urg_offset < len) 1259 len = urg_offset; 1260 if (!len) 1261 break; 1262 } 1263 used = recv_actor(desc, skb, offset, len); 1264 if (used < 0) { 1265 if (!copied) 1266 copied = used; 1267 break; 1268 } else if (used <= len) { 1269 seq += used; 1270 copied += used; 1271 offset += used; 1272 } 1273 /* 1274 * If recv_actor drops the lock (e.g. TCP splice 1275 * receive) the skb pointer might be invalid when 1276 * getting here: tcp_collapse might have deleted it 1277 * while aggregating skbs from the socket queue. 1278 */ 1279 skb = tcp_recv_skb(sk, seq-1, &offset); 1280 if (!skb || (offset+1 != skb->len)) 1281 break; 1282 } 1283 if (tcp_hdr(skb)->fin) { 1284 sk_eat_skb(sk, skb, 0); 1285 ++seq; 1286 break; 1287 } 1288 sk_eat_skb(sk, skb, 0); 1289 if (!desc->count) 1290 break; 1291 } 1292 tp->copied_seq = seq; 1293 1294 tcp_rcv_space_adjust(sk); 1295 1296 /* Clean up data we have read: This will do ACK frames. */ 1297 if (copied > 0) 1298 tcp_cleanup_rbuf(sk, copied); 1299 return copied; 1300 } 1301 1302 /* 1303 * This routine copies from a sock struct into the user buffer. 1304 * 1305 * Technical note: in 2.3 we work on _locked_ socket, so that 1306 * tricks with *seq access order and skb->users are not required. 1307 * Probably, code can be easily improved even more. 1308 */ 1309 1310 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1311 size_t len, int nonblock, int flags, int *addr_len) 1312 { 1313 struct tcp_sock *tp = tcp_sk(sk); 1314 int copied = 0; 1315 u32 peek_seq; 1316 u32 *seq; 1317 unsigned long used; 1318 int err; 1319 int target; /* Read at least this many bytes */ 1320 long timeo; 1321 struct task_struct *user_recv = NULL; 1322 int copied_early = 0; 1323 struct sk_buff *skb; 1324 1325 lock_sock(sk); 1326 1327 TCP_CHECK_TIMER(sk); 1328 1329 err = -ENOTCONN; 1330 if (sk->sk_state == TCP_LISTEN) 1331 goto out; 1332 1333 timeo = sock_rcvtimeo(sk, nonblock); 1334 1335 /* Urgent data needs to be handled specially. */ 1336 if (flags & MSG_OOB) 1337 goto recv_urg; 1338 1339 seq = &tp->copied_seq; 1340 if (flags & MSG_PEEK) { 1341 peek_seq = tp->copied_seq; 1342 seq = &peek_seq; 1343 } 1344 1345 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1346 1347 #ifdef CONFIG_NET_DMA 1348 tp->ucopy.dma_chan = NULL; 1349 preempt_disable(); 1350 skb = skb_peek_tail(&sk->sk_receive_queue); 1351 { 1352 int available = 0; 1353 1354 if (skb) 1355 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1356 if ((available < target) && 1357 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1358 !sysctl_tcp_low_latency && 1359 dma_find_channel(DMA_MEMCPY)) { 1360 preempt_enable_no_resched(); 1361 tp->ucopy.pinned_list = 1362 dma_pin_iovec_pages(msg->msg_iov, len); 1363 } else { 1364 preempt_enable_no_resched(); 1365 } 1366 } 1367 #endif 1368 1369 do { 1370 u32 offset; 1371 1372 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1373 if (tp->urg_data && tp->urg_seq == *seq) { 1374 if (copied) 1375 break; 1376 if (signal_pending(current)) { 1377 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1378 break; 1379 } 1380 } 1381 1382 /* Next get a buffer. */ 1383 1384 skb = skb_peek(&sk->sk_receive_queue); 1385 do { 1386 if (!skb) 1387 break; 1388 1389 /* Now that we have two receive queues this 1390 * shouldn't happen. 1391 */ 1392 if (before(*seq, TCP_SKB_CB(skb)->seq)) { 1393 printk(KERN_INFO "recvmsg bug: copied %X " 1394 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq); 1395 break; 1396 } 1397 offset = *seq - TCP_SKB_CB(skb)->seq; 1398 if (tcp_hdr(skb)->syn) 1399 offset--; 1400 if (offset < skb->len) 1401 goto found_ok_skb; 1402 if (tcp_hdr(skb)->fin) 1403 goto found_fin_ok; 1404 WARN_ON(!(flags & MSG_PEEK)); 1405 skb = skb->next; 1406 } while (skb != (struct sk_buff *)&sk->sk_receive_queue); 1407 1408 /* Well, if we have backlog, try to process it now yet. */ 1409 1410 if (copied >= target && !sk->sk_backlog.tail) 1411 break; 1412 1413 if (copied) { 1414 if (sk->sk_err || 1415 sk->sk_state == TCP_CLOSE || 1416 (sk->sk_shutdown & RCV_SHUTDOWN) || 1417 !timeo || 1418 signal_pending(current)) 1419 break; 1420 } else { 1421 if (sock_flag(sk, SOCK_DONE)) 1422 break; 1423 1424 if (sk->sk_err) { 1425 copied = sock_error(sk); 1426 break; 1427 } 1428 1429 if (sk->sk_shutdown & RCV_SHUTDOWN) 1430 break; 1431 1432 if (sk->sk_state == TCP_CLOSE) { 1433 if (!sock_flag(sk, SOCK_DONE)) { 1434 /* This occurs when user tries to read 1435 * from never connected socket. 1436 */ 1437 copied = -ENOTCONN; 1438 break; 1439 } 1440 break; 1441 } 1442 1443 if (!timeo) { 1444 copied = -EAGAIN; 1445 break; 1446 } 1447 1448 if (signal_pending(current)) { 1449 copied = sock_intr_errno(timeo); 1450 break; 1451 } 1452 } 1453 1454 tcp_cleanup_rbuf(sk, copied); 1455 1456 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1457 /* Install new reader */ 1458 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1459 user_recv = current; 1460 tp->ucopy.task = user_recv; 1461 tp->ucopy.iov = msg->msg_iov; 1462 } 1463 1464 tp->ucopy.len = len; 1465 1466 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1467 !(flags & (MSG_PEEK | MSG_TRUNC))); 1468 1469 /* Ugly... If prequeue is not empty, we have to 1470 * process it before releasing socket, otherwise 1471 * order will be broken at second iteration. 1472 * More elegant solution is required!!! 1473 * 1474 * Look: we have the following (pseudo)queues: 1475 * 1476 * 1. packets in flight 1477 * 2. backlog 1478 * 3. prequeue 1479 * 4. receive_queue 1480 * 1481 * Each queue can be processed only if the next ones 1482 * are empty. At this point we have empty receive_queue. 1483 * But prequeue _can_ be not empty after 2nd iteration, 1484 * when we jumped to start of loop because backlog 1485 * processing added something to receive_queue. 1486 * We cannot release_sock(), because backlog contains 1487 * packets arrived _after_ prequeued ones. 1488 * 1489 * Shortly, algorithm is clear --- to process all 1490 * the queues in order. We could make it more directly, 1491 * requeueing packets from backlog to prequeue, if 1492 * is not empty. It is more elegant, but eats cycles, 1493 * unfortunately. 1494 */ 1495 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1496 goto do_prequeue; 1497 1498 /* __ Set realtime policy in scheduler __ */ 1499 } 1500 1501 if (copied >= target) { 1502 /* Do not sleep, just process backlog. */ 1503 release_sock(sk); 1504 lock_sock(sk); 1505 } else 1506 sk_wait_data(sk, &timeo); 1507 1508 #ifdef CONFIG_NET_DMA 1509 tp->ucopy.wakeup = 0; 1510 #endif 1511 1512 if (user_recv) { 1513 int chunk; 1514 1515 /* __ Restore normal policy in scheduler __ */ 1516 1517 if ((chunk = len - tp->ucopy.len) != 0) { 1518 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1519 len -= chunk; 1520 copied += chunk; 1521 } 1522 1523 if (tp->rcv_nxt == tp->copied_seq && 1524 !skb_queue_empty(&tp->ucopy.prequeue)) { 1525 do_prequeue: 1526 tcp_prequeue_process(sk); 1527 1528 if ((chunk = len - tp->ucopy.len) != 0) { 1529 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1530 len -= chunk; 1531 copied += chunk; 1532 } 1533 } 1534 } 1535 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) { 1536 if (net_ratelimit()) 1537 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1538 current->comm, task_pid_nr(current)); 1539 peek_seq = tp->copied_seq; 1540 } 1541 continue; 1542 1543 found_ok_skb: 1544 /* Ok so how much can we use? */ 1545 used = skb->len - offset; 1546 if (len < used) 1547 used = len; 1548 1549 /* Do we have urgent data here? */ 1550 if (tp->urg_data) { 1551 u32 urg_offset = tp->urg_seq - *seq; 1552 if (urg_offset < used) { 1553 if (!urg_offset) { 1554 if (!sock_flag(sk, SOCK_URGINLINE)) { 1555 ++*seq; 1556 offset++; 1557 used--; 1558 if (!used) 1559 goto skip_copy; 1560 } 1561 } else 1562 used = urg_offset; 1563 } 1564 } 1565 1566 if (!(flags & MSG_TRUNC)) { 1567 #ifdef CONFIG_NET_DMA 1568 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1569 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1570 1571 if (tp->ucopy.dma_chan) { 1572 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1573 tp->ucopy.dma_chan, skb, offset, 1574 msg->msg_iov, used, 1575 tp->ucopy.pinned_list); 1576 1577 if (tp->ucopy.dma_cookie < 0) { 1578 1579 printk(KERN_ALERT "dma_cookie < 0\n"); 1580 1581 /* Exception. Bailout! */ 1582 if (!copied) 1583 copied = -EFAULT; 1584 break; 1585 } 1586 if ((offset + used) == skb->len) 1587 copied_early = 1; 1588 1589 } else 1590 #endif 1591 { 1592 err = skb_copy_datagram_iovec(skb, offset, 1593 msg->msg_iov, used); 1594 if (err) { 1595 /* Exception. Bailout! */ 1596 if (!copied) 1597 copied = -EFAULT; 1598 break; 1599 } 1600 } 1601 } 1602 1603 *seq += used; 1604 copied += used; 1605 len -= used; 1606 1607 tcp_rcv_space_adjust(sk); 1608 1609 skip_copy: 1610 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1611 tp->urg_data = 0; 1612 tcp_fast_path_check(sk); 1613 } 1614 if (used + offset < skb->len) 1615 continue; 1616 1617 if (tcp_hdr(skb)->fin) 1618 goto found_fin_ok; 1619 if (!(flags & MSG_PEEK)) { 1620 sk_eat_skb(sk, skb, copied_early); 1621 copied_early = 0; 1622 } 1623 continue; 1624 1625 found_fin_ok: 1626 /* Process the FIN. */ 1627 ++*seq; 1628 if (!(flags & MSG_PEEK)) { 1629 sk_eat_skb(sk, skb, copied_early); 1630 copied_early = 0; 1631 } 1632 break; 1633 } while (len > 0); 1634 1635 if (user_recv) { 1636 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1637 int chunk; 1638 1639 tp->ucopy.len = copied > 0 ? len : 0; 1640 1641 tcp_prequeue_process(sk); 1642 1643 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1644 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1645 len -= chunk; 1646 copied += chunk; 1647 } 1648 } 1649 1650 tp->ucopy.task = NULL; 1651 tp->ucopy.len = 0; 1652 } 1653 1654 #ifdef CONFIG_NET_DMA 1655 if (tp->ucopy.dma_chan) { 1656 dma_cookie_t done, used; 1657 1658 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1659 1660 while (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1661 tp->ucopy.dma_cookie, &done, 1662 &used) == DMA_IN_PROGRESS) { 1663 /* do partial cleanup of sk_async_wait_queue */ 1664 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1665 (dma_async_is_complete(skb->dma_cookie, done, 1666 used) == DMA_SUCCESS)) { 1667 __skb_dequeue(&sk->sk_async_wait_queue); 1668 kfree_skb(skb); 1669 } 1670 } 1671 1672 /* Safe to free early-copied skbs now */ 1673 __skb_queue_purge(&sk->sk_async_wait_queue); 1674 tp->ucopy.dma_chan = NULL; 1675 } 1676 if (tp->ucopy.pinned_list) { 1677 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1678 tp->ucopy.pinned_list = NULL; 1679 } 1680 #endif 1681 1682 /* According to UNIX98, msg_name/msg_namelen are ignored 1683 * on connected socket. I was just happy when found this 8) --ANK 1684 */ 1685 1686 /* Clean up data we have read: This will do ACK frames. */ 1687 tcp_cleanup_rbuf(sk, copied); 1688 1689 TCP_CHECK_TIMER(sk); 1690 release_sock(sk); 1691 return copied; 1692 1693 out: 1694 TCP_CHECK_TIMER(sk); 1695 release_sock(sk); 1696 return err; 1697 1698 recv_urg: 1699 err = tcp_recv_urg(sk, msg, len, flags); 1700 goto out; 1701 } 1702 1703 void tcp_set_state(struct sock *sk, int state) 1704 { 1705 int oldstate = sk->sk_state; 1706 1707 switch (state) { 1708 case TCP_ESTABLISHED: 1709 if (oldstate != TCP_ESTABLISHED) 1710 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1711 break; 1712 1713 case TCP_CLOSE: 1714 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1715 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1716 1717 sk->sk_prot->unhash(sk); 1718 if (inet_csk(sk)->icsk_bind_hash && 1719 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1720 inet_put_port(sk); 1721 /* fall through */ 1722 default: 1723 if (oldstate == TCP_ESTABLISHED) 1724 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1725 } 1726 1727 /* Change state AFTER socket is unhashed to avoid closed 1728 * socket sitting in hash tables. 1729 */ 1730 sk->sk_state = state; 1731 1732 #ifdef STATE_TRACE 1733 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1734 #endif 1735 } 1736 EXPORT_SYMBOL_GPL(tcp_set_state); 1737 1738 /* 1739 * State processing on a close. This implements the state shift for 1740 * sending our FIN frame. Note that we only send a FIN for some 1741 * states. A shutdown() may have already sent the FIN, or we may be 1742 * closed. 1743 */ 1744 1745 static const unsigned char new_state[16] = { 1746 /* current state: new state: action: */ 1747 /* (Invalid) */ TCP_CLOSE, 1748 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1749 /* TCP_SYN_SENT */ TCP_CLOSE, 1750 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1751 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1752 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1753 /* TCP_TIME_WAIT */ TCP_CLOSE, 1754 /* TCP_CLOSE */ TCP_CLOSE, 1755 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1756 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1757 /* TCP_LISTEN */ TCP_CLOSE, 1758 /* TCP_CLOSING */ TCP_CLOSING, 1759 }; 1760 1761 static int tcp_close_state(struct sock *sk) 1762 { 1763 int next = (int)new_state[sk->sk_state]; 1764 int ns = next & TCP_STATE_MASK; 1765 1766 tcp_set_state(sk, ns); 1767 1768 return next & TCP_ACTION_FIN; 1769 } 1770 1771 /* 1772 * Shutdown the sending side of a connection. Much like close except 1773 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1774 */ 1775 1776 void tcp_shutdown(struct sock *sk, int how) 1777 { 1778 /* We need to grab some memory, and put together a FIN, 1779 * and then put it into the queue to be sent. 1780 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1781 */ 1782 if (!(how & SEND_SHUTDOWN)) 1783 return; 1784 1785 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1786 if ((1 << sk->sk_state) & 1787 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1788 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1789 /* Clear out any half completed packets. FIN if needed. */ 1790 if (tcp_close_state(sk)) 1791 tcp_send_fin(sk); 1792 } 1793 } 1794 1795 void tcp_close(struct sock *sk, long timeout) 1796 { 1797 struct sk_buff *skb; 1798 int data_was_unread = 0; 1799 int state; 1800 1801 lock_sock(sk); 1802 sk->sk_shutdown = SHUTDOWN_MASK; 1803 1804 if (sk->sk_state == TCP_LISTEN) { 1805 tcp_set_state(sk, TCP_CLOSE); 1806 1807 /* Special case. */ 1808 inet_csk_listen_stop(sk); 1809 1810 goto adjudge_to_death; 1811 } 1812 1813 /* We need to flush the recv. buffs. We do this only on the 1814 * descriptor close, not protocol-sourced closes, because the 1815 * reader process may not have drained the data yet! 1816 */ 1817 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1818 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1819 tcp_hdr(skb)->fin; 1820 data_was_unread += len; 1821 __kfree_skb(skb); 1822 } 1823 1824 sk_mem_reclaim(sk); 1825 1826 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1827 * data was lost. To witness the awful effects of the old behavior of 1828 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1829 * GET in an FTP client, suspend the process, wait for the client to 1830 * advertise a zero window, then kill -9 the FTP client, wheee... 1831 * Note: timeout is always zero in such a case. 1832 */ 1833 if (data_was_unread) { 1834 /* Unread data was tossed, zap the connection. */ 1835 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1836 tcp_set_state(sk, TCP_CLOSE); 1837 tcp_send_active_reset(sk, GFP_KERNEL); 1838 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1839 /* Check zero linger _after_ checking for unread data. */ 1840 sk->sk_prot->disconnect(sk, 0); 1841 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1842 } else if (tcp_close_state(sk)) { 1843 /* We FIN if the application ate all the data before 1844 * zapping the connection. 1845 */ 1846 1847 /* RED-PEN. Formally speaking, we have broken TCP state 1848 * machine. State transitions: 1849 * 1850 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1851 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1852 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1853 * 1854 * are legal only when FIN has been sent (i.e. in window), 1855 * rather than queued out of window. Purists blame. 1856 * 1857 * F.e. "RFC state" is ESTABLISHED, 1858 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1859 * 1860 * The visible declinations are that sometimes 1861 * we enter time-wait state, when it is not required really 1862 * (harmless), do not send active resets, when they are 1863 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1864 * they look as CLOSING or LAST_ACK for Linux) 1865 * Probably, I missed some more holelets. 1866 * --ANK 1867 */ 1868 tcp_send_fin(sk); 1869 } 1870 1871 sk_stream_wait_close(sk, timeout); 1872 1873 adjudge_to_death: 1874 state = sk->sk_state; 1875 sock_hold(sk); 1876 sock_orphan(sk); 1877 1878 /* It is the last release_sock in its life. It will remove backlog. */ 1879 release_sock(sk); 1880 1881 1882 /* Now socket is owned by kernel and we acquire BH lock 1883 to finish close. No need to check for user refs. 1884 */ 1885 local_bh_disable(); 1886 bh_lock_sock(sk); 1887 WARN_ON(sock_owned_by_user(sk)); 1888 1889 percpu_counter_inc(sk->sk_prot->orphan_count); 1890 1891 /* Have we already been destroyed by a softirq or backlog? */ 1892 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1893 goto out; 1894 1895 /* This is a (useful) BSD violating of the RFC. There is a 1896 * problem with TCP as specified in that the other end could 1897 * keep a socket open forever with no application left this end. 1898 * We use a 3 minute timeout (about the same as BSD) then kill 1899 * our end. If they send after that then tough - BUT: long enough 1900 * that we won't make the old 4*rto = almost no time - whoops 1901 * reset mistake. 1902 * 1903 * Nope, it was not mistake. It is really desired behaviour 1904 * f.e. on http servers, when such sockets are useless, but 1905 * consume significant resources. Let's do it with special 1906 * linger2 option. --ANK 1907 */ 1908 1909 if (sk->sk_state == TCP_FIN_WAIT2) { 1910 struct tcp_sock *tp = tcp_sk(sk); 1911 if (tp->linger2 < 0) { 1912 tcp_set_state(sk, TCP_CLOSE); 1913 tcp_send_active_reset(sk, GFP_ATOMIC); 1914 NET_INC_STATS_BH(sock_net(sk), 1915 LINUX_MIB_TCPABORTONLINGER); 1916 } else { 1917 const int tmo = tcp_fin_time(sk); 1918 1919 if (tmo > TCP_TIMEWAIT_LEN) { 1920 inet_csk_reset_keepalive_timer(sk, 1921 tmo - TCP_TIMEWAIT_LEN); 1922 } else { 1923 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 1924 goto out; 1925 } 1926 } 1927 } 1928 if (sk->sk_state != TCP_CLOSE) { 1929 int orphan_count = percpu_counter_read_positive( 1930 sk->sk_prot->orphan_count); 1931 1932 sk_mem_reclaim(sk); 1933 if (tcp_too_many_orphans(sk, orphan_count)) { 1934 if (net_ratelimit()) 1935 printk(KERN_INFO "TCP: too many of orphaned " 1936 "sockets\n"); 1937 tcp_set_state(sk, TCP_CLOSE); 1938 tcp_send_active_reset(sk, GFP_ATOMIC); 1939 NET_INC_STATS_BH(sock_net(sk), 1940 LINUX_MIB_TCPABORTONMEMORY); 1941 } 1942 } 1943 1944 if (sk->sk_state == TCP_CLOSE) 1945 inet_csk_destroy_sock(sk); 1946 /* Otherwise, socket is reprieved until protocol close. */ 1947 1948 out: 1949 bh_unlock_sock(sk); 1950 local_bh_enable(); 1951 sock_put(sk); 1952 } 1953 1954 /* These states need RST on ABORT according to RFC793 */ 1955 1956 static inline int tcp_need_reset(int state) 1957 { 1958 return (1 << state) & 1959 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 1960 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 1961 } 1962 1963 int tcp_disconnect(struct sock *sk, int flags) 1964 { 1965 struct inet_sock *inet = inet_sk(sk); 1966 struct inet_connection_sock *icsk = inet_csk(sk); 1967 struct tcp_sock *tp = tcp_sk(sk); 1968 int err = 0; 1969 int old_state = sk->sk_state; 1970 1971 if (old_state != TCP_CLOSE) 1972 tcp_set_state(sk, TCP_CLOSE); 1973 1974 /* ABORT function of RFC793 */ 1975 if (old_state == TCP_LISTEN) { 1976 inet_csk_listen_stop(sk); 1977 } else if (tcp_need_reset(old_state) || 1978 (tp->snd_nxt != tp->write_seq && 1979 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 1980 /* The last check adjusts for discrepancy of Linux wrt. RFC 1981 * states 1982 */ 1983 tcp_send_active_reset(sk, gfp_any()); 1984 sk->sk_err = ECONNRESET; 1985 } else if (old_state == TCP_SYN_SENT) 1986 sk->sk_err = ECONNRESET; 1987 1988 tcp_clear_xmit_timers(sk); 1989 __skb_queue_purge(&sk->sk_receive_queue); 1990 tcp_write_queue_purge(sk); 1991 __skb_queue_purge(&tp->out_of_order_queue); 1992 #ifdef CONFIG_NET_DMA 1993 __skb_queue_purge(&sk->sk_async_wait_queue); 1994 #endif 1995 1996 inet->dport = 0; 1997 1998 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1999 inet_reset_saddr(sk); 2000 2001 sk->sk_shutdown = 0; 2002 sock_reset_flag(sk, SOCK_DONE); 2003 tp->srtt = 0; 2004 if ((tp->write_seq += tp->max_window + 2) == 0) 2005 tp->write_seq = 1; 2006 icsk->icsk_backoff = 0; 2007 tp->snd_cwnd = 2; 2008 icsk->icsk_probes_out = 0; 2009 tp->packets_out = 0; 2010 tp->snd_ssthresh = 0x7fffffff; 2011 tp->snd_cwnd_cnt = 0; 2012 tp->bytes_acked = 0; 2013 tcp_set_ca_state(sk, TCP_CA_Open); 2014 tcp_clear_retrans(tp); 2015 inet_csk_delack_init(sk); 2016 tcp_init_send_head(sk); 2017 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2018 __sk_dst_reset(sk); 2019 2020 WARN_ON(inet->num && !icsk->icsk_bind_hash); 2021 2022 sk->sk_error_report(sk); 2023 return err; 2024 } 2025 2026 /* 2027 * Socket option code for TCP. 2028 */ 2029 static int do_tcp_setsockopt(struct sock *sk, int level, 2030 int optname, char __user *optval, int optlen) 2031 { 2032 struct tcp_sock *tp = tcp_sk(sk); 2033 struct inet_connection_sock *icsk = inet_csk(sk); 2034 int val; 2035 int err = 0; 2036 2037 /* This is a string value all the others are int's */ 2038 if (optname == TCP_CONGESTION) { 2039 char name[TCP_CA_NAME_MAX]; 2040 2041 if (optlen < 1) 2042 return -EINVAL; 2043 2044 val = strncpy_from_user(name, optval, 2045 min(TCP_CA_NAME_MAX-1, optlen)); 2046 if (val < 0) 2047 return -EFAULT; 2048 name[val] = 0; 2049 2050 lock_sock(sk); 2051 err = tcp_set_congestion_control(sk, name); 2052 release_sock(sk); 2053 return err; 2054 } 2055 2056 if (optlen < sizeof(int)) 2057 return -EINVAL; 2058 2059 if (get_user(val, (int __user *)optval)) 2060 return -EFAULT; 2061 2062 lock_sock(sk); 2063 2064 switch (optname) { 2065 case TCP_MAXSEG: 2066 /* Values greater than interface MTU won't take effect. However 2067 * at the point when this call is done we typically don't yet 2068 * know which interface is going to be used */ 2069 if (val < 8 || val > MAX_TCP_WINDOW) { 2070 err = -EINVAL; 2071 break; 2072 } 2073 tp->rx_opt.user_mss = val; 2074 break; 2075 2076 case TCP_NODELAY: 2077 if (val) { 2078 /* TCP_NODELAY is weaker than TCP_CORK, so that 2079 * this option on corked socket is remembered, but 2080 * it is not activated until cork is cleared. 2081 * 2082 * However, when TCP_NODELAY is set we make 2083 * an explicit push, which overrides even TCP_CORK 2084 * for currently queued segments. 2085 */ 2086 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2087 tcp_push_pending_frames(sk); 2088 } else { 2089 tp->nonagle &= ~TCP_NAGLE_OFF; 2090 } 2091 break; 2092 2093 case TCP_CORK: 2094 /* When set indicates to always queue non-full frames. 2095 * Later the user clears this option and we transmit 2096 * any pending partial frames in the queue. This is 2097 * meant to be used alongside sendfile() to get properly 2098 * filled frames when the user (for example) must write 2099 * out headers with a write() call first and then use 2100 * sendfile to send out the data parts. 2101 * 2102 * TCP_CORK can be set together with TCP_NODELAY and it is 2103 * stronger than TCP_NODELAY. 2104 */ 2105 if (val) { 2106 tp->nonagle |= TCP_NAGLE_CORK; 2107 } else { 2108 tp->nonagle &= ~TCP_NAGLE_CORK; 2109 if (tp->nonagle&TCP_NAGLE_OFF) 2110 tp->nonagle |= TCP_NAGLE_PUSH; 2111 tcp_push_pending_frames(sk); 2112 } 2113 break; 2114 2115 case TCP_KEEPIDLE: 2116 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2117 err = -EINVAL; 2118 else { 2119 tp->keepalive_time = val * HZ; 2120 if (sock_flag(sk, SOCK_KEEPOPEN) && 2121 !((1 << sk->sk_state) & 2122 (TCPF_CLOSE | TCPF_LISTEN))) { 2123 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp; 2124 if (tp->keepalive_time > elapsed) 2125 elapsed = tp->keepalive_time - elapsed; 2126 else 2127 elapsed = 0; 2128 inet_csk_reset_keepalive_timer(sk, elapsed); 2129 } 2130 } 2131 break; 2132 case TCP_KEEPINTVL: 2133 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2134 err = -EINVAL; 2135 else 2136 tp->keepalive_intvl = val * HZ; 2137 break; 2138 case TCP_KEEPCNT: 2139 if (val < 1 || val > MAX_TCP_KEEPCNT) 2140 err = -EINVAL; 2141 else 2142 tp->keepalive_probes = val; 2143 break; 2144 case TCP_SYNCNT: 2145 if (val < 1 || val > MAX_TCP_SYNCNT) 2146 err = -EINVAL; 2147 else 2148 icsk->icsk_syn_retries = val; 2149 break; 2150 2151 case TCP_LINGER2: 2152 if (val < 0) 2153 tp->linger2 = -1; 2154 else if (val > sysctl_tcp_fin_timeout / HZ) 2155 tp->linger2 = 0; 2156 else 2157 tp->linger2 = val * HZ; 2158 break; 2159 2160 case TCP_DEFER_ACCEPT: 2161 icsk->icsk_accept_queue.rskq_defer_accept = 0; 2162 if (val > 0) { 2163 /* Translate value in seconds to number of 2164 * retransmits */ 2165 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 && 2166 val > ((TCP_TIMEOUT_INIT / HZ) << 2167 icsk->icsk_accept_queue.rskq_defer_accept)) 2168 icsk->icsk_accept_queue.rskq_defer_accept++; 2169 icsk->icsk_accept_queue.rskq_defer_accept++; 2170 } 2171 break; 2172 2173 case TCP_WINDOW_CLAMP: 2174 if (!val) { 2175 if (sk->sk_state != TCP_CLOSE) { 2176 err = -EINVAL; 2177 break; 2178 } 2179 tp->window_clamp = 0; 2180 } else 2181 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2182 SOCK_MIN_RCVBUF / 2 : val; 2183 break; 2184 2185 case TCP_QUICKACK: 2186 if (!val) { 2187 icsk->icsk_ack.pingpong = 1; 2188 } else { 2189 icsk->icsk_ack.pingpong = 0; 2190 if ((1 << sk->sk_state) & 2191 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2192 inet_csk_ack_scheduled(sk)) { 2193 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2194 tcp_cleanup_rbuf(sk, 1); 2195 if (!(val & 1)) 2196 icsk->icsk_ack.pingpong = 1; 2197 } 2198 } 2199 break; 2200 2201 #ifdef CONFIG_TCP_MD5SIG 2202 case TCP_MD5SIG: 2203 /* Read the IP->Key mappings from userspace */ 2204 err = tp->af_specific->md5_parse(sk, optval, optlen); 2205 break; 2206 #endif 2207 2208 default: 2209 err = -ENOPROTOOPT; 2210 break; 2211 } 2212 2213 release_sock(sk); 2214 return err; 2215 } 2216 2217 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2218 int optlen) 2219 { 2220 struct inet_connection_sock *icsk = inet_csk(sk); 2221 2222 if (level != SOL_TCP) 2223 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2224 optval, optlen); 2225 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2226 } 2227 2228 #ifdef CONFIG_COMPAT 2229 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2230 char __user *optval, int optlen) 2231 { 2232 if (level != SOL_TCP) 2233 return inet_csk_compat_setsockopt(sk, level, optname, 2234 optval, optlen); 2235 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2236 } 2237 2238 EXPORT_SYMBOL(compat_tcp_setsockopt); 2239 #endif 2240 2241 /* Return information about state of tcp endpoint in API format. */ 2242 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2243 { 2244 struct tcp_sock *tp = tcp_sk(sk); 2245 const struct inet_connection_sock *icsk = inet_csk(sk); 2246 u32 now = tcp_time_stamp; 2247 2248 memset(info, 0, sizeof(*info)); 2249 2250 info->tcpi_state = sk->sk_state; 2251 info->tcpi_ca_state = icsk->icsk_ca_state; 2252 info->tcpi_retransmits = icsk->icsk_retransmits; 2253 info->tcpi_probes = icsk->icsk_probes_out; 2254 info->tcpi_backoff = icsk->icsk_backoff; 2255 2256 if (tp->rx_opt.tstamp_ok) 2257 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2258 if (tcp_is_sack(tp)) 2259 info->tcpi_options |= TCPI_OPT_SACK; 2260 if (tp->rx_opt.wscale_ok) { 2261 info->tcpi_options |= TCPI_OPT_WSCALE; 2262 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2263 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2264 } 2265 2266 if (tp->ecn_flags&TCP_ECN_OK) 2267 info->tcpi_options |= TCPI_OPT_ECN; 2268 2269 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2270 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2271 info->tcpi_snd_mss = tp->mss_cache; 2272 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2273 2274 if (sk->sk_state == TCP_LISTEN) { 2275 info->tcpi_unacked = sk->sk_ack_backlog; 2276 info->tcpi_sacked = sk->sk_max_ack_backlog; 2277 } else { 2278 info->tcpi_unacked = tp->packets_out; 2279 info->tcpi_sacked = tp->sacked_out; 2280 } 2281 info->tcpi_lost = tp->lost_out; 2282 info->tcpi_retrans = tp->retrans_out; 2283 info->tcpi_fackets = tp->fackets_out; 2284 2285 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2286 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2287 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2288 2289 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2290 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2291 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2292 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2293 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2294 info->tcpi_snd_cwnd = tp->snd_cwnd; 2295 info->tcpi_advmss = tp->advmss; 2296 info->tcpi_reordering = tp->reordering; 2297 2298 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2299 info->tcpi_rcv_space = tp->rcvq_space.space; 2300 2301 info->tcpi_total_retrans = tp->total_retrans; 2302 } 2303 2304 EXPORT_SYMBOL_GPL(tcp_get_info); 2305 2306 static int do_tcp_getsockopt(struct sock *sk, int level, 2307 int optname, char __user *optval, int __user *optlen) 2308 { 2309 struct inet_connection_sock *icsk = inet_csk(sk); 2310 struct tcp_sock *tp = tcp_sk(sk); 2311 int val, len; 2312 2313 if (get_user(len, optlen)) 2314 return -EFAULT; 2315 2316 len = min_t(unsigned int, len, sizeof(int)); 2317 2318 if (len < 0) 2319 return -EINVAL; 2320 2321 switch (optname) { 2322 case TCP_MAXSEG: 2323 val = tp->mss_cache; 2324 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2325 val = tp->rx_opt.user_mss; 2326 break; 2327 case TCP_NODELAY: 2328 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2329 break; 2330 case TCP_CORK: 2331 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2332 break; 2333 case TCP_KEEPIDLE: 2334 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ; 2335 break; 2336 case TCP_KEEPINTVL: 2337 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ; 2338 break; 2339 case TCP_KEEPCNT: 2340 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes; 2341 break; 2342 case TCP_SYNCNT: 2343 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2344 break; 2345 case TCP_LINGER2: 2346 val = tp->linger2; 2347 if (val >= 0) 2348 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2349 break; 2350 case TCP_DEFER_ACCEPT: 2351 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 : 2352 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1)); 2353 break; 2354 case TCP_WINDOW_CLAMP: 2355 val = tp->window_clamp; 2356 break; 2357 case TCP_INFO: { 2358 struct tcp_info info; 2359 2360 if (get_user(len, optlen)) 2361 return -EFAULT; 2362 2363 tcp_get_info(sk, &info); 2364 2365 len = min_t(unsigned int, len, sizeof(info)); 2366 if (put_user(len, optlen)) 2367 return -EFAULT; 2368 if (copy_to_user(optval, &info, len)) 2369 return -EFAULT; 2370 return 0; 2371 } 2372 case TCP_QUICKACK: 2373 val = !icsk->icsk_ack.pingpong; 2374 break; 2375 2376 case TCP_CONGESTION: 2377 if (get_user(len, optlen)) 2378 return -EFAULT; 2379 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2380 if (put_user(len, optlen)) 2381 return -EFAULT; 2382 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2383 return -EFAULT; 2384 return 0; 2385 default: 2386 return -ENOPROTOOPT; 2387 } 2388 2389 if (put_user(len, optlen)) 2390 return -EFAULT; 2391 if (copy_to_user(optval, &val, len)) 2392 return -EFAULT; 2393 return 0; 2394 } 2395 2396 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2397 int __user *optlen) 2398 { 2399 struct inet_connection_sock *icsk = inet_csk(sk); 2400 2401 if (level != SOL_TCP) 2402 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2403 optval, optlen); 2404 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2405 } 2406 2407 #ifdef CONFIG_COMPAT 2408 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2409 char __user *optval, int __user *optlen) 2410 { 2411 if (level != SOL_TCP) 2412 return inet_csk_compat_getsockopt(sk, level, optname, 2413 optval, optlen); 2414 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2415 } 2416 2417 EXPORT_SYMBOL(compat_tcp_getsockopt); 2418 #endif 2419 2420 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features) 2421 { 2422 struct sk_buff *segs = ERR_PTR(-EINVAL); 2423 struct tcphdr *th; 2424 unsigned thlen; 2425 unsigned int seq; 2426 __be32 delta; 2427 unsigned int oldlen; 2428 unsigned int mss; 2429 2430 if (!pskb_may_pull(skb, sizeof(*th))) 2431 goto out; 2432 2433 th = tcp_hdr(skb); 2434 thlen = th->doff * 4; 2435 if (thlen < sizeof(*th)) 2436 goto out; 2437 2438 if (!pskb_may_pull(skb, thlen)) 2439 goto out; 2440 2441 oldlen = (u16)~skb->len; 2442 __skb_pull(skb, thlen); 2443 2444 mss = skb_shinfo(skb)->gso_size; 2445 if (unlikely(skb->len <= mss)) 2446 goto out; 2447 2448 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2449 /* Packet is from an untrusted source, reset gso_segs. */ 2450 int type = skb_shinfo(skb)->gso_type; 2451 2452 if (unlikely(type & 2453 ~(SKB_GSO_TCPV4 | 2454 SKB_GSO_DODGY | 2455 SKB_GSO_TCP_ECN | 2456 SKB_GSO_TCPV6 | 2457 0) || 2458 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2459 goto out; 2460 2461 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2462 2463 segs = NULL; 2464 goto out; 2465 } 2466 2467 segs = skb_segment(skb, features); 2468 if (IS_ERR(segs)) 2469 goto out; 2470 2471 delta = htonl(oldlen + (thlen + mss)); 2472 2473 skb = segs; 2474 th = tcp_hdr(skb); 2475 seq = ntohl(th->seq); 2476 2477 do { 2478 th->fin = th->psh = 0; 2479 2480 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2481 (__force u32)delta)); 2482 if (skb->ip_summed != CHECKSUM_PARTIAL) 2483 th->check = 2484 csum_fold(csum_partial(skb_transport_header(skb), 2485 thlen, skb->csum)); 2486 2487 seq += mss; 2488 skb = skb->next; 2489 th = tcp_hdr(skb); 2490 2491 th->seq = htonl(seq); 2492 th->cwr = 0; 2493 } while (skb->next); 2494 2495 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2496 skb->data_len); 2497 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2498 (__force u32)delta)); 2499 if (skb->ip_summed != CHECKSUM_PARTIAL) 2500 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2501 thlen, skb->csum)); 2502 2503 out: 2504 return segs; 2505 } 2506 EXPORT_SYMBOL(tcp_tso_segment); 2507 2508 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2509 { 2510 struct sk_buff **pp = NULL; 2511 struct sk_buff *p; 2512 struct tcphdr *th; 2513 struct tcphdr *th2; 2514 unsigned int len; 2515 unsigned int thlen; 2516 unsigned int flags; 2517 unsigned int mss = 1; 2518 int flush = 1; 2519 int i; 2520 2521 th = skb_gro_header(skb, sizeof(*th)); 2522 if (unlikely(!th)) 2523 goto out; 2524 2525 thlen = th->doff * 4; 2526 if (thlen < sizeof(*th)) 2527 goto out; 2528 2529 th = skb_gro_header(skb, thlen); 2530 if (unlikely(!th)) 2531 goto out; 2532 2533 skb_gro_pull(skb, thlen); 2534 2535 len = skb_gro_len(skb); 2536 flags = tcp_flag_word(th); 2537 2538 for (; (p = *head); head = &p->next) { 2539 if (!NAPI_GRO_CB(p)->same_flow) 2540 continue; 2541 2542 th2 = tcp_hdr(p); 2543 2544 if ((th->source ^ th2->source) | (th->dest ^ th2->dest)) { 2545 NAPI_GRO_CB(p)->same_flow = 0; 2546 continue; 2547 } 2548 2549 goto found; 2550 } 2551 2552 goto out_check_final; 2553 2554 found: 2555 flush = NAPI_GRO_CB(p)->flush; 2556 flush |= flags & TCP_FLAG_CWR; 2557 flush |= (flags ^ tcp_flag_word(th2)) & 2558 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH); 2559 flush |= (th->ack_seq ^ th2->ack_seq) | (th->window ^ th2->window); 2560 for (i = sizeof(*th); !flush && i < thlen; i += 4) 2561 flush |= *(u32 *)((u8 *)th + i) ^ 2562 *(u32 *)((u8 *)th2 + i); 2563 2564 mss = skb_shinfo(p)->gso_size; 2565 2566 flush |= (len > mss) | !len; 2567 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2568 2569 if (flush || skb_gro_receive(head, skb)) { 2570 mss = 1; 2571 goto out_check_final; 2572 } 2573 2574 p = *head; 2575 th2 = tcp_hdr(p); 2576 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2577 2578 out_check_final: 2579 flush = len < mss; 2580 flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | 2581 TCP_FLAG_SYN | TCP_FLAG_FIN); 2582 2583 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2584 pp = head; 2585 2586 out: 2587 NAPI_GRO_CB(skb)->flush |= flush; 2588 2589 return pp; 2590 } 2591 EXPORT_SYMBOL(tcp_gro_receive); 2592 2593 int tcp_gro_complete(struct sk_buff *skb) 2594 { 2595 struct tcphdr *th = tcp_hdr(skb); 2596 2597 skb->csum_start = skb_transport_header(skb) - skb->head; 2598 skb->csum_offset = offsetof(struct tcphdr, check); 2599 skb->ip_summed = CHECKSUM_PARTIAL; 2600 2601 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2602 2603 if (th->cwr) 2604 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2605 2606 return 0; 2607 } 2608 EXPORT_SYMBOL(tcp_gro_complete); 2609 2610 #ifdef CONFIG_TCP_MD5SIG 2611 static unsigned long tcp_md5sig_users; 2612 static struct tcp_md5sig_pool **tcp_md5sig_pool; 2613 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2614 2615 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool) 2616 { 2617 int cpu; 2618 for_each_possible_cpu(cpu) { 2619 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu); 2620 if (p) { 2621 if (p->md5_desc.tfm) 2622 crypto_free_hash(p->md5_desc.tfm); 2623 kfree(p); 2624 p = NULL; 2625 } 2626 } 2627 free_percpu(pool); 2628 } 2629 2630 void tcp_free_md5sig_pool(void) 2631 { 2632 struct tcp_md5sig_pool **pool = NULL; 2633 2634 spin_lock_bh(&tcp_md5sig_pool_lock); 2635 if (--tcp_md5sig_users == 0) { 2636 pool = tcp_md5sig_pool; 2637 tcp_md5sig_pool = NULL; 2638 } 2639 spin_unlock_bh(&tcp_md5sig_pool_lock); 2640 if (pool) 2641 __tcp_free_md5sig_pool(pool); 2642 } 2643 2644 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2645 2646 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void) 2647 { 2648 int cpu; 2649 struct tcp_md5sig_pool **pool; 2650 2651 pool = alloc_percpu(struct tcp_md5sig_pool *); 2652 if (!pool) 2653 return NULL; 2654 2655 for_each_possible_cpu(cpu) { 2656 struct tcp_md5sig_pool *p; 2657 struct crypto_hash *hash; 2658 2659 p = kzalloc(sizeof(*p), GFP_KERNEL); 2660 if (!p) 2661 goto out_free; 2662 *per_cpu_ptr(pool, cpu) = p; 2663 2664 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2665 if (!hash || IS_ERR(hash)) 2666 goto out_free; 2667 2668 p->md5_desc.tfm = hash; 2669 } 2670 return pool; 2671 out_free: 2672 __tcp_free_md5sig_pool(pool); 2673 return NULL; 2674 } 2675 2676 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void) 2677 { 2678 struct tcp_md5sig_pool **pool; 2679 int alloc = 0; 2680 2681 retry: 2682 spin_lock_bh(&tcp_md5sig_pool_lock); 2683 pool = tcp_md5sig_pool; 2684 if (tcp_md5sig_users++ == 0) { 2685 alloc = 1; 2686 spin_unlock_bh(&tcp_md5sig_pool_lock); 2687 } else if (!pool) { 2688 tcp_md5sig_users--; 2689 spin_unlock_bh(&tcp_md5sig_pool_lock); 2690 cpu_relax(); 2691 goto retry; 2692 } else 2693 spin_unlock_bh(&tcp_md5sig_pool_lock); 2694 2695 if (alloc) { 2696 /* we cannot hold spinlock here because this may sleep. */ 2697 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool(); 2698 spin_lock_bh(&tcp_md5sig_pool_lock); 2699 if (!p) { 2700 tcp_md5sig_users--; 2701 spin_unlock_bh(&tcp_md5sig_pool_lock); 2702 return NULL; 2703 } 2704 pool = tcp_md5sig_pool; 2705 if (pool) { 2706 /* oops, it has already been assigned. */ 2707 spin_unlock_bh(&tcp_md5sig_pool_lock); 2708 __tcp_free_md5sig_pool(p); 2709 } else { 2710 tcp_md5sig_pool = pool = p; 2711 spin_unlock_bh(&tcp_md5sig_pool_lock); 2712 } 2713 } 2714 return pool; 2715 } 2716 2717 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2718 2719 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu) 2720 { 2721 struct tcp_md5sig_pool **p; 2722 spin_lock_bh(&tcp_md5sig_pool_lock); 2723 p = tcp_md5sig_pool; 2724 if (p) 2725 tcp_md5sig_users++; 2726 spin_unlock_bh(&tcp_md5sig_pool_lock); 2727 return (p ? *per_cpu_ptr(p, cpu) : NULL); 2728 } 2729 2730 EXPORT_SYMBOL(__tcp_get_md5sig_pool); 2731 2732 void __tcp_put_md5sig_pool(void) 2733 { 2734 tcp_free_md5sig_pool(); 2735 } 2736 2737 EXPORT_SYMBOL(__tcp_put_md5sig_pool); 2738 2739 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2740 struct tcphdr *th) 2741 { 2742 struct scatterlist sg; 2743 int err; 2744 2745 __sum16 old_checksum = th->check; 2746 th->check = 0; 2747 /* options aren't included in the hash */ 2748 sg_init_one(&sg, th, sizeof(struct tcphdr)); 2749 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr)); 2750 th->check = old_checksum; 2751 return err; 2752 } 2753 2754 EXPORT_SYMBOL(tcp_md5_hash_header); 2755 2756 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2757 struct sk_buff *skb, unsigned header_len) 2758 { 2759 struct scatterlist sg; 2760 const struct tcphdr *tp = tcp_hdr(skb); 2761 struct hash_desc *desc = &hp->md5_desc; 2762 unsigned i; 2763 const unsigned head_data_len = skb_headlen(skb) > header_len ? 2764 skb_headlen(skb) - header_len : 0; 2765 const struct skb_shared_info *shi = skb_shinfo(skb); 2766 2767 sg_init_table(&sg, 1); 2768 2769 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2770 if (crypto_hash_update(desc, &sg, head_data_len)) 2771 return 1; 2772 2773 for (i = 0; i < shi->nr_frags; ++i) { 2774 const struct skb_frag_struct *f = &shi->frags[i]; 2775 sg_set_page(&sg, f->page, f->size, f->page_offset); 2776 if (crypto_hash_update(desc, &sg, f->size)) 2777 return 1; 2778 } 2779 2780 return 0; 2781 } 2782 2783 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2784 2785 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key) 2786 { 2787 struct scatterlist sg; 2788 2789 sg_init_one(&sg, key->key, key->keylen); 2790 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2791 } 2792 2793 EXPORT_SYMBOL(tcp_md5_hash_key); 2794 2795 #endif 2796 2797 void tcp_done(struct sock *sk) 2798 { 2799 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 2800 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 2801 2802 tcp_set_state(sk, TCP_CLOSE); 2803 tcp_clear_xmit_timers(sk); 2804 2805 sk->sk_shutdown = SHUTDOWN_MASK; 2806 2807 if (!sock_flag(sk, SOCK_DEAD)) 2808 sk->sk_state_change(sk); 2809 else 2810 inet_csk_destroy_sock(sk); 2811 } 2812 EXPORT_SYMBOL_GPL(tcp_done); 2813 2814 extern struct tcp_congestion_ops tcp_reno; 2815 2816 static __initdata unsigned long thash_entries; 2817 static int __init set_thash_entries(char *str) 2818 { 2819 if (!str) 2820 return 0; 2821 thash_entries = simple_strtoul(str, &str, 0); 2822 return 1; 2823 } 2824 __setup("thash_entries=", set_thash_entries); 2825 2826 void __init tcp_init(void) 2827 { 2828 struct sk_buff *skb = NULL; 2829 unsigned long nr_pages, limit; 2830 int order, i, max_share; 2831 2832 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 2833 2834 percpu_counter_init(&tcp_sockets_allocated, 0); 2835 percpu_counter_init(&tcp_orphan_count, 0); 2836 tcp_hashinfo.bind_bucket_cachep = 2837 kmem_cache_create("tcp_bind_bucket", 2838 sizeof(struct inet_bind_bucket), 0, 2839 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2840 2841 /* Size and allocate the main established and bind bucket 2842 * hash tables. 2843 * 2844 * The methodology is similar to that of the buffer cache. 2845 */ 2846 tcp_hashinfo.ehash = 2847 alloc_large_system_hash("TCP established", 2848 sizeof(struct inet_ehash_bucket), 2849 thash_entries, 2850 (num_physpages >= 128 * 1024) ? 2851 13 : 15, 2852 0, 2853 &tcp_hashinfo.ehash_size, 2854 NULL, 2855 thash_entries ? 0 : 512 * 1024); 2856 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size; 2857 for (i = 0; i < tcp_hashinfo.ehash_size; i++) { 2858 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 2859 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 2860 } 2861 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 2862 panic("TCP: failed to alloc ehash_locks"); 2863 tcp_hashinfo.bhash = 2864 alloc_large_system_hash("TCP bind", 2865 sizeof(struct inet_bind_hashbucket), 2866 tcp_hashinfo.ehash_size, 2867 (num_physpages >= 128 * 1024) ? 2868 13 : 15, 2869 0, 2870 &tcp_hashinfo.bhash_size, 2871 NULL, 2872 64 * 1024); 2873 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 2874 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 2875 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 2876 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 2877 } 2878 2879 /* Try to be a bit smarter and adjust defaults depending 2880 * on available memory. 2881 */ 2882 for (order = 0; ((1 << order) << PAGE_SHIFT) < 2883 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket)); 2884 order++) 2885 ; 2886 if (order >= 4) { 2887 tcp_death_row.sysctl_max_tw_buckets = 180000; 2888 sysctl_tcp_max_orphans = 4096 << (order - 4); 2889 sysctl_max_syn_backlog = 1024; 2890 } else if (order < 3) { 2891 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order); 2892 sysctl_tcp_max_orphans >>= (3 - order); 2893 sysctl_max_syn_backlog = 128; 2894 } 2895 2896 /* Set the pressure threshold to be a fraction of global memory that 2897 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of 2898 * memory, with a floor of 128 pages. 2899 */ 2900 nr_pages = totalram_pages - totalhigh_pages; 2901 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); 2902 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); 2903 limit = max(limit, 128UL); 2904 sysctl_tcp_mem[0] = limit / 4 * 3; 2905 sysctl_tcp_mem[1] = limit; 2906 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 2907 2908 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 2909 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 2910 max_share = min(4UL*1024*1024, limit); 2911 2912 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 2913 sysctl_tcp_wmem[1] = 16*1024; 2914 sysctl_tcp_wmem[2] = max(64*1024, max_share); 2915 2916 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 2917 sysctl_tcp_rmem[1] = 87380; 2918 sysctl_tcp_rmem[2] = max(87380, max_share); 2919 2920 printk(KERN_INFO "TCP: Hash tables configured " 2921 "(established %d bind %d)\n", 2922 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size); 2923 2924 tcp_register_congestion_control(&tcp_reno); 2925 } 2926 2927 EXPORT_SYMBOL(tcp_close); 2928 EXPORT_SYMBOL(tcp_disconnect); 2929 EXPORT_SYMBOL(tcp_getsockopt); 2930 EXPORT_SYMBOL(tcp_ioctl); 2931 EXPORT_SYMBOL(tcp_poll); 2932 EXPORT_SYMBOL(tcp_read_sock); 2933 EXPORT_SYMBOL(tcp_recvmsg); 2934 EXPORT_SYMBOL(tcp_sendmsg); 2935 EXPORT_SYMBOL(tcp_splice_read); 2936 EXPORT_SYMBOL(tcp_sendpage); 2937 EXPORT_SYMBOL(tcp_setsockopt); 2938 EXPORT_SYMBOL(tcp_shutdown); 2939