xref: /openbmc/linux/net/ipv4/tcp.c (revision b04b4f78)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 
268 #include <net/icmp.h>
269 #include <net/tcp.h>
270 #include <net/xfrm.h>
271 #include <net/ip.h>
272 #include <net/netdma.h>
273 #include <net/sock.h>
274 
275 #include <asm/uaccess.h>
276 #include <asm/ioctls.h>
277 
278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279 
280 struct percpu_counter tcp_orphan_count;
281 EXPORT_SYMBOL_GPL(tcp_orphan_count);
282 
283 int sysctl_tcp_mem[3] __read_mostly;
284 int sysctl_tcp_wmem[3] __read_mostly;
285 int sysctl_tcp_rmem[3] __read_mostly;
286 
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 EXPORT_SYMBOL(sysctl_tcp_rmem);
289 EXPORT_SYMBOL(sysctl_tcp_wmem);
290 
291 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated);
293 
294 /*
295  * Current number of TCP sockets.
296  */
297 struct percpu_counter tcp_sockets_allocated;
298 EXPORT_SYMBOL(tcp_sockets_allocated);
299 
300 /*
301  * TCP splice context
302  */
303 struct tcp_splice_state {
304 	struct pipe_inode_info *pipe;
305 	size_t len;
306 	unsigned int flags;
307 };
308 
309 /*
310  * Pressure flag: try to collapse.
311  * Technical note: it is used by multiple contexts non atomically.
312  * All the __sk_mem_schedule() is of this nature: accounting
313  * is strict, actions are advisory and have some latency.
314  */
315 int tcp_memory_pressure __read_mostly;
316 
317 EXPORT_SYMBOL(tcp_memory_pressure);
318 
319 void tcp_enter_memory_pressure(struct sock *sk)
320 {
321 	if (!tcp_memory_pressure) {
322 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
323 		tcp_memory_pressure = 1;
324 	}
325 }
326 
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /*
330  *	Wait for a TCP event.
331  *
332  *	Note that we don't need to lock the socket, as the upper poll layers
333  *	take care of normal races (between the test and the event) and we don't
334  *	go look at any of the socket buffers directly.
335  */
336 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
337 {
338 	unsigned int mask;
339 	struct sock *sk = sock->sk;
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	poll_wait(file, sk->sk_sleep, wait);
343 	if (sk->sk_state == TCP_LISTEN)
344 		return inet_csk_listen_poll(sk);
345 
346 	/* Socket is not locked. We are protected from async events
347 	 * by poll logic and correct handling of state changes
348 	 * made by other threads is impossible in any case.
349 	 */
350 
351 	mask = 0;
352 	if (sk->sk_err)
353 		mask = POLLERR;
354 
355 	/*
356 	 * POLLHUP is certainly not done right. But poll() doesn't
357 	 * have a notion of HUP in just one direction, and for a
358 	 * socket the read side is more interesting.
359 	 *
360 	 * Some poll() documentation says that POLLHUP is incompatible
361 	 * with the POLLOUT/POLLWR flags, so somebody should check this
362 	 * all. But careful, it tends to be safer to return too many
363 	 * bits than too few, and you can easily break real applications
364 	 * if you don't tell them that something has hung up!
365 	 *
366 	 * Check-me.
367 	 *
368 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
369 	 * our fs/select.c). It means that after we received EOF,
370 	 * poll always returns immediately, making impossible poll() on write()
371 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
372 	 * if and only if shutdown has been made in both directions.
373 	 * Actually, it is interesting to look how Solaris and DUX
374 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
375 	 * then we could set it on SND_SHUTDOWN. BTW examples given
376 	 * in Stevens' books assume exactly this behaviour, it explains
377 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
378 	 *
379 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
380 	 * blocking on fresh not-connected or disconnected socket. --ANK
381 	 */
382 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
383 		mask |= POLLHUP;
384 	if (sk->sk_shutdown & RCV_SHUTDOWN)
385 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
386 
387 	/* Connected? */
388 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
389 		int target = sock_rcvlowat(sk, 0, INT_MAX);
390 
391 		if (tp->urg_seq == tp->copied_seq &&
392 		    !sock_flag(sk, SOCK_URGINLINE) &&
393 		    tp->urg_data)
394 			target--;
395 
396 		/* Potential race condition. If read of tp below will
397 		 * escape above sk->sk_state, we can be illegally awaken
398 		 * in SYN_* states. */
399 		if (tp->rcv_nxt - tp->copied_seq >= target)
400 			mask |= POLLIN | POLLRDNORM;
401 
402 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
403 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
404 				mask |= POLLOUT | POLLWRNORM;
405 			} else {  /* send SIGIO later */
406 				set_bit(SOCK_ASYNC_NOSPACE,
407 					&sk->sk_socket->flags);
408 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
409 
410 				/* Race breaker. If space is freed after
411 				 * wspace test but before the flags are set,
412 				 * IO signal will be lost.
413 				 */
414 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
415 					mask |= POLLOUT | POLLWRNORM;
416 			}
417 		}
418 
419 		if (tp->urg_data & TCP_URG_VALID)
420 			mask |= POLLPRI;
421 	}
422 	return mask;
423 }
424 
425 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	int answ;
429 
430 	switch (cmd) {
431 	case SIOCINQ:
432 		if (sk->sk_state == TCP_LISTEN)
433 			return -EINVAL;
434 
435 		lock_sock(sk);
436 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
437 			answ = 0;
438 		else if (sock_flag(sk, SOCK_URGINLINE) ||
439 			 !tp->urg_data ||
440 			 before(tp->urg_seq, tp->copied_seq) ||
441 			 !before(tp->urg_seq, tp->rcv_nxt)) {
442 			answ = tp->rcv_nxt - tp->copied_seq;
443 
444 			/* Subtract 1, if FIN is in queue. */
445 			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
446 				answ -=
447 		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
448 		} else
449 			answ = tp->urg_seq - tp->copied_seq;
450 		release_sock(sk);
451 		break;
452 	case SIOCATMARK:
453 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
454 		break;
455 	case SIOCOUTQ:
456 		if (sk->sk_state == TCP_LISTEN)
457 			return -EINVAL;
458 
459 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
460 			answ = 0;
461 		else
462 			answ = tp->write_seq - tp->snd_una;
463 		break;
464 	default:
465 		return -ENOIOCTLCMD;
466 	}
467 
468 	return put_user(answ, (int __user *)arg);
469 }
470 
471 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
472 {
473 	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
474 	tp->pushed_seq = tp->write_seq;
475 }
476 
477 static inline int forced_push(struct tcp_sock *tp)
478 {
479 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
480 }
481 
482 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
483 {
484 	struct tcp_sock *tp = tcp_sk(sk);
485 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
486 
487 	skb->csum    = 0;
488 	tcb->seq     = tcb->end_seq = tp->write_seq;
489 	tcb->flags   = TCPCB_FLAG_ACK;
490 	tcb->sacked  = 0;
491 	skb_header_release(skb);
492 	tcp_add_write_queue_tail(sk, skb);
493 	sk->sk_wmem_queued += skb->truesize;
494 	sk_mem_charge(sk, skb->truesize);
495 	if (tp->nonagle & TCP_NAGLE_PUSH)
496 		tp->nonagle &= ~TCP_NAGLE_PUSH;
497 }
498 
499 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
500 				struct sk_buff *skb)
501 {
502 	if (flags & MSG_OOB)
503 		tp->snd_up = tp->write_seq;
504 }
505 
506 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
507 			    int nonagle)
508 {
509 	struct tcp_sock *tp = tcp_sk(sk);
510 
511 	if (tcp_send_head(sk)) {
512 		struct sk_buff *skb = tcp_write_queue_tail(sk);
513 		if (!(flags & MSG_MORE) || forced_push(tp))
514 			tcp_mark_push(tp, skb);
515 		tcp_mark_urg(tp, flags, skb);
516 		__tcp_push_pending_frames(sk, mss_now,
517 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
518 	}
519 }
520 
521 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
522 				unsigned int offset, size_t len)
523 {
524 	struct tcp_splice_state *tss = rd_desc->arg.data;
525 	int ret;
526 
527 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
528 			      tss->flags);
529 	if (ret > 0)
530 		rd_desc->count -= ret;
531 	return ret;
532 }
533 
534 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
535 {
536 	/* Store TCP splice context information in read_descriptor_t. */
537 	read_descriptor_t rd_desc = {
538 		.arg.data = tss,
539 		.count	  = tss->len,
540 	};
541 
542 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
543 }
544 
545 /**
546  *  tcp_splice_read - splice data from TCP socket to a pipe
547  * @sock:	socket to splice from
548  * @ppos:	position (not valid)
549  * @pipe:	pipe to splice to
550  * @len:	number of bytes to splice
551  * @flags:	splice modifier flags
552  *
553  * Description:
554  *    Will read pages from given socket and fill them into a pipe.
555  *
556  **/
557 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
558 			struct pipe_inode_info *pipe, size_t len,
559 			unsigned int flags)
560 {
561 	struct sock *sk = sock->sk;
562 	struct tcp_splice_state tss = {
563 		.pipe = pipe,
564 		.len = len,
565 		.flags = flags,
566 	};
567 	long timeo;
568 	ssize_t spliced;
569 	int ret;
570 
571 	/*
572 	 * We can't seek on a socket input
573 	 */
574 	if (unlikely(*ppos))
575 		return -ESPIPE;
576 
577 	ret = spliced = 0;
578 
579 	lock_sock(sk);
580 
581 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
582 	while (tss.len) {
583 		ret = __tcp_splice_read(sk, &tss);
584 		if (ret < 0)
585 			break;
586 		else if (!ret) {
587 			if (spliced)
588 				break;
589 			if (sock_flag(sk, SOCK_DONE))
590 				break;
591 			if (sk->sk_err) {
592 				ret = sock_error(sk);
593 				break;
594 			}
595 			if (sk->sk_shutdown & RCV_SHUTDOWN)
596 				break;
597 			if (sk->sk_state == TCP_CLOSE) {
598 				/*
599 				 * This occurs when user tries to read
600 				 * from never connected socket.
601 				 */
602 				if (!sock_flag(sk, SOCK_DONE))
603 					ret = -ENOTCONN;
604 				break;
605 			}
606 			if (!timeo) {
607 				ret = -EAGAIN;
608 				break;
609 			}
610 			sk_wait_data(sk, &timeo);
611 			if (signal_pending(current)) {
612 				ret = sock_intr_errno(timeo);
613 				break;
614 			}
615 			continue;
616 		}
617 		tss.len -= ret;
618 		spliced += ret;
619 
620 		if (!timeo)
621 			break;
622 		release_sock(sk);
623 		lock_sock(sk);
624 
625 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
626 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
627 		    signal_pending(current))
628 			break;
629 	}
630 
631 	release_sock(sk);
632 
633 	if (spliced)
634 		return spliced;
635 
636 	return ret;
637 }
638 
639 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
640 {
641 	struct sk_buff *skb;
642 
643 	/* The TCP header must be at least 32-bit aligned.  */
644 	size = ALIGN(size, 4);
645 
646 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
647 	if (skb) {
648 		if (sk_wmem_schedule(sk, skb->truesize)) {
649 			/*
650 			 * Make sure that we have exactly size bytes
651 			 * available to the caller, no more, no less.
652 			 */
653 			skb_reserve(skb, skb_tailroom(skb) - size);
654 			return skb;
655 		}
656 		__kfree_skb(skb);
657 	} else {
658 		sk->sk_prot->enter_memory_pressure(sk);
659 		sk_stream_moderate_sndbuf(sk);
660 	}
661 	return NULL;
662 }
663 
664 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
665 				       int large_allowed)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	u32 xmit_size_goal, old_size_goal;
669 
670 	xmit_size_goal = mss_now;
671 
672 	if (large_allowed && sk_can_gso(sk)) {
673 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
674 				  inet_csk(sk)->icsk_af_ops->net_header_len -
675 				  inet_csk(sk)->icsk_ext_hdr_len -
676 				  tp->tcp_header_len);
677 
678 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
679 
680 		/* We try hard to avoid divides here */
681 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
682 
683 		if (likely(old_size_goal <= xmit_size_goal &&
684 			   old_size_goal + mss_now > xmit_size_goal)) {
685 			xmit_size_goal = old_size_goal;
686 		} else {
687 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
688 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
689 		}
690 	}
691 
692 	return max(xmit_size_goal, mss_now);
693 }
694 
695 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
696 {
697 	int mss_now;
698 
699 	mss_now = tcp_current_mss(sk);
700 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
701 
702 	return mss_now;
703 }
704 
705 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
706 			 size_t psize, int flags)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	int mss_now, size_goal;
710 	int err;
711 	ssize_t copied;
712 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
713 
714 	/* Wait for a connection to finish. */
715 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
716 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
717 			goto out_err;
718 
719 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
720 
721 	mss_now = tcp_send_mss(sk, &size_goal, flags);
722 	copied = 0;
723 
724 	err = -EPIPE;
725 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
726 		goto out_err;
727 
728 	while (psize > 0) {
729 		struct sk_buff *skb = tcp_write_queue_tail(sk);
730 		struct page *page = pages[poffset / PAGE_SIZE];
731 		int copy, i, can_coalesce;
732 		int offset = poffset % PAGE_SIZE;
733 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
734 
735 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
736 new_segment:
737 			if (!sk_stream_memory_free(sk))
738 				goto wait_for_sndbuf;
739 
740 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
741 			if (!skb)
742 				goto wait_for_memory;
743 
744 			skb_entail(sk, skb);
745 			copy = size_goal;
746 		}
747 
748 		if (copy > size)
749 			copy = size;
750 
751 		i = skb_shinfo(skb)->nr_frags;
752 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
753 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
754 			tcp_mark_push(tp, skb);
755 			goto new_segment;
756 		}
757 		if (!sk_wmem_schedule(sk, copy))
758 			goto wait_for_memory;
759 
760 		if (can_coalesce) {
761 			skb_shinfo(skb)->frags[i - 1].size += copy;
762 		} else {
763 			get_page(page);
764 			skb_fill_page_desc(skb, i, page, offset, copy);
765 		}
766 
767 		skb->len += copy;
768 		skb->data_len += copy;
769 		skb->truesize += copy;
770 		sk->sk_wmem_queued += copy;
771 		sk_mem_charge(sk, copy);
772 		skb->ip_summed = CHECKSUM_PARTIAL;
773 		tp->write_seq += copy;
774 		TCP_SKB_CB(skb)->end_seq += copy;
775 		skb_shinfo(skb)->gso_segs = 0;
776 
777 		if (!copied)
778 			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
779 
780 		copied += copy;
781 		poffset += copy;
782 		if (!(psize -= copy))
783 			goto out;
784 
785 		if (skb->len < size_goal || (flags & MSG_OOB))
786 			continue;
787 
788 		if (forced_push(tp)) {
789 			tcp_mark_push(tp, skb);
790 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
791 		} else if (skb == tcp_send_head(sk))
792 			tcp_push_one(sk, mss_now);
793 		continue;
794 
795 wait_for_sndbuf:
796 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
797 wait_for_memory:
798 		if (copied)
799 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
800 
801 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
802 			goto do_error;
803 
804 		mss_now = tcp_send_mss(sk, &size_goal, flags);
805 	}
806 
807 out:
808 	if (copied)
809 		tcp_push(sk, flags, mss_now, tp->nonagle);
810 	return copied;
811 
812 do_error:
813 	if (copied)
814 		goto out;
815 out_err:
816 	return sk_stream_error(sk, flags, err);
817 }
818 
819 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
820 		     size_t size, int flags)
821 {
822 	ssize_t res;
823 	struct sock *sk = sock->sk;
824 
825 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
826 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
827 		return sock_no_sendpage(sock, page, offset, size, flags);
828 
829 	lock_sock(sk);
830 	TCP_CHECK_TIMER(sk);
831 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
832 	TCP_CHECK_TIMER(sk);
833 	release_sock(sk);
834 	return res;
835 }
836 
837 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
838 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
839 
840 static inline int select_size(struct sock *sk)
841 {
842 	struct tcp_sock *tp = tcp_sk(sk);
843 	int tmp = tp->mss_cache;
844 
845 	if (sk->sk_route_caps & NETIF_F_SG) {
846 		if (sk_can_gso(sk))
847 			tmp = 0;
848 		else {
849 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
850 
851 			if (tmp >= pgbreak &&
852 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
853 				tmp = pgbreak;
854 		}
855 	}
856 
857 	return tmp;
858 }
859 
860 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
861 		size_t size)
862 {
863 	struct sock *sk = sock->sk;
864 	struct iovec *iov;
865 	struct tcp_sock *tp = tcp_sk(sk);
866 	struct sk_buff *skb;
867 	int iovlen, flags;
868 	int mss_now, size_goal;
869 	int err, copied;
870 	long timeo;
871 
872 	lock_sock(sk);
873 	TCP_CHECK_TIMER(sk);
874 
875 	flags = msg->msg_flags;
876 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
877 
878 	/* Wait for a connection to finish. */
879 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
880 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
881 			goto out_err;
882 
883 	/* This should be in poll */
884 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
885 
886 	mss_now = tcp_send_mss(sk, &size_goal, flags);
887 
888 	/* Ok commence sending. */
889 	iovlen = msg->msg_iovlen;
890 	iov = msg->msg_iov;
891 	copied = 0;
892 
893 	err = -EPIPE;
894 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
895 		goto out_err;
896 
897 	while (--iovlen >= 0) {
898 		int seglen = iov->iov_len;
899 		unsigned char __user *from = iov->iov_base;
900 
901 		iov++;
902 
903 		while (seglen > 0) {
904 			int copy;
905 
906 			skb = tcp_write_queue_tail(sk);
907 
908 			if (!tcp_send_head(sk) ||
909 			    (copy = size_goal - skb->len) <= 0) {
910 
911 new_segment:
912 				/* Allocate new segment. If the interface is SG,
913 				 * allocate skb fitting to single page.
914 				 */
915 				if (!sk_stream_memory_free(sk))
916 					goto wait_for_sndbuf;
917 
918 				skb = sk_stream_alloc_skb(sk, select_size(sk),
919 						sk->sk_allocation);
920 				if (!skb)
921 					goto wait_for_memory;
922 
923 				/*
924 				 * Check whether we can use HW checksum.
925 				 */
926 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
927 					skb->ip_summed = CHECKSUM_PARTIAL;
928 
929 				skb_entail(sk, skb);
930 				copy = size_goal;
931 			}
932 
933 			/* Try to append data to the end of skb. */
934 			if (copy > seglen)
935 				copy = seglen;
936 
937 			/* Where to copy to? */
938 			if (skb_tailroom(skb) > 0) {
939 				/* We have some space in skb head. Superb! */
940 				if (copy > skb_tailroom(skb))
941 					copy = skb_tailroom(skb);
942 				if ((err = skb_add_data(skb, from, copy)) != 0)
943 					goto do_fault;
944 			} else {
945 				int merge = 0;
946 				int i = skb_shinfo(skb)->nr_frags;
947 				struct page *page = TCP_PAGE(sk);
948 				int off = TCP_OFF(sk);
949 
950 				if (skb_can_coalesce(skb, i, page, off) &&
951 				    off != PAGE_SIZE) {
952 					/* We can extend the last page
953 					 * fragment. */
954 					merge = 1;
955 				} else if (i == MAX_SKB_FRAGS ||
956 					   (!i &&
957 					   !(sk->sk_route_caps & NETIF_F_SG))) {
958 					/* Need to add new fragment and cannot
959 					 * do this because interface is non-SG,
960 					 * or because all the page slots are
961 					 * busy. */
962 					tcp_mark_push(tp, skb);
963 					goto new_segment;
964 				} else if (page) {
965 					if (off == PAGE_SIZE) {
966 						put_page(page);
967 						TCP_PAGE(sk) = page = NULL;
968 						off = 0;
969 					}
970 				} else
971 					off = 0;
972 
973 				if (copy > PAGE_SIZE - off)
974 					copy = PAGE_SIZE - off;
975 
976 				if (!sk_wmem_schedule(sk, copy))
977 					goto wait_for_memory;
978 
979 				if (!page) {
980 					/* Allocate new cache page. */
981 					if (!(page = sk_stream_alloc_page(sk)))
982 						goto wait_for_memory;
983 				}
984 
985 				/* Time to copy data. We are close to
986 				 * the end! */
987 				err = skb_copy_to_page(sk, from, skb, page,
988 						       off, copy);
989 				if (err) {
990 					/* If this page was new, give it to the
991 					 * socket so it does not get leaked.
992 					 */
993 					if (!TCP_PAGE(sk)) {
994 						TCP_PAGE(sk) = page;
995 						TCP_OFF(sk) = 0;
996 					}
997 					goto do_error;
998 				}
999 
1000 				/* Update the skb. */
1001 				if (merge) {
1002 					skb_shinfo(skb)->frags[i - 1].size +=
1003 									copy;
1004 				} else {
1005 					skb_fill_page_desc(skb, i, page, off, copy);
1006 					if (TCP_PAGE(sk)) {
1007 						get_page(page);
1008 					} else if (off + copy < PAGE_SIZE) {
1009 						get_page(page);
1010 						TCP_PAGE(sk) = page;
1011 					}
1012 				}
1013 
1014 				TCP_OFF(sk) = off + copy;
1015 			}
1016 
1017 			if (!copied)
1018 				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
1019 
1020 			tp->write_seq += copy;
1021 			TCP_SKB_CB(skb)->end_seq += copy;
1022 			skb_shinfo(skb)->gso_segs = 0;
1023 
1024 			from += copy;
1025 			copied += copy;
1026 			if ((seglen -= copy) == 0 && iovlen == 0)
1027 				goto out;
1028 
1029 			if (skb->len < size_goal || (flags & MSG_OOB))
1030 				continue;
1031 
1032 			if (forced_push(tp)) {
1033 				tcp_mark_push(tp, skb);
1034 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1035 			} else if (skb == tcp_send_head(sk))
1036 				tcp_push_one(sk, mss_now);
1037 			continue;
1038 
1039 wait_for_sndbuf:
1040 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1041 wait_for_memory:
1042 			if (copied)
1043 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1044 
1045 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1046 				goto do_error;
1047 
1048 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1049 		}
1050 	}
1051 
1052 out:
1053 	if (copied)
1054 		tcp_push(sk, flags, mss_now, tp->nonagle);
1055 	TCP_CHECK_TIMER(sk);
1056 	release_sock(sk);
1057 	return copied;
1058 
1059 do_fault:
1060 	if (!skb->len) {
1061 		tcp_unlink_write_queue(skb, sk);
1062 		/* It is the one place in all of TCP, except connection
1063 		 * reset, where we can be unlinking the send_head.
1064 		 */
1065 		tcp_check_send_head(sk, skb);
1066 		sk_wmem_free_skb(sk, skb);
1067 	}
1068 
1069 do_error:
1070 	if (copied)
1071 		goto out;
1072 out_err:
1073 	err = sk_stream_error(sk, flags, err);
1074 	TCP_CHECK_TIMER(sk);
1075 	release_sock(sk);
1076 	return err;
1077 }
1078 
1079 /*
1080  *	Handle reading urgent data. BSD has very simple semantics for
1081  *	this, no blocking and very strange errors 8)
1082  */
1083 
1084 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1085 {
1086 	struct tcp_sock *tp = tcp_sk(sk);
1087 
1088 	/* No URG data to read. */
1089 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1090 	    tp->urg_data == TCP_URG_READ)
1091 		return -EINVAL;	/* Yes this is right ! */
1092 
1093 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1094 		return -ENOTCONN;
1095 
1096 	if (tp->urg_data & TCP_URG_VALID) {
1097 		int err = 0;
1098 		char c = tp->urg_data;
1099 
1100 		if (!(flags & MSG_PEEK))
1101 			tp->urg_data = TCP_URG_READ;
1102 
1103 		/* Read urgent data. */
1104 		msg->msg_flags |= MSG_OOB;
1105 
1106 		if (len > 0) {
1107 			if (!(flags & MSG_TRUNC))
1108 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1109 			len = 1;
1110 		} else
1111 			msg->msg_flags |= MSG_TRUNC;
1112 
1113 		return err ? -EFAULT : len;
1114 	}
1115 
1116 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1117 		return 0;
1118 
1119 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1120 	 * the available implementations agree in this case:
1121 	 * this call should never block, independent of the
1122 	 * blocking state of the socket.
1123 	 * Mike <pall@rz.uni-karlsruhe.de>
1124 	 */
1125 	return -EAGAIN;
1126 }
1127 
1128 /* Clean up the receive buffer for full frames taken by the user,
1129  * then send an ACK if necessary.  COPIED is the number of bytes
1130  * tcp_recvmsg has given to the user so far, it speeds up the
1131  * calculation of whether or not we must ACK for the sake of
1132  * a window update.
1133  */
1134 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1135 {
1136 	struct tcp_sock *tp = tcp_sk(sk);
1137 	int time_to_ack = 0;
1138 
1139 #if TCP_DEBUG
1140 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1141 
1142 	WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1143 #endif
1144 
1145 	if (inet_csk_ack_scheduled(sk)) {
1146 		const struct inet_connection_sock *icsk = inet_csk(sk);
1147 		   /* Delayed ACKs frequently hit locked sockets during bulk
1148 		    * receive. */
1149 		if (icsk->icsk_ack.blocked ||
1150 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1151 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1152 		    /*
1153 		     * If this read emptied read buffer, we send ACK, if
1154 		     * connection is not bidirectional, user drained
1155 		     * receive buffer and there was a small segment
1156 		     * in queue.
1157 		     */
1158 		    (copied > 0 &&
1159 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1160 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1161 		       !icsk->icsk_ack.pingpong)) &&
1162 		      !atomic_read(&sk->sk_rmem_alloc)))
1163 			time_to_ack = 1;
1164 	}
1165 
1166 	/* We send an ACK if we can now advertise a non-zero window
1167 	 * which has been raised "significantly".
1168 	 *
1169 	 * Even if window raised up to infinity, do not send window open ACK
1170 	 * in states, where we will not receive more. It is useless.
1171 	 */
1172 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1173 		__u32 rcv_window_now = tcp_receive_window(tp);
1174 
1175 		/* Optimize, __tcp_select_window() is not cheap. */
1176 		if (2*rcv_window_now <= tp->window_clamp) {
1177 			__u32 new_window = __tcp_select_window(sk);
1178 
1179 			/* Send ACK now, if this read freed lots of space
1180 			 * in our buffer. Certainly, new_window is new window.
1181 			 * We can advertise it now, if it is not less than current one.
1182 			 * "Lots" means "at least twice" here.
1183 			 */
1184 			if (new_window && new_window >= 2 * rcv_window_now)
1185 				time_to_ack = 1;
1186 		}
1187 	}
1188 	if (time_to_ack)
1189 		tcp_send_ack(sk);
1190 }
1191 
1192 static void tcp_prequeue_process(struct sock *sk)
1193 {
1194 	struct sk_buff *skb;
1195 	struct tcp_sock *tp = tcp_sk(sk);
1196 
1197 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1198 
1199 	/* RX process wants to run with disabled BHs, though it is not
1200 	 * necessary */
1201 	local_bh_disable();
1202 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1203 		sk_backlog_rcv(sk, skb);
1204 	local_bh_enable();
1205 
1206 	/* Clear memory counter. */
1207 	tp->ucopy.memory = 0;
1208 }
1209 
1210 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1211 {
1212 	struct sk_buff *skb;
1213 	u32 offset;
1214 
1215 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1216 		offset = seq - TCP_SKB_CB(skb)->seq;
1217 		if (tcp_hdr(skb)->syn)
1218 			offset--;
1219 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1220 			*off = offset;
1221 			return skb;
1222 		}
1223 	}
1224 	return NULL;
1225 }
1226 
1227 /*
1228  * This routine provides an alternative to tcp_recvmsg() for routines
1229  * that would like to handle copying from skbuffs directly in 'sendfile'
1230  * fashion.
1231  * Note:
1232  *	- It is assumed that the socket was locked by the caller.
1233  *	- The routine does not block.
1234  *	- At present, there is no support for reading OOB data
1235  *	  or for 'peeking' the socket using this routine
1236  *	  (although both would be easy to implement).
1237  */
1238 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1239 		  sk_read_actor_t recv_actor)
1240 {
1241 	struct sk_buff *skb;
1242 	struct tcp_sock *tp = tcp_sk(sk);
1243 	u32 seq = tp->copied_seq;
1244 	u32 offset;
1245 	int copied = 0;
1246 
1247 	if (sk->sk_state == TCP_LISTEN)
1248 		return -ENOTCONN;
1249 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1250 		if (offset < skb->len) {
1251 			int used;
1252 			size_t len;
1253 
1254 			len = skb->len - offset;
1255 			/* Stop reading if we hit a patch of urgent data */
1256 			if (tp->urg_data) {
1257 				u32 urg_offset = tp->urg_seq - seq;
1258 				if (urg_offset < len)
1259 					len = urg_offset;
1260 				if (!len)
1261 					break;
1262 			}
1263 			used = recv_actor(desc, skb, offset, len);
1264 			if (used < 0) {
1265 				if (!copied)
1266 					copied = used;
1267 				break;
1268 			} else if (used <= len) {
1269 				seq += used;
1270 				copied += used;
1271 				offset += used;
1272 			}
1273 			/*
1274 			 * If recv_actor drops the lock (e.g. TCP splice
1275 			 * receive) the skb pointer might be invalid when
1276 			 * getting here: tcp_collapse might have deleted it
1277 			 * while aggregating skbs from the socket queue.
1278 			 */
1279 			skb = tcp_recv_skb(sk, seq-1, &offset);
1280 			if (!skb || (offset+1 != skb->len))
1281 				break;
1282 		}
1283 		if (tcp_hdr(skb)->fin) {
1284 			sk_eat_skb(sk, skb, 0);
1285 			++seq;
1286 			break;
1287 		}
1288 		sk_eat_skb(sk, skb, 0);
1289 		if (!desc->count)
1290 			break;
1291 	}
1292 	tp->copied_seq = seq;
1293 
1294 	tcp_rcv_space_adjust(sk);
1295 
1296 	/* Clean up data we have read: This will do ACK frames. */
1297 	if (copied > 0)
1298 		tcp_cleanup_rbuf(sk, copied);
1299 	return copied;
1300 }
1301 
1302 /*
1303  *	This routine copies from a sock struct into the user buffer.
1304  *
1305  *	Technical note: in 2.3 we work on _locked_ socket, so that
1306  *	tricks with *seq access order and skb->users are not required.
1307  *	Probably, code can be easily improved even more.
1308  */
1309 
1310 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1311 		size_t len, int nonblock, int flags, int *addr_len)
1312 {
1313 	struct tcp_sock *tp = tcp_sk(sk);
1314 	int copied = 0;
1315 	u32 peek_seq;
1316 	u32 *seq;
1317 	unsigned long used;
1318 	int err;
1319 	int target;		/* Read at least this many bytes */
1320 	long timeo;
1321 	struct task_struct *user_recv = NULL;
1322 	int copied_early = 0;
1323 	struct sk_buff *skb;
1324 
1325 	lock_sock(sk);
1326 
1327 	TCP_CHECK_TIMER(sk);
1328 
1329 	err = -ENOTCONN;
1330 	if (sk->sk_state == TCP_LISTEN)
1331 		goto out;
1332 
1333 	timeo = sock_rcvtimeo(sk, nonblock);
1334 
1335 	/* Urgent data needs to be handled specially. */
1336 	if (flags & MSG_OOB)
1337 		goto recv_urg;
1338 
1339 	seq = &tp->copied_seq;
1340 	if (flags & MSG_PEEK) {
1341 		peek_seq = tp->copied_seq;
1342 		seq = &peek_seq;
1343 	}
1344 
1345 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1346 
1347 #ifdef CONFIG_NET_DMA
1348 	tp->ucopy.dma_chan = NULL;
1349 	preempt_disable();
1350 	skb = skb_peek_tail(&sk->sk_receive_queue);
1351 	{
1352 		int available = 0;
1353 
1354 		if (skb)
1355 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1356 		if ((available < target) &&
1357 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1358 		    !sysctl_tcp_low_latency &&
1359 		    dma_find_channel(DMA_MEMCPY)) {
1360 			preempt_enable_no_resched();
1361 			tp->ucopy.pinned_list =
1362 					dma_pin_iovec_pages(msg->msg_iov, len);
1363 		} else {
1364 			preempt_enable_no_resched();
1365 		}
1366 	}
1367 #endif
1368 
1369 	do {
1370 		u32 offset;
1371 
1372 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1373 		if (tp->urg_data && tp->urg_seq == *seq) {
1374 			if (copied)
1375 				break;
1376 			if (signal_pending(current)) {
1377 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1378 				break;
1379 			}
1380 		}
1381 
1382 		/* Next get a buffer. */
1383 
1384 		skb = skb_peek(&sk->sk_receive_queue);
1385 		do {
1386 			if (!skb)
1387 				break;
1388 
1389 			/* Now that we have two receive queues this
1390 			 * shouldn't happen.
1391 			 */
1392 			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1393 				printk(KERN_INFO "recvmsg bug: copied %X "
1394 				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1395 				break;
1396 			}
1397 			offset = *seq - TCP_SKB_CB(skb)->seq;
1398 			if (tcp_hdr(skb)->syn)
1399 				offset--;
1400 			if (offset < skb->len)
1401 				goto found_ok_skb;
1402 			if (tcp_hdr(skb)->fin)
1403 				goto found_fin_ok;
1404 			WARN_ON(!(flags & MSG_PEEK));
1405 			skb = skb->next;
1406 		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1407 
1408 		/* Well, if we have backlog, try to process it now yet. */
1409 
1410 		if (copied >= target && !sk->sk_backlog.tail)
1411 			break;
1412 
1413 		if (copied) {
1414 			if (sk->sk_err ||
1415 			    sk->sk_state == TCP_CLOSE ||
1416 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1417 			    !timeo ||
1418 			    signal_pending(current))
1419 				break;
1420 		} else {
1421 			if (sock_flag(sk, SOCK_DONE))
1422 				break;
1423 
1424 			if (sk->sk_err) {
1425 				copied = sock_error(sk);
1426 				break;
1427 			}
1428 
1429 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1430 				break;
1431 
1432 			if (sk->sk_state == TCP_CLOSE) {
1433 				if (!sock_flag(sk, SOCK_DONE)) {
1434 					/* This occurs when user tries to read
1435 					 * from never connected socket.
1436 					 */
1437 					copied = -ENOTCONN;
1438 					break;
1439 				}
1440 				break;
1441 			}
1442 
1443 			if (!timeo) {
1444 				copied = -EAGAIN;
1445 				break;
1446 			}
1447 
1448 			if (signal_pending(current)) {
1449 				copied = sock_intr_errno(timeo);
1450 				break;
1451 			}
1452 		}
1453 
1454 		tcp_cleanup_rbuf(sk, copied);
1455 
1456 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1457 			/* Install new reader */
1458 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1459 				user_recv = current;
1460 				tp->ucopy.task = user_recv;
1461 				tp->ucopy.iov = msg->msg_iov;
1462 			}
1463 
1464 			tp->ucopy.len = len;
1465 
1466 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1467 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1468 
1469 			/* Ugly... If prequeue is not empty, we have to
1470 			 * process it before releasing socket, otherwise
1471 			 * order will be broken at second iteration.
1472 			 * More elegant solution is required!!!
1473 			 *
1474 			 * Look: we have the following (pseudo)queues:
1475 			 *
1476 			 * 1. packets in flight
1477 			 * 2. backlog
1478 			 * 3. prequeue
1479 			 * 4. receive_queue
1480 			 *
1481 			 * Each queue can be processed only if the next ones
1482 			 * are empty. At this point we have empty receive_queue.
1483 			 * But prequeue _can_ be not empty after 2nd iteration,
1484 			 * when we jumped to start of loop because backlog
1485 			 * processing added something to receive_queue.
1486 			 * We cannot release_sock(), because backlog contains
1487 			 * packets arrived _after_ prequeued ones.
1488 			 *
1489 			 * Shortly, algorithm is clear --- to process all
1490 			 * the queues in order. We could make it more directly,
1491 			 * requeueing packets from backlog to prequeue, if
1492 			 * is not empty. It is more elegant, but eats cycles,
1493 			 * unfortunately.
1494 			 */
1495 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1496 				goto do_prequeue;
1497 
1498 			/* __ Set realtime policy in scheduler __ */
1499 		}
1500 
1501 		if (copied >= target) {
1502 			/* Do not sleep, just process backlog. */
1503 			release_sock(sk);
1504 			lock_sock(sk);
1505 		} else
1506 			sk_wait_data(sk, &timeo);
1507 
1508 #ifdef CONFIG_NET_DMA
1509 		tp->ucopy.wakeup = 0;
1510 #endif
1511 
1512 		if (user_recv) {
1513 			int chunk;
1514 
1515 			/* __ Restore normal policy in scheduler __ */
1516 
1517 			if ((chunk = len - tp->ucopy.len) != 0) {
1518 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1519 				len -= chunk;
1520 				copied += chunk;
1521 			}
1522 
1523 			if (tp->rcv_nxt == tp->copied_seq &&
1524 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1525 do_prequeue:
1526 				tcp_prequeue_process(sk);
1527 
1528 				if ((chunk = len - tp->ucopy.len) != 0) {
1529 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1530 					len -= chunk;
1531 					copied += chunk;
1532 				}
1533 			}
1534 		}
1535 		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1536 			if (net_ratelimit())
1537 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1538 				       current->comm, task_pid_nr(current));
1539 			peek_seq = tp->copied_seq;
1540 		}
1541 		continue;
1542 
1543 	found_ok_skb:
1544 		/* Ok so how much can we use? */
1545 		used = skb->len - offset;
1546 		if (len < used)
1547 			used = len;
1548 
1549 		/* Do we have urgent data here? */
1550 		if (tp->urg_data) {
1551 			u32 urg_offset = tp->urg_seq - *seq;
1552 			if (urg_offset < used) {
1553 				if (!urg_offset) {
1554 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1555 						++*seq;
1556 						offset++;
1557 						used--;
1558 						if (!used)
1559 							goto skip_copy;
1560 					}
1561 				} else
1562 					used = urg_offset;
1563 			}
1564 		}
1565 
1566 		if (!(flags & MSG_TRUNC)) {
1567 #ifdef CONFIG_NET_DMA
1568 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1569 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1570 
1571 			if (tp->ucopy.dma_chan) {
1572 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1573 					tp->ucopy.dma_chan, skb, offset,
1574 					msg->msg_iov, used,
1575 					tp->ucopy.pinned_list);
1576 
1577 				if (tp->ucopy.dma_cookie < 0) {
1578 
1579 					printk(KERN_ALERT "dma_cookie < 0\n");
1580 
1581 					/* Exception. Bailout! */
1582 					if (!copied)
1583 						copied = -EFAULT;
1584 					break;
1585 				}
1586 				if ((offset + used) == skb->len)
1587 					copied_early = 1;
1588 
1589 			} else
1590 #endif
1591 			{
1592 				err = skb_copy_datagram_iovec(skb, offset,
1593 						msg->msg_iov, used);
1594 				if (err) {
1595 					/* Exception. Bailout! */
1596 					if (!copied)
1597 						copied = -EFAULT;
1598 					break;
1599 				}
1600 			}
1601 		}
1602 
1603 		*seq += used;
1604 		copied += used;
1605 		len -= used;
1606 
1607 		tcp_rcv_space_adjust(sk);
1608 
1609 skip_copy:
1610 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1611 			tp->urg_data = 0;
1612 			tcp_fast_path_check(sk);
1613 		}
1614 		if (used + offset < skb->len)
1615 			continue;
1616 
1617 		if (tcp_hdr(skb)->fin)
1618 			goto found_fin_ok;
1619 		if (!(flags & MSG_PEEK)) {
1620 			sk_eat_skb(sk, skb, copied_early);
1621 			copied_early = 0;
1622 		}
1623 		continue;
1624 
1625 	found_fin_ok:
1626 		/* Process the FIN. */
1627 		++*seq;
1628 		if (!(flags & MSG_PEEK)) {
1629 			sk_eat_skb(sk, skb, copied_early);
1630 			copied_early = 0;
1631 		}
1632 		break;
1633 	} while (len > 0);
1634 
1635 	if (user_recv) {
1636 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1637 			int chunk;
1638 
1639 			tp->ucopy.len = copied > 0 ? len : 0;
1640 
1641 			tcp_prequeue_process(sk);
1642 
1643 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1644 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1645 				len -= chunk;
1646 				copied += chunk;
1647 			}
1648 		}
1649 
1650 		tp->ucopy.task = NULL;
1651 		tp->ucopy.len = 0;
1652 	}
1653 
1654 #ifdef CONFIG_NET_DMA
1655 	if (tp->ucopy.dma_chan) {
1656 		dma_cookie_t done, used;
1657 
1658 		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1659 
1660 		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1661 						 tp->ucopy.dma_cookie, &done,
1662 						 &used) == DMA_IN_PROGRESS) {
1663 			/* do partial cleanup of sk_async_wait_queue */
1664 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1665 			       (dma_async_is_complete(skb->dma_cookie, done,
1666 						      used) == DMA_SUCCESS)) {
1667 				__skb_dequeue(&sk->sk_async_wait_queue);
1668 				kfree_skb(skb);
1669 			}
1670 		}
1671 
1672 		/* Safe to free early-copied skbs now */
1673 		__skb_queue_purge(&sk->sk_async_wait_queue);
1674 		tp->ucopy.dma_chan = NULL;
1675 	}
1676 	if (tp->ucopy.pinned_list) {
1677 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1678 		tp->ucopy.pinned_list = NULL;
1679 	}
1680 #endif
1681 
1682 	/* According to UNIX98, msg_name/msg_namelen are ignored
1683 	 * on connected socket. I was just happy when found this 8) --ANK
1684 	 */
1685 
1686 	/* Clean up data we have read: This will do ACK frames. */
1687 	tcp_cleanup_rbuf(sk, copied);
1688 
1689 	TCP_CHECK_TIMER(sk);
1690 	release_sock(sk);
1691 	return copied;
1692 
1693 out:
1694 	TCP_CHECK_TIMER(sk);
1695 	release_sock(sk);
1696 	return err;
1697 
1698 recv_urg:
1699 	err = tcp_recv_urg(sk, msg, len, flags);
1700 	goto out;
1701 }
1702 
1703 void tcp_set_state(struct sock *sk, int state)
1704 {
1705 	int oldstate = sk->sk_state;
1706 
1707 	switch (state) {
1708 	case TCP_ESTABLISHED:
1709 		if (oldstate != TCP_ESTABLISHED)
1710 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1711 		break;
1712 
1713 	case TCP_CLOSE:
1714 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1715 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1716 
1717 		sk->sk_prot->unhash(sk);
1718 		if (inet_csk(sk)->icsk_bind_hash &&
1719 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1720 			inet_put_port(sk);
1721 		/* fall through */
1722 	default:
1723 		if (oldstate == TCP_ESTABLISHED)
1724 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1725 	}
1726 
1727 	/* Change state AFTER socket is unhashed to avoid closed
1728 	 * socket sitting in hash tables.
1729 	 */
1730 	sk->sk_state = state;
1731 
1732 #ifdef STATE_TRACE
1733 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1734 #endif
1735 }
1736 EXPORT_SYMBOL_GPL(tcp_set_state);
1737 
1738 /*
1739  *	State processing on a close. This implements the state shift for
1740  *	sending our FIN frame. Note that we only send a FIN for some
1741  *	states. A shutdown() may have already sent the FIN, or we may be
1742  *	closed.
1743  */
1744 
1745 static const unsigned char new_state[16] = {
1746   /* current state:        new state:      action:	*/
1747   /* (Invalid)		*/ TCP_CLOSE,
1748   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1749   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1750   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1751   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1752   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1753   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1754   /* TCP_CLOSE		*/ TCP_CLOSE,
1755   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1756   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1757   /* TCP_LISTEN		*/ TCP_CLOSE,
1758   /* TCP_CLOSING	*/ TCP_CLOSING,
1759 };
1760 
1761 static int tcp_close_state(struct sock *sk)
1762 {
1763 	int next = (int)new_state[sk->sk_state];
1764 	int ns = next & TCP_STATE_MASK;
1765 
1766 	tcp_set_state(sk, ns);
1767 
1768 	return next & TCP_ACTION_FIN;
1769 }
1770 
1771 /*
1772  *	Shutdown the sending side of a connection. Much like close except
1773  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1774  */
1775 
1776 void tcp_shutdown(struct sock *sk, int how)
1777 {
1778 	/*	We need to grab some memory, and put together a FIN,
1779 	 *	and then put it into the queue to be sent.
1780 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1781 	 */
1782 	if (!(how & SEND_SHUTDOWN))
1783 		return;
1784 
1785 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1786 	if ((1 << sk->sk_state) &
1787 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1788 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1789 		/* Clear out any half completed packets.  FIN if needed. */
1790 		if (tcp_close_state(sk))
1791 			tcp_send_fin(sk);
1792 	}
1793 }
1794 
1795 void tcp_close(struct sock *sk, long timeout)
1796 {
1797 	struct sk_buff *skb;
1798 	int data_was_unread = 0;
1799 	int state;
1800 
1801 	lock_sock(sk);
1802 	sk->sk_shutdown = SHUTDOWN_MASK;
1803 
1804 	if (sk->sk_state == TCP_LISTEN) {
1805 		tcp_set_state(sk, TCP_CLOSE);
1806 
1807 		/* Special case. */
1808 		inet_csk_listen_stop(sk);
1809 
1810 		goto adjudge_to_death;
1811 	}
1812 
1813 	/*  We need to flush the recv. buffs.  We do this only on the
1814 	 *  descriptor close, not protocol-sourced closes, because the
1815 	 *  reader process may not have drained the data yet!
1816 	 */
1817 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1818 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1819 			  tcp_hdr(skb)->fin;
1820 		data_was_unread += len;
1821 		__kfree_skb(skb);
1822 	}
1823 
1824 	sk_mem_reclaim(sk);
1825 
1826 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1827 	 * data was lost. To witness the awful effects of the old behavior of
1828 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1829 	 * GET in an FTP client, suspend the process, wait for the client to
1830 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1831 	 * Note: timeout is always zero in such a case.
1832 	 */
1833 	if (data_was_unread) {
1834 		/* Unread data was tossed, zap the connection. */
1835 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1836 		tcp_set_state(sk, TCP_CLOSE);
1837 		tcp_send_active_reset(sk, GFP_KERNEL);
1838 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1839 		/* Check zero linger _after_ checking for unread data. */
1840 		sk->sk_prot->disconnect(sk, 0);
1841 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1842 	} else if (tcp_close_state(sk)) {
1843 		/* We FIN if the application ate all the data before
1844 		 * zapping the connection.
1845 		 */
1846 
1847 		/* RED-PEN. Formally speaking, we have broken TCP state
1848 		 * machine. State transitions:
1849 		 *
1850 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1851 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1852 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1853 		 *
1854 		 * are legal only when FIN has been sent (i.e. in window),
1855 		 * rather than queued out of window. Purists blame.
1856 		 *
1857 		 * F.e. "RFC state" is ESTABLISHED,
1858 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1859 		 *
1860 		 * The visible declinations are that sometimes
1861 		 * we enter time-wait state, when it is not required really
1862 		 * (harmless), do not send active resets, when they are
1863 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1864 		 * they look as CLOSING or LAST_ACK for Linux)
1865 		 * Probably, I missed some more holelets.
1866 		 * 						--ANK
1867 		 */
1868 		tcp_send_fin(sk);
1869 	}
1870 
1871 	sk_stream_wait_close(sk, timeout);
1872 
1873 adjudge_to_death:
1874 	state = sk->sk_state;
1875 	sock_hold(sk);
1876 	sock_orphan(sk);
1877 
1878 	/* It is the last release_sock in its life. It will remove backlog. */
1879 	release_sock(sk);
1880 
1881 
1882 	/* Now socket is owned by kernel and we acquire BH lock
1883 	   to finish close. No need to check for user refs.
1884 	 */
1885 	local_bh_disable();
1886 	bh_lock_sock(sk);
1887 	WARN_ON(sock_owned_by_user(sk));
1888 
1889 	percpu_counter_inc(sk->sk_prot->orphan_count);
1890 
1891 	/* Have we already been destroyed by a softirq or backlog? */
1892 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1893 		goto out;
1894 
1895 	/*	This is a (useful) BSD violating of the RFC. There is a
1896 	 *	problem with TCP as specified in that the other end could
1897 	 *	keep a socket open forever with no application left this end.
1898 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1899 	 *	our end. If they send after that then tough - BUT: long enough
1900 	 *	that we won't make the old 4*rto = almost no time - whoops
1901 	 *	reset mistake.
1902 	 *
1903 	 *	Nope, it was not mistake. It is really desired behaviour
1904 	 *	f.e. on http servers, when such sockets are useless, but
1905 	 *	consume significant resources. Let's do it with special
1906 	 *	linger2	option.					--ANK
1907 	 */
1908 
1909 	if (sk->sk_state == TCP_FIN_WAIT2) {
1910 		struct tcp_sock *tp = tcp_sk(sk);
1911 		if (tp->linger2 < 0) {
1912 			tcp_set_state(sk, TCP_CLOSE);
1913 			tcp_send_active_reset(sk, GFP_ATOMIC);
1914 			NET_INC_STATS_BH(sock_net(sk),
1915 					LINUX_MIB_TCPABORTONLINGER);
1916 		} else {
1917 			const int tmo = tcp_fin_time(sk);
1918 
1919 			if (tmo > TCP_TIMEWAIT_LEN) {
1920 				inet_csk_reset_keepalive_timer(sk,
1921 						tmo - TCP_TIMEWAIT_LEN);
1922 			} else {
1923 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1924 				goto out;
1925 			}
1926 		}
1927 	}
1928 	if (sk->sk_state != TCP_CLOSE) {
1929 		int orphan_count = percpu_counter_read_positive(
1930 						sk->sk_prot->orphan_count);
1931 
1932 		sk_mem_reclaim(sk);
1933 		if (tcp_too_many_orphans(sk, orphan_count)) {
1934 			if (net_ratelimit())
1935 				printk(KERN_INFO "TCP: too many of orphaned "
1936 				       "sockets\n");
1937 			tcp_set_state(sk, TCP_CLOSE);
1938 			tcp_send_active_reset(sk, GFP_ATOMIC);
1939 			NET_INC_STATS_BH(sock_net(sk),
1940 					LINUX_MIB_TCPABORTONMEMORY);
1941 		}
1942 	}
1943 
1944 	if (sk->sk_state == TCP_CLOSE)
1945 		inet_csk_destroy_sock(sk);
1946 	/* Otherwise, socket is reprieved until protocol close. */
1947 
1948 out:
1949 	bh_unlock_sock(sk);
1950 	local_bh_enable();
1951 	sock_put(sk);
1952 }
1953 
1954 /* These states need RST on ABORT according to RFC793 */
1955 
1956 static inline int tcp_need_reset(int state)
1957 {
1958 	return (1 << state) &
1959 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1960 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1961 }
1962 
1963 int tcp_disconnect(struct sock *sk, int flags)
1964 {
1965 	struct inet_sock *inet = inet_sk(sk);
1966 	struct inet_connection_sock *icsk = inet_csk(sk);
1967 	struct tcp_sock *tp = tcp_sk(sk);
1968 	int err = 0;
1969 	int old_state = sk->sk_state;
1970 
1971 	if (old_state != TCP_CLOSE)
1972 		tcp_set_state(sk, TCP_CLOSE);
1973 
1974 	/* ABORT function of RFC793 */
1975 	if (old_state == TCP_LISTEN) {
1976 		inet_csk_listen_stop(sk);
1977 	} else if (tcp_need_reset(old_state) ||
1978 		   (tp->snd_nxt != tp->write_seq &&
1979 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1980 		/* The last check adjusts for discrepancy of Linux wrt. RFC
1981 		 * states
1982 		 */
1983 		tcp_send_active_reset(sk, gfp_any());
1984 		sk->sk_err = ECONNRESET;
1985 	} else if (old_state == TCP_SYN_SENT)
1986 		sk->sk_err = ECONNRESET;
1987 
1988 	tcp_clear_xmit_timers(sk);
1989 	__skb_queue_purge(&sk->sk_receive_queue);
1990 	tcp_write_queue_purge(sk);
1991 	__skb_queue_purge(&tp->out_of_order_queue);
1992 #ifdef CONFIG_NET_DMA
1993 	__skb_queue_purge(&sk->sk_async_wait_queue);
1994 #endif
1995 
1996 	inet->dport = 0;
1997 
1998 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1999 		inet_reset_saddr(sk);
2000 
2001 	sk->sk_shutdown = 0;
2002 	sock_reset_flag(sk, SOCK_DONE);
2003 	tp->srtt = 0;
2004 	if ((tp->write_seq += tp->max_window + 2) == 0)
2005 		tp->write_seq = 1;
2006 	icsk->icsk_backoff = 0;
2007 	tp->snd_cwnd = 2;
2008 	icsk->icsk_probes_out = 0;
2009 	tp->packets_out = 0;
2010 	tp->snd_ssthresh = 0x7fffffff;
2011 	tp->snd_cwnd_cnt = 0;
2012 	tp->bytes_acked = 0;
2013 	tcp_set_ca_state(sk, TCP_CA_Open);
2014 	tcp_clear_retrans(tp);
2015 	inet_csk_delack_init(sk);
2016 	tcp_init_send_head(sk);
2017 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2018 	__sk_dst_reset(sk);
2019 
2020 	WARN_ON(inet->num && !icsk->icsk_bind_hash);
2021 
2022 	sk->sk_error_report(sk);
2023 	return err;
2024 }
2025 
2026 /*
2027  *	Socket option code for TCP.
2028  */
2029 static int do_tcp_setsockopt(struct sock *sk, int level,
2030 		int optname, char __user *optval, int optlen)
2031 {
2032 	struct tcp_sock *tp = tcp_sk(sk);
2033 	struct inet_connection_sock *icsk = inet_csk(sk);
2034 	int val;
2035 	int err = 0;
2036 
2037 	/* This is a string value all the others are int's */
2038 	if (optname == TCP_CONGESTION) {
2039 		char name[TCP_CA_NAME_MAX];
2040 
2041 		if (optlen < 1)
2042 			return -EINVAL;
2043 
2044 		val = strncpy_from_user(name, optval,
2045 					min(TCP_CA_NAME_MAX-1, optlen));
2046 		if (val < 0)
2047 			return -EFAULT;
2048 		name[val] = 0;
2049 
2050 		lock_sock(sk);
2051 		err = tcp_set_congestion_control(sk, name);
2052 		release_sock(sk);
2053 		return err;
2054 	}
2055 
2056 	if (optlen < sizeof(int))
2057 		return -EINVAL;
2058 
2059 	if (get_user(val, (int __user *)optval))
2060 		return -EFAULT;
2061 
2062 	lock_sock(sk);
2063 
2064 	switch (optname) {
2065 	case TCP_MAXSEG:
2066 		/* Values greater than interface MTU won't take effect. However
2067 		 * at the point when this call is done we typically don't yet
2068 		 * know which interface is going to be used */
2069 		if (val < 8 || val > MAX_TCP_WINDOW) {
2070 			err = -EINVAL;
2071 			break;
2072 		}
2073 		tp->rx_opt.user_mss = val;
2074 		break;
2075 
2076 	case TCP_NODELAY:
2077 		if (val) {
2078 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2079 			 * this option on corked socket is remembered, but
2080 			 * it is not activated until cork is cleared.
2081 			 *
2082 			 * However, when TCP_NODELAY is set we make
2083 			 * an explicit push, which overrides even TCP_CORK
2084 			 * for currently queued segments.
2085 			 */
2086 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2087 			tcp_push_pending_frames(sk);
2088 		} else {
2089 			tp->nonagle &= ~TCP_NAGLE_OFF;
2090 		}
2091 		break;
2092 
2093 	case TCP_CORK:
2094 		/* When set indicates to always queue non-full frames.
2095 		 * Later the user clears this option and we transmit
2096 		 * any pending partial frames in the queue.  This is
2097 		 * meant to be used alongside sendfile() to get properly
2098 		 * filled frames when the user (for example) must write
2099 		 * out headers with a write() call first and then use
2100 		 * sendfile to send out the data parts.
2101 		 *
2102 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2103 		 * stronger than TCP_NODELAY.
2104 		 */
2105 		if (val) {
2106 			tp->nonagle |= TCP_NAGLE_CORK;
2107 		} else {
2108 			tp->nonagle &= ~TCP_NAGLE_CORK;
2109 			if (tp->nonagle&TCP_NAGLE_OFF)
2110 				tp->nonagle |= TCP_NAGLE_PUSH;
2111 			tcp_push_pending_frames(sk);
2112 		}
2113 		break;
2114 
2115 	case TCP_KEEPIDLE:
2116 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2117 			err = -EINVAL;
2118 		else {
2119 			tp->keepalive_time = val * HZ;
2120 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2121 			    !((1 << sk->sk_state) &
2122 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2123 				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2124 				if (tp->keepalive_time > elapsed)
2125 					elapsed = tp->keepalive_time - elapsed;
2126 				else
2127 					elapsed = 0;
2128 				inet_csk_reset_keepalive_timer(sk, elapsed);
2129 			}
2130 		}
2131 		break;
2132 	case TCP_KEEPINTVL:
2133 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2134 			err = -EINVAL;
2135 		else
2136 			tp->keepalive_intvl = val * HZ;
2137 		break;
2138 	case TCP_KEEPCNT:
2139 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2140 			err = -EINVAL;
2141 		else
2142 			tp->keepalive_probes = val;
2143 		break;
2144 	case TCP_SYNCNT:
2145 		if (val < 1 || val > MAX_TCP_SYNCNT)
2146 			err = -EINVAL;
2147 		else
2148 			icsk->icsk_syn_retries = val;
2149 		break;
2150 
2151 	case TCP_LINGER2:
2152 		if (val < 0)
2153 			tp->linger2 = -1;
2154 		else if (val > sysctl_tcp_fin_timeout / HZ)
2155 			tp->linger2 = 0;
2156 		else
2157 			tp->linger2 = val * HZ;
2158 		break;
2159 
2160 	case TCP_DEFER_ACCEPT:
2161 		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2162 		if (val > 0) {
2163 			/* Translate value in seconds to number of
2164 			 * retransmits */
2165 			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2166 			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2167 				       icsk->icsk_accept_queue.rskq_defer_accept))
2168 				icsk->icsk_accept_queue.rskq_defer_accept++;
2169 			icsk->icsk_accept_queue.rskq_defer_accept++;
2170 		}
2171 		break;
2172 
2173 	case TCP_WINDOW_CLAMP:
2174 		if (!val) {
2175 			if (sk->sk_state != TCP_CLOSE) {
2176 				err = -EINVAL;
2177 				break;
2178 			}
2179 			tp->window_clamp = 0;
2180 		} else
2181 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2182 						SOCK_MIN_RCVBUF / 2 : val;
2183 		break;
2184 
2185 	case TCP_QUICKACK:
2186 		if (!val) {
2187 			icsk->icsk_ack.pingpong = 1;
2188 		} else {
2189 			icsk->icsk_ack.pingpong = 0;
2190 			if ((1 << sk->sk_state) &
2191 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2192 			    inet_csk_ack_scheduled(sk)) {
2193 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2194 				tcp_cleanup_rbuf(sk, 1);
2195 				if (!(val & 1))
2196 					icsk->icsk_ack.pingpong = 1;
2197 			}
2198 		}
2199 		break;
2200 
2201 #ifdef CONFIG_TCP_MD5SIG
2202 	case TCP_MD5SIG:
2203 		/* Read the IP->Key mappings from userspace */
2204 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2205 		break;
2206 #endif
2207 
2208 	default:
2209 		err = -ENOPROTOOPT;
2210 		break;
2211 	}
2212 
2213 	release_sock(sk);
2214 	return err;
2215 }
2216 
2217 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2218 		   int optlen)
2219 {
2220 	struct inet_connection_sock *icsk = inet_csk(sk);
2221 
2222 	if (level != SOL_TCP)
2223 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2224 						     optval, optlen);
2225 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2226 }
2227 
2228 #ifdef CONFIG_COMPAT
2229 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2230 			  char __user *optval, int optlen)
2231 {
2232 	if (level != SOL_TCP)
2233 		return inet_csk_compat_setsockopt(sk, level, optname,
2234 						  optval, optlen);
2235 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2236 }
2237 
2238 EXPORT_SYMBOL(compat_tcp_setsockopt);
2239 #endif
2240 
2241 /* Return information about state of tcp endpoint in API format. */
2242 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2243 {
2244 	struct tcp_sock *tp = tcp_sk(sk);
2245 	const struct inet_connection_sock *icsk = inet_csk(sk);
2246 	u32 now = tcp_time_stamp;
2247 
2248 	memset(info, 0, sizeof(*info));
2249 
2250 	info->tcpi_state = sk->sk_state;
2251 	info->tcpi_ca_state = icsk->icsk_ca_state;
2252 	info->tcpi_retransmits = icsk->icsk_retransmits;
2253 	info->tcpi_probes = icsk->icsk_probes_out;
2254 	info->tcpi_backoff = icsk->icsk_backoff;
2255 
2256 	if (tp->rx_opt.tstamp_ok)
2257 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2258 	if (tcp_is_sack(tp))
2259 		info->tcpi_options |= TCPI_OPT_SACK;
2260 	if (tp->rx_opt.wscale_ok) {
2261 		info->tcpi_options |= TCPI_OPT_WSCALE;
2262 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2263 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2264 	}
2265 
2266 	if (tp->ecn_flags&TCP_ECN_OK)
2267 		info->tcpi_options |= TCPI_OPT_ECN;
2268 
2269 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2270 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2271 	info->tcpi_snd_mss = tp->mss_cache;
2272 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2273 
2274 	if (sk->sk_state == TCP_LISTEN) {
2275 		info->tcpi_unacked = sk->sk_ack_backlog;
2276 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2277 	} else {
2278 		info->tcpi_unacked = tp->packets_out;
2279 		info->tcpi_sacked = tp->sacked_out;
2280 	}
2281 	info->tcpi_lost = tp->lost_out;
2282 	info->tcpi_retrans = tp->retrans_out;
2283 	info->tcpi_fackets = tp->fackets_out;
2284 
2285 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2286 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2287 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2288 
2289 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2290 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2291 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2292 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2293 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2294 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2295 	info->tcpi_advmss = tp->advmss;
2296 	info->tcpi_reordering = tp->reordering;
2297 
2298 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2299 	info->tcpi_rcv_space = tp->rcvq_space.space;
2300 
2301 	info->tcpi_total_retrans = tp->total_retrans;
2302 }
2303 
2304 EXPORT_SYMBOL_GPL(tcp_get_info);
2305 
2306 static int do_tcp_getsockopt(struct sock *sk, int level,
2307 		int optname, char __user *optval, int __user *optlen)
2308 {
2309 	struct inet_connection_sock *icsk = inet_csk(sk);
2310 	struct tcp_sock *tp = tcp_sk(sk);
2311 	int val, len;
2312 
2313 	if (get_user(len, optlen))
2314 		return -EFAULT;
2315 
2316 	len = min_t(unsigned int, len, sizeof(int));
2317 
2318 	if (len < 0)
2319 		return -EINVAL;
2320 
2321 	switch (optname) {
2322 	case TCP_MAXSEG:
2323 		val = tp->mss_cache;
2324 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2325 			val = tp->rx_opt.user_mss;
2326 		break;
2327 	case TCP_NODELAY:
2328 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2329 		break;
2330 	case TCP_CORK:
2331 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2332 		break;
2333 	case TCP_KEEPIDLE:
2334 		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2335 		break;
2336 	case TCP_KEEPINTVL:
2337 		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2338 		break;
2339 	case TCP_KEEPCNT:
2340 		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2341 		break;
2342 	case TCP_SYNCNT:
2343 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2344 		break;
2345 	case TCP_LINGER2:
2346 		val = tp->linger2;
2347 		if (val >= 0)
2348 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2349 		break;
2350 	case TCP_DEFER_ACCEPT:
2351 		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2352 			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2353 		break;
2354 	case TCP_WINDOW_CLAMP:
2355 		val = tp->window_clamp;
2356 		break;
2357 	case TCP_INFO: {
2358 		struct tcp_info info;
2359 
2360 		if (get_user(len, optlen))
2361 			return -EFAULT;
2362 
2363 		tcp_get_info(sk, &info);
2364 
2365 		len = min_t(unsigned int, len, sizeof(info));
2366 		if (put_user(len, optlen))
2367 			return -EFAULT;
2368 		if (copy_to_user(optval, &info, len))
2369 			return -EFAULT;
2370 		return 0;
2371 	}
2372 	case TCP_QUICKACK:
2373 		val = !icsk->icsk_ack.pingpong;
2374 		break;
2375 
2376 	case TCP_CONGESTION:
2377 		if (get_user(len, optlen))
2378 			return -EFAULT;
2379 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2380 		if (put_user(len, optlen))
2381 			return -EFAULT;
2382 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2383 			return -EFAULT;
2384 		return 0;
2385 	default:
2386 		return -ENOPROTOOPT;
2387 	}
2388 
2389 	if (put_user(len, optlen))
2390 		return -EFAULT;
2391 	if (copy_to_user(optval, &val, len))
2392 		return -EFAULT;
2393 	return 0;
2394 }
2395 
2396 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2397 		   int __user *optlen)
2398 {
2399 	struct inet_connection_sock *icsk = inet_csk(sk);
2400 
2401 	if (level != SOL_TCP)
2402 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2403 						     optval, optlen);
2404 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2405 }
2406 
2407 #ifdef CONFIG_COMPAT
2408 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2409 			  char __user *optval, int __user *optlen)
2410 {
2411 	if (level != SOL_TCP)
2412 		return inet_csk_compat_getsockopt(sk, level, optname,
2413 						  optval, optlen);
2414 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2415 }
2416 
2417 EXPORT_SYMBOL(compat_tcp_getsockopt);
2418 #endif
2419 
2420 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2421 {
2422 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2423 	struct tcphdr *th;
2424 	unsigned thlen;
2425 	unsigned int seq;
2426 	__be32 delta;
2427 	unsigned int oldlen;
2428 	unsigned int mss;
2429 
2430 	if (!pskb_may_pull(skb, sizeof(*th)))
2431 		goto out;
2432 
2433 	th = tcp_hdr(skb);
2434 	thlen = th->doff * 4;
2435 	if (thlen < sizeof(*th))
2436 		goto out;
2437 
2438 	if (!pskb_may_pull(skb, thlen))
2439 		goto out;
2440 
2441 	oldlen = (u16)~skb->len;
2442 	__skb_pull(skb, thlen);
2443 
2444 	mss = skb_shinfo(skb)->gso_size;
2445 	if (unlikely(skb->len <= mss))
2446 		goto out;
2447 
2448 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2449 		/* Packet is from an untrusted source, reset gso_segs. */
2450 		int type = skb_shinfo(skb)->gso_type;
2451 
2452 		if (unlikely(type &
2453 			     ~(SKB_GSO_TCPV4 |
2454 			       SKB_GSO_DODGY |
2455 			       SKB_GSO_TCP_ECN |
2456 			       SKB_GSO_TCPV6 |
2457 			       0) ||
2458 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2459 			goto out;
2460 
2461 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2462 
2463 		segs = NULL;
2464 		goto out;
2465 	}
2466 
2467 	segs = skb_segment(skb, features);
2468 	if (IS_ERR(segs))
2469 		goto out;
2470 
2471 	delta = htonl(oldlen + (thlen + mss));
2472 
2473 	skb = segs;
2474 	th = tcp_hdr(skb);
2475 	seq = ntohl(th->seq);
2476 
2477 	do {
2478 		th->fin = th->psh = 0;
2479 
2480 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2481 				       (__force u32)delta));
2482 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2483 			th->check =
2484 			     csum_fold(csum_partial(skb_transport_header(skb),
2485 						    thlen, skb->csum));
2486 
2487 		seq += mss;
2488 		skb = skb->next;
2489 		th = tcp_hdr(skb);
2490 
2491 		th->seq = htonl(seq);
2492 		th->cwr = 0;
2493 	} while (skb->next);
2494 
2495 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2496 		      skb->data_len);
2497 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2498 				(__force u32)delta));
2499 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2500 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2501 						   thlen, skb->csum));
2502 
2503 out:
2504 	return segs;
2505 }
2506 EXPORT_SYMBOL(tcp_tso_segment);
2507 
2508 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2509 {
2510 	struct sk_buff **pp = NULL;
2511 	struct sk_buff *p;
2512 	struct tcphdr *th;
2513 	struct tcphdr *th2;
2514 	unsigned int len;
2515 	unsigned int thlen;
2516 	unsigned int flags;
2517 	unsigned int mss = 1;
2518 	int flush = 1;
2519 	int i;
2520 
2521 	th = skb_gro_header(skb, sizeof(*th));
2522 	if (unlikely(!th))
2523 		goto out;
2524 
2525 	thlen = th->doff * 4;
2526 	if (thlen < sizeof(*th))
2527 		goto out;
2528 
2529 	th = skb_gro_header(skb, thlen);
2530 	if (unlikely(!th))
2531 		goto out;
2532 
2533 	skb_gro_pull(skb, thlen);
2534 
2535 	len = skb_gro_len(skb);
2536 	flags = tcp_flag_word(th);
2537 
2538 	for (; (p = *head); head = &p->next) {
2539 		if (!NAPI_GRO_CB(p)->same_flow)
2540 			continue;
2541 
2542 		th2 = tcp_hdr(p);
2543 
2544 		if ((th->source ^ th2->source) | (th->dest ^ th2->dest)) {
2545 			NAPI_GRO_CB(p)->same_flow = 0;
2546 			continue;
2547 		}
2548 
2549 		goto found;
2550 	}
2551 
2552 	goto out_check_final;
2553 
2554 found:
2555 	flush = NAPI_GRO_CB(p)->flush;
2556 	flush |= flags & TCP_FLAG_CWR;
2557 	flush |= (flags ^ tcp_flag_word(th2)) &
2558 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
2559 	flush |= (th->ack_seq ^ th2->ack_seq) | (th->window ^ th2->window);
2560 	for (i = sizeof(*th); !flush && i < thlen; i += 4)
2561 		flush |= *(u32 *)((u8 *)th + i) ^
2562 			 *(u32 *)((u8 *)th2 + i);
2563 
2564 	mss = skb_shinfo(p)->gso_size;
2565 
2566 	flush |= (len > mss) | !len;
2567 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2568 
2569 	if (flush || skb_gro_receive(head, skb)) {
2570 		mss = 1;
2571 		goto out_check_final;
2572 	}
2573 
2574 	p = *head;
2575 	th2 = tcp_hdr(p);
2576 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2577 
2578 out_check_final:
2579 	flush = len < mss;
2580 	flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
2581 			  TCP_FLAG_SYN | TCP_FLAG_FIN);
2582 
2583 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2584 		pp = head;
2585 
2586 out:
2587 	NAPI_GRO_CB(skb)->flush |= flush;
2588 
2589 	return pp;
2590 }
2591 EXPORT_SYMBOL(tcp_gro_receive);
2592 
2593 int tcp_gro_complete(struct sk_buff *skb)
2594 {
2595 	struct tcphdr *th = tcp_hdr(skb);
2596 
2597 	skb->csum_start = skb_transport_header(skb) - skb->head;
2598 	skb->csum_offset = offsetof(struct tcphdr, check);
2599 	skb->ip_summed = CHECKSUM_PARTIAL;
2600 
2601 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2602 
2603 	if (th->cwr)
2604 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2605 
2606 	return 0;
2607 }
2608 EXPORT_SYMBOL(tcp_gro_complete);
2609 
2610 #ifdef CONFIG_TCP_MD5SIG
2611 static unsigned long tcp_md5sig_users;
2612 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2613 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2614 
2615 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2616 {
2617 	int cpu;
2618 	for_each_possible_cpu(cpu) {
2619 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2620 		if (p) {
2621 			if (p->md5_desc.tfm)
2622 				crypto_free_hash(p->md5_desc.tfm);
2623 			kfree(p);
2624 			p = NULL;
2625 		}
2626 	}
2627 	free_percpu(pool);
2628 }
2629 
2630 void tcp_free_md5sig_pool(void)
2631 {
2632 	struct tcp_md5sig_pool **pool = NULL;
2633 
2634 	spin_lock_bh(&tcp_md5sig_pool_lock);
2635 	if (--tcp_md5sig_users == 0) {
2636 		pool = tcp_md5sig_pool;
2637 		tcp_md5sig_pool = NULL;
2638 	}
2639 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2640 	if (pool)
2641 		__tcp_free_md5sig_pool(pool);
2642 }
2643 
2644 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2645 
2646 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2647 {
2648 	int cpu;
2649 	struct tcp_md5sig_pool **pool;
2650 
2651 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2652 	if (!pool)
2653 		return NULL;
2654 
2655 	for_each_possible_cpu(cpu) {
2656 		struct tcp_md5sig_pool *p;
2657 		struct crypto_hash *hash;
2658 
2659 		p = kzalloc(sizeof(*p), GFP_KERNEL);
2660 		if (!p)
2661 			goto out_free;
2662 		*per_cpu_ptr(pool, cpu) = p;
2663 
2664 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2665 		if (!hash || IS_ERR(hash))
2666 			goto out_free;
2667 
2668 		p->md5_desc.tfm = hash;
2669 	}
2670 	return pool;
2671 out_free:
2672 	__tcp_free_md5sig_pool(pool);
2673 	return NULL;
2674 }
2675 
2676 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2677 {
2678 	struct tcp_md5sig_pool **pool;
2679 	int alloc = 0;
2680 
2681 retry:
2682 	spin_lock_bh(&tcp_md5sig_pool_lock);
2683 	pool = tcp_md5sig_pool;
2684 	if (tcp_md5sig_users++ == 0) {
2685 		alloc = 1;
2686 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2687 	} else if (!pool) {
2688 		tcp_md5sig_users--;
2689 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2690 		cpu_relax();
2691 		goto retry;
2692 	} else
2693 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2694 
2695 	if (alloc) {
2696 		/* we cannot hold spinlock here because this may sleep. */
2697 		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2698 		spin_lock_bh(&tcp_md5sig_pool_lock);
2699 		if (!p) {
2700 			tcp_md5sig_users--;
2701 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2702 			return NULL;
2703 		}
2704 		pool = tcp_md5sig_pool;
2705 		if (pool) {
2706 			/* oops, it has already been assigned. */
2707 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2708 			__tcp_free_md5sig_pool(p);
2709 		} else {
2710 			tcp_md5sig_pool = pool = p;
2711 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2712 		}
2713 	}
2714 	return pool;
2715 }
2716 
2717 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2718 
2719 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2720 {
2721 	struct tcp_md5sig_pool **p;
2722 	spin_lock_bh(&tcp_md5sig_pool_lock);
2723 	p = tcp_md5sig_pool;
2724 	if (p)
2725 		tcp_md5sig_users++;
2726 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2727 	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2728 }
2729 
2730 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2731 
2732 void __tcp_put_md5sig_pool(void)
2733 {
2734 	tcp_free_md5sig_pool();
2735 }
2736 
2737 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2738 
2739 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2740 			struct tcphdr *th)
2741 {
2742 	struct scatterlist sg;
2743 	int err;
2744 
2745 	__sum16 old_checksum = th->check;
2746 	th->check = 0;
2747 	/* options aren't included in the hash */
2748 	sg_init_one(&sg, th, sizeof(struct tcphdr));
2749 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2750 	th->check = old_checksum;
2751 	return err;
2752 }
2753 
2754 EXPORT_SYMBOL(tcp_md5_hash_header);
2755 
2756 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2757 			  struct sk_buff *skb, unsigned header_len)
2758 {
2759 	struct scatterlist sg;
2760 	const struct tcphdr *tp = tcp_hdr(skb);
2761 	struct hash_desc *desc = &hp->md5_desc;
2762 	unsigned i;
2763 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2764 				       skb_headlen(skb) - header_len : 0;
2765 	const struct skb_shared_info *shi = skb_shinfo(skb);
2766 
2767 	sg_init_table(&sg, 1);
2768 
2769 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2770 	if (crypto_hash_update(desc, &sg, head_data_len))
2771 		return 1;
2772 
2773 	for (i = 0; i < shi->nr_frags; ++i) {
2774 		const struct skb_frag_struct *f = &shi->frags[i];
2775 		sg_set_page(&sg, f->page, f->size, f->page_offset);
2776 		if (crypto_hash_update(desc, &sg, f->size))
2777 			return 1;
2778 	}
2779 
2780 	return 0;
2781 }
2782 
2783 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2784 
2785 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2786 {
2787 	struct scatterlist sg;
2788 
2789 	sg_init_one(&sg, key->key, key->keylen);
2790 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2791 }
2792 
2793 EXPORT_SYMBOL(tcp_md5_hash_key);
2794 
2795 #endif
2796 
2797 void tcp_done(struct sock *sk)
2798 {
2799 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2800 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2801 
2802 	tcp_set_state(sk, TCP_CLOSE);
2803 	tcp_clear_xmit_timers(sk);
2804 
2805 	sk->sk_shutdown = SHUTDOWN_MASK;
2806 
2807 	if (!sock_flag(sk, SOCK_DEAD))
2808 		sk->sk_state_change(sk);
2809 	else
2810 		inet_csk_destroy_sock(sk);
2811 }
2812 EXPORT_SYMBOL_GPL(tcp_done);
2813 
2814 extern struct tcp_congestion_ops tcp_reno;
2815 
2816 static __initdata unsigned long thash_entries;
2817 static int __init set_thash_entries(char *str)
2818 {
2819 	if (!str)
2820 		return 0;
2821 	thash_entries = simple_strtoul(str, &str, 0);
2822 	return 1;
2823 }
2824 __setup("thash_entries=", set_thash_entries);
2825 
2826 void __init tcp_init(void)
2827 {
2828 	struct sk_buff *skb = NULL;
2829 	unsigned long nr_pages, limit;
2830 	int order, i, max_share;
2831 
2832 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2833 
2834 	percpu_counter_init(&tcp_sockets_allocated, 0);
2835 	percpu_counter_init(&tcp_orphan_count, 0);
2836 	tcp_hashinfo.bind_bucket_cachep =
2837 		kmem_cache_create("tcp_bind_bucket",
2838 				  sizeof(struct inet_bind_bucket), 0,
2839 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2840 
2841 	/* Size and allocate the main established and bind bucket
2842 	 * hash tables.
2843 	 *
2844 	 * The methodology is similar to that of the buffer cache.
2845 	 */
2846 	tcp_hashinfo.ehash =
2847 		alloc_large_system_hash("TCP established",
2848 					sizeof(struct inet_ehash_bucket),
2849 					thash_entries,
2850 					(num_physpages >= 128 * 1024) ?
2851 					13 : 15,
2852 					0,
2853 					&tcp_hashinfo.ehash_size,
2854 					NULL,
2855 					thash_entries ? 0 : 512 * 1024);
2856 	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2857 	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2858 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
2859 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
2860 	}
2861 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2862 		panic("TCP: failed to alloc ehash_locks");
2863 	tcp_hashinfo.bhash =
2864 		alloc_large_system_hash("TCP bind",
2865 					sizeof(struct inet_bind_hashbucket),
2866 					tcp_hashinfo.ehash_size,
2867 					(num_physpages >= 128 * 1024) ?
2868 					13 : 15,
2869 					0,
2870 					&tcp_hashinfo.bhash_size,
2871 					NULL,
2872 					64 * 1024);
2873 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2874 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2875 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2876 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2877 	}
2878 
2879 	/* Try to be a bit smarter and adjust defaults depending
2880 	 * on available memory.
2881 	 */
2882 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2883 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2884 			order++)
2885 		;
2886 	if (order >= 4) {
2887 		tcp_death_row.sysctl_max_tw_buckets = 180000;
2888 		sysctl_tcp_max_orphans = 4096 << (order - 4);
2889 		sysctl_max_syn_backlog = 1024;
2890 	} else if (order < 3) {
2891 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2892 		sysctl_tcp_max_orphans >>= (3 - order);
2893 		sysctl_max_syn_backlog = 128;
2894 	}
2895 
2896 	/* Set the pressure threshold to be a fraction of global memory that
2897 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2898 	 * memory, with a floor of 128 pages.
2899 	 */
2900 	nr_pages = totalram_pages - totalhigh_pages;
2901 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2902 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2903 	limit = max(limit, 128UL);
2904 	sysctl_tcp_mem[0] = limit / 4 * 3;
2905 	sysctl_tcp_mem[1] = limit;
2906 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2907 
2908 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2909 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2910 	max_share = min(4UL*1024*1024, limit);
2911 
2912 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2913 	sysctl_tcp_wmem[1] = 16*1024;
2914 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2915 
2916 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2917 	sysctl_tcp_rmem[1] = 87380;
2918 	sysctl_tcp_rmem[2] = max(87380, max_share);
2919 
2920 	printk(KERN_INFO "TCP: Hash tables configured "
2921 	       "(established %d bind %d)\n",
2922 	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2923 
2924 	tcp_register_congestion_control(&tcp_reno);
2925 }
2926 
2927 EXPORT_SYMBOL(tcp_close);
2928 EXPORT_SYMBOL(tcp_disconnect);
2929 EXPORT_SYMBOL(tcp_getsockopt);
2930 EXPORT_SYMBOL(tcp_ioctl);
2931 EXPORT_SYMBOL(tcp_poll);
2932 EXPORT_SYMBOL(tcp_read_sock);
2933 EXPORT_SYMBOL(tcp_recvmsg);
2934 EXPORT_SYMBOL(tcp_sendmsg);
2935 EXPORT_SYMBOL(tcp_splice_read);
2936 EXPORT_SYMBOL(tcp_sendpage);
2937 EXPORT_SYMBOL(tcp_setsockopt);
2938 EXPORT_SYMBOL(tcp_shutdown);
2939