xref: /openbmc/linux/net/ipv4/tcp.c (revision af958a38)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 int sysctl_tcp_autocorking __read_mostly = 1;
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296 
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 
301 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327 
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	if (!tcp_memory_pressure) {
331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 		tcp_memory_pressure = 1;
333 	}
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 	u8 res = 0;
341 
342 	if (seconds > 0) {
343 		int period = timeout;
344 
345 		res = 1;
346 		while (seconds > period && res < 255) {
347 			res++;
348 			timeout <<= 1;
349 			if (timeout > rto_max)
350 				timeout = rto_max;
351 			period += timeout;
352 		}
353 	}
354 	return res;
355 }
356 
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 	int period = 0;
361 
362 	if (retrans > 0) {
363 		period = timeout;
364 		while (--retrans) {
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return period;
372 }
373 
374 /* Address-family independent initialization for a tcp_sock.
375  *
376  * NOTE: A lot of things set to zero explicitly by call to
377  *       sk_alloc() so need not be done here.
378  */
379 void tcp_init_sock(struct sock *sk)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	__skb_queue_head_init(&tp->out_of_order_queue);
385 	tcp_init_xmit_timers(sk);
386 	tcp_prequeue_init(tp);
387 	INIT_LIST_HEAD(&tp->tsq_node);
388 
389 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* See draft-stevens-tcpca-spec-01 for discussion of the
400 	 * initialization of these values.
401 	 */
402 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 	tp->snd_cwnd_clamp = ~0;
404 	tp->mss_cache = TCP_MSS_DEFAULT;
405 
406 	tp->reordering = sysctl_tcp_reordering;
407 	tcp_enable_early_retrans(tp);
408 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
409 
410 	tp->tsoffset = 0;
411 
412 	sk->sk_state = TCP_CLOSE;
413 
414 	sk->sk_write_space = sk_stream_write_space;
415 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
416 
417 	icsk->icsk_sync_mss = tcp_sync_mss;
418 
419 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
420 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
421 
422 	local_bh_disable();
423 	sock_update_memcg(sk);
424 	sk_sockets_allocated_inc(sk);
425 	local_bh_enable();
426 }
427 EXPORT_SYMBOL(tcp_init_sock);
428 
429 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
430 {
431 	if (sk->sk_tsflags) {
432 		struct skb_shared_info *shinfo = skb_shinfo(skb);
433 
434 		sock_tx_timestamp(sk, &shinfo->tx_flags);
435 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
436 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
437 	}
438 }
439 
440 /*
441  *	Wait for a TCP event.
442  *
443  *	Note that we don't need to lock the socket, as the upper poll layers
444  *	take care of normal races (between the test and the event) and we don't
445  *	go look at any of the socket buffers directly.
446  */
447 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
448 {
449 	unsigned int mask;
450 	struct sock *sk = sock->sk;
451 	const struct tcp_sock *tp = tcp_sk(sk);
452 
453 	sock_rps_record_flow(sk);
454 
455 	sock_poll_wait(file, sk_sleep(sk), wait);
456 	if (sk->sk_state == TCP_LISTEN)
457 		return inet_csk_listen_poll(sk);
458 
459 	/* Socket is not locked. We are protected from async events
460 	 * by poll logic and correct handling of state changes
461 	 * made by other threads is impossible in any case.
462 	 */
463 
464 	mask = 0;
465 
466 	/*
467 	 * POLLHUP is certainly not done right. But poll() doesn't
468 	 * have a notion of HUP in just one direction, and for a
469 	 * socket the read side is more interesting.
470 	 *
471 	 * Some poll() documentation says that POLLHUP is incompatible
472 	 * with the POLLOUT/POLLWR flags, so somebody should check this
473 	 * all. But careful, it tends to be safer to return too many
474 	 * bits than too few, and you can easily break real applications
475 	 * if you don't tell them that something has hung up!
476 	 *
477 	 * Check-me.
478 	 *
479 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
480 	 * our fs/select.c). It means that after we received EOF,
481 	 * poll always returns immediately, making impossible poll() on write()
482 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
483 	 * if and only if shutdown has been made in both directions.
484 	 * Actually, it is interesting to look how Solaris and DUX
485 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
486 	 * then we could set it on SND_SHUTDOWN. BTW examples given
487 	 * in Stevens' books assume exactly this behaviour, it explains
488 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
489 	 *
490 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
491 	 * blocking on fresh not-connected or disconnected socket. --ANK
492 	 */
493 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
494 		mask |= POLLHUP;
495 	if (sk->sk_shutdown & RCV_SHUTDOWN)
496 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
497 
498 	/* Connected or passive Fast Open socket? */
499 	if (sk->sk_state != TCP_SYN_SENT &&
500 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
501 		int target = sock_rcvlowat(sk, 0, INT_MAX);
502 
503 		if (tp->urg_seq == tp->copied_seq &&
504 		    !sock_flag(sk, SOCK_URGINLINE) &&
505 		    tp->urg_data)
506 			target++;
507 
508 		/* Potential race condition. If read of tp below will
509 		 * escape above sk->sk_state, we can be illegally awaken
510 		 * in SYN_* states. */
511 		if (tp->rcv_nxt - tp->copied_seq >= target)
512 			mask |= POLLIN | POLLRDNORM;
513 
514 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
515 			if (sk_stream_is_writeable(sk)) {
516 				mask |= POLLOUT | POLLWRNORM;
517 			} else {  /* send SIGIO later */
518 				set_bit(SOCK_ASYNC_NOSPACE,
519 					&sk->sk_socket->flags);
520 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521 
522 				/* Race breaker. If space is freed after
523 				 * wspace test but before the flags are set,
524 				 * IO signal will be lost.
525 				 */
526 				if (sk_stream_is_writeable(sk))
527 					mask |= POLLOUT | POLLWRNORM;
528 			}
529 		} else
530 			mask |= POLLOUT | POLLWRNORM;
531 
532 		if (tp->urg_data & TCP_URG_VALID)
533 			mask |= POLLPRI;
534 	}
535 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
536 	smp_rmb();
537 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
538 		mask |= POLLERR;
539 
540 	return mask;
541 }
542 EXPORT_SYMBOL(tcp_poll);
543 
544 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
545 {
546 	struct tcp_sock *tp = tcp_sk(sk);
547 	int answ;
548 	bool slow;
549 
550 	switch (cmd) {
551 	case SIOCINQ:
552 		if (sk->sk_state == TCP_LISTEN)
553 			return -EINVAL;
554 
555 		slow = lock_sock_fast(sk);
556 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
557 			answ = 0;
558 		else if (sock_flag(sk, SOCK_URGINLINE) ||
559 			 !tp->urg_data ||
560 			 before(tp->urg_seq, tp->copied_seq) ||
561 			 !before(tp->urg_seq, tp->rcv_nxt)) {
562 
563 			answ = tp->rcv_nxt - tp->copied_seq;
564 
565 			/* Subtract 1, if FIN was received */
566 			if (answ && sock_flag(sk, SOCK_DONE))
567 				answ--;
568 		} else
569 			answ = tp->urg_seq - tp->copied_seq;
570 		unlock_sock_fast(sk, slow);
571 		break;
572 	case SIOCATMARK:
573 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
574 		break;
575 	case SIOCOUTQ:
576 		if (sk->sk_state == TCP_LISTEN)
577 			return -EINVAL;
578 
579 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 			answ = 0;
581 		else
582 			answ = tp->write_seq - tp->snd_una;
583 		break;
584 	case SIOCOUTQNSD:
585 		if (sk->sk_state == TCP_LISTEN)
586 			return -EINVAL;
587 
588 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
589 			answ = 0;
590 		else
591 			answ = tp->write_seq - tp->snd_nxt;
592 		break;
593 	default:
594 		return -ENOIOCTLCMD;
595 	}
596 
597 	return put_user(answ, (int __user *)arg);
598 }
599 EXPORT_SYMBOL(tcp_ioctl);
600 
601 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
602 {
603 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
604 	tp->pushed_seq = tp->write_seq;
605 }
606 
607 static inline bool forced_push(const struct tcp_sock *tp)
608 {
609 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
610 }
611 
612 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
613 {
614 	struct tcp_sock *tp = tcp_sk(sk);
615 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
616 
617 	skb->csum    = 0;
618 	tcb->seq     = tcb->end_seq = tp->write_seq;
619 	tcb->tcp_flags = TCPHDR_ACK;
620 	tcb->sacked  = 0;
621 	skb_header_release(skb);
622 	tcp_add_write_queue_tail(sk, skb);
623 	sk->sk_wmem_queued += skb->truesize;
624 	sk_mem_charge(sk, skb->truesize);
625 	if (tp->nonagle & TCP_NAGLE_PUSH)
626 		tp->nonagle &= ~TCP_NAGLE_PUSH;
627 }
628 
629 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
630 {
631 	if (flags & MSG_OOB)
632 		tp->snd_up = tp->write_seq;
633 }
634 
635 /* If a not yet filled skb is pushed, do not send it if
636  * we have data packets in Qdisc or NIC queues :
637  * Because TX completion will happen shortly, it gives a chance
638  * to coalesce future sendmsg() payload into this skb, without
639  * need for a timer, and with no latency trade off.
640  * As packets containing data payload have a bigger truesize
641  * than pure acks (dataless) packets, the last checks prevent
642  * autocorking if we only have an ACK in Qdisc/NIC queues,
643  * or if TX completion was delayed after we processed ACK packet.
644  */
645 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
646 				int size_goal)
647 {
648 	return skb->len < size_goal &&
649 	       sysctl_tcp_autocorking &&
650 	       skb != tcp_write_queue_head(sk) &&
651 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
652 }
653 
654 static void tcp_push(struct sock *sk, int flags, int mss_now,
655 		     int nonagle, int size_goal)
656 {
657 	struct tcp_sock *tp = tcp_sk(sk);
658 	struct sk_buff *skb;
659 
660 	if (!tcp_send_head(sk))
661 		return;
662 
663 	skb = tcp_write_queue_tail(sk);
664 	if (!(flags & MSG_MORE) || forced_push(tp))
665 		tcp_mark_push(tp, skb);
666 
667 	tcp_mark_urg(tp, flags);
668 
669 	if (tcp_should_autocork(sk, skb, size_goal)) {
670 
671 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
672 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
673 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
674 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
675 		}
676 		/* It is possible TX completion already happened
677 		 * before we set TSQ_THROTTLED.
678 		 */
679 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
680 			return;
681 	}
682 
683 	if (flags & MSG_MORE)
684 		nonagle = TCP_NAGLE_CORK;
685 
686 	__tcp_push_pending_frames(sk, mss_now, nonagle);
687 }
688 
689 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
690 				unsigned int offset, size_t len)
691 {
692 	struct tcp_splice_state *tss = rd_desc->arg.data;
693 	int ret;
694 
695 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
696 			      tss->flags);
697 	if (ret > 0)
698 		rd_desc->count -= ret;
699 	return ret;
700 }
701 
702 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
703 {
704 	/* Store TCP splice context information in read_descriptor_t. */
705 	read_descriptor_t rd_desc = {
706 		.arg.data = tss,
707 		.count	  = tss->len,
708 	};
709 
710 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
711 }
712 
713 /**
714  *  tcp_splice_read - splice data from TCP socket to a pipe
715  * @sock:	socket to splice from
716  * @ppos:	position (not valid)
717  * @pipe:	pipe to splice to
718  * @len:	number of bytes to splice
719  * @flags:	splice modifier flags
720  *
721  * Description:
722  *    Will read pages from given socket and fill them into a pipe.
723  *
724  **/
725 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
726 			struct pipe_inode_info *pipe, size_t len,
727 			unsigned int flags)
728 {
729 	struct sock *sk = sock->sk;
730 	struct tcp_splice_state tss = {
731 		.pipe = pipe,
732 		.len = len,
733 		.flags = flags,
734 	};
735 	long timeo;
736 	ssize_t spliced;
737 	int ret;
738 
739 	sock_rps_record_flow(sk);
740 	/*
741 	 * We can't seek on a socket input
742 	 */
743 	if (unlikely(*ppos))
744 		return -ESPIPE;
745 
746 	ret = spliced = 0;
747 
748 	lock_sock(sk);
749 
750 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
751 	while (tss.len) {
752 		ret = __tcp_splice_read(sk, &tss);
753 		if (ret < 0)
754 			break;
755 		else if (!ret) {
756 			if (spliced)
757 				break;
758 			if (sock_flag(sk, SOCK_DONE))
759 				break;
760 			if (sk->sk_err) {
761 				ret = sock_error(sk);
762 				break;
763 			}
764 			if (sk->sk_shutdown & RCV_SHUTDOWN)
765 				break;
766 			if (sk->sk_state == TCP_CLOSE) {
767 				/*
768 				 * This occurs when user tries to read
769 				 * from never connected socket.
770 				 */
771 				if (!sock_flag(sk, SOCK_DONE))
772 					ret = -ENOTCONN;
773 				break;
774 			}
775 			if (!timeo) {
776 				ret = -EAGAIN;
777 				break;
778 			}
779 			sk_wait_data(sk, &timeo);
780 			if (signal_pending(current)) {
781 				ret = sock_intr_errno(timeo);
782 				break;
783 			}
784 			continue;
785 		}
786 		tss.len -= ret;
787 		spliced += ret;
788 
789 		if (!timeo)
790 			break;
791 		release_sock(sk);
792 		lock_sock(sk);
793 
794 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
795 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
796 		    signal_pending(current))
797 			break;
798 	}
799 
800 	release_sock(sk);
801 
802 	if (spliced)
803 		return spliced;
804 
805 	return ret;
806 }
807 EXPORT_SYMBOL(tcp_splice_read);
808 
809 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
810 {
811 	struct sk_buff *skb;
812 
813 	/* The TCP header must be at least 32-bit aligned.  */
814 	size = ALIGN(size, 4);
815 
816 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
817 	if (skb) {
818 		if (sk_wmem_schedule(sk, skb->truesize)) {
819 			skb_reserve(skb, sk->sk_prot->max_header);
820 			/*
821 			 * Make sure that we have exactly size bytes
822 			 * available to the caller, no more, no less.
823 			 */
824 			skb->reserved_tailroom = skb->end - skb->tail - size;
825 			return skb;
826 		}
827 		__kfree_skb(skb);
828 	} else {
829 		sk->sk_prot->enter_memory_pressure(sk);
830 		sk_stream_moderate_sndbuf(sk);
831 	}
832 	return NULL;
833 }
834 
835 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
836 				       int large_allowed)
837 {
838 	struct tcp_sock *tp = tcp_sk(sk);
839 	u32 xmit_size_goal, old_size_goal;
840 
841 	xmit_size_goal = mss_now;
842 
843 	if (large_allowed && sk_can_gso(sk)) {
844 		u32 gso_size, hlen;
845 
846 		/* Maybe we should/could use sk->sk_prot->max_header here ? */
847 		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
848 		       inet_csk(sk)->icsk_ext_hdr_len +
849 		       tp->tcp_header_len;
850 
851 		/* Goal is to send at least one packet per ms,
852 		 * not one big TSO packet every 100 ms.
853 		 * This preserves ACK clocking and is consistent
854 		 * with tcp_tso_should_defer() heuristic.
855 		 */
856 		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
857 		gso_size = max_t(u32, gso_size,
858 				 sysctl_tcp_min_tso_segs * mss_now);
859 
860 		xmit_size_goal = min_t(u32, gso_size,
861 				       sk->sk_gso_max_size - 1 - hlen);
862 
863 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
864 
865 		/* We try hard to avoid divides here */
866 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
867 
868 		if (likely(old_size_goal <= xmit_size_goal &&
869 			   old_size_goal + mss_now > xmit_size_goal)) {
870 			xmit_size_goal = old_size_goal;
871 		} else {
872 			tp->xmit_size_goal_segs =
873 				min_t(u16, xmit_size_goal / mss_now,
874 				      sk->sk_gso_max_segs);
875 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
876 		}
877 	}
878 
879 	return max(xmit_size_goal, mss_now);
880 }
881 
882 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
883 {
884 	int mss_now;
885 
886 	mss_now = tcp_current_mss(sk);
887 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
888 
889 	return mss_now;
890 }
891 
892 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
893 				size_t size, int flags)
894 {
895 	struct tcp_sock *tp = tcp_sk(sk);
896 	int mss_now, size_goal;
897 	int err;
898 	ssize_t copied;
899 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
900 
901 	/* Wait for a connection to finish. One exception is TCP Fast Open
902 	 * (passive side) where data is allowed to be sent before a connection
903 	 * is fully established.
904 	 */
905 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
906 	    !tcp_passive_fastopen(sk)) {
907 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
908 			goto out_err;
909 	}
910 
911 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
912 
913 	mss_now = tcp_send_mss(sk, &size_goal, flags);
914 	copied = 0;
915 
916 	err = -EPIPE;
917 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
918 		goto out_err;
919 
920 	while (size > 0) {
921 		struct sk_buff *skb = tcp_write_queue_tail(sk);
922 		int copy, i;
923 		bool can_coalesce;
924 
925 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
926 new_segment:
927 			if (!sk_stream_memory_free(sk))
928 				goto wait_for_sndbuf;
929 
930 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
931 			if (!skb)
932 				goto wait_for_memory;
933 
934 			skb_entail(sk, skb);
935 			copy = size_goal;
936 		}
937 
938 		if (copy > size)
939 			copy = size;
940 
941 		i = skb_shinfo(skb)->nr_frags;
942 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
943 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
944 			tcp_mark_push(tp, skb);
945 			goto new_segment;
946 		}
947 		if (!sk_wmem_schedule(sk, copy))
948 			goto wait_for_memory;
949 
950 		if (can_coalesce) {
951 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
952 		} else {
953 			get_page(page);
954 			skb_fill_page_desc(skb, i, page, offset, copy);
955 		}
956 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
957 
958 		skb->len += copy;
959 		skb->data_len += copy;
960 		skb->truesize += copy;
961 		sk->sk_wmem_queued += copy;
962 		sk_mem_charge(sk, copy);
963 		skb->ip_summed = CHECKSUM_PARTIAL;
964 		tp->write_seq += copy;
965 		TCP_SKB_CB(skb)->end_seq += copy;
966 		skb_shinfo(skb)->gso_segs = 0;
967 
968 		if (!copied)
969 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
970 
971 		copied += copy;
972 		offset += copy;
973 		if (!(size -= copy)) {
974 			tcp_tx_timestamp(sk, skb);
975 			goto out;
976 		}
977 
978 		if (skb->len < size_goal || (flags & MSG_OOB))
979 			continue;
980 
981 		if (forced_push(tp)) {
982 			tcp_mark_push(tp, skb);
983 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
984 		} else if (skb == tcp_send_head(sk))
985 			tcp_push_one(sk, mss_now);
986 		continue;
987 
988 wait_for_sndbuf:
989 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
990 wait_for_memory:
991 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
992 			 TCP_NAGLE_PUSH, size_goal);
993 
994 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
995 			goto do_error;
996 
997 		mss_now = tcp_send_mss(sk, &size_goal, flags);
998 	}
999 
1000 out:
1001 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1002 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1003 	return copied;
1004 
1005 do_error:
1006 	if (copied)
1007 		goto out;
1008 out_err:
1009 	return sk_stream_error(sk, flags, err);
1010 }
1011 
1012 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1013 		 size_t size, int flags)
1014 {
1015 	ssize_t res;
1016 
1017 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1018 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1019 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1020 					flags);
1021 
1022 	lock_sock(sk);
1023 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1024 	release_sock(sk);
1025 	return res;
1026 }
1027 EXPORT_SYMBOL(tcp_sendpage);
1028 
1029 static inline int select_size(const struct sock *sk, bool sg)
1030 {
1031 	const struct tcp_sock *tp = tcp_sk(sk);
1032 	int tmp = tp->mss_cache;
1033 
1034 	if (sg) {
1035 		if (sk_can_gso(sk)) {
1036 			/* Small frames wont use a full page:
1037 			 * Payload will immediately follow tcp header.
1038 			 */
1039 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1040 		} else {
1041 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1042 
1043 			if (tmp >= pgbreak &&
1044 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1045 				tmp = pgbreak;
1046 		}
1047 	}
1048 
1049 	return tmp;
1050 }
1051 
1052 void tcp_free_fastopen_req(struct tcp_sock *tp)
1053 {
1054 	if (tp->fastopen_req != NULL) {
1055 		kfree(tp->fastopen_req);
1056 		tp->fastopen_req = NULL;
1057 	}
1058 }
1059 
1060 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1061 				int *copied, size_t size)
1062 {
1063 	struct tcp_sock *tp = tcp_sk(sk);
1064 	int err, flags;
1065 
1066 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1067 		return -EOPNOTSUPP;
1068 	if (tp->fastopen_req != NULL)
1069 		return -EALREADY; /* Another Fast Open is in progress */
1070 
1071 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1072 				   sk->sk_allocation);
1073 	if (unlikely(tp->fastopen_req == NULL))
1074 		return -ENOBUFS;
1075 	tp->fastopen_req->data = msg;
1076 	tp->fastopen_req->size = size;
1077 
1078 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1079 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1080 				    msg->msg_namelen, flags);
1081 	*copied = tp->fastopen_req->copied;
1082 	tcp_free_fastopen_req(tp);
1083 	return err;
1084 }
1085 
1086 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1087 		size_t size)
1088 {
1089 	struct iovec *iov;
1090 	struct tcp_sock *tp = tcp_sk(sk);
1091 	struct sk_buff *skb;
1092 	int iovlen, flags, err, copied = 0;
1093 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1094 	bool sg;
1095 	long timeo;
1096 
1097 	lock_sock(sk);
1098 
1099 	flags = msg->msg_flags;
1100 	if (flags & MSG_FASTOPEN) {
1101 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1102 		if (err == -EINPROGRESS && copied_syn > 0)
1103 			goto out;
1104 		else if (err)
1105 			goto out_err;
1106 		offset = copied_syn;
1107 	}
1108 
1109 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1110 
1111 	/* Wait for a connection to finish. One exception is TCP Fast Open
1112 	 * (passive side) where data is allowed to be sent before a connection
1113 	 * is fully established.
1114 	 */
1115 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1116 	    !tcp_passive_fastopen(sk)) {
1117 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1118 			goto do_error;
1119 	}
1120 
1121 	if (unlikely(tp->repair)) {
1122 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1123 			copied = tcp_send_rcvq(sk, msg, size);
1124 			goto out_nopush;
1125 		}
1126 
1127 		err = -EINVAL;
1128 		if (tp->repair_queue == TCP_NO_QUEUE)
1129 			goto out_err;
1130 
1131 		/* 'common' sending to sendq */
1132 	}
1133 
1134 	/* This should be in poll */
1135 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1136 
1137 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1138 
1139 	/* Ok commence sending. */
1140 	iovlen = msg->msg_iovlen;
1141 	iov = msg->msg_iov;
1142 	copied = 0;
1143 
1144 	err = -EPIPE;
1145 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1146 		goto out_err;
1147 
1148 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1149 
1150 	while (--iovlen >= 0) {
1151 		size_t seglen = iov->iov_len;
1152 		unsigned char __user *from = iov->iov_base;
1153 
1154 		iov++;
1155 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1156 			if (offset >= seglen) {
1157 				offset -= seglen;
1158 				continue;
1159 			}
1160 			seglen -= offset;
1161 			from += offset;
1162 			offset = 0;
1163 		}
1164 
1165 		while (seglen > 0) {
1166 			int copy = 0;
1167 			int max = size_goal;
1168 
1169 			skb = tcp_write_queue_tail(sk);
1170 			if (tcp_send_head(sk)) {
1171 				if (skb->ip_summed == CHECKSUM_NONE)
1172 					max = mss_now;
1173 				copy = max - skb->len;
1174 			}
1175 
1176 			if (copy <= 0) {
1177 new_segment:
1178 				/* Allocate new segment. If the interface is SG,
1179 				 * allocate skb fitting to single page.
1180 				 */
1181 				if (!sk_stream_memory_free(sk))
1182 					goto wait_for_sndbuf;
1183 
1184 				skb = sk_stream_alloc_skb(sk,
1185 							  select_size(sk, sg),
1186 							  sk->sk_allocation);
1187 				if (!skb)
1188 					goto wait_for_memory;
1189 
1190 				/*
1191 				 * Check whether we can use HW checksum.
1192 				 */
1193 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1194 					skb->ip_summed = CHECKSUM_PARTIAL;
1195 
1196 				skb_entail(sk, skb);
1197 				copy = size_goal;
1198 				max = size_goal;
1199 
1200 				/* All packets are restored as if they have
1201 				 * already been sent. skb_mstamp isn't set to
1202 				 * avoid wrong rtt estimation.
1203 				 */
1204 				if (tp->repair)
1205 					TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1206 			}
1207 
1208 			/* Try to append data to the end of skb. */
1209 			if (copy > seglen)
1210 				copy = seglen;
1211 
1212 			/* Where to copy to? */
1213 			if (skb_availroom(skb) > 0) {
1214 				/* We have some space in skb head. Superb! */
1215 				copy = min_t(int, copy, skb_availroom(skb));
1216 				err = skb_add_data_nocache(sk, skb, from, copy);
1217 				if (err)
1218 					goto do_fault;
1219 			} else {
1220 				bool merge = true;
1221 				int i = skb_shinfo(skb)->nr_frags;
1222 				struct page_frag *pfrag = sk_page_frag(sk);
1223 
1224 				if (!sk_page_frag_refill(sk, pfrag))
1225 					goto wait_for_memory;
1226 
1227 				if (!skb_can_coalesce(skb, i, pfrag->page,
1228 						      pfrag->offset)) {
1229 					if (i == MAX_SKB_FRAGS || !sg) {
1230 						tcp_mark_push(tp, skb);
1231 						goto new_segment;
1232 					}
1233 					merge = false;
1234 				}
1235 
1236 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1237 
1238 				if (!sk_wmem_schedule(sk, copy))
1239 					goto wait_for_memory;
1240 
1241 				err = skb_copy_to_page_nocache(sk, from, skb,
1242 							       pfrag->page,
1243 							       pfrag->offset,
1244 							       copy);
1245 				if (err)
1246 					goto do_error;
1247 
1248 				/* Update the skb. */
1249 				if (merge) {
1250 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1251 				} else {
1252 					skb_fill_page_desc(skb, i, pfrag->page,
1253 							   pfrag->offset, copy);
1254 					get_page(pfrag->page);
1255 				}
1256 				pfrag->offset += copy;
1257 			}
1258 
1259 			if (!copied)
1260 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1261 
1262 			tp->write_seq += copy;
1263 			TCP_SKB_CB(skb)->end_seq += copy;
1264 			skb_shinfo(skb)->gso_segs = 0;
1265 
1266 			from += copy;
1267 			copied += copy;
1268 			if ((seglen -= copy) == 0 && iovlen == 0) {
1269 				tcp_tx_timestamp(sk, skb);
1270 				goto out;
1271 			}
1272 
1273 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1274 				continue;
1275 
1276 			if (forced_push(tp)) {
1277 				tcp_mark_push(tp, skb);
1278 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1279 			} else if (skb == tcp_send_head(sk))
1280 				tcp_push_one(sk, mss_now);
1281 			continue;
1282 
1283 wait_for_sndbuf:
1284 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1285 wait_for_memory:
1286 			if (copied)
1287 				tcp_push(sk, flags & ~MSG_MORE, mss_now,
1288 					 TCP_NAGLE_PUSH, size_goal);
1289 
1290 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1291 				goto do_error;
1292 
1293 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1294 		}
1295 	}
1296 
1297 out:
1298 	if (copied)
1299 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1300 out_nopush:
1301 	release_sock(sk);
1302 	return copied + copied_syn;
1303 
1304 do_fault:
1305 	if (!skb->len) {
1306 		tcp_unlink_write_queue(skb, sk);
1307 		/* It is the one place in all of TCP, except connection
1308 		 * reset, where we can be unlinking the send_head.
1309 		 */
1310 		tcp_check_send_head(sk, skb);
1311 		sk_wmem_free_skb(sk, skb);
1312 	}
1313 
1314 do_error:
1315 	if (copied + copied_syn)
1316 		goto out;
1317 out_err:
1318 	err = sk_stream_error(sk, flags, err);
1319 	release_sock(sk);
1320 	return err;
1321 }
1322 EXPORT_SYMBOL(tcp_sendmsg);
1323 
1324 /*
1325  *	Handle reading urgent data. BSD has very simple semantics for
1326  *	this, no blocking and very strange errors 8)
1327  */
1328 
1329 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1330 {
1331 	struct tcp_sock *tp = tcp_sk(sk);
1332 
1333 	/* No URG data to read. */
1334 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1335 	    tp->urg_data == TCP_URG_READ)
1336 		return -EINVAL;	/* Yes this is right ! */
1337 
1338 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1339 		return -ENOTCONN;
1340 
1341 	if (tp->urg_data & TCP_URG_VALID) {
1342 		int err = 0;
1343 		char c = tp->urg_data;
1344 
1345 		if (!(flags & MSG_PEEK))
1346 			tp->urg_data = TCP_URG_READ;
1347 
1348 		/* Read urgent data. */
1349 		msg->msg_flags |= MSG_OOB;
1350 
1351 		if (len > 0) {
1352 			if (!(flags & MSG_TRUNC))
1353 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1354 			len = 1;
1355 		} else
1356 			msg->msg_flags |= MSG_TRUNC;
1357 
1358 		return err ? -EFAULT : len;
1359 	}
1360 
1361 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1362 		return 0;
1363 
1364 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1365 	 * the available implementations agree in this case:
1366 	 * this call should never block, independent of the
1367 	 * blocking state of the socket.
1368 	 * Mike <pall@rz.uni-karlsruhe.de>
1369 	 */
1370 	return -EAGAIN;
1371 }
1372 
1373 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1374 {
1375 	struct sk_buff *skb;
1376 	int copied = 0, err = 0;
1377 
1378 	/* XXX -- need to support SO_PEEK_OFF */
1379 
1380 	skb_queue_walk(&sk->sk_write_queue, skb) {
1381 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1382 		if (err)
1383 			break;
1384 
1385 		copied += skb->len;
1386 	}
1387 
1388 	return err ?: copied;
1389 }
1390 
1391 /* Clean up the receive buffer for full frames taken by the user,
1392  * then send an ACK if necessary.  COPIED is the number of bytes
1393  * tcp_recvmsg has given to the user so far, it speeds up the
1394  * calculation of whether or not we must ACK for the sake of
1395  * a window update.
1396  */
1397 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1398 {
1399 	struct tcp_sock *tp = tcp_sk(sk);
1400 	bool time_to_ack = false;
1401 
1402 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1403 
1404 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1405 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1406 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1407 
1408 	if (inet_csk_ack_scheduled(sk)) {
1409 		const struct inet_connection_sock *icsk = inet_csk(sk);
1410 		   /* Delayed ACKs frequently hit locked sockets during bulk
1411 		    * receive. */
1412 		if (icsk->icsk_ack.blocked ||
1413 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1414 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1415 		    /*
1416 		     * If this read emptied read buffer, we send ACK, if
1417 		     * connection is not bidirectional, user drained
1418 		     * receive buffer and there was a small segment
1419 		     * in queue.
1420 		     */
1421 		    (copied > 0 &&
1422 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1423 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1424 		       !icsk->icsk_ack.pingpong)) &&
1425 		      !atomic_read(&sk->sk_rmem_alloc)))
1426 			time_to_ack = true;
1427 	}
1428 
1429 	/* We send an ACK if we can now advertise a non-zero window
1430 	 * which has been raised "significantly".
1431 	 *
1432 	 * Even if window raised up to infinity, do not send window open ACK
1433 	 * in states, where we will not receive more. It is useless.
1434 	 */
1435 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1436 		__u32 rcv_window_now = tcp_receive_window(tp);
1437 
1438 		/* Optimize, __tcp_select_window() is not cheap. */
1439 		if (2*rcv_window_now <= tp->window_clamp) {
1440 			__u32 new_window = __tcp_select_window(sk);
1441 
1442 			/* Send ACK now, if this read freed lots of space
1443 			 * in our buffer. Certainly, new_window is new window.
1444 			 * We can advertise it now, if it is not less than current one.
1445 			 * "Lots" means "at least twice" here.
1446 			 */
1447 			if (new_window && new_window >= 2 * rcv_window_now)
1448 				time_to_ack = true;
1449 		}
1450 	}
1451 	if (time_to_ack)
1452 		tcp_send_ack(sk);
1453 }
1454 
1455 static void tcp_prequeue_process(struct sock *sk)
1456 {
1457 	struct sk_buff *skb;
1458 	struct tcp_sock *tp = tcp_sk(sk);
1459 
1460 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1461 
1462 	/* RX process wants to run with disabled BHs, though it is not
1463 	 * necessary */
1464 	local_bh_disable();
1465 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1466 		sk_backlog_rcv(sk, skb);
1467 	local_bh_enable();
1468 
1469 	/* Clear memory counter. */
1470 	tp->ucopy.memory = 0;
1471 }
1472 
1473 #ifdef CONFIG_NET_DMA
1474 static void tcp_service_net_dma(struct sock *sk, bool wait)
1475 {
1476 	dma_cookie_t done, used;
1477 	dma_cookie_t last_issued;
1478 	struct tcp_sock *tp = tcp_sk(sk);
1479 
1480 	if (!tp->ucopy.dma_chan)
1481 		return;
1482 
1483 	last_issued = tp->ucopy.dma_cookie;
1484 	dma_async_issue_pending(tp->ucopy.dma_chan);
1485 
1486 	do {
1487 		if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1488 					      last_issued, &done,
1489 					      &used) == DMA_COMPLETE) {
1490 			/* Safe to free early-copied skbs now */
1491 			__skb_queue_purge(&sk->sk_async_wait_queue);
1492 			break;
1493 		} else {
1494 			struct sk_buff *skb;
1495 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1496 			       (dma_async_is_complete(skb->dma_cookie, done,
1497 						      used) == DMA_COMPLETE)) {
1498 				__skb_dequeue(&sk->sk_async_wait_queue);
1499 				kfree_skb(skb);
1500 			}
1501 		}
1502 	} while (wait);
1503 }
1504 #endif
1505 
1506 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1507 {
1508 	struct sk_buff *skb;
1509 	u32 offset;
1510 
1511 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1512 		offset = seq - TCP_SKB_CB(skb)->seq;
1513 		if (tcp_hdr(skb)->syn)
1514 			offset--;
1515 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1516 			*off = offset;
1517 			return skb;
1518 		}
1519 		/* This looks weird, but this can happen if TCP collapsing
1520 		 * splitted a fat GRO packet, while we released socket lock
1521 		 * in skb_splice_bits()
1522 		 */
1523 		sk_eat_skb(sk, skb, false);
1524 	}
1525 	return NULL;
1526 }
1527 
1528 /*
1529  * This routine provides an alternative to tcp_recvmsg() for routines
1530  * that would like to handle copying from skbuffs directly in 'sendfile'
1531  * fashion.
1532  * Note:
1533  *	- It is assumed that the socket was locked by the caller.
1534  *	- The routine does not block.
1535  *	- At present, there is no support for reading OOB data
1536  *	  or for 'peeking' the socket using this routine
1537  *	  (although both would be easy to implement).
1538  */
1539 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1540 		  sk_read_actor_t recv_actor)
1541 {
1542 	struct sk_buff *skb;
1543 	struct tcp_sock *tp = tcp_sk(sk);
1544 	u32 seq = tp->copied_seq;
1545 	u32 offset;
1546 	int copied = 0;
1547 
1548 	if (sk->sk_state == TCP_LISTEN)
1549 		return -ENOTCONN;
1550 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1551 		if (offset < skb->len) {
1552 			int used;
1553 			size_t len;
1554 
1555 			len = skb->len - offset;
1556 			/* Stop reading if we hit a patch of urgent data */
1557 			if (tp->urg_data) {
1558 				u32 urg_offset = tp->urg_seq - seq;
1559 				if (urg_offset < len)
1560 					len = urg_offset;
1561 				if (!len)
1562 					break;
1563 			}
1564 			used = recv_actor(desc, skb, offset, len);
1565 			if (used <= 0) {
1566 				if (!copied)
1567 					copied = used;
1568 				break;
1569 			} else if (used <= len) {
1570 				seq += used;
1571 				copied += used;
1572 				offset += used;
1573 			}
1574 			/* If recv_actor drops the lock (e.g. TCP splice
1575 			 * receive) the skb pointer might be invalid when
1576 			 * getting here: tcp_collapse might have deleted it
1577 			 * while aggregating skbs from the socket queue.
1578 			 */
1579 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1580 			if (!skb)
1581 				break;
1582 			/* TCP coalescing might have appended data to the skb.
1583 			 * Try to splice more frags
1584 			 */
1585 			if (offset + 1 != skb->len)
1586 				continue;
1587 		}
1588 		if (tcp_hdr(skb)->fin) {
1589 			sk_eat_skb(sk, skb, false);
1590 			++seq;
1591 			break;
1592 		}
1593 		sk_eat_skb(sk, skb, false);
1594 		if (!desc->count)
1595 			break;
1596 		tp->copied_seq = seq;
1597 	}
1598 	tp->copied_seq = seq;
1599 
1600 	tcp_rcv_space_adjust(sk);
1601 
1602 	/* Clean up data we have read: This will do ACK frames. */
1603 	if (copied > 0) {
1604 		tcp_recv_skb(sk, seq, &offset);
1605 		tcp_cleanup_rbuf(sk, copied);
1606 	}
1607 	return copied;
1608 }
1609 EXPORT_SYMBOL(tcp_read_sock);
1610 
1611 /*
1612  *	This routine copies from a sock struct into the user buffer.
1613  *
1614  *	Technical note: in 2.3 we work on _locked_ socket, so that
1615  *	tricks with *seq access order and skb->users are not required.
1616  *	Probably, code can be easily improved even more.
1617  */
1618 
1619 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1620 		size_t len, int nonblock, int flags, int *addr_len)
1621 {
1622 	struct tcp_sock *tp = tcp_sk(sk);
1623 	int copied = 0;
1624 	u32 peek_seq;
1625 	u32 *seq;
1626 	unsigned long used;
1627 	int err;
1628 	int target;		/* Read at least this many bytes */
1629 	long timeo;
1630 	struct task_struct *user_recv = NULL;
1631 	bool copied_early = false;
1632 	struct sk_buff *skb;
1633 	u32 urg_hole = 0;
1634 
1635 	if (unlikely(flags & MSG_ERRQUEUE))
1636 		return ip_recv_error(sk, msg, len, addr_len);
1637 
1638 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1639 	    (sk->sk_state == TCP_ESTABLISHED))
1640 		sk_busy_loop(sk, nonblock);
1641 
1642 	lock_sock(sk);
1643 
1644 	err = -ENOTCONN;
1645 	if (sk->sk_state == TCP_LISTEN)
1646 		goto out;
1647 
1648 	timeo = sock_rcvtimeo(sk, nonblock);
1649 
1650 	/* Urgent data needs to be handled specially. */
1651 	if (flags & MSG_OOB)
1652 		goto recv_urg;
1653 
1654 	if (unlikely(tp->repair)) {
1655 		err = -EPERM;
1656 		if (!(flags & MSG_PEEK))
1657 			goto out;
1658 
1659 		if (tp->repair_queue == TCP_SEND_QUEUE)
1660 			goto recv_sndq;
1661 
1662 		err = -EINVAL;
1663 		if (tp->repair_queue == TCP_NO_QUEUE)
1664 			goto out;
1665 
1666 		/* 'common' recv queue MSG_PEEK-ing */
1667 	}
1668 
1669 	seq = &tp->copied_seq;
1670 	if (flags & MSG_PEEK) {
1671 		peek_seq = tp->copied_seq;
1672 		seq = &peek_seq;
1673 	}
1674 
1675 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1676 
1677 #ifdef CONFIG_NET_DMA
1678 	tp->ucopy.dma_chan = NULL;
1679 	preempt_disable();
1680 	skb = skb_peek_tail(&sk->sk_receive_queue);
1681 	{
1682 		int available = 0;
1683 
1684 		if (skb)
1685 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1686 		if ((available < target) &&
1687 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1688 		    !sysctl_tcp_low_latency &&
1689 		    net_dma_find_channel()) {
1690 			preempt_enable();
1691 			tp->ucopy.pinned_list =
1692 					dma_pin_iovec_pages(msg->msg_iov, len);
1693 		} else {
1694 			preempt_enable();
1695 		}
1696 	}
1697 #endif
1698 
1699 	do {
1700 		u32 offset;
1701 
1702 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1703 		if (tp->urg_data && tp->urg_seq == *seq) {
1704 			if (copied)
1705 				break;
1706 			if (signal_pending(current)) {
1707 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1708 				break;
1709 			}
1710 		}
1711 
1712 		/* Next get a buffer. */
1713 
1714 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1715 			/* Now that we have two receive queues this
1716 			 * shouldn't happen.
1717 			 */
1718 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1719 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1720 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1721 				 flags))
1722 				break;
1723 
1724 			offset = *seq - TCP_SKB_CB(skb)->seq;
1725 			if (tcp_hdr(skb)->syn)
1726 				offset--;
1727 			if (offset < skb->len)
1728 				goto found_ok_skb;
1729 			if (tcp_hdr(skb)->fin)
1730 				goto found_fin_ok;
1731 			WARN(!(flags & MSG_PEEK),
1732 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1733 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1734 		}
1735 
1736 		/* Well, if we have backlog, try to process it now yet. */
1737 
1738 		if (copied >= target && !sk->sk_backlog.tail)
1739 			break;
1740 
1741 		if (copied) {
1742 			if (sk->sk_err ||
1743 			    sk->sk_state == TCP_CLOSE ||
1744 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1745 			    !timeo ||
1746 			    signal_pending(current))
1747 				break;
1748 		} else {
1749 			if (sock_flag(sk, SOCK_DONE))
1750 				break;
1751 
1752 			if (sk->sk_err) {
1753 				copied = sock_error(sk);
1754 				break;
1755 			}
1756 
1757 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1758 				break;
1759 
1760 			if (sk->sk_state == TCP_CLOSE) {
1761 				if (!sock_flag(sk, SOCK_DONE)) {
1762 					/* This occurs when user tries to read
1763 					 * from never connected socket.
1764 					 */
1765 					copied = -ENOTCONN;
1766 					break;
1767 				}
1768 				break;
1769 			}
1770 
1771 			if (!timeo) {
1772 				copied = -EAGAIN;
1773 				break;
1774 			}
1775 
1776 			if (signal_pending(current)) {
1777 				copied = sock_intr_errno(timeo);
1778 				break;
1779 			}
1780 		}
1781 
1782 		tcp_cleanup_rbuf(sk, copied);
1783 
1784 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1785 			/* Install new reader */
1786 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1787 				user_recv = current;
1788 				tp->ucopy.task = user_recv;
1789 				tp->ucopy.iov = msg->msg_iov;
1790 			}
1791 
1792 			tp->ucopy.len = len;
1793 
1794 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1795 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1796 
1797 			/* Ugly... If prequeue is not empty, we have to
1798 			 * process it before releasing socket, otherwise
1799 			 * order will be broken at second iteration.
1800 			 * More elegant solution is required!!!
1801 			 *
1802 			 * Look: we have the following (pseudo)queues:
1803 			 *
1804 			 * 1. packets in flight
1805 			 * 2. backlog
1806 			 * 3. prequeue
1807 			 * 4. receive_queue
1808 			 *
1809 			 * Each queue can be processed only if the next ones
1810 			 * are empty. At this point we have empty receive_queue.
1811 			 * But prequeue _can_ be not empty after 2nd iteration,
1812 			 * when we jumped to start of loop because backlog
1813 			 * processing added something to receive_queue.
1814 			 * We cannot release_sock(), because backlog contains
1815 			 * packets arrived _after_ prequeued ones.
1816 			 *
1817 			 * Shortly, algorithm is clear --- to process all
1818 			 * the queues in order. We could make it more directly,
1819 			 * requeueing packets from backlog to prequeue, if
1820 			 * is not empty. It is more elegant, but eats cycles,
1821 			 * unfortunately.
1822 			 */
1823 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1824 				goto do_prequeue;
1825 
1826 			/* __ Set realtime policy in scheduler __ */
1827 		}
1828 
1829 #ifdef CONFIG_NET_DMA
1830 		if (tp->ucopy.dma_chan) {
1831 			if (tp->rcv_wnd == 0 &&
1832 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1833 				tcp_service_net_dma(sk, true);
1834 				tcp_cleanup_rbuf(sk, copied);
1835 			} else
1836 				dma_async_issue_pending(tp->ucopy.dma_chan);
1837 		}
1838 #endif
1839 		if (copied >= target) {
1840 			/* Do not sleep, just process backlog. */
1841 			release_sock(sk);
1842 			lock_sock(sk);
1843 		} else
1844 			sk_wait_data(sk, &timeo);
1845 
1846 #ifdef CONFIG_NET_DMA
1847 		tcp_service_net_dma(sk, false);  /* Don't block */
1848 		tp->ucopy.wakeup = 0;
1849 #endif
1850 
1851 		if (user_recv) {
1852 			int chunk;
1853 
1854 			/* __ Restore normal policy in scheduler __ */
1855 
1856 			if ((chunk = len - tp->ucopy.len) != 0) {
1857 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1858 				len -= chunk;
1859 				copied += chunk;
1860 			}
1861 
1862 			if (tp->rcv_nxt == tp->copied_seq &&
1863 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1864 do_prequeue:
1865 				tcp_prequeue_process(sk);
1866 
1867 				if ((chunk = len - tp->ucopy.len) != 0) {
1868 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1869 					len -= chunk;
1870 					copied += chunk;
1871 				}
1872 			}
1873 		}
1874 		if ((flags & MSG_PEEK) &&
1875 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1876 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1877 					    current->comm,
1878 					    task_pid_nr(current));
1879 			peek_seq = tp->copied_seq;
1880 		}
1881 		continue;
1882 
1883 	found_ok_skb:
1884 		/* Ok so how much can we use? */
1885 		used = skb->len - offset;
1886 		if (len < used)
1887 			used = len;
1888 
1889 		/* Do we have urgent data here? */
1890 		if (tp->urg_data) {
1891 			u32 urg_offset = tp->urg_seq - *seq;
1892 			if (urg_offset < used) {
1893 				if (!urg_offset) {
1894 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1895 						++*seq;
1896 						urg_hole++;
1897 						offset++;
1898 						used--;
1899 						if (!used)
1900 							goto skip_copy;
1901 					}
1902 				} else
1903 					used = urg_offset;
1904 			}
1905 		}
1906 
1907 		if (!(flags & MSG_TRUNC)) {
1908 #ifdef CONFIG_NET_DMA
1909 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1910 				tp->ucopy.dma_chan = net_dma_find_channel();
1911 
1912 			if (tp->ucopy.dma_chan) {
1913 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1914 					tp->ucopy.dma_chan, skb, offset,
1915 					msg->msg_iov, used,
1916 					tp->ucopy.pinned_list);
1917 
1918 				if (tp->ucopy.dma_cookie < 0) {
1919 
1920 					pr_alert("%s: dma_cookie < 0\n",
1921 						 __func__);
1922 
1923 					/* Exception. Bailout! */
1924 					if (!copied)
1925 						copied = -EFAULT;
1926 					break;
1927 				}
1928 
1929 				dma_async_issue_pending(tp->ucopy.dma_chan);
1930 
1931 				if ((offset + used) == skb->len)
1932 					copied_early = true;
1933 
1934 			} else
1935 #endif
1936 			{
1937 				err = skb_copy_datagram_iovec(skb, offset,
1938 						msg->msg_iov, used);
1939 				if (err) {
1940 					/* Exception. Bailout! */
1941 					if (!copied)
1942 						copied = -EFAULT;
1943 					break;
1944 				}
1945 			}
1946 		}
1947 
1948 		*seq += used;
1949 		copied += used;
1950 		len -= used;
1951 
1952 		tcp_rcv_space_adjust(sk);
1953 
1954 skip_copy:
1955 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1956 			tp->urg_data = 0;
1957 			tcp_fast_path_check(sk);
1958 		}
1959 		if (used + offset < skb->len)
1960 			continue;
1961 
1962 		if (tcp_hdr(skb)->fin)
1963 			goto found_fin_ok;
1964 		if (!(flags & MSG_PEEK)) {
1965 			sk_eat_skb(sk, skb, copied_early);
1966 			copied_early = false;
1967 		}
1968 		continue;
1969 
1970 	found_fin_ok:
1971 		/* Process the FIN. */
1972 		++*seq;
1973 		if (!(flags & MSG_PEEK)) {
1974 			sk_eat_skb(sk, skb, copied_early);
1975 			copied_early = false;
1976 		}
1977 		break;
1978 	} while (len > 0);
1979 
1980 	if (user_recv) {
1981 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1982 			int chunk;
1983 
1984 			tp->ucopy.len = copied > 0 ? len : 0;
1985 
1986 			tcp_prequeue_process(sk);
1987 
1988 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1989 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1990 				len -= chunk;
1991 				copied += chunk;
1992 			}
1993 		}
1994 
1995 		tp->ucopy.task = NULL;
1996 		tp->ucopy.len = 0;
1997 	}
1998 
1999 #ifdef CONFIG_NET_DMA
2000 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
2001 	tp->ucopy.dma_chan = NULL;
2002 
2003 	if (tp->ucopy.pinned_list) {
2004 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
2005 		tp->ucopy.pinned_list = NULL;
2006 	}
2007 #endif
2008 
2009 	/* According to UNIX98, msg_name/msg_namelen are ignored
2010 	 * on connected socket. I was just happy when found this 8) --ANK
2011 	 */
2012 
2013 	/* Clean up data we have read: This will do ACK frames. */
2014 	tcp_cleanup_rbuf(sk, copied);
2015 
2016 	release_sock(sk);
2017 	return copied;
2018 
2019 out:
2020 	release_sock(sk);
2021 	return err;
2022 
2023 recv_urg:
2024 	err = tcp_recv_urg(sk, msg, len, flags);
2025 	goto out;
2026 
2027 recv_sndq:
2028 	err = tcp_peek_sndq(sk, msg, len);
2029 	goto out;
2030 }
2031 EXPORT_SYMBOL(tcp_recvmsg);
2032 
2033 void tcp_set_state(struct sock *sk, int state)
2034 {
2035 	int oldstate = sk->sk_state;
2036 
2037 	switch (state) {
2038 	case TCP_ESTABLISHED:
2039 		if (oldstate != TCP_ESTABLISHED)
2040 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2041 		break;
2042 
2043 	case TCP_CLOSE:
2044 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2045 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2046 
2047 		sk->sk_prot->unhash(sk);
2048 		if (inet_csk(sk)->icsk_bind_hash &&
2049 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2050 			inet_put_port(sk);
2051 		/* fall through */
2052 	default:
2053 		if (oldstate == TCP_ESTABLISHED)
2054 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2055 	}
2056 
2057 	/* Change state AFTER socket is unhashed to avoid closed
2058 	 * socket sitting in hash tables.
2059 	 */
2060 	sk->sk_state = state;
2061 
2062 #ifdef STATE_TRACE
2063 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2064 #endif
2065 }
2066 EXPORT_SYMBOL_GPL(tcp_set_state);
2067 
2068 /*
2069  *	State processing on a close. This implements the state shift for
2070  *	sending our FIN frame. Note that we only send a FIN for some
2071  *	states. A shutdown() may have already sent the FIN, or we may be
2072  *	closed.
2073  */
2074 
2075 static const unsigned char new_state[16] = {
2076   /* current state:        new state:      action:	*/
2077   /* (Invalid)		*/ TCP_CLOSE,
2078   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2079   /* TCP_SYN_SENT	*/ TCP_CLOSE,
2080   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2081   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
2082   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
2083   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
2084   /* TCP_CLOSE		*/ TCP_CLOSE,
2085   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
2086   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
2087   /* TCP_LISTEN		*/ TCP_CLOSE,
2088   /* TCP_CLOSING	*/ TCP_CLOSING,
2089 };
2090 
2091 static int tcp_close_state(struct sock *sk)
2092 {
2093 	int next = (int)new_state[sk->sk_state];
2094 	int ns = next & TCP_STATE_MASK;
2095 
2096 	tcp_set_state(sk, ns);
2097 
2098 	return next & TCP_ACTION_FIN;
2099 }
2100 
2101 /*
2102  *	Shutdown the sending side of a connection. Much like close except
2103  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2104  */
2105 
2106 void tcp_shutdown(struct sock *sk, int how)
2107 {
2108 	/*	We need to grab some memory, and put together a FIN,
2109 	 *	and then put it into the queue to be sent.
2110 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2111 	 */
2112 	if (!(how & SEND_SHUTDOWN))
2113 		return;
2114 
2115 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2116 	if ((1 << sk->sk_state) &
2117 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2118 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2119 		/* Clear out any half completed packets.  FIN if needed. */
2120 		if (tcp_close_state(sk))
2121 			tcp_send_fin(sk);
2122 	}
2123 }
2124 EXPORT_SYMBOL(tcp_shutdown);
2125 
2126 bool tcp_check_oom(struct sock *sk, int shift)
2127 {
2128 	bool too_many_orphans, out_of_socket_memory;
2129 
2130 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2131 	out_of_socket_memory = tcp_out_of_memory(sk);
2132 
2133 	if (too_many_orphans)
2134 		net_info_ratelimited("too many orphaned sockets\n");
2135 	if (out_of_socket_memory)
2136 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2137 	return too_many_orphans || out_of_socket_memory;
2138 }
2139 
2140 void tcp_close(struct sock *sk, long timeout)
2141 {
2142 	struct sk_buff *skb;
2143 	int data_was_unread = 0;
2144 	int state;
2145 
2146 	lock_sock(sk);
2147 	sk->sk_shutdown = SHUTDOWN_MASK;
2148 
2149 	if (sk->sk_state == TCP_LISTEN) {
2150 		tcp_set_state(sk, TCP_CLOSE);
2151 
2152 		/* Special case. */
2153 		inet_csk_listen_stop(sk);
2154 
2155 		goto adjudge_to_death;
2156 	}
2157 
2158 	/*  We need to flush the recv. buffs.  We do this only on the
2159 	 *  descriptor close, not protocol-sourced closes, because the
2160 	 *  reader process may not have drained the data yet!
2161 	 */
2162 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2163 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2164 			  tcp_hdr(skb)->fin;
2165 		data_was_unread += len;
2166 		__kfree_skb(skb);
2167 	}
2168 
2169 	sk_mem_reclaim(sk);
2170 
2171 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2172 	if (sk->sk_state == TCP_CLOSE)
2173 		goto adjudge_to_death;
2174 
2175 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2176 	 * data was lost. To witness the awful effects of the old behavior of
2177 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2178 	 * GET in an FTP client, suspend the process, wait for the client to
2179 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2180 	 * Note: timeout is always zero in such a case.
2181 	 */
2182 	if (unlikely(tcp_sk(sk)->repair)) {
2183 		sk->sk_prot->disconnect(sk, 0);
2184 	} else if (data_was_unread) {
2185 		/* Unread data was tossed, zap the connection. */
2186 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2187 		tcp_set_state(sk, TCP_CLOSE);
2188 		tcp_send_active_reset(sk, sk->sk_allocation);
2189 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2190 		/* Check zero linger _after_ checking for unread data. */
2191 		sk->sk_prot->disconnect(sk, 0);
2192 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2193 	} else if (tcp_close_state(sk)) {
2194 		/* We FIN if the application ate all the data before
2195 		 * zapping the connection.
2196 		 */
2197 
2198 		/* RED-PEN. Formally speaking, we have broken TCP state
2199 		 * machine. State transitions:
2200 		 *
2201 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2202 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2203 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2204 		 *
2205 		 * are legal only when FIN has been sent (i.e. in window),
2206 		 * rather than queued out of window. Purists blame.
2207 		 *
2208 		 * F.e. "RFC state" is ESTABLISHED,
2209 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2210 		 *
2211 		 * The visible declinations are that sometimes
2212 		 * we enter time-wait state, when it is not required really
2213 		 * (harmless), do not send active resets, when they are
2214 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2215 		 * they look as CLOSING or LAST_ACK for Linux)
2216 		 * Probably, I missed some more holelets.
2217 		 * 						--ANK
2218 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2219 		 * in a single packet! (May consider it later but will
2220 		 * probably need API support or TCP_CORK SYN-ACK until
2221 		 * data is written and socket is closed.)
2222 		 */
2223 		tcp_send_fin(sk);
2224 	}
2225 
2226 	sk_stream_wait_close(sk, timeout);
2227 
2228 adjudge_to_death:
2229 	state = sk->sk_state;
2230 	sock_hold(sk);
2231 	sock_orphan(sk);
2232 
2233 	/* It is the last release_sock in its life. It will remove backlog. */
2234 	release_sock(sk);
2235 
2236 
2237 	/* Now socket is owned by kernel and we acquire BH lock
2238 	   to finish close. No need to check for user refs.
2239 	 */
2240 	local_bh_disable();
2241 	bh_lock_sock(sk);
2242 	WARN_ON(sock_owned_by_user(sk));
2243 
2244 	percpu_counter_inc(sk->sk_prot->orphan_count);
2245 
2246 	/* Have we already been destroyed by a softirq or backlog? */
2247 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2248 		goto out;
2249 
2250 	/*	This is a (useful) BSD violating of the RFC. There is a
2251 	 *	problem with TCP as specified in that the other end could
2252 	 *	keep a socket open forever with no application left this end.
2253 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2254 	 *	our end. If they send after that then tough - BUT: long enough
2255 	 *	that we won't make the old 4*rto = almost no time - whoops
2256 	 *	reset mistake.
2257 	 *
2258 	 *	Nope, it was not mistake. It is really desired behaviour
2259 	 *	f.e. on http servers, when such sockets are useless, but
2260 	 *	consume significant resources. Let's do it with special
2261 	 *	linger2	option.					--ANK
2262 	 */
2263 
2264 	if (sk->sk_state == TCP_FIN_WAIT2) {
2265 		struct tcp_sock *tp = tcp_sk(sk);
2266 		if (tp->linger2 < 0) {
2267 			tcp_set_state(sk, TCP_CLOSE);
2268 			tcp_send_active_reset(sk, GFP_ATOMIC);
2269 			NET_INC_STATS_BH(sock_net(sk),
2270 					LINUX_MIB_TCPABORTONLINGER);
2271 		} else {
2272 			const int tmo = tcp_fin_time(sk);
2273 
2274 			if (tmo > TCP_TIMEWAIT_LEN) {
2275 				inet_csk_reset_keepalive_timer(sk,
2276 						tmo - TCP_TIMEWAIT_LEN);
2277 			} else {
2278 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2279 				goto out;
2280 			}
2281 		}
2282 	}
2283 	if (sk->sk_state != TCP_CLOSE) {
2284 		sk_mem_reclaim(sk);
2285 		if (tcp_check_oom(sk, 0)) {
2286 			tcp_set_state(sk, TCP_CLOSE);
2287 			tcp_send_active_reset(sk, GFP_ATOMIC);
2288 			NET_INC_STATS_BH(sock_net(sk),
2289 					LINUX_MIB_TCPABORTONMEMORY);
2290 		}
2291 	}
2292 
2293 	if (sk->sk_state == TCP_CLOSE) {
2294 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2295 		/* We could get here with a non-NULL req if the socket is
2296 		 * aborted (e.g., closed with unread data) before 3WHS
2297 		 * finishes.
2298 		 */
2299 		if (req != NULL)
2300 			reqsk_fastopen_remove(sk, req, false);
2301 		inet_csk_destroy_sock(sk);
2302 	}
2303 	/* Otherwise, socket is reprieved until protocol close. */
2304 
2305 out:
2306 	bh_unlock_sock(sk);
2307 	local_bh_enable();
2308 	sock_put(sk);
2309 }
2310 EXPORT_SYMBOL(tcp_close);
2311 
2312 /* These states need RST on ABORT according to RFC793 */
2313 
2314 static inline bool tcp_need_reset(int state)
2315 {
2316 	return (1 << state) &
2317 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2318 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2319 }
2320 
2321 int tcp_disconnect(struct sock *sk, int flags)
2322 {
2323 	struct inet_sock *inet = inet_sk(sk);
2324 	struct inet_connection_sock *icsk = inet_csk(sk);
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 	int err = 0;
2327 	int old_state = sk->sk_state;
2328 
2329 	if (old_state != TCP_CLOSE)
2330 		tcp_set_state(sk, TCP_CLOSE);
2331 
2332 	/* ABORT function of RFC793 */
2333 	if (old_state == TCP_LISTEN) {
2334 		inet_csk_listen_stop(sk);
2335 	} else if (unlikely(tp->repair)) {
2336 		sk->sk_err = ECONNABORTED;
2337 	} else if (tcp_need_reset(old_state) ||
2338 		   (tp->snd_nxt != tp->write_seq &&
2339 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2340 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2341 		 * states
2342 		 */
2343 		tcp_send_active_reset(sk, gfp_any());
2344 		sk->sk_err = ECONNRESET;
2345 	} else if (old_state == TCP_SYN_SENT)
2346 		sk->sk_err = ECONNRESET;
2347 
2348 	tcp_clear_xmit_timers(sk);
2349 	__skb_queue_purge(&sk->sk_receive_queue);
2350 	tcp_write_queue_purge(sk);
2351 	__skb_queue_purge(&tp->out_of_order_queue);
2352 #ifdef CONFIG_NET_DMA
2353 	__skb_queue_purge(&sk->sk_async_wait_queue);
2354 #endif
2355 
2356 	inet->inet_dport = 0;
2357 
2358 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2359 		inet_reset_saddr(sk);
2360 
2361 	sk->sk_shutdown = 0;
2362 	sock_reset_flag(sk, SOCK_DONE);
2363 	tp->srtt_us = 0;
2364 	if ((tp->write_seq += tp->max_window + 2) == 0)
2365 		tp->write_seq = 1;
2366 	icsk->icsk_backoff = 0;
2367 	tp->snd_cwnd = 2;
2368 	icsk->icsk_probes_out = 0;
2369 	tp->packets_out = 0;
2370 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2371 	tp->snd_cwnd_cnt = 0;
2372 	tp->window_clamp = 0;
2373 	tcp_set_ca_state(sk, TCP_CA_Open);
2374 	tcp_clear_retrans(tp);
2375 	inet_csk_delack_init(sk);
2376 	tcp_init_send_head(sk);
2377 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2378 	__sk_dst_reset(sk);
2379 
2380 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2381 
2382 	sk->sk_error_report(sk);
2383 	return err;
2384 }
2385 EXPORT_SYMBOL(tcp_disconnect);
2386 
2387 void tcp_sock_destruct(struct sock *sk)
2388 {
2389 	inet_sock_destruct(sk);
2390 
2391 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2392 }
2393 
2394 static inline bool tcp_can_repair_sock(const struct sock *sk)
2395 {
2396 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2397 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2398 }
2399 
2400 static int tcp_repair_options_est(struct tcp_sock *tp,
2401 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2402 {
2403 	struct tcp_repair_opt opt;
2404 
2405 	while (len >= sizeof(opt)) {
2406 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2407 			return -EFAULT;
2408 
2409 		optbuf++;
2410 		len -= sizeof(opt);
2411 
2412 		switch (opt.opt_code) {
2413 		case TCPOPT_MSS:
2414 			tp->rx_opt.mss_clamp = opt.opt_val;
2415 			break;
2416 		case TCPOPT_WINDOW:
2417 			{
2418 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2419 				u16 rcv_wscale = opt.opt_val >> 16;
2420 
2421 				if (snd_wscale > 14 || rcv_wscale > 14)
2422 					return -EFBIG;
2423 
2424 				tp->rx_opt.snd_wscale = snd_wscale;
2425 				tp->rx_opt.rcv_wscale = rcv_wscale;
2426 				tp->rx_opt.wscale_ok = 1;
2427 			}
2428 			break;
2429 		case TCPOPT_SACK_PERM:
2430 			if (opt.opt_val != 0)
2431 				return -EINVAL;
2432 
2433 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2434 			if (sysctl_tcp_fack)
2435 				tcp_enable_fack(tp);
2436 			break;
2437 		case TCPOPT_TIMESTAMP:
2438 			if (opt.opt_val != 0)
2439 				return -EINVAL;
2440 
2441 			tp->rx_opt.tstamp_ok = 1;
2442 			break;
2443 		}
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 /*
2450  *	Socket option code for TCP.
2451  */
2452 static int do_tcp_setsockopt(struct sock *sk, int level,
2453 		int optname, char __user *optval, unsigned int optlen)
2454 {
2455 	struct tcp_sock *tp = tcp_sk(sk);
2456 	struct inet_connection_sock *icsk = inet_csk(sk);
2457 	int val;
2458 	int err = 0;
2459 
2460 	/* These are data/string values, all the others are ints */
2461 	switch (optname) {
2462 	case TCP_CONGESTION: {
2463 		char name[TCP_CA_NAME_MAX];
2464 
2465 		if (optlen < 1)
2466 			return -EINVAL;
2467 
2468 		val = strncpy_from_user(name, optval,
2469 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2470 		if (val < 0)
2471 			return -EFAULT;
2472 		name[val] = 0;
2473 
2474 		lock_sock(sk);
2475 		err = tcp_set_congestion_control(sk, name);
2476 		release_sock(sk);
2477 		return err;
2478 	}
2479 	default:
2480 		/* fallthru */
2481 		break;
2482 	}
2483 
2484 	if (optlen < sizeof(int))
2485 		return -EINVAL;
2486 
2487 	if (get_user(val, (int __user *)optval))
2488 		return -EFAULT;
2489 
2490 	lock_sock(sk);
2491 
2492 	switch (optname) {
2493 	case TCP_MAXSEG:
2494 		/* Values greater than interface MTU won't take effect. However
2495 		 * at the point when this call is done we typically don't yet
2496 		 * know which interface is going to be used */
2497 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2498 			err = -EINVAL;
2499 			break;
2500 		}
2501 		tp->rx_opt.user_mss = val;
2502 		break;
2503 
2504 	case TCP_NODELAY:
2505 		if (val) {
2506 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2507 			 * this option on corked socket is remembered, but
2508 			 * it is not activated until cork is cleared.
2509 			 *
2510 			 * However, when TCP_NODELAY is set we make
2511 			 * an explicit push, which overrides even TCP_CORK
2512 			 * for currently queued segments.
2513 			 */
2514 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2515 			tcp_push_pending_frames(sk);
2516 		} else {
2517 			tp->nonagle &= ~TCP_NAGLE_OFF;
2518 		}
2519 		break;
2520 
2521 	case TCP_THIN_LINEAR_TIMEOUTS:
2522 		if (val < 0 || val > 1)
2523 			err = -EINVAL;
2524 		else
2525 			tp->thin_lto = val;
2526 		break;
2527 
2528 	case TCP_THIN_DUPACK:
2529 		if (val < 0 || val > 1)
2530 			err = -EINVAL;
2531 		else {
2532 			tp->thin_dupack = val;
2533 			if (tp->thin_dupack)
2534 				tcp_disable_early_retrans(tp);
2535 		}
2536 		break;
2537 
2538 	case TCP_REPAIR:
2539 		if (!tcp_can_repair_sock(sk))
2540 			err = -EPERM;
2541 		else if (val == 1) {
2542 			tp->repair = 1;
2543 			sk->sk_reuse = SK_FORCE_REUSE;
2544 			tp->repair_queue = TCP_NO_QUEUE;
2545 		} else if (val == 0) {
2546 			tp->repair = 0;
2547 			sk->sk_reuse = SK_NO_REUSE;
2548 			tcp_send_window_probe(sk);
2549 		} else
2550 			err = -EINVAL;
2551 
2552 		break;
2553 
2554 	case TCP_REPAIR_QUEUE:
2555 		if (!tp->repair)
2556 			err = -EPERM;
2557 		else if (val < TCP_QUEUES_NR)
2558 			tp->repair_queue = val;
2559 		else
2560 			err = -EINVAL;
2561 		break;
2562 
2563 	case TCP_QUEUE_SEQ:
2564 		if (sk->sk_state != TCP_CLOSE)
2565 			err = -EPERM;
2566 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2567 			tp->write_seq = val;
2568 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2569 			tp->rcv_nxt = val;
2570 		else
2571 			err = -EINVAL;
2572 		break;
2573 
2574 	case TCP_REPAIR_OPTIONS:
2575 		if (!tp->repair)
2576 			err = -EINVAL;
2577 		else if (sk->sk_state == TCP_ESTABLISHED)
2578 			err = tcp_repair_options_est(tp,
2579 					(struct tcp_repair_opt __user *)optval,
2580 					optlen);
2581 		else
2582 			err = -EPERM;
2583 		break;
2584 
2585 	case TCP_CORK:
2586 		/* When set indicates to always queue non-full frames.
2587 		 * Later the user clears this option and we transmit
2588 		 * any pending partial frames in the queue.  This is
2589 		 * meant to be used alongside sendfile() to get properly
2590 		 * filled frames when the user (for example) must write
2591 		 * out headers with a write() call first and then use
2592 		 * sendfile to send out the data parts.
2593 		 *
2594 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2595 		 * stronger than TCP_NODELAY.
2596 		 */
2597 		if (val) {
2598 			tp->nonagle |= TCP_NAGLE_CORK;
2599 		} else {
2600 			tp->nonagle &= ~TCP_NAGLE_CORK;
2601 			if (tp->nonagle&TCP_NAGLE_OFF)
2602 				tp->nonagle |= TCP_NAGLE_PUSH;
2603 			tcp_push_pending_frames(sk);
2604 		}
2605 		break;
2606 
2607 	case TCP_KEEPIDLE:
2608 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2609 			err = -EINVAL;
2610 		else {
2611 			tp->keepalive_time = val * HZ;
2612 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2613 			    !((1 << sk->sk_state) &
2614 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2615 				u32 elapsed = keepalive_time_elapsed(tp);
2616 				if (tp->keepalive_time > elapsed)
2617 					elapsed = tp->keepalive_time - elapsed;
2618 				else
2619 					elapsed = 0;
2620 				inet_csk_reset_keepalive_timer(sk, elapsed);
2621 			}
2622 		}
2623 		break;
2624 	case TCP_KEEPINTVL:
2625 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2626 			err = -EINVAL;
2627 		else
2628 			tp->keepalive_intvl = val * HZ;
2629 		break;
2630 	case TCP_KEEPCNT:
2631 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2632 			err = -EINVAL;
2633 		else
2634 			tp->keepalive_probes = val;
2635 		break;
2636 	case TCP_SYNCNT:
2637 		if (val < 1 || val > MAX_TCP_SYNCNT)
2638 			err = -EINVAL;
2639 		else
2640 			icsk->icsk_syn_retries = val;
2641 		break;
2642 
2643 	case TCP_LINGER2:
2644 		if (val < 0)
2645 			tp->linger2 = -1;
2646 		else if (val > sysctl_tcp_fin_timeout / HZ)
2647 			tp->linger2 = 0;
2648 		else
2649 			tp->linger2 = val * HZ;
2650 		break;
2651 
2652 	case TCP_DEFER_ACCEPT:
2653 		/* Translate value in seconds to number of retransmits */
2654 		icsk->icsk_accept_queue.rskq_defer_accept =
2655 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2656 					TCP_RTO_MAX / HZ);
2657 		break;
2658 
2659 	case TCP_WINDOW_CLAMP:
2660 		if (!val) {
2661 			if (sk->sk_state != TCP_CLOSE) {
2662 				err = -EINVAL;
2663 				break;
2664 			}
2665 			tp->window_clamp = 0;
2666 		} else
2667 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2668 						SOCK_MIN_RCVBUF / 2 : val;
2669 		break;
2670 
2671 	case TCP_QUICKACK:
2672 		if (!val) {
2673 			icsk->icsk_ack.pingpong = 1;
2674 		} else {
2675 			icsk->icsk_ack.pingpong = 0;
2676 			if ((1 << sk->sk_state) &
2677 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2678 			    inet_csk_ack_scheduled(sk)) {
2679 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2680 				tcp_cleanup_rbuf(sk, 1);
2681 				if (!(val & 1))
2682 					icsk->icsk_ack.pingpong = 1;
2683 			}
2684 		}
2685 		break;
2686 
2687 #ifdef CONFIG_TCP_MD5SIG
2688 	case TCP_MD5SIG:
2689 		/* Read the IP->Key mappings from userspace */
2690 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2691 		break;
2692 #endif
2693 	case TCP_USER_TIMEOUT:
2694 		/* Cap the max timeout in ms TCP will retry/retrans
2695 		 * before giving up and aborting (ETIMEDOUT) a connection.
2696 		 */
2697 		if (val < 0)
2698 			err = -EINVAL;
2699 		else
2700 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2701 		break;
2702 
2703 	case TCP_FASTOPEN:
2704 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2705 		    TCPF_LISTEN)))
2706 			err = fastopen_init_queue(sk, val);
2707 		else
2708 			err = -EINVAL;
2709 		break;
2710 	case TCP_TIMESTAMP:
2711 		if (!tp->repair)
2712 			err = -EPERM;
2713 		else
2714 			tp->tsoffset = val - tcp_time_stamp;
2715 		break;
2716 	case TCP_NOTSENT_LOWAT:
2717 		tp->notsent_lowat = val;
2718 		sk->sk_write_space(sk);
2719 		break;
2720 	default:
2721 		err = -ENOPROTOOPT;
2722 		break;
2723 	}
2724 
2725 	release_sock(sk);
2726 	return err;
2727 }
2728 
2729 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2730 		   unsigned int optlen)
2731 {
2732 	const struct inet_connection_sock *icsk = inet_csk(sk);
2733 
2734 	if (level != SOL_TCP)
2735 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2736 						     optval, optlen);
2737 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2738 }
2739 EXPORT_SYMBOL(tcp_setsockopt);
2740 
2741 #ifdef CONFIG_COMPAT
2742 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2743 			  char __user *optval, unsigned int optlen)
2744 {
2745 	if (level != SOL_TCP)
2746 		return inet_csk_compat_setsockopt(sk, level, optname,
2747 						  optval, optlen);
2748 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2749 }
2750 EXPORT_SYMBOL(compat_tcp_setsockopt);
2751 #endif
2752 
2753 /* Return information about state of tcp endpoint in API format. */
2754 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2755 {
2756 	const struct tcp_sock *tp = tcp_sk(sk);
2757 	const struct inet_connection_sock *icsk = inet_csk(sk);
2758 	u32 now = tcp_time_stamp;
2759 
2760 	memset(info, 0, sizeof(*info));
2761 
2762 	info->tcpi_state = sk->sk_state;
2763 	info->tcpi_ca_state = icsk->icsk_ca_state;
2764 	info->tcpi_retransmits = icsk->icsk_retransmits;
2765 	info->tcpi_probes = icsk->icsk_probes_out;
2766 	info->tcpi_backoff = icsk->icsk_backoff;
2767 
2768 	if (tp->rx_opt.tstamp_ok)
2769 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2770 	if (tcp_is_sack(tp))
2771 		info->tcpi_options |= TCPI_OPT_SACK;
2772 	if (tp->rx_opt.wscale_ok) {
2773 		info->tcpi_options |= TCPI_OPT_WSCALE;
2774 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2775 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2776 	}
2777 
2778 	if (tp->ecn_flags & TCP_ECN_OK)
2779 		info->tcpi_options |= TCPI_OPT_ECN;
2780 	if (tp->ecn_flags & TCP_ECN_SEEN)
2781 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2782 	if (tp->syn_data_acked)
2783 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2784 
2785 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2786 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2787 	info->tcpi_snd_mss = tp->mss_cache;
2788 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2789 
2790 	if (sk->sk_state == TCP_LISTEN) {
2791 		info->tcpi_unacked = sk->sk_ack_backlog;
2792 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2793 	} else {
2794 		info->tcpi_unacked = tp->packets_out;
2795 		info->tcpi_sacked = tp->sacked_out;
2796 	}
2797 	info->tcpi_lost = tp->lost_out;
2798 	info->tcpi_retrans = tp->retrans_out;
2799 	info->tcpi_fackets = tp->fackets_out;
2800 
2801 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2802 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2803 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2804 
2805 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2806 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2807 	info->tcpi_rtt = tp->srtt_us >> 3;
2808 	info->tcpi_rttvar = tp->mdev_us >> 2;
2809 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2810 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2811 	info->tcpi_advmss = tp->advmss;
2812 	info->tcpi_reordering = tp->reordering;
2813 
2814 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2815 	info->tcpi_rcv_space = tp->rcvq_space.space;
2816 
2817 	info->tcpi_total_retrans = tp->total_retrans;
2818 
2819 	info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ?
2820 					sk->sk_pacing_rate : ~0ULL;
2821 	info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ?
2822 					sk->sk_max_pacing_rate : ~0ULL;
2823 }
2824 EXPORT_SYMBOL_GPL(tcp_get_info);
2825 
2826 static int do_tcp_getsockopt(struct sock *sk, int level,
2827 		int optname, char __user *optval, int __user *optlen)
2828 {
2829 	struct inet_connection_sock *icsk = inet_csk(sk);
2830 	struct tcp_sock *tp = tcp_sk(sk);
2831 	int val, len;
2832 
2833 	if (get_user(len, optlen))
2834 		return -EFAULT;
2835 
2836 	len = min_t(unsigned int, len, sizeof(int));
2837 
2838 	if (len < 0)
2839 		return -EINVAL;
2840 
2841 	switch (optname) {
2842 	case TCP_MAXSEG:
2843 		val = tp->mss_cache;
2844 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2845 			val = tp->rx_opt.user_mss;
2846 		if (tp->repair)
2847 			val = tp->rx_opt.mss_clamp;
2848 		break;
2849 	case TCP_NODELAY:
2850 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2851 		break;
2852 	case TCP_CORK:
2853 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2854 		break;
2855 	case TCP_KEEPIDLE:
2856 		val = keepalive_time_when(tp) / HZ;
2857 		break;
2858 	case TCP_KEEPINTVL:
2859 		val = keepalive_intvl_when(tp) / HZ;
2860 		break;
2861 	case TCP_KEEPCNT:
2862 		val = keepalive_probes(tp);
2863 		break;
2864 	case TCP_SYNCNT:
2865 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2866 		break;
2867 	case TCP_LINGER2:
2868 		val = tp->linger2;
2869 		if (val >= 0)
2870 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2871 		break;
2872 	case TCP_DEFER_ACCEPT:
2873 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2874 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2875 		break;
2876 	case TCP_WINDOW_CLAMP:
2877 		val = tp->window_clamp;
2878 		break;
2879 	case TCP_INFO: {
2880 		struct tcp_info info;
2881 
2882 		if (get_user(len, optlen))
2883 			return -EFAULT;
2884 
2885 		tcp_get_info(sk, &info);
2886 
2887 		len = min_t(unsigned int, len, sizeof(info));
2888 		if (put_user(len, optlen))
2889 			return -EFAULT;
2890 		if (copy_to_user(optval, &info, len))
2891 			return -EFAULT;
2892 		return 0;
2893 	}
2894 	case TCP_QUICKACK:
2895 		val = !icsk->icsk_ack.pingpong;
2896 		break;
2897 
2898 	case TCP_CONGESTION:
2899 		if (get_user(len, optlen))
2900 			return -EFAULT;
2901 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2902 		if (put_user(len, optlen))
2903 			return -EFAULT;
2904 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2905 			return -EFAULT;
2906 		return 0;
2907 
2908 	case TCP_THIN_LINEAR_TIMEOUTS:
2909 		val = tp->thin_lto;
2910 		break;
2911 	case TCP_THIN_DUPACK:
2912 		val = tp->thin_dupack;
2913 		break;
2914 
2915 	case TCP_REPAIR:
2916 		val = tp->repair;
2917 		break;
2918 
2919 	case TCP_REPAIR_QUEUE:
2920 		if (tp->repair)
2921 			val = tp->repair_queue;
2922 		else
2923 			return -EINVAL;
2924 		break;
2925 
2926 	case TCP_QUEUE_SEQ:
2927 		if (tp->repair_queue == TCP_SEND_QUEUE)
2928 			val = tp->write_seq;
2929 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2930 			val = tp->rcv_nxt;
2931 		else
2932 			return -EINVAL;
2933 		break;
2934 
2935 	case TCP_USER_TIMEOUT:
2936 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2937 		break;
2938 
2939 	case TCP_FASTOPEN:
2940 		if (icsk->icsk_accept_queue.fastopenq != NULL)
2941 			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2942 		else
2943 			val = 0;
2944 		break;
2945 
2946 	case TCP_TIMESTAMP:
2947 		val = tcp_time_stamp + tp->tsoffset;
2948 		break;
2949 	case TCP_NOTSENT_LOWAT:
2950 		val = tp->notsent_lowat;
2951 		break;
2952 	default:
2953 		return -ENOPROTOOPT;
2954 	}
2955 
2956 	if (put_user(len, optlen))
2957 		return -EFAULT;
2958 	if (copy_to_user(optval, &val, len))
2959 		return -EFAULT;
2960 	return 0;
2961 }
2962 
2963 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2964 		   int __user *optlen)
2965 {
2966 	struct inet_connection_sock *icsk = inet_csk(sk);
2967 
2968 	if (level != SOL_TCP)
2969 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2970 						     optval, optlen);
2971 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2972 }
2973 EXPORT_SYMBOL(tcp_getsockopt);
2974 
2975 #ifdef CONFIG_COMPAT
2976 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2977 			  char __user *optval, int __user *optlen)
2978 {
2979 	if (level != SOL_TCP)
2980 		return inet_csk_compat_getsockopt(sk, level, optname,
2981 						  optval, optlen);
2982 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2983 }
2984 EXPORT_SYMBOL(compat_tcp_getsockopt);
2985 #endif
2986 
2987 #ifdef CONFIG_TCP_MD5SIG
2988 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly;
2989 static DEFINE_MUTEX(tcp_md5sig_mutex);
2990 
2991 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2992 {
2993 	int cpu;
2994 
2995 	for_each_possible_cpu(cpu) {
2996 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2997 
2998 		if (p->md5_desc.tfm)
2999 			crypto_free_hash(p->md5_desc.tfm);
3000 	}
3001 	free_percpu(pool);
3002 }
3003 
3004 static void __tcp_alloc_md5sig_pool(void)
3005 {
3006 	int cpu;
3007 	struct tcp_md5sig_pool __percpu *pool;
3008 
3009 	pool = alloc_percpu(struct tcp_md5sig_pool);
3010 	if (!pool)
3011 		return;
3012 
3013 	for_each_possible_cpu(cpu) {
3014 		struct crypto_hash *hash;
3015 
3016 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3017 		if (IS_ERR_OR_NULL(hash))
3018 			goto out_free;
3019 
3020 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3021 	}
3022 	/* before setting tcp_md5sig_pool, we must commit all writes
3023 	 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
3024 	 */
3025 	smp_wmb();
3026 	tcp_md5sig_pool = pool;
3027 	return;
3028 out_free:
3029 	__tcp_free_md5sig_pool(pool);
3030 }
3031 
3032 bool tcp_alloc_md5sig_pool(void)
3033 {
3034 	if (unlikely(!tcp_md5sig_pool)) {
3035 		mutex_lock(&tcp_md5sig_mutex);
3036 
3037 		if (!tcp_md5sig_pool)
3038 			__tcp_alloc_md5sig_pool();
3039 
3040 		mutex_unlock(&tcp_md5sig_mutex);
3041 	}
3042 	return tcp_md5sig_pool != NULL;
3043 }
3044 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3045 
3046 
3047 /**
3048  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3049  *
3050  *	We use percpu structure, so if we succeed, we exit with preemption
3051  *	and BH disabled, to make sure another thread or softirq handling
3052  *	wont try to get same context.
3053  */
3054 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3055 {
3056 	struct tcp_md5sig_pool __percpu *p;
3057 
3058 	local_bh_disable();
3059 	p = ACCESS_ONCE(tcp_md5sig_pool);
3060 	if (p)
3061 		return __this_cpu_ptr(p);
3062 
3063 	local_bh_enable();
3064 	return NULL;
3065 }
3066 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3067 
3068 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3069 			const struct tcphdr *th)
3070 {
3071 	struct scatterlist sg;
3072 	struct tcphdr hdr;
3073 	int err;
3074 
3075 	/* We are not allowed to change tcphdr, make a local copy */
3076 	memcpy(&hdr, th, sizeof(hdr));
3077 	hdr.check = 0;
3078 
3079 	/* options aren't included in the hash */
3080 	sg_init_one(&sg, &hdr, sizeof(hdr));
3081 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3082 	return err;
3083 }
3084 EXPORT_SYMBOL(tcp_md5_hash_header);
3085 
3086 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3087 			  const struct sk_buff *skb, unsigned int header_len)
3088 {
3089 	struct scatterlist sg;
3090 	const struct tcphdr *tp = tcp_hdr(skb);
3091 	struct hash_desc *desc = &hp->md5_desc;
3092 	unsigned int i;
3093 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3094 					   skb_headlen(skb) - header_len : 0;
3095 	const struct skb_shared_info *shi = skb_shinfo(skb);
3096 	struct sk_buff *frag_iter;
3097 
3098 	sg_init_table(&sg, 1);
3099 
3100 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3101 	if (crypto_hash_update(desc, &sg, head_data_len))
3102 		return 1;
3103 
3104 	for (i = 0; i < shi->nr_frags; ++i) {
3105 		const struct skb_frag_struct *f = &shi->frags[i];
3106 		unsigned int offset = f->page_offset;
3107 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3108 
3109 		sg_set_page(&sg, page, skb_frag_size(f),
3110 			    offset_in_page(offset));
3111 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3112 			return 1;
3113 	}
3114 
3115 	skb_walk_frags(skb, frag_iter)
3116 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3117 			return 1;
3118 
3119 	return 0;
3120 }
3121 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3122 
3123 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3124 {
3125 	struct scatterlist sg;
3126 
3127 	sg_init_one(&sg, key->key, key->keylen);
3128 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3129 }
3130 EXPORT_SYMBOL(tcp_md5_hash_key);
3131 
3132 #endif
3133 
3134 void tcp_done(struct sock *sk)
3135 {
3136 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3137 
3138 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3139 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3140 
3141 	tcp_set_state(sk, TCP_CLOSE);
3142 	tcp_clear_xmit_timers(sk);
3143 	if (req != NULL)
3144 		reqsk_fastopen_remove(sk, req, false);
3145 
3146 	sk->sk_shutdown = SHUTDOWN_MASK;
3147 
3148 	if (!sock_flag(sk, SOCK_DEAD))
3149 		sk->sk_state_change(sk);
3150 	else
3151 		inet_csk_destroy_sock(sk);
3152 }
3153 EXPORT_SYMBOL_GPL(tcp_done);
3154 
3155 extern struct tcp_congestion_ops tcp_reno;
3156 
3157 static __initdata unsigned long thash_entries;
3158 static int __init set_thash_entries(char *str)
3159 {
3160 	ssize_t ret;
3161 
3162 	if (!str)
3163 		return 0;
3164 
3165 	ret = kstrtoul(str, 0, &thash_entries);
3166 	if (ret)
3167 		return 0;
3168 
3169 	return 1;
3170 }
3171 __setup("thash_entries=", set_thash_entries);
3172 
3173 static void tcp_init_mem(void)
3174 {
3175 	unsigned long limit = nr_free_buffer_pages() / 8;
3176 	limit = max(limit, 128UL);
3177 	sysctl_tcp_mem[0] = limit / 4 * 3;
3178 	sysctl_tcp_mem[1] = limit;
3179 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3180 }
3181 
3182 void __init tcp_init(void)
3183 {
3184 	struct sk_buff *skb = NULL;
3185 	unsigned long limit;
3186 	int max_rshare, max_wshare, cnt;
3187 	unsigned int i;
3188 
3189 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3190 
3191 	percpu_counter_init(&tcp_sockets_allocated, 0);
3192 	percpu_counter_init(&tcp_orphan_count, 0);
3193 	tcp_hashinfo.bind_bucket_cachep =
3194 		kmem_cache_create("tcp_bind_bucket",
3195 				  sizeof(struct inet_bind_bucket), 0,
3196 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3197 
3198 	/* Size and allocate the main established and bind bucket
3199 	 * hash tables.
3200 	 *
3201 	 * The methodology is similar to that of the buffer cache.
3202 	 */
3203 	tcp_hashinfo.ehash =
3204 		alloc_large_system_hash("TCP established",
3205 					sizeof(struct inet_ehash_bucket),
3206 					thash_entries,
3207 					17, /* one slot per 128 KB of memory */
3208 					0,
3209 					NULL,
3210 					&tcp_hashinfo.ehash_mask,
3211 					0,
3212 					thash_entries ? 0 : 512 * 1024);
3213 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3214 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3215 
3216 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3217 		panic("TCP: failed to alloc ehash_locks");
3218 	tcp_hashinfo.bhash =
3219 		alloc_large_system_hash("TCP bind",
3220 					sizeof(struct inet_bind_hashbucket),
3221 					tcp_hashinfo.ehash_mask + 1,
3222 					17, /* one slot per 128 KB of memory */
3223 					0,
3224 					&tcp_hashinfo.bhash_size,
3225 					NULL,
3226 					0,
3227 					64 * 1024);
3228 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3229 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3230 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3231 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3232 	}
3233 
3234 
3235 	cnt = tcp_hashinfo.ehash_mask + 1;
3236 
3237 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3238 	sysctl_tcp_max_orphans = cnt / 2;
3239 	sysctl_max_syn_backlog = max(128, cnt / 256);
3240 
3241 	tcp_init_mem();
3242 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3243 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3244 	max_wshare = min(4UL*1024*1024, limit);
3245 	max_rshare = min(6UL*1024*1024, limit);
3246 
3247 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3248 	sysctl_tcp_wmem[1] = 16*1024;
3249 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3250 
3251 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3252 	sysctl_tcp_rmem[1] = 87380;
3253 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3254 
3255 	pr_info("Hash tables configured (established %u bind %u)\n",
3256 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3257 
3258 	tcp_metrics_init();
3259 
3260 	tcp_register_congestion_control(&tcp_reno);
3261 
3262 	tcp_tasklet_init();
3263 }
3264