1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/netdma.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286 int sysctl_tcp_min_tso_segs __read_mostly = 2; 287 288 int sysctl_tcp_autocorking __read_mostly = 1; 289 290 struct percpu_counter tcp_orphan_count; 291 EXPORT_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 int sysctl_tcp_wmem[3] __read_mostly; 295 int sysctl_tcp_rmem[3] __read_mostly; 296 297 EXPORT_SYMBOL(sysctl_tcp_mem); 298 EXPORT_SYMBOL(sysctl_tcp_rmem); 299 EXPORT_SYMBOL(sysctl_tcp_wmem); 300 301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 302 EXPORT_SYMBOL(tcp_memory_allocated); 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 int tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL(tcp_memory_pressure); 327 328 void tcp_enter_memory_pressure(struct sock *sk) 329 { 330 if (!tcp_memory_pressure) { 331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 332 tcp_memory_pressure = 1; 333 } 334 } 335 EXPORT_SYMBOL(tcp_enter_memory_pressure); 336 337 /* Convert seconds to retransmits based on initial and max timeout */ 338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 339 { 340 u8 res = 0; 341 342 if (seconds > 0) { 343 int period = timeout; 344 345 res = 1; 346 while (seconds > period && res < 255) { 347 res++; 348 timeout <<= 1; 349 if (timeout > rto_max) 350 timeout = rto_max; 351 period += timeout; 352 } 353 } 354 return res; 355 } 356 357 /* Convert retransmits to seconds based on initial and max timeout */ 358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 359 { 360 int period = 0; 361 362 if (retrans > 0) { 363 period = timeout; 364 while (--retrans) { 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return period; 372 } 373 374 /* Address-family independent initialization for a tcp_sock. 375 * 376 * NOTE: A lot of things set to zero explicitly by call to 377 * sk_alloc() so need not be done here. 378 */ 379 void tcp_init_sock(struct sock *sk) 380 { 381 struct inet_connection_sock *icsk = inet_csk(sk); 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 __skb_queue_head_init(&tp->out_of_order_queue); 385 tcp_init_xmit_timers(sk); 386 tcp_prequeue_init(tp); 387 INIT_LIST_HEAD(&tp->tsq_node); 388 389 icsk->icsk_rto = TCP_TIMEOUT_INIT; 390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* See draft-stevens-tcpca-spec-01 for discussion of the 400 * initialization of these values. 401 */ 402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 403 tp->snd_cwnd_clamp = ~0; 404 tp->mss_cache = TCP_MSS_DEFAULT; 405 406 tp->reordering = sysctl_tcp_reordering; 407 tcp_enable_early_retrans(tp); 408 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 409 410 tp->tsoffset = 0; 411 412 sk->sk_state = TCP_CLOSE; 413 414 sk->sk_write_space = sk_stream_write_space; 415 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 416 417 icsk->icsk_sync_mss = tcp_sync_mss; 418 419 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 420 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 421 422 local_bh_disable(); 423 sock_update_memcg(sk); 424 sk_sockets_allocated_inc(sk); 425 local_bh_enable(); 426 } 427 EXPORT_SYMBOL(tcp_init_sock); 428 429 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 430 { 431 if (sk->sk_tsflags) { 432 struct skb_shared_info *shinfo = skb_shinfo(skb); 433 434 sock_tx_timestamp(sk, &shinfo->tx_flags); 435 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 436 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 437 } 438 } 439 440 /* 441 * Wait for a TCP event. 442 * 443 * Note that we don't need to lock the socket, as the upper poll layers 444 * take care of normal races (between the test and the event) and we don't 445 * go look at any of the socket buffers directly. 446 */ 447 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 448 { 449 unsigned int mask; 450 struct sock *sk = sock->sk; 451 const struct tcp_sock *tp = tcp_sk(sk); 452 453 sock_rps_record_flow(sk); 454 455 sock_poll_wait(file, sk_sleep(sk), wait); 456 if (sk->sk_state == TCP_LISTEN) 457 return inet_csk_listen_poll(sk); 458 459 /* Socket is not locked. We are protected from async events 460 * by poll logic and correct handling of state changes 461 * made by other threads is impossible in any case. 462 */ 463 464 mask = 0; 465 466 /* 467 * POLLHUP is certainly not done right. But poll() doesn't 468 * have a notion of HUP in just one direction, and for a 469 * socket the read side is more interesting. 470 * 471 * Some poll() documentation says that POLLHUP is incompatible 472 * with the POLLOUT/POLLWR flags, so somebody should check this 473 * all. But careful, it tends to be safer to return too many 474 * bits than too few, and you can easily break real applications 475 * if you don't tell them that something has hung up! 476 * 477 * Check-me. 478 * 479 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 480 * our fs/select.c). It means that after we received EOF, 481 * poll always returns immediately, making impossible poll() on write() 482 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 483 * if and only if shutdown has been made in both directions. 484 * Actually, it is interesting to look how Solaris and DUX 485 * solve this dilemma. I would prefer, if POLLHUP were maskable, 486 * then we could set it on SND_SHUTDOWN. BTW examples given 487 * in Stevens' books assume exactly this behaviour, it explains 488 * why POLLHUP is incompatible with POLLOUT. --ANK 489 * 490 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 491 * blocking on fresh not-connected or disconnected socket. --ANK 492 */ 493 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 494 mask |= POLLHUP; 495 if (sk->sk_shutdown & RCV_SHUTDOWN) 496 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 497 498 /* Connected or passive Fast Open socket? */ 499 if (sk->sk_state != TCP_SYN_SENT && 500 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 501 int target = sock_rcvlowat(sk, 0, INT_MAX); 502 503 if (tp->urg_seq == tp->copied_seq && 504 !sock_flag(sk, SOCK_URGINLINE) && 505 tp->urg_data) 506 target++; 507 508 /* Potential race condition. If read of tp below will 509 * escape above sk->sk_state, we can be illegally awaken 510 * in SYN_* states. */ 511 if (tp->rcv_nxt - tp->copied_seq >= target) 512 mask |= POLLIN | POLLRDNORM; 513 514 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 515 if (sk_stream_is_writeable(sk)) { 516 mask |= POLLOUT | POLLWRNORM; 517 } else { /* send SIGIO later */ 518 set_bit(SOCK_ASYNC_NOSPACE, 519 &sk->sk_socket->flags); 520 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 521 522 /* Race breaker. If space is freed after 523 * wspace test but before the flags are set, 524 * IO signal will be lost. 525 */ 526 if (sk_stream_is_writeable(sk)) 527 mask |= POLLOUT | POLLWRNORM; 528 } 529 } else 530 mask |= POLLOUT | POLLWRNORM; 531 532 if (tp->urg_data & TCP_URG_VALID) 533 mask |= POLLPRI; 534 } 535 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 536 smp_rmb(); 537 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 538 mask |= POLLERR; 539 540 return mask; 541 } 542 EXPORT_SYMBOL(tcp_poll); 543 544 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 545 { 546 struct tcp_sock *tp = tcp_sk(sk); 547 int answ; 548 bool slow; 549 550 switch (cmd) { 551 case SIOCINQ: 552 if (sk->sk_state == TCP_LISTEN) 553 return -EINVAL; 554 555 slow = lock_sock_fast(sk); 556 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 557 answ = 0; 558 else if (sock_flag(sk, SOCK_URGINLINE) || 559 !tp->urg_data || 560 before(tp->urg_seq, tp->copied_seq) || 561 !before(tp->urg_seq, tp->rcv_nxt)) { 562 563 answ = tp->rcv_nxt - tp->copied_seq; 564 565 /* Subtract 1, if FIN was received */ 566 if (answ && sock_flag(sk, SOCK_DONE)) 567 answ--; 568 } else 569 answ = tp->urg_seq - tp->copied_seq; 570 unlock_sock_fast(sk, slow); 571 break; 572 case SIOCATMARK: 573 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 574 break; 575 case SIOCOUTQ: 576 if (sk->sk_state == TCP_LISTEN) 577 return -EINVAL; 578 579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 580 answ = 0; 581 else 582 answ = tp->write_seq - tp->snd_una; 583 break; 584 case SIOCOUTQNSD: 585 if (sk->sk_state == TCP_LISTEN) 586 return -EINVAL; 587 588 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 589 answ = 0; 590 else 591 answ = tp->write_seq - tp->snd_nxt; 592 break; 593 default: 594 return -ENOIOCTLCMD; 595 } 596 597 return put_user(answ, (int __user *)arg); 598 } 599 EXPORT_SYMBOL(tcp_ioctl); 600 601 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 602 { 603 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 604 tp->pushed_seq = tp->write_seq; 605 } 606 607 static inline bool forced_push(const struct tcp_sock *tp) 608 { 609 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 610 } 611 612 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 613 { 614 struct tcp_sock *tp = tcp_sk(sk); 615 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 616 617 skb->csum = 0; 618 tcb->seq = tcb->end_seq = tp->write_seq; 619 tcb->tcp_flags = TCPHDR_ACK; 620 tcb->sacked = 0; 621 skb_header_release(skb); 622 tcp_add_write_queue_tail(sk, skb); 623 sk->sk_wmem_queued += skb->truesize; 624 sk_mem_charge(sk, skb->truesize); 625 if (tp->nonagle & TCP_NAGLE_PUSH) 626 tp->nonagle &= ~TCP_NAGLE_PUSH; 627 } 628 629 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 630 { 631 if (flags & MSG_OOB) 632 tp->snd_up = tp->write_seq; 633 } 634 635 /* If a not yet filled skb is pushed, do not send it if 636 * we have data packets in Qdisc or NIC queues : 637 * Because TX completion will happen shortly, it gives a chance 638 * to coalesce future sendmsg() payload into this skb, without 639 * need for a timer, and with no latency trade off. 640 * As packets containing data payload have a bigger truesize 641 * than pure acks (dataless) packets, the last checks prevent 642 * autocorking if we only have an ACK in Qdisc/NIC queues, 643 * or if TX completion was delayed after we processed ACK packet. 644 */ 645 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 646 int size_goal) 647 { 648 return skb->len < size_goal && 649 sysctl_tcp_autocorking && 650 skb != tcp_write_queue_head(sk) && 651 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 652 } 653 654 static void tcp_push(struct sock *sk, int flags, int mss_now, 655 int nonagle, int size_goal) 656 { 657 struct tcp_sock *tp = tcp_sk(sk); 658 struct sk_buff *skb; 659 660 if (!tcp_send_head(sk)) 661 return; 662 663 skb = tcp_write_queue_tail(sk); 664 if (!(flags & MSG_MORE) || forced_push(tp)) 665 tcp_mark_push(tp, skb); 666 667 tcp_mark_urg(tp, flags); 668 669 if (tcp_should_autocork(sk, skb, size_goal)) { 670 671 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 672 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 673 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 674 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 675 } 676 /* It is possible TX completion already happened 677 * before we set TSQ_THROTTLED. 678 */ 679 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 680 return; 681 } 682 683 if (flags & MSG_MORE) 684 nonagle = TCP_NAGLE_CORK; 685 686 __tcp_push_pending_frames(sk, mss_now, nonagle); 687 } 688 689 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 690 unsigned int offset, size_t len) 691 { 692 struct tcp_splice_state *tss = rd_desc->arg.data; 693 int ret; 694 695 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 696 tss->flags); 697 if (ret > 0) 698 rd_desc->count -= ret; 699 return ret; 700 } 701 702 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 703 { 704 /* Store TCP splice context information in read_descriptor_t. */ 705 read_descriptor_t rd_desc = { 706 .arg.data = tss, 707 .count = tss->len, 708 }; 709 710 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 711 } 712 713 /** 714 * tcp_splice_read - splice data from TCP socket to a pipe 715 * @sock: socket to splice from 716 * @ppos: position (not valid) 717 * @pipe: pipe to splice to 718 * @len: number of bytes to splice 719 * @flags: splice modifier flags 720 * 721 * Description: 722 * Will read pages from given socket and fill them into a pipe. 723 * 724 **/ 725 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 726 struct pipe_inode_info *pipe, size_t len, 727 unsigned int flags) 728 { 729 struct sock *sk = sock->sk; 730 struct tcp_splice_state tss = { 731 .pipe = pipe, 732 .len = len, 733 .flags = flags, 734 }; 735 long timeo; 736 ssize_t spliced; 737 int ret; 738 739 sock_rps_record_flow(sk); 740 /* 741 * We can't seek on a socket input 742 */ 743 if (unlikely(*ppos)) 744 return -ESPIPE; 745 746 ret = spliced = 0; 747 748 lock_sock(sk); 749 750 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 751 while (tss.len) { 752 ret = __tcp_splice_read(sk, &tss); 753 if (ret < 0) 754 break; 755 else if (!ret) { 756 if (spliced) 757 break; 758 if (sock_flag(sk, SOCK_DONE)) 759 break; 760 if (sk->sk_err) { 761 ret = sock_error(sk); 762 break; 763 } 764 if (sk->sk_shutdown & RCV_SHUTDOWN) 765 break; 766 if (sk->sk_state == TCP_CLOSE) { 767 /* 768 * This occurs when user tries to read 769 * from never connected socket. 770 */ 771 if (!sock_flag(sk, SOCK_DONE)) 772 ret = -ENOTCONN; 773 break; 774 } 775 if (!timeo) { 776 ret = -EAGAIN; 777 break; 778 } 779 sk_wait_data(sk, &timeo); 780 if (signal_pending(current)) { 781 ret = sock_intr_errno(timeo); 782 break; 783 } 784 continue; 785 } 786 tss.len -= ret; 787 spliced += ret; 788 789 if (!timeo) 790 break; 791 release_sock(sk); 792 lock_sock(sk); 793 794 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 795 (sk->sk_shutdown & RCV_SHUTDOWN) || 796 signal_pending(current)) 797 break; 798 } 799 800 release_sock(sk); 801 802 if (spliced) 803 return spliced; 804 805 return ret; 806 } 807 EXPORT_SYMBOL(tcp_splice_read); 808 809 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 810 { 811 struct sk_buff *skb; 812 813 /* The TCP header must be at least 32-bit aligned. */ 814 size = ALIGN(size, 4); 815 816 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 817 if (skb) { 818 if (sk_wmem_schedule(sk, skb->truesize)) { 819 skb_reserve(skb, sk->sk_prot->max_header); 820 /* 821 * Make sure that we have exactly size bytes 822 * available to the caller, no more, no less. 823 */ 824 skb->reserved_tailroom = skb->end - skb->tail - size; 825 return skb; 826 } 827 __kfree_skb(skb); 828 } else { 829 sk->sk_prot->enter_memory_pressure(sk); 830 sk_stream_moderate_sndbuf(sk); 831 } 832 return NULL; 833 } 834 835 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 836 int large_allowed) 837 { 838 struct tcp_sock *tp = tcp_sk(sk); 839 u32 xmit_size_goal, old_size_goal; 840 841 xmit_size_goal = mss_now; 842 843 if (large_allowed && sk_can_gso(sk)) { 844 u32 gso_size, hlen; 845 846 /* Maybe we should/could use sk->sk_prot->max_header here ? */ 847 hlen = inet_csk(sk)->icsk_af_ops->net_header_len + 848 inet_csk(sk)->icsk_ext_hdr_len + 849 tp->tcp_header_len; 850 851 /* Goal is to send at least one packet per ms, 852 * not one big TSO packet every 100 ms. 853 * This preserves ACK clocking and is consistent 854 * with tcp_tso_should_defer() heuristic. 855 */ 856 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC); 857 gso_size = max_t(u32, gso_size, 858 sysctl_tcp_min_tso_segs * mss_now); 859 860 xmit_size_goal = min_t(u32, gso_size, 861 sk->sk_gso_max_size - 1 - hlen); 862 863 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 864 865 /* We try hard to avoid divides here */ 866 old_size_goal = tp->xmit_size_goal_segs * mss_now; 867 868 if (likely(old_size_goal <= xmit_size_goal && 869 old_size_goal + mss_now > xmit_size_goal)) { 870 xmit_size_goal = old_size_goal; 871 } else { 872 tp->xmit_size_goal_segs = 873 min_t(u16, xmit_size_goal / mss_now, 874 sk->sk_gso_max_segs); 875 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 876 } 877 } 878 879 return max(xmit_size_goal, mss_now); 880 } 881 882 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 883 { 884 int mss_now; 885 886 mss_now = tcp_current_mss(sk); 887 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 888 889 return mss_now; 890 } 891 892 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 893 size_t size, int flags) 894 { 895 struct tcp_sock *tp = tcp_sk(sk); 896 int mss_now, size_goal; 897 int err; 898 ssize_t copied; 899 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 900 901 /* Wait for a connection to finish. One exception is TCP Fast Open 902 * (passive side) where data is allowed to be sent before a connection 903 * is fully established. 904 */ 905 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 906 !tcp_passive_fastopen(sk)) { 907 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 908 goto out_err; 909 } 910 911 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 912 913 mss_now = tcp_send_mss(sk, &size_goal, flags); 914 copied = 0; 915 916 err = -EPIPE; 917 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 918 goto out_err; 919 920 while (size > 0) { 921 struct sk_buff *skb = tcp_write_queue_tail(sk); 922 int copy, i; 923 bool can_coalesce; 924 925 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 926 new_segment: 927 if (!sk_stream_memory_free(sk)) 928 goto wait_for_sndbuf; 929 930 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 931 if (!skb) 932 goto wait_for_memory; 933 934 skb_entail(sk, skb); 935 copy = size_goal; 936 } 937 938 if (copy > size) 939 copy = size; 940 941 i = skb_shinfo(skb)->nr_frags; 942 can_coalesce = skb_can_coalesce(skb, i, page, offset); 943 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 944 tcp_mark_push(tp, skb); 945 goto new_segment; 946 } 947 if (!sk_wmem_schedule(sk, copy)) 948 goto wait_for_memory; 949 950 if (can_coalesce) { 951 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 952 } else { 953 get_page(page); 954 skb_fill_page_desc(skb, i, page, offset, copy); 955 } 956 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 957 958 skb->len += copy; 959 skb->data_len += copy; 960 skb->truesize += copy; 961 sk->sk_wmem_queued += copy; 962 sk_mem_charge(sk, copy); 963 skb->ip_summed = CHECKSUM_PARTIAL; 964 tp->write_seq += copy; 965 TCP_SKB_CB(skb)->end_seq += copy; 966 skb_shinfo(skb)->gso_segs = 0; 967 968 if (!copied) 969 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 970 971 copied += copy; 972 offset += copy; 973 if (!(size -= copy)) { 974 tcp_tx_timestamp(sk, skb); 975 goto out; 976 } 977 978 if (skb->len < size_goal || (flags & MSG_OOB)) 979 continue; 980 981 if (forced_push(tp)) { 982 tcp_mark_push(tp, skb); 983 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 984 } else if (skb == tcp_send_head(sk)) 985 tcp_push_one(sk, mss_now); 986 continue; 987 988 wait_for_sndbuf: 989 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 990 wait_for_memory: 991 tcp_push(sk, flags & ~MSG_MORE, mss_now, 992 TCP_NAGLE_PUSH, size_goal); 993 994 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 995 goto do_error; 996 997 mss_now = tcp_send_mss(sk, &size_goal, flags); 998 } 999 1000 out: 1001 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 1002 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1003 return copied; 1004 1005 do_error: 1006 if (copied) 1007 goto out; 1008 out_err: 1009 return sk_stream_error(sk, flags, err); 1010 } 1011 1012 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1013 size_t size, int flags) 1014 { 1015 ssize_t res; 1016 1017 if (!(sk->sk_route_caps & NETIF_F_SG) || 1018 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 1019 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1020 flags); 1021 1022 lock_sock(sk); 1023 res = do_tcp_sendpages(sk, page, offset, size, flags); 1024 release_sock(sk); 1025 return res; 1026 } 1027 EXPORT_SYMBOL(tcp_sendpage); 1028 1029 static inline int select_size(const struct sock *sk, bool sg) 1030 { 1031 const struct tcp_sock *tp = tcp_sk(sk); 1032 int tmp = tp->mss_cache; 1033 1034 if (sg) { 1035 if (sk_can_gso(sk)) { 1036 /* Small frames wont use a full page: 1037 * Payload will immediately follow tcp header. 1038 */ 1039 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1040 } else { 1041 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1042 1043 if (tmp >= pgbreak && 1044 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1045 tmp = pgbreak; 1046 } 1047 } 1048 1049 return tmp; 1050 } 1051 1052 void tcp_free_fastopen_req(struct tcp_sock *tp) 1053 { 1054 if (tp->fastopen_req != NULL) { 1055 kfree(tp->fastopen_req); 1056 tp->fastopen_req = NULL; 1057 } 1058 } 1059 1060 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1061 int *copied, size_t size) 1062 { 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 int err, flags; 1065 1066 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1067 return -EOPNOTSUPP; 1068 if (tp->fastopen_req != NULL) 1069 return -EALREADY; /* Another Fast Open is in progress */ 1070 1071 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1072 sk->sk_allocation); 1073 if (unlikely(tp->fastopen_req == NULL)) 1074 return -ENOBUFS; 1075 tp->fastopen_req->data = msg; 1076 tp->fastopen_req->size = size; 1077 1078 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1079 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1080 msg->msg_namelen, flags); 1081 *copied = tp->fastopen_req->copied; 1082 tcp_free_fastopen_req(tp); 1083 return err; 1084 } 1085 1086 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1087 size_t size) 1088 { 1089 struct iovec *iov; 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 struct sk_buff *skb; 1092 int iovlen, flags, err, copied = 0; 1093 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1094 bool sg; 1095 long timeo; 1096 1097 lock_sock(sk); 1098 1099 flags = msg->msg_flags; 1100 if (flags & MSG_FASTOPEN) { 1101 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1102 if (err == -EINPROGRESS && copied_syn > 0) 1103 goto out; 1104 else if (err) 1105 goto out_err; 1106 offset = copied_syn; 1107 } 1108 1109 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1110 1111 /* Wait for a connection to finish. One exception is TCP Fast Open 1112 * (passive side) where data is allowed to be sent before a connection 1113 * is fully established. 1114 */ 1115 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1116 !tcp_passive_fastopen(sk)) { 1117 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1118 goto do_error; 1119 } 1120 1121 if (unlikely(tp->repair)) { 1122 if (tp->repair_queue == TCP_RECV_QUEUE) { 1123 copied = tcp_send_rcvq(sk, msg, size); 1124 goto out_nopush; 1125 } 1126 1127 err = -EINVAL; 1128 if (tp->repair_queue == TCP_NO_QUEUE) 1129 goto out_err; 1130 1131 /* 'common' sending to sendq */ 1132 } 1133 1134 /* This should be in poll */ 1135 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1136 1137 mss_now = tcp_send_mss(sk, &size_goal, flags); 1138 1139 /* Ok commence sending. */ 1140 iovlen = msg->msg_iovlen; 1141 iov = msg->msg_iov; 1142 copied = 0; 1143 1144 err = -EPIPE; 1145 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1146 goto out_err; 1147 1148 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1149 1150 while (--iovlen >= 0) { 1151 size_t seglen = iov->iov_len; 1152 unsigned char __user *from = iov->iov_base; 1153 1154 iov++; 1155 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1156 if (offset >= seglen) { 1157 offset -= seglen; 1158 continue; 1159 } 1160 seglen -= offset; 1161 from += offset; 1162 offset = 0; 1163 } 1164 1165 while (seglen > 0) { 1166 int copy = 0; 1167 int max = size_goal; 1168 1169 skb = tcp_write_queue_tail(sk); 1170 if (tcp_send_head(sk)) { 1171 if (skb->ip_summed == CHECKSUM_NONE) 1172 max = mss_now; 1173 copy = max - skb->len; 1174 } 1175 1176 if (copy <= 0) { 1177 new_segment: 1178 /* Allocate new segment. If the interface is SG, 1179 * allocate skb fitting to single page. 1180 */ 1181 if (!sk_stream_memory_free(sk)) 1182 goto wait_for_sndbuf; 1183 1184 skb = sk_stream_alloc_skb(sk, 1185 select_size(sk, sg), 1186 sk->sk_allocation); 1187 if (!skb) 1188 goto wait_for_memory; 1189 1190 /* 1191 * Check whether we can use HW checksum. 1192 */ 1193 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1194 skb->ip_summed = CHECKSUM_PARTIAL; 1195 1196 skb_entail(sk, skb); 1197 copy = size_goal; 1198 max = size_goal; 1199 1200 /* All packets are restored as if they have 1201 * already been sent. skb_mstamp isn't set to 1202 * avoid wrong rtt estimation. 1203 */ 1204 if (tp->repair) 1205 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1206 } 1207 1208 /* Try to append data to the end of skb. */ 1209 if (copy > seglen) 1210 copy = seglen; 1211 1212 /* Where to copy to? */ 1213 if (skb_availroom(skb) > 0) { 1214 /* We have some space in skb head. Superb! */ 1215 copy = min_t(int, copy, skb_availroom(skb)); 1216 err = skb_add_data_nocache(sk, skb, from, copy); 1217 if (err) 1218 goto do_fault; 1219 } else { 1220 bool merge = true; 1221 int i = skb_shinfo(skb)->nr_frags; 1222 struct page_frag *pfrag = sk_page_frag(sk); 1223 1224 if (!sk_page_frag_refill(sk, pfrag)) 1225 goto wait_for_memory; 1226 1227 if (!skb_can_coalesce(skb, i, pfrag->page, 1228 pfrag->offset)) { 1229 if (i == MAX_SKB_FRAGS || !sg) { 1230 tcp_mark_push(tp, skb); 1231 goto new_segment; 1232 } 1233 merge = false; 1234 } 1235 1236 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1237 1238 if (!sk_wmem_schedule(sk, copy)) 1239 goto wait_for_memory; 1240 1241 err = skb_copy_to_page_nocache(sk, from, skb, 1242 pfrag->page, 1243 pfrag->offset, 1244 copy); 1245 if (err) 1246 goto do_error; 1247 1248 /* Update the skb. */ 1249 if (merge) { 1250 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1251 } else { 1252 skb_fill_page_desc(skb, i, pfrag->page, 1253 pfrag->offset, copy); 1254 get_page(pfrag->page); 1255 } 1256 pfrag->offset += copy; 1257 } 1258 1259 if (!copied) 1260 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1261 1262 tp->write_seq += copy; 1263 TCP_SKB_CB(skb)->end_seq += copy; 1264 skb_shinfo(skb)->gso_segs = 0; 1265 1266 from += copy; 1267 copied += copy; 1268 if ((seglen -= copy) == 0 && iovlen == 0) { 1269 tcp_tx_timestamp(sk, skb); 1270 goto out; 1271 } 1272 1273 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1274 continue; 1275 1276 if (forced_push(tp)) { 1277 tcp_mark_push(tp, skb); 1278 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1279 } else if (skb == tcp_send_head(sk)) 1280 tcp_push_one(sk, mss_now); 1281 continue; 1282 1283 wait_for_sndbuf: 1284 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1285 wait_for_memory: 1286 if (copied) 1287 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1288 TCP_NAGLE_PUSH, size_goal); 1289 1290 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1291 goto do_error; 1292 1293 mss_now = tcp_send_mss(sk, &size_goal, flags); 1294 } 1295 } 1296 1297 out: 1298 if (copied) 1299 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1300 out_nopush: 1301 release_sock(sk); 1302 return copied + copied_syn; 1303 1304 do_fault: 1305 if (!skb->len) { 1306 tcp_unlink_write_queue(skb, sk); 1307 /* It is the one place in all of TCP, except connection 1308 * reset, where we can be unlinking the send_head. 1309 */ 1310 tcp_check_send_head(sk, skb); 1311 sk_wmem_free_skb(sk, skb); 1312 } 1313 1314 do_error: 1315 if (copied + copied_syn) 1316 goto out; 1317 out_err: 1318 err = sk_stream_error(sk, flags, err); 1319 release_sock(sk); 1320 return err; 1321 } 1322 EXPORT_SYMBOL(tcp_sendmsg); 1323 1324 /* 1325 * Handle reading urgent data. BSD has very simple semantics for 1326 * this, no blocking and very strange errors 8) 1327 */ 1328 1329 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1330 { 1331 struct tcp_sock *tp = tcp_sk(sk); 1332 1333 /* No URG data to read. */ 1334 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1335 tp->urg_data == TCP_URG_READ) 1336 return -EINVAL; /* Yes this is right ! */ 1337 1338 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1339 return -ENOTCONN; 1340 1341 if (tp->urg_data & TCP_URG_VALID) { 1342 int err = 0; 1343 char c = tp->urg_data; 1344 1345 if (!(flags & MSG_PEEK)) 1346 tp->urg_data = TCP_URG_READ; 1347 1348 /* Read urgent data. */ 1349 msg->msg_flags |= MSG_OOB; 1350 1351 if (len > 0) { 1352 if (!(flags & MSG_TRUNC)) 1353 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1354 len = 1; 1355 } else 1356 msg->msg_flags |= MSG_TRUNC; 1357 1358 return err ? -EFAULT : len; 1359 } 1360 1361 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1362 return 0; 1363 1364 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1365 * the available implementations agree in this case: 1366 * this call should never block, independent of the 1367 * blocking state of the socket. 1368 * Mike <pall@rz.uni-karlsruhe.de> 1369 */ 1370 return -EAGAIN; 1371 } 1372 1373 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1374 { 1375 struct sk_buff *skb; 1376 int copied = 0, err = 0; 1377 1378 /* XXX -- need to support SO_PEEK_OFF */ 1379 1380 skb_queue_walk(&sk->sk_write_queue, skb) { 1381 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1382 if (err) 1383 break; 1384 1385 copied += skb->len; 1386 } 1387 1388 return err ?: copied; 1389 } 1390 1391 /* Clean up the receive buffer for full frames taken by the user, 1392 * then send an ACK if necessary. COPIED is the number of bytes 1393 * tcp_recvmsg has given to the user so far, it speeds up the 1394 * calculation of whether or not we must ACK for the sake of 1395 * a window update. 1396 */ 1397 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1398 { 1399 struct tcp_sock *tp = tcp_sk(sk); 1400 bool time_to_ack = false; 1401 1402 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1403 1404 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1405 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1406 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1407 1408 if (inet_csk_ack_scheduled(sk)) { 1409 const struct inet_connection_sock *icsk = inet_csk(sk); 1410 /* Delayed ACKs frequently hit locked sockets during bulk 1411 * receive. */ 1412 if (icsk->icsk_ack.blocked || 1413 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1414 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1415 /* 1416 * If this read emptied read buffer, we send ACK, if 1417 * connection is not bidirectional, user drained 1418 * receive buffer and there was a small segment 1419 * in queue. 1420 */ 1421 (copied > 0 && 1422 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1423 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1424 !icsk->icsk_ack.pingpong)) && 1425 !atomic_read(&sk->sk_rmem_alloc))) 1426 time_to_ack = true; 1427 } 1428 1429 /* We send an ACK if we can now advertise a non-zero window 1430 * which has been raised "significantly". 1431 * 1432 * Even if window raised up to infinity, do not send window open ACK 1433 * in states, where we will not receive more. It is useless. 1434 */ 1435 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1436 __u32 rcv_window_now = tcp_receive_window(tp); 1437 1438 /* Optimize, __tcp_select_window() is not cheap. */ 1439 if (2*rcv_window_now <= tp->window_clamp) { 1440 __u32 new_window = __tcp_select_window(sk); 1441 1442 /* Send ACK now, if this read freed lots of space 1443 * in our buffer. Certainly, new_window is new window. 1444 * We can advertise it now, if it is not less than current one. 1445 * "Lots" means "at least twice" here. 1446 */ 1447 if (new_window && new_window >= 2 * rcv_window_now) 1448 time_to_ack = true; 1449 } 1450 } 1451 if (time_to_ack) 1452 tcp_send_ack(sk); 1453 } 1454 1455 static void tcp_prequeue_process(struct sock *sk) 1456 { 1457 struct sk_buff *skb; 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 1460 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1461 1462 /* RX process wants to run with disabled BHs, though it is not 1463 * necessary */ 1464 local_bh_disable(); 1465 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1466 sk_backlog_rcv(sk, skb); 1467 local_bh_enable(); 1468 1469 /* Clear memory counter. */ 1470 tp->ucopy.memory = 0; 1471 } 1472 1473 #ifdef CONFIG_NET_DMA 1474 static void tcp_service_net_dma(struct sock *sk, bool wait) 1475 { 1476 dma_cookie_t done, used; 1477 dma_cookie_t last_issued; 1478 struct tcp_sock *tp = tcp_sk(sk); 1479 1480 if (!tp->ucopy.dma_chan) 1481 return; 1482 1483 last_issued = tp->ucopy.dma_cookie; 1484 dma_async_issue_pending(tp->ucopy.dma_chan); 1485 1486 do { 1487 if (dma_async_is_tx_complete(tp->ucopy.dma_chan, 1488 last_issued, &done, 1489 &used) == DMA_COMPLETE) { 1490 /* Safe to free early-copied skbs now */ 1491 __skb_queue_purge(&sk->sk_async_wait_queue); 1492 break; 1493 } else { 1494 struct sk_buff *skb; 1495 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1496 (dma_async_is_complete(skb->dma_cookie, done, 1497 used) == DMA_COMPLETE)) { 1498 __skb_dequeue(&sk->sk_async_wait_queue); 1499 kfree_skb(skb); 1500 } 1501 } 1502 } while (wait); 1503 } 1504 #endif 1505 1506 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1507 { 1508 struct sk_buff *skb; 1509 u32 offset; 1510 1511 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1512 offset = seq - TCP_SKB_CB(skb)->seq; 1513 if (tcp_hdr(skb)->syn) 1514 offset--; 1515 if (offset < skb->len || tcp_hdr(skb)->fin) { 1516 *off = offset; 1517 return skb; 1518 } 1519 /* This looks weird, but this can happen if TCP collapsing 1520 * splitted a fat GRO packet, while we released socket lock 1521 * in skb_splice_bits() 1522 */ 1523 sk_eat_skb(sk, skb, false); 1524 } 1525 return NULL; 1526 } 1527 1528 /* 1529 * This routine provides an alternative to tcp_recvmsg() for routines 1530 * that would like to handle copying from skbuffs directly in 'sendfile' 1531 * fashion. 1532 * Note: 1533 * - It is assumed that the socket was locked by the caller. 1534 * - The routine does not block. 1535 * - At present, there is no support for reading OOB data 1536 * or for 'peeking' the socket using this routine 1537 * (although both would be easy to implement). 1538 */ 1539 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1540 sk_read_actor_t recv_actor) 1541 { 1542 struct sk_buff *skb; 1543 struct tcp_sock *tp = tcp_sk(sk); 1544 u32 seq = tp->copied_seq; 1545 u32 offset; 1546 int copied = 0; 1547 1548 if (sk->sk_state == TCP_LISTEN) 1549 return -ENOTCONN; 1550 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1551 if (offset < skb->len) { 1552 int used; 1553 size_t len; 1554 1555 len = skb->len - offset; 1556 /* Stop reading if we hit a patch of urgent data */ 1557 if (tp->urg_data) { 1558 u32 urg_offset = tp->urg_seq - seq; 1559 if (urg_offset < len) 1560 len = urg_offset; 1561 if (!len) 1562 break; 1563 } 1564 used = recv_actor(desc, skb, offset, len); 1565 if (used <= 0) { 1566 if (!copied) 1567 copied = used; 1568 break; 1569 } else if (used <= len) { 1570 seq += used; 1571 copied += used; 1572 offset += used; 1573 } 1574 /* If recv_actor drops the lock (e.g. TCP splice 1575 * receive) the skb pointer might be invalid when 1576 * getting here: tcp_collapse might have deleted it 1577 * while aggregating skbs from the socket queue. 1578 */ 1579 skb = tcp_recv_skb(sk, seq - 1, &offset); 1580 if (!skb) 1581 break; 1582 /* TCP coalescing might have appended data to the skb. 1583 * Try to splice more frags 1584 */ 1585 if (offset + 1 != skb->len) 1586 continue; 1587 } 1588 if (tcp_hdr(skb)->fin) { 1589 sk_eat_skb(sk, skb, false); 1590 ++seq; 1591 break; 1592 } 1593 sk_eat_skb(sk, skb, false); 1594 if (!desc->count) 1595 break; 1596 tp->copied_seq = seq; 1597 } 1598 tp->copied_seq = seq; 1599 1600 tcp_rcv_space_adjust(sk); 1601 1602 /* Clean up data we have read: This will do ACK frames. */ 1603 if (copied > 0) { 1604 tcp_recv_skb(sk, seq, &offset); 1605 tcp_cleanup_rbuf(sk, copied); 1606 } 1607 return copied; 1608 } 1609 EXPORT_SYMBOL(tcp_read_sock); 1610 1611 /* 1612 * This routine copies from a sock struct into the user buffer. 1613 * 1614 * Technical note: in 2.3 we work on _locked_ socket, so that 1615 * tricks with *seq access order and skb->users are not required. 1616 * Probably, code can be easily improved even more. 1617 */ 1618 1619 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1620 size_t len, int nonblock, int flags, int *addr_len) 1621 { 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 int copied = 0; 1624 u32 peek_seq; 1625 u32 *seq; 1626 unsigned long used; 1627 int err; 1628 int target; /* Read at least this many bytes */ 1629 long timeo; 1630 struct task_struct *user_recv = NULL; 1631 bool copied_early = false; 1632 struct sk_buff *skb; 1633 u32 urg_hole = 0; 1634 1635 if (unlikely(flags & MSG_ERRQUEUE)) 1636 return ip_recv_error(sk, msg, len, addr_len); 1637 1638 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1639 (sk->sk_state == TCP_ESTABLISHED)) 1640 sk_busy_loop(sk, nonblock); 1641 1642 lock_sock(sk); 1643 1644 err = -ENOTCONN; 1645 if (sk->sk_state == TCP_LISTEN) 1646 goto out; 1647 1648 timeo = sock_rcvtimeo(sk, nonblock); 1649 1650 /* Urgent data needs to be handled specially. */ 1651 if (flags & MSG_OOB) 1652 goto recv_urg; 1653 1654 if (unlikely(tp->repair)) { 1655 err = -EPERM; 1656 if (!(flags & MSG_PEEK)) 1657 goto out; 1658 1659 if (tp->repair_queue == TCP_SEND_QUEUE) 1660 goto recv_sndq; 1661 1662 err = -EINVAL; 1663 if (tp->repair_queue == TCP_NO_QUEUE) 1664 goto out; 1665 1666 /* 'common' recv queue MSG_PEEK-ing */ 1667 } 1668 1669 seq = &tp->copied_seq; 1670 if (flags & MSG_PEEK) { 1671 peek_seq = tp->copied_seq; 1672 seq = &peek_seq; 1673 } 1674 1675 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1676 1677 #ifdef CONFIG_NET_DMA 1678 tp->ucopy.dma_chan = NULL; 1679 preempt_disable(); 1680 skb = skb_peek_tail(&sk->sk_receive_queue); 1681 { 1682 int available = 0; 1683 1684 if (skb) 1685 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1686 if ((available < target) && 1687 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1688 !sysctl_tcp_low_latency && 1689 net_dma_find_channel()) { 1690 preempt_enable(); 1691 tp->ucopy.pinned_list = 1692 dma_pin_iovec_pages(msg->msg_iov, len); 1693 } else { 1694 preempt_enable(); 1695 } 1696 } 1697 #endif 1698 1699 do { 1700 u32 offset; 1701 1702 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1703 if (tp->urg_data && tp->urg_seq == *seq) { 1704 if (copied) 1705 break; 1706 if (signal_pending(current)) { 1707 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1708 break; 1709 } 1710 } 1711 1712 /* Next get a buffer. */ 1713 1714 skb_queue_walk(&sk->sk_receive_queue, skb) { 1715 /* Now that we have two receive queues this 1716 * shouldn't happen. 1717 */ 1718 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1719 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1720 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1721 flags)) 1722 break; 1723 1724 offset = *seq - TCP_SKB_CB(skb)->seq; 1725 if (tcp_hdr(skb)->syn) 1726 offset--; 1727 if (offset < skb->len) 1728 goto found_ok_skb; 1729 if (tcp_hdr(skb)->fin) 1730 goto found_fin_ok; 1731 WARN(!(flags & MSG_PEEK), 1732 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1733 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1734 } 1735 1736 /* Well, if we have backlog, try to process it now yet. */ 1737 1738 if (copied >= target && !sk->sk_backlog.tail) 1739 break; 1740 1741 if (copied) { 1742 if (sk->sk_err || 1743 sk->sk_state == TCP_CLOSE || 1744 (sk->sk_shutdown & RCV_SHUTDOWN) || 1745 !timeo || 1746 signal_pending(current)) 1747 break; 1748 } else { 1749 if (sock_flag(sk, SOCK_DONE)) 1750 break; 1751 1752 if (sk->sk_err) { 1753 copied = sock_error(sk); 1754 break; 1755 } 1756 1757 if (sk->sk_shutdown & RCV_SHUTDOWN) 1758 break; 1759 1760 if (sk->sk_state == TCP_CLOSE) { 1761 if (!sock_flag(sk, SOCK_DONE)) { 1762 /* This occurs when user tries to read 1763 * from never connected socket. 1764 */ 1765 copied = -ENOTCONN; 1766 break; 1767 } 1768 break; 1769 } 1770 1771 if (!timeo) { 1772 copied = -EAGAIN; 1773 break; 1774 } 1775 1776 if (signal_pending(current)) { 1777 copied = sock_intr_errno(timeo); 1778 break; 1779 } 1780 } 1781 1782 tcp_cleanup_rbuf(sk, copied); 1783 1784 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1785 /* Install new reader */ 1786 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1787 user_recv = current; 1788 tp->ucopy.task = user_recv; 1789 tp->ucopy.iov = msg->msg_iov; 1790 } 1791 1792 tp->ucopy.len = len; 1793 1794 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1795 !(flags & (MSG_PEEK | MSG_TRUNC))); 1796 1797 /* Ugly... If prequeue is not empty, we have to 1798 * process it before releasing socket, otherwise 1799 * order will be broken at second iteration. 1800 * More elegant solution is required!!! 1801 * 1802 * Look: we have the following (pseudo)queues: 1803 * 1804 * 1. packets in flight 1805 * 2. backlog 1806 * 3. prequeue 1807 * 4. receive_queue 1808 * 1809 * Each queue can be processed only if the next ones 1810 * are empty. At this point we have empty receive_queue. 1811 * But prequeue _can_ be not empty after 2nd iteration, 1812 * when we jumped to start of loop because backlog 1813 * processing added something to receive_queue. 1814 * We cannot release_sock(), because backlog contains 1815 * packets arrived _after_ prequeued ones. 1816 * 1817 * Shortly, algorithm is clear --- to process all 1818 * the queues in order. We could make it more directly, 1819 * requeueing packets from backlog to prequeue, if 1820 * is not empty. It is more elegant, but eats cycles, 1821 * unfortunately. 1822 */ 1823 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1824 goto do_prequeue; 1825 1826 /* __ Set realtime policy in scheduler __ */ 1827 } 1828 1829 #ifdef CONFIG_NET_DMA 1830 if (tp->ucopy.dma_chan) { 1831 if (tp->rcv_wnd == 0 && 1832 !skb_queue_empty(&sk->sk_async_wait_queue)) { 1833 tcp_service_net_dma(sk, true); 1834 tcp_cleanup_rbuf(sk, copied); 1835 } else 1836 dma_async_issue_pending(tp->ucopy.dma_chan); 1837 } 1838 #endif 1839 if (copied >= target) { 1840 /* Do not sleep, just process backlog. */ 1841 release_sock(sk); 1842 lock_sock(sk); 1843 } else 1844 sk_wait_data(sk, &timeo); 1845 1846 #ifdef CONFIG_NET_DMA 1847 tcp_service_net_dma(sk, false); /* Don't block */ 1848 tp->ucopy.wakeup = 0; 1849 #endif 1850 1851 if (user_recv) { 1852 int chunk; 1853 1854 /* __ Restore normal policy in scheduler __ */ 1855 1856 if ((chunk = len - tp->ucopy.len) != 0) { 1857 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1858 len -= chunk; 1859 copied += chunk; 1860 } 1861 1862 if (tp->rcv_nxt == tp->copied_seq && 1863 !skb_queue_empty(&tp->ucopy.prequeue)) { 1864 do_prequeue: 1865 tcp_prequeue_process(sk); 1866 1867 if ((chunk = len - tp->ucopy.len) != 0) { 1868 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1869 len -= chunk; 1870 copied += chunk; 1871 } 1872 } 1873 } 1874 if ((flags & MSG_PEEK) && 1875 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1876 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1877 current->comm, 1878 task_pid_nr(current)); 1879 peek_seq = tp->copied_seq; 1880 } 1881 continue; 1882 1883 found_ok_skb: 1884 /* Ok so how much can we use? */ 1885 used = skb->len - offset; 1886 if (len < used) 1887 used = len; 1888 1889 /* Do we have urgent data here? */ 1890 if (tp->urg_data) { 1891 u32 urg_offset = tp->urg_seq - *seq; 1892 if (urg_offset < used) { 1893 if (!urg_offset) { 1894 if (!sock_flag(sk, SOCK_URGINLINE)) { 1895 ++*seq; 1896 urg_hole++; 1897 offset++; 1898 used--; 1899 if (!used) 1900 goto skip_copy; 1901 } 1902 } else 1903 used = urg_offset; 1904 } 1905 } 1906 1907 if (!(flags & MSG_TRUNC)) { 1908 #ifdef CONFIG_NET_DMA 1909 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1910 tp->ucopy.dma_chan = net_dma_find_channel(); 1911 1912 if (tp->ucopy.dma_chan) { 1913 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1914 tp->ucopy.dma_chan, skb, offset, 1915 msg->msg_iov, used, 1916 tp->ucopy.pinned_list); 1917 1918 if (tp->ucopy.dma_cookie < 0) { 1919 1920 pr_alert("%s: dma_cookie < 0\n", 1921 __func__); 1922 1923 /* Exception. Bailout! */ 1924 if (!copied) 1925 copied = -EFAULT; 1926 break; 1927 } 1928 1929 dma_async_issue_pending(tp->ucopy.dma_chan); 1930 1931 if ((offset + used) == skb->len) 1932 copied_early = true; 1933 1934 } else 1935 #endif 1936 { 1937 err = skb_copy_datagram_iovec(skb, offset, 1938 msg->msg_iov, used); 1939 if (err) { 1940 /* Exception. Bailout! */ 1941 if (!copied) 1942 copied = -EFAULT; 1943 break; 1944 } 1945 } 1946 } 1947 1948 *seq += used; 1949 copied += used; 1950 len -= used; 1951 1952 tcp_rcv_space_adjust(sk); 1953 1954 skip_copy: 1955 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1956 tp->urg_data = 0; 1957 tcp_fast_path_check(sk); 1958 } 1959 if (used + offset < skb->len) 1960 continue; 1961 1962 if (tcp_hdr(skb)->fin) 1963 goto found_fin_ok; 1964 if (!(flags & MSG_PEEK)) { 1965 sk_eat_skb(sk, skb, copied_early); 1966 copied_early = false; 1967 } 1968 continue; 1969 1970 found_fin_ok: 1971 /* Process the FIN. */ 1972 ++*seq; 1973 if (!(flags & MSG_PEEK)) { 1974 sk_eat_skb(sk, skb, copied_early); 1975 copied_early = false; 1976 } 1977 break; 1978 } while (len > 0); 1979 1980 if (user_recv) { 1981 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1982 int chunk; 1983 1984 tp->ucopy.len = copied > 0 ? len : 0; 1985 1986 tcp_prequeue_process(sk); 1987 1988 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1989 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1990 len -= chunk; 1991 copied += chunk; 1992 } 1993 } 1994 1995 tp->ucopy.task = NULL; 1996 tp->ucopy.len = 0; 1997 } 1998 1999 #ifdef CONFIG_NET_DMA 2000 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 2001 tp->ucopy.dma_chan = NULL; 2002 2003 if (tp->ucopy.pinned_list) { 2004 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 2005 tp->ucopy.pinned_list = NULL; 2006 } 2007 #endif 2008 2009 /* According to UNIX98, msg_name/msg_namelen are ignored 2010 * on connected socket. I was just happy when found this 8) --ANK 2011 */ 2012 2013 /* Clean up data we have read: This will do ACK frames. */ 2014 tcp_cleanup_rbuf(sk, copied); 2015 2016 release_sock(sk); 2017 return copied; 2018 2019 out: 2020 release_sock(sk); 2021 return err; 2022 2023 recv_urg: 2024 err = tcp_recv_urg(sk, msg, len, flags); 2025 goto out; 2026 2027 recv_sndq: 2028 err = tcp_peek_sndq(sk, msg, len); 2029 goto out; 2030 } 2031 EXPORT_SYMBOL(tcp_recvmsg); 2032 2033 void tcp_set_state(struct sock *sk, int state) 2034 { 2035 int oldstate = sk->sk_state; 2036 2037 switch (state) { 2038 case TCP_ESTABLISHED: 2039 if (oldstate != TCP_ESTABLISHED) 2040 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2041 break; 2042 2043 case TCP_CLOSE: 2044 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2045 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2046 2047 sk->sk_prot->unhash(sk); 2048 if (inet_csk(sk)->icsk_bind_hash && 2049 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2050 inet_put_port(sk); 2051 /* fall through */ 2052 default: 2053 if (oldstate == TCP_ESTABLISHED) 2054 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2055 } 2056 2057 /* Change state AFTER socket is unhashed to avoid closed 2058 * socket sitting in hash tables. 2059 */ 2060 sk->sk_state = state; 2061 2062 #ifdef STATE_TRACE 2063 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2064 #endif 2065 } 2066 EXPORT_SYMBOL_GPL(tcp_set_state); 2067 2068 /* 2069 * State processing on a close. This implements the state shift for 2070 * sending our FIN frame. Note that we only send a FIN for some 2071 * states. A shutdown() may have already sent the FIN, or we may be 2072 * closed. 2073 */ 2074 2075 static const unsigned char new_state[16] = { 2076 /* current state: new state: action: */ 2077 /* (Invalid) */ TCP_CLOSE, 2078 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2079 /* TCP_SYN_SENT */ TCP_CLOSE, 2080 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2081 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 2082 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 2083 /* TCP_TIME_WAIT */ TCP_CLOSE, 2084 /* TCP_CLOSE */ TCP_CLOSE, 2085 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 2086 /* TCP_LAST_ACK */ TCP_LAST_ACK, 2087 /* TCP_LISTEN */ TCP_CLOSE, 2088 /* TCP_CLOSING */ TCP_CLOSING, 2089 }; 2090 2091 static int tcp_close_state(struct sock *sk) 2092 { 2093 int next = (int)new_state[sk->sk_state]; 2094 int ns = next & TCP_STATE_MASK; 2095 2096 tcp_set_state(sk, ns); 2097 2098 return next & TCP_ACTION_FIN; 2099 } 2100 2101 /* 2102 * Shutdown the sending side of a connection. Much like close except 2103 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2104 */ 2105 2106 void tcp_shutdown(struct sock *sk, int how) 2107 { 2108 /* We need to grab some memory, and put together a FIN, 2109 * and then put it into the queue to be sent. 2110 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2111 */ 2112 if (!(how & SEND_SHUTDOWN)) 2113 return; 2114 2115 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2116 if ((1 << sk->sk_state) & 2117 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2118 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2119 /* Clear out any half completed packets. FIN if needed. */ 2120 if (tcp_close_state(sk)) 2121 tcp_send_fin(sk); 2122 } 2123 } 2124 EXPORT_SYMBOL(tcp_shutdown); 2125 2126 bool tcp_check_oom(struct sock *sk, int shift) 2127 { 2128 bool too_many_orphans, out_of_socket_memory; 2129 2130 too_many_orphans = tcp_too_many_orphans(sk, shift); 2131 out_of_socket_memory = tcp_out_of_memory(sk); 2132 2133 if (too_many_orphans) 2134 net_info_ratelimited("too many orphaned sockets\n"); 2135 if (out_of_socket_memory) 2136 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2137 return too_many_orphans || out_of_socket_memory; 2138 } 2139 2140 void tcp_close(struct sock *sk, long timeout) 2141 { 2142 struct sk_buff *skb; 2143 int data_was_unread = 0; 2144 int state; 2145 2146 lock_sock(sk); 2147 sk->sk_shutdown = SHUTDOWN_MASK; 2148 2149 if (sk->sk_state == TCP_LISTEN) { 2150 tcp_set_state(sk, TCP_CLOSE); 2151 2152 /* Special case. */ 2153 inet_csk_listen_stop(sk); 2154 2155 goto adjudge_to_death; 2156 } 2157 2158 /* We need to flush the recv. buffs. We do this only on the 2159 * descriptor close, not protocol-sourced closes, because the 2160 * reader process may not have drained the data yet! 2161 */ 2162 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2163 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2164 tcp_hdr(skb)->fin; 2165 data_was_unread += len; 2166 __kfree_skb(skb); 2167 } 2168 2169 sk_mem_reclaim(sk); 2170 2171 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2172 if (sk->sk_state == TCP_CLOSE) 2173 goto adjudge_to_death; 2174 2175 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2176 * data was lost. To witness the awful effects of the old behavior of 2177 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2178 * GET in an FTP client, suspend the process, wait for the client to 2179 * advertise a zero window, then kill -9 the FTP client, wheee... 2180 * Note: timeout is always zero in such a case. 2181 */ 2182 if (unlikely(tcp_sk(sk)->repair)) { 2183 sk->sk_prot->disconnect(sk, 0); 2184 } else if (data_was_unread) { 2185 /* Unread data was tossed, zap the connection. */ 2186 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2187 tcp_set_state(sk, TCP_CLOSE); 2188 tcp_send_active_reset(sk, sk->sk_allocation); 2189 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2190 /* Check zero linger _after_ checking for unread data. */ 2191 sk->sk_prot->disconnect(sk, 0); 2192 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2193 } else if (tcp_close_state(sk)) { 2194 /* We FIN if the application ate all the data before 2195 * zapping the connection. 2196 */ 2197 2198 /* RED-PEN. Formally speaking, we have broken TCP state 2199 * machine. State transitions: 2200 * 2201 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2202 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2203 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2204 * 2205 * are legal only when FIN has been sent (i.e. in window), 2206 * rather than queued out of window. Purists blame. 2207 * 2208 * F.e. "RFC state" is ESTABLISHED, 2209 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2210 * 2211 * The visible declinations are that sometimes 2212 * we enter time-wait state, when it is not required really 2213 * (harmless), do not send active resets, when they are 2214 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2215 * they look as CLOSING or LAST_ACK for Linux) 2216 * Probably, I missed some more holelets. 2217 * --ANK 2218 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2219 * in a single packet! (May consider it later but will 2220 * probably need API support or TCP_CORK SYN-ACK until 2221 * data is written and socket is closed.) 2222 */ 2223 tcp_send_fin(sk); 2224 } 2225 2226 sk_stream_wait_close(sk, timeout); 2227 2228 adjudge_to_death: 2229 state = sk->sk_state; 2230 sock_hold(sk); 2231 sock_orphan(sk); 2232 2233 /* It is the last release_sock in its life. It will remove backlog. */ 2234 release_sock(sk); 2235 2236 2237 /* Now socket is owned by kernel and we acquire BH lock 2238 to finish close. No need to check for user refs. 2239 */ 2240 local_bh_disable(); 2241 bh_lock_sock(sk); 2242 WARN_ON(sock_owned_by_user(sk)); 2243 2244 percpu_counter_inc(sk->sk_prot->orphan_count); 2245 2246 /* Have we already been destroyed by a softirq or backlog? */ 2247 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2248 goto out; 2249 2250 /* This is a (useful) BSD violating of the RFC. There is a 2251 * problem with TCP as specified in that the other end could 2252 * keep a socket open forever with no application left this end. 2253 * We use a 1 minute timeout (about the same as BSD) then kill 2254 * our end. If they send after that then tough - BUT: long enough 2255 * that we won't make the old 4*rto = almost no time - whoops 2256 * reset mistake. 2257 * 2258 * Nope, it was not mistake. It is really desired behaviour 2259 * f.e. on http servers, when such sockets are useless, but 2260 * consume significant resources. Let's do it with special 2261 * linger2 option. --ANK 2262 */ 2263 2264 if (sk->sk_state == TCP_FIN_WAIT2) { 2265 struct tcp_sock *tp = tcp_sk(sk); 2266 if (tp->linger2 < 0) { 2267 tcp_set_state(sk, TCP_CLOSE); 2268 tcp_send_active_reset(sk, GFP_ATOMIC); 2269 NET_INC_STATS_BH(sock_net(sk), 2270 LINUX_MIB_TCPABORTONLINGER); 2271 } else { 2272 const int tmo = tcp_fin_time(sk); 2273 2274 if (tmo > TCP_TIMEWAIT_LEN) { 2275 inet_csk_reset_keepalive_timer(sk, 2276 tmo - TCP_TIMEWAIT_LEN); 2277 } else { 2278 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2279 goto out; 2280 } 2281 } 2282 } 2283 if (sk->sk_state != TCP_CLOSE) { 2284 sk_mem_reclaim(sk); 2285 if (tcp_check_oom(sk, 0)) { 2286 tcp_set_state(sk, TCP_CLOSE); 2287 tcp_send_active_reset(sk, GFP_ATOMIC); 2288 NET_INC_STATS_BH(sock_net(sk), 2289 LINUX_MIB_TCPABORTONMEMORY); 2290 } 2291 } 2292 2293 if (sk->sk_state == TCP_CLOSE) { 2294 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2295 /* We could get here with a non-NULL req if the socket is 2296 * aborted (e.g., closed with unread data) before 3WHS 2297 * finishes. 2298 */ 2299 if (req != NULL) 2300 reqsk_fastopen_remove(sk, req, false); 2301 inet_csk_destroy_sock(sk); 2302 } 2303 /* Otherwise, socket is reprieved until protocol close. */ 2304 2305 out: 2306 bh_unlock_sock(sk); 2307 local_bh_enable(); 2308 sock_put(sk); 2309 } 2310 EXPORT_SYMBOL(tcp_close); 2311 2312 /* These states need RST on ABORT according to RFC793 */ 2313 2314 static inline bool tcp_need_reset(int state) 2315 { 2316 return (1 << state) & 2317 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2318 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2319 } 2320 2321 int tcp_disconnect(struct sock *sk, int flags) 2322 { 2323 struct inet_sock *inet = inet_sk(sk); 2324 struct inet_connection_sock *icsk = inet_csk(sk); 2325 struct tcp_sock *tp = tcp_sk(sk); 2326 int err = 0; 2327 int old_state = sk->sk_state; 2328 2329 if (old_state != TCP_CLOSE) 2330 tcp_set_state(sk, TCP_CLOSE); 2331 2332 /* ABORT function of RFC793 */ 2333 if (old_state == TCP_LISTEN) { 2334 inet_csk_listen_stop(sk); 2335 } else if (unlikely(tp->repair)) { 2336 sk->sk_err = ECONNABORTED; 2337 } else if (tcp_need_reset(old_state) || 2338 (tp->snd_nxt != tp->write_seq && 2339 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2340 /* The last check adjusts for discrepancy of Linux wrt. RFC 2341 * states 2342 */ 2343 tcp_send_active_reset(sk, gfp_any()); 2344 sk->sk_err = ECONNRESET; 2345 } else if (old_state == TCP_SYN_SENT) 2346 sk->sk_err = ECONNRESET; 2347 2348 tcp_clear_xmit_timers(sk); 2349 __skb_queue_purge(&sk->sk_receive_queue); 2350 tcp_write_queue_purge(sk); 2351 __skb_queue_purge(&tp->out_of_order_queue); 2352 #ifdef CONFIG_NET_DMA 2353 __skb_queue_purge(&sk->sk_async_wait_queue); 2354 #endif 2355 2356 inet->inet_dport = 0; 2357 2358 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2359 inet_reset_saddr(sk); 2360 2361 sk->sk_shutdown = 0; 2362 sock_reset_flag(sk, SOCK_DONE); 2363 tp->srtt_us = 0; 2364 if ((tp->write_seq += tp->max_window + 2) == 0) 2365 tp->write_seq = 1; 2366 icsk->icsk_backoff = 0; 2367 tp->snd_cwnd = 2; 2368 icsk->icsk_probes_out = 0; 2369 tp->packets_out = 0; 2370 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2371 tp->snd_cwnd_cnt = 0; 2372 tp->window_clamp = 0; 2373 tcp_set_ca_state(sk, TCP_CA_Open); 2374 tcp_clear_retrans(tp); 2375 inet_csk_delack_init(sk); 2376 tcp_init_send_head(sk); 2377 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2378 __sk_dst_reset(sk); 2379 2380 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2381 2382 sk->sk_error_report(sk); 2383 return err; 2384 } 2385 EXPORT_SYMBOL(tcp_disconnect); 2386 2387 void tcp_sock_destruct(struct sock *sk) 2388 { 2389 inet_sock_destruct(sk); 2390 2391 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2392 } 2393 2394 static inline bool tcp_can_repair_sock(const struct sock *sk) 2395 { 2396 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2397 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2398 } 2399 2400 static int tcp_repair_options_est(struct tcp_sock *tp, 2401 struct tcp_repair_opt __user *optbuf, unsigned int len) 2402 { 2403 struct tcp_repair_opt opt; 2404 2405 while (len >= sizeof(opt)) { 2406 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2407 return -EFAULT; 2408 2409 optbuf++; 2410 len -= sizeof(opt); 2411 2412 switch (opt.opt_code) { 2413 case TCPOPT_MSS: 2414 tp->rx_opt.mss_clamp = opt.opt_val; 2415 break; 2416 case TCPOPT_WINDOW: 2417 { 2418 u16 snd_wscale = opt.opt_val & 0xFFFF; 2419 u16 rcv_wscale = opt.opt_val >> 16; 2420 2421 if (snd_wscale > 14 || rcv_wscale > 14) 2422 return -EFBIG; 2423 2424 tp->rx_opt.snd_wscale = snd_wscale; 2425 tp->rx_opt.rcv_wscale = rcv_wscale; 2426 tp->rx_opt.wscale_ok = 1; 2427 } 2428 break; 2429 case TCPOPT_SACK_PERM: 2430 if (opt.opt_val != 0) 2431 return -EINVAL; 2432 2433 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2434 if (sysctl_tcp_fack) 2435 tcp_enable_fack(tp); 2436 break; 2437 case TCPOPT_TIMESTAMP: 2438 if (opt.opt_val != 0) 2439 return -EINVAL; 2440 2441 tp->rx_opt.tstamp_ok = 1; 2442 break; 2443 } 2444 } 2445 2446 return 0; 2447 } 2448 2449 /* 2450 * Socket option code for TCP. 2451 */ 2452 static int do_tcp_setsockopt(struct sock *sk, int level, 2453 int optname, char __user *optval, unsigned int optlen) 2454 { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 struct inet_connection_sock *icsk = inet_csk(sk); 2457 int val; 2458 int err = 0; 2459 2460 /* These are data/string values, all the others are ints */ 2461 switch (optname) { 2462 case TCP_CONGESTION: { 2463 char name[TCP_CA_NAME_MAX]; 2464 2465 if (optlen < 1) 2466 return -EINVAL; 2467 2468 val = strncpy_from_user(name, optval, 2469 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2470 if (val < 0) 2471 return -EFAULT; 2472 name[val] = 0; 2473 2474 lock_sock(sk); 2475 err = tcp_set_congestion_control(sk, name); 2476 release_sock(sk); 2477 return err; 2478 } 2479 default: 2480 /* fallthru */ 2481 break; 2482 } 2483 2484 if (optlen < sizeof(int)) 2485 return -EINVAL; 2486 2487 if (get_user(val, (int __user *)optval)) 2488 return -EFAULT; 2489 2490 lock_sock(sk); 2491 2492 switch (optname) { 2493 case TCP_MAXSEG: 2494 /* Values greater than interface MTU won't take effect. However 2495 * at the point when this call is done we typically don't yet 2496 * know which interface is going to be used */ 2497 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2498 err = -EINVAL; 2499 break; 2500 } 2501 tp->rx_opt.user_mss = val; 2502 break; 2503 2504 case TCP_NODELAY: 2505 if (val) { 2506 /* TCP_NODELAY is weaker than TCP_CORK, so that 2507 * this option on corked socket is remembered, but 2508 * it is not activated until cork is cleared. 2509 * 2510 * However, when TCP_NODELAY is set we make 2511 * an explicit push, which overrides even TCP_CORK 2512 * for currently queued segments. 2513 */ 2514 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2515 tcp_push_pending_frames(sk); 2516 } else { 2517 tp->nonagle &= ~TCP_NAGLE_OFF; 2518 } 2519 break; 2520 2521 case TCP_THIN_LINEAR_TIMEOUTS: 2522 if (val < 0 || val > 1) 2523 err = -EINVAL; 2524 else 2525 tp->thin_lto = val; 2526 break; 2527 2528 case TCP_THIN_DUPACK: 2529 if (val < 0 || val > 1) 2530 err = -EINVAL; 2531 else { 2532 tp->thin_dupack = val; 2533 if (tp->thin_dupack) 2534 tcp_disable_early_retrans(tp); 2535 } 2536 break; 2537 2538 case TCP_REPAIR: 2539 if (!tcp_can_repair_sock(sk)) 2540 err = -EPERM; 2541 else if (val == 1) { 2542 tp->repair = 1; 2543 sk->sk_reuse = SK_FORCE_REUSE; 2544 tp->repair_queue = TCP_NO_QUEUE; 2545 } else if (val == 0) { 2546 tp->repair = 0; 2547 sk->sk_reuse = SK_NO_REUSE; 2548 tcp_send_window_probe(sk); 2549 } else 2550 err = -EINVAL; 2551 2552 break; 2553 2554 case TCP_REPAIR_QUEUE: 2555 if (!tp->repair) 2556 err = -EPERM; 2557 else if (val < TCP_QUEUES_NR) 2558 tp->repair_queue = val; 2559 else 2560 err = -EINVAL; 2561 break; 2562 2563 case TCP_QUEUE_SEQ: 2564 if (sk->sk_state != TCP_CLOSE) 2565 err = -EPERM; 2566 else if (tp->repair_queue == TCP_SEND_QUEUE) 2567 tp->write_seq = val; 2568 else if (tp->repair_queue == TCP_RECV_QUEUE) 2569 tp->rcv_nxt = val; 2570 else 2571 err = -EINVAL; 2572 break; 2573 2574 case TCP_REPAIR_OPTIONS: 2575 if (!tp->repair) 2576 err = -EINVAL; 2577 else if (sk->sk_state == TCP_ESTABLISHED) 2578 err = tcp_repair_options_est(tp, 2579 (struct tcp_repair_opt __user *)optval, 2580 optlen); 2581 else 2582 err = -EPERM; 2583 break; 2584 2585 case TCP_CORK: 2586 /* When set indicates to always queue non-full frames. 2587 * Later the user clears this option and we transmit 2588 * any pending partial frames in the queue. This is 2589 * meant to be used alongside sendfile() to get properly 2590 * filled frames when the user (for example) must write 2591 * out headers with a write() call first and then use 2592 * sendfile to send out the data parts. 2593 * 2594 * TCP_CORK can be set together with TCP_NODELAY and it is 2595 * stronger than TCP_NODELAY. 2596 */ 2597 if (val) { 2598 tp->nonagle |= TCP_NAGLE_CORK; 2599 } else { 2600 tp->nonagle &= ~TCP_NAGLE_CORK; 2601 if (tp->nonagle&TCP_NAGLE_OFF) 2602 tp->nonagle |= TCP_NAGLE_PUSH; 2603 tcp_push_pending_frames(sk); 2604 } 2605 break; 2606 2607 case TCP_KEEPIDLE: 2608 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2609 err = -EINVAL; 2610 else { 2611 tp->keepalive_time = val * HZ; 2612 if (sock_flag(sk, SOCK_KEEPOPEN) && 2613 !((1 << sk->sk_state) & 2614 (TCPF_CLOSE | TCPF_LISTEN))) { 2615 u32 elapsed = keepalive_time_elapsed(tp); 2616 if (tp->keepalive_time > elapsed) 2617 elapsed = tp->keepalive_time - elapsed; 2618 else 2619 elapsed = 0; 2620 inet_csk_reset_keepalive_timer(sk, elapsed); 2621 } 2622 } 2623 break; 2624 case TCP_KEEPINTVL: 2625 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2626 err = -EINVAL; 2627 else 2628 tp->keepalive_intvl = val * HZ; 2629 break; 2630 case TCP_KEEPCNT: 2631 if (val < 1 || val > MAX_TCP_KEEPCNT) 2632 err = -EINVAL; 2633 else 2634 tp->keepalive_probes = val; 2635 break; 2636 case TCP_SYNCNT: 2637 if (val < 1 || val > MAX_TCP_SYNCNT) 2638 err = -EINVAL; 2639 else 2640 icsk->icsk_syn_retries = val; 2641 break; 2642 2643 case TCP_LINGER2: 2644 if (val < 0) 2645 tp->linger2 = -1; 2646 else if (val > sysctl_tcp_fin_timeout / HZ) 2647 tp->linger2 = 0; 2648 else 2649 tp->linger2 = val * HZ; 2650 break; 2651 2652 case TCP_DEFER_ACCEPT: 2653 /* Translate value in seconds to number of retransmits */ 2654 icsk->icsk_accept_queue.rskq_defer_accept = 2655 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2656 TCP_RTO_MAX / HZ); 2657 break; 2658 2659 case TCP_WINDOW_CLAMP: 2660 if (!val) { 2661 if (sk->sk_state != TCP_CLOSE) { 2662 err = -EINVAL; 2663 break; 2664 } 2665 tp->window_clamp = 0; 2666 } else 2667 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2668 SOCK_MIN_RCVBUF / 2 : val; 2669 break; 2670 2671 case TCP_QUICKACK: 2672 if (!val) { 2673 icsk->icsk_ack.pingpong = 1; 2674 } else { 2675 icsk->icsk_ack.pingpong = 0; 2676 if ((1 << sk->sk_state) & 2677 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2678 inet_csk_ack_scheduled(sk)) { 2679 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2680 tcp_cleanup_rbuf(sk, 1); 2681 if (!(val & 1)) 2682 icsk->icsk_ack.pingpong = 1; 2683 } 2684 } 2685 break; 2686 2687 #ifdef CONFIG_TCP_MD5SIG 2688 case TCP_MD5SIG: 2689 /* Read the IP->Key mappings from userspace */ 2690 err = tp->af_specific->md5_parse(sk, optval, optlen); 2691 break; 2692 #endif 2693 case TCP_USER_TIMEOUT: 2694 /* Cap the max timeout in ms TCP will retry/retrans 2695 * before giving up and aborting (ETIMEDOUT) a connection. 2696 */ 2697 if (val < 0) 2698 err = -EINVAL; 2699 else 2700 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2701 break; 2702 2703 case TCP_FASTOPEN: 2704 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2705 TCPF_LISTEN))) 2706 err = fastopen_init_queue(sk, val); 2707 else 2708 err = -EINVAL; 2709 break; 2710 case TCP_TIMESTAMP: 2711 if (!tp->repair) 2712 err = -EPERM; 2713 else 2714 tp->tsoffset = val - tcp_time_stamp; 2715 break; 2716 case TCP_NOTSENT_LOWAT: 2717 tp->notsent_lowat = val; 2718 sk->sk_write_space(sk); 2719 break; 2720 default: 2721 err = -ENOPROTOOPT; 2722 break; 2723 } 2724 2725 release_sock(sk); 2726 return err; 2727 } 2728 2729 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2730 unsigned int optlen) 2731 { 2732 const struct inet_connection_sock *icsk = inet_csk(sk); 2733 2734 if (level != SOL_TCP) 2735 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2736 optval, optlen); 2737 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2738 } 2739 EXPORT_SYMBOL(tcp_setsockopt); 2740 2741 #ifdef CONFIG_COMPAT 2742 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2743 char __user *optval, unsigned int optlen) 2744 { 2745 if (level != SOL_TCP) 2746 return inet_csk_compat_setsockopt(sk, level, optname, 2747 optval, optlen); 2748 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2749 } 2750 EXPORT_SYMBOL(compat_tcp_setsockopt); 2751 #endif 2752 2753 /* Return information about state of tcp endpoint in API format. */ 2754 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2755 { 2756 const struct tcp_sock *tp = tcp_sk(sk); 2757 const struct inet_connection_sock *icsk = inet_csk(sk); 2758 u32 now = tcp_time_stamp; 2759 2760 memset(info, 0, sizeof(*info)); 2761 2762 info->tcpi_state = sk->sk_state; 2763 info->tcpi_ca_state = icsk->icsk_ca_state; 2764 info->tcpi_retransmits = icsk->icsk_retransmits; 2765 info->tcpi_probes = icsk->icsk_probes_out; 2766 info->tcpi_backoff = icsk->icsk_backoff; 2767 2768 if (tp->rx_opt.tstamp_ok) 2769 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2770 if (tcp_is_sack(tp)) 2771 info->tcpi_options |= TCPI_OPT_SACK; 2772 if (tp->rx_opt.wscale_ok) { 2773 info->tcpi_options |= TCPI_OPT_WSCALE; 2774 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2775 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2776 } 2777 2778 if (tp->ecn_flags & TCP_ECN_OK) 2779 info->tcpi_options |= TCPI_OPT_ECN; 2780 if (tp->ecn_flags & TCP_ECN_SEEN) 2781 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2782 if (tp->syn_data_acked) 2783 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2784 2785 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2786 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2787 info->tcpi_snd_mss = tp->mss_cache; 2788 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2789 2790 if (sk->sk_state == TCP_LISTEN) { 2791 info->tcpi_unacked = sk->sk_ack_backlog; 2792 info->tcpi_sacked = sk->sk_max_ack_backlog; 2793 } else { 2794 info->tcpi_unacked = tp->packets_out; 2795 info->tcpi_sacked = tp->sacked_out; 2796 } 2797 info->tcpi_lost = tp->lost_out; 2798 info->tcpi_retrans = tp->retrans_out; 2799 info->tcpi_fackets = tp->fackets_out; 2800 2801 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2802 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2803 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2804 2805 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2806 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2807 info->tcpi_rtt = tp->srtt_us >> 3; 2808 info->tcpi_rttvar = tp->mdev_us >> 2; 2809 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2810 info->tcpi_snd_cwnd = tp->snd_cwnd; 2811 info->tcpi_advmss = tp->advmss; 2812 info->tcpi_reordering = tp->reordering; 2813 2814 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2815 info->tcpi_rcv_space = tp->rcvq_space.space; 2816 2817 info->tcpi_total_retrans = tp->total_retrans; 2818 2819 info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ? 2820 sk->sk_pacing_rate : ~0ULL; 2821 info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ? 2822 sk->sk_max_pacing_rate : ~0ULL; 2823 } 2824 EXPORT_SYMBOL_GPL(tcp_get_info); 2825 2826 static int do_tcp_getsockopt(struct sock *sk, int level, 2827 int optname, char __user *optval, int __user *optlen) 2828 { 2829 struct inet_connection_sock *icsk = inet_csk(sk); 2830 struct tcp_sock *tp = tcp_sk(sk); 2831 int val, len; 2832 2833 if (get_user(len, optlen)) 2834 return -EFAULT; 2835 2836 len = min_t(unsigned int, len, sizeof(int)); 2837 2838 if (len < 0) 2839 return -EINVAL; 2840 2841 switch (optname) { 2842 case TCP_MAXSEG: 2843 val = tp->mss_cache; 2844 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2845 val = tp->rx_opt.user_mss; 2846 if (tp->repair) 2847 val = tp->rx_opt.mss_clamp; 2848 break; 2849 case TCP_NODELAY: 2850 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2851 break; 2852 case TCP_CORK: 2853 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2854 break; 2855 case TCP_KEEPIDLE: 2856 val = keepalive_time_when(tp) / HZ; 2857 break; 2858 case TCP_KEEPINTVL: 2859 val = keepalive_intvl_when(tp) / HZ; 2860 break; 2861 case TCP_KEEPCNT: 2862 val = keepalive_probes(tp); 2863 break; 2864 case TCP_SYNCNT: 2865 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2866 break; 2867 case TCP_LINGER2: 2868 val = tp->linger2; 2869 if (val >= 0) 2870 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2871 break; 2872 case TCP_DEFER_ACCEPT: 2873 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2874 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2875 break; 2876 case TCP_WINDOW_CLAMP: 2877 val = tp->window_clamp; 2878 break; 2879 case TCP_INFO: { 2880 struct tcp_info info; 2881 2882 if (get_user(len, optlen)) 2883 return -EFAULT; 2884 2885 tcp_get_info(sk, &info); 2886 2887 len = min_t(unsigned int, len, sizeof(info)); 2888 if (put_user(len, optlen)) 2889 return -EFAULT; 2890 if (copy_to_user(optval, &info, len)) 2891 return -EFAULT; 2892 return 0; 2893 } 2894 case TCP_QUICKACK: 2895 val = !icsk->icsk_ack.pingpong; 2896 break; 2897 2898 case TCP_CONGESTION: 2899 if (get_user(len, optlen)) 2900 return -EFAULT; 2901 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2902 if (put_user(len, optlen)) 2903 return -EFAULT; 2904 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2905 return -EFAULT; 2906 return 0; 2907 2908 case TCP_THIN_LINEAR_TIMEOUTS: 2909 val = tp->thin_lto; 2910 break; 2911 case TCP_THIN_DUPACK: 2912 val = tp->thin_dupack; 2913 break; 2914 2915 case TCP_REPAIR: 2916 val = tp->repair; 2917 break; 2918 2919 case TCP_REPAIR_QUEUE: 2920 if (tp->repair) 2921 val = tp->repair_queue; 2922 else 2923 return -EINVAL; 2924 break; 2925 2926 case TCP_QUEUE_SEQ: 2927 if (tp->repair_queue == TCP_SEND_QUEUE) 2928 val = tp->write_seq; 2929 else if (tp->repair_queue == TCP_RECV_QUEUE) 2930 val = tp->rcv_nxt; 2931 else 2932 return -EINVAL; 2933 break; 2934 2935 case TCP_USER_TIMEOUT: 2936 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2937 break; 2938 2939 case TCP_FASTOPEN: 2940 if (icsk->icsk_accept_queue.fastopenq != NULL) 2941 val = icsk->icsk_accept_queue.fastopenq->max_qlen; 2942 else 2943 val = 0; 2944 break; 2945 2946 case TCP_TIMESTAMP: 2947 val = tcp_time_stamp + tp->tsoffset; 2948 break; 2949 case TCP_NOTSENT_LOWAT: 2950 val = tp->notsent_lowat; 2951 break; 2952 default: 2953 return -ENOPROTOOPT; 2954 } 2955 2956 if (put_user(len, optlen)) 2957 return -EFAULT; 2958 if (copy_to_user(optval, &val, len)) 2959 return -EFAULT; 2960 return 0; 2961 } 2962 2963 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2964 int __user *optlen) 2965 { 2966 struct inet_connection_sock *icsk = inet_csk(sk); 2967 2968 if (level != SOL_TCP) 2969 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2970 optval, optlen); 2971 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2972 } 2973 EXPORT_SYMBOL(tcp_getsockopt); 2974 2975 #ifdef CONFIG_COMPAT 2976 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2977 char __user *optval, int __user *optlen) 2978 { 2979 if (level != SOL_TCP) 2980 return inet_csk_compat_getsockopt(sk, level, optname, 2981 optval, optlen); 2982 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2983 } 2984 EXPORT_SYMBOL(compat_tcp_getsockopt); 2985 #endif 2986 2987 #ifdef CONFIG_TCP_MD5SIG 2988 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly; 2989 static DEFINE_MUTEX(tcp_md5sig_mutex); 2990 2991 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2992 { 2993 int cpu; 2994 2995 for_each_possible_cpu(cpu) { 2996 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2997 2998 if (p->md5_desc.tfm) 2999 crypto_free_hash(p->md5_desc.tfm); 3000 } 3001 free_percpu(pool); 3002 } 3003 3004 static void __tcp_alloc_md5sig_pool(void) 3005 { 3006 int cpu; 3007 struct tcp_md5sig_pool __percpu *pool; 3008 3009 pool = alloc_percpu(struct tcp_md5sig_pool); 3010 if (!pool) 3011 return; 3012 3013 for_each_possible_cpu(cpu) { 3014 struct crypto_hash *hash; 3015 3016 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 3017 if (IS_ERR_OR_NULL(hash)) 3018 goto out_free; 3019 3020 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 3021 } 3022 /* before setting tcp_md5sig_pool, we must commit all writes 3023 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool() 3024 */ 3025 smp_wmb(); 3026 tcp_md5sig_pool = pool; 3027 return; 3028 out_free: 3029 __tcp_free_md5sig_pool(pool); 3030 } 3031 3032 bool tcp_alloc_md5sig_pool(void) 3033 { 3034 if (unlikely(!tcp_md5sig_pool)) { 3035 mutex_lock(&tcp_md5sig_mutex); 3036 3037 if (!tcp_md5sig_pool) 3038 __tcp_alloc_md5sig_pool(); 3039 3040 mutex_unlock(&tcp_md5sig_mutex); 3041 } 3042 return tcp_md5sig_pool != NULL; 3043 } 3044 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3045 3046 3047 /** 3048 * tcp_get_md5sig_pool - get md5sig_pool for this user 3049 * 3050 * We use percpu structure, so if we succeed, we exit with preemption 3051 * and BH disabled, to make sure another thread or softirq handling 3052 * wont try to get same context. 3053 */ 3054 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3055 { 3056 struct tcp_md5sig_pool __percpu *p; 3057 3058 local_bh_disable(); 3059 p = ACCESS_ONCE(tcp_md5sig_pool); 3060 if (p) 3061 return __this_cpu_ptr(p); 3062 3063 local_bh_enable(); 3064 return NULL; 3065 } 3066 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3067 3068 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3069 const struct tcphdr *th) 3070 { 3071 struct scatterlist sg; 3072 struct tcphdr hdr; 3073 int err; 3074 3075 /* We are not allowed to change tcphdr, make a local copy */ 3076 memcpy(&hdr, th, sizeof(hdr)); 3077 hdr.check = 0; 3078 3079 /* options aren't included in the hash */ 3080 sg_init_one(&sg, &hdr, sizeof(hdr)); 3081 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3082 return err; 3083 } 3084 EXPORT_SYMBOL(tcp_md5_hash_header); 3085 3086 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3087 const struct sk_buff *skb, unsigned int header_len) 3088 { 3089 struct scatterlist sg; 3090 const struct tcphdr *tp = tcp_hdr(skb); 3091 struct hash_desc *desc = &hp->md5_desc; 3092 unsigned int i; 3093 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3094 skb_headlen(skb) - header_len : 0; 3095 const struct skb_shared_info *shi = skb_shinfo(skb); 3096 struct sk_buff *frag_iter; 3097 3098 sg_init_table(&sg, 1); 3099 3100 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3101 if (crypto_hash_update(desc, &sg, head_data_len)) 3102 return 1; 3103 3104 for (i = 0; i < shi->nr_frags; ++i) { 3105 const struct skb_frag_struct *f = &shi->frags[i]; 3106 unsigned int offset = f->page_offset; 3107 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3108 3109 sg_set_page(&sg, page, skb_frag_size(f), 3110 offset_in_page(offset)); 3111 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3112 return 1; 3113 } 3114 3115 skb_walk_frags(skb, frag_iter) 3116 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3117 return 1; 3118 3119 return 0; 3120 } 3121 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3122 3123 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3124 { 3125 struct scatterlist sg; 3126 3127 sg_init_one(&sg, key->key, key->keylen); 3128 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3129 } 3130 EXPORT_SYMBOL(tcp_md5_hash_key); 3131 3132 #endif 3133 3134 void tcp_done(struct sock *sk) 3135 { 3136 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3137 3138 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3139 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3140 3141 tcp_set_state(sk, TCP_CLOSE); 3142 tcp_clear_xmit_timers(sk); 3143 if (req != NULL) 3144 reqsk_fastopen_remove(sk, req, false); 3145 3146 sk->sk_shutdown = SHUTDOWN_MASK; 3147 3148 if (!sock_flag(sk, SOCK_DEAD)) 3149 sk->sk_state_change(sk); 3150 else 3151 inet_csk_destroy_sock(sk); 3152 } 3153 EXPORT_SYMBOL_GPL(tcp_done); 3154 3155 extern struct tcp_congestion_ops tcp_reno; 3156 3157 static __initdata unsigned long thash_entries; 3158 static int __init set_thash_entries(char *str) 3159 { 3160 ssize_t ret; 3161 3162 if (!str) 3163 return 0; 3164 3165 ret = kstrtoul(str, 0, &thash_entries); 3166 if (ret) 3167 return 0; 3168 3169 return 1; 3170 } 3171 __setup("thash_entries=", set_thash_entries); 3172 3173 static void tcp_init_mem(void) 3174 { 3175 unsigned long limit = nr_free_buffer_pages() / 8; 3176 limit = max(limit, 128UL); 3177 sysctl_tcp_mem[0] = limit / 4 * 3; 3178 sysctl_tcp_mem[1] = limit; 3179 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3180 } 3181 3182 void __init tcp_init(void) 3183 { 3184 struct sk_buff *skb = NULL; 3185 unsigned long limit; 3186 int max_rshare, max_wshare, cnt; 3187 unsigned int i; 3188 3189 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3190 3191 percpu_counter_init(&tcp_sockets_allocated, 0); 3192 percpu_counter_init(&tcp_orphan_count, 0); 3193 tcp_hashinfo.bind_bucket_cachep = 3194 kmem_cache_create("tcp_bind_bucket", 3195 sizeof(struct inet_bind_bucket), 0, 3196 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3197 3198 /* Size and allocate the main established and bind bucket 3199 * hash tables. 3200 * 3201 * The methodology is similar to that of the buffer cache. 3202 */ 3203 tcp_hashinfo.ehash = 3204 alloc_large_system_hash("TCP established", 3205 sizeof(struct inet_ehash_bucket), 3206 thash_entries, 3207 17, /* one slot per 128 KB of memory */ 3208 0, 3209 NULL, 3210 &tcp_hashinfo.ehash_mask, 3211 0, 3212 thash_entries ? 0 : 512 * 1024); 3213 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3214 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3215 3216 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3217 panic("TCP: failed to alloc ehash_locks"); 3218 tcp_hashinfo.bhash = 3219 alloc_large_system_hash("TCP bind", 3220 sizeof(struct inet_bind_hashbucket), 3221 tcp_hashinfo.ehash_mask + 1, 3222 17, /* one slot per 128 KB of memory */ 3223 0, 3224 &tcp_hashinfo.bhash_size, 3225 NULL, 3226 0, 3227 64 * 1024); 3228 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3229 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3230 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3231 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3232 } 3233 3234 3235 cnt = tcp_hashinfo.ehash_mask + 1; 3236 3237 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3238 sysctl_tcp_max_orphans = cnt / 2; 3239 sysctl_max_syn_backlog = max(128, cnt / 256); 3240 3241 tcp_init_mem(); 3242 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3243 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3244 max_wshare = min(4UL*1024*1024, limit); 3245 max_rshare = min(6UL*1024*1024, limit); 3246 3247 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3248 sysctl_tcp_wmem[1] = 16*1024; 3249 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3250 3251 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3252 sysctl_tcp_rmem[1] = 87380; 3253 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3254 3255 pr_info("Hash tables configured (established %u bind %u)\n", 3256 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3257 3258 tcp_metrics_init(); 3259 3260 tcp_register_congestion_control(&tcp_reno); 3261 3262 tcp_tasklet_init(); 3263 } 3264