xref: /openbmc/linux/net/ipv4/tcp.c (revision a8fe58ce)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
286 
287 int sysctl_tcp_min_tso_segs __read_mostly = 2;
288 
289 int sysctl_tcp_autocorking __read_mostly = 1;
290 
291 struct percpu_counter tcp_orphan_count;
292 EXPORT_SYMBOL_GPL(tcp_orphan_count);
293 
294 long sysctl_tcp_mem[3] __read_mostly;
295 int sysctl_tcp_wmem[3] __read_mostly;
296 int sysctl_tcp_rmem[3] __read_mostly;
297 
298 EXPORT_SYMBOL(sysctl_tcp_mem);
299 EXPORT_SYMBOL(sysctl_tcp_rmem);
300 EXPORT_SYMBOL(sysctl_tcp_wmem);
301 
302 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 int tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	if (!tcp_memory_pressure) {
332 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
333 		tcp_memory_pressure = 1;
334 	}
335 }
336 EXPORT_SYMBOL(tcp_enter_memory_pressure);
337 
338 /* Convert seconds to retransmits based on initial and max timeout */
339 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
340 {
341 	u8 res = 0;
342 
343 	if (seconds > 0) {
344 		int period = timeout;
345 
346 		res = 1;
347 		while (seconds > period && res < 255) {
348 			res++;
349 			timeout <<= 1;
350 			if (timeout > rto_max)
351 				timeout = rto_max;
352 			period += timeout;
353 		}
354 	}
355 	return res;
356 }
357 
358 /* Convert retransmits to seconds based on initial and max timeout */
359 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
360 {
361 	int period = 0;
362 
363 	if (retrans > 0) {
364 		period = timeout;
365 		while (--retrans) {
366 			timeout <<= 1;
367 			if (timeout > rto_max)
368 				timeout = rto_max;
369 			period += timeout;
370 		}
371 	}
372 	return period;
373 }
374 
375 /* Address-family independent initialization for a tcp_sock.
376  *
377  * NOTE: A lot of things set to zero explicitly by call to
378  *       sk_alloc() so need not be done here.
379  */
380 void tcp_init_sock(struct sock *sk)
381 {
382 	struct inet_connection_sock *icsk = inet_csk(sk);
383 	struct tcp_sock *tp = tcp_sk(sk);
384 
385 	__skb_queue_head_init(&tp->out_of_order_queue);
386 	tcp_init_xmit_timers(sk);
387 	tcp_prequeue_init(tp);
388 	INIT_LIST_HEAD(&tp->tsq_node);
389 
390 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
391 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
392 	tp->rtt_min[0].rtt = ~0U;
393 
394 	/* So many TCP implementations out there (incorrectly) count the
395 	 * initial SYN frame in their delayed-ACK and congestion control
396 	 * algorithms that we must have the following bandaid to talk
397 	 * efficiently to them.  -DaveM
398 	 */
399 	tp->snd_cwnd = TCP_INIT_CWND;
400 
401 	/* See draft-stevens-tcpca-spec-01 for discussion of the
402 	 * initialization of these values.
403 	 */
404 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 	tp->snd_cwnd_clamp = ~0;
406 	tp->mss_cache = TCP_MSS_DEFAULT;
407 	u64_stats_init(&tp->syncp);
408 
409 	tp->reordering = sysctl_tcp_reordering;
410 	tcp_enable_early_retrans(tp);
411 	tcp_assign_congestion_control(sk);
412 
413 	tp->tsoffset = 0;
414 
415 	sk->sk_state = TCP_CLOSE;
416 
417 	sk->sk_write_space = sk_stream_write_space;
418 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
419 
420 	icsk->icsk_sync_mss = tcp_sync_mss;
421 
422 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
423 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
424 
425 	local_bh_disable();
426 	if (mem_cgroup_sockets_enabled)
427 		sock_update_memcg(sk);
428 	sk_sockets_allocated_inc(sk);
429 	local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432 
433 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
434 {
435 	if (sk->sk_tsflags) {
436 		struct skb_shared_info *shinfo = skb_shinfo(skb);
437 
438 		sock_tx_timestamp(sk, &shinfo->tx_flags);
439 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
440 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
441 	}
442 }
443 
444 /*
445  *	Wait for a TCP event.
446  *
447  *	Note that we don't need to lock the socket, as the upper poll layers
448  *	take care of normal races (between the test and the event) and we don't
449  *	go look at any of the socket buffers directly.
450  */
451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
452 {
453 	unsigned int mask;
454 	struct sock *sk = sock->sk;
455 	const struct tcp_sock *tp = tcp_sk(sk);
456 	int state;
457 
458 	sock_rps_record_flow(sk);
459 
460 	sock_poll_wait(file, sk_sleep(sk), wait);
461 
462 	state = sk_state_load(sk);
463 	if (state == TCP_LISTEN)
464 		return inet_csk_listen_poll(sk);
465 
466 	/* Socket is not locked. We are protected from async events
467 	 * by poll logic and correct handling of state changes
468 	 * made by other threads is impossible in any case.
469 	 */
470 
471 	mask = 0;
472 
473 	/*
474 	 * POLLHUP is certainly not done right. But poll() doesn't
475 	 * have a notion of HUP in just one direction, and for a
476 	 * socket the read side is more interesting.
477 	 *
478 	 * Some poll() documentation says that POLLHUP is incompatible
479 	 * with the POLLOUT/POLLWR flags, so somebody should check this
480 	 * all. But careful, it tends to be safer to return too many
481 	 * bits than too few, and you can easily break real applications
482 	 * if you don't tell them that something has hung up!
483 	 *
484 	 * Check-me.
485 	 *
486 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
487 	 * our fs/select.c). It means that after we received EOF,
488 	 * poll always returns immediately, making impossible poll() on write()
489 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
490 	 * if and only if shutdown has been made in both directions.
491 	 * Actually, it is interesting to look how Solaris and DUX
492 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
493 	 * then we could set it on SND_SHUTDOWN. BTW examples given
494 	 * in Stevens' books assume exactly this behaviour, it explains
495 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
496 	 *
497 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
498 	 * blocking on fresh not-connected or disconnected socket. --ANK
499 	 */
500 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
501 		mask |= POLLHUP;
502 	if (sk->sk_shutdown & RCV_SHUTDOWN)
503 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
504 
505 	/* Connected or passive Fast Open socket? */
506 	if (state != TCP_SYN_SENT &&
507 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
508 		int target = sock_rcvlowat(sk, 0, INT_MAX);
509 
510 		if (tp->urg_seq == tp->copied_seq &&
511 		    !sock_flag(sk, SOCK_URGINLINE) &&
512 		    tp->urg_data)
513 			target++;
514 
515 		if (tp->rcv_nxt - tp->copied_seq >= target)
516 			mask |= POLLIN | POLLRDNORM;
517 
518 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
519 			if (sk_stream_is_writeable(sk)) {
520 				mask |= POLLOUT | POLLWRNORM;
521 			} else {  /* send SIGIO later */
522 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
523 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
524 
525 				/* Race breaker. If space is freed after
526 				 * wspace test but before the flags are set,
527 				 * IO signal will be lost. Memory barrier
528 				 * pairs with the input side.
529 				 */
530 				smp_mb__after_atomic();
531 				if (sk_stream_is_writeable(sk))
532 					mask |= POLLOUT | POLLWRNORM;
533 			}
534 		} else
535 			mask |= POLLOUT | POLLWRNORM;
536 
537 		if (tp->urg_data & TCP_URG_VALID)
538 			mask |= POLLPRI;
539 	}
540 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
541 	smp_rmb();
542 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
543 		mask |= POLLERR;
544 
545 	return mask;
546 }
547 EXPORT_SYMBOL(tcp_poll);
548 
549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
550 {
551 	struct tcp_sock *tp = tcp_sk(sk);
552 	int answ;
553 	bool slow;
554 
555 	switch (cmd) {
556 	case SIOCINQ:
557 		if (sk->sk_state == TCP_LISTEN)
558 			return -EINVAL;
559 
560 		slow = lock_sock_fast(sk);
561 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
562 			answ = 0;
563 		else if (sock_flag(sk, SOCK_URGINLINE) ||
564 			 !tp->urg_data ||
565 			 before(tp->urg_seq, tp->copied_seq) ||
566 			 !before(tp->urg_seq, tp->rcv_nxt)) {
567 
568 			answ = tp->rcv_nxt - tp->copied_seq;
569 
570 			/* Subtract 1, if FIN was received */
571 			if (answ && sock_flag(sk, SOCK_DONE))
572 				answ--;
573 		} else
574 			answ = tp->urg_seq - tp->copied_seq;
575 		unlock_sock_fast(sk, slow);
576 		break;
577 	case SIOCATMARK:
578 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
579 		break;
580 	case SIOCOUTQ:
581 		if (sk->sk_state == TCP_LISTEN)
582 			return -EINVAL;
583 
584 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
585 			answ = 0;
586 		else
587 			answ = tp->write_seq - tp->snd_una;
588 		break;
589 	case SIOCOUTQNSD:
590 		if (sk->sk_state == TCP_LISTEN)
591 			return -EINVAL;
592 
593 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
594 			answ = 0;
595 		else
596 			answ = tp->write_seq - tp->snd_nxt;
597 		break;
598 	default:
599 		return -ENOIOCTLCMD;
600 	}
601 
602 	return put_user(answ, (int __user *)arg);
603 }
604 EXPORT_SYMBOL(tcp_ioctl);
605 
606 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
607 {
608 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
609 	tp->pushed_seq = tp->write_seq;
610 }
611 
612 static inline bool forced_push(const struct tcp_sock *tp)
613 {
614 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
615 }
616 
617 static void skb_entail(struct sock *sk, struct sk_buff *skb)
618 {
619 	struct tcp_sock *tp = tcp_sk(sk);
620 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
621 
622 	skb->csum    = 0;
623 	tcb->seq     = tcb->end_seq = tp->write_seq;
624 	tcb->tcp_flags = TCPHDR_ACK;
625 	tcb->sacked  = 0;
626 	__skb_header_release(skb);
627 	tcp_add_write_queue_tail(sk, skb);
628 	sk->sk_wmem_queued += skb->truesize;
629 	sk_mem_charge(sk, skb->truesize);
630 	if (tp->nonagle & TCP_NAGLE_PUSH)
631 		tp->nonagle &= ~TCP_NAGLE_PUSH;
632 
633 	tcp_slow_start_after_idle_check(sk);
634 }
635 
636 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
637 {
638 	if (flags & MSG_OOB)
639 		tp->snd_up = tp->write_seq;
640 }
641 
642 /* If a not yet filled skb is pushed, do not send it if
643  * we have data packets in Qdisc or NIC queues :
644  * Because TX completion will happen shortly, it gives a chance
645  * to coalesce future sendmsg() payload into this skb, without
646  * need for a timer, and with no latency trade off.
647  * As packets containing data payload have a bigger truesize
648  * than pure acks (dataless) packets, the last checks prevent
649  * autocorking if we only have an ACK in Qdisc/NIC queues,
650  * or if TX completion was delayed after we processed ACK packet.
651  */
652 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
653 				int size_goal)
654 {
655 	return skb->len < size_goal &&
656 	       sysctl_tcp_autocorking &&
657 	       skb != tcp_write_queue_head(sk) &&
658 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
659 }
660 
661 static void tcp_push(struct sock *sk, int flags, int mss_now,
662 		     int nonagle, int size_goal)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct sk_buff *skb;
666 
667 	if (!tcp_send_head(sk))
668 		return;
669 
670 	skb = tcp_write_queue_tail(sk);
671 	if (!(flags & MSG_MORE) || forced_push(tp))
672 		tcp_mark_push(tp, skb);
673 
674 	tcp_mark_urg(tp, flags);
675 
676 	if (tcp_should_autocork(sk, skb, size_goal)) {
677 
678 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
679 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
680 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
681 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
682 		}
683 		/* It is possible TX completion already happened
684 		 * before we set TSQ_THROTTLED.
685 		 */
686 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
687 			return;
688 	}
689 
690 	if (flags & MSG_MORE)
691 		nonagle = TCP_NAGLE_CORK;
692 
693 	__tcp_push_pending_frames(sk, mss_now, nonagle);
694 }
695 
696 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
697 				unsigned int offset, size_t len)
698 {
699 	struct tcp_splice_state *tss = rd_desc->arg.data;
700 	int ret;
701 
702 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
703 			      min(rd_desc->count, len), tss->flags,
704 			      skb_socket_splice);
705 	if (ret > 0)
706 		rd_desc->count -= ret;
707 	return ret;
708 }
709 
710 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
711 {
712 	/* Store TCP splice context information in read_descriptor_t. */
713 	read_descriptor_t rd_desc = {
714 		.arg.data = tss,
715 		.count	  = tss->len,
716 	};
717 
718 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
719 }
720 
721 /**
722  *  tcp_splice_read - splice data from TCP socket to a pipe
723  * @sock:	socket to splice from
724  * @ppos:	position (not valid)
725  * @pipe:	pipe to splice to
726  * @len:	number of bytes to splice
727  * @flags:	splice modifier flags
728  *
729  * Description:
730  *    Will read pages from given socket and fill them into a pipe.
731  *
732  **/
733 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
734 			struct pipe_inode_info *pipe, size_t len,
735 			unsigned int flags)
736 {
737 	struct sock *sk = sock->sk;
738 	struct tcp_splice_state tss = {
739 		.pipe = pipe,
740 		.len = len,
741 		.flags = flags,
742 	};
743 	long timeo;
744 	ssize_t spliced;
745 	int ret;
746 
747 	sock_rps_record_flow(sk);
748 	/*
749 	 * We can't seek on a socket input
750 	 */
751 	if (unlikely(*ppos))
752 		return -ESPIPE;
753 
754 	ret = spliced = 0;
755 
756 	lock_sock(sk);
757 
758 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
759 	while (tss.len) {
760 		ret = __tcp_splice_read(sk, &tss);
761 		if (ret < 0)
762 			break;
763 		else if (!ret) {
764 			if (spliced)
765 				break;
766 			if (sock_flag(sk, SOCK_DONE))
767 				break;
768 			if (sk->sk_err) {
769 				ret = sock_error(sk);
770 				break;
771 			}
772 			if (sk->sk_shutdown & RCV_SHUTDOWN)
773 				break;
774 			if (sk->sk_state == TCP_CLOSE) {
775 				/*
776 				 * This occurs when user tries to read
777 				 * from never connected socket.
778 				 */
779 				if (!sock_flag(sk, SOCK_DONE))
780 					ret = -ENOTCONN;
781 				break;
782 			}
783 			if (!timeo) {
784 				ret = -EAGAIN;
785 				break;
786 			}
787 			sk_wait_data(sk, &timeo, NULL);
788 			if (signal_pending(current)) {
789 				ret = sock_intr_errno(timeo);
790 				break;
791 			}
792 			continue;
793 		}
794 		tss.len -= ret;
795 		spliced += ret;
796 
797 		if (!timeo)
798 			break;
799 		release_sock(sk);
800 		lock_sock(sk);
801 
802 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
803 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
804 		    signal_pending(current))
805 			break;
806 	}
807 
808 	release_sock(sk);
809 
810 	if (spliced)
811 		return spliced;
812 
813 	return ret;
814 }
815 EXPORT_SYMBOL(tcp_splice_read);
816 
817 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
818 				    bool force_schedule)
819 {
820 	struct sk_buff *skb;
821 
822 	/* The TCP header must be at least 32-bit aligned.  */
823 	size = ALIGN(size, 4);
824 
825 	if (unlikely(tcp_under_memory_pressure(sk)))
826 		sk_mem_reclaim_partial(sk);
827 
828 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
829 	if (likely(skb)) {
830 		bool mem_scheduled;
831 
832 		if (force_schedule) {
833 			mem_scheduled = true;
834 			sk_forced_mem_schedule(sk, skb->truesize);
835 		} else {
836 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
837 		}
838 		if (likely(mem_scheduled)) {
839 			skb_reserve(skb, sk->sk_prot->max_header);
840 			/*
841 			 * Make sure that we have exactly size bytes
842 			 * available to the caller, no more, no less.
843 			 */
844 			skb->reserved_tailroom = skb->end - skb->tail - size;
845 			return skb;
846 		}
847 		__kfree_skb(skb);
848 	} else {
849 		sk->sk_prot->enter_memory_pressure(sk);
850 		sk_stream_moderate_sndbuf(sk);
851 	}
852 	return NULL;
853 }
854 
855 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
856 				       int large_allowed)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	u32 new_size_goal, size_goal;
860 
861 	if (!large_allowed || !sk_can_gso(sk))
862 		return mss_now;
863 
864 	/* Note : tcp_tso_autosize() will eventually split this later */
865 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
866 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
867 
868 	/* We try hard to avoid divides here */
869 	size_goal = tp->gso_segs * mss_now;
870 	if (unlikely(new_size_goal < size_goal ||
871 		     new_size_goal >= size_goal + mss_now)) {
872 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
873 				     sk->sk_gso_max_segs);
874 		size_goal = tp->gso_segs * mss_now;
875 	}
876 
877 	return max(size_goal, mss_now);
878 }
879 
880 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
881 {
882 	int mss_now;
883 
884 	mss_now = tcp_current_mss(sk);
885 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
886 
887 	return mss_now;
888 }
889 
890 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
891 				size_t size, int flags)
892 {
893 	struct tcp_sock *tp = tcp_sk(sk);
894 	int mss_now, size_goal;
895 	int err;
896 	ssize_t copied;
897 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
898 
899 	/* Wait for a connection to finish. One exception is TCP Fast Open
900 	 * (passive side) where data is allowed to be sent before a connection
901 	 * is fully established.
902 	 */
903 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
904 	    !tcp_passive_fastopen(sk)) {
905 		err = sk_stream_wait_connect(sk, &timeo);
906 		if (err != 0)
907 			goto out_err;
908 	}
909 
910 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
911 
912 	mss_now = tcp_send_mss(sk, &size_goal, flags);
913 	copied = 0;
914 
915 	err = -EPIPE;
916 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
917 		goto out_err;
918 
919 	while (size > 0) {
920 		struct sk_buff *skb = tcp_write_queue_tail(sk);
921 		int copy, i;
922 		bool can_coalesce;
923 
924 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
925 new_segment:
926 			if (!sk_stream_memory_free(sk))
927 				goto wait_for_sndbuf;
928 
929 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
930 						  skb_queue_empty(&sk->sk_write_queue));
931 			if (!skb)
932 				goto wait_for_memory;
933 
934 			skb_entail(sk, skb);
935 			copy = size_goal;
936 		}
937 
938 		if (copy > size)
939 			copy = size;
940 
941 		i = skb_shinfo(skb)->nr_frags;
942 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
943 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
944 			tcp_mark_push(tp, skb);
945 			goto new_segment;
946 		}
947 		if (!sk_wmem_schedule(sk, copy))
948 			goto wait_for_memory;
949 
950 		if (can_coalesce) {
951 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
952 		} else {
953 			get_page(page);
954 			skb_fill_page_desc(skb, i, page, offset, copy);
955 		}
956 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
957 
958 		skb->len += copy;
959 		skb->data_len += copy;
960 		skb->truesize += copy;
961 		sk->sk_wmem_queued += copy;
962 		sk_mem_charge(sk, copy);
963 		skb->ip_summed = CHECKSUM_PARTIAL;
964 		tp->write_seq += copy;
965 		TCP_SKB_CB(skb)->end_seq += copy;
966 		tcp_skb_pcount_set(skb, 0);
967 
968 		if (!copied)
969 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
970 
971 		copied += copy;
972 		offset += copy;
973 		size -= copy;
974 		if (!size) {
975 			tcp_tx_timestamp(sk, skb);
976 			goto out;
977 		}
978 
979 		if (skb->len < size_goal || (flags & MSG_OOB))
980 			continue;
981 
982 		if (forced_push(tp)) {
983 			tcp_mark_push(tp, skb);
984 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
985 		} else if (skb == tcp_send_head(sk))
986 			tcp_push_one(sk, mss_now);
987 		continue;
988 
989 wait_for_sndbuf:
990 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
991 wait_for_memory:
992 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
993 			 TCP_NAGLE_PUSH, size_goal);
994 
995 		err = sk_stream_wait_memory(sk, &timeo);
996 		if (err != 0)
997 			goto do_error;
998 
999 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1000 	}
1001 
1002 out:
1003 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1004 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1005 	return copied;
1006 
1007 do_error:
1008 	if (copied)
1009 		goto out;
1010 out_err:
1011 	/* make sure we wake any epoll edge trigger waiter */
1012 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1013 		sk->sk_write_space(sk);
1014 	return sk_stream_error(sk, flags, err);
1015 }
1016 
1017 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1018 		 size_t size, int flags)
1019 {
1020 	ssize_t res;
1021 
1022 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1023 	    !sk_check_csum_caps(sk))
1024 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1025 					flags);
1026 
1027 	lock_sock(sk);
1028 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1029 	release_sock(sk);
1030 	return res;
1031 }
1032 EXPORT_SYMBOL(tcp_sendpage);
1033 
1034 static inline int select_size(const struct sock *sk, bool sg)
1035 {
1036 	const struct tcp_sock *tp = tcp_sk(sk);
1037 	int tmp = tp->mss_cache;
1038 
1039 	if (sg) {
1040 		if (sk_can_gso(sk)) {
1041 			/* Small frames wont use a full page:
1042 			 * Payload will immediately follow tcp header.
1043 			 */
1044 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1045 		} else {
1046 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1047 
1048 			if (tmp >= pgbreak &&
1049 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1050 				tmp = pgbreak;
1051 		}
1052 	}
1053 
1054 	return tmp;
1055 }
1056 
1057 void tcp_free_fastopen_req(struct tcp_sock *tp)
1058 {
1059 	if (tp->fastopen_req) {
1060 		kfree(tp->fastopen_req);
1061 		tp->fastopen_req = NULL;
1062 	}
1063 }
1064 
1065 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1066 				int *copied, size_t size)
1067 {
1068 	struct tcp_sock *tp = tcp_sk(sk);
1069 	int err, flags;
1070 
1071 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1072 		return -EOPNOTSUPP;
1073 	if (tp->fastopen_req)
1074 		return -EALREADY; /* Another Fast Open is in progress */
1075 
1076 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1077 				   sk->sk_allocation);
1078 	if (unlikely(!tp->fastopen_req))
1079 		return -ENOBUFS;
1080 	tp->fastopen_req->data = msg;
1081 	tp->fastopen_req->size = size;
1082 
1083 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1084 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1085 				    msg->msg_namelen, flags);
1086 	*copied = tp->fastopen_req->copied;
1087 	tcp_free_fastopen_req(tp);
1088 	return err;
1089 }
1090 
1091 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1092 {
1093 	struct tcp_sock *tp = tcp_sk(sk);
1094 	struct sk_buff *skb;
1095 	int flags, err, copied = 0;
1096 	int mss_now = 0, size_goal, copied_syn = 0;
1097 	bool sg;
1098 	long timeo;
1099 
1100 	lock_sock(sk);
1101 
1102 	flags = msg->msg_flags;
1103 	if (flags & MSG_FASTOPEN) {
1104 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1105 		if (err == -EINPROGRESS && copied_syn > 0)
1106 			goto out;
1107 		else if (err)
1108 			goto out_err;
1109 	}
1110 
1111 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1112 
1113 	/* Wait for a connection to finish. One exception is TCP Fast Open
1114 	 * (passive side) where data is allowed to be sent before a connection
1115 	 * is fully established.
1116 	 */
1117 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1118 	    !tcp_passive_fastopen(sk)) {
1119 		err = sk_stream_wait_connect(sk, &timeo);
1120 		if (err != 0)
1121 			goto do_error;
1122 	}
1123 
1124 	if (unlikely(tp->repair)) {
1125 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1126 			copied = tcp_send_rcvq(sk, msg, size);
1127 			goto out_nopush;
1128 		}
1129 
1130 		err = -EINVAL;
1131 		if (tp->repair_queue == TCP_NO_QUEUE)
1132 			goto out_err;
1133 
1134 		/* 'common' sending to sendq */
1135 	}
1136 
1137 	/* This should be in poll */
1138 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1139 
1140 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1141 
1142 	/* Ok commence sending. */
1143 	copied = 0;
1144 
1145 	err = -EPIPE;
1146 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1147 		goto out_err;
1148 
1149 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1150 
1151 	while (msg_data_left(msg)) {
1152 		int copy = 0;
1153 		int max = size_goal;
1154 
1155 		skb = tcp_write_queue_tail(sk);
1156 		if (tcp_send_head(sk)) {
1157 			if (skb->ip_summed == CHECKSUM_NONE)
1158 				max = mss_now;
1159 			copy = max - skb->len;
1160 		}
1161 
1162 		if (copy <= 0) {
1163 new_segment:
1164 			/* Allocate new segment. If the interface is SG,
1165 			 * allocate skb fitting to single page.
1166 			 */
1167 			if (!sk_stream_memory_free(sk))
1168 				goto wait_for_sndbuf;
1169 
1170 			skb = sk_stream_alloc_skb(sk,
1171 						  select_size(sk, sg),
1172 						  sk->sk_allocation,
1173 						  skb_queue_empty(&sk->sk_write_queue));
1174 			if (!skb)
1175 				goto wait_for_memory;
1176 
1177 			/*
1178 			 * Check whether we can use HW checksum.
1179 			 */
1180 			if (sk_check_csum_caps(sk))
1181 				skb->ip_summed = CHECKSUM_PARTIAL;
1182 
1183 			skb_entail(sk, skb);
1184 			copy = size_goal;
1185 			max = size_goal;
1186 
1187 			/* All packets are restored as if they have
1188 			 * already been sent. skb_mstamp isn't set to
1189 			 * avoid wrong rtt estimation.
1190 			 */
1191 			if (tp->repair)
1192 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1193 		}
1194 
1195 		/* Try to append data to the end of skb. */
1196 		if (copy > msg_data_left(msg))
1197 			copy = msg_data_left(msg);
1198 
1199 		/* Where to copy to? */
1200 		if (skb_availroom(skb) > 0) {
1201 			/* We have some space in skb head. Superb! */
1202 			copy = min_t(int, copy, skb_availroom(skb));
1203 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1204 			if (err)
1205 				goto do_fault;
1206 		} else {
1207 			bool merge = true;
1208 			int i = skb_shinfo(skb)->nr_frags;
1209 			struct page_frag *pfrag = sk_page_frag(sk);
1210 
1211 			if (!sk_page_frag_refill(sk, pfrag))
1212 				goto wait_for_memory;
1213 
1214 			if (!skb_can_coalesce(skb, i, pfrag->page,
1215 					      pfrag->offset)) {
1216 				if (i == MAX_SKB_FRAGS || !sg) {
1217 					tcp_mark_push(tp, skb);
1218 					goto new_segment;
1219 				}
1220 				merge = false;
1221 			}
1222 
1223 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1224 
1225 			if (!sk_wmem_schedule(sk, copy))
1226 				goto wait_for_memory;
1227 
1228 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1229 						       pfrag->page,
1230 						       pfrag->offset,
1231 						       copy);
1232 			if (err)
1233 				goto do_error;
1234 
1235 			/* Update the skb. */
1236 			if (merge) {
1237 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1238 			} else {
1239 				skb_fill_page_desc(skb, i, pfrag->page,
1240 						   pfrag->offset, copy);
1241 				get_page(pfrag->page);
1242 			}
1243 			pfrag->offset += copy;
1244 		}
1245 
1246 		if (!copied)
1247 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1248 
1249 		tp->write_seq += copy;
1250 		TCP_SKB_CB(skb)->end_seq += copy;
1251 		tcp_skb_pcount_set(skb, 0);
1252 
1253 		copied += copy;
1254 		if (!msg_data_left(msg)) {
1255 			tcp_tx_timestamp(sk, skb);
1256 			goto out;
1257 		}
1258 
1259 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1260 			continue;
1261 
1262 		if (forced_push(tp)) {
1263 			tcp_mark_push(tp, skb);
1264 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1265 		} else if (skb == tcp_send_head(sk))
1266 			tcp_push_one(sk, mss_now);
1267 		continue;
1268 
1269 wait_for_sndbuf:
1270 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1271 wait_for_memory:
1272 		if (copied)
1273 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1274 				 TCP_NAGLE_PUSH, size_goal);
1275 
1276 		err = sk_stream_wait_memory(sk, &timeo);
1277 		if (err != 0)
1278 			goto do_error;
1279 
1280 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1281 	}
1282 
1283 out:
1284 	if (copied)
1285 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1286 out_nopush:
1287 	release_sock(sk);
1288 	return copied + copied_syn;
1289 
1290 do_fault:
1291 	if (!skb->len) {
1292 		tcp_unlink_write_queue(skb, sk);
1293 		/* It is the one place in all of TCP, except connection
1294 		 * reset, where we can be unlinking the send_head.
1295 		 */
1296 		tcp_check_send_head(sk, skb);
1297 		sk_wmem_free_skb(sk, skb);
1298 	}
1299 
1300 do_error:
1301 	if (copied + copied_syn)
1302 		goto out;
1303 out_err:
1304 	err = sk_stream_error(sk, flags, err);
1305 	/* make sure we wake any epoll edge trigger waiter */
1306 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1307 		sk->sk_write_space(sk);
1308 	release_sock(sk);
1309 	return err;
1310 }
1311 EXPORT_SYMBOL(tcp_sendmsg);
1312 
1313 /*
1314  *	Handle reading urgent data. BSD has very simple semantics for
1315  *	this, no blocking and very strange errors 8)
1316  */
1317 
1318 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1319 {
1320 	struct tcp_sock *tp = tcp_sk(sk);
1321 
1322 	/* No URG data to read. */
1323 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1324 	    tp->urg_data == TCP_URG_READ)
1325 		return -EINVAL;	/* Yes this is right ! */
1326 
1327 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1328 		return -ENOTCONN;
1329 
1330 	if (tp->urg_data & TCP_URG_VALID) {
1331 		int err = 0;
1332 		char c = tp->urg_data;
1333 
1334 		if (!(flags & MSG_PEEK))
1335 			tp->urg_data = TCP_URG_READ;
1336 
1337 		/* Read urgent data. */
1338 		msg->msg_flags |= MSG_OOB;
1339 
1340 		if (len > 0) {
1341 			if (!(flags & MSG_TRUNC))
1342 				err = memcpy_to_msg(msg, &c, 1);
1343 			len = 1;
1344 		} else
1345 			msg->msg_flags |= MSG_TRUNC;
1346 
1347 		return err ? -EFAULT : len;
1348 	}
1349 
1350 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1351 		return 0;
1352 
1353 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1354 	 * the available implementations agree in this case:
1355 	 * this call should never block, independent of the
1356 	 * blocking state of the socket.
1357 	 * Mike <pall@rz.uni-karlsruhe.de>
1358 	 */
1359 	return -EAGAIN;
1360 }
1361 
1362 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1363 {
1364 	struct sk_buff *skb;
1365 	int copied = 0, err = 0;
1366 
1367 	/* XXX -- need to support SO_PEEK_OFF */
1368 
1369 	skb_queue_walk(&sk->sk_write_queue, skb) {
1370 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1371 		if (err)
1372 			break;
1373 
1374 		copied += skb->len;
1375 	}
1376 
1377 	return err ?: copied;
1378 }
1379 
1380 /* Clean up the receive buffer for full frames taken by the user,
1381  * then send an ACK if necessary.  COPIED is the number of bytes
1382  * tcp_recvmsg has given to the user so far, it speeds up the
1383  * calculation of whether or not we must ACK for the sake of
1384  * a window update.
1385  */
1386 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1387 {
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 	bool time_to_ack = false;
1390 
1391 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1392 
1393 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1394 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1395 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1396 
1397 	if (inet_csk_ack_scheduled(sk)) {
1398 		const struct inet_connection_sock *icsk = inet_csk(sk);
1399 		   /* Delayed ACKs frequently hit locked sockets during bulk
1400 		    * receive. */
1401 		if (icsk->icsk_ack.blocked ||
1402 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1403 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1404 		    /*
1405 		     * If this read emptied read buffer, we send ACK, if
1406 		     * connection is not bidirectional, user drained
1407 		     * receive buffer and there was a small segment
1408 		     * in queue.
1409 		     */
1410 		    (copied > 0 &&
1411 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1412 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1413 		       !icsk->icsk_ack.pingpong)) &&
1414 		      !atomic_read(&sk->sk_rmem_alloc)))
1415 			time_to_ack = true;
1416 	}
1417 
1418 	/* We send an ACK if we can now advertise a non-zero window
1419 	 * which has been raised "significantly".
1420 	 *
1421 	 * Even if window raised up to infinity, do not send window open ACK
1422 	 * in states, where we will not receive more. It is useless.
1423 	 */
1424 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1425 		__u32 rcv_window_now = tcp_receive_window(tp);
1426 
1427 		/* Optimize, __tcp_select_window() is not cheap. */
1428 		if (2*rcv_window_now <= tp->window_clamp) {
1429 			__u32 new_window = __tcp_select_window(sk);
1430 
1431 			/* Send ACK now, if this read freed lots of space
1432 			 * in our buffer. Certainly, new_window is new window.
1433 			 * We can advertise it now, if it is not less than current one.
1434 			 * "Lots" means "at least twice" here.
1435 			 */
1436 			if (new_window && new_window >= 2 * rcv_window_now)
1437 				time_to_ack = true;
1438 		}
1439 	}
1440 	if (time_to_ack)
1441 		tcp_send_ack(sk);
1442 }
1443 
1444 static void tcp_prequeue_process(struct sock *sk)
1445 {
1446 	struct sk_buff *skb;
1447 	struct tcp_sock *tp = tcp_sk(sk);
1448 
1449 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1450 
1451 	/* RX process wants to run with disabled BHs, though it is not
1452 	 * necessary */
1453 	local_bh_disable();
1454 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1455 		sk_backlog_rcv(sk, skb);
1456 	local_bh_enable();
1457 
1458 	/* Clear memory counter. */
1459 	tp->ucopy.memory = 0;
1460 }
1461 
1462 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1463 {
1464 	struct sk_buff *skb;
1465 	u32 offset;
1466 
1467 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1468 		offset = seq - TCP_SKB_CB(skb)->seq;
1469 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1470 			offset--;
1471 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1472 			*off = offset;
1473 			return skb;
1474 		}
1475 		/* This looks weird, but this can happen if TCP collapsing
1476 		 * splitted a fat GRO packet, while we released socket lock
1477 		 * in skb_splice_bits()
1478 		 */
1479 		sk_eat_skb(sk, skb);
1480 	}
1481 	return NULL;
1482 }
1483 
1484 /*
1485  * This routine provides an alternative to tcp_recvmsg() for routines
1486  * that would like to handle copying from skbuffs directly in 'sendfile'
1487  * fashion.
1488  * Note:
1489  *	- It is assumed that the socket was locked by the caller.
1490  *	- The routine does not block.
1491  *	- At present, there is no support for reading OOB data
1492  *	  or for 'peeking' the socket using this routine
1493  *	  (although both would be easy to implement).
1494  */
1495 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1496 		  sk_read_actor_t recv_actor)
1497 {
1498 	struct sk_buff *skb;
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 	u32 seq = tp->copied_seq;
1501 	u32 offset;
1502 	int copied = 0;
1503 
1504 	if (sk->sk_state == TCP_LISTEN)
1505 		return -ENOTCONN;
1506 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1507 		if (offset < skb->len) {
1508 			int used;
1509 			size_t len;
1510 
1511 			len = skb->len - offset;
1512 			/* Stop reading if we hit a patch of urgent data */
1513 			if (tp->urg_data) {
1514 				u32 urg_offset = tp->urg_seq - seq;
1515 				if (urg_offset < len)
1516 					len = urg_offset;
1517 				if (!len)
1518 					break;
1519 			}
1520 			used = recv_actor(desc, skb, offset, len);
1521 			if (used <= 0) {
1522 				if (!copied)
1523 					copied = used;
1524 				break;
1525 			} else if (used <= len) {
1526 				seq += used;
1527 				copied += used;
1528 				offset += used;
1529 			}
1530 			/* If recv_actor drops the lock (e.g. TCP splice
1531 			 * receive) the skb pointer might be invalid when
1532 			 * getting here: tcp_collapse might have deleted it
1533 			 * while aggregating skbs from the socket queue.
1534 			 */
1535 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1536 			if (!skb)
1537 				break;
1538 			/* TCP coalescing might have appended data to the skb.
1539 			 * Try to splice more frags
1540 			 */
1541 			if (offset + 1 != skb->len)
1542 				continue;
1543 		}
1544 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1545 			sk_eat_skb(sk, skb);
1546 			++seq;
1547 			break;
1548 		}
1549 		sk_eat_skb(sk, skb);
1550 		if (!desc->count)
1551 			break;
1552 		tp->copied_seq = seq;
1553 	}
1554 	tp->copied_seq = seq;
1555 
1556 	tcp_rcv_space_adjust(sk);
1557 
1558 	/* Clean up data we have read: This will do ACK frames. */
1559 	if (copied > 0) {
1560 		tcp_recv_skb(sk, seq, &offset);
1561 		tcp_cleanup_rbuf(sk, copied);
1562 	}
1563 	return copied;
1564 }
1565 EXPORT_SYMBOL(tcp_read_sock);
1566 
1567 /*
1568  *	This routine copies from a sock struct into the user buffer.
1569  *
1570  *	Technical note: in 2.3 we work on _locked_ socket, so that
1571  *	tricks with *seq access order and skb->users are not required.
1572  *	Probably, code can be easily improved even more.
1573  */
1574 
1575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1576 		int flags, int *addr_len)
1577 {
1578 	struct tcp_sock *tp = tcp_sk(sk);
1579 	int copied = 0;
1580 	u32 peek_seq;
1581 	u32 *seq;
1582 	unsigned long used;
1583 	int err;
1584 	int target;		/* Read at least this many bytes */
1585 	long timeo;
1586 	struct task_struct *user_recv = NULL;
1587 	struct sk_buff *skb, *last;
1588 	u32 urg_hole = 0;
1589 
1590 	if (unlikely(flags & MSG_ERRQUEUE))
1591 		return inet_recv_error(sk, msg, len, addr_len);
1592 
1593 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1594 	    (sk->sk_state == TCP_ESTABLISHED))
1595 		sk_busy_loop(sk, nonblock);
1596 
1597 	lock_sock(sk);
1598 
1599 	err = -ENOTCONN;
1600 	if (sk->sk_state == TCP_LISTEN)
1601 		goto out;
1602 
1603 	timeo = sock_rcvtimeo(sk, nonblock);
1604 
1605 	/* Urgent data needs to be handled specially. */
1606 	if (flags & MSG_OOB)
1607 		goto recv_urg;
1608 
1609 	if (unlikely(tp->repair)) {
1610 		err = -EPERM;
1611 		if (!(flags & MSG_PEEK))
1612 			goto out;
1613 
1614 		if (tp->repair_queue == TCP_SEND_QUEUE)
1615 			goto recv_sndq;
1616 
1617 		err = -EINVAL;
1618 		if (tp->repair_queue == TCP_NO_QUEUE)
1619 			goto out;
1620 
1621 		/* 'common' recv queue MSG_PEEK-ing */
1622 	}
1623 
1624 	seq = &tp->copied_seq;
1625 	if (flags & MSG_PEEK) {
1626 		peek_seq = tp->copied_seq;
1627 		seq = &peek_seq;
1628 	}
1629 
1630 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1631 
1632 	do {
1633 		u32 offset;
1634 
1635 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1636 		if (tp->urg_data && tp->urg_seq == *seq) {
1637 			if (copied)
1638 				break;
1639 			if (signal_pending(current)) {
1640 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1641 				break;
1642 			}
1643 		}
1644 
1645 		/* Next get a buffer. */
1646 
1647 		last = skb_peek_tail(&sk->sk_receive_queue);
1648 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1649 			last = skb;
1650 			/* Now that we have two receive queues this
1651 			 * shouldn't happen.
1652 			 */
1653 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1654 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1655 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1656 				 flags))
1657 				break;
1658 
1659 			offset = *seq - TCP_SKB_CB(skb)->seq;
1660 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1661 				offset--;
1662 			if (offset < skb->len)
1663 				goto found_ok_skb;
1664 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1665 				goto found_fin_ok;
1666 			WARN(!(flags & MSG_PEEK),
1667 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1668 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1669 		}
1670 
1671 		/* Well, if we have backlog, try to process it now yet. */
1672 
1673 		if (copied >= target && !sk->sk_backlog.tail)
1674 			break;
1675 
1676 		if (copied) {
1677 			if (sk->sk_err ||
1678 			    sk->sk_state == TCP_CLOSE ||
1679 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1680 			    !timeo ||
1681 			    signal_pending(current))
1682 				break;
1683 		} else {
1684 			if (sock_flag(sk, SOCK_DONE))
1685 				break;
1686 
1687 			if (sk->sk_err) {
1688 				copied = sock_error(sk);
1689 				break;
1690 			}
1691 
1692 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1693 				break;
1694 
1695 			if (sk->sk_state == TCP_CLOSE) {
1696 				if (!sock_flag(sk, SOCK_DONE)) {
1697 					/* This occurs when user tries to read
1698 					 * from never connected socket.
1699 					 */
1700 					copied = -ENOTCONN;
1701 					break;
1702 				}
1703 				break;
1704 			}
1705 
1706 			if (!timeo) {
1707 				copied = -EAGAIN;
1708 				break;
1709 			}
1710 
1711 			if (signal_pending(current)) {
1712 				copied = sock_intr_errno(timeo);
1713 				break;
1714 			}
1715 		}
1716 
1717 		tcp_cleanup_rbuf(sk, copied);
1718 
1719 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1720 			/* Install new reader */
1721 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1722 				user_recv = current;
1723 				tp->ucopy.task = user_recv;
1724 				tp->ucopy.msg = msg;
1725 			}
1726 
1727 			tp->ucopy.len = len;
1728 
1729 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1730 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1731 
1732 			/* Ugly... If prequeue is not empty, we have to
1733 			 * process it before releasing socket, otherwise
1734 			 * order will be broken at second iteration.
1735 			 * More elegant solution is required!!!
1736 			 *
1737 			 * Look: we have the following (pseudo)queues:
1738 			 *
1739 			 * 1. packets in flight
1740 			 * 2. backlog
1741 			 * 3. prequeue
1742 			 * 4. receive_queue
1743 			 *
1744 			 * Each queue can be processed only if the next ones
1745 			 * are empty. At this point we have empty receive_queue.
1746 			 * But prequeue _can_ be not empty after 2nd iteration,
1747 			 * when we jumped to start of loop because backlog
1748 			 * processing added something to receive_queue.
1749 			 * We cannot release_sock(), because backlog contains
1750 			 * packets arrived _after_ prequeued ones.
1751 			 *
1752 			 * Shortly, algorithm is clear --- to process all
1753 			 * the queues in order. We could make it more directly,
1754 			 * requeueing packets from backlog to prequeue, if
1755 			 * is not empty. It is more elegant, but eats cycles,
1756 			 * unfortunately.
1757 			 */
1758 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1759 				goto do_prequeue;
1760 
1761 			/* __ Set realtime policy in scheduler __ */
1762 		}
1763 
1764 		if (copied >= target) {
1765 			/* Do not sleep, just process backlog. */
1766 			release_sock(sk);
1767 			lock_sock(sk);
1768 		} else {
1769 			sk_wait_data(sk, &timeo, last);
1770 		}
1771 
1772 		if (user_recv) {
1773 			int chunk;
1774 
1775 			/* __ Restore normal policy in scheduler __ */
1776 
1777 			chunk = len - tp->ucopy.len;
1778 			if (chunk != 0) {
1779 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1780 				len -= chunk;
1781 				copied += chunk;
1782 			}
1783 
1784 			if (tp->rcv_nxt == tp->copied_seq &&
1785 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1786 do_prequeue:
1787 				tcp_prequeue_process(sk);
1788 
1789 				chunk = len - tp->ucopy.len;
1790 				if (chunk != 0) {
1791 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1792 					len -= chunk;
1793 					copied += chunk;
1794 				}
1795 			}
1796 		}
1797 		if ((flags & MSG_PEEK) &&
1798 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1799 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1800 					    current->comm,
1801 					    task_pid_nr(current));
1802 			peek_seq = tp->copied_seq;
1803 		}
1804 		continue;
1805 
1806 	found_ok_skb:
1807 		/* Ok so how much can we use? */
1808 		used = skb->len - offset;
1809 		if (len < used)
1810 			used = len;
1811 
1812 		/* Do we have urgent data here? */
1813 		if (tp->urg_data) {
1814 			u32 urg_offset = tp->urg_seq - *seq;
1815 			if (urg_offset < used) {
1816 				if (!urg_offset) {
1817 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1818 						++*seq;
1819 						urg_hole++;
1820 						offset++;
1821 						used--;
1822 						if (!used)
1823 							goto skip_copy;
1824 					}
1825 				} else
1826 					used = urg_offset;
1827 			}
1828 		}
1829 
1830 		if (!(flags & MSG_TRUNC)) {
1831 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1832 			if (err) {
1833 				/* Exception. Bailout! */
1834 				if (!copied)
1835 					copied = -EFAULT;
1836 				break;
1837 			}
1838 		}
1839 
1840 		*seq += used;
1841 		copied += used;
1842 		len -= used;
1843 
1844 		tcp_rcv_space_adjust(sk);
1845 
1846 skip_copy:
1847 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1848 			tp->urg_data = 0;
1849 			tcp_fast_path_check(sk);
1850 		}
1851 		if (used + offset < skb->len)
1852 			continue;
1853 
1854 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1855 			goto found_fin_ok;
1856 		if (!(flags & MSG_PEEK))
1857 			sk_eat_skb(sk, skb);
1858 		continue;
1859 
1860 	found_fin_ok:
1861 		/* Process the FIN. */
1862 		++*seq;
1863 		if (!(flags & MSG_PEEK))
1864 			sk_eat_skb(sk, skb);
1865 		break;
1866 	} while (len > 0);
1867 
1868 	if (user_recv) {
1869 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1870 			int chunk;
1871 
1872 			tp->ucopy.len = copied > 0 ? len : 0;
1873 
1874 			tcp_prequeue_process(sk);
1875 
1876 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1877 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1878 				len -= chunk;
1879 				copied += chunk;
1880 			}
1881 		}
1882 
1883 		tp->ucopy.task = NULL;
1884 		tp->ucopy.len = 0;
1885 	}
1886 
1887 	/* According to UNIX98, msg_name/msg_namelen are ignored
1888 	 * on connected socket. I was just happy when found this 8) --ANK
1889 	 */
1890 
1891 	/* Clean up data we have read: This will do ACK frames. */
1892 	tcp_cleanup_rbuf(sk, copied);
1893 
1894 	release_sock(sk);
1895 	return copied;
1896 
1897 out:
1898 	release_sock(sk);
1899 	return err;
1900 
1901 recv_urg:
1902 	err = tcp_recv_urg(sk, msg, len, flags);
1903 	goto out;
1904 
1905 recv_sndq:
1906 	err = tcp_peek_sndq(sk, msg, len);
1907 	goto out;
1908 }
1909 EXPORT_SYMBOL(tcp_recvmsg);
1910 
1911 void tcp_set_state(struct sock *sk, int state)
1912 {
1913 	int oldstate = sk->sk_state;
1914 
1915 	switch (state) {
1916 	case TCP_ESTABLISHED:
1917 		if (oldstate != TCP_ESTABLISHED)
1918 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1919 		break;
1920 
1921 	case TCP_CLOSE:
1922 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1923 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1924 
1925 		sk->sk_prot->unhash(sk);
1926 		if (inet_csk(sk)->icsk_bind_hash &&
1927 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1928 			inet_put_port(sk);
1929 		/* fall through */
1930 	default:
1931 		if (oldstate == TCP_ESTABLISHED)
1932 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1933 	}
1934 
1935 	/* Change state AFTER socket is unhashed to avoid closed
1936 	 * socket sitting in hash tables.
1937 	 */
1938 	sk_state_store(sk, state);
1939 
1940 #ifdef STATE_TRACE
1941 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1942 #endif
1943 }
1944 EXPORT_SYMBOL_GPL(tcp_set_state);
1945 
1946 /*
1947  *	State processing on a close. This implements the state shift for
1948  *	sending our FIN frame. Note that we only send a FIN for some
1949  *	states. A shutdown() may have already sent the FIN, or we may be
1950  *	closed.
1951  */
1952 
1953 static const unsigned char new_state[16] = {
1954   /* current state:        new state:      action:	*/
1955   [0 /* (Invalid) */]	= TCP_CLOSE,
1956   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1957   [TCP_SYN_SENT]	= TCP_CLOSE,
1958   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1959   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1960   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1961   [TCP_TIME_WAIT]	= TCP_CLOSE,
1962   [TCP_CLOSE]		= TCP_CLOSE,
1963   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1964   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1965   [TCP_LISTEN]		= TCP_CLOSE,
1966   [TCP_CLOSING]		= TCP_CLOSING,
1967   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1968 };
1969 
1970 static int tcp_close_state(struct sock *sk)
1971 {
1972 	int next = (int)new_state[sk->sk_state];
1973 	int ns = next & TCP_STATE_MASK;
1974 
1975 	tcp_set_state(sk, ns);
1976 
1977 	return next & TCP_ACTION_FIN;
1978 }
1979 
1980 /*
1981  *	Shutdown the sending side of a connection. Much like close except
1982  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1983  */
1984 
1985 void tcp_shutdown(struct sock *sk, int how)
1986 {
1987 	/*	We need to grab some memory, and put together a FIN,
1988 	 *	and then put it into the queue to be sent.
1989 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1990 	 */
1991 	if (!(how & SEND_SHUTDOWN))
1992 		return;
1993 
1994 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1995 	if ((1 << sk->sk_state) &
1996 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1997 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1998 		/* Clear out any half completed packets.  FIN if needed. */
1999 		if (tcp_close_state(sk))
2000 			tcp_send_fin(sk);
2001 	}
2002 }
2003 EXPORT_SYMBOL(tcp_shutdown);
2004 
2005 bool tcp_check_oom(struct sock *sk, int shift)
2006 {
2007 	bool too_many_orphans, out_of_socket_memory;
2008 
2009 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2010 	out_of_socket_memory = tcp_out_of_memory(sk);
2011 
2012 	if (too_many_orphans)
2013 		net_info_ratelimited("too many orphaned sockets\n");
2014 	if (out_of_socket_memory)
2015 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2016 	return too_many_orphans || out_of_socket_memory;
2017 }
2018 
2019 void tcp_close(struct sock *sk, long timeout)
2020 {
2021 	struct sk_buff *skb;
2022 	int data_was_unread = 0;
2023 	int state;
2024 
2025 	lock_sock(sk);
2026 	sk->sk_shutdown = SHUTDOWN_MASK;
2027 
2028 	if (sk->sk_state == TCP_LISTEN) {
2029 		tcp_set_state(sk, TCP_CLOSE);
2030 
2031 		/* Special case. */
2032 		inet_csk_listen_stop(sk);
2033 
2034 		goto adjudge_to_death;
2035 	}
2036 
2037 	/*  We need to flush the recv. buffs.  We do this only on the
2038 	 *  descriptor close, not protocol-sourced closes, because the
2039 	 *  reader process may not have drained the data yet!
2040 	 */
2041 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2042 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2043 
2044 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2045 			len--;
2046 		data_was_unread += len;
2047 		__kfree_skb(skb);
2048 	}
2049 
2050 	sk_mem_reclaim(sk);
2051 
2052 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2053 	if (sk->sk_state == TCP_CLOSE)
2054 		goto adjudge_to_death;
2055 
2056 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2057 	 * data was lost. To witness the awful effects of the old behavior of
2058 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2059 	 * GET in an FTP client, suspend the process, wait for the client to
2060 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2061 	 * Note: timeout is always zero in such a case.
2062 	 */
2063 	if (unlikely(tcp_sk(sk)->repair)) {
2064 		sk->sk_prot->disconnect(sk, 0);
2065 	} else if (data_was_unread) {
2066 		/* Unread data was tossed, zap the connection. */
2067 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2068 		tcp_set_state(sk, TCP_CLOSE);
2069 		tcp_send_active_reset(sk, sk->sk_allocation);
2070 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2071 		/* Check zero linger _after_ checking for unread data. */
2072 		sk->sk_prot->disconnect(sk, 0);
2073 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2074 	} else if (tcp_close_state(sk)) {
2075 		/* We FIN if the application ate all the data before
2076 		 * zapping the connection.
2077 		 */
2078 
2079 		/* RED-PEN. Formally speaking, we have broken TCP state
2080 		 * machine. State transitions:
2081 		 *
2082 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2083 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2084 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2085 		 *
2086 		 * are legal only when FIN has been sent (i.e. in window),
2087 		 * rather than queued out of window. Purists blame.
2088 		 *
2089 		 * F.e. "RFC state" is ESTABLISHED,
2090 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2091 		 *
2092 		 * The visible declinations are that sometimes
2093 		 * we enter time-wait state, when it is not required really
2094 		 * (harmless), do not send active resets, when they are
2095 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2096 		 * they look as CLOSING or LAST_ACK for Linux)
2097 		 * Probably, I missed some more holelets.
2098 		 * 						--ANK
2099 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2100 		 * in a single packet! (May consider it later but will
2101 		 * probably need API support or TCP_CORK SYN-ACK until
2102 		 * data is written and socket is closed.)
2103 		 */
2104 		tcp_send_fin(sk);
2105 	}
2106 
2107 	sk_stream_wait_close(sk, timeout);
2108 
2109 adjudge_to_death:
2110 	state = sk->sk_state;
2111 	sock_hold(sk);
2112 	sock_orphan(sk);
2113 
2114 	/* It is the last release_sock in its life. It will remove backlog. */
2115 	release_sock(sk);
2116 
2117 
2118 	/* Now socket is owned by kernel and we acquire BH lock
2119 	   to finish close. No need to check for user refs.
2120 	 */
2121 	local_bh_disable();
2122 	bh_lock_sock(sk);
2123 	WARN_ON(sock_owned_by_user(sk));
2124 
2125 	percpu_counter_inc(sk->sk_prot->orphan_count);
2126 
2127 	/* Have we already been destroyed by a softirq or backlog? */
2128 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2129 		goto out;
2130 
2131 	/*	This is a (useful) BSD violating of the RFC. There is a
2132 	 *	problem with TCP as specified in that the other end could
2133 	 *	keep a socket open forever with no application left this end.
2134 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2135 	 *	our end. If they send after that then tough - BUT: long enough
2136 	 *	that we won't make the old 4*rto = almost no time - whoops
2137 	 *	reset mistake.
2138 	 *
2139 	 *	Nope, it was not mistake. It is really desired behaviour
2140 	 *	f.e. on http servers, when such sockets are useless, but
2141 	 *	consume significant resources. Let's do it with special
2142 	 *	linger2	option.					--ANK
2143 	 */
2144 
2145 	if (sk->sk_state == TCP_FIN_WAIT2) {
2146 		struct tcp_sock *tp = tcp_sk(sk);
2147 		if (tp->linger2 < 0) {
2148 			tcp_set_state(sk, TCP_CLOSE);
2149 			tcp_send_active_reset(sk, GFP_ATOMIC);
2150 			NET_INC_STATS_BH(sock_net(sk),
2151 					LINUX_MIB_TCPABORTONLINGER);
2152 		} else {
2153 			const int tmo = tcp_fin_time(sk);
2154 
2155 			if (tmo > TCP_TIMEWAIT_LEN) {
2156 				inet_csk_reset_keepalive_timer(sk,
2157 						tmo - TCP_TIMEWAIT_LEN);
2158 			} else {
2159 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2160 				goto out;
2161 			}
2162 		}
2163 	}
2164 	if (sk->sk_state != TCP_CLOSE) {
2165 		sk_mem_reclaim(sk);
2166 		if (tcp_check_oom(sk, 0)) {
2167 			tcp_set_state(sk, TCP_CLOSE);
2168 			tcp_send_active_reset(sk, GFP_ATOMIC);
2169 			NET_INC_STATS_BH(sock_net(sk),
2170 					LINUX_MIB_TCPABORTONMEMORY);
2171 		}
2172 	}
2173 
2174 	if (sk->sk_state == TCP_CLOSE) {
2175 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2176 		/* We could get here with a non-NULL req if the socket is
2177 		 * aborted (e.g., closed with unread data) before 3WHS
2178 		 * finishes.
2179 		 */
2180 		if (req)
2181 			reqsk_fastopen_remove(sk, req, false);
2182 		inet_csk_destroy_sock(sk);
2183 	}
2184 	/* Otherwise, socket is reprieved until protocol close. */
2185 
2186 out:
2187 	bh_unlock_sock(sk);
2188 	local_bh_enable();
2189 	sock_put(sk);
2190 }
2191 EXPORT_SYMBOL(tcp_close);
2192 
2193 /* These states need RST on ABORT according to RFC793 */
2194 
2195 static inline bool tcp_need_reset(int state)
2196 {
2197 	return (1 << state) &
2198 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2199 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2200 }
2201 
2202 int tcp_disconnect(struct sock *sk, int flags)
2203 {
2204 	struct inet_sock *inet = inet_sk(sk);
2205 	struct inet_connection_sock *icsk = inet_csk(sk);
2206 	struct tcp_sock *tp = tcp_sk(sk);
2207 	int err = 0;
2208 	int old_state = sk->sk_state;
2209 
2210 	if (old_state != TCP_CLOSE)
2211 		tcp_set_state(sk, TCP_CLOSE);
2212 
2213 	/* ABORT function of RFC793 */
2214 	if (old_state == TCP_LISTEN) {
2215 		inet_csk_listen_stop(sk);
2216 	} else if (unlikely(tp->repair)) {
2217 		sk->sk_err = ECONNABORTED;
2218 	} else if (tcp_need_reset(old_state) ||
2219 		   (tp->snd_nxt != tp->write_seq &&
2220 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2221 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2222 		 * states
2223 		 */
2224 		tcp_send_active_reset(sk, gfp_any());
2225 		sk->sk_err = ECONNRESET;
2226 	} else if (old_state == TCP_SYN_SENT)
2227 		sk->sk_err = ECONNRESET;
2228 
2229 	tcp_clear_xmit_timers(sk);
2230 	__skb_queue_purge(&sk->sk_receive_queue);
2231 	tcp_write_queue_purge(sk);
2232 	__skb_queue_purge(&tp->out_of_order_queue);
2233 
2234 	inet->inet_dport = 0;
2235 
2236 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2237 		inet_reset_saddr(sk);
2238 
2239 	sk->sk_shutdown = 0;
2240 	sock_reset_flag(sk, SOCK_DONE);
2241 	tp->srtt_us = 0;
2242 	tp->write_seq += tp->max_window + 2;
2243 	if (tp->write_seq == 0)
2244 		tp->write_seq = 1;
2245 	icsk->icsk_backoff = 0;
2246 	tp->snd_cwnd = 2;
2247 	icsk->icsk_probes_out = 0;
2248 	tp->packets_out = 0;
2249 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2250 	tp->snd_cwnd_cnt = 0;
2251 	tp->window_clamp = 0;
2252 	tcp_set_ca_state(sk, TCP_CA_Open);
2253 	tcp_clear_retrans(tp);
2254 	inet_csk_delack_init(sk);
2255 	tcp_init_send_head(sk);
2256 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2257 	__sk_dst_reset(sk);
2258 
2259 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2260 
2261 	sk->sk_error_report(sk);
2262 	return err;
2263 }
2264 EXPORT_SYMBOL(tcp_disconnect);
2265 
2266 static inline bool tcp_can_repair_sock(const struct sock *sk)
2267 {
2268 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2269 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2270 }
2271 
2272 static int tcp_repair_options_est(struct tcp_sock *tp,
2273 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2274 {
2275 	struct tcp_repair_opt opt;
2276 
2277 	while (len >= sizeof(opt)) {
2278 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2279 			return -EFAULT;
2280 
2281 		optbuf++;
2282 		len -= sizeof(opt);
2283 
2284 		switch (opt.opt_code) {
2285 		case TCPOPT_MSS:
2286 			tp->rx_opt.mss_clamp = opt.opt_val;
2287 			break;
2288 		case TCPOPT_WINDOW:
2289 			{
2290 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2291 				u16 rcv_wscale = opt.opt_val >> 16;
2292 
2293 				if (snd_wscale > 14 || rcv_wscale > 14)
2294 					return -EFBIG;
2295 
2296 				tp->rx_opt.snd_wscale = snd_wscale;
2297 				tp->rx_opt.rcv_wscale = rcv_wscale;
2298 				tp->rx_opt.wscale_ok = 1;
2299 			}
2300 			break;
2301 		case TCPOPT_SACK_PERM:
2302 			if (opt.opt_val != 0)
2303 				return -EINVAL;
2304 
2305 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2306 			if (sysctl_tcp_fack)
2307 				tcp_enable_fack(tp);
2308 			break;
2309 		case TCPOPT_TIMESTAMP:
2310 			if (opt.opt_val != 0)
2311 				return -EINVAL;
2312 
2313 			tp->rx_opt.tstamp_ok = 1;
2314 			break;
2315 		}
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 /*
2322  *	Socket option code for TCP.
2323  */
2324 static int do_tcp_setsockopt(struct sock *sk, int level,
2325 		int optname, char __user *optval, unsigned int optlen)
2326 {
2327 	struct tcp_sock *tp = tcp_sk(sk);
2328 	struct inet_connection_sock *icsk = inet_csk(sk);
2329 	int val;
2330 	int err = 0;
2331 
2332 	/* These are data/string values, all the others are ints */
2333 	switch (optname) {
2334 	case TCP_CONGESTION: {
2335 		char name[TCP_CA_NAME_MAX];
2336 
2337 		if (optlen < 1)
2338 			return -EINVAL;
2339 
2340 		val = strncpy_from_user(name, optval,
2341 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2342 		if (val < 0)
2343 			return -EFAULT;
2344 		name[val] = 0;
2345 
2346 		lock_sock(sk);
2347 		err = tcp_set_congestion_control(sk, name);
2348 		release_sock(sk);
2349 		return err;
2350 	}
2351 	default:
2352 		/* fallthru */
2353 		break;
2354 	}
2355 
2356 	if (optlen < sizeof(int))
2357 		return -EINVAL;
2358 
2359 	if (get_user(val, (int __user *)optval))
2360 		return -EFAULT;
2361 
2362 	lock_sock(sk);
2363 
2364 	switch (optname) {
2365 	case TCP_MAXSEG:
2366 		/* Values greater than interface MTU won't take effect. However
2367 		 * at the point when this call is done we typically don't yet
2368 		 * know which interface is going to be used */
2369 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2370 			err = -EINVAL;
2371 			break;
2372 		}
2373 		tp->rx_opt.user_mss = val;
2374 		break;
2375 
2376 	case TCP_NODELAY:
2377 		if (val) {
2378 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2379 			 * this option on corked socket is remembered, but
2380 			 * it is not activated until cork is cleared.
2381 			 *
2382 			 * However, when TCP_NODELAY is set we make
2383 			 * an explicit push, which overrides even TCP_CORK
2384 			 * for currently queued segments.
2385 			 */
2386 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2387 			tcp_push_pending_frames(sk);
2388 		} else {
2389 			tp->nonagle &= ~TCP_NAGLE_OFF;
2390 		}
2391 		break;
2392 
2393 	case TCP_THIN_LINEAR_TIMEOUTS:
2394 		if (val < 0 || val > 1)
2395 			err = -EINVAL;
2396 		else
2397 			tp->thin_lto = val;
2398 		break;
2399 
2400 	case TCP_THIN_DUPACK:
2401 		if (val < 0 || val > 1)
2402 			err = -EINVAL;
2403 		else {
2404 			tp->thin_dupack = val;
2405 			if (tp->thin_dupack)
2406 				tcp_disable_early_retrans(tp);
2407 		}
2408 		break;
2409 
2410 	case TCP_REPAIR:
2411 		if (!tcp_can_repair_sock(sk))
2412 			err = -EPERM;
2413 		else if (val == 1) {
2414 			tp->repair = 1;
2415 			sk->sk_reuse = SK_FORCE_REUSE;
2416 			tp->repair_queue = TCP_NO_QUEUE;
2417 		} else if (val == 0) {
2418 			tp->repair = 0;
2419 			sk->sk_reuse = SK_NO_REUSE;
2420 			tcp_send_window_probe(sk);
2421 		} else
2422 			err = -EINVAL;
2423 
2424 		break;
2425 
2426 	case TCP_REPAIR_QUEUE:
2427 		if (!tp->repair)
2428 			err = -EPERM;
2429 		else if (val < TCP_QUEUES_NR)
2430 			tp->repair_queue = val;
2431 		else
2432 			err = -EINVAL;
2433 		break;
2434 
2435 	case TCP_QUEUE_SEQ:
2436 		if (sk->sk_state != TCP_CLOSE)
2437 			err = -EPERM;
2438 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2439 			tp->write_seq = val;
2440 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2441 			tp->rcv_nxt = val;
2442 		else
2443 			err = -EINVAL;
2444 		break;
2445 
2446 	case TCP_REPAIR_OPTIONS:
2447 		if (!tp->repair)
2448 			err = -EINVAL;
2449 		else if (sk->sk_state == TCP_ESTABLISHED)
2450 			err = tcp_repair_options_est(tp,
2451 					(struct tcp_repair_opt __user *)optval,
2452 					optlen);
2453 		else
2454 			err = -EPERM;
2455 		break;
2456 
2457 	case TCP_CORK:
2458 		/* When set indicates to always queue non-full frames.
2459 		 * Later the user clears this option and we transmit
2460 		 * any pending partial frames in the queue.  This is
2461 		 * meant to be used alongside sendfile() to get properly
2462 		 * filled frames when the user (for example) must write
2463 		 * out headers with a write() call first and then use
2464 		 * sendfile to send out the data parts.
2465 		 *
2466 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2467 		 * stronger than TCP_NODELAY.
2468 		 */
2469 		if (val) {
2470 			tp->nonagle |= TCP_NAGLE_CORK;
2471 		} else {
2472 			tp->nonagle &= ~TCP_NAGLE_CORK;
2473 			if (tp->nonagle&TCP_NAGLE_OFF)
2474 				tp->nonagle |= TCP_NAGLE_PUSH;
2475 			tcp_push_pending_frames(sk);
2476 		}
2477 		break;
2478 
2479 	case TCP_KEEPIDLE:
2480 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2481 			err = -EINVAL;
2482 		else {
2483 			tp->keepalive_time = val * HZ;
2484 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2485 			    !((1 << sk->sk_state) &
2486 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2487 				u32 elapsed = keepalive_time_elapsed(tp);
2488 				if (tp->keepalive_time > elapsed)
2489 					elapsed = tp->keepalive_time - elapsed;
2490 				else
2491 					elapsed = 0;
2492 				inet_csk_reset_keepalive_timer(sk, elapsed);
2493 			}
2494 		}
2495 		break;
2496 	case TCP_KEEPINTVL:
2497 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2498 			err = -EINVAL;
2499 		else
2500 			tp->keepalive_intvl = val * HZ;
2501 		break;
2502 	case TCP_KEEPCNT:
2503 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2504 			err = -EINVAL;
2505 		else
2506 			tp->keepalive_probes = val;
2507 		break;
2508 	case TCP_SYNCNT:
2509 		if (val < 1 || val > MAX_TCP_SYNCNT)
2510 			err = -EINVAL;
2511 		else
2512 			icsk->icsk_syn_retries = val;
2513 		break;
2514 
2515 	case TCP_SAVE_SYN:
2516 		if (val < 0 || val > 1)
2517 			err = -EINVAL;
2518 		else
2519 			tp->save_syn = val;
2520 		break;
2521 
2522 	case TCP_LINGER2:
2523 		if (val < 0)
2524 			tp->linger2 = -1;
2525 		else if (val > sysctl_tcp_fin_timeout / HZ)
2526 			tp->linger2 = 0;
2527 		else
2528 			tp->linger2 = val * HZ;
2529 		break;
2530 
2531 	case TCP_DEFER_ACCEPT:
2532 		/* Translate value in seconds to number of retransmits */
2533 		icsk->icsk_accept_queue.rskq_defer_accept =
2534 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2535 					TCP_RTO_MAX / HZ);
2536 		break;
2537 
2538 	case TCP_WINDOW_CLAMP:
2539 		if (!val) {
2540 			if (sk->sk_state != TCP_CLOSE) {
2541 				err = -EINVAL;
2542 				break;
2543 			}
2544 			tp->window_clamp = 0;
2545 		} else
2546 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2547 						SOCK_MIN_RCVBUF / 2 : val;
2548 		break;
2549 
2550 	case TCP_QUICKACK:
2551 		if (!val) {
2552 			icsk->icsk_ack.pingpong = 1;
2553 		} else {
2554 			icsk->icsk_ack.pingpong = 0;
2555 			if ((1 << sk->sk_state) &
2556 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2557 			    inet_csk_ack_scheduled(sk)) {
2558 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2559 				tcp_cleanup_rbuf(sk, 1);
2560 				if (!(val & 1))
2561 					icsk->icsk_ack.pingpong = 1;
2562 			}
2563 		}
2564 		break;
2565 
2566 #ifdef CONFIG_TCP_MD5SIG
2567 	case TCP_MD5SIG:
2568 		/* Read the IP->Key mappings from userspace */
2569 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2570 		break;
2571 #endif
2572 	case TCP_USER_TIMEOUT:
2573 		/* Cap the max time in ms TCP will retry or probe the window
2574 		 * before giving up and aborting (ETIMEDOUT) a connection.
2575 		 */
2576 		if (val < 0)
2577 			err = -EINVAL;
2578 		else
2579 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2580 		break;
2581 
2582 	case TCP_FASTOPEN:
2583 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2584 		    TCPF_LISTEN))) {
2585 			tcp_fastopen_init_key_once(true);
2586 
2587 			fastopen_queue_tune(sk, val);
2588 		} else {
2589 			err = -EINVAL;
2590 		}
2591 		break;
2592 	case TCP_TIMESTAMP:
2593 		if (!tp->repair)
2594 			err = -EPERM;
2595 		else
2596 			tp->tsoffset = val - tcp_time_stamp;
2597 		break;
2598 	case TCP_NOTSENT_LOWAT:
2599 		tp->notsent_lowat = val;
2600 		sk->sk_write_space(sk);
2601 		break;
2602 	default:
2603 		err = -ENOPROTOOPT;
2604 		break;
2605 	}
2606 
2607 	release_sock(sk);
2608 	return err;
2609 }
2610 
2611 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2612 		   unsigned int optlen)
2613 {
2614 	const struct inet_connection_sock *icsk = inet_csk(sk);
2615 
2616 	if (level != SOL_TCP)
2617 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2618 						     optval, optlen);
2619 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2620 }
2621 EXPORT_SYMBOL(tcp_setsockopt);
2622 
2623 #ifdef CONFIG_COMPAT
2624 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2625 			  char __user *optval, unsigned int optlen)
2626 {
2627 	if (level != SOL_TCP)
2628 		return inet_csk_compat_setsockopt(sk, level, optname,
2629 						  optval, optlen);
2630 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2631 }
2632 EXPORT_SYMBOL(compat_tcp_setsockopt);
2633 #endif
2634 
2635 /* Return information about state of tcp endpoint in API format. */
2636 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2637 {
2638 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2639 	const struct inet_connection_sock *icsk = inet_csk(sk);
2640 	u32 now = tcp_time_stamp;
2641 	unsigned int start;
2642 	u64 rate64;
2643 	u32 rate;
2644 
2645 	memset(info, 0, sizeof(*info));
2646 	if (sk->sk_type != SOCK_STREAM)
2647 		return;
2648 
2649 	info->tcpi_state = sk_state_load(sk);
2650 
2651 	info->tcpi_ca_state = icsk->icsk_ca_state;
2652 	info->tcpi_retransmits = icsk->icsk_retransmits;
2653 	info->tcpi_probes = icsk->icsk_probes_out;
2654 	info->tcpi_backoff = icsk->icsk_backoff;
2655 
2656 	if (tp->rx_opt.tstamp_ok)
2657 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2658 	if (tcp_is_sack(tp))
2659 		info->tcpi_options |= TCPI_OPT_SACK;
2660 	if (tp->rx_opt.wscale_ok) {
2661 		info->tcpi_options |= TCPI_OPT_WSCALE;
2662 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2663 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2664 	}
2665 
2666 	if (tp->ecn_flags & TCP_ECN_OK)
2667 		info->tcpi_options |= TCPI_OPT_ECN;
2668 	if (tp->ecn_flags & TCP_ECN_SEEN)
2669 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2670 	if (tp->syn_data_acked)
2671 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2672 
2673 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2674 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2675 	info->tcpi_snd_mss = tp->mss_cache;
2676 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2677 
2678 	if (info->tcpi_state == TCP_LISTEN) {
2679 		info->tcpi_unacked = sk->sk_ack_backlog;
2680 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2681 	} else {
2682 		info->tcpi_unacked = tp->packets_out;
2683 		info->tcpi_sacked = tp->sacked_out;
2684 	}
2685 	info->tcpi_lost = tp->lost_out;
2686 	info->tcpi_retrans = tp->retrans_out;
2687 	info->tcpi_fackets = tp->fackets_out;
2688 
2689 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2690 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2691 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2692 
2693 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2694 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2695 	info->tcpi_rtt = tp->srtt_us >> 3;
2696 	info->tcpi_rttvar = tp->mdev_us >> 2;
2697 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2698 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2699 	info->tcpi_advmss = tp->advmss;
2700 	info->tcpi_reordering = tp->reordering;
2701 
2702 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2703 	info->tcpi_rcv_space = tp->rcvq_space.space;
2704 
2705 	info->tcpi_total_retrans = tp->total_retrans;
2706 
2707 	rate = READ_ONCE(sk->sk_pacing_rate);
2708 	rate64 = rate != ~0U ? rate : ~0ULL;
2709 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2710 
2711 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2712 	rate64 = rate != ~0U ? rate : ~0ULL;
2713 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2714 
2715 	do {
2716 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2717 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2718 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2719 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2720 	info->tcpi_segs_out = tp->segs_out;
2721 	info->tcpi_segs_in = tp->segs_in;
2722 }
2723 EXPORT_SYMBOL_GPL(tcp_get_info);
2724 
2725 static int do_tcp_getsockopt(struct sock *sk, int level,
2726 		int optname, char __user *optval, int __user *optlen)
2727 {
2728 	struct inet_connection_sock *icsk = inet_csk(sk);
2729 	struct tcp_sock *tp = tcp_sk(sk);
2730 	int val, len;
2731 
2732 	if (get_user(len, optlen))
2733 		return -EFAULT;
2734 
2735 	len = min_t(unsigned int, len, sizeof(int));
2736 
2737 	if (len < 0)
2738 		return -EINVAL;
2739 
2740 	switch (optname) {
2741 	case TCP_MAXSEG:
2742 		val = tp->mss_cache;
2743 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2744 			val = tp->rx_opt.user_mss;
2745 		if (tp->repair)
2746 			val = tp->rx_opt.mss_clamp;
2747 		break;
2748 	case TCP_NODELAY:
2749 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2750 		break;
2751 	case TCP_CORK:
2752 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2753 		break;
2754 	case TCP_KEEPIDLE:
2755 		val = keepalive_time_when(tp) / HZ;
2756 		break;
2757 	case TCP_KEEPINTVL:
2758 		val = keepalive_intvl_when(tp) / HZ;
2759 		break;
2760 	case TCP_KEEPCNT:
2761 		val = keepalive_probes(tp);
2762 		break;
2763 	case TCP_SYNCNT:
2764 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2765 		break;
2766 	case TCP_LINGER2:
2767 		val = tp->linger2;
2768 		if (val >= 0)
2769 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2770 		break;
2771 	case TCP_DEFER_ACCEPT:
2772 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2773 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2774 		break;
2775 	case TCP_WINDOW_CLAMP:
2776 		val = tp->window_clamp;
2777 		break;
2778 	case TCP_INFO: {
2779 		struct tcp_info info;
2780 
2781 		if (get_user(len, optlen))
2782 			return -EFAULT;
2783 
2784 		tcp_get_info(sk, &info);
2785 
2786 		len = min_t(unsigned int, len, sizeof(info));
2787 		if (put_user(len, optlen))
2788 			return -EFAULT;
2789 		if (copy_to_user(optval, &info, len))
2790 			return -EFAULT;
2791 		return 0;
2792 	}
2793 	case TCP_CC_INFO: {
2794 		const struct tcp_congestion_ops *ca_ops;
2795 		union tcp_cc_info info;
2796 		size_t sz = 0;
2797 		int attr;
2798 
2799 		if (get_user(len, optlen))
2800 			return -EFAULT;
2801 
2802 		ca_ops = icsk->icsk_ca_ops;
2803 		if (ca_ops && ca_ops->get_info)
2804 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2805 
2806 		len = min_t(unsigned int, len, sz);
2807 		if (put_user(len, optlen))
2808 			return -EFAULT;
2809 		if (copy_to_user(optval, &info, len))
2810 			return -EFAULT;
2811 		return 0;
2812 	}
2813 	case TCP_QUICKACK:
2814 		val = !icsk->icsk_ack.pingpong;
2815 		break;
2816 
2817 	case TCP_CONGESTION:
2818 		if (get_user(len, optlen))
2819 			return -EFAULT;
2820 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2821 		if (put_user(len, optlen))
2822 			return -EFAULT;
2823 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2824 			return -EFAULT;
2825 		return 0;
2826 
2827 	case TCP_THIN_LINEAR_TIMEOUTS:
2828 		val = tp->thin_lto;
2829 		break;
2830 	case TCP_THIN_DUPACK:
2831 		val = tp->thin_dupack;
2832 		break;
2833 
2834 	case TCP_REPAIR:
2835 		val = tp->repair;
2836 		break;
2837 
2838 	case TCP_REPAIR_QUEUE:
2839 		if (tp->repair)
2840 			val = tp->repair_queue;
2841 		else
2842 			return -EINVAL;
2843 		break;
2844 
2845 	case TCP_QUEUE_SEQ:
2846 		if (tp->repair_queue == TCP_SEND_QUEUE)
2847 			val = tp->write_seq;
2848 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2849 			val = tp->rcv_nxt;
2850 		else
2851 			return -EINVAL;
2852 		break;
2853 
2854 	case TCP_USER_TIMEOUT:
2855 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2856 		break;
2857 
2858 	case TCP_FASTOPEN:
2859 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2860 		break;
2861 
2862 	case TCP_TIMESTAMP:
2863 		val = tcp_time_stamp + tp->tsoffset;
2864 		break;
2865 	case TCP_NOTSENT_LOWAT:
2866 		val = tp->notsent_lowat;
2867 		break;
2868 	case TCP_SAVE_SYN:
2869 		val = tp->save_syn;
2870 		break;
2871 	case TCP_SAVED_SYN: {
2872 		if (get_user(len, optlen))
2873 			return -EFAULT;
2874 
2875 		lock_sock(sk);
2876 		if (tp->saved_syn) {
2877 			if (len < tp->saved_syn[0]) {
2878 				if (put_user(tp->saved_syn[0], optlen)) {
2879 					release_sock(sk);
2880 					return -EFAULT;
2881 				}
2882 				release_sock(sk);
2883 				return -EINVAL;
2884 			}
2885 			len = tp->saved_syn[0];
2886 			if (put_user(len, optlen)) {
2887 				release_sock(sk);
2888 				return -EFAULT;
2889 			}
2890 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2891 				release_sock(sk);
2892 				return -EFAULT;
2893 			}
2894 			tcp_saved_syn_free(tp);
2895 			release_sock(sk);
2896 		} else {
2897 			release_sock(sk);
2898 			len = 0;
2899 			if (put_user(len, optlen))
2900 				return -EFAULT;
2901 		}
2902 		return 0;
2903 	}
2904 	default:
2905 		return -ENOPROTOOPT;
2906 	}
2907 
2908 	if (put_user(len, optlen))
2909 		return -EFAULT;
2910 	if (copy_to_user(optval, &val, len))
2911 		return -EFAULT;
2912 	return 0;
2913 }
2914 
2915 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2916 		   int __user *optlen)
2917 {
2918 	struct inet_connection_sock *icsk = inet_csk(sk);
2919 
2920 	if (level != SOL_TCP)
2921 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2922 						     optval, optlen);
2923 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2924 }
2925 EXPORT_SYMBOL(tcp_getsockopt);
2926 
2927 #ifdef CONFIG_COMPAT
2928 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2929 			  char __user *optval, int __user *optlen)
2930 {
2931 	if (level != SOL_TCP)
2932 		return inet_csk_compat_getsockopt(sk, level, optname,
2933 						  optval, optlen);
2934 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2935 }
2936 EXPORT_SYMBOL(compat_tcp_getsockopt);
2937 #endif
2938 
2939 #ifdef CONFIG_TCP_MD5SIG
2940 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2941 static DEFINE_MUTEX(tcp_md5sig_mutex);
2942 static bool tcp_md5sig_pool_populated = false;
2943 
2944 static void __tcp_alloc_md5sig_pool(void)
2945 {
2946 	int cpu;
2947 
2948 	for_each_possible_cpu(cpu) {
2949 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2950 			struct crypto_hash *hash;
2951 
2952 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2953 			if (IS_ERR_OR_NULL(hash))
2954 				return;
2955 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2956 		}
2957 	}
2958 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2959 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2960 	 */
2961 	smp_wmb();
2962 	tcp_md5sig_pool_populated = true;
2963 }
2964 
2965 bool tcp_alloc_md5sig_pool(void)
2966 {
2967 	if (unlikely(!tcp_md5sig_pool_populated)) {
2968 		mutex_lock(&tcp_md5sig_mutex);
2969 
2970 		if (!tcp_md5sig_pool_populated)
2971 			__tcp_alloc_md5sig_pool();
2972 
2973 		mutex_unlock(&tcp_md5sig_mutex);
2974 	}
2975 	return tcp_md5sig_pool_populated;
2976 }
2977 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2978 
2979 
2980 /**
2981  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2982  *
2983  *	We use percpu structure, so if we succeed, we exit with preemption
2984  *	and BH disabled, to make sure another thread or softirq handling
2985  *	wont try to get same context.
2986  */
2987 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2988 {
2989 	local_bh_disable();
2990 
2991 	if (tcp_md5sig_pool_populated) {
2992 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2993 		smp_rmb();
2994 		return this_cpu_ptr(&tcp_md5sig_pool);
2995 	}
2996 	local_bh_enable();
2997 	return NULL;
2998 }
2999 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3000 
3001 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3002 			const struct tcphdr *th)
3003 {
3004 	struct scatterlist sg;
3005 	struct tcphdr hdr;
3006 	int err;
3007 
3008 	/* We are not allowed to change tcphdr, make a local copy */
3009 	memcpy(&hdr, th, sizeof(hdr));
3010 	hdr.check = 0;
3011 
3012 	/* options aren't included in the hash */
3013 	sg_init_one(&sg, &hdr, sizeof(hdr));
3014 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3015 	return err;
3016 }
3017 EXPORT_SYMBOL(tcp_md5_hash_header);
3018 
3019 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3020 			  const struct sk_buff *skb, unsigned int header_len)
3021 {
3022 	struct scatterlist sg;
3023 	const struct tcphdr *tp = tcp_hdr(skb);
3024 	struct hash_desc *desc = &hp->md5_desc;
3025 	unsigned int i;
3026 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3027 					   skb_headlen(skb) - header_len : 0;
3028 	const struct skb_shared_info *shi = skb_shinfo(skb);
3029 	struct sk_buff *frag_iter;
3030 
3031 	sg_init_table(&sg, 1);
3032 
3033 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3034 	if (crypto_hash_update(desc, &sg, head_data_len))
3035 		return 1;
3036 
3037 	for (i = 0; i < shi->nr_frags; ++i) {
3038 		const struct skb_frag_struct *f = &shi->frags[i];
3039 		unsigned int offset = f->page_offset;
3040 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3041 
3042 		sg_set_page(&sg, page, skb_frag_size(f),
3043 			    offset_in_page(offset));
3044 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3045 			return 1;
3046 	}
3047 
3048 	skb_walk_frags(skb, frag_iter)
3049 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3050 			return 1;
3051 
3052 	return 0;
3053 }
3054 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3055 
3056 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3057 {
3058 	struct scatterlist sg;
3059 
3060 	sg_init_one(&sg, key->key, key->keylen);
3061 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3062 }
3063 EXPORT_SYMBOL(tcp_md5_hash_key);
3064 
3065 #endif
3066 
3067 void tcp_done(struct sock *sk)
3068 {
3069 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3070 
3071 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3072 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3073 
3074 	tcp_set_state(sk, TCP_CLOSE);
3075 	tcp_clear_xmit_timers(sk);
3076 	if (req)
3077 		reqsk_fastopen_remove(sk, req, false);
3078 
3079 	sk->sk_shutdown = SHUTDOWN_MASK;
3080 
3081 	if (!sock_flag(sk, SOCK_DEAD))
3082 		sk->sk_state_change(sk);
3083 	else
3084 		inet_csk_destroy_sock(sk);
3085 }
3086 EXPORT_SYMBOL_GPL(tcp_done);
3087 
3088 int tcp_abort(struct sock *sk, int err)
3089 {
3090 	if (!sk_fullsock(sk)) {
3091 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3092 			struct request_sock *req = inet_reqsk(sk);
3093 
3094 			local_bh_disable();
3095 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3096 							  req);
3097 			local_bh_enable();
3098 			return 0;
3099 		}
3100 		sock_gen_put(sk);
3101 		return -EOPNOTSUPP;
3102 	}
3103 
3104 	/* Don't race with userspace socket closes such as tcp_close. */
3105 	lock_sock(sk);
3106 
3107 	if (sk->sk_state == TCP_LISTEN) {
3108 		tcp_set_state(sk, TCP_CLOSE);
3109 		inet_csk_listen_stop(sk);
3110 	}
3111 
3112 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3113 	local_bh_disable();
3114 	bh_lock_sock(sk);
3115 
3116 	if (!sock_flag(sk, SOCK_DEAD)) {
3117 		sk->sk_err = err;
3118 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3119 		smp_wmb();
3120 		sk->sk_error_report(sk);
3121 		if (tcp_need_reset(sk->sk_state))
3122 			tcp_send_active_reset(sk, GFP_ATOMIC);
3123 		tcp_done(sk);
3124 	}
3125 
3126 	bh_unlock_sock(sk);
3127 	local_bh_enable();
3128 	release_sock(sk);
3129 	sock_put(sk);
3130 	return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(tcp_abort);
3133 
3134 extern struct tcp_congestion_ops tcp_reno;
3135 
3136 static __initdata unsigned long thash_entries;
3137 static int __init set_thash_entries(char *str)
3138 {
3139 	ssize_t ret;
3140 
3141 	if (!str)
3142 		return 0;
3143 
3144 	ret = kstrtoul(str, 0, &thash_entries);
3145 	if (ret)
3146 		return 0;
3147 
3148 	return 1;
3149 }
3150 __setup("thash_entries=", set_thash_entries);
3151 
3152 static void __init tcp_init_mem(void)
3153 {
3154 	unsigned long limit = nr_free_buffer_pages() / 16;
3155 
3156 	limit = max(limit, 128UL);
3157 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3158 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3159 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3160 }
3161 
3162 void __init tcp_init(void)
3163 {
3164 	unsigned long limit;
3165 	int max_rshare, max_wshare, cnt;
3166 	unsigned int i;
3167 
3168 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3169 
3170 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3171 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3172 	tcp_hashinfo.bind_bucket_cachep =
3173 		kmem_cache_create("tcp_bind_bucket",
3174 				  sizeof(struct inet_bind_bucket), 0,
3175 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3176 
3177 	/* Size and allocate the main established and bind bucket
3178 	 * hash tables.
3179 	 *
3180 	 * The methodology is similar to that of the buffer cache.
3181 	 */
3182 	tcp_hashinfo.ehash =
3183 		alloc_large_system_hash("TCP established",
3184 					sizeof(struct inet_ehash_bucket),
3185 					thash_entries,
3186 					17, /* one slot per 128 KB of memory */
3187 					0,
3188 					NULL,
3189 					&tcp_hashinfo.ehash_mask,
3190 					0,
3191 					thash_entries ? 0 : 512 * 1024);
3192 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3193 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3194 
3195 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3196 		panic("TCP: failed to alloc ehash_locks");
3197 	tcp_hashinfo.bhash =
3198 		alloc_large_system_hash("TCP bind",
3199 					sizeof(struct inet_bind_hashbucket),
3200 					tcp_hashinfo.ehash_mask + 1,
3201 					17, /* one slot per 128 KB of memory */
3202 					0,
3203 					&tcp_hashinfo.bhash_size,
3204 					NULL,
3205 					0,
3206 					64 * 1024);
3207 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3208 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3209 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3210 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3211 	}
3212 
3213 
3214 	cnt = tcp_hashinfo.ehash_mask + 1;
3215 
3216 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3217 	sysctl_tcp_max_orphans = cnt / 2;
3218 	sysctl_max_syn_backlog = max(128, cnt / 256);
3219 
3220 	tcp_init_mem();
3221 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3222 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3223 	max_wshare = min(4UL*1024*1024, limit);
3224 	max_rshare = min(6UL*1024*1024, limit);
3225 
3226 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3227 	sysctl_tcp_wmem[1] = 16*1024;
3228 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3229 
3230 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3231 	sysctl_tcp_rmem[1] = 87380;
3232 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3233 
3234 	pr_info("Hash tables configured (established %u bind %u)\n",
3235 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3236 
3237 	tcp_metrics_init();
3238 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3239 	tcp_tasklet_init();
3240 }
3241