1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static bool tcp_stream_is_readable(struct sock *sk, int target) 479 { 480 if (tcp_epollin_ready(sk, target)) 481 return true; 482 return sk_is_readable(sk); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 u16 urg_data = READ_ONCE(tp->urg_data); 549 550 if (unlikely(urg_data) && 551 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE)) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = READ_ONCE(tp->urg_data) && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 sk_defer_free_flush(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (unlikely(tcp_under_memory_pressure(sk))) 860 sk_mem_reclaim_partial(sk); 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 867 if (force_schedule) { 868 mem_scheduled = true; 869 sk_forced_mem_schedule(sk, skb->truesize); 870 } else { 871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 872 } 873 if (likely(mem_scheduled)) { 874 skb_reserve(skb, MAX_TCP_HEADER); 875 skb->ip_summed = CHECKSUM_PARTIAL; 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 return skb; 878 } 879 __kfree_skb(skb); 880 } else { 881 sk->sk_prot->enter_memory_pressure(sk); 882 sk_stream_moderate_sndbuf(sk); 883 } 884 return NULL; 885 } 886 887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 888 int large_allowed) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 u32 new_size_goal, size_goal; 892 893 if (!large_allowed) 894 return mss_now; 895 896 /* Note : tcp_tso_autosize() will eventually split this later */ 897 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 898 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 899 900 /* We try hard to avoid divides here */ 901 size_goal = tp->gso_segs * mss_now; 902 if (unlikely(new_size_goal < size_goal || 903 new_size_goal >= size_goal + mss_now)) { 904 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 905 sk->sk_gso_max_segs); 906 size_goal = tp->gso_segs * mss_now; 907 } 908 909 return max(size_goal, mss_now); 910 } 911 912 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 913 { 914 int mss_now; 915 916 mss_now = tcp_current_mss(sk); 917 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 918 919 return mss_now; 920 } 921 922 /* In some cases, both sendpage() and sendmsg() could have added 923 * an skb to the write queue, but failed adding payload on it. 924 * We need to remove it to consume less memory, but more 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 926 * users. 927 */ 928 void tcp_remove_empty_skb(struct sock *sk) 929 { 930 struct sk_buff *skb = tcp_write_queue_tail(sk); 931 932 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 933 tcp_unlink_write_queue(skb, sk); 934 if (tcp_write_queue_empty(sk)) 935 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 936 tcp_wmem_free_skb(sk, skb); 937 } 938 } 939 940 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 941 struct page *page, int offset, size_t *size) 942 { 943 struct sk_buff *skb = tcp_write_queue_tail(sk); 944 struct tcp_sock *tp = tcp_sk(sk); 945 bool can_coalesce; 946 int copy, i; 947 948 if (!skb || (copy = size_goal - skb->len) <= 0 || 949 !tcp_skb_can_collapse_to(skb)) { 950 new_segment: 951 if (!sk_stream_memory_free(sk)) 952 return NULL; 953 954 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 955 tcp_rtx_and_write_queues_empty(sk)); 956 if (!skb) 957 return NULL; 958 959 #ifdef CONFIG_TLS_DEVICE 960 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 961 #endif 962 tcp_skb_entail(sk, skb); 963 copy = size_goal; 964 } 965 966 if (copy > *size) 967 copy = *size; 968 969 i = skb_shinfo(skb)->nr_frags; 970 can_coalesce = skb_can_coalesce(skb, i, page, offset); 971 if (!can_coalesce && i >= sysctl_max_skb_frags) { 972 tcp_mark_push(tp, skb); 973 goto new_segment; 974 } 975 if (!sk_wmem_schedule(sk, copy)) 976 return NULL; 977 978 if (can_coalesce) { 979 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 980 } else { 981 get_page(page); 982 skb_fill_page_desc(skb, i, page, offset, copy); 983 } 984 985 if (!(flags & MSG_NO_SHARED_FRAGS)) 986 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 987 988 skb->len += copy; 989 skb->data_len += copy; 990 skb->truesize += copy; 991 sk_wmem_queued_add(sk, copy); 992 sk_mem_charge(sk, copy); 993 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 994 TCP_SKB_CB(skb)->end_seq += copy; 995 tcp_skb_pcount_set(skb, 0); 996 997 *size = copy; 998 return skb; 999 } 1000 1001 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1002 size_t size, int flags) 1003 { 1004 struct tcp_sock *tp = tcp_sk(sk); 1005 int mss_now, size_goal; 1006 int err; 1007 ssize_t copied; 1008 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1009 1010 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1011 WARN_ONCE(!sendpage_ok(page), 1012 "page must not be a Slab one and have page_count > 0")) 1013 return -EINVAL; 1014 1015 /* Wait for a connection to finish. One exception is TCP Fast Open 1016 * (passive side) where data is allowed to be sent before a connection 1017 * is fully established. 1018 */ 1019 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1020 !tcp_passive_fastopen(sk)) { 1021 err = sk_stream_wait_connect(sk, &timeo); 1022 if (err != 0) 1023 goto out_err; 1024 } 1025 1026 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1027 1028 mss_now = tcp_send_mss(sk, &size_goal, flags); 1029 copied = 0; 1030 1031 err = -EPIPE; 1032 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1033 goto out_err; 1034 1035 while (size > 0) { 1036 struct sk_buff *skb; 1037 size_t copy = size; 1038 1039 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1040 if (!skb) 1041 goto wait_for_space; 1042 1043 if (!copied) 1044 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1045 1046 copied += copy; 1047 offset += copy; 1048 size -= copy; 1049 if (!size) 1050 goto out; 1051 1052 if (skb->len < size_goal || (flags & MSG_OOB)) 1053 continue; 1054 1055 if (forced_push(tp)) { 1056 tcp_mark_push(tp, skb); 1057 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1058 } else if (skb == tcp_send_head(sk)) 1059 tcp_push_one(sk, mss_now); 1060 continue; 1061 1062 wait_for_space: 1063 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1064 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1065 TCP_NAGLE_PUSH, size_goal); 1066 1067 err = sk_stream_wait_memory(sk, &timeo); 1068 if (err != 0) 1069 goto do_error; 1070 1071 mss_now = tcp_send_mss(sk, &size_goal, flags); 1072 } 1073 1074 out: 1075 if (copied) { 1076 tcp_tx_timestamp(sk, sk->sk_tsflags); 1077 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1078 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1079 } 1080 return copied; 1081 1082 do_error: 1083 tcp_remove_empty_skb(sk); 1084 if (copied) 1085 goto out; 1086 out_err: 1087 /* make sure we wake any epoll edge trigger waiter */ 1088 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1089 sk->sk_write_space(sk); 1090 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1091 } 1092 return sk_stream_error(sk, flags, err); 1093 } 1094 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1095 1096 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1097 size_t size, int flags) 1098 { 1099 if (!(sk->sk_route_caps & NETIF_F_SG)) 1100 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1101 1102 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1103 1104 return do_tcp_sendpages(sk, page, offset, size, flags); 1105 } 1106 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1107 1108 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1109 size_t size, int flags) 1110 { 1111 int ret; 1112 1113 lock_sock(sk); 1114 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1115 release_sock(sk); 1116 1117 return ret; 1118 } 1119 EXPORT_SYMBOL(tcp_sendpage); 1120 1121 void tcp_free_fastopen_req(struct tcp_sock *tp) 1122 { 1123 if (tp->fastopen_req) { 1124 kfree(tp->fastopen_req); 1125 tp->fastopen_req = NULL; 1126 } 1127 } 1128 1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1130 int *copied, size_t size, 1131 struct ubuf_info *uarg) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct inet_sock *inet = inet_sk(sk); 1135 struct sockaddr *uaddr = msg->msg_name; 1136 int err, flags; 1137 1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1140 uaddr->sa_family == AF_UNSPEC)) 1141 return -EOPNOTSUPP; 1142 if (tp->fastopen_req) 1143 return -EALREADY; /* Another Fast Open is in progress */ 1144 1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1146 sk->sk_allocation); 1147 if (unlikely(!tp->fastopen_req)) 1148 return -ENOBUFS; 1149 tp->fastopen_req->data = msg; 1150 tp->fastopen_req->size = size; 1151 tp->fastopen_req->uarg = uarg; 1152 1153 if (inet->defer_connect) { 1154 err = tcp_connect(sk); 1155 /* Same failure procedure as in tcp_v4/6_connect */ 1156 if (err) { 1157 tcp_set_state(sk, TCP_CLOSE); 1158 inet->inet_dport = 0; 1159 sk->sk_route_caps = 0; 1160 } 1161 } 1162 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1163 err = __inet_stream_connect(sk->sk_socket, uaddr, 1164 msg->msg_namelen, flags, 1); 1165 /* fastopen_req could already be freed in __inet_stream_connect 1166 * if the connection times out or gets rst 1167 */ 1168 if (tp->fastopen_req) { 1169 *copied = tp->fastopen_req->copied; 1170 tcp_free_fastopen_req(tp); 1171 inet->defer_connect = 0; 1172 } 1173 return err; 1174 } 1175 1176 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1177 { 1178 struct tcp_sock *tp = tcp_sk(sk); 1179 struct ubuf_info *uarg = NULL; 1180 struct sk_buff *skb; 1181 struct sockcm_cookie sockc; 1182 int flags, err, copied = 0; 1183 int mss_now = 0, size_goal, copied_syn = 0; 1184 int process_backlog = 0; 1185 bool zc = false; 1186 long timeo; 1187 1188 flags = msg->msg_flags; 1189 1190 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1191 skb = tcp_write_queue_tail(sk); 1192 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1193 if (!uarg) { 1194 err = -ENOBUFS; 1195 goto out_err; 1196 } 1197 1198 zc = sk->sk_route_caps & NETIF_F_SG; 1199 if (!zc) 1200 uarg->zerocopy = 0; 1201 } 1202 1203 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1204 !tp->repair) { 1205 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1206 if (err == -EINPROGRESS && copied_syn > 0) 1207 goto out; 1208 else if (err) 1209 goto out_err; 1210 } 1211 1212 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1213 1214 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1215 1216 /* Wait for a connection to finish. One exception is TCP Fast Open 1217 * (passive side) where data is allowed to be sent before a connection 1218 * is fully established. 1219 */ 1220 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1221 !tcp_passive_fastopen(sk)) { 1222 err = sk_stream_wait_connect(sk, &timeo); 1223 if (err != 0) 1224 goto do_error; 1225 } 1226 1227 if (unlikely(tp->repair)) { 1228 if (tp->repair_queue == TCP_RECV_QUEUE) { 1229 copied = tcp_send_rcvq(sk, msg, size); 1230 goto out_nopush; 1231 } 1232 1233 err = -EINVAL; 1234 if (tp->repair_queue == TCP_NO_QUEUE) 1235 goto out_err; 1236 1237 /* 'common' sending to sendq */ 1238 } 1239 1240 sockcm_init(&sockc, sk); 1241 if (msg->msg_controllen) { 1242 err = sock_cmsg_send(sk, msg, &sockc); 1243 if (unlikely(err)) { 1244 err = -EINVAL; 1245 goto out_err; 1246 } 1247 } 1248 1249 /* This should be in poll */ 1250 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1251 1252 /* Ok commence sending. */ 1253 copied = 0; 1254 1255 restart: 1256 mss_now = tcp_send_mss(sk, &size_goal, flags); 1257 1258 err = -EPIPE; 1259 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1260 goto do_error; 1261 1262 while (msg_data_left(msg)) { 1263 int copy = 0; 1264 1265 skb = tcp_write_queue_tail(sk); 1266 if (skb) 1267 copy = size_goal - skb->len; 1268 1269 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1270 bool first_skb; 1271 1272 new_segment: 1273 if (!sk_stream_memory_free(sk)) 1274 goto wait_for_space; 1275 1276 if (unlikely(process_backlog >= 16)) { 1277 process_backlog = 0; 1278 if (sk_flush_backlog(sk)) 1279 goto restart; 1280 } 1281 first_skb = tcp_rtx_and_write_queues_empty(sk); 1282 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1283 first_skb); 1284 if (!skb) 1285 goto wait_for_space; 1286 1287 process_backlog++; 1288 1289 tcp_skb_entail(sk, skb); 1290 copy = size_goal; 1291 1292 /* All packets are restored as if they have 1293 * already been sent. skb_mstamp_ns isn't set to 1294 * avoid wrong rtt estimation. 1295 */ 1296 if (tp->repair) 1297 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1298 } 1299 1300 /* Try to append data to the end of skb. */ 1301 if (copy > msg_data_left(msg)) 1302 copy = msg_data_left(msg); 1303 1304 if (!zc) { 1305 bool merge = true; 1306 int i = skb_shinfo(skb)->nr_frags; 1307 struct page_frag *pfrag = sk_page_frag(sk); 1308 1309 if (!sk_page_frag_refill(sk, pfrag)) 1310 goto wait_for_space; 1311 1312 if (!skb_can_coalesce(skb, i, pfrag->page, 1313 pfrag->offset)) { 1314 if (i >= sysctl_max_skb_frags) { 1315 tcp_mark_push(tp, skb); 1316 goto new_segment; 1317 } 1318 merge = false; 1319 } 1320 1321 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1322 1323 /* skb changing from pure zc to mixed, must charge zc */ 1324 if (unlikely(skb_zcopy_pure(skb))) { 1325 if (!sk_wmem_schedule(sk, skb->data_len)) 1326 goto wait_for_space; 1327 1328 sk_mem_charge(sk, skb->data_len); 1329 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 1330 } 1331 1332 if (!sk_wmem_schedule(sk, copy)) 1333 goto wait_for_space; 1334 1335 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1336 pfrag->page, 1337 pfrag->offset, 1338 copy); 1339 if (err) 1340 goto do_error; 1341 1342 /* Update the skb. */ 1343 if (merge) { 1344 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1345 } else { 1346 skb_fill_page_desc(skb, i, pfrag->page, 1347 pfrag->offset, copy); 1348 page_ref_inc(pfrag->page); 1349 } 1350 pfrag->offset += copy; 1351 } else { 1352 /* First append to a fragless skb builds initial 1353 * pure zerocopy skb 1354 */ 1355 if (!skb->len) 1356 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1357 1358 if (!skb_zcopy_pure(skb)) { 1359 if (!sk_wmem_schedule(sk, copy)) 1360 goto wait_for_space; 1361 } 1362 1363 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1364 if (err == -EMSGSIZE || err == -EEXIST) { 1365 tcp_mark_push(tp, skb); 1366 goto new_segment; 1367 } 1368 if (err < 0) 1369 goto do_error; 1370 copy = err; 1371 } 1372 1373 if (!copied) 1374 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1375 1376 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1377 TCP_SKB_CB(skb)->end_seq += copy; 1378 tcp_skb_pcount_set(skb, 0); 1379 1380 copied += copy; 1381 if (!msg_data_left(msg)) { 1382 if (unlikely(flags & MSG_EOR)) 1383 TCP_SKB_CB(skb)->eor = 1; 1384 goto out; 1385 } 1386 1387 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1388 continue; 1389 1390 if (forced_push(tp)) { 1391 tcp_mark_push(tp, skb); 1392 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1393 } else if (skb == tcp_send_head(sk)) 1394 tcp_push_one(sk, mss_now); 1395 continue; 1396 1397 wait_for_space: 1398 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1399 if (copied) 1400 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1401 TCP_NAGLE_PUSH, size_goal); 1402 1403 err = sk_stream_wait_memory(sk, &timeo); 1404 if (err != 0) 1405 goto do_error; 1406 1407 mss_now = tcp_send_mss(sk, &size_goal, flags); 1408 } 1409 1410 out: 1411 if (copied) { 1412 tcp_tx_timestamp(sk, sockc.tsflags); 1413 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1414 } 1415 out_nopush: 1416 net_zcopy_put(uarg); 1417 return copied + copied_syn; 1418 1419 do_error: 1420 tcp_remove_empty_skb(sk); 1421 1422 if (copied + copied_syn) 1423 goto out; 1424 out_err: 1425 net_zcopy_put_abort(uarg, true); 1426 err = sk_stream_error(sk, flags, err); 1427 /* make sure we wake any epoll edge trigger waiter */ 1428 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1429 sk->sk_write_space(sk); 1430 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1431 } 1432 return err; 1433 } 1434 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1435 1436 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1437 { 1438 int ret; 1439 1440 lock_sock(sk); 1441 ret = tcp_sendmsg_locked(sk, msg, size); 1442 release_sock(sk); 1443 1444 return ret; 1445 } 1446 EXPORT_SYMBOL(tcp_sendmsg); 1447 1448 /* 1449 * Handle reading urgent data. BSD has very simple semantics for 1450 * this, no blocking and very strange errors 8) 1451 */ 1452 1453 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1454 { 1455 struct tcp_sock *tp = tcp_sk(sk); 1456 1457 /* No URG data to read. */ 1458 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1459 tp->urg_data == TCP_URG_READ) 1460 return -EINVAL; /* Yes this is right ! */ 1461 1462 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1463 return -ENOTCONN; 1464 1465 if (tp->urg_data & TCP_URG_VALID) { 1466 int err = 0; 1467 char c = tp->urg_data; 1468 1469 if (!(flags & MSG_PEEK)) 1470 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1471 1472 /* Read urgent data. */ 1473 msg->msg_flags |= MSG_OOB; 1474 1475 if (len > 0) { 1476 if (!(flags & MSG_TRUNC)) 1477 err = memcpy_to_msg(msg, &c, 1); 1478 len = 1; 1479 } else 1480 msg->msg_flags |= MSG_TRUNC; 1481 1482 return err ? -EFAULT : len; 1483 } 1484 1485 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1486 return 0; 1487 1488 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1489 * the available implementations agree in this case: 1490 * this call should never block, independent of the 1491 * blocking state of the socket. 1492 * Mike <pall@rz.uni-karlsruhe.de> 1493 */ 1494 return -EAGAIN; 1495 } 1496 1497 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1498 { 1499 struct sk_buff *skb; 1500 int copied = 0, err = 0; 1501 1502 /* XXX -- need to support SO_PEEK_OFF */ 1503 1504 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1506 if (err) 1507 return err; 1508 copied += skb->len; 1509 } 1510 1511 skb_queue_walk(&sk->sk_write_queue, skb) { 1512 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1513 if (err) 1514 break; 1515 1516 copied += skb->len; 1517 } 1518 1519 return err ?: copied; 1520 } 1521 1522 /* Clean up the receive buffer for full frames taken by the user, 1523 * then send an ACK if necessary. COPIED is the number of bytes 1524 * tcp_recvmsg has given to the user so far, it speeds up the 1525 * calculation of whether or not we must ACK for the sake of 1526 * a window update. 1527 */ 1528 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1529 { 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 bool time_to_ack = false; 1532 1533 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1534 1535 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1536 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1537 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1538 1539 if (inet_csk_ack_scheduled(sk)) { 1540 const struct inet_connection_sock *icsk = inet_csk(sk); 1541 1542 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1543 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1544 /* 1545 * If this read emptied read buffer, we send ACK, if 1546 * connection is not bidirectional, user drained 1547 * receive buffer and there was a small segment 1548 * in queue. 1549 */ 1550 (copied > 0 && 1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1552 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1553 !inet_csk_in_pingpong_mode(sk))) && 1554 !atomic_read(&sk->sk_rmem_alloc))) 1555 time_to_ack = true; 1556 } 1557 1558 /* We send an ACK if we can now advertise a non-zero window 1559 * which has been raised "significantly". 1560 * 1561 * Even if window raised up to infinity, do not send window open ACK 1562 * in states, where we will not receive more. It is useless. 1563 */ 1564 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1565 __u32 rcv_window_now = tcp_receive_window(tp); 1566 1567 /* Optimize, __tcp_select_window() is not cheap. */ 1568 if (2*rcv_window_now <= tp->window_clamp) { 1569 __u32 new_window = __tcp_select_window(sk); 1570 1571 /* Send ACK now, if this read freed lots of space 1572 * in our buffer. Certainly, new_window is new window. 1573 * We can advertise it now, if it is not less than current one. 1574 * "Lots" means "at least twice" here. 1575 */ 1576 if (new_window && new_window >= 2 * rcv_window_now) 1577 time_to_ack = true; 1578 } 1579 } 1580 if (time_to_ack) 1581 tcp_send_ack(sk); 1582 } 1583 1584 void __sk_defer_free_flush(struct sock *sk) 1585 { 1586 struct llist_node *head; 1587 struct sk_buff *skb, *n; 1588 1589 head = llist_del_all(&sk->defer_list); 1590 llist_for_each_entry_safe(skb, n, head, ll_node) { 1591 prefetch(n); 1592 skb_mark_not_on_list(skb); 1593 __kfree_skb(skb); 1594 } 1595 } 1596 EXPORT_SYMBOL(__sk_defer_free_flush); 1597 1598 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1599 { 1600 __skb_unlink(skb, &sk->sk_receive_queue); 1601 if (likely(skb->destructor == sock_rfree)) { 1602 sock_rfree(skb); 1603 skb->destructor = NULL; 1604 skb->sk = NULL; 1605 if (!skb_queue_empty(&sk->sk_receive_queue) || 1606 !llist_empty(&sk->defer_list)) { 1607 llist_add(&skb->ll_node, &sk->defer_list); 1608 return; 1609 } 1610 } 1611 __kfree_skb(skb); 1612 } 1613 1614 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1615 { 1616 struct sk_buff *skb; 1617 u32 offset; 1618 1619 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1620 offset = seq - TCP_SKB_CB(skb)->seq; 1621 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1622 pr_err_once("%s: found a SYN, please report !\n", __func__); 1623 offset--; 1624 } 1625 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1626 *off = offset; 1627 return skb; 1628 } 1629 /* This looks weird, but this can happen if TCP collapsing 1630 * splitted a fat GRO packet, while we released socket lock 1631 * in skb_splice_bits() 1632 */ 1633 tcp_eat_recv_skb(sk, skb); 1634 } 1635 return NULL; 1636 } 1637 1638 /* 1639 * This routine provides an alternative to tcp_recvmsg() for routines 1640 * that would like to handle copying from skbuffs directly in 'sendfile' 1641 * fashion. 1642 * Note: 1643 * - It is assumed that the socket was locked by the caller. 1644 * - The routine does not block. 1645 * - At present, there is no support for reading OOB data 1646 * or for 'peeking' the socket using this routine 1647 * (although both would be easy to implement). 1648 */ 1649 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1650 sk_read_actor_t recv_actor) 1651 { 1652 struct sk_buff *skb; 1653 struct tcp_sock *tp = tcp_sk(sk); 1654 u32 seq = tp->copied_seq; 1655 u32 offset; 1656 int copied = 0; 1657 1658 if (sk->sk_state == TCP_LISTEN) 1659 return -ENOTCONN; 1660 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1661 if (offset < skb->len) { 1662 int used; 1663 size_t len; 1664 1665 len = skb->len - offset; 1666 /* Stop reading if we hit a patch of urgent data */ 1667 if (unlikely(tp->urg_data)) { 1668 u32 urg_offset = tp->urg_seq - seq; 1669 if (urg_offset < len) 1670 len = urg_offset; 1671 if (!len) 1672 break; 1673 } 1674 used = recv_actor(desc, skb, offset, len); 1675 if (used <= 0) { 1676 if (!copied) 1677 copied = used; 1678 break; 1679 } else if (used <= len) { 1680 seq += used; 1681 copied += used; 1682 offset += used; 1683 } 1684 /* If recv_actor drops the lock (e.g. TCP splice 1685 * receive) the skb pointer might be invalid when 1686 * getting here: tcp_collapse might have deleted it 1687 * while aggregating skbs from the socket queue. 1688 */ 1689 skb = tcp_recv_skb(sk, seq - 1, &offset); 1690 if (!skb) 1691 break; 1692 /* TCP coalescing might have appended data to the skb. 1693 * Try to splice more frags 1694 */ 1695 if (offset + 1 != skb->len) 1696 continue; 1697 } 1698 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1699 tcp_eat_recv_skb(sk, skb); 1700 ++seq; 1701 break; 1702 } 1703 tcp_eat_recv_skb(sk, skb); 1704 if (!desc->count) 1705 break; 1706 WRITE_ONCE(tp->copied_seq, seq); 1707 } 1708 WRITE_ONCE(tp->copied_seq, seq); 1709 1710 tcp_rcv_space_adjust(sk); 1711 1712 /* Clean up data we have read: This will do ACK frames. */ 1713 if (copied > 0) { 1714 tcp_recv_skb(sk, seq, &offset); 1715 tcp_cleanup_rbuf(sk, copied); 1716 } 1717 return copied; 1718 } 1719 EXPORT_SYMBOL(tcp_read_sock); 1720 1721 int tcp_peek_len(struct socket *sock) 1722 { 1723 return tcp_inq(sock->sk); 1724 } 1725 EXPORT_SYMBOL(tcp_peek_len); 1726 1727 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1728 int tcp_set_rcvlowat(struct sock *sk, int val) 1729 { 1730 int cap; 1731 1732 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1733 cap = sk->sk_rcvbuf >> 1; 1734 else 1735 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1736 val = min(val, cap); 1737 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1738 1739 /* Check if we need to signal EPOLLIN right now */ 1740 tcp_data_ready(sk); 1741 1742 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1743 return 0; 1744 1745 val <<= 1; 1746 if (val > sk->sk_rcvbuf) { 1747 WRITE_ONCE(sk->sk_rcvbuf, val); 1748 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1749 } 1750 return 0; 1751 } 1752 EXPORT_SYMBOL(tcp_set_rcvlowat); 1753 1754 void tcp_update_recv_tstamps(struct sk_buff *skb, 1755 struct scm_timestamping_internal *tss) 1756 { 1757 if (skb->tstamp) 1758 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1759 else 1760 tss->ts[0] = (struct timespec64) {0}; 1761 1762 if (skb_hwtstamps(skb)->hwtstamp) 1763 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1764 else 1765 tss->ts[2] = (struct timespec64) {0}; 1766 } 1767 1768 #ifdef CONFIG_MMU 1769 static const struct vm_operations_struct tcp_vm_ops = { 1770 }; 1771 1772 int tcp_mmap(struct file *file, struct socket *sock, 1773 struct vm_area_struct *vma) 1774 { 1775 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1776 return -EPERM; 1777 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1778 1779 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1780 vma->vm_flags |= VM_MIXEDMAP; 1781 1782 vma->vm_ops = &tcp_vm_ops; 1783 return 0; 1784 } 1785 EXPORT_SYMBOL(tcp_mmap); 1786 1787 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1788 u32 *offset_frag) 1789 { 1790 skb_frag_t *frag; 1791 1792 if (unlikely(offset_skb >= skb->len)) 1793 return NULL; 1794 1795 offset_skb -= skb_headlen(skb); 1796 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1797 return NULL; 1798 1799 frag = skb_shinfo(skb)->frags; 1800 while (offset_skb) { 1801 if (skb_frag_size(frag) > offset_skb) { 1802 *offset_frag = offset_skb; 1803 return frag; 1804 } 1805 offset_skb -= skb_frag_size(frag); 1806 ++frag; 1807 } 1808 *offset_frag = 0; 1809 return frag; 1810 } 1811 1812 static bool can_map_frag(const skb_frag_t *frag) 1813 { 1814 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1815 } 1816 1817 static int find_next_mappable_frag(const skb_frag_t *frag, 1818 int remaining_in_skb) 1819 { 1820 int offset = 0; 1821 1822 if (likely(can_map_frag(frag))) 1823 return 0; 1824 1825 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1826 offset += skb_frag_size(frag); 1827 ++frag; 1828 } 1829 return offset; 1830 } 1831 1832 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1833 struct tcp_zerocopy_receive *zc, 1834 struct sk_buff *skb, u32 offset) 1835 { 1836 u32 frag_offset, partial_frag_remainder = 0; 1837 int mappable_offset; 1838 skb_frag_t *frag; 1839 1840 /* worst case: skip to next skb. try to improve on this case below */ 1841 zc->recv_skip_hint = skb->len - offset; 1842 1843 /* Find the frag containing this offset (and how far into that frag) */ 1844 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1845 if (!frag) 1846 return; 1847 1848 if (frag_offset) { 1849 struct skb_shared_info *info = skb_shinfo(skb); 1850 1851 /* We read part of the last frag, must recvmsg() rest of skb. */ 1852 if (frag == &info->frags[info->nr_frags - 1]) 1853 return; 1854 1855 /* Else, we must at least read the remainder in this frag. */ 1856 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1857 zc->recv_skip_hint -= partial_frag_remainder; 1858 ++frag; 1859 } 1860 1861 /* partial_frag_remainder: If part way through a frag, must read rest. 1862 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1863 * in partial_frag_remainder. 1864 */ 1865 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1866 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1867 } 1868 1869 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1870 int nonblock, int flags, 1871 struct scm_timestamping_internal *tss, 1872 int *cmsg_flags); 1873 static int receive_fallback_to_copy(struct sock *sk, 1874 struct tcp_zerocopy_receive *zc, int inq, 1875 struct scm_timestamping_internal *tss) 1876 { 1877 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1878 struct msghdr msg = {}; 1879 struct iovec iov; 1880 int err; 1881 1882 zc->length = 0; 1883 zc->recv_skip_hint = 0; 1884 1885 if (copy_address != zc->copybuf_address) 1886 return -EINVAL; 1887 1888 err = import_single_range(READ, (void __user *)copy_address, 1889 inq, &iov, &msg.msg_iter); 1890 if (err) 1891 return err; 1892 1893 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1894 tss, &zc->msg_flags); 1895 if (err < 0) 1896 return err; 1897 1898 zc->copybuf_len = err; 1899 if (likely(zc->copybuf_len)) { 1900 struct sk_buff *skb; 1901 u32 offset; 1902 1903 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1904 if (skb) 1905 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1906 } 1907 return 0; 1908 } 1909 1910 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1911 struct sk_buff *skb, u32 copylen, 1912 u32 *offset, u32 *seq) 1913 { 1914 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1915 struct msghdr msg = {}; 1916 struct iovec iov; 1917 int err; 1918 1919 if (copy_address != zc->copybuf_address) 1920 return -EINVAL; 1921 1922 err = import_single_range(READ, (void __user *)copy_address, 1923 copylen, &iov, &msg.msg_iter); 1924 if (err) 1925 return err; 1926 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1927 if (err) 1928 return err; 1929 zc->recv_skip_hint -= copylen; 1930 *offset += copylen; 1931 *seq += copylen; 1932 return (__s32)copylen; 1933 } 1934 1935 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1936 struct sock *sk, 1937 struct sk_buff *skb, 1938 u32 *seq, 1939 s32 copybuf_len, 1940 struct scm_timestamping_internal *tss) 1941 { 1942 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1943 1944 if (!copylen) 1945 return 0; 1946 /* skb is null if inq < PAGE_SIZE. */ 1947 if (skb) { 1948 offset = *seq - TCP_SKB_CB(skb)->seq; 1949 } else { 1950 skb = tcp_recv_skb(sk, *seq, &offset); 1951 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1952 tcp_update_recv_tstamps(skb, tss); 1953 zc->msg_flags |= TCP_CMSG_TS; 1954 } 1955 } 1956 1957 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1958 seq); 1959 return zc->copybuf_len < 0 ? 0 : copylen; 1960 } 1961 1962 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1963 struct page **pending_pages, 1964 unsigned long pages_remaining, 1965 unsigned long *address, 1966 u32 *length, 1967 u32 *seq, 1968 struct tcp_zerocopy_receive *zc, 1969 u32 total_bytes_to_map, 1970 int err) 1971 { 1972 /* At least one page did not map. Try zapping if we skipped earlier. */ 1973 if (err == -EBUSY && 1974 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1975 u32 maybe_zap_len; 1976 1977 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1978 *length + /* Mapped or pending */ 1979 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1980 zap_page_range(vma, *address, maybe_zap_len); 1981 err = 0; 1982 } 1983 1984 if (!err) { 1985 unsigned long leftover_pages = pages_remaining; 1986 int bytes_mapped; 1987 1988 /* We called zap_page_range, try to reinsert. */ 1989 err = vm_insert_pages(vma, *address, 1990 pending_pages, 1991 &pages_remaining); 1992 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1993 *seq += bytes_mapped; 1994 *address += bytes_mapped; 1995 } 1996 if (err) { 1997 /* Either we were unable to zap, OR we zapped, retried an 1998 * insert, and still had an issue. Either ways, pages_remaining 1999 * is the number of pages we were unable to map, and we unroll 2000 * some state we speculatively touched before. 2001 */ 2002 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2003 2004 *length -= bytes_not_mapped; 2005 zc->recv_skip_hint += bytes_not_mapped; 2006 } 2007 return err; 2008 } 2009 2010 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2011 struct page **pages, 2012 unsigned int pages_to_map, 2013 unsigned long *address, 2014 u32 *length, 2015 u32 *seq, 2016 struct tcp_zerocopy_receive *zc, 2017 u32 total_bytes_to_map) 2018 { 2019 unsigned long pages_remaining = pages_to_map; 2020 unsigned int pages_mapped; 2021 unsigned int bytes_mapped; 2022 int err; 2023 2024 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2025 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2026 bytes_mapped = PAGE_SIZE * pages_mapped; 2027 /* Even if vm_insert_pages fails, it may have partially succeeded in 2028 * mapping (some but not all of the pages). 2029 */ 2030 *seq += bytes_mapped; 2031 *address += bytes_mapped; 2032 2033 if (likely(!err)) 2034 return 0; 2035 2036 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2037 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2038 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2039 err); 2040 } 2041 2042 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2043 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2044 struct tcp_zerocopy_receive *zc, 2045 struct scm_timestamping_internal *tss) 2046 { 2047 unsigned long msg_control_addr; 2048 struct msghdr cmsg_dummy; 2049 2050 msg_control_addr = (unsigned long)zc->msg_control; 2051 cmsg_dummy.msg_control = (void *)msg_control_addr; 2052 cmsg_dummy.msg_controllen = 2053 (__kernel_size_t)zc->msg_controllen; 2054 cmsg_dummy.msg_flags = in_compat_syscall() 2055 ? MSG_CMSG_COMPAT : 0; 2056 cmsg_dummy.msg_control_is_user = true; 2057 zc->msg_flags = 0; 2058 if (zc->msg_control == msg_control_addr && 2059 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2060 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2061 zc->msg_control = (__u64) 2062 ((uintptr_t)cmsg_dummy.msg_control); 2063 zc->msg_controllen = 2064 (__u64)cmsg_dummy.msg_controllen; 2065 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2066 } 2067 } 2068 2069 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2070 static int tcp_zerocopy_receive(struct sock *sk, 2071 struct tcp_zerocopy_receive *zc, 2072 struct scm_timestamping_internal *tss) 2073 { 2074 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2075 unsigned long address = (unsigned long)zc->address; 2076 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2077 s32 copybuf_len = zc->copybuf_len; 2078 struct tcp_sock *tp = tcp_sk(sk); 2079 const skb_frag_t *frags = NULL; 2080 unsigned int pages_to_map = 0; 2081 struct vm_area_struct *vma; 2082 struct sk_buff *skb = NULL; 2083 u32 seq = tp->copied_seq; 2084 u32 total_bytes_to_map; 2085 int inq = tcp_inq(sk); 2086 int ret; 2087 2088 zc->copybuf_len = 0; 2089 zc->msg_flags = 0; 2090 2091 if (address & (PAGE_SIZE - 1) || address != zc->address) 2092 return -EINVAL; 2093 2094 if (sk->sk_state == TCP_LISTEN) 2095 return -ENOTCONN; 2096 2097 sock_rps_record_flow(sk); 2098 2099 if (inq && inq <= copybuf_len) 2100 return receive_fallback_to_copy(sk, zc, inq, tss); 2101 2102 if (inq < PAGE_SIZE) { 2103 zc->length = 0; 2104 zc->recv_skip_hint = inq; 2105 if (!inq && sock_flag(sk, SOCK_DONE)) 2106 return -EIO; 2107 return 0; 2108 } 2109 2110 mmap_read_lock(current->mm); 2111 2112 vma = vma_lookup(current->mm, address); 2113 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2114 mmap_read_unlock(current->mm); 2115 return -EINVAL; 2116 } 2117 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2118 avail_len = min_t(u32, vma_len, inq); 2119 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2120 if (total_bytes_to_map) { 2121 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2122 zap_page_range(vma, address, total_bytes_to_map); 2123 zc->length = total_bytes_to_map; 2124 zc->recv_skip_hint = 0; 2125 } else { 2126 zc->length = avail_len; 2127 zc->recv_skip_hint = avail_len; 2128 } 2129 ret = 0; 2130 while (length + PAGE_SIZE <= zc->length) { 2131 int mappable_offset; 2132 struct page *page; 2133 2134 if (zc->recv_skip_hint < PAGE_SIZE) { 2135 u32 offset_frag; 2136 2137 if (skb) { 2138 if (zc->recv_skip_hint > 0) 2139 break; 2140 skb = skb->next; 2141 offset = seq - TCP_SKB_CB(skb)->seq; 2142 } else { 2143 skb = tcp_recv_skb(sk, seq, &offset); 2144 } 2145 2146 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2147 tcp_update_recv_tstamps(skb, tss); 2148 zc->msg_flags |= TCP_CMSG_TS; 2149 } 2150 zc->recv_skip_hint = skb->len - offset; 2151 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2152 if (!frags || offset_frag) 2153 break; 2154 } 2155 2156 mappable_offset = find_next_mappable_frag(frags, 2157 zc->recv_skip_hint); 2158 if (mappable_offset) { 2159 zc->recv_skip_hint = mappable_offset; 2160 break; 2161 } 2162 page = skb_frag_page(frags); 2163 prefetchw(page); 2164 pages[pages_to_map++] = page; 2165 length += PAGE_SIZE; 2166 zc->recv_skip_hint -= PAGE_SIZE; 2167 frags++; 2168 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2169 zc->recv_skip_hint < PAGE_SIZE) { 2170 /* Either full batch, or we're about to go to next skb 2171 * (and we cannot unroll failed ops across skbs). 2172 */ 2173 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2174 pages_to_map, 2175 &address, &length, 2176 &seq, zc, 2177 total_bytes_to_map); 2178 if (ret) 2179 goto out; 2180 pages_to_map = 0; 2181 } 2182 } 2183 if (pages_to_map) { 2184 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2185 &address, &length, &seq, 2186 zc, total_bytes_to_map); 2187 } 2188 out: 2189 mmap_read_unlock(current->mm); 2190 /* Try to copy straggler data. */ 2191 if (!ret) 2192 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2193 2194 if (length + copylen) { 2195 WRITE_ONCE(tp->copied_seq, seq); 2196 tcp_rcv_space_adjust(sk); 2197 2198 /* Clean up data we have read: This will do ACK frames. */ 2199 tcp_recv_skb(sk, seq, &offset); 2200 tcp_cleanup_rbuf(sk, length + copylen); 2201 ret = 0; 2202 if (length == zc->length) 2203 zc->recv_skip_hint = 0; 2204 } else { 2205 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2206 ret = -EIO; 2207 } 2208 zc->length = length; 2209 return ret; 2210 } 2211 #endif 2212 2213 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2214 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2215 struct scm_timestamping_internal *tss) 2216 { 2217 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2218 bool has_timestamping = false; 2219 2220 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2221 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2222 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2223 if (new_tstamp) { 2224 struct __kernel_timespec kts = { 2225 .tv_sec = tss->ts[0].tv_sec, 2226 .tv_nsec = tss->ts[0].tv_nsec, 2227 }; 2228 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2229 sizeof(kts), &kts); 2230 } else { 2231 struct __kernel_old_timespec ts_old = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_nsec = tss->ts[0].tv_nsec, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2236 sizeof(ts_old), &ts_old); 2237 } 2238 } else { 2239 if (new_tstamp) { 2240 struct __kernel_sock_timeval stv = { 2241 .tv_sec = tss->ts[0].tv_sec, 2242 .tv_usec = tss->ts[0].tv_nsec / 1000, 2243 }; 2244 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2245 sizeof(stv), &stv); 2246 } else { 2247 struct __kernel_old_timeval tv = { 2248 .tv_sec = tss->ts[0].tv_sec, 2249 .tv_usec = tss->ts[0].tv_nsec / 1000, 2250 }; 2251 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2252 sizeof(tv), &tv); 2253 } 2254 } 2255 } 2256 2257 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2258 has_timestamping = true; 2259 else 2260 tss->ts[0] = (struct timespec64) {0}; 2261 } 2262 2263 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2264 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2265 has_timestamping = true; 2266 else 2267 tss->ts[2] = (struct timespec64) {0}; 2268 } 2269 2270 if (has_timestamping) { 2271 tss->ts[1] = (struct timespec64) {0}; 2272 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2273 put_cmsg_scm_timestamping64(msg, tss); 2274 else 2275 put_cmsg_scm_timestamping(msg, tss); 2276 } 2277 } 2278 2279 static int tcp_inq_hint(struct sock *sk) 2280 { 2281 const struct tcp_sock *tp = tcp_sk(sk); 2282 u32 copied_seq = READ_ONCE(tp->copied_seq); 2283 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2284 int inq; 2285 2286 inq = rcv_nxt - copied_seq; 2287 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2288 lock_sock(sk); 2289 inq = tp->rcv_nxt - tp->copied_seq; 2290 release_sock(sk); 2291 } 2292 /* After receiving a FIN, tell the user-space to continue reading 2293 * by returning a non-zero inq. 2294 */ 2295 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2296 inq = 1; 2297 return inq; 2298 } 2299 2300 /* 2301 * This routine copies from a sock struct into the user buffer. 2302 * 2303 * Technical note: in 2.3 we work on _locked_ socket, so that 2304 * tricks with *seq access order and skb->users are not required. 2305 * Probably, code can be easily improved even more. 2306 */ 2307 2308 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2309 int nonblock, int flags, 2310 struct scm_timestamping_internal *tss, 2311 int *cmsg_flags) 2312 { 2313 struct tcp_sock *tp = tcp_sk(sk); 2314 int copied = 0; 2315 u32 peek_seq; 2316 u32 *seq; 2317 unsigned long used; 2318 int err; 2319 int target; /* Read at least this many bytes */ 2320 long timeo; 2321 struct sk_buff *skb, *last; 2322 u32 urg_hole = 0; 2323 2324 err = -ENOTCONN; 2325 if (sk->sk_state == TCP_LISTEN) 2326 goto out; 2327 2328 if (tp->recvmsg_inq) 2329 *cmsg_flags = TCP_CMSG_INQ; 2330 timeo = sock_rcvtimeo(sk, nonblock); 2331 2332 /* Urgent data needs to be handled specially. */ 2333 if (flags & MSG_OOB) 2334 goto recv_urg; 2335 2336 if (unlikely(tp->repair)) { 2337 err = -EPERM; 2338 if (!(flags & MSG_PEEK)) 2339 goto out; 2340 2341 if (tp->repair_queue == TCP_SEND_QUEUE) 2342 goto recv_sndq; 2343 2344 err = -EINVAL; 2345 if (tp->repair_queue == TCP_NO_QUEUE) 2346 goto out; 2347 2348 /* 'common' recv queue MSG_PEEK-ing */ 2349 } 2350 2351 seq = &tp->copied_seq; 2352 if (flags & MSG_PEEK) { 2353 peek_seq = tp->copied_seq; 2354 seq = &peek_seq; 2355 } 2356 2357 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2358 2359 do { 2360 u32 offset; 2361 2362 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2363 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2364 if (copied) 2365 break; 2366 if (signal_pending(current)) { 2367 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2368 break; 2369 } 2370 } 2371 2372 /* Next get a buffer. */ 2373 2374 last = skb_peek_tail(&sk->sk_receive_queue); 2375 skb_queue_walk(&sk->sk_receive_queue, skb) { 2376 last = skb; 2377 /* Now that we have two receive queues this 2378 * shouldn't happen. 2379 */ 2380 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2381 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2382 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2383 flags)) 2384 break; 2385 2386 offset = *seq - TCP_SKB_CB(skb)->seq; 2387 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2388 pr_err_once("%s: found a SYN, please report !\n", __func__); 2389 offset--; 2390 } 2391 if (offset < skb->len) 2392 goto found_ok_skb; 2393 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2394 goto found_fin_ok; 2395 WARN(!(flags & MSG_PEEK), 2396 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2397 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2398 } 2399 2400 /* Well, if we have backlog, try to process it now yet. */ 2401 2402 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2403 break; 2404 2405 if (copied) { 2406 if (!timeo || 2407 sk->sk_err || 2408 sk->sk_state == TCP_CLOSE || 2409 (sk->sk_shutdown & RCV_SHUTDOWN) || 2410 signal_pending(current)) 2411 break; 2412 } else { 2413 if (sock_flag(sk, SOCK_DONE)) 2414 break; 2415 2416 if (sk->sk_err) { 2417 copied = sock_error(sk); 2418 break; 2419 } 2420 2421 if (sk->sk_shutdown & RCV_SHUTDOWN) 2422 break; 2423 2424 if (sk->sk_state == TCP_CLOSE) { 2425 /* This occurs when user tries to read 2426 * from never connected socket. 2427 */ 2428 copied = -ENOTCONN; 2429 break; 2430 } 2431 2432 if (!timeo) { 2433 copied = -EAGAIN; 2434 break; 2435 } 2436 2437 if (signal_pending(current)) { 2438 copied = sock_intr_errno(timeo); 2439 break; 2440 } 2441 } 2442 2443 if (copied >= target) { 2444 /* Do not sleep, just process backlog. */ 2445 __sk_flush_backlog(sk); 2446 } else { 2447 tcp_cleanup_rbuf(sk, copied); 2448 sk_defer_free_flush(sk); 2449 sk_wait_data(sk, &timeo, last); 2450 } 2451 2452 if ((flags & MSG_PEEK) && 2453 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2454 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2455 current->comm, 2456 task_pid_nr(current)); 2457 peek_seq = tp->copied_seq; 2458 } 2459 continue; 2460 2461 found_ok_skb: 2462 /* Ok so how much can we use? */ 2463 used = skb->len - offset; 2464 if (len < used) 2465 used = len; 2466 2467 /* Do we have urgent data here? */ 2468 if (unlikely(tp->urg_data)) { 2469 u32 urg_offset = tp->urg_seq - *seq; 2470 if (urg_offset < used) { 2471 if (!urg_offset) { 2472 if (!sock_flag(sk, SOCK_URGINLINE)) { 2473 WRITE_ONCE(*seq, *seq + 1); 2474 urg_hole++; 2475 offset++; 2476 used--; 2477 if (!used) 2478 goto skip_copy; 2479 } 2480 } else 2481 used = urg_offset; 2482 } 2483 } 2484 2485 if (!(flags & MSG_TRUNC)) { 2486 err = skb_copy_datagram_msg(skb, offset, msg, used); 2487 if (err) { 2488 /* Exception. Bailout! */ 2489 if (!copied) 2490 copied = -EFAULT; 2491 break; 2492 } 2493 } 2494 2495 WRITE_ONCE(*seq, *seq + used); 2496 copied += used; 2497 len -= used; 2498 2499 tcp_rcv_space_adjust(sk); 2500 2501 skip_copy: 2502 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2503 WRITE_ONCE(tp->urg_data, 0); 2504 tcp_fast_path_check(sk); 2505 } 2506 2507 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2508 tcp_update_recv_tstamps(skb, tss); 2509 *cmsg_flags |= TCP_CMSG_TS; 2510 } 2511 2512 if (used + offset < skb->len) 2513 continue; 2514 2515 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2516 goto found_fin_ok; 2517 if (!(flags & MSG_PEEK)) 2518 tcp_eat_recv_skb(sk, skb); 2519 continue; 2520 2521 found_fin_ok: 2522 /* Process the FIN. */ 2523 WRITE_ONCE(*seq, *seq + 1); 2524 if (!(flags & MSG_PEEK)) 2525 tcp_eat_recv_skb(sk, skb); 2526 break; 2527 } while (len > 0); 2528 2529 /* According to UNIX98, msg_name/msg_namelen are ignored 2530 * on connected socket. I was just happy when found this 8) --ANK 2531 */ 2532 2533 /* Clean up data we have read: This will do ACK frames. */ 2534 tcp_cleanup_rbuf(sk, copied); 2535 return copied; 2536 2537 out: 2538 return err; 2539 2540 recv_urg: 2541 err = tcp_recv_urg(sk, msg, len, flags); 2542 goto out; 2543 2544 recv_sndq: 2545 err = tcp_peek_sndq(sk, msg, len); 2546 goto out; 2547 } 2548 2549 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2550 int flags, int *addr_len) 2551 { 2552 int cmsg_flags = 0, ret, inq; 2553 struct scm_timestamping_internal tss; 2554 2555 if (unlikely(flags & MSG_ERRQUEUE)) 2556 return inet_recv_error(sk, msg, len, addr_len); 2557 2558 if (sk_can_busy_loop(sk) && 2559 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2560 sk->sk_state == TCP_ESTABLISHED) 2561 sk_busy_loop(sk, nonblock); 2562 2563 lock_sock(sk); 2564 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2565 &cmsg_flags); 2566 release_sock(sk); 2567 sk_defer_free_flush(sk); 2568 2569 if (cmsg_flags && ret >= 0) { 2570 if (cmsg_flags & TCP_CMSG_TS) 2571 tcp_recv_timestamp(msg, sk, &tss); 2572 if (cmsg_flags & TCP_CMSG_INQ) { 2573 inq = tcp_inq_hint(sk); 2574 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2575 } 2576 } 2577 return ret; 2578 } 2579 EXPORT_SYMBOL(tcp_recvmsg); 2580 2581 void tcp_set_state(struct sock *sk, int state) 2582 { 2583 int oldstate = sk->sk_state; 2584 2585 /* We defined a new enum for TCP states that are exported in BPF 2586 * so as not force the internal TCP states to be frozen. The 2587 * following checks will detect if an internal state value ever 2588 * differs from the BPF value. If this ever happens, then we will 2589 * need to remap the internal value to the BPF value before calling 2590 * tcp_call_bpf_2arg. 2591 */ 2592 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2593 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2594 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2595 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2596 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2597 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2598 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2599 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2600 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2601 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2602 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2603 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2604 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2605 2606 /* bpf uapi header bpf.h defines an anonymous enum with values 2607 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2608 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2609 * But clang built vmlinux does not have this enum in DWARF 2610 * since clang removes the above code before generating IR/debuginfo. 2611 * Let us explicitly emit the type debuginfo to ensure the 2612 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2613 * regardless of which compiler is used. 2614 */ 2615 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2616 2617 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2618 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2619 2620 switch (state) { 2621 case TCP_ESTABLISHED: 2622 if (oldstate != TCP_ESTABLISHED) 2623 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2624 break; 2625 2626 case TCP_CLOSE: 2627 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2628 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2629 2630 sk->sk_prot->unhash(sk); 2631 if (inet_csk(sk)->icsk_bind_hash && 2632 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2633 inet_put_port(sk); 2634 fallthrough; 2635 default: 2636 if (oldstate == TCP_ESTABLISHED) 2637 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2638 } 2639 2640 /* Change state AFTER socket is unhashed to avoid closed 2641 * socket sitting in hash tables. 2642 */ 2643 inet_sk_state_store(sk, state); 2644 } 2645 EXPORT_SYMBOL_GPL(tcp_set_state); 2646 2647 /* 2648 * State processing on a close. This implements the state shift for 2649 * sending our FIN frame. Note that we only send a FIN for some 2650 * states. A shutdown() may have already sent the FIN, or we may be 2651 * closed. 2652 */ 2653 2654 static const unsigned char new_state[16] = { 2655 /* current state: new state: action: */ 2656 [0 /* (Invalid) */] = TCP_CLOSE, 2657 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2658 [TCP_SYN_SENT] = TCP_CLOSE, 2659 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2660 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2661 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2662 [TCP_TIME_WAIT] = TCP_CLOSE, 2663 [TCP_CLOSE] = TCP_CLOSE, 2664 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2665 [TCP_LAST_ACK] = TCP_LAST_ACK, 2666 [TCP_LISTEN] = TCP_CLOSE, 2667 [TCP_CLOSING] = TCP_CLOSING, 2668 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2669 }; 2670 2671 static int tcp_close_state(struct sock *sk) 2672 { 2673 int next = (int)new_state[sk->sk_state]; 2674 int ns = next & TCP_STATE_MASK; 2675 2676 tcp_set_state(sk, ns); 2677 2678 return next & TCP_ACTION_FIN; 2679 } 2680 2681 /* 2682 * Shutdown the sending side of a connection. Much like close except 2683 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2684 */ 2685 2686 void tcp_shutdown(struct sock *sk, int how) 2687 { 2688 /* We need to grab some memory, and put together a FIN, 2689 * and then put it into the queue to be sent. 2690 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2691 */ 2692 if (!(how & SEND_SHUTDOWN)) 2693 return; 2694 2695 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2696 if ((1 << sk->sk_state) & 2697 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2698 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2699 /* Clear out any half completed packets. FIN if needed. */ 2700 if (tcp_close_state(sk)) 2701 tcp_send_fin(sk); 2702 } 2703 } 2704 EXPORT_SYMBOL(tcp_shutdown); 2705 2706 int tcp_orphan_count_sum(void) 2707 { 2708 int i, total = 0; 2709 2710 for_each_possible_cpu(i) 2711 total += per_cpu(tcp_orphan_count, i); 2712 2713 return max(total, 0); 2714 } 2715 2716 static int tcp_orphan_cache; 2717 static struct timer_list tcp_orphan_timer; 2718 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2719 2720 static void tcp_orphan_update(struct timer_list *unused) 2721 { 2722 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2723 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2724 } 2725 2726 static bool tcp_too_many_orphans(int shift) 2727 { 2728 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2729 } 2730 2731 bool tcp_check_oom(struct sock *sk, int shift) 2732 { 2733 bool too_many_orphans, out_of_socket_memory; 2734 2735 too_many_orphans = tcp_too_many_orphans(shift); 2736 out_of_socket_memory = tcp_out_of_memory(sk); 2737 2738 if (too_many_orphans) 2739 net_info_ratelimited("too many orphaned sockets\n"); 2740 if (out_of_socket_memory) 2741 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2742 return too_many_orphans || out_of_socket_memory; 2743 } 2744 2745 void __tcp_close(struct sock *sk, long timeout) 2746 { 2747 struct sk_buff *skb; 2748 int data_was_unread = 0; 2749 int state; 2750 2751 sk->sk_shutdown = SHUTDOWN_MASK; 2752 2753 if (sk->sk_state == TCP_LISTEN) { 2754 tcp_set_state(sk, TCP_CLOSE); 2755 2756 /* Special case. */ 2757 inet_csk_listen_stop(sk); 2758 2759 goto adjudge_to_death; 2760 } 2761 2762 /* We need to flush the recv. buffs. We do this only on the 2763 * descriptor close, not protocol-sourced closes, because the 2764 * reader process may not have drained the data yet! 2765 */ 2766 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2767 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2768 2769 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2770 len--; 2771 data_was_unread += len; 2772 __kfree_skb(skb); 2773 } 2774 2775 sk_mem_reclaim(sk); 2776 2777 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2778 if (sk->sk_state == TCP_CLOSE) 2779 goto adjudge_to_death; 2780 2781 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2782 * data was lost. To witness the awful effects of the old behavior of 2783 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2784 * GET in an FTP client, suspend the process, wait for the client to 2785 * advertise a zero window, then kill -9 the FTP client, wheee... 2786 * Note: timeout is always zero in such a case. 2787 */ 2788 if (unlikely(tcp_sk(sk)->repair)) { 2789 sk->sk_prot->disconnect(sk, 0); 2790 } else if (data_was_unread) { 2791 /* Unread data was tossed, zap the connection. */ 2792 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2793 tcp_set_state(sk, TCP_CLOSE); 2794 tcp_send_active_reset(sk, sk->sk_allocation); 2795 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2796 /* Check zero linger _after_ checking for unread data. */ 2797 sk->sk_prot->disconnect(sk, 0); 2798 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2799 } else if (tcp_close_state(sk)) { 2800 /* We FIN if the application ate all the data before 2801 * zapping the connection. 2802 */ 2803 2804 /* RED-PEN. Formally speaking, we have broken TCP state 2805 * machine. State transitions: 2806 * 2807 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2808 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2809 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2810 * 2811 * are legal only when FIN has been sent (i.e. in window), 2812 * rather than queued out of window. Purists blame. 2813 * 2814 * F.e. "RFC state" is ESTABLISHED, 2815 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2816 * 2817 * The visible declinations are that sometimes 2818 * we enter time-wait state, when it is not required really 2819 * (harmless), do not send active resets, when they are 2820 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2821 * they look as CLOSING or LAST_ACK for Linux) 2822 * Probably, I missed some more holelets. 2823 * --ANK 2824 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2825 * in a single packet! (May consider it later but will 2826 * probably need API support or TCP_CORK SYN-ACK until 2827 * data is written and socket is closed.) 2828 */ 2829 tcp_send_fin(sk); 2830 } 2831 2832 sk_stream_wait_close(sk, timeout); 2833 2834 adjudge_to_death: 2835 state = sk->sk_state; 2836 sock_hold(sk); 2837 sock_orphan(sk); 2838 2839 local_bh_disable(); 2840 bh_lock_sock(sk); 2841 /* remove backlog if any, without releasing ownership. */ 2842 __release_sock(sk); 2843 2844 this_cpu_inc(tcp_orphan_count); 2845 2846 /* Have we already been destroyed by a softirq or backlog? */ 2847 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2848 goto out; 2849 2850 /* This is a (useful) BSD violating of the RFC. There is a 2851 * problem with TCP as specified in that the other end could 2852 * keep a socket open forever with no application left this end. 2853 * We use a 1 minute timeout (about the same as BSD) then kill 2854 * our end. If they send after that then tough - BUT: long enough 2855 * that we won't make the old 4*rto = almost no time - whoops 2856 * reset mistake. 2857 * 2858 * Nope, it was not mistake. It is really desired behaviour 2859 * f.e. on http servers, when such sockets are useless, but 2860 * consume significant resources. Let's do it with special 2861 * linger2 option. --ANK 2862 */ 2863 2864 if (sk->sk_state == TCP_FIN_WAIT2) { 2865 struct tcp_sock *tp = tcp_sk(sk); 2866 if (tp->linger2 < 0) { 2867 tcp_set_state(sk, TCP_CLOSE); 2868 tcp_send_active_reset(sk, GFP_ATOMIC); 2869 __NET_INC_STATS(sock_net(sk), 2870 LINUX_MIB_TCPABORTONLINGER); 2871 } else { 2872 const int tmo = tcp_fin_time(sk); 2873 2874 if (tmo > TCP_TIMEWAIT_LEN) { 2875 inet_csk_reset_keepalive_timer(sk, 2876 tmo - TCP_TIMEWAIT_LEN); 2877 } else { 2878 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2879 goto out; 2880 } 2881 } 2882 } 2883 if (sk->sk_state != TCP_CLOSE) { 2884 sk_mem_reclaim(sk); 2885 if (tcp_check_oom(sk, 0)) { 2886 tcp_set_state(sk, TCP_CLOSE); 2887 tcp_send_active_reset(sk, GFP_ATOMIC); 2888 __NET_INC_STATS(sock_net(sk), 2889 LINUX_MIB_TCPABORTONMEMORY); 2890 } else if (!check_net(sock_net(sk))) { 2891 /* Not possible to send reset; just close */ 2892 tcp_set_state(sk, TCP_CLOSE); 2893 } 2894 } 2895 2896 if (sk->sk_state == TCP_CLOSE) { 2897 struct request_sock *req; 2898 2899 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2900 lockdep_sock_is_held(sk)); 2901 /* We could get here with a non-NULL req if the socket is 2902 * aborted (e.g., closed with unread data) before 3WHS 2903 * finishes. 2904 */ 2905 if (req) 2906 reqsk_fastopen_remove(sk, req, false); 2907 inet_csk_destroy_sock(sk); 2908 } 2909 /* Otherwise, socket is reprieved until protocol close. */ 2910 2911 out: 2912 bh_unlock_sock(sk); 2913 local_bh_enable(); 2914 } 2915 2916 void tcp_close(struct sock *sk, long timeout) 2917 { 2918 lock_sock(sk); 2919 __tcp_close(sk, timeout); 2920 release_sock(sk); 2921 sock_put(sk); 2922 } 2923 EXPORT_SYMBOL(tcp_close); 2924 2925 /* These states need RST on ABORT according to RFC793 */ 2926 2927 static inline bool tcp_need_reset(int state) 2928 { 2929 return (1 << state) & 2930 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2931 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2932 } 2933 2934 static void tcp_rtx_queue_purge(struct sock *sk) 2935 { 2936 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2937 2938 tcp_sk(sk)->highest_sack = NULL; 2939 while (p) { 2940 struct sk_buff *skb = rb_to_skb(p); 2941 2942 p = rb_next(p); 2943 /* Since we are deleting whole queue, no need to 2944 * list_del(&skb->tcp_tsorted_anchor) 2945 */ 2946 tcp_rtx_queue_unlink(skb, sk); 2947 tcp_wmem_free_skb(sk, skb); 2948 } 2949 } 2950 2951 void tcp_write_queue_purge(struct sock *sk) 2952 { 2953 struct sk_buff *skb; 2954 2955 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2956 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2957 tcp_skb_tsorted_anchor_cleanup(skb); 2958 tcp_wmem_free_skb(sk, skb); 2959 } 2960 tcp_rtx_queue_purge(sk); 2961 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2962 sk_mem_reclaim(sk); 2963 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2964 tcp_sk(sk)->packets_out = 0; 2965 inet_csk(sk)->icsk_backoff = 0; 2966 } 2967 2968 int tcp_disconnect(struct sock *sk, int flags) 2969 { 2970 struct inet_sock *inet = inet_sk(sk); 2971 struct inet_connection_sock *icsk = inet_csk(sk); 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 int old_state = sk->sk_state; 2974 u32 seq; 2975 2976 if (old_state != TCP_CLOSE) 2977 tcp_set_state(sk, TCP_CLOSE); 2978 2979 /* ABORT function of RFC793 */ 2980 if (old_state == TCP_LISTEN) { 2981 inet_csk_listen_stop(sk); 2982 } else if (unlikely(tp->repair)) { 2983 sk->sk_err = ECONNABORTED; 2984 } else if (tcp_need_reset(old_state) || 2985 (tp->snd_nxt != tp->write_seq && 2986 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2987 /* The last check adjusts for discrepancy of Linux wrt. RFC 2988 * states 2989 */ 2990 tcp_send_active_reset(sk, gfp_any()); 2991 sk->sk_err = ECONNRESET; 2992 } else if (old_state == TCP_SYN_SENT) 2993 sk->sk_err = ECONNRESET; 2994 2995 tcp_clear_xmit_timers(sk); 2996 __skb_queue_purge(&sk->sk_receive_queue); 2997 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2998 WRITE_ONCE(tp->urg_data, 0); 2999 tcp_write_queue_purge(sk); 3000 tcp_fastopen_active_disable_ofo_check(sk); 3001 skb_rbtree_purge(&tp->out_of_order_queue); 3002 3003 inet->inet_dport = 0; 3004 3005 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3006 inet_reset_saddr(sk); 3007 3008 sk->sk_shutdown = 0; 3009 sock_reset_flag(sk, SOCK_DONE); 3010 tp->srtt_us = 0; 3011 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3012 tp->rcv_rtt_last_tsecr = 0; 3013 3014 seq = tp->write_seq + tp->max_window + 2; 3015 if (!seq) 3016 seq = 1; 3017 WRITE_ONCE(tp->write_seq, seq); 3018 3019 icsk->icsk_backoff = 0; 3020 icsk->icsk_probes_out = 0; 3021 icsk->icsk_probes_tstamp = 0; 3022 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3023 icsk->icsk_rto_min = TCP_RTO_MIN; 3024 icsk->icsk_delack_max = TCP_DELACK_MAX; 3025 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3026 tp->snd_cwnd = TCP_INIT_CWND; 3027 tp->snd_cwnd_cnt = 0; 3028 tp->window_clamp = 0; 3029 tp->delivered = 0; 3030 tp->delivered_ce = 0; 3031 if (icsk->icsk_ca_ops->release) 3032 icsk->icsk_ca_ops->release(sk); 3033 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3034 icsk->icsk_ca_initialized = 0; 3035 tcp_set_ca_state(sk, TCP_CA_Open); 3036 tp->is_sack_reneg = 0; 3037 tcp_clear_retrans(tp); 3038 tp->total_retrans = 0; 3039 inet_csk_delack_init(sk); 3040 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3041 * issue in __tcp_select_window() 3042 */ 3043 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3044 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3045 __sk_dst_reset(sk); 3046 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3047 tcp_saved_syn_free(tp); 3048 tp->compressed_ack = 0; 3049 tp->segs_in = 0; 3050 tp->segs_out = 0; 3051 tp->bytes_sent = 0; 3052 tp->bytes_acked = 0; 3053 tp->bytes_received = 0; 3054 tp->bytes_retrans = 0; 3055 tp->data_segs_in = 0; 3056 tp->data_segs_out = 0; 3057 tp->duplicate_sack[0].start_seq = 0; 3058 tp->duplicate_sack[0].end_seq = 0; 3059 tp->dsack_dups = 0; 3060 tp->reord_seen = 0; 3061 tp->retrans_out = 0; 3062 tp->sacked_out = 0; 3063 tp->tlp_high_seq = 0; 3064 tp->last_oow_ack_time = 0; 3065 /* There's a bubble in the pipe until at least the first ACK. */ 3066 tp->app_limited = ~0U; 3067 tp->rack.mstamp = 0; 3068 tp->rack.advanced = 0; 3069 tp->rack.reo_wnd_steps = 1; 3070 tp->rack.last_delivered = 0; 3071 tp->rack.reo_wnd_persist = 0; 3072 tp->rack.dsack_seen = 0; 3073 tp->syn_data_acked = 0; 3074 tp->rx_opt.saw_tstamp = 0; 3075 tp->rx_opt.dsack = 0; 3076 tp->rx_opt.num_sacks = 0; 3077 tp->rcv_ooopack = 0; 3078 3079 3080 /* Clean up fastopen related fields */ 3081 tcp_free_fastopen_req(tp); 3082 inet->defer_connect = 0; 3083 tp->fastopen_client_fail = 0; 3084 3085 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3086 3087 if (sk->sk_frag.page) { 3088 put_page(sk->sk_frag.page); 3089 sk->sk_frag.page = NULL; 3090 sk->sk_frag.offset = 0; 3091 } 3092 sk_defer_free_flush(sk); 3093 sk_error_report(sk); 3094 return 0; 3095 } 3096 EXPORT_SYMBOL(tcp_disconnect); 3097 3098 static inline bool tcp_can_repair_sock(const struct sock *sk) 3099 { 3100 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3101 (sk->sk_state != TCP_LISTEN); 3102 } 3103 3104 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3105 { 3106 struct tcp_repair_window opt; 3107 3108 if (!tp->repair) 3109 return -EPERM; 3110 3111 if (len != sizeof(opt)) 3112 return -EINVAL; 3113 3114 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3115 return -EFAULT; 3116 3117 if (opt.max_window < opt.snd_wnd) 3118 return -EINVAL; 3119 3120 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3121 return -EINVAL; 3122 3123 if (after(opt.rcv_wup, tp->rcv_nxt)) 3124 return -EINVAL; 3125 3126 tp->snd_wl1 = opt.snd_wl1; 3127 tp->snd_wnd = opt.snd_wnd; 3128 tp->max_window = opt.max_window; 3129 3130 tp->rcv_wnd = opt.rcv_wnd; 3131 tp->rcv_wup = opt.rcv_wup; 3132 3133 return 0; 3134 } 3135 3136 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3137 unsigned int len) 3138 { 3139 struct tcp_sock *tp = tcp_sk(sk); 3140 struct tcp_repair_opt opt; 3141 size_t offset = 0; 3142 3143 while (len >= sizeof(opt)) { 3144 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3145 return -EFAULT; 3146 3147 offset += sizeof(opt); 3148 len -= sizeof(opt); 3149 3150 switch (opt.opt_code) { 3151 case TCPOPT_MSS: 3152 tp->rx_opt.mss_clamp = opt.opt_val; 3153 tcp_mtup_init(sk); 3154 break; 3155 case TCPOPT_WINDOW: 3156 { 3157 u16 snd_wscale = opt.opt_val & 0xFFFF; 3158 u16 rcv_wscale = opt.opt_val >> 16; 3159 3160 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3161 return -EFBIG; 3162 3163 tp->rx_opt.snd_wscale = snd_wscale; 3164 tp->rx_opt.rcv_wscale = rcv_wscale; 3165 tp->rx_opt.wscale_ok = 1; 3166 } 3167 break; 3168 case TCPOPT_SACK_PERM: 3169 if (opt.opt_val != 0) 3170 return -EINVAL; 3171 3172 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3173 break; 3174 case TCPOPT_TIMESTAMP: 3175 if (opt.opt_val != 0) 3176 return -EINVAL; 3177 3178 tp->rx_opt.tstamp_ok = 1; 3179 break; 3180 } 3181 } 3182 3183 return 0; 3184 } 3185 3186 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3187 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3188 3189 static void tcp_enable_tx_delay(void) 3190 { 3191 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3192 static int __tcp_tx_delay_enabled = 0; 3193 3194 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3195 static_branch_enable(&tcp_tx_delay_enabled); 3196 pr_info("TCP_TX_DELAY enabled\n"); 3197 } 3198 } 3199 } 3200 3201 /* When set indicates to always queue non-full frames. Later the user clears 3202 * this option and we transmit any pending partial frames in the queue. This is 3203 * meant to be used alongside sendfile() to get properly filled frames when the 3204 * user (for example) must write out headers with a write() call first and then 3205 * use sendfile to send out the data parts. 3206 * 3207 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3208 * TCP_NODELAY. 3209 */ 3210 void __tcp_sock_set_cork(struct sock *sk, bool on) 3211 { 3212 struct tcp_sock *tp = tcp_sk(sk); 3213 3214 if (on) { 3215 tp->nonagle |= TCP_NAGLE_CORK; 3216 } else { 3217 tp->nonagle &= ~TCP_NAGLE_CORK; 3218 if (tp->nonagle & TCP_NAGLE_OFF) 3219 tp->nonagle |= TCP_NAGLE_PUSH; 3220 tcp_push_pending_frames(sk); 3221 } 3222 } 3223 3224 void tcp_sock_set_cork(struct sock *sk, bool on) 3225 { 3226 lock_sock(sk); 3227 __tcp_sock_set_cork(sk, on); 3228 release_sock(sk); 3229 } 3230 EXPORT_SYMBOL(tcp_sock_set_cork); 3231 3232 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3233 * remembered, but it is not activated until cork is cleared. 3234 * 3235 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3236 * even TCP_CORK for currently queued segments. 3237 */ 3238 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3239 { 3240 if (on) { 3241 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3242 tcp_push_pending_frames(sk); 3243 } else { 3244 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3245 } 3246 } 3247 3248 void tcp_sock_set_nodelay(struct sock *sk) 3249 { 3250 lock_sock(sk); 3251 __tcp_sock_set_nodelay(sk, true); 3252 release_sock(sk); 3253 } 3254 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3255 3256 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3257 { 3258 if (!val) { 3259 inet_csk_enter_pingpong_mode(sk); 3260 return; 3261 } 3262 3263 inet_csk_exit_pingpong_mode(sk); 3264 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3265 inet_csk_ack_scheduled(sk)) { 3266 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3267 tcp_cleanup_rbuf(sk, 1); 3268 if (!(val & 1)) 3269 inet_csk_enter_pingpong_mode(sk); 3270 } 3271 } 3272 3273 void tcp_sock_set_quickack(struct sock *sk, int val) 3274 { 3275 lock_sock(sk); 3276 __tcp_sock_set_quickack(sk, val); 3277 release_sock(sk); 3278 } 3279 EXPORT_SYMBOL(tcp_sock_set_quickack); 3280 3281 int tcp_sock_set_syncnt(struct sock *sk, int val) 3282 { 3283 if (val < 1 || val > MAX_TCP_SYNCNT) 3284 return -EINVAL; 3285 3286 lock_sock(sk); 3287 inet_csk(sk)->icsk_syn_retries = val; 3288 release_sock(sk); 3289 return 0; 3290 } 3291 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3292 3293 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3294 { 3295 lock_sock(sk); 3296 inet_csk(sk)->icsk_user_timeout = val; 3297 release_sock(sk); 3298 } 3299 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3300 3301 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3302 { 3303 struct tcp_sock *tp = tcp_sk(sk); 3304 3305 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3306 return -EINVAL; 3307 3308 tp->keepalive_time = val * HZ; 3309 if (sock_flag(sk, SOCK_KEEPOPEN) && 3310 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3311 u32 elapsed = keepalive_time_elapsed(tp); 3312 3313 if (tp->keepalive_time > elapsed) 3314 elapsed = tp->keepalive_time - elapsed; 3315 else 3316 elapsed = 0; 3317 inet_csk_reset_keepalive_timer(sk, elapsed); 3318 } 3319 3320 return 0; 3321 } 3322 3323 int tcp_sock_set_keepidle(struct sock *sk, int val) 3324 { 3325 int err; 3326 3327 lock_sock(sk); 3328 err = tcp_sock_set_keepidle_locked(sk, val); 3329 release_sock(sk); 3330 return err; 3331 } 3332 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3333 3334 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3335 { 3336 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3337 return -EINVAL; 3338 3339 lock_sock(sk); 3340 tcp_sk(sk)->keepalive_intvl = val * HZ; 3341 release_sock(sk); 3342 return 0; 3343 } 3344 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3345 3346 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3347 { 3348 if (val < 1 || val > MAX_TCP_KEEPCNT) 3349 return -EINVAL; 3350 3351 lock_sock(sk); 3352 tcp_sk(sk)->keepalive_probes = val; 3353 release_sock(sk); 3354 return 0; 3355 } 3356 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3357 3358 int tcp_set_window_clamp(struct sock *sk, int val) 3359 { 3360 struct tcp_sock *tp = tcp_sk(sk); 3361 3362 if (!val) { 3363 if (sk->sk_state != TCP_CLOSE) 3364 return -EINVAL; 3365 tp->window_clamp = 0; 3366 } else { 3367 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3368 SOCK_MIN_RCVBUF / 2 : val; 3369 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3370 } 3371 return 0; 3372 } 3373 3374 /* 3375 * Socket option code for TCP. 3376 */ 3377 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3378 sockptr_t optval, unsigned int optlen) 3379 { 3380 struct tcp_sock *tp = tcp_sk(sk); 3381 struct inet_connection_sock *icsk = inet_csk(sk); 3382 struct net *net = sock_net(sk); 3383 int val; 3384 int err = 0; 3385 3386 /* These are data/string values, all the others are ints */ 3387 switch (optname) { 3388 case TCP_CONGESTION: { 3389 char name[TCP_CA_NAME_MAX]; 3390 3391 if (optlen < 1) 3392 return -EINVAL; 3393 3394 val = strncpy_from_sockptr(name, optval, 3395 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3396 if (val < 0) 3397 return -EFAULT; 3398 name[val] = 0; 3399 3400 lock_sock(sk); 3401 err = tcp_set_congestion_control(sk, name, true, 3402 ns_capable(sock_net(sk)->user_ns, 3403 CAP_NET_ADMIN)); 3404 release_sock(sk); 3405 return err; 3406 } 3407 case TCP_ULP: { 3408 char name[TCP_ULP_NAME_MAX]; 3409 3410 if (optlen < 1) 3411 return -EINVAL; 3412 3413 val = strncpy_from_sockptr(name, optval, 3414 min_t(long, TCP_ULP_NAME_MAX - 1, 3415 optlen)); 3416 if (val < 0) 3417 return -EFAULT; 3418 name[val] = 0; 3419 3420 lock_sock(sk); 3421 err = tcp_set_ulp(sk, name); 3422 release_sock(sk); 3423 return err; 3424 } 3425 case TCP_FASTOPEN_KEY: { 3426 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3427 __u8 *backup_key = NULL; 3428 3429 /* Allow a backup key as well to facilitate key rotation 3430 * First key is the active one. 3431 */ 3432 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3433 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3434 return -EINVAL; 3435 3436 if (copy_from_sockptr(key, optval, optlen)) 3437 return -EFAULT; 3438 3439 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3440 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3441 3442 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3443 } 3444 default: 3445 /* fallthru */ 3446 break; 3447 } 3448 3449 if (optlen < sizeof(int)) 3450 return -EINVAL; 3451 3452 if (copy_from_sockptr(&val, optval, sizeof(val))) 3453 return -EFAULT; 3454 3455 lock_sock(sk); 3456 3457 switch (optname) { 3458 case TCP_MAXSEG: 3459 /* Values greater than interface MTU won't take effect. However 3460 * at the point when this call is done we typically don't yet 3461 * know which interface is going to be used 3462 */ 3463 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3464 err = -EINVAL; 3465 break; 3466 } 3467 tp->rx_opt.user_mss = val; 3468 break; 3469 3470 case TCP_NODELAY: 3471 __tcp_sock_set_nodelay(sk, val); 3472 break; 3473 3474 case TCP_THIN_LINEAR_TIMEOUTS: 3475 if (val < 0 || val > 1) 3476 err = -EINVAL; 3477 else 3478 tp->thin_lto = val; 3479 break; 3480 3481 case TCP_THIN_DUPACK: 3482 if (val < 0 || val > 1) 3483 err = -EINVAL; 3484 break; 3485 3486 case TCP_REPAIR: 3487 if (!tcp_can_repair_sock(sk)) 3488 err = -EPERM; 3489 else if (val == TCP_REPAIR_ON) { 3490 tp->repair = 1; 3491 sk->sk_reuse = SK_FORCE_REUSE; 3492 tp->repair_queue = TCP_NO_QUEUE; 3493 } else if (val == TCP_REPAIR_OFF) { 3494 tp->repair = 0; 3495 sk->sk_reuse = SK_NO_REUSE; 3496 tcp_send_window_probe(sk); 3497 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3498 tp->repair = 0; 3499 sk->sk_reuse = SK_NO_REUSE; 3500 } else 3501 err = -EINVAL; 3502 3503 break; 3504 3505 case TCP_REPAIR_QUEUE: 3506 if (!tp->repair) 3507 err = -EPERM; 3508 else if ((unsigned int)val < TCP_QUEUES_NR) 3509 tp->repair_queue = val; 3510 else 3511 err = -EINVAL; 3512 break; 3513 3514 case TCP_QUEUE_SEQ: 3515 if (sk->sk_state != TCP_CLOSE) { 3516 err = -EPERM; 3517 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3518 if (!tcp_rtx_queue_empty(sk)) 3519 err = -EPERM; 3520 else 3521 WRITE_ONCE(tp->write_seq, val); 3522 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3523 if (tp->rcv_nxt != tp->copied_seq) { 3524 err = -EPERM; 3525 } else { 3526 WRITE_ONCE(tp->rcv_nxt, val); 3527 WRITE_ONCE(tp->copied_seq, val); 3528 } 3529 } else { 3530 err = -EINVAL; 3531 } 3532 break; 3533 3534 case TCP_REPAIR_OPTIONS: 3535 if (!tp->repair) 3536 err = -EINVAL; 3537 else if (sk->sk_state == TCP_ESTABLISHED) 3538 err = tcp_repair_options_est(sk, optval, optlen); 3539 else 3540 err = -EPERM; 3541 break; 3542 3543 case TCP_CORK: 3544 __tcp_sock_set_cork(sk, val); 3545 break; 3546 3547 case TCP_KEEPIDLE: 3548 err = tcp_sock_set_keepidle_locked(sk, val); 3549 break; 3550 case TCP_KEEPINTVL: 3551 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3552 err = -EINVAL; 3553 else 3554 tp->keepalive_intvl = val * HZ; 3555 break; 3556 case TCP_KEEPCNT: 3557 if (val < 1 || val > MAX_TCP_KEEPCNT) 3558 err = -EINVAL; 3559 else 3560 tp->keepalive_probes = val; 3561 break; 3562 case TCP_SYNCNT: 3563 if (val < 1 || val > MAX_TCP_SYNCNT) 3564 err = -EINVAL; 3565 else 3566 icsk->icsk_syn_retries = val; 3567 break; 3568 3569 case TCP_SAVE_SYN: 3570 /* 0: disable, 1: enable, 2: start from ether_header */ 3571 if (val < 0 || val > 2) 3572 err = -EINVAL; 3573 else 3574 tp->save_syn = val; 3575 break; 3576 3577 case TCP_LINGER2: 3578 if (val < 0) 3579 tp->linger2 = -1; 3580 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3581 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3582 else 3583 tp->linger2 = val * HZ; 3584 break; 3585 3586 case TCP_DEFER_ACCEPT: 3587 /* Translate value in seconds to number of retransmits */ 3588 icsk->icsk_accept_queue.rskq_defer_accept = 3589 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3590 TCP_RTO_MAX / HZ); 3591 break; 3592 3593 case TCP_WINDOW_CLAMP: 3594 err = tcp_set_window_clamp(sk, val); 3595 break; 3596 3597 case TCP_QUICKACK: 3598 __tcp_sock_set_quickack(sk, val); 3599 break; 3600 3601 #ifdef CONFIG_TCP_MD5SIG 3602 case TCP_MD5SIG: 3603 case TCP_MD5SIG_EXT: 3604 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3605 break; 3606 #endif 3607 case TCP_USER_TIMEOUT: 3608 /* Cap the max time in ms TCP will retry or probe the window 3609 * before giving up and aborting (ETIMEDOUT) a connection. 3610 */ 3611 if (val < 0) 3612 err = -EINVAL; 3613 else 3614 icsk->icsk_user_timeout = val; 3615 break; 3616 3617 case TCP_FASTOPEN: 3618 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3619 TCPF_LISTEN))) { 3620 tcp_fastopen_init_key_once(net); 3621 3622 fastopen_queue_tune(sk, val); 3623 } else { 3624 err = -EINVAL; 3625 } 3626 break; 3627 case TCP_FASTOPEN_CONNECT: 3628 if (val > 1 || val < 0) { 3629 err = -EINVAL; 3630 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3631 if (sk->sk_state == TCP_CLOSE) 3632 tp->fastopen_connect = val; 3633 else 3634 err = -EINVAL; 3635 } else { 3636 err = -EOPNOTSUPP; 3637 } 3638 break; 3639 case TCP_FASTOPEN_NO_COOKIE: 3640 if (val > 1 || val < 0) 3641 err = -EINVAL; 3642 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3643 err = -EINVAL; 3644 else 3645 tp->fastopen_no_cookie = val; 3646 break; 3647 case TCP_TIMESTAMP: 3648 if (!tp->repair) 3649 err = -EPERM; 3650 else 3651 tp->tsoffset = val - tcp_time_stamp_raw(); 3652 break; 3653 case TCP_REPAIR_WINDOW: 3654 err = tcp_repair_set_window(tp, optval, optlen); 3655 break; 3656 case TCP_NOTSENT_LOWAT: 3657 tp->notsent_lowat = val; 3658 sk->sk_write_space(sk); 3659 break; 3660 case TCP_INQ: 3661 if (val > 1 || val < 0) 3662 err = -EINVAL; 3663 else 3664 tp->recvmsg_inq = val; 3665 break; 3666 case TCP_TX_DELAY: 3667 if (val) 3668 tcp_enable_tx_delay(); 3669 tp->tcp_tx_delay = val; 3670 break; 3671 default: 3672 err = -ENOPROTOOPT; 3673 break; 3674 } 3675 3676 release_sock(sk); 3677 return err; 3678 } 3679 3680 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3681 unsigned int optlen) 3682 { 3683 const struct inet_connection_sock *icsk = inet_csk(sk); 3684 3685 if (level != SOL_TCP) 3686 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3687 optval, optlen); 3688 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3689 } 3690 EXPORT_SYMBOL(tcp_setsockopt); 3691 3692 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3693 struct tcp_info *info) 3694 { 3695 u64 stats[__TCP_CHRONO_MAX], total = 0; 3696 enum tcp_chrono i; 3697 3698 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3699 stats[i] = tp->chrono_stat[i - 1]; 3700 if (i == tp->chrono_type) 3701 stats[i] += tcp_jiffies32 - tp->chrono_start; 3702 stats[i] *= USEC_PER_SEC / HZ; 3703 total += stats[i]; 3704 } 3705 3706 info->tcpi_busy_time = total; 3707 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3708 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3709 } 3710 3711 /* Return information about state of tcp endpoint in API format. */ 3712 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3713 { 3714 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3715 const struct inet_connection_sock *icsk = inet_csk(sk); 3716 unsigned long rate; 3717 u32 now; 3718 u64 rate64; 3719 bool slow; 3720 3721 memset(info, 0, sizeof(*info)); 3722 if (sk->sk_type != SOCK_STREAM) 3723 return; 3724 3725 info->tcpi_state = inet_sk_state_load(sk); 3726 3727 /* Report meaningful fields for all TCP states, including listeners */ 3728 rate = READ_ONCE(sk->sk_pacing_rate); 3729 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3730 info->tcpi_pacing_rate = rate64; 3731 3732 rate = READ_ONCE(sk->sk_max_pacing_rate); 3733 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3734 info->tcpi_max_pacing_rate = rate64; 3735 3736 info->tcpi_reordering = tp->reordering; 3737 info->tcpi_snd_cwnd = tp->snd_cwnd; 3738 3739 if (info->tcpi_state == TCP_LISTEN) { 3740 /* listeners aliased fields : 3741 * tcpi_unacked -> Number of children ready for accept() 3742 * tcpi_sacked -> max backlog 3743 */ 3744 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3745 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3746 return; 3747 } 3748 3749 slow = lock_sock_fast(sk); 3750 3751 info->tcpi_ca_state = icsk->icsk_ca_state; 3752 info->tcpi_retransmits = icsk->icsk_retransmits; 3753 info->tcpi_probes = icsk->icsk_probes_out; 3754 info->tcpi_backoff = icsk->icsk_backoff; 3755 3756 if (tp->rx_opt.tstamp_ok) 3757 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3758 if (tcp_is_sack(tp)) 3759 info->tcpi_options |= TCPI_OPT_SACK; 3760 if (tp->rx_opt.wscale_ok) { 3761 info->tcpi_options |= TCPI_OPT_WSCALE; 3762 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3763 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3764 } 3765 3766 if (tp->ecn_flags & TCP_ECN_OK) 3767 info->tcpi_options |= TCPI_OPT_ECN; 3768 if (tp->ecn_flags & TCP_ECN_SEEN) 3769 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3770 if (tp->syn_data_acked) 3771 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3772 3773 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3774 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3775 info->tcpi_snd_mss = tp->mss_cache; 3776 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3777 3778 info->tcpi_unacked = tp->packets_out; 3779 info->tcpi_sacked = tp->sacked_out; 3780 3781 info->tcpi_lost = tp->lost_out; 3782 info->tcpi_retrans = tp->retrans_out; 3783 3784 now = tcp_jiffies32; 3785 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3786 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3787 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3788 3789 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3790 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3791 info->tcpi_rtt = tp->srtt_us >> 3; 3792 info->tcpi_rttvar = tp->mdev_us >> 2; 3793 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3794 info->tcpi_advmss = tp->advmss; 3795 3796 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3797 info->tcpi_rcv_space = tp->rcvq_space.space; 3798 3799 info->tcpi_total_retrans = tp->total_retrans; 3800 3801 info->tcpi_bytes_acked = tp->bytes_acked; 3802 info->tcpi_bytes_received = tp->bytes_received; 3803 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3804 tcp_get_info_chrono_stats(tp, info); 3805 3806 info->tcpi_segs_out = tp->segs_out; 3807 3808 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3809 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3810 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3811 3812 info->tcpi_min_rtt = tcp_min_rtt(tp); 3813 info->tcpi_data_segs_out = tp->data_segs_out; 3814 3815 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3816 rate64 = tcp_compute_delivery_rate(tp); 3817 if (rate64) 3818 info->tcpi_delivery_rate = rate64; 3819 info->tcpi_delivered = tp->delivered; 3820 info->tcpi_delivered_ce = tp->delivered_ce; 3821 info->tcpi_bytes_sent = tp->bytes_sent; 3822 info->tcpi_bytes_retrans = tp->bytes_retrans; 3823 info->tcpi_dsack_dups = tp->dsack_dups; 3824 info->tcpi_reord_seen = tp->reord_seen; 3825 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3826 info->tcpi_snd_wnd = tp->snd_wnd; 3827 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3828 unlock_sock_fast(sk, slow); 3829 } 3830 EXPORT_SYMBOL_GPL(tcp_get_info); 3831 3832 static size_t tcp_opt_stats_get_size(void) 3833 { 3834 return 3835 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3836 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3837 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3838 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3839 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3840 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3841 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3842 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3843 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3844 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3845 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3846 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3847 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3848 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3849 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3851 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3853 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3855 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3856 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3857 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3859 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3860 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3861 0; 3862 } 3863 3864 /* Returns TTL or hop limit of an incoming packet from skb. */ 3865 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3866 { 3867 if (skb->protocol == htons(ETH_P_IP)) 3868 return ip_hdr(skb)->ttl; 3869 else if (skb->protocol == htons(ETH_P_IPV6)) 3870 return ipv6_hdr(skb)->hop_limit; 3871 else 3872 return 0; 3873 } 3874 3875 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3876 const struct sk_buff *orig_skb, 3877 const struct sk_buff *ack_skb) 3878 { 3879 const struct tcp_sock *tp = tcp_sk(sk); 3880 struct sk_buff *stats; 3881 struct tcp_info info; 3882 unsigned long rate; 3883 u64 rate64; 3884 3885 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3886 if (!stats) 3887 return NULL; 3888 3889 tcp_get_info_chrono_stats(tp, &info); 3890 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3891 info.tcpi_busy_time, TCP_NLA_PAD); 3892 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3893 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3894 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3895 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3896 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3897 tp->data_segs_out, TCP_NLA_PAD); 3898 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3899 tp->total_retrans, TCP_NLA_PAD); 3900 3901 rate = READ_ONCE(sk->sk_pacing_rate); 3902 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3903 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3904 3905 rate64 = tcp_compute_delivery_rate(tp); 3906 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3907 3908 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3909 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3910 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3911 3912 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3913 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3914 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3915 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3916 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3917 3918 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3919 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3920 3921 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3922 TCP_NLA_PAD); 3923 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3924 TCP_NLA_PAD); 3925 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3926 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3927 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3928 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3929 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3930 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3931 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3932 TCP_NLA_PAD); 3933 if (ack_skb) 3934 nla_put_u8(stats, TCP_NLA_TTL, 3935 tcp_skb_ttl_or_hop_limit(ack_skb)); 3936 3937 return stats; 3938 } 3939 3940 static int do_tcp_getsockopt(struct sock *sk, int level, 3941 int optname, char __user *optval, int __user *optlen) 3942 { 3943 struct inet_connection_sock *icsk = inet_csk(sk); 3944 struct tcp_sock *tp = tcp_sk(sk); 3945 struct net *net = sock_net(sk); 3946 int val, len; 3947 3948 if (get_user(len, optlen)) 3949 return -EFAULT; 3950 3951 len = min_t(unsigned int, len, sizeof(int)); 3952 3953 if (len < 0) 3954 return -EINVAL; 3955 3956 switch (optname) { 3957 case TCP_MAXSEG: 3958 val = tp->mss_cache; 3959 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3960 val = tp->rx_opt.user_mss; 3961 if (tp->repair) 3962 val = tp->rx_opt.mss_clamp; 3963 break; 3964 case TCP_NODELAY: 3965 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3966 break; 3967 case TCP_CORK: 3968 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3969 break; 3970 case TCP_KEEPIDLE: 3971 val = keepalive_time_when(tp) / HZ; 3972 break; 3973 case TCP_KEEPINTVL: 3974 val = keepalive_intvl_when(tp) / HZ; 3975 break; 3976 case TCP_KEEPCNT: 3977 val = keepalive_probes(tp); 3978 break; 3979 case TCP_SYNCNT: 3980 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3981 break; 3982 case TCP_LINGER2: 3983 val = tp->linger2; 3984 if (val >= 0) 3985 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3986 break; 3987 case TCP_DEFER_ACCEPT: 3988 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3989 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3990 break; 3991 case TCP_WINDOW_CLAMP: 3992 val = tp->window_clamp; 3993 break; 3994 case TCP_INFO: { 3995 struct tcp_info info; 3996 3997 if (get_user(len, optlen)) 3998 return -EFAULT; 3999 4000 tcp_get_info(sk, &info); 4001 4002 len = min_t(unsigned int, len, sizeof(info)); 4003 if (put_user(len, optlen)) 4004 return -EFAULT; 4005 if (copy_to_user(optval, &info, len)) 4006 return -EFAULT; 4007 return 0; 4008 } 4009 case TCP_CC_INFO: { 4010 const struct tcp_congestion_ops *ca_ops; 4011 union tcp_cc_info info; 4012 size_t sz = 0; 4013 int attr; 4014 4015 if (get_user(len, optlen)) 4016 return -EFAULT; 4017 4018 ca_ops = icsk->icsk_ca_ops; 4019 if (ca_ops && ca_ops->get_info) 4020 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4021 4022 len = min_t(unsigned int, len, sz); 4023 if (put_user(len, optlen)) 4024 return -EFAULT; 4025 if (copy_to_user(optval, &info, len)) 4026 return -EFAULT; 4027 return 0; 4028 } 4029 case TCP_QUICKACK: 4030 val = !inet_csk_in_pingpong_mode(sk); 4031 break; 4032 4033 case TCP_CONGESTION: 4034 if (get_user(len, optlen)) 4035 return -EFAULT; 4036 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4037 if (put_user(len, optlen)) 4038 return -EFAULT; 4039 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4040 return -EFAULT; 4041 return 0; 4042 4043 case TCP_ULP: 4044 if (get_user(len, optlen)) 4045 return -EFAULT; 4046 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4047 if (!icsk->icsk_ulp_ops) { 4048 if (put_user(0, optlen)) 4049 return -EFAULT; 4050 return 0; 4051 } 4052 if (put_user(len, optlen)) 4053 return -EFAULT; 4054 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4055 return -EFAULT; 4056 return 0; 4057 4058 case TCP_FASTOPEN_KEY: { 4059 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4060 unsigned int key_len; 4061 4062 if (get_user(len, optlen)) 4063 return -EFAULT; 4064 4065 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4066 TCP_FASTOPEN_KEY_LENGTH; 4067 len = min_t(unsigned int, len, key_len); 4068 if (put_user(len, optlen)) 4069 return -EFAULT; 4070 if (copy_to_user(optval, key, len)) 4071 return -EFAULT; 4072 return 0; 4073 } 4074 case TCP_THIN_LINEAR_TIMEOUTS: 4075 val = tp->thin_lto; 4076 break; 4077 4078 case TCP_THIN_DUPACK: 4079 val = 0; 4080 break; 4081 4082 case TCP_REPAIR: 4083 val = tp->repair; 4084 break; 4085 4086 case TCP_REPAIR_QUEUE: 4087 if (tp->repair) 4088 val = tp->repair_queue; 4089 else 4090 return -EINVAL; 4091 break; 4092 4093 case TCP_REPAIR_WINDOW: { 4094 struct tcp_repair_window opt; 4095 4096 if (get_user(len, optlen)) 4097 return -EFAULT; 4098 4099 if (len != sizeof(opt)) 4100 return -EINVAL; 4101 4102 if (!tp->repair) 4103 return -EPERM; 4104 4105 opt.snd_wl1 = tp->snd_wl1; 4106 opt.snd_wnd = tp->snd_wnd; 4107 opt.max_window = tp->max_window; 4108 opt.rcv_wnd = tp->rcv_wnd; 4109 opt.rcv_wup = tp->rcv_wup; 4110 4111 if (copy_to_user(optval, &opt, len)) 4112 return -EFAULT; 4113 return 0; 4114 } 4115 case TCP_QUEUE_SEQ: 4116 if (tp->repair_queue == TCP_SEND_QUEUE) 4117 val = tp->write_seq; 4118 else if (tp->repair_queue == TCP_RECV_QUEUE) 4119 val = tp->rcv_nxt; 4120 else 4121 return -EINVAL; 4122 break; 4123 4124 case TCP_USER_TIMEOUT: 4125 val = icsk->icsk_user_timeout; 4126 break; 4127 4128 case TCP_FASTOPEN: 4129 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4130 break; 4131 4132 case TCP_FASTOPEN_CONNECT: 4133 val = tp->fastopen_connect; 4134 break; 4135 4136 case TCP_FASTOPEN_NO_COOKIE: 4137 val = tp->fastopen_no_cookie; 4138 break; 4139 4140 case TCP_TX_DELAY: 4141 val = tp->tcp_tx_delay; 4142 break; 4143 4144 case TCP_TIMESTAMP: 4145 val = tcp_time_stamp_raw() + tp->tsoffset; 4146 break; 4147 case TCP_NOTSENT_LOWAT: 4148 val = tp->notsent_lowat; 4149 break; 4150 case TCP_INQ: 4151 val = tp->recvmsg_inq; 4152 break; 4153 case TCP_SAVE_SYN: 4154 val = tp->save_syn; 4155 break; 4156 case TCP_SAVED_SYN: { 4157 if (get_user(len, optlen)) 4158 return -EFAULT; 4159 4160 lock_sock(sk); 4161 if (tp->saved_syn) { 4162 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4163 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4164 optlen)) { 4165 release_sock(sk); 4166 return -EFAULT; 4167 } 4168 release_sock(sk); 4169 return -EINVAL; 4170 } 4171 len = tcp_saved_syn_len(tp->saved_syn); 4172 if (put_user(len, optlen)) { 4173 release_sock(sk); 4174 return -EFAULT; 4175 } 4176 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4177 release_sock(sk); 4178 return -EFAULT; 4179 } 4180 tcp_saved_syn_free(tp); 4181 release_sock(sk); 4182 } else { 4183 release_sock(sk); 4184 len = 0; 4185 if (put_user(len, optlen)) 4186 return -EFAULT; 4187 } 4188 return 0; 4189 } 4190 #ifdef CONFIG_MMU 4191 case TCP_ZEROCOPY_RECEIVE: { 4192 struct scm_timestamping_internal tss; 4193 struct tcp_zerocopy_receive zc = {}; 4194 int err; 4195 4196 if (get_user(len, optlen)) 4197 return -EFAULT; 4198 if (len < 0 || 4199 len < offsetofend(struct tcp_zerocopy_receive, length)) 4200 return -EINVAL; 4201 if (unlikely(len > sizeof(zc))) { 4202 err = check_zeroed_user(optval + sizeof(zc), 4203 len - sizeof(zc)); 4204 if (err < 1) 4205 return err == 0 ? -EINVAL : err; 4206 len = sizeof(zc); 4207 if (put_user(len, optlen)) 4208 return -EFAULT; 4209 } 4210 if (copy_from_user(&zc, optval, len)) 4211 return -EFAULT; 4212 if (zc.reserved) 4213 return -EINVAL; 4214 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4215 return -EINVAL; 4216 lock_sock(sk); 4217 err = tcp_zerocopy_receive(sk, &zc, &tss); 4218 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4219 &zc, &len, err); 4220 release_sock(sk); 4221 sk_defer_free_flush(sk); 4222 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4223 goto zerocopy_rcv_cmsg; 4224 switch (len) { 4225 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4226 goto zerocopy_rcv_cmsg; 4227 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4228 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4229 case offsetofend(struct tcp_zerocopy_receive, flags): 4230 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4231 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4232 case offsetofend(struct tcp_zerocopy_receive, err): 4233 goto zerocopy_rcv_sk_err; 4234 case offsetofend(struct tcp_zerocopy_receive, inq): 4235 goto zerocopy_rcv_inq; 4236 case offsetofend(struct tcp_zerocopy_receive, length): 4237 default: 4238 goto zerocopy_rcv_out; 4239 } 4240 zerocopy_rcv_cmsg: 4241 if (zc.msg_flags & TCP_CMSG_TS) 4242 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4243 else 4244 zc.msg_flags = 0; 4245 zerocopy_rcv_sk_err: 4246 if (!err) 4247 zc.err = sock_error(sk); 4248 zerocopy_rcv_inq: 4249 zc.inq = tcp_inq_hint(sk); 4250 zerocopy_rcv_out: 4251 if (!err && copy_to_user(optval, &zc, len)) 4252 err = -EFAULT; 4253 return err; 4254 } 4255 #endif 4256 default: 4257 return -ENOPROTOOPT; 4258 } 4259 4260 if (put_user(len, optlen)) 4261 return -EFAULT; 4262 if (copy_to_user(optval, &val, len)) 4263 return -EFAULT; 4264 return 0; 4265 } 4266 4267 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4268 { 4269 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4270 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4271 */ 4272 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4273 return true; 4274 4275 return false; 4276 } 4277 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4278 4279 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4280 int __user *optlen) 4281 { 4282 struct inet_connection_sock *icsk = inet_csk(sk); 4283 4284 if (level != SOL_TCP) 4285 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4286 optval, optlen); 4287 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4288 } 4289 EXPORT_SYMBOL(tcp_getsockopt); 4290 4291 #ifdef CONFIG_TCP_MD5SIG 4292 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4293 static DEFINE_MUTEX(tcp_md5sig_mutex); 4294 static bool tcp_md5sig_pool_populated = false; 4295 4296 static void __tcp_alloc_md5sig_pool(void) 4297 { 4298 struct crypto_ahash *hash; 4299 int cpu; 4300 4301 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4302 if (IS_ERR(hash)) 4303 return; 4304 4305 for_each_possible_cpu(cpu) { 4306 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4307 struct ahash_request *req; 4308 4309 if (!scratch) { 4310 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4311 sizeof(struct tcphdr), 4312 GFP_KERNEL, 4313 cpu_to_node(cpu)); 4314 if (!scratch) 4315 return; 4316 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4317 } 4318 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4319 continue; 4320 4321 req = ahash_request_alloc(hash, GFP_KERNEL); 4322 if (!req) 4323 return; 4324 4325 ahash_request_set_callback(req, 0, NULL, NULL); 4326 4327 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4328 } 4329 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4330 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4331 */ 4332 smp_wmb(); 4333 tcp_md5sig_pool_populated = true; 4334 } 4335 4336 bool tcp_alloc_md5sig_pool(void) 4337 { 4338 if (unlikely(!tcp_md5sig_pool_populated)) { 4339 mutex_lock(&tcp_md5sig_mutex); 4340 4341 if (!tcp_md5sig_pool_populated) { 4342 __tcp_alloc_md5sig_pool(); 4343 if (tcp_md5sig_pool_populated) 4344 static_branch_inc(&tcp_md5_needed); 4345 } 4346 4347 mutex_unlock(&tcp_md5sig_mutex); 4348 } 4349 return tcp_md5sig_pool_populated; 4350 } 4351 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4352 4353 4354 /** 4355 * tcp_get_md5sig_pool - get md5sig_pool for this user 4356 * 4357 * We use percpu structure, so if we succeed, we exit with preemption 4358 * and BH disabled, to make sure another thread or softirq handling 4359 * wont try to get same context. 4360 */ 4361 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4362 { 4363 local_bh_disable(); 4364 4365 if (tcp_md5sig_pool_populated) { 4366 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4367 smp_rmb(); 4368 return this_cpu_ptr(&tcp_md5sig_pool); 4369 } 4370 local_bh_enable(); 4371 return NULL; 4372 } 4373 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4374 4375 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4376 const struct sk_buff *skb, unsigned int header_len) 4377 { 4378 struct scatterlist sg; 4379 const struct tcphdr *tp = tcp_hdr(skb); 4380 struct ahash_request *req = hp->md5_req; 4381 unsigned int i; 4382 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4383 skb_headlen(skb) - header_len : 0; 4384 const struct skb_shared_info *shi = skb_shinfo(skb); 4385 struct sk_buff *frag_iter; 4386 4387 sg_init_table(&sg, 1); 4388 4389 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4390 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4391 if (crypto_ahash_update(req)) 4392 return 1; 4393 4394 for (i = 0; i < shi->nr_frags; ++i) { 4395 const skb_frag_t *f = &shi->frags[i]; 4396 unsigned int offset = skb_frag_off(f); 4397 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4398 4399 sg_set_page(&sg, page, skb_frag_size(f), 4400 offset_in_page(offset)); 4401 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4402 if (crypto_ahash_update(req)) 4403 return 1; 4404 } 4405 4406 skb_walk_frags(skb, frag_iter) 4407 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4408 return 1; 4409 4410 return 0; 4411 } 4412 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4413 4414 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4415 { 4416 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4417 struct scatterlist sg; 4418 4419 sg_init_one(&sg, key->key, keylen); 4420 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4421 4422 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4423 return data_race(crypto_ahash_update(hp->md5_req)); 4424 } 4425 EXPORT_SYMBOL(tcp_md5_hash_key); 4426 4427 #endif 4428 4429 void tcp_done(struct sock *sk) 4430 { 4431 struct request_sock *req; 4432 4433 /* We might be called with a new socket, after 4434 * inet_csk_prepare_forced_close() has been called 4435 * so we can not use lockdep_sock_is_held(sk) 4436 */ 4437 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4438 4439 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4440 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4441 4442 tcp_set_state(sk, TCP_CLOSE); 4443 tcp_clear_xmit_timers(sk); 4444 if (req) 4445 reqsk_fastopen_remove(sk, req, false); 4446 4447 sk->sk_shutdown = SHUTDOWN_MASK; 4448 4449 if (!sock_flag(sk, SOCK_DEAD)) 4450 sk->sk_state_change(sk); 4451 else 4452 inet_csk_destroy_sock(sk); 4453 } 4454 EXPORT_SYMBOL_GPL(tcp_done); 4455 4456 int tcp_abort(struct sock *sk, int err) 4457 { 4458 if (!sk_fullsock(sk)) { 4459 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4460 struct request_sock *req = inet_reqsk(sk); 4461 4462 local_bh_disable(); 4463 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4464 local_bh_enable(); 4465 return 0; 4466 } 4467 return -EOPNOTSUPP; 4468 } 4469 4470 /* Don't race with userspace socket closes such as tcp_close. */ 4471 lock_sock(sk); 4472 4473 if (sk->sk_state == TCP_LISTEN) { 4474 tcp_set_state(sk, TCP_CLOSE); 4475 inet_csk_listen_stop(sk); 4476 } 4477 4478 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4479 local_bh_disable(); 4480 bh_lock_sock(sk); 4481 4482 if (!sock_flag(sk, SOCK_DEAD)) { 4483 sk->sk_err = err; 4484 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4485 smp_wmb(); 4486 sk_error_report(sk); 4487 if (tcp_need_reset(sk->sk_state)) 4488 tcp_send_active_reset(sk, GFP_ATOMIC); 4489 tcp_done(sk); 4490 } 4491 4492 bh_unlock_sock(sk); 4493 local_bh_enable(); 4494 tcp_write_queue_purge(sk); 4495 release_sock(sk); 4496 return 0; 4497 } 4498 EXPORT_SYMBOL_GPL(tcp_abort); 4499 4500 extern struct tcp_congestion_ops tcp_reno; 4501 4502 static __initdata unsigned long thash_entries; 4503 static int __init set_thash_entries(char *str) 4504 { 4505 ssize_t ret; 4506 4507 if (!str) 4508 return 0; 4509 4510 ret = kstrtoul(str, 0, &thash_entries); 4511 if (ret) 4512 return 0; 4513 4514 return 1; 4515 } 4516 __setup("thash_entries=", set_thash_entries); 4517 4518 static void __init tcp_init_mem(void) 4519 { 4520 unsigned long limit = nr_free_buffer_pages() / 16; 4521 4522 limit = max(limit, 128UL); 4523 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4524 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4525 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4526 } 4527 4528 void __init tcp_init(void) 4529 { 4530 int max_rshare, max_wshare, cnt; 4531 unsigned long limit; 4532 unsigned int i; 4533 4534 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4535 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4536 sizeof_field(struct sk_buff, cb)); 4537 4538 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4539 4540 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4541 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4542 4543 inet_hashinfo_init(&tcp_hashinfo); 4544 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4545 thash_entries, 21, /* one slot per 2 MB*/ 4546 0, 64 * 1024); 4547 tcp_hashinfo.bind_bucket_cachep = 4548 kmem_cache_create("tcp_bind_bucket", 4549 sizeof(struct inet_bind_bucket), 0, 4550 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4551 SLAB_ACCOUNT, 4552 NULL); 4553 4554 /* Size and allocate the main established and bind bucket 4555 * hash tables. 4556 * 4557 * The methodology is similar to that of the buffer cache. 4558 */ 4559 tcp_hashinfo.ehash = 4560 alloc_large_system_hash("TCP established", 4561 sizeof(struct inet_ehash_bucket), 4562 thash_entries, 4563 17, /* one slot per 128 KB of memory */ 4564 0, 4565 NULL, 4566 &tcp_hashinfo.ehash_mask, 4567 0, 4568 thash_entries ? 0 : 512 * 1024); 4569 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4570 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4571 4572 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4573 panic("TCP: failed to alloc ehash_locks"); 4574 tcp_hashinfo.bhash = 4575 alloc_large_system_hash("TCP bind", 4576 sizeof(struct inet_bind_hashbucket), 4577 tcp_hashinfo.ehash_mask + 1, 4578 17, /* one slot per 128 KB of memory */ 4579 0, 4580 &tcp_hashinfo.bhash_size, 4581 NULL, 4582 0, 4583 64 * 1024); 4584 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4585 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4586 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4587 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4588 } 4589 4590 4591 cnt = tcp_hashinfo.ehash_mask + 1; 4592 sysctl_tcp_max_orphans = cnt / 2; 4593 4594 tcp_init_mem(); 4595 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4596 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4597 max_wshare = min(4UL*1024*1024, limit); 4598 max_rshare = min(6UL*1024*1024, limit); 4599 4600 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4601 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4602 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4603 4604 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4605 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4606 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4607 4608 pr_info("Hash tables configured (established %u bind %u)\n", 4609 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4610 4611 tcp_v4_init(); 4612 tcp_metrics_init(); 4613 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4614 tcp_tasklet_init(); 4615 mptcp_init(); 4616 } 4617