1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 #include <linux/btf.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/mptcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 /* Track pending CMSGs. */ 285 enum { 286 TCP_CMSG_INQ = 1, 287 TCP_CMSG_TS = 2 288 }; 289 290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 EXPORT_SYMBOL(sysctl_tcp_mem); 295 296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 297 EXPORT_SYMBOL(tcp_memory_allocated); 298 299 #if IS_ENABLED(CONFIG_SMC) 300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 301 EXPORT_SYMBOL(tcp_have_smc); 302 #endif 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 unsigned long tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 327 328 void tcp_enter_memory_pressure(struct sock *sk) 329 { 330 unsigned long val; 331 332 if (READ_ONCE(tcp_memory_pressure)) 333 return; 334 val = jiffies; 335 336 if (!val) 337 val--; 338 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 340 } 341 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 342 343 void tcp_leave_memory_pressure(struct sock *sk) 344 { 345 unsigned long val; 346 347 if (!READ_ONCE(tcp_memory_pressure)) 348 return; 349 val = xchg(&tcp_memory_pressure, 0); 350 if (val) 351 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 352 jiffies_to_msecs(jiffies - val)); 353 } 354 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 355 356 /* Convert seconds to retransmits based on initial and max timeout */ 357 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 358 { 359 u8 res = 0; 360 361 if (seconds > 0) { 362 int period = timeout; 363 364 res = 1; 365 while (seconds > period && res < 255) { 366 res++; 367 timeout <<= 1; 368 if (timeout > rto_max) 369 timeout = rto_max; 370 period += timeout; 371 } 372 } 373 return res; 374 } 375 376 /* Convert retransmits to seconds based on initial and max timeout */ 377 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 378 { 379 int period = 0; 380 381 if (retrans > 0) { 382 period = timeout; 383 while (--retrans) { 384 timeout <<= 1; 385 if (timeout > rto_max) 386 timeout = rto_max; 387 period += timeout; 388 } 389 } 390 return period; 391 } 392 393 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 394 { 395 u32 rate = READ_ONCE(tp->rate_delivered); 396 u32 intv = READ_ONCE(tp->rate_interval_us); 397 u64 rate64 = 0; 398 399 if (rate && intv) { 400 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 401 do_div(rate64, intv); 402 } 403 return rate64; 404 } 405 406 /* Address-family independent initialization for a tcp_sock. 407 * 408 * NOTE: A lot of things set to zero explicitly by call to 409 * sk_alloc() so need not be done here. 410 */ 411 void tcp_init_sock(struct sock *sk) 412 { 413 struct inet_connection_sock *icsk = inet_csk(sk); 414 struct tcp_sock *tp = tcp_sk(sk); 415 416 tp->out_of_order_queue = RB_ROOT; 417 sk->tcp_rtx_queue = RB_ROOT; 418 tcp_init_xmit_timers(sk); 419 INIT_LIST_HEAD(&tp->tsq_node); 420 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 421 422 icsk->icsk_rto = TCP_TIMEOUT_INIT; 423 icsk->icsk_rto_min = TCP_RTO_MIN; 424 icsk->icsk_delack_max = TCP_DELACK_MAX; 425 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 426 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 427 428 /* So many TCP implementations out there (incorrectly) count the 429 * initial SYN frame in their delayed-ACK and congestion control 430 * algorithms that we must have the following bandaid to talk 431 * efficiently to them. -DaveM 432 */ 433 tp->snd_cwnd = TCP_INIT_CWND; 434 435 /* There's a bubble in the pipe until at least the first ACK. */ 436 tp->app_limited = ~0U; 437 438 /* See draft-stevens-tcpca-spec-01 for discussion of the 439 * initialization of these values. 440 */ 441 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 442 tp->snd_cwnd_clamp = ~0; 443 tp->mss_cache = TCP_MSS_DEFAULT; 444 445 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 446 tcp_assign_congestion_control(sk); 447 448 tp->tsoffset = 0; 449 tp->rack.reo_wnd_steps = 1; 450 451 sk->sk_write_space = sk_stream_write_space; 452 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 453 454 icsk->icsk_sync_mss = tcp_sync_mss; 455 456 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 457 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 458 459 sk_sockets_allocated_inc(sk); 460 sk->sk_route_forced_caps = NETIF_F_GSO; 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 551 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 552 !sock_flag(sk, SOCK_URGINLINE) && 553 tp->urg_data) 554 target++; 555 556 if (tcp_stream_is_readable(sk, target)) 557 mask |= EPOLLIN | EPOLLRDNORM; 558 559 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 560 if (__sk_stream_is_writeable(sk, 1)) { 561 mask |= EPOLLOUT | EPOLLWRNORM; 562 } else { /* send SIGIO later */ 563 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 564 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 565 566 /* Race breaker. If space is freed after 567 * wspace test but before the flags are set, 568 * IO signal will be lost. Memory barrier 569 * pairs with the input side. 570 */ 571 smp_mb__after_atomic(); 572 if (__sk_stream_is_writeable(sk, 1)) 573 mask |= EPOLLOUT | EPOLLWRNORM; 574 } 575 } else 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 578 if (tp->urg_data & TCP_URG_VALID) 579 mask |= EPOLLPRI; 580 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 581 /* Active TCP fastopen socket with defer_connect 582 * Return EPOLLOUT so application can call write() 583 * in order for kernel to generate SYN+data 584 */ 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 } 587 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 588 smp_rmb(); 589 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 590 mask |= EPOLLERR; 591 592 return mask; 593 } 594 EXPORT_SYMBOL(tcp_poll); 595 596 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 597 { 598 struct tcp_sock *tp = tcp_sk(sk); 599 int answ; 600 bool slow; 601 602 switch (cmd) { 603 case SIOCINQ: 604 if (sk->sk_state == TCP_LISTEN) 605 return -EINVAL; 606 607 slow = lock_sock_fast(sk); 608 answ = tcp_inq(sk); 609 unlock_sock_fast(sk, slow); 610 break; 611 case SIOCATMARK: 612 answ = tp->urg_data && 613 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 614 break; 615 case SIOCOUTQ: 616 if (sk->sk_state == TCP_LISTEN) 617 return -EINVAL; 618 619 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 620 answ = 0; 621 else 622 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 623 break; 624 case SIOCOUTQNSD: 625 if (sk->sk_state == TCP_LISTEN) 626 return -EINVAL; 627 628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 629 answ = 0; 630 else 631 answ = READ_ONCE(tp->write_seq) - 632 READ_ONCE(tp->snd_nxt); 633 break; 634 default: 635 return -ENOIOCTLCMD; 636 } 637 638 return put_user(answ, (int __user *)arg); 639 } 640 EXPORT_SYMBOL(tcp_ioctl); 641 642 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 643 { 644 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 645 tp->pushed_seq = tp->write_seq; 646 } 647 648 static inline bool forced_push(const struct tcp_sock *tp) 649 { 650 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 651 } 652 653 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 654 { 655 struct tcp_sock *tp = tcp_sk(sk); 656 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 657 658 tcb->seq = tcb->end_seq = tp->write_seq; 659 tcb->tcp_flags = TCPHDR_ACK; 660 __skb_header_release(skb); 661 tcp_add_write_queue_tail(sk, skb); 662 sk_wmem_queued_add(sk, skb->truesize); 663 sk_mem_charge(sk, skb->truesize); 664 if (tp->nonagle & TCP_NAGLE_PUSH) 665 tp->nonagle &= ~TCP_NAGLE_PUSH; 666 667 tcp_slow_start_after_idle_check(sk); 668 } 669 670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 671 { 672 if (flags & MSG_OOB) 673 tp->snd_up = tp->write_seq; 674 } 675 676 /* If a not yet filled skb is pushed, do not send it if 677 * we have data packets in Qdisc or NIC queues : 678 * Because TX completion will happen shortly, it gives a chance 679 * to coalesce future sendmsg() payload into this skb, without 680 * need for a timer, and with no latency trade off. 681 * As packets containing data payload have a bigger truesize 682 * than pure acks (dataless) packets, the last checks prevent 683 * autocorking if we only have an ACK in Qdisc/NIC queues, 684 * or if TX completion was delayed after we processed ACK packet. 685 */ 686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 687 int size_goal) 688 { 689 return skb->len < size_goal && 690 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 691 !tcp_rtx_queue_empty(sk) && 692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 693 } 694 695 void tcp_push(struct sock *sk, int flags, int mss_now, 696 int nonagle, int size_goal) 697 { 698 struct tcp_sock *tp = tcp_sk(sk); 699 struct sk_buff *skb; 700 701 skb = tcp_write_queue_tail(sk); 702 if (!skb) 703 return; 704 if (!(flags & MSG_MORE) || forced_push(tp)) 705 tcp_mark_push(tp, skb); 706 707 tcp_mark_urg(tp, flags); 708 709 if (tcp_should_autocork(sk, skb, size_goal)) { 710 711 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 715 } 716 /* It is possible TX completion already happened 717 * before we set TSQ_THROTTLED. 718 */ 719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 720 return; 721 } 722 723 if (flags & MSG_MORE) 724 nonagle = TCP_NAGLE_CORK; 725 726 __tcp_push_pending_frames(sk, mss_now, nonagle); 727 } 728 729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 730 unsigned int offset, size_t len) 731 { 732 struct tcp_splice_state *tss = rd_desc->arg.data; 733 int ret; 734 735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 736 min(rd_desc->count, len), tss->flags); 737 if (ret > 0) 738 rd_desc->count -= ret; 739 return ret; 740 } 741 742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 743 { 744 /* Store TCP splice context information in read_descriptor_t. */ 745 read_descriptor_t rd_desc = { 746 .arg.data = tss, 747 .count = tss->len, 748 }; 749 750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 751 } 752 753 /** 754 * tcp_splice_read - splice data from TCP socket to a pipe 755 * @sock: socket to splice from 756 * @ppos: position (not valid) 757 * @pipe: pipe to splice to 758 * @len: number of bytes to splice 759 * @flags: splice modifier flags 760 * 761 * Description: 762 * Will read pages from given socket and fill them into a pipe. 763 * 764 **/ 765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 766 struct pipe_inode_info *pipe, size_t len, 767 unsigned int flags) 768 { 769 struct sock *sk = sock->sk; 770 struct tcp_splice_state tss = { 771 .pipe = pipe, 772 .len = len, 773 .flags = flags, 774 }; 775 long timeo; 776 ssize_t spliced; 777 int ret; 778 779 sock_rps_record_flow(sk); 780 /* 781 * We can't seek on a socket input 782 */ 783 if (unlikely(*ppos)) 784 return -ESPIPE; 785 786 ret = spliced = 0; 787 788 lock_sock(sk); 789 790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 791 while (tss.len) { 792 ret = __tcp_splice_read(sk, &tss); 793 if (ret < 0) 794 break; 795 else if (!ret) { 796 if (spliced) 797 break; 798 if (sock_flag(sk, SOCK_DONE)) 799 break; 800 if (sk->sk_err) { 801 ret = sock_error(sk); 802 break; 803 } 804 if (sk->sk_shutdown & RCV_SHUTDOWN) 805 break; 806 if (sk->sk_state == TCP_CLOSE) { 807 /* 808 * This occurs when user tries to read 809 * from never connected socket. 810 */ 811 ret = -ENOTCONN; 812 break; 813 } 814 if (!timeo) { 815 ret = -EAGAIN; 816 break; 817 } 818 /* if __tcp_splice_read() got nothing while we have 819 * an skb in receive queue, we do not want to loop. 820 * This might happen with URG data. 821 */ 822 if (!skb_queue_empty(&sk->sk_receive_queue)) 823 break; 824 sk_wait_data(sk, &timeo, NULL); 825 if (signal_pending(current)) { 826 ret = sock_intr_errno(timeo); 827 break; 828 } 829 continue; 830 } 831 tss.len -= ret; 832 spliced += ret; 833 834 if (!timeo) 835 break; 836 release_sock(sk); 837 lock_sock(sk); 838 839 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 840 (sk->sk_shutdown & RCV_SHUTDOWN) || 841 signal_pending(current)) 842 break; 843 } 844 845 release_sock(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (unlikely(tcp_under_memory_pressure(sk))) 860 sk_mem_reclaim_partial(sk); 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 867 if (force_schedule) { 868 mem_scheduled = true; 869 sk_forced_mem_schedule(sk, skb->truesize); 870 } else { 871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 872 } 873 if (likely(mem_scheduled)) { 874 skb_reserve(skb, MAX_TCP_HEADER); 875 skb->ip_summed = CHECKSUM_PARTIAL; 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 return skb; 878 } 879 __kfree_skb(skb); 880 } else { 881 sk->sk_prot->enter_memory_pressure(sk); 882 sk_stream_moderate_sndbuf(sk); 883 } 884 return NULL; 885 } 886 887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 888 int large_allowed) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 u32 new_size_goal, size_goal; 892 893 if (!large_allowed) 894 return mss_now; 895 896 /* Note : tcp_tso_autosize() will eventually split this later */ 897 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 898 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 899 900 /* We try hard to avoid divides here */ 901 size_goal = tp->gso_segs * mss_now; 902 if (unlikely(new_size_goal < size_goal || 903 new_size_goal >= size_goal + mss_now)) { 904 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 905 sk->sk_gso_max_segs); 906 size_goal = tp->gso_segs * mss_now; 907 } 908 909 return max(size_goal, mss_now); 910 } 911 912 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 913 { 914 int mss_now; 915 916 mss_now = tcp_current_mss(sk); 917 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 918 919 return mss_now; 920 } 921 922 /* In some cases, both sendpage() and sendmsg() could have added 923 * an skb to the write queue, but failed adding payload on it. 924 * We need to remove it to consume less memory, but more 925 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 926 * users. 927 */ 928 void tcp_remove_empty_skb(struct sock *sk) 929 { 930 struct sk_buff *skb = tcp_write_queue_tail(sk); 931 932 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 933 tcp_unlink_write_queue(skb, sk); 934 if (tcp_write_queue_empty(sk)) 935 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 936 tcp_wmem_free_skb(sk, skb); 937 } 938 } 939 940 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 941 struct page *page, int offset, size_t *size) 942 { 943 struct sk_buff *skb = tcp_write_queue_tail(sk); 944 struct tcp_sock *tp = tcp_sk(sk); 945 bool can_coalesce; 946 int copy, i; 947 948 if (!skb || (copy = size_goal - skb->len) <= 0 || 949 !tcp_skb_can_collapse_to(skb)) { 950 new_segment: 951 if (!sk_stream_memory_free(sk)) 952 return NULL; 953 954 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 955 tcp_rtx_and_write_queues_empty(sk)); 956 if (!skb) 957 return NULL; 958 959 #ifdef CONFIG_TLS_DEVICE 960 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 961 #endif 962 tcp_skb_entail(sk, skb); 963 copy = size_goal; 964 } 965 966 if (copy > *size) 967 copy = *size; 968 969 i = skb_shinfo(skb)->nr_frags; 970 can_coalesce = skb_can_coalesce(skb, i, page, offset); 971 if (!can_coalesce && i >= sysctl_max_skb_frags) { 972 tcp_mark_push(tp, skb); 973 goto new_segment; 974 } 975 if (!sk_wmem_schedule(sk, copy)) 976 return NULL; 977 978 if (can_coalesce) { 979 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 980 } else { 981 get_page(page); 982 skb_fill_page_desc(skb, i, page, offset, copy); 983 } 984 985 if (!(flags & MSG_NO_SHARED_FRAGS)) 986 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 987 988 skb->len += copy; 989 skb->data_len += copy; 990 skb->truesize += copy; 991 sk_wmem_queued_add(sk, copy); 992 sk_mem_charge(sk, copy); 993 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 994 TCP_SKB_CB(skb)->end_seq += copy; 995 tcp_skb_pcount_set(skb, 0); 996 997 *size = copy; 998 return skb; 999 } 1000 1001 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1002 size_t size, int flags) 1003 { 1004 struct tcp_sock *tp = tcp_sk(sk); 1005 int mss_now, size_goal; 1006 int err; 1007 ssize_t copied; 1008 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1009 1010 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1011 WARN_ONCE(!sendpage_ok(page), 1012 "page must not be a Slab one and have page_count > 0")) 1013 return -EINVAL; 1014 1015 /* Wait for a connection to finish. One exception is TCP Fast Open 1016 * (passive side) where data is allowed to be sent before a connection 1017 * is fully established. 1018 */ 1019 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1020 !tcp_passive_fastopen(sk)) { 1021 err = sk_stream_wait_connect(sk, &timeo); 1022 if (err != 0) 1023 goto out_err; 1024 } 1025 1026 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1027 1028 mss_now = tcp_send_mss(sk, &size_goal, flags); 1029 copied = 0; 1030 1031 err = -EPIPE; 1032 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1033 goto out_err; 1034 1035 while (size > 0) { 1036 struct sk_buff *skb; 1037 size_t copy = size; 1038 1039 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1040 if (!skb) 1041 goto wait_for_space; 1042 1043 if (!copied) 1044 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1045 1046 copied += copy; 1047 offset += copy; 1048 size -= copy; 1049 if (!size) 1050 goto out; 1051 1052 if (skb->len < size_goal || (flags & MSG_OOB)) 1053 continue; 1054 1055 if (forced_push(tp)) { 1056 tcp_mark_push(tp, skb); 1057 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1058 } else if (skb == tcp_send_head(sk)) 1059 tcp_push_one(sk, mss_now); 1060 continue; 1061 1062 wait_for_space: 1063 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1064 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1065 TCP_NAGLE_PUSH, size_goal); 1066 1067 err = sk_stream_wait_memory(sk, &timeo); 1068 if (err != 0) 1069 goto do_error; 1070 1071 mss_now = tcp_send_mss(sk, &size_goal, flags); 1072 } 1073 1074 out: 1075 if (copied) { 1076 tcp_tx_timestamp(sk, sk->sk_tsflags); 1077 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1078 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1079 } 1080 return copied; 1081 1082 do_error: 1083 tcp_remove_empty_skb(sk); 1084 if (copied) 1085 goto out; 1086 out_err: 1087 /* make sure we wake any epoll edge trigger waiter */ 1088 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1089 sk->sk_write_space(sk); 1090 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1091 } 1092 return sk_stream_error(sk, flags, err); 1093 } 1094 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1095 1096 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1097 size_t size, int flags) 1098 { 1099 if (!(sk->sk_route_caps & NETIF_F_SG)) 1100 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1101 1102 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1103 1104 return do_tcp_sendpages(sk, page, offset, size, flags); 1105 } 1106 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1107 1108 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1109 size_t size, int flags) 1110 { 1111 int ret; 1112 1113 lock_sock(sk); 1114 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1115 release_sock(sk); 1116 1117 return ret; 1118 } 1119 EXPORT_SYMBOL(tcp_sendpage); 1120 1121 void tcp_free_fastopen_req(struct tcp_sock *tp) 1122 { 1123 if (tp->fastopen_req) { 1124 kfree(tp->fastopen_req); 1125 tp->fastopen_req = NULL; 1126 } 1127 } 1128 1129 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1130 int *copied, size_t size, 1131 struct ubuf_info *uarg) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct inet_sock *inet = inet_sk(sk); 1135 struct sockaddr *uaddr = msg->msg_name; 1136 int err, flags; 1137 1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1140 uaddr->sa_family == AF_UNSPEC)) 1141 return -EOPNOTSUPP; 1142 if (tp->fastopen_req) 1143 return -EALREADY; /* Another Fast Open is in progress */ 1144 1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1146 sk->sk_allocation); 1147 if (unlikely(!tp->fastopen_req)) 1148 return -ENOBUFS; 1149 tp->fastopen_req->data = msg; 1150 tp->fastopen_req->size = size; 1151 tp->fastopen_req->uarg = uarg; 1152 1153 if (inet->defer_connect) { 1154 err = tcp_connect(sk); 1155 /* Same failure procedure as in tcp_v4/6_connect */ 1156 if (err) { 1157 tcp_set_state(sk, TCP_CLOSE); 1158 inet->inet_dport = 0; 1159 sk->sk_route_caps = 0; 1160 } 1161 } 1162 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1163 err = __inet_stream_connect(sk->sk_socket, uaddr, 1164 msg->msg_namelen, flags, 1); 1165 /* fastopen_req could already be freed in __inet_stream_connect 1166 * if the connection times out or gets rst 1167 */ 1168 if (tp->fastopen_req) { 1169 *copied = tp->fastopen_req->copied; 1170 tcp_free_fastopen_req(tp); 1171 inet->defer_connect = 0; 1172 } 1173 return err; 1174 } 1175 1176 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1177 { 1178 struct tcp_sock *tp = tcp_sk(sk); 1179 struct ubuf_info *uarg = NULL; 1180 struct sk_buff *skb; 1181 struct sockcm_cookie sockc; 1182 int flags, err, copied = 0; 1183 int mss_now = 0, size_goal, copied_syn = 0; 1184 int process_backlog = 0; 1185 bool zc = false; 1186 long timeo; 1187 1188 flags = msg->msg_flags; 1189 1190 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1191 skb = tcp_write_queue_tail(sk); 1192 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1193 if (!uarg) { 1194 err = -ENOBUFS; 1195 goto out_err; 1196 } 1197 1198 zc = sk->sk_route_caps & NETIF_F_SG; 1199 if (!zc) 1200 uarg->zerocopy = 0; 1201 } 1202 1203 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1204 !tp->repair) { 1205 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1206 if (err == -EINPROGRESS && copied_syn > 0) 1207 goto out; 1208 else if (err) 1209 goto out_err; 1210 } 1211 1212 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1213 1214 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1215 1216 /* Wait for a connection to finish. One exception is TCP Fast Open 1217 * (passive side) where data is allowed to be sent before a connection 1218 * is fully established. 1219 */ 1220 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1221 !tcp_passive_fastopen(sk)) { 1222 err = sk_stream_wait_connect(sk, &timeo); 1223 if (err != 0) 1224 goto do_error; 1225 } 1226 1227 if (unlikely(tp->repair)) { 1228 if (tp->repair_queue == TCP_RECV_QUEUE) { 1229 copied = tcp_send_rcvq(sk, msg, size); 1230 goto out_nopush; 1231 } 1232 1233 err = -EINVAL; 1234 if (tp->repair_queue == TCP_NO_QUEUE) 1235 goto out_err; 1236 1237 /* 'common' sending to sendq */ 1238 } 1239 1240 sockcm_init(&sockc, sk); 1241 if (msg->msg_controllen) { 1242 err = sock_cmsg_send(sk, msg, &sockc); 1243 if (unlikely(err)) { 1244 err = -EINVAL; 1245 goto out_err; 1246 } 1247 } 1248 1249 /* This should be in poll */ 1250 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1251 1252 /* Ok commence sending. */ 1253 copied = 0; 1254 1255 restart: 1256 mss_now = tcp_send_mss(sk, &size_goal, flags); 1257 1258 err = -EPIPE; 1259 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1260 goto do_error; 1261 1262 while (msg_data_left(msg)) { 1263 int copy = 0; 1264 1265 skb = tcp_write_queue_tail(sk); 1266 if (skb) 1267 copy = size_goal - skb->len; 1268 1269 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1270 bool first_skb; 1271 1272 new_segment: 1273 if (!sk_stream_memory_free(sk)) 1274 goto wait_for_space; 1275 1276 if (unlikely(process_backlog >= 16)) { 1277 process_backlog = 0; 1278 if (sk_flush_backlog(sk)) 1279 goto restart; 1280 } 1281 first_skb = tcp_rtx_and_write_queues_empty(sk); 1282 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1283 first_skb); 1284 if (!skb) 1285 goto wait_for_space; 1286 1287 process_backlog++; 1288 1289 tcp_skb_entail(sk, skb); 1290 copy = size_goal; 1291 1292 /* All packets are restored as if they have 1293 * already been sent. skb_mstamp_ns isn't set to 1294 * avoid wrong rtt estimation. 1295 */ 1296 if (tp->repair) 1297 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1298 } 1299 1300 /* Try to append data to the end of skb. */ 1301 if (copy > msg_data_left(msg)) 1302 copy = msg_data_left(msg); 1303 1304 if (!zc) { 1305 bool merge = true; 1306 int i = skb_shinfo(skb)->nr_frags; 1307 struct page_frag *pfrag = sk_page_frag(sk); 1308 1309 if (!sk_page_frag_refill(sk, pfrag)) 1310 goto wait_for_space; 1311 1312 if (!skb_can_coalesce(skb, i, pfrag->page, 1313 pfrag->offset)) { 1314 if (i >= sysctl_max_skb_frags) { 1315 tcp_mark_push(tp, skb); 1316 goto new_segment; 1317 } 1318 merge = false; 1319 } 1320 1321 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1322 1323 /* skb changing from pure zc to mixed, must charge zc */ 1324 if (unlikely(skb_zcopy_pure(skb))) { 1325 if (!sk_wmem_schedule(sk, skb->data_len)) 1326 goto wait_for_space; 1327 1328 sk_mem_charge(sk, skb->data_len); 1329 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 1330 } 1331 1332 if (!sk_wmem_schedule(sk, copy)) 1333 goto wait_for_space; 1334 1335 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1336 pfrag->page, 1337 pfrag->offset, 1338 copy); 1339 if (err) 1340 goto do_error; 1341 1342 /* Update the skb. */ 1343 if (merge) { 1344 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1345 } else { 1346 skb_fill_page_desc(skb, i, pfrag->page, 1347 pfrag->offset, copy); 1348 page_ref_inc(pfrag->page); 1349 } 1350 pfrag->offset += copy; 1351 } else { 1352 /* First append to a fragless skb builds initial 1353 * pure zerocopy skb 1354 */ 1355 if (!skb->len) 1356 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1357 1358 if (!skb_zcopy_pure(skb)) { 1359 if (!sk_wmem_schedule(sk, copy)) 1360 goto wait_for_space; 1361 } 1362 1363 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1364 if (err == -EMSGSIZE || err == -EEXIST) { 1365 tcp_mark_push(tp, skb); 1366 goto new_segment; 1367 } 1368 if (err < 0) 1369 goto do_error; 1370 copy = err; 1371 } 1372 1373 if (!copied) 1374 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1375 1376 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1377 TCP_SKB_CB(skb)->end_seq += copy; 1378 tcp_skb_pcount_set(skb, 0); 1379 1380 copied += copy; 1381 if (!msg_data_left(msg)) { 1382 if (unlikely(flags & MSG_EOR)) 1383 TCP_SKB_CB(skb)->eor = 1; 1384 goto out; 1385 } 1386 1387 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1388 continue; 1389 1390 if (forced_push(tp)) { 1391 tcp_mark_push(tp, skb); 1392 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1393 } else if (skb == tcp_send_head(sk)) 1394 tcp_push_one(sk, mss_now); 1395 continue; 1396 1397 wait_for_space: 1398 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1399 if (copied) 1400 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1401 TCP_NAGLE_PUSH, size_goal); 1402 1403 err = sk_stream_wait_memory(sk, &timeo); 1404 if (err != 0) 1405 goto do_error; 1406 1407 mss_now = tcp_send_mss(sk, &size_goal, flags); 1408 } 1409 1410 out: 1411 if (copied) { 1412 tcp_tx_timestamp(sk, sockc.tsflags); 1413 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1414 } 1415 out_nopush: 1416 net_zcopy_put(uarg); 1417 return copied + copied_syn; 1418 1419 do_error: 1420 tcp_remove_empty_skb(sk); 1421 1422 if (copied + copied_syn) 1423 goto out; 1424 out_err: 1425 net_zcopy_put_abort(uarg, true); 1426 err = sk_stream_error(sk, flags, err); 1427 /* make sure we wake any epoll edge trigger waiter */ 1428 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1429 sk->sk_write_space(sk); 1430 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1431 } 1432 return err; 1433 } 1434 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1435 1436 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1437 { 1438 int ret; 1439 1440 lock_sock(sk); 1441 ret = tcp_sendmsg_locked(sk, msg, size); 1442 release_sock(sk); 1443 1444 return ret; 1445 } 1446 EXPORT_SYMBOL(tcp_sendmsg); 1447 1448 /* 1449 * Handle reading urgent data. BSD has very simple semantics for 1450 * this, no blocking and very strange errors 8) 1451 */ 1452 1453 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1454 { 1455 struct tcp_sock *tp = tcp_sk(sk); 1456 1457 /* No URG data to read. */ 1458 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1459 tp->urg_data == TCP_URG_READ) 1460 return -EINVAL; /* Yes this is right ! */ 1461 1462 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1463 return -ENOTCONN; 1464 1465 if (tp->urg_data & TCP_URG_VALID) { 1466 int err = 0; 1467 char c = tp->urg_data; 1468 1469 if (!(flags & MSG_PEEK)) 1470 tp->urg_data = TCP_URG_READ; 1471 1472 /* Read urgent data. */ 1473 msg->msg_flags |= MSG_OOB; 1474 1475 if (len > 0) { 1476 if (!(flags & MSG_TRUNC)) 1477 err = memcpy_to_msg(msg, &c, 1); 1478 len = 1; 1479 } else 1480 msg->msg_flags |= MSG_TRUNC; 1481 1482 return err ? -EFAULT : len; 1483 } 1484 1485 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1486 return 0; 1487 1488 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1489 * the available implementations agree in this case: 1490 * this call should never block, independent of the 1491 * blocking state of the socket. 1492 * Mike <pall@rz.uni-karlsruhe.de> 1493 */ 1494 return -EAGAIN; 1495 } 1496 1497 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1498 { 1499 struct sk_buff *skb; 1500 int copied = 0, err = 0; 1501 1502 /* XXX -- need to support SO_PEEK_OFF */ 1503 1504 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1506 if (err) 1507 return err; 1508 copied += skb->len; 1509 } 1510 1511 skb_queue_walk(&sk->sk_write_queue, skb) { 1512 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1513 if (err) 1514 break; 1515 1516 copied += skb->len; 1517 } 1518 1519 return err ?: copied; 1520 } 1521 1522 /* Clean up the receive buffer for full frames taken by the user, 1523 * then send an ACK if necessary. COPIED is the number of bytes 1524 * tcp_recvmsg has given to the user so far, it speeds up the 1525 * calculation of whether or not we must ACK for the sake of 1526 * a window update. 1527 */ 1528 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1529 { 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 bool time_to_ack = false; 1532 1533 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1534 1535 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1536 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1537 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1538 1539 if (inet_csk_ack_scheduled(sk)) { 1540 const struct inet_connection_sock *icsk = inet_csk(sk); 1541 1542 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1543 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1544 /* 1545 * If this read emptied read buffer, we send ACK, if 1546 * connection is not bidirectional, user drained 1547 * receive buffer and there was a small segment 1548 * in queue. 1549 */ 1550 (copied > 0 && 1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1552 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1553 !inet_csk_in_pingpong_mode(sk))) && 1554 !atomic_read(&sk->sk_rmem_alloc))) 1555 time_to_ack = true; 1556 } 1557 1558 /* We send an ACK if we can now advertise a non-zero window 1559 * which has been raised "significantly". 1560 * 1561 * Even if window raised up to infinity, do not send window open ACK 1562 * in states, where we will not receive more. It is useless. 1563 */ 1564 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1565 __u32 rcv_window_now = tcp_receive_window(tp); 1566 1567 /* Optimize, __tcp_select_window() is not cheap. */ 1568 if (2*rcv_window_now <= tp->window_clamp) { 1569 __u32 new_window = __tcp_select_window(sk); 1570 1571 /* Send ACK now, if this read freed lots of space 1572 * in our buffer. Certainly, new_window is new window. 1573 * We can advertise it now, if it is not less than current one. 1574 * "Lots" means "at least twice" here. 1575 */ 1576 if (new_window && new_window >= 2 * rcv_window_now) 1577 time_to_ack = true; 1578 } 1579 } 1580 if (time_to_ack) 1581 tcp_send_ack(sk); 1582 } 1583 1584 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1585 { 1586 struct sk_buff *skb; 1587 u32 offset; 1588 1589 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1590 offset = seq - TCP_SKB_CB(skb)->seq; 1591 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1592 pr_err_once("%s: found a SYN, please report !\n", __func__); 1593 offset--; 1594 } 1595 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1596 *off = offset; 1597 return skb; 1598 } 1599 /* This looks weird, but this can happen if TCP collapsing 1600 * splitted a fat GRO packet, while we released socket lock 1601 * in skb_splice_bits() 1602 */ 1603 sk_eat_skb(sk, skb); 1604 } 1605 return NULL; 1606 } 1607 1608 /* 1609 * This routine provides an alternative to tcp_recvmsg() for routines 1610 * that would like to handle copying from skbuffs directly in 'sendfile' 1611 * fashion. 1612 * Note: 1613 * - It is assumed that the socket was locked by the caller. 1614 * - The routine does not block. 1615 * - At present, there is no support for reading OOB data 1616 * or for 'peeking' the socket using this routine 1617 * (although both would be easy to implement). 1618 */ 1619 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1620 sk_read_actor_t recv_actor) 1621 { 1622 struct sk_buff *skb; 1623 struct tcp_sock *tp = tcp_sk(sk); 1624 u32 seq = tp->copied_seq; 1625 u32 offset; 1626 int copied = 0; 1627 1628 if (sk->sk_state == TCP_LISTEN) 1629 return -ENOTCONN; 1630 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1631 if (offset < skb->len) { 1632 int used; 1633 size_t len; 1634 1635 len = skb->len - offset; 1636 /* Stop reading if we hit a patch of urgent data */ 1637 if (tp->urg_data) { 1638 u32 urg_offset = tp->urg_seq - seq; 1639 if (urg_offset < len) 1640 len = urg_offset; 1641 if (!len) 1642 break; 1643 } 1644 used = recv_actor(desc, skb, offset, len); 1645 if (used <= 0) { 1646 if (!copied) 1647 copied = used; 1648 break; 1649 } else if (used <= len) { 1650 seq += used; 1651 copied += used; 1652 offset += used; 1653 } 1654 /* If recv_actor drops the lock (e.g. TCP splice 1655 * receive) the skb pointer might be invalid when 1656 * getting here: tcp_collapse might have deleted it 1657 * while aggregating skbs from the socket queue. 1658 */ 1659 skb = tcp_recv_skb(sk, seq - 1, &offset); 1660 if (!skb) 1661 break; 1662 /* TCP coalescing might have appended data to the skb. 1663 * Try to splice more frags 1664 */ 1665 if (offset + 1 != skb->len) 1666 continue; 1667 } 1668 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1669 sk_eat_skb(sk, skb); 1670 ++seq; 1671 break; 1672 } 1673 sk_eat_skb(sk, skb); 1674 if (!desc->count) 1675 break; 1676 WRITE_ONCE(tp->copied_seq, seq); 1677 } 1678 WRITE_ONCE(tp->copied_seq, seq); 1679 1680 tcp_rcv_space_adjust(sk); 1681 1682 /* Clean up data we have read: This will do ACK frames. */ 1683 if (copied > 0) { 1684 tcp_recv_skb(sk, seq, &offset); 1685 tcp_cleanup_rbuf(sk, copied); 1686 } 1687 return copied; 1688 } 1689 EXPORT_SYMBOL(tcp_read_sock); 1690 1691 int tcp_peek_len(struct socket *sock) 1692 { 1693 return tcp_inq(sock->sk); 1694 } 1695 EXPORT_SYMBOL(tcp_peek_len); 1696 1697 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1698 int tcp_set_rcvlowat(struct sock *sk, int val) 1699 { 1700 int cap; 1701 1702 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1703 cap = sk->sk_rcvbuf >> 1; 1704 else 1705 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1706 val = min(val, cap); 1707 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1708 1709 /* Check if we need to signal EPOLLIN right now */ 1710 tcp_data_ready(sk); 1711 1712 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1713 return 0; 1714 1715 val <<= 1; 1716 if (val > sk->sk_rcvbuf) { 1717 WRITE_ONCE(sk->sk_rcvbuf, val); 1718 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1719 } 1720 return 0; 1721 } 1722 EXPORT_SYMBOL(tcp_set_rcvlowat); 1723 1724 void tcp_update_recv_tstamps(struct sk_buff *skb, 1725 struct scm_timestamping_internal *tss) 1726 { 1727 if (skb->tstamp) 1728 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1729 else 1730 tss->ts[0] = (struct timespec64) {0}; 1731 1732 if (skb_hwtstamps(skb)->hwtstamp) 1733 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1734 else 1735 tss->ts[2] = (struct timespec64) {0}; 1736 } 1737 1738 #ifdef CONFIG_MMU 1739 static const struct vm_operations_struct tcp_vm_ops = { 1740 }; 1741 1742 int tcp_mmap(struct file *file, struct socket *sock, 1743 struct vm_area_struct *vma) 1744 { 1745 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1746 return -EPERM; 1747 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1748 1749 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1750 vma->vm_flags |= VM_MIXEDMAP; 1751 1752 vma->vm_ops = &tcp_vm_ops; 1753 return 0; 1754 } 1755 EXPORT_SYMBOL(tcp_mmap); 1756 1757 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1758 u32 *offset_frag) 1759 { 1760 skb_frag_t *frag; 1761 1762 offset_skb -= skb_headlen(skb); 1763 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1764 return NULL; 1765 1766 frag = skb_shinfo(skb)->frags; 1767 while (offset_skb) { 1768 if (skb_frag_size(frag) > offset_skb) { 1769 *offset_frag = offset_skb; 1770 return frag; 1771 } 1772 offset_skb -= skb_frag_size(frag); 1773 ++frag; 1774 } 1775 *offset_frag = 0; 1776 return frag; 1777 } 1778 1779 static bool can_map_frag(const skb_frag_t *frag) 1780 { 1781 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1782 } 1783 1784 static int find_next_mappable_frag(const skb_frag_t *frag, 1785 int remaining_in_skb) 1786 { 1787 int offset = 0; 1788 1789 if (likely(can_map_frag(frag))) 1790 return 0; 1791 1792 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1793 offset += skb_frag_size(frag); 1794 ++frag; 1795 } 1796 return offset; 1797 } 1798 1799 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1800 struct tcp_zerocopy_receive *zc, 1801 struct sk_buff *skb, u32 offset) 1802 { 1803 u32 frag_offset, partial_frag_remainder = 0; 1804 int mappable_offset; 1805 skb_frag_t *frag; 1806 1807 /* worst case: skip to next skb. try to improve on this case below */ 1808 zc->recv_skip_hint = skb->len - offset; 1809 1810 /* Find the frag containing this offset (and how far into that frag) */ 1811 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1812 if (!frag) 1813 return; 1814 1815 if (frag_offset) { 1816 struct skb_shared_info *info = skb_shinfo(skb); 1817 1818 /* We read part of the last frag, must recvmsg() rest of skb. */ 1819 if (frag == &info->frags[info->nr_frags - 1]) 1820 return; 1821 1822 /* Else, we must at least read the remainder in this frag. */ 1823 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1824 zc->recv_skip_hint -= partial_frag_remainder; 1825 ++frag; 1826 } 1827 1828 /* partial_frag_remainder: If part way through a frag, must read rest. 1829 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1830 * in partial_frag_remainder. 1831 */ 1832 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1833 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1834 } 1835 1836 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1837 int nonblock, int flags, 1838 struct scm_timestamping_internal *tss, 1839 int *cmsg_flags); 1840 static int receive_fallback_to_copy(struct sock *sk, 1841 struct tcp_zerocopy_receive *zc, int inq, 1842 struct scm_timestamping_internal *tss) 1843 { 1844 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1845 struct msghdr msg = {}; 1846 struct iovec iov; 1847 int err; 1848 1849 zc->length = 0; 1850 zc->recv_skip_hint = 0; 1851 1852 if (copy_address != zc->copybuf_address) 1853 return -EINVAL; 1854 1855 err = import_single_range(READ, (void __user *)copy_address, 1856 inq, &iov, &msg.msg_iter); 1857 if (err) 1858 return err; 1859 1860 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1861 tss, &zc->msg_flags); 1862 if (err < 0) 1863 return err; 1864 1865 zc->copybuf_len = err; 1866 if (likely(zc->copybuf_len)) { 1867 struct sk_buff *skb; 1868 u32 offset; 1869 1870 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1871 if (skb) 1872 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1873 } 1874 return 0; 1875 } 1876 1877 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1878 struct sk_buff *skb, u32 copylen, 1879 u32 *offset, u32 *seq) 1880 { 1881 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1882 struct msghdr msg = {}; 1883 struct iovec iov; 1884 int err; 1885 1886 if (copy_address != zc->copybuf_address) 1887 return -EINVAL; 1888 1889 err = import_single_range(READ, (void __user *)copy_address, 1890 copylen, &iov, &msg.msg_iter); 1891 if (err) 1892 return err; 1893 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1894 if (err) 1895 return err; 1896 zc->recv_skip_hint -= copylen; 1897 *offset += copylen; 1898 *seq += copylen; 1899 return (__s32)copylen; 1900 } 1901 1902 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1903 struct sock *sk, 1904 struct sk_buff *skb, 1905 u32 *seq, 1906 s32 copybuf_len, 1907 struct scm_timestamping_internal *tss) 1908 { 1909 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1910 1911 if (!copylen) 1912 return 0; 1913 /* skb is null if inq < PAGE_SIZE. */ 1914 if (skb) { 1915 offset = *seq - TCP_SKB_CB(skb)->seq; 1916 } else { 1917 skb = tcp_recv_skb(sk, *seq, &offset); 1918 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1919 tcp_update_recv_tstamps(skb, tss); 1920 zc->msg_flags |= TCP_CMSG_TS; 1921 } 1922 } 1923 1924 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1925 seq); 1926 return zc->copybuf_len < 0 ? 0 : copylen; 1927 } 1928 1929 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1930 struct page **pending_pages, 1931 unsigned long pages_remaining, 1932 unsigned long *address, 1933 u32 *length, 1934 u32 *seq, 1935 struct tcp_zerocopy_receive *zc, 1936 u32 total_bytes_to_map, 1937 int err) 1938 { 1939 /* At least one page did not map. Try zapping if we skipped earlier. */ 1940 if (err == -EBUSY && 1941 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1942 u32 maybe_zap_len; 1943 1944 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1945 *length + /* Mapped or pending */ 1946 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1947 zap_page_range(vma, *address, maybe_zap_len); 1948 err = 0; 1949 } 1950 1951 if (!err) { 1952 unsigned long leftover_pages = pages_remaining; 1953 int bytes_mapped; 1954 1955 /* We called zap_page_range, try to reinsert. */ 1956 err = vm_insert_pages(vma, *address, 1957 pending_pages, 1958 &pages_remaining); 1959 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1960 *seq += bytes_mapped; 1961 *address += bytes_mapped; 1962 } 1963 if (err) { 1964 /* Either we were unable to zap, OR we zapped, retried an 1965 * insert, and still had an issue. Either ways, pages_remaining 1966 * is the number of pages we were unable to map, and we unroll 1967 * some state we speculatively touched before. 1968 */ 1969 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1970 1971 *length -= bytes_not_mapped; 1972 zc->recv_skip_hint += bytes_not_mapped; 1973 } 1974 return err; 1975 } 1976 1977 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1978 struct page **pages, 1979 unsigned int pages_to_map, 1980 unsigned long *address, 1981 u32 *length, 1982 u32 *seq, 1983 struct tcp_zerocopy_receive *zc, 1984 u32 total_bytes_to_map) 1985 { 1986 unsigned long pages_remaining = pages_to_map; 1987 unsigned int pages_mapped; 1988 unsigned int bytes_mapped; 1989 int err; 1990 1991 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1992 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1993 bytes_mapped = PAGE_SIZE * pages_mapped; 1994 /* Even if vm_insert_pages fails, it may have partially succeeded in 1995 * mapping (some but not all of the pages). 1996 */ 1997 *seq += bytes_mapped; 1998 *address += bytes_mapped; 1999 2000 if (likely(!err)) 2001 return 0; 2002 2003 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2004 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2005 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2006 err); 2007 } 2008 2009 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2010 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2011 struct tcp_zerocopy_receive *zc, 2012 struct scm_timestamping_internal *tss) 2013 { 2014 unsigned long msg_control_addr; 2015 struct msghdr cmsg_dummy; 2016 2017 msg_control_addr = (unsigned long)zc->msg_control; 2018 cmsg_dummy.msg_control = (void *)msg_control_addr; 2019 cmsg_dummy.msg_controllen = 2020 (__kernel_size_t)zc->msg_controllen; 2021 cmsg_dummy.msg_flags = in_compat_syscall() 2022 ? MSG_CMSG_COMPAT : 0; 2023 cmsg_dummy.msg_control_is_user = true; 2024 zc->msg_flags = 0; 2025 if (zc->msg_control == msg_control_addr && 2026 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2027 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2028 zc->msg_control = (__u64) 2029 ((uintptr_t)cmsg_dummy.msg_control); 2030 zc->msg_controllen = 2031 (__u64)cmsg_dummy.msg_controllen; 2032 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2033 } 2034 } 2035 2036 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2037 static int tcp_zerocopy_receive(struct sock *sk, 2038 struct tcp_zerocopy_receive *zc, 2039 struct scm_timestamping_internal *tss) 2040 { 2041 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2042 unsigned long address = (unsigned long)zc->address; 2043 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2044 s32 copybuf_len = zc->copybuf_len; 2045 struct tcp_sock *tp = tcp_sk(sk); 2046 const skb_frag_t *frags = NULL; 2047 unsigned int pages_to_map = 0; 2048 struct vm_area_struct *vma; 2049 struct sk_buff *skb = NULL; 2050 u32 seq = tp->copied_seq; 2051 u32 total_bytes_to_map; 2052 int inq = tcp_inq(sk); 2053 int ret; 2054 2055 zc->copybuf_len = 0; 2056 zc->msg_flags = 0; 2057 2058 if (address & (PAGE_SIZE - 1) || address != zc->address) 2059 return -EINVAL; 2060 2061 if (sk->sk_state == TCP_LISTEN) 2062 return -ENOTCONN; 2063 2064 sock_rps_record_flow(sk); 2065 2066 if (inq && inq <= copybuf_len) 2067 return receive_fallback_to_copy(sk, zc, inq, tss); 2068 2069 if (inq < PAGE_SIZE) { 2070 zc->length = 0; 2071 zc->recv_skip_hint = inq; 2072 if (!inq && sock_flag(sk, SOCK_DONE)) 2073 return -EIO; 2074 return 0; 2075 } 2076 2077 mmap_read_lock(current->mm); 2078 2079 vma = vma_lookup(current->mm, address); 2080 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2081 mmap_read_unlock(current->mm); 2082 return -EINVAL; 2083 } 2084 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2085 avail_len = min_t(u32, vma_len, inq); 2086 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2087 if (total_bytes_to_map) { 2088 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2089 zap_page_range(vma, address, total_bytes_to_map); 2090 zc->length = total_bytes_to_map; 2091 zc->recv_skip_hint = 0; 2092 } else { 2093 zc->length = avail_len; 2094 zc->recv_skip_hint = avail_len; 2095 } 2096 ret = 0; 2097 while (length + PAGE_SIZE <= zc->length) { 2098 int mappable_offset; 2099 struct page *page; 2100 2101 if (zc->recv_skip_hint < PAGE_SIZE) { 2102 u32 offset_frag; 2103 2104 if (skb) { 2105 if (zc->recv_skip_hint > 0) 2106 break; 2107 skb = skb->next; 2108 offset = seq - TCP_SKB_CB(skb)->seq; 2109 } else { 2110 skb = tcp_recv_skb(sk, seq, &offset); 2111 } 2112 2113 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2114 tcp_update_recv_tstamps(skb, tss); 2115 zc->msg_flags |= TCP_CMSG_TS; 2116 } 2117 zc->recv_skip_hint = skb->len - offset; 2118 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2119 if (!frags || offset_frag) 2120 break; 2121 } 2122 2123 mappable_offset = find_next_mappable_frag(frags, 2124 zc->recv_skip_hint); 2125 if (mappable_offset) { 2126 zc->recv_skip_hint = mappable_offset; 2127 break; 2128 } 2129 page = skb_frag_page(frags); 2130 prefetchw(page); 2131 pages[pages_to_map++] = page; 2132 length += PAGE_SIZE; 2133 zc->recv_skip_hint -= PAGE_SIZE; 2134 frags++; 2135 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2136 zc->recv_skip_hint < PAGE_SIZE) { 2137 /* Either full batch, or we're about to go to next skb 2138 * (and we cannot unroll failed ops across skbs). 2139 */ 2140 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2141 pages_to_map, 2142 &address, &length, 2143 &seq, zc, 2144 total_bytes_to_map); 2145 if (ret) 2146 goto out; 2147 pages_to_map = 0; 2148 } 2149 } 2150 if (pages_to_map) { 2151 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2152 &address, &length, &seq, 2153 zc, total_bytes_to_map); 2154 } 2155 out: 2156 mmap_read_unlock(current->mm); 2157 /* Try to copy straggler data. */ 2158 if (!ret) 2159 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2160 2161 if (length + copylen) { 2162 WRITE_ONCE(tp->copied_seq, seq); 2163 tcp_rcv_space_adjust(sk); 2164 2165 /* Clean up data we have read: This will do ACK frames. */ 2166 tcp_recv_skb(sk, seq, &offset); 2167 tcp_cleanup_rbuf(sk, length + copylen); 2168 ret = 0; 2169 if (length == zc->length) 2170 zc->recv_skip_hint = 0; 2171 } else { 2172 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2173 ret = -EIO; 2174 } 2175 zc->length = length; 2176 return ret; 2177 } 2178 #endif 2179 2180 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2181 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2182 struct scm_timestamping_internal *tss) 2183 { 2184 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2185 bool has_timestamping = false; 2186 2187 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2188 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2189 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2190 if (new_tstamp) { 2191 struct __kernel_timespec kts = { 2192 .tv_sec = tss->ts[0].tv_sec, 2193 .tv_nsec = tss->ts[0].tv_nsec, 2194 }; 2195 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2196 sizeof(kts), &kts); 2197 } else { 2198 struct __kernel_old_timespec ts_old = { 2199 .tv_sec = tss->ts[0].tv_sec, 2200 .tv_nsec = tss->ts[0].tv_nsec, 2201 }; 2202 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2203 sizeof(ts_old), &ts_old); 2204 } 2205 } else { 2206 if (new_tstamp) { 2207 struct __kernel_sock_timeval stv = { 2208 .tv_sec = tss->ts[0].tv_sec, 2209 .tv_usec = tss->ts[0].tv_nsec / 1000, 2210 }; 2211 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2212 sizeof(stv), &stv); 2213 } else { 2214 struct __kernel_old_timeval tv = { 2215 .tv_sec = tss->ts[0].tv_sec, 2216 .tv_usec = tss->ts[0].tv_nsec / 1000, 2217 }; 2218 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2219 sizeof(tv), &tv); 2220 } 2221 } 2222 } 2223 2224 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2225 has_timestamping = true; 2226 else 2227 tss->ts[0] = (struct timespec64) {0}; 2228 } 2229 2230 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2231 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2232 has_timestamping = true; 2233 else 2234 tss->ts[2] = (struct timespec64) {0}; 2235 } 2236 2237 if (has_timestamping) { 2238 tss->ts[1] = (struct timespec64) {0}; 2239 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2240 put_cmsg_scm_timestamping64(msg, tss); 2241 else 2242 put_cmsg_scm_timestamping(msg, tss); 2243 } 2244 } 2245 2246 static int tcp_inq_hint(struct sock *sk) 2247 { 2248 const struct tcp_sock *tp = tcp_sk(sk); 2249 u32 copied_seq = READ_ONCE(tp->copied_seq); 2250 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2251 int inq; 2252 2253 inq = rcv_nxt - copied_seq; 2254 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2255 lock_sock(sk); 2256 inq = tp->rcv_nxt - tp->copied_seq; 2257 release_sock(sk); 2258 } 2259 /* After receiving a FIN, tell the user-space to continue reading 2260 * by returning a non-zero inq. 2261 */ 2262 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2263 inq = 1; 2264 return inq; 2265 } 2266 2267 /* 2268 * This routine copies from a sock struct into the user buffer. 2269 * 2270 * Technical note: in 2.3 we work on _locked_ socket, so that 2271 * tricks with *seq access order and skb->users are not required. 2272 * Probably, code can be easily improved even more. 2273 */ 2274 2275 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2276 int nonblock, int flags, 2277 struct scm_timestamping_internal *tss, 2278 int *cmsg_flags) 2279 { 2280 struct tcp_sock *tp = tcp_sk(sk); 2281 int copied = 0; 2282 u32 peek_seq; 2283 u32 *seq; 2284 unsigned long used; 2285 int err; 2286 int target; /* Read at least this many bytes */ 2287 long timeo; 2288 struct sk_buff *skb, *last; 2289 u32 urg_hole = 0; 2290 2291 err = -ENOTCONN; 2292 if (sk->sk_state == TCP_LISTEN) 2293 goto out; 2294 2295 if (tp->recvmsg_inq) 2296 *cmsg_flags = TCP_CMSG_INQ; 2297 timeo = sock_rcvtimeo(sk, nonblock); 2298 2299 /* Urgent data needs to be handled specially. */ 2300 if (flags & MSG_OOB) 2301 goto recv_urg; 2302 2303 if (unlikely(tp->repair)) { 2304 err = -EPERM; 2305 if (!(flags & MSG_PEEK)) 2306 goto out; 2307 2308 if (tp->repair_queue == TCP_SEND_QUEUE) 2309 goto recv_sndq; 2310 2311 err = -EINVAL; 2312 if (tp->repair_queue == TCP_NO_QUEUE) 2313 goto out; 2314 2315 /* 'common' recv queue MSG_PEEK-ing */ 2316 } 2317 2318 seq = &tp->copied_seq; 2319 if (flags & MSG_PEEK) { 2320 peek_seq = tp->copied_seq; 2321 seq = &peek_seq; 2322 } 2323 2324 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2325 2326 do { 2327 u32 offset; 2328 2329 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2330 if (tp->urg_data && tp->urg_seq == *seq) { 2331 if (copied) 2332 break; 2333 if (signal_pending(current)) { 2334 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2335 break; 2336 } 2337 } 2338 2339 /* Next get a buffer. */ 2340 2341 last = skb_peek_tail(&sk->sk_receive_queue); 2342 skb_queue_walk(&sk->sk_receive_queue, skb) { 2343 last = skb; 2344 /* Now that we have two receive queues this 2345 * shouldn't happen. 2346 */ 2347 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2348 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2349 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2350 flags)) 2351 break; 2352 2353 offset = *seq - TCP_SKB_CB(skb)->seq; 2354 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2355 pr_err_once("%s: found a SYN, please report !\n", __func__); 2356 offset--; 2357 } 2358 if (offset < skb->len) 2359 goto found_ok_skb; 2360 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2361 goto found_fin_ok; 2362 WARN(!(flags & MSG_PEEK), 2363 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2364 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2365 } 2366 2367 /* Well, if we have backlog, try to process it now yet. */ 2368 2369 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2370 break; 2371 2372 if (copied) { 2373 if (sk->sk_err || 2374 sk->sk_state == TCP_CLOSE || 2375 (sk->sk_shutdown & RCV_SHUTDOWN) || 2376 !timeo || 2377 signal_pending(current)) 2378 break; 2379 } else { 2380 if (sock_flag(sk, SOCK_DONE)) 2381 break; 2382 2383 if (sk->sk_err) { 2384 copied = sock_error(sk); 2385 break; 2386 } 2387 2388 if (sk->sk_shutdown & RCV_SHUTDOWN) 2389 break; 2390 2391 if (sk->sk_state == TCP_CLOSE) { 2392 /* This occurs when user tries to read 2393 * from never connected socket. 2394 */ 2395 copied = -ENOTCONN; 2396 break; 2397 } 2398 2399 if (!timeo) { 2400 copied = -EAGAIN; 2401 break; 2402 } 2403 2404 if (signal_pending(current)) { 2405 copied = sock_intr_errno(timeo); 2406 break; 2407 } 2408 } 2409 2410 tcp_cleanup_rbuf(sk, copied); 2411 2412 if (copied >= target) { 2413 /* Do not sleep, just process backlog. */ 2414 release_sock(sk); 2415 lock_sock(sk); 2416 } else { 2417 sk_wait_data(sk, &timeo, last); 2418 } 2419 2420 if ((flags & MSG_PEEK) && 2421 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2422 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2423 current->comm, 2424 task_pid_nr(current)); 2425 peek_seq = tp->copied_seq; 2426 } 2427 continue; 2428 2429 found_ok_skb: 2430 /* Ok so how much can we use? */ 2431 used = skb->len - offset; 2432 if (len < used) 2433 used = len; 2434 2435 /* Do we have urgent data here? */ 2436 if (tp->urg_data) { 2437 u32 urg_offset = tp->urg_seq - *seq; 2438 if (urg_offset < used) { 2439 if (!urg_offset) { 2440 if (!sock_flag(sk, SOCK_URGINLINE)) { 2441 WRITE_ONCE(*seq, *seq + 1); 2442 urg_hole++; 2443 offset++; 2444 used--; 2445 if (!used) 2446 goto skip_copy; 2447 } 2448 } else 2449 used = urg_offset; 2450 } 2451 } 2452 2453 if (!(flags & MSG_TRUNC)) { 2454 err = skb_copy_datagram_msg(skb, offset, msg, used); 2455 if (err) { 2456 /* Exception. Bailout! */ 2457 if (!copied) 2458 copied = -EFAULT; 2459 break; 2460 } 2461 } 2462 2463 WRITE_ONCE(*seq, *seq + used); 2464 copied += used; 2465 len -= used; 2466 2467 tcp_rcv_space_adjust(sk); 2468 2469 skip_copy: 2470 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2471 tp->urg_data = 0; 2472 tcp_fast_path_check(sk); 2473 } 2474 2475 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2476 tcp_update_recv_tstamps(skb, tss); 2477 *cmsg_flags |= TCP_CMSG_TS; 2478 } 2479 2480 if (used + offset < skb->len) 2481 continue; 2482 2483 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2484 goto found_fin_ok; 2485 if (!(flags & MSG_PEEK)) 2486 sk_eat_skb(sk, skb); 2487 continue; 2488 2489 found_fin_ok: 2490 /* Process the FIN. */ 2491 WRITE_ONCE(*seq, *seq + 1); 2492 if (!(flags & MSG_PEEK)) 2493 sk_eat_skb(sk, skb); 2494 break; 2495 } while (len > 0); 2496 2497 /* According to UNIX98, msg_name/msg_namelen are ignored 2498 * on connected socket. I was just happy when found this 8) --ANK 2499 */ 2500 2501 /* Clean up data we have read: This will do ACK frames. */ 2502 tcp_cleanup_rbuf(sk, copied); 2503 return copied; 2504 2505 out: 2506 return err; 2507 2508 recv_urg: 2509 err = tcp_recv_urg(sk, msg, len, flags); 2510 goto out; 2511 2512 recv_sndq: 2513 err = tcp_peek_sndq(sk, msg, len); 2514 goto out; 2515 } 2516 2517 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2518 int flags, int *addr_len) 2519 { 2520 int cmsg_flags = 0, ret, inq; 2521 struct scm_timestamping_internal tss; 2522 2523 if (unlikely(flags & MSG_ERRQUEUE)) 2524 return inet_recv_error(sk, msg, len, addr_len); 2525 2526 if (sk_can_busy_loop(sk) && 2527 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2528 sk->sk_state == TCP_ESTABLISHED) 2529 sk_busy_loop(sk, nonblock); 2530 2531 lock_sock(sk); 2532 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2533 &cmsg_flags); 2534 release_sock(sk); 2535 2536 if (cmsg_flags && ret >= 0) { 2537 if (cmsg_flags & TCP_CMSG_TS) 2538 tcp_recv_timestamp(msg, sk, &tss); 2539 if (cmsg_flags & TCP_CMSG_INQ) { 2540 inq = tcp_inq_hint(sk); 2541 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2542 } 2543 } 2544 return ret; 2545 } 2546 EXPORT_SYMBOL(tcp_recvmsg); 2547 2548 void tcp_set_state(struct sock *sk, int state) 2549 { 2550 int oldstate = sk->sk_state; 2551 2552 /* We defined a new enum for TCP states that are exported in BPF 2553 * so as not force the internal TCP states to be frozen. The 2554 * following checks will detect if an internal state value ever 2555 * differs from the BPF value. If this ever happens, then we will 2556 * need to remap the internal value to the BPF value before calling 2557 * tcp_call_bpf_2arg. 2558 */ 2559 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2560 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2561 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2562 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2563 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2564 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2565 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2566 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2567 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2568 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2569 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2570 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2571 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2572 2573 /* bpf uapi header bpf.h defines an anonymous enum with values 2574 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2575 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2576 * But clang built vmlinux does not have this enum in DWARF 2577 * since clang removes the above code before generating IR/debuginfo. 2578 * Let us explicitly emit the type debuginfo to ensure the 2579 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2580 * regardless of which compiler is used. 2581 */ 2582 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2583 2584 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2585 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2586 2587 switch (state) { 2588 case TCP_ESTABLISHED: 2589 if (oldstate != TCP_ESTABLISHED) 2590 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2591 break; 2592 2593 case TCP_CLOSE: 2594 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2595 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2596 2597 sk->sk_prot->unhash(sk); 2598 if (inet_csk(sk)->icsk_bind_hash && 2599 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2600 inet_put_port(sk); 2601 fallthrough; 2602 default: 2603 if (oldstate == TCP_ESTABLISHED) 2604 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2605 } 2606 2607 /* Change state AFTER socket is unhashed to avoid closed 2608 * socket sitting in hash tables. 2609 */ 2610 inet_sk_state_store(sk, state); 2611 } 2612 EXPORT_SYMBOL_GPL(tcp_set_state); 2613 2614 /* 2615 * State processing on a close. This implements the state shift for 2616 * sending our FIN frame. Note that we only send a FIN for some 2617 * states. A shutdown() may have already sent the FIN, or we may be 2618 * closed. 2619 */ 2620 2621 static const unsigned char new_state[16] = { 2622 /* current state: new state: action: */ 2623 [0 /* (Invalid) */] = TCP_CLOSE, 2624 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2625 [TCP_SYN_SENT] = TCP_CLOSE, 2626 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2627 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2628 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2629 [TCP_TIME_WAIT] = TCP_CLOSE, 2630 [TCP_CLOSE] = TCP_CLOSE, 2631 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2632 [TCP_LAST_ACK] = TCP_LAST_ACK, 2633 [TCP_LISTEN] = TCP_CLOSE, 2634 [TCP_CLOSING] = TCP_CLOSING, 2635 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2636 }; 2637 2638 static int tcp_close_state(struct sock *sk) 2639 { 2640 int next = (int)new_state[sk->sk_state]; 2641 int ns = next & TCP_STATE_MASK; 2642 2643 tcp_set_state(sk, ns); 2644 2645 return next & TCP_ACTION_FIN; 2646 } 2647 2648 /* 2649 * Shutdown the sending side of a connection. Much like close except 2650 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2651 */ 2652 2653 void tcp_shutdown(struct sock *sk, int how) 2654 { 2655 /* We need to grab some memory, and put together a FIN, 2656 * and then put it into the queue to be sent. 2657 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2658 */ 2659 if (!(how & SEND_SHUTDOWN)) 2660 return; 2661 2662 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2663 if ((1 << sk->sk_state) & 2664 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2665 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2666 /* Clear out any half completed packets. FIN if needed. */ 2667 if (tcp_close_state(sk)) 2668 tcp_send_fin(sk); 2669 } 2670 } 2671 EXPORT_SYMBOL(tcp_shutdown); 2672 2673 int tcp_orphan_count_sum(void) 2674 { 2675 int i, total = 0; 2676 2677 for_each_possible_cpu(i) 2678 total += per_cpu(tcp_orphan_count, i); 2679 2680 return max(total, 0); 2681 } 2682 2683 static int tcp_orphan_cache; 2684 static struct timer_list tcp_orphan_timer; 2685 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2686 2687 static void tcp_orphan_update(struct timer_list *unused) 2688 { 2689 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2690 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2691 } 2692 2693 static bool tcp_too_many_orphans(int shift) 2694 { 2695 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2696 } 2697 2698 bool tcp_check_oom(struct sock *sk, int shift) 2699 { 2700 bool too_many_orphans, out_of_socket_memory; 2701 2702 too_many_orphans = tcp_too_many_orphans(shift); 2703 out_of_socket_memory = tcp_out_of_memory(sk); 2704 2705 if (too_many_orphans) 2706 net_info_ratelimited("too many orphaned sockets\n"); 2707 if (out_of_socket_memory) 2708 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2709 return too_many_orphans || out_of_socket_memory; 2710 } 2711 2712 void __tcp_close(struct sock *sk, long timeout) 2713 { 2714 struct sk_buff *skb; 2715 int data_was_unread = 0; 2716 int state; 2717 2718 sk->sk_shutdown = SHUTDOWN_MASK; 2719 2720 if (sk->sk_state == TCP_LISTEN) { 2721 tcp_set_state(sk, TCP_CLOSE); 2722 2723 /* Special case. */ 2724 inet_csk_listen_stop(sk); 2725 2726 goto adjudge_to_death; 2727 } 2728 2729 /* We need to flush the recv. buffs. We do this only on the 2730 * descriptor close, not protocol-sourced closes, because the 2731 * reader process may not have drained the data yet! 2732 */ 2733 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2734 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2735 2736 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2737 len--; 2738 data_was_unread += len; 2739 __kfree_skb(skb); 2740 } 2741 2742 sk_mem_reclaim(sk); 2743 2744 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2745 if (sk->sk_state == TCP_CLOSE) 2746 goto adjudge_to_death; 2747 2748 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2749 * data was lost. To witness the awful effects of the old behavior of 2750 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2751 * GET in an FTP client, suspend the process, wait for the client to 2752 * advertise a zero window, then kill -9 the FTP client, wheee... 2753 * Note: timeout is always zero in such a case. 2754 */ 2755 if (unlikely(tcp_sk(sk)->repair)) { 2756 sk->sk_prot->disconnect(sk, 0); 2757 } else if (data_was_unread) { 2758 /* Unread data was tossed, zap the connection. */ 2759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2760 tcp_set_state(sk, TCP_CLOSE); 2761 tcp_send_active_reset(sk, sk->sk_allocation); 2762 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2763 /* Check zero linger _after_ checking for unread data. */ 2764 sk->sk_prot->disconnect(sk, 0); 2765 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2766 } else if (tcp_close_state(sk)) { 2767 /* We FIN if the application ate all the data before 2768 * zapping the connection. 2769 */ 2770 2771 /* RED-PEN. Formally speaking, we have broken TCP state 2772 * machine. State transitions: 2773 * 2774 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2775 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2776 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2777 * 2778 * are legal only when FIN has been sent (i.e. in window), 2779 * rather than queued out of window. Purists blame. 2780 * 2781 * F.e. "RFC state" is ESTABLISHED, 2782 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2783 * 2784 * The visible declinations are that sometimes 2785 * we enter time-wait state, when it is not required really 2786 * (harmless), do not send active resets, when they are 2787 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2788 * they look as CLOSING or LAST_ACK for Linux) 2789 * Probably, I missed some more holelets. 2790 * --ANK 2791 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2792 * in a single packet! (May consider it later but will 2793 * probably need API support or TCP_CORK SYN-ACK until 2794 * data is written and socket is closed.) 2795 */ 2796 tcp_send_fin(sk); 2797 } 2798 2799 sk_stream_wait_close(sk, timeout); 2800 2801 adjudge_to_death: 2802 state = sk->sk_state; 2803 sock_hold(sk); 2804 sock_orphan(sk); 2805 2806 local_bh_disable(); 2807 bh_lock_sock(sk); 2808 /* remove backlog if any, without releasing ownership. */ 2809 __release_sock(sk); 2810 2811 this_cpu_inc(tcp_orphan_count); 2812 2813 /* Have we already been destroyed by a softirq or backlog? */ 2814 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2815 goto out; 2816 2817 /* This is a (useful) BSD violating of the RFC. There is a 2818 * problem with TCP as specified in that the other end could 2819 * keep a socket open forever with no application left this end. 2820 * We use a 1 minute timeout (about the same as BSD) then kill 2821 * our end. If they send after that then tough - BUT: long enough 2822 * that we won't make the old 4*rto = almost no time - whoops 2823 * reset mistake. 2824 * 2825 * Nope, it was not mistake. It is really desired behaviour 2826 * f.e. on http servers, when such sockets are useless, but 2827 * consume significant resources. Let's do it with special 2828 * linger2 option. --ANK 2829 */ 2830 2831 if (sk->sk_state == TCP_FIN_WAIT2) { 2832 struct tcp_sock *tp = tcp_sk(sk); 2833 if (tp->linger2 < 0) { 2834 tcp_set_state(sk, TCP_CLOSE); 2835 tcp_send_active_reset(sk, GFP_ATOMIC); 2836 __NET_INC_STATS(sock_net(sk), 2837 LINUX_MIB_TCPABORTONLINGER); 2838 } else { 2839 const int tmo = tcp_fin_time(sk); 2840 2841 if (tmo > TCP_TIMEWAIT_LEN) { 2842 inet_csk_reset_keepalive_timer(sk, 2843 tmo - TCP_TIMEWAIT_LEN); 2844 } else { 2845 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2846 goto out; 2847 } 2848 } 2849 } 2850 if (sk->sk_state != TCP_CLOSE) { 2851 sk_mem_reclaim(sk); 2852 if (tcp_check_oom(sk, 0)) { 2853 tcp_set_state(sk, TCP_CLOSE); 2854 tcp_send_active_reset(sk, GFP_ATOMIC); 2855 __NET_INC_STATS(sock_net(sk), 2856 LINUX_MIB_TCPABORTONMEMORY); 2857 } else if (!check_net(sock_net(sk))) { 2858 /* Not possible to send reset; just close */ 2859 tcp_set_state(sk, TCP_CLOSE); 2860 } 2861 } 2862 2863 if (sk->sk_state == TCP_CLOSE) { 2864 struct request_sock *req; 2865 2866 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2867 lockdep_sock_is_held(sk)); 2868 /* We could get here with a non-NULL req if the socket is 2869 * aborted (e.g., closed with unread data) before 3WHS 2870 * finishes. 2871 */ 2872 if (req) 2873 reqsk_fastopen_remove(sk, req, false); 2874 inet_csk_destroy_sock(sk); 2875 } 2876 /* Otherwise, socket is reprieved until protocol close. */ 2877 2878 out: 2879 bh_unlock_sock(sk); 2880 local_bh_enable(); 2881 } 2882 2883 void tcp_close(struct sock *sk, long timeout) 2884 { 2885 lock_sock(sk); 2886 __tcp_close(sk, timeout); 2887 release_sock(sk); 2888 sock_put(sk); 2889 } 2890 EXPORT_SYMBOL(tcp_close); 2891 2892 /* These states need RST on ABORT according to RFC793 */ 2893 2894 static inline bool tcp_need_reset(int state) 2895 { 2896 return (1 << state) & 2897 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2898 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2899 } 2900 2901 static void tcp_rtx_queue_purge(struct sock *sk) 2902 { 2903 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2904 2905 tcp_sk(sk)->highest_sack = NULL; 2906 while (p) { 2907 struct sk_buff *skb = rb_to_skb(p); 2908 2909 p = rb_next(p); 2910 /* Since we are deleting whole queue, no need to 2911 * list_del(&skb->tcp_tsorted_anchor) 2912 */ 2913 tcp_rtx_queue_unlink(skb, sk); 2914 tcp_wmem_free_skb(sk, skb); 2915 } 2916 } 2917 2918 void tcp_write_queue_purge(struct sock *sk) 2919 { 2920 struct sk_buff *skb; 2921 2922 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2923 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2924 tcp_skb_tsorted_anchor_cleanup(skb); 2925 tcp_wmem_free_skb(sk, skb); 2926 } 2927 tcp_rtx_queue_purge(sk); 2928 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2929 sk_mem_reclaim(sk); 2930 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2931 tcp_sk(sk)->packets_out = 0; 2932 inet_csk(sk)->icsk_backoff = 0; 2933 } 2934 2935 int tcp_disconnect(struct sock *sk, int flags) 2936 { 2937 struct inet_sock *inet = inet_sk(sk); 2938 struct inet_connection_sock *icsk = inet_csk(sk); 2939 struct tcp_sock *tp = tcp_sk(sk); 2940 int old_state = sk->sk_state; 2941 u32 seq; 2942 2943 if (old_state != TCP_CLOSE) 2944 tcp_set_state(sk, TCP_CLOSE); 2945 2946 /* ABORT function of RFC793 */ 2947 if (old_state == TCP_LISTEN) { 2948 inet_csk_listen_stop(sk); 2949 } else if (unlikely(tp->repair)) { 2950 sk->sk_err = ECONNABORTED; 2951 } else if (tcp_need_reset(old_state) || 2952 (tp->snd_nxt != tp->write_seq && 2953 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2954 /* The last check adjusts for discrepancy of Linux wrt. RFC 2955 * states 2956 */ 2957 tcp_send_active_reset(sk, gfp_any()); 2958 sk->sk_err = ECONNRESET; 2959 } else if (old_state == TCP_SYN_SENT) 2960 sk->sk_err = ECONNRESET; 2961 2962 tcp_clear_xmit_timers(sk); 2963 __skb_queue_purge(&sk->sk_receive_queue); 2964 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2965 tp->urg_data = 0; 2966 tcp_write_queue_purge(sk); 2967 tcp_fastopen_active_disable_ofo_check(sk); 2968 skb_rbtree_purge(&tp->out_of_order_queue); 2969 2970 inet->inet_dport = 0; 2971 2972 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2973 inet_reset_saddr(sk); 2974 2975 sk->sk_shutdown = 0; 2976 sock_reset_flag(sk, SOCK_DONE); 2977 tp->srtt_us = 0; 2978 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2979 tp->rcv_rtt_last_tsecr = 0; 2980 2981 seq = tp->write_seq + tp->max_window + 2; 2982 if (!seq) 2983 seq = 1; 2984 WRITE_ONCE(tp->write_seq, seq); 2985 2986 icsk->icsk_backoff = 0; 2987 icsk->icsk_probes_out = 0; 2988 icsk->icsk_probes_tstamp = 0; 2989 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2990 icsk->icsk_rto_min = TCP_RTO_MIN; 2991 icsk->icsk_delack_max = TCP_DELACK_MAX; 2992 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2993 tp->snd_cwnd = TCP_INIT_CWND; 2994 tp->snd_cwnd_cnt = 0; 2995 tp->window_clamp = 0; 2996 tp->delivered = 0; 2997 tp->delivered_ce = 0; 2998 if (icsk->icsk_ca_ops->release) 2999 icsk->icsk_ca_ops->release(sk); 3000 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3001 icsk->icsk_ca_initialized = 0; 3002 tcp_set_ca_state(sk, TCP_CA_Open); 3003 tp->is_sack_reneg = 0; 3004 tcp_clear_retrans(tp); 3005 tp->total_retrans = 0; 3006 inet_csk_delack_init(sk); 3007 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3008 * issue in __tcp_select_window() 3009 */ 3010 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3011 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3012 __sk_dst_reset(sk); 3013 dst_release(sk->sk_rx_dst); 3014 sk->sk_rx_dst = NULL; 3015 tcp_saved_syn_free(tp); 3016 tp->compressed_ack = 0; 3017 tp->segs_in = 0; 3018 tp->segs_out = 0; 3019 tp->bytes_sent = 0; 3020 tp->bytes_acked = 0; 3021 tp->bytes_received = 0; 3022 tp->bytes_retrans = 0; 3023 tp->data_segs_in = 0; 3024 tp->data_segs_out = 0; 3025 tp->duplicate_sack[0].start_seq = 0; 3026 tp->duplicate_sack[0].end_seq = 0; 3027 tp->dsack_dups = 0; 3028 tp->reord_seen = 0; 3029 tp->retrans_out = 0; 3030 tp->sacked_out = 0; 3031 tp->tlp_high_seq = 0; 3032 tp->last_oow_ack_time = 0; 3033 /* There's a bubble in the pipe until at least the first ACK. */ 3034 tp->app_limited = ~0U; 3035 tp->rack.mstamp = 0; 3036 tp->rack.advanced = 0; 3037 tp->rack.reo_wnd_steps = 1; 3038 tp->rack.last_delivered = 0; 3039 tp->rack.reo_wnd_persist = 0; 3040 tp->rack.dsack_seen = 0; 3041 tp->syn_data_acked = 0; 3042 tp->rx_opt.saw_tstamp = 0; 3043 tp->rx_opt.dsack = 0; 3044 tp->rx_opt.num_sacks = 0; 3045 tp->rcv_ooopack = 0; 3046 3047 3048 /* Clean up fastopen related fields */ 3049 tcp_free_fastopen_req(tp); 3050 inet->defer_connect = 0; 3051 tp->fastopen_client_fail = 0; 3052 3053 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3054 3055 if (sk->sk_frag.page) { 3056 put_page(sk->sk_frag.page); 3057 sk->sk_frag.page = NULL; 3058 sk->sk_frag.offset = 0; 3059 } 3060 3061 sk_error_report(sk); 3062 return 0; 3063 } 3064 EXPORT_SYMBOL(tcp_disconnect); 3065 3066 static inline bool tcp_can_repair_sock(const struct sock *sk) 3067 { 3068 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3069 (sk->sk_state != TCP_LISTEN); 3070 } 3071 3072 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3073 { 3074 struct tcp_repair_window opt; 3075 3076 if (!tp->repair) 3077 return -EPERM; 3078 3079 if (len != sizeof(opt)) 3080 return -EINVAL; 3081 3082 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3083 return -EFAULT; 3084 3085 if (opt.max_window < opt.snd_wnd) 3086 return -EINVAL; 3087 3088 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3089 return -EINVAL; 3090 3091 if (after(opt.rcv_wup, tp->rcv_nxt)) 3092 return -EINVAL; 3093 3094 tp->snd_wl1 = opt.snd_wl1; 3095 tp->snd_wnd = opt.snd_wnd; 3096 tp->max_window = opt.max_window; 3097 3098 tp->rcv_wnd = opt.rcv_wnd; 3099 tp->rcv_wup = opt.rcv_wup; 3100 3101 return 0; 3102 } 3103 3104 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3105 unsigned int len) 3106 { 3107 struct tcp_sock *tp = tcp_sk(sk); 3108 struct tcp_repair_opt opt; 3109 size_t offset = 0; 3110 3111 while (len >= sizeof(opt)) { 3112 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3113 return -EFAULT; 3114 3115 offset += sizeof(opt); 3116 len -= sizeof(opt); 3117 3118 switch (opt.opt_code) { 3119 case TCPOPT_MSS: 3120 tp->rx_opt.mss_clamp = opt.opt_val; 3121 tcp_mtup_init(sk); 3122 break; 3123 case TCPOPT_WINDOW: 3124 { 3125 u16 snd_wscale = opt.opt_val & 0xFFFF; 3126 u16 rcv_wscale = opt.opt_val >> 16; 3127 3128 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3129 return -EFBIG; 3130 3131 tp->rx_opt.snd_wscale = snd_wscale; 3132 tp->rx_opt.rcv_wscale = rcv_wscale; 3133 tp->rx_opt.wscale_ok = 1; 3134 } 3135 break; 3136 case TCPOPT_SACK_PERM: 3137 if (opt.opt_val != 0) 3138 return -EINVAL; 3139 3140 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3141 break; 3142 case TCPOPT_TIMESTAMP: 3143 if (opt.opt_val != 0) 3144 return -EINVAL; 3145 3146 tp->rx_opt.tstamp_ok = 1; 3147 break; 3148 } 3149 } 3150 3151 return 0; 3152 } 3153 3154 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3155 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3156 3157 static void tcp_enable_tx_delay(void) 3158 { 3159 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3160 static int __tcp_tx_delay_enabled = 0; 3161 3162 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3163 static_branch_enable(&tcp_tx_delay_enabled); 3164 pr_info("TCP_TX_DELAY enabled\n"); 3165 } 3166 } 3167 } 3168 3169 /* When set indicates to always queue non-full frames. Later the user clears 3170 * this option and we transmit any pending partial frames in the queue. This is 3171 * meant to be used alongside sendfile() to get properly filled frames when the 3172 * user (for example) must write out headers with a write() call first and then 3173 * use sendfile to send out the data parts. 3174 * 3175 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3176 * TCP_NODELAY. 3177 */ 3178 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3179 { 3180 struct tcp_sock *tp = tcp_sk(sk); 3181 3182 if (on) { 3183 tp->nonagle |= TCP_NAGLE_CORK; 3184 } else { 3185 tp->nonagle &= ~TCP_NAGLE_CORK; 3186 if (tp->nonagle & TCP_NAGLE_OFF) 3187 tp->nonagle |= TCP_NAGLE_PUSH; 3188 tcp_push_pending_frames(sk); 3189 } 3190 } 3191 3192 void tcp_sock_set_cork(struct sock *sk, bool on) 3193 { 3194 lock_sock(sk); 3195 __tcp_sock_set_cork(sk, on); 3196 release_sock(sk); 3197 } 3198 EXPORT_SYMBOL(tcp_sock_set_cork); 3199 3200 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3201 * remembered, but it is not activated until cork is cleared. 3202 * 3203 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3204 * even TCP_CORK for currently queued segments. 3205 */ 3206 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3207 { 3208 if (on) { 3209 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3210 tcp_push_pending_frames(sk); 3211 } else { 3212 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3213 } 3214 } 3215 3216 void tcp_sock_set_nodelay(struct sock *sk) 3217 { 3218 lock_sock(sk); 3219 __tcp_sock_set_nodelay(sk, true); 3220 release_sock(sk); 3221 } 3222 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3223 3224 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3225 { 3226 if (!val) { 3227 inet_csk_enter_pingpong_mode(sk); 3228 return; 3229 } 3230 3231 inet_csk_exit_pingpong_mode(sk); 3232 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3233 inet_csk_ack_scheduled(sk)) { 3234 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3235 tcp_cleanup_rbuf(sk, 1); 3236 if (!(val & 1)) 3237 inet_csk_enter_pingpong_mode(sk); 3238 } 3239 } 3240 3241 void tcp_sock_set_quickack(struct sock *sk, int val) 3242 { 3243 lock_sock(sk); 3244 __tcp_sock_set_quickack(sk, val); 3245 release_sock(sk); 3246 } 3247 EXPORT_SYMBOL(tcp_sock_set_quickack); 3248 3249 int tcp_sock_set_syncnt(struct sock *sk, int val) 3250 { 3251 if (val < 1 || val > MAX_TCP_SYNCNT) 3252 return -EINVAL; 3253 3254 lock_sock(sk); 3255 inet_csk(sk)->icsk_syn_retries = val; 3256 release_sock(sk); 3257 return 0; 3258 } 3259 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3260 3261 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3262 { 3263 lock_sock(sk); 3264 inet_csk(sk)->icsk_user_timeout = val; 3265 release_sock(sk); 3266 } 3267 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3268 3269 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3270 { 3271 struct tcp_sock *tp = tcp_sk(sk); 3272 3273 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3274 return -EINVAL; 3275 3276 tp->keepalive_time = val * HZ; 3277 if (sock_flag(sk, SOCK_KEEPOPEN) && 3278 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3279 u32 elapsed = keepalive_time_elapsed(tp); 3280 3281 if (tp->keepalive_time > elapsed) 3282 elapsed = tp->keepalive_time - elapsed; 3283 else 3284 elapsed = 0; 3285 inet_csk_reset_keepalive_timer(sk, elapsed); 3286 } 3287 3288 return 0; 3289 } 3290 3291 int tcp_sock_set_keepidle(struct sock *sk, int val) 3292 { 3293 int err; 3294 3295 lock_sock(sk); 3296 err = tcp_sock_set_keepidle_locked(sk, val); 3297 release_sock(sk); 3298 return err; 3299 } 3300 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3301 3302 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3303 { 3304 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3305 return -EINVAL; 3306 3307 lock_sock(sk); 3308 tcp_sk(sk)->keepalive_intvl = val * HZ; 3309 release_sock(sk); 3310 return 0; 3311 } 3312 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3313 3314 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3315 { 3316 if (val < 1 || val > MAX_TCP_KEEPCNT) 3317 return -EINVAL; 3318 3319 lock_sock(sk); 3320 tcp_sk(sk)->keepalive_probes = val; 3321 release_sock(sk); 3322 return 0; 3323 } 3324 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3325 3326 int tcp_set_window_clamp(struct sock *sk, int val) 3327 { 3328 struct tcp_sock *tp = tcp_sk(sk); 3329 3330 if (!val) { 3331 if (sk->sk_state != TCP_CLOSE) 3332 return -EINVAL; 3333 tp->window_clamp = 0; 3334 } else { 3335 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3336 SOCK_MIN_RCVBUF / 2 : val; 3337 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3338 } 3339 return 0; 3340 } 3341 3342 /* 3343 * Socket option code for TCP. 3344 */ 3345 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3346 sockptr_t optval, unsigned int optlen) 3347 { 3348 struct tcp_sock *tp = tcp_sk(sk); 3349 struct inet_connection_sock *icsk = inet_csk(sk); 3350 struct net *net = sock_net(sk); 3351 int val; 3352 int err = 0; 3353 3354 /* These are data/string values, all the others are ints */ 3355 switch (optname) { 3356 case TCP_CONGESTION: { 3357 char name[TCP_CA_NAME_MAX]; 3358 3359 if (optlen < 1) 3360 return -EINVAL; 3361 3362 val = strncpy_from_sockptr(name, optval, 3363 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3364 if (val < 0) 3365 return -EFAULT; 3366 name[val] = 0; 3367 3368 lock_sock(sk); 3369 err = tcp_set_congestion_control(sk, name, true, 3370 ns_capable(sock_net(sk)->user_ns, 3371 CAP_NET_ADMIN)); 3372 release_sock(sk); 3373 return err; 3374 } 3375 case TCP_ULP: { 3376 char name[TCP_ULP_NAME_MAX]; 3377 3378 if (optlen < 1) 3379 return -EINVAL; 3380 3381 val = strncpy_from_sockptr(name, optval, 3382 min_t(long, TCP_ULP_NAME_MAX - 1, 3383 optlen)); 3384 if (val < 0) 3385 return -EFAULT; 3386 name[val] = 0; 3387 3388 lock_sock(sk); 3389 err = tcp_set_ulp(sk, name); 3390 release_sock(sk); 3391 return err; 3392 } 3393 case TCP_FASTOPEN_KEY: { 3394 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3395 __u8 *backup_key = NULL; 3396 3397 /* Allow a backup key as well to facilitate key rotation 3398 * First key is the active one. 3399 */ 3400 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3401 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3402 return -EINVAL; 3403 3404 if (copy_from_sockptr(key, optval, optlen)) 3405 return -EFAULT; 3406 3407 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3408 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3409 3410 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3411 } 3412 default: 3413 /* fallthru */ 3414 break; 3415 } 3416 3417 if (optlen < sizeof(int)) 3418 return -EINVAL; 3419 3420 if (copy_from_sockptr(&val, optval, sizeof(val))) 3421 return -EFAULT; 3422 3423 lock_sock(sk); 3424 3425 switch (optname) { 3426 case TCP_MAXSEG: 3427 /* Values greater than interface MTU won't take effect. However 3428 * at the point when this call is done we typically don't yet 3429 * know which interface is going to be used 3430 */ 3431 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3432 err = -EINVAL; 3433 break; 3434 } 3435 tp->rx_opt.user_mss = val; 3436 break; 3437 3438 case TCP_NODELAY: 3439 __tcp_sock_set_nodelay(sk, val); 3440 break; 3441 3442 case TCP_THIN_LINEAR_TIMEOUTS: 3443 if (val < 0 || val > 1) 3444 err = -EINVAL; 3445 else 3446 tp->thin_lto = val; 3447 break; 3448 3449 case TCP_THIN_DUPACK: 3450 if (val < 0 || val > 1) 3451 err = -EINVAL; 3452 break; 3453 3454 case TCP_REPAIR: 3455 if (!tcp_can_repair_sock(sk)) 3456 err = -EPERM; 3457 else if (val == TCP_REPAIR_ON) { 3458 tp->repair = 1; 3459 sk->sk_reuse = SK_FORCE_REUSE; 3460 tp->repair_queue = TCP_NO_QUEUE; 3461 } else if (val == TCP_REPAIR_OFF) { 3462 tp->repair = 0; 3463 sk->sk_reuse = SK_NO_REUSE; 3464 tcp_send_window_probe(sk); 3465 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3466 tp->repair = 0; 3467 sk->sk_reuse = SK_NO_REUSE; 3468 } else 3469 err = -EINVAL; 3470 3471 break; 3472 3473 case TCP_REPAIR_QUEUE: 3474 if (!tp->repair) 3475 err = -EPERM; 3476 else if ((unsigned int)val < TCP_QUEUES_NR) 3477 tp->repair_queue = val; 3478 else 3479 err = -EINVAL; 3480 break; 3481 3482 case TCP_QUEUE_SEQ: 3483 if (sk->sk_state != TCP_CLOSE) { 3484 err = -EPERM; 3485 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3486 if (!tcp_rtx_queue_empty(sk)) 3487 err = -EPERM; 3488 else 3489 WRITE_ONCE(tp->write_seq, val); 3490 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3491 if (tp->rcv_nxt != tp->copied_seq) { 3492 err = -EPERM; 3493 } else { 3494 WRITE_ONCE(tp->rcv_nxt, val); 3495 WRITE_ONCE(tp->copied_seq, val); 3496 } 3497 } else { 3498 err = -EINVAL; 3499 } 3500 break; 3501 3502 case TCP_REPAIR_OPTIONS: 3503 if (!tp->repair) 3504 err = -EINVAL; 3505 else if (sk->sk_state == TCP_ESTABLISHED) 3506 err = tcp_repair_options_est(sk, optval, optlen); 3507 else 3508 err = -EPERM; 3509 break; 3510 3511 case TCP_CORK: 3512 __tcp_sock_set_cork(sk, val); 3513 break; 3514 3515 case TCP_KEEPIDLE: 3516 err = tcp_sock_set_keepidle_locked(sk, val); 3517 break; 3518 case TCP_KEEPINTVL: 3519 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3520 err = -EINVAL; 3521 else 3522 tp->keepalive_intvl = val * HZ; 3523 break; 3524 case TCP_KEEPCNT: 3525 if (val < 1 || val > MAX_TCP_KEEPCNT) 3526 err = -EINVAL; 3527 else 3528 tp->keepalive_probes = val; 3529 break; 3530 case TCP_SYNCNT: 3531 if (val < 1 || val > MAX_TCP_SYNCNT) 3532 err = -EINVAL; 3533 else 3534 icsk->icsk_syn_retries = val; 3535 break; 3536 3537 case TCP_SAVE_SYN: 3538 /* 0: disable, 1: enable, 2: start from ether_header */ 3539 if (val < 0 || val > 2) 3540 err = -EINVAL; 3541 else 3542 tp->save_syn = val; 3543 break; 3544 3545 case TCP_LINGER2: 3546 if (val < 0) 3547 tp->linger2 = -1; 3548 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3549 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3550 else 3551 tp->linger2 = val * HZ; 3552 break; 3553 3554 case TCP_DEFER_ACCEPT: 3555 /* Translate value in seconds to number of retransmits */ 3556 icsk->icsk_accept_queue.rskq_defer_accept = 3557 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3558 TCP_RTO_MAX / HZ); 3559 break; 3560 3561 case TCP_WINDOW_CLAMP: 3562 err = tcp_set_window_clamp(sk, val); 3563 break; 3564 3565 case TCP_QUICKACK: 3566 __tcp_sock_set_quickack(sk, val); 3567 break; 3568 3569 #ifdef CONFIG_TCP_MD5SIG 3570 case TCP_MD5SIG: 3571 case TCP_MD5SIG_EXT: 3572 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3573 break; 3574 #endif 3575 case TCP_USER_TIMEOUT: 3576 /* Cap the max time in ms TCP will retry or probe the window 3577 * before giving up and aborting (ETIMEDOUT) a connection. 3578 */ 3579 if (val < 0) 3580 err = -EINVAL; 3581 else 3582 icsk->icsk_user_timeout = val; 3583 break; 3584 3585 case TCP_FASTOPEN: 3586 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3587 TCPF_LISTEN))) { 3588 tcp_fastopen_init_key_once(net); 3589 3590 fastopen_queue_tune(sk, val); 3591 } else { 3592 err = -EINVAL; 3593 } 3594 break; 3595 case TCP_FASTOPEN_CONNECT: 3596 if (val > 1 || val < 0) { 3597 err = -EINVAL; 3598 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3599 if (sk->sk_state == TCP_CLOSE) 3600 tp->fastopen_connect = val; 3601 else 3602 err = -EINVAL; 3603 } else { 3604 err = -EOPNOTSUPP; 3605 } 3606 break; 3607 case TCP_FASTOPEN_NO_COOKIE: 3608 if (val > 1 || val < 0) 3609 err = -EINVAL; 3610 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3611 err = -EINVAL; 3612 else 3613 tp->fastopen_no_cookie = val; 3614 break; 3615 case TCP_TIMESTAMP: 3616 if (!tp->repair) 3617 err = -EPERM; 3618 else 3619 tp->tsoffset = val - tcp_time_stamp_raw(); 3620 break; 3621 case TCP_REPAIR_WINDOW: 3622 err = tcp_repair_set_window(tp, optval, optlen); 3623 break; 3624 case TCP_NOTSENT_LOWAT: 3625 tp->notsent_lowat = val; 3626 sk->sk_write_space(sk); 3627 break; 3628 case TCP_INQ: 3629 if (val > 1 || val < 0) 3630 err = -EINVAL; 3631 else 3632 tp->recvmsg_inq = val; 3633 break; 3634 case TCP_TX_DELAY: 3635 if (val) 3636 tcp_enable_tx_delay(); 3637 tp->tcp_tx_delay = val; 3638 break; 3639 default: 3640 err = -ENOPROTOOPT; 3641 break; 3642 } 3643 3644 release_sock(sk); 3645 return err; 3646 } 3647 3648 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3649 unsigned int optlen) 3650 { 3651 const struct inet_connection_sock *icsk = inet_csk(sk); 3652 3653 if (level != SOL_TCP) 3654 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3655 optval, optlen); 3656 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3657 } 3658 EXPORT_SYMBOL(tcp_setsockopt); 3659 3660 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3661 struct tcp_info *info) 3662 { 3663 u64 stats[__TCP_CHRONO_MAX], total = 0; 3664 enum tcp_chrono i; 3665 3666 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3667 stats[i] = tp->chrono_stat[i - 1]; 3668 if (i == tp->chrono_type) 3669 stats[i] += tcp_jiffies32 - tp->chrono_start; 3670 stats[i] *= USEC_PER_SEC / HZ; 3671 total += stats[i]; 3672 } 3673 3674 info->tcpi_busy_time = total; 3675 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3676 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3677 } 3678 3679 /* Return information about state of tcp endpoint in API format. */ 3680 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3681 { 3682 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3683 const struct inet_connection_sock *icsk = inet_csk(sk); 3684 unsigned long rate; 3685 u32 now; 3686 u64 rate64; 3687 bool slow; 3688 3689 memset(info, 0, sizeof(*info)); 3690 if (sk->sk_type != SOCK_STREAM) 3691 return; 3692 3693 info->tcpi_state = inet_sk_state_load(sk); 3694 3695 /* Report meaningful fields for all TCP states, including listeners */ 3696 rate = READ_ONCE(sk->sk_pacing_rate); 3697 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3698 info->tcpi_pacing_rate = rate64; 3699 3700 rate = READ_ONCE(sk->sk_max_pacing_rate); 3701 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3702 info->tcpi_max_pacing_rate = rate64; 3703 3704 info->tcpi_reordering = tp->reordering; 3705 info->tcpi_snd_cwnd = tp->snd_cwnd; 3706 3707 if (info->tcpi_state == TCP_LISTEN) { 3708 /* listeners aliased fields : 3709 * tcpi_unacked -> Number of children ready for accept() 3710 * tcpi_sacked -> max backlog 3711 */ 3712 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3713 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3714 return; 3715 } 3716 3717 slow = lock_sock_fast(sk); 3718 3719 info->tcpi_ca_state = icsk->icsk_ca_state; 3720 info->tcpi_retransmits = icsk->icsk_retransmits; 3721 info->tcpi_probes = icsk->icsk_probes_out; 3722 info->tcpi_backoff = icsk->icsk_backoff; 3723 3724 if (tp->rx_opt.tstamp_ok) 3725 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3726 if (tcp_is_sack(tp)) 3727 info->tcpi_options |= TCPI_OPT_SACK; 3728 if (tp->rx_opt.wscale_ok) { 3729 info->tcpi_options |= TCPI_OPT_WSCALE; 3730 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3731 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3732 } 3733 3734 if (tp->ecn_flags & TCP_ECN_OK) 3735 info->tcpi_options |= TCPI_OPT_ECN; 3736 if (tp->ecn_flags & TCP_ECN_SEEN) 3737 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3738 if (tp->syn_data_acked) 3739 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3740 3741 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3742 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3743 info->tcpi_snd_mss = tp->mss_cache; 3744 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3745 3746 info->tcpi_unacked = tp->packets_out; 3747 info->tcpi_sacked = tp->sacked_out; 3748 3749 info->tcpi_lost = tp->lost_out; 3750 info->tcpi_retrans = tp->retrans_out; 3751 3752 now = tcp_jiffies32; 3753 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3754 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3755 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3756 3757 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3758 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3759 info->tcpi_rtt = tp->srtt_us >> 3; 3760 info->tcpi_rttvar = tp->mdev_us >> 2; 3761 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3762 info->tcpi_advmss = tp->advmss; 3763 3764 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3765 info->tcpi_rcv_space = tp->rcvq_space.space; 3766 3767 info->tcpi_total_retrans = tp->total_retrans; 3768 3769 info->tcpi_bytes_acked = tp->bytes_acked; 3770 info->tcpi_bytes_received = tp->bytes_received; 3771 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3772 tcp_get_info_chrono_stats(tp, info); 3773 3774 info->tcpi_segs_out = tp->segs_out; 3775 info->tcpi_segs_in = tp->segs_in; 3776 3777 info->tcpi_min_rtt = tcp_min_rtt(tp); 3778 info->tcpi_data_segs_in = tp->data_segs_in; 3779 info->tcpi_data_segs_out = tp->data_segs_out; 3780 3781 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3782 rate64 = tcp_compute_delivery_rate(tp); 3783 if (rate64) 3784 info->tcpi_delivery_rate = rate64; 3785 info->tcpi_delivered = tp->delivered; 3786 info->tcpi_delivered_ce = tp->delivered_ce; 3787 info->tcpi_bytes_sent = tp->bytes_sent; 3788 info->tcpi_bytes_retrans = tp->bytes_retrans; 3789 info->tcpi_dsack_dups = tp->dsack_dups; 3790 info->tcpi_reord_seen = tp->reord_seen; 3791 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3792 info->tcpi_snd_wnd = tp->snd_wnd; 3793 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3794 unlock_sock_fast(sk, slow); 3795 } 3796 EXPORT_SYMBOL_GPL(tcp_get_info); 3797 3798 static size_t tcp_opt_stats_get_size(void) 3799 { 3800 return 3801 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3802 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3803 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3808 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3811 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3812 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3813 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3814 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3815 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3816 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3817 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3818 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3819 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3820 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3821 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3822 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3823 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3824 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3825 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3826 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3827 0; 3828 } 3829 3830 /* Returns TTL or hop limit of an incoming packet from skb. */ 3831 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3832 { 3833 if (skb->protocol == htons(ETH_P_IP)) 3834 return ip_hdr(skb)->ttl; 3835 else if (skb->protocol == htons(ETH_P_IPV6)) 3836 return ipv6_hdr(skb)->hop_limit; 3837 else 3838 return 0; 3839 } 3840 3841 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3842 const struct sk_buff *orig_skb, 3843 const struct sk_buff *ack_skb) 3844 { 3845 const struct tcp_sock *tp = tcp_sk(sk); 3846 struct sk_buff *stats; 3847 struct tcp_info info; 3848 unsigned long rate; 3849 u64 rate64; 3850 3851 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3852 if (!stats) 3853 return NULL; 3854 3855 tcp_get_info_chrono_stats(tp, &info); 3856 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3857 info.tcpi_busy_time, TCP_NLA_PAD); 3858 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3859 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3860 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3861 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3862 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3863 tp->data_segs_out, TCP_NLA_PAD); 3864 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3865 tp->total_retrans, TCP_NLA_PAD); 3866 3867 rate = READ_ONCE(sk->sk_pacing_rate); 3868 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3869 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3870 3871 rate64 = tcp_compute_delivery_rate(tp); 3872 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3873 3874 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3875 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3876 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3877 3878 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3879 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3880 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3881 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3882 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3883 3884 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3885 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3886 3887 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3888 TCP_NLA_PAD); 3889 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3890 TCP_NLA_PAD); 3891 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3892 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3893 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3894 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3895 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3896 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3897 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3898 TCP_NLA_PAD); 3899 if (ack_skb) 3900 nla_put_u8(stats, TCP_NLA_TTL, 3901 tcp_skb_ttl_or_hop_limit(ack_skb)); 3902 3903 return stats; 3904 } 3905 3906 static int do_tcp_getsockopt(struct sock *sk, int level, 3907 int optname, char __user *optval, int __user *optlen) 3908 { 3909 struct inet_connection_sock *icsk = inet_csk(sk); 3910 struct tcp_sock *tp = tcp_sk(sk); 3911 struct net *net = sock_net(sk); 3912 int val, len; 3913 3914 if (get_user(len, optlen)) 3915 return -EFAULT; 3916 3917 len = min_t(unsigned int, len, sizeof(int)); 3918 3919 if (len < 0) 3920 return -EINVAL; 3921 3922 switch (optname) { 3923 case TCP_MAXSEG: 3924 val = tp->mss_cache; 3925 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3926 val = tp->rx_opt.user_mss; 3927 if (tp->repair) 3928 val = tp->rx_opt.mss_clamp; 3929 break; 3930 case TCP_NODELAY: 3931 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3932 break; 3933 case TCP_CORK: 3934 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3935 break; 3936 case TCP_KEEPIDLE: 3937 val = keepalive_time_when(tp) / HZ; 3938 break; 3939 case TCP_KEEPINTVL: 3940 val = keepalive_intvl_when(tp) / HZ; 3941 break; 3942 case TCP_KEEPCNT: 3943 val = keepalive_probes(tp); 3944 break; 3945 case TCP_SYNCNT: 3946 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3947 break; 3948 case TCP_LINGER2: 3949 val = tp->linger2; 3950 if (val >= 0) 3951 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3952 break; 3953 case TCP_DEFER_ACCEPT: 3954 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3955 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3956 break; 3957 case TCP_WINDOW_CLAMP: 3958 val = tp->window_clamp; 3959 break; 3960 case TCP_INFO: { 3961 struct tcp_info info; 3962 3963 if (get_user(len, optlen)) 3964 return -EFAULT; 3965 3966 tcp_get_info(sk, &info); 3967 3968 len = min_t(unsigned int, len, sizeof(info)); 3969 if (put_user(len, optlen)) 3970 return -EFAULT; 3971 if (copy_to_user(optval, &info, len)) 3972 return -EFAULT; 3973 return 0; 3974 } 3975 case TCP_CC_INFO: { 3976 const struct tcp_congestion_ops *ca_ops; 3977 union tcp_cc_info info; 3978 size_t sz = 0; 3979 int attr; 3980 3981 if (get_user(len, optlen)) 3982 return -EFAULT; 3983 3984 ca_ops = icsk->icsk_ca_ops; 3985 if (ca_ops && ca_ops->get_info) 3986 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3987 3988 len = min_t(unsigned int, len, sz); 3989 if (put_user(len, optlen)) 3990 return -EFAULT; 3991 if (copy_to_user(optval, &info, len)) 3992 return -EFAULT; 3993 return 0; 3994 } 3995 case TCP_QUICKACK: 3996 val = !inet_csk_in_pingpong_mode(sk); 3997 break; 3998 3999 case TCP_CONGESTION: 4000 if (get_user(len, optlen)) 4001 return -EFAULT; 4002 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4003 if (put_user(len, optlen)) 4004 return -EFAULT; 4005 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4006 return -EFAULT; 4007 return 0; 4008 4009 case TCP_ULP: 4010 if (get_user(len, optlen)) 4011 return -EFAULT; 4012 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4013 if (!icsk->icsk_ulp_ops) { 4014 if (put_user(0, optlen)) 4015 return -EFAULT; 4016 return 0; 4017 } 4018 if (put_user(len, optlen)) 4019 return -EFAULT; 4020 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4021 return -EFAULT; 4022 return 0; 4023 4024 case TCP_FASTOPEN_KEY: { 4025 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4026 unsigned int key_len; 4027 4028 if (get_user(len, optlen)) 4029 return -EFAULT; 4030 4031 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4032 TCP_FASTOPEN_KEY_LENGTH; 4033 len = min_t(unsigned int, len, key_len); 4034 if (put_user(len, optlen)) 4035 return -EFAULT; 4036 if (copy_to_user(optval, key, len)) 4037 return -EFAULT; 4038 return 0; 4039 } 4040 case TCP_THIN_LINEAR_TIMEOUTS: 4041 val = tp->thin_lto; 4042 break; 4043 4044 case TCP_THIN_DUPACK: 4045 val = 0; 4046 break; 4047 4048 case TCP_REPAIR: 4049 val = tp->repair; 4050 break; 4051 4052 case TCP_REPAIR_QUEUE: 4053 if (tp->repair) 4054 val = tp->repair_queue; 4055 else 4056 return -EINVAL; 4057 break; 4058 4059 case TCP_REPAIR_WINDOW: { 4060 struct tcp_repair_window opt; 4061 4062 if (get_user(len, optlen)) 4063 return -EFAULT; 4064 4065 if (len != sizeof(opt)) 4066 return -EINVAL; 4067 4068 if (!tp->repair) 4069 return -EPERM; 4070 4071 opt.snd_wl1 = tp->snd_wl1; 4072 opt.snd_wnd = tp->snd_wnd; 4073 opt.max_window = tp->max_window; 4074 opt.rcv_wnd = tp->rcv_wnd; 4075 opt.rcv_wup = tp->rcv_wup; 4076 4077 if (copy_to_user(optval, &opt, len)) 4078 return -EFAULT; 4079 return 0; 4080 } 4081 case TCP_QUEUE_SEQ: 4082 if (tp->repair_queue == TCP_SEND_QUEUE) 4083 val = tp->write_seq; 4084 else if (tp->repair_queue == TCP_RECV_QUEUE) 4085 val = tp->rcv_nxt; 4086 else 4087 return -EINVAL; 4088 break; 4089 4090 case TCP_USER_TIMEOUT: 4091 val = icsk->icsk_user_timeout; 4092 break; 4093 4094 case TCP_FASTOPEN: 4095 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4096 break; 4097 4098 case TCP_FASTOPEN_CONNECT: 4099 val = tp->fastopen_connect; 4100 break; 4101 4102 case TCP_FASTOPEN_NO_COOKIE: 4103 val = tp->fastopen_no_cookie; 4104 break; 4105 4106 case TCP_TX_DELAY: 4107 val = tp->tcp_tx_delay; 4108 break; 4109 4110 case TCP_TIMESTAMP: 4111 val = tcp_time_stamp_raw() + tp->tsoffset; 4112 break; 4113 case TCP_NOTSENT_LOWAT: 4114 val = tp->notsent_lowat; 4115 break; 4116 case TCP_INQ: 4117 val = tp->recvmsg_inq; 4118 break; 4119 case TCP_SAVE_SYN: 4120 val = tp->save_syn; 4121 break; 4122 case TCP_SAVED_SYN: { 4123 if (get_user(len, optlen)) 4124 return -EFAULT; 4125 4126 lock_sock(sk); 4127 if (tp->saved_syn) { 4128 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4129 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4130 optlen)) { 4131 release_sock(sk); 4132 return -EFAULT; 4133 } 4134 release_sock(sk); 4135 return -EINVAL; 4136 } 4137 len = tcp_saved_syn_len(tp->saved_syn); 4138 if (put_user(len, optlen)) { 4139 release_sock(sk); 4140 return -EFAULT; 4141 } 4142 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4143 release_sock(sk); 4144 return -EFAULT; 4145 } 4146 tcp_saved_syn_free(tp); 4147 release_sock(sk); 4148 } else { 4149 release_sock(sk); 4150 len = 0; 4151 if (put_user(len, optlen)) 4152 return -EFAULT; 4153 } 4154 return 0; 4155 } 4156 #ifdef CONFIG_MMU 4157 case TCP_ZEROCOPY_RECEIVE: { 4158 struct scm_timestamping_internal tss; 4159 struct tcp_zerocopy_receive zc = {}; 4160 int err; 4161 4162 if (get_user(len, optlen)) 4163 return -EFAULT; 4164 if (len < 0 || 4165 len < offsetofend(struct tcp_zerocopy_receive, length)) 4166 return -EINVAL; 4167 if (unlikely(len > sizeof(zc))) { 4168 err = check_zeroed_user(optval + sizeof(zc), 4169 len - sizeof(zc)); 4170 if (err < 1) 4171 return err == 0 ? -EINVAL : err; 4172 len = sizeof(zc); 4173 if (put_user(len, optlen)) 4174 return -EFAULT; 4175 } 4176 if (copy_from_user(&zc, optval, len)) 4177 return -EFAULT; 4178 if (zc.reserved) 4179 return -EINVAL; 4180 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4181 return -EINVAL; 4182 lock_sock(sk); 4183 err = tcp_zerocopy_receive(sk, &zc, &tss); 4184 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4185 &zc, &len, err); 4186 release_sock(sk); 4187 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4188 goto zerocopy_rcv_cmsg; 4189 switch (len) { 4190 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4191 goto zerocopy_rcv_cmsg; 4192 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4193 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4194 case offsetofend(struct tcp_zerocopy_receive, flags): 4195 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4196 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4197 case offsetofend(struct tcp_zerocopy_receive, err): 4198 goto zerocopy_rcv_sk_err; 4199 case offsetofend(struct tcp_zerocopy_receive, inq): 4200 goto zerocopy_rcv_inq; 4201 case offsetofend(struct tcp_zerocopy_receive, length): 4202 default: 4203 goto zerocopy_rcv_out; 4204 } 4205 zerocopy_rcv_cmsg: 4206 if (zc.msg_flags & TCP_CMSG_TS) 4207 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4208 else 4209 zc.msg_flags = 0; 4210 zerocopy_rcv_sk_err: 4211 if (!err) 4212 zc.err = sock_error(sk); 4213 zerocopy_rcv_inq: 4214 zc.inq = tcp_inq_hint(sk); 4215 zerocopy_rcv_out: 4216 if (!err && copy_to_user(optval, &zc, len)) 4217 err = -EFAULT; 4218 return err; 4219 } 4220 #endif 4221 default: 4222 return -ENOPROTOOPT; 4223 } 4224 4225 if (put_user(len, optlen)) 4226 return -EFAULT; 4227 if (copy_to_user(optval, &val, len)) 4228 return -EFAULT; 4229 return 0; 4230 } 4231 4232 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4233 { 4234 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4235 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4236 */ 4237 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4238 return true; 4239 4240 return false; 4241 } 4242 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4243 4244 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4245 int __user *optlen) 4246 { 4247 struct inet_connection_sock *icsk = inet_csk(sk); 4248 4249 if (level != SOL_TCP) 4250 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4251 optval, optlen); 4252 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4253 } 4254 EXPORT_SYMBOL(tcp_getsockopt); 4255 4256 #ifdef CONFIG_TCP_MD5SIG 4257 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4258 static DEFINE_MUTEX(tcp_md5sig_mutex); 4259 static bool tcp_md5sig_pool_populated = false; 4260 4261 static void __tcp_alloc_md5sig_pool(void) 4262 { 4263 struct crypto_ahash *hash; 4264 int cpu; 4265 4266 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4267 if (IS_ERR(hash)) 4268 return; 4269 4270 for_each_possible_cpu(cpu) { 4271 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4272 struct ahash_request *req; 4273 4274 if (!scratch) { 4275 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4276 sizeof(struct tcphdr), 4277 GFP_KERNEL, 4278 cpu_to_node(cpu)); 4279 if (!scratch) 4280 return; 4281 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4282 } 4283 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4284 continue; 4285 4286 req = ahash_request_alloc(hash, GFP_KERNEL); 4287 if (!req) 4288 return; 4289 4290 ahash_request_set_callback(req, 0, NULL, NULL); 4291 4292 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4293 } 4294 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4295 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4296 */ 4297 smp_wmb(); 4298 tcp_md5sig_pool_populated = true; 4299 } 4300 4301 bool tcp_alloc_md5sig_pool(void) 4302 { 4303 if (unlikely(!tcp_md5sig_pool_populated)) { 4304 mutex_lock(&tcp_md5sig_mutex); 4305 4306 if (!tcp_md5sig_pool_populated) { 4307 __tcp_alloc_md5sig_pool(); 4308 if (tcp_md5sig_pool_populated) 4309 static_branch_inc(&tcp_md5_needed); 4310 } 4311 4312 mutex_unlock(&tcp_md5sig_mutex); 4313 } 4314 return tcp_md5sig_pool_populated; 4315 } 4316 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4317 4318 4319 /** 4320 * tcp_get_md5sig_pool - get md5sig_pool for this user 4321 * 4322 * We use percpu structure, so if we succeed, we exit with preemption 4323 * and BH disabled, to make sure another thread or softirq handling 4324 * wont try to get same context. 4325 */ 4326 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4327 { 4328 local_bh_disable(); 4329 4330 if (tcp_md5sig_pool_populated) { 4331 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4332 smp_rmb(); 4333 return this_cpu_ptr(&tcp_md5sig_pool); 4334 } 4335 local_bh_enable(); 4336 return NULL; 4337 } 4338 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4339 4340 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4341 const struct sk_buff *skb, unsigned int header_len) 4342 { 4343 struct scatterlist sg; 4344 const struct tcphdr *tp = tcp_hdr(skb); 4345 struct ahash_request *req = hp->md5_req; 4346 unsigned int i; 4347 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4348 skb_headlen(skb) - header_len : 0; 4349 const struct skb_shared_info *shi = skb_shinfo(skb); 4350 struct sk_buff *frag_iter; 4351 4352 sg_init_table(&sg, 1); 4353 4354 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4355 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4356 if (crypto_ahash_update(req)) 4357 return 1; 4358 4359 for (i = 0; i < shi->nr_frags; ++i) { 4360 const skb_frag_t *f = &shi->frags[i]; 4361 unsigned int offset = skb_frag_off(f); 4362 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4363 4364 sg_set_page(&sg, page, skb_frag_size(f), 4365 offset_in_page(offset)); 4366 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4367 if (crypto_ahash_update(req)) 4368 return 1; 4369 } 4370 4371 skb_walk_frags(skb, frag_iter) 4372 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4373 return 1; 4374 4375 return 0; 4376 } 4377 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4378 4379 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4380 { 4381 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4382 struct scatterlist sg; 4383 4384 sg_init_one(&sg, key->key, keylen); 4385 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4386 4387 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4388 return data_race(crypto_ahash_update(hp->md5_req)); 4389 } 4390 EXPORT_SYMBOL(tcp_md5_hash_key); 4391 4392 #endif 4393 4394 void tcp_done(struct sock *sk) 4395 { 4396 struct request_sock *req; 4397 4398 /* We might be called with a new socket, after 4399 * inet_csk_prepare_forced_close() has been called 4400 * so we can not use lockdep_sock_is_held(sk) 4401 */ 4402 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4403 4404 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4405 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4406 4407 tcp_set_state(sk, TCP_CLOSE); 4408 tcp_clear_xmit_timers(sk); 4409 if (req) 4410 reqsk_fastopen_remove(sk, req, false); 4411 4412 sk->sk_shutdown = SHUTDOWN_MASK; 4413 4414 if (!sock_flag(sk, SOCK_DEAD)) 4415 sk->sk_state_change(sk); 4416 else 4417 inet_csk_destroy_sock(sk); 4418 } 4419 EXPORT_SYMBOL_GPL(tcp_done); 4420 4421 int tcp_abort(struct sock *sk, int err) 4422 { 4423 if (!sk_fullsock(sk)) { 4424 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4425 struct request_sock *req = inet_reqsk(sk); 4426 4427 local_bh_disable(); 4428 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4429 local_bh_enable(); 4430 return 0; 4431 } 4432 return -EOPNOTSUPP; 4433 } 4434 4435 /* Don't race with userspace socket closes such as tcp_close. */ 4436 lock_sock(sk); 4437 4438 if (sk->sk_state == TCP_LISTEN) { 4439 tcp_set_state(sk, TCP_CLOSE); 4440 inet_csk_listen_stop(sk); 4441 } 4442 4443 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4444 local_bh_disable(); 4445 bh_lock_sock(sk); 4446 4447 if (!sock_flag(sk, SOCK_DEAD)) { 4448 sk->sk_err = err; 4449 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4450 smp_wmb(); 4451 sk_error_report(sk); 4452 if (tcp_need_reset(sk->sk_state)) 4453 tcp_send_active_reset(sk, GFP_ATOMIC); 4454 tcp_done(sk); 4455 } 4456 4457 bh_unlock_sock(sk); 4458 local_bh_enable(); 4459 tcp_write_queue_purge(sk); 4460 release_sock(sk); 4461 return 0; 4462 } 4463 EXPORT_SYMBOL_GPL(tcp_abort); 4464 4465 extern struct tcp_congestion_ops tcp_reno; 4466 4467 static __initdata unsigned long thash_entries; 4468 static int __init set_thash_entries(char *str) 4469 { 4470 ssize_t ret; 4471 4472 if (!str) 4473 return 0; 4474 4475 ret = kstrtoul(str, 0, &thash_entries); 4476 if (ret) 4477 return 0; 4478 4479 return 1; 4480 } 4481 __setup("thash_entries=", set_thash_entries); 4482 4483 static void __init tcp_init_mem(void) 4484 { 4485 unsigned long limit = nr_free_buffer_pages() / 16; 4486 4487 limit = max(limit, 128UL); 4488 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4489 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4490 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4491 } 4492 4493 void __init tcp_init(void) 4494 { 4495 int max_rshare, max_wshare, cnt; 4496 unsigned long limit; 4497 unsigned int i; 4498 4499 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4500 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4501 sizeof_field(struct sk_buff, cb)); 4502 4503 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4504 4505 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4506 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4507 4508 inet_hashinfo_init(&tcp_hashinfo); 4509 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4510 thash_entries, 21, /* one slot per 2 MB*/ 4511 0, 64 * 1024); 4512 tcp_hashinfo.bind_bucket_cachep = 4513 kmem_cache_create("tcp_bind_bucket", 4514 sizeof(struct inet_bind_bucket), 0, 4515 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4516 SLAB_ACCOUNT, 4517 NULL); 4518 4519 /* Size and allocate the main established and bind bucket 4520 * hash tables. 4521 * 4522 * The methodology is similar to that of the buffer cache. 4523 */ 4524 tcp_hashinfo.ehash = 4525 alloc_large_system_hash("TCP established", 4526 sizeof(struct inet_ehash_bucket), 4527 thash_entries, 4528 17, /* one slot per 128 KB of memory */ 4529 0, 4530 NULL, 4531 &tcp_hashinfo.ehash_mask, 4532 0, 4533 thash_entries ? 0 : 512 * 1024); 4534 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4535 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4536 4537 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4538 panic("TCP: failed to alloc ehash_locks"); 4539 tcp_hashinfo.bhash = 4540 alloc_large_system_hash("TCP bind", 4541 sizeof(struct inet_bind_hashbucket), 4542 tcp_hashinfo.ehash_mask + 1, 4543 17, /* one slot per 128 KB of memory */ 4544 0, 4545 &tcp_hashinfo.bhash_size, 4546 NULL, 4547 0, 4548 64 * 1024); 4549 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4550 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4551 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4552 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4553 } 4554 4555 4556 cnt = tcp_hashinfo.ehash_mask + 1; 4557 sysctl_tcp_max_orphans = cnt / 2; 4558 4559 tcp_init_mem(); 4560 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4561 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4562 max_wshare = min(4UL*1024*1024, limit); 4563 max_rshare = min(6UL*1024*1024, limit); 4564 4565 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4566 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4567 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4568 4569 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4570 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4571 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4572 4573 pr_info("Hash tables configured (established %u bind %u)\n", 4574 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4575 4576 tcp_v4_init(); 4577 tcp_metrics_init(); 4578 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4579 tcp_tasklet_init(); 4580 mptcp_init(); 4581 } 4582