xref: /openbmc/linux/net/ipv4/tcp.c (revision a1e58bbd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  *
22  * Fixes:
23  *		Alan Cox	:	Numerous verify_area() calls
24  *		Alan Cox	:	Set the ACK bit on a reset
25  *		Alan Cox	:	Stopped it crashing if it closed while
26  *					sk->inuse=1 and was trying to connect
27  *					(tcp_err()).
28  *		Alan Cox	:	All icmp error handling was broken
29  *					pointers passed where wrong and the
30  *					socket was looked up backwards. Nobody
31  *					tested any icmp error code obviously.
32  *		Alan Cox	:	tcp_err() now handled properly. It
33  *					wakes people on errors. poll
34  *					behaves and the icmp error race
35  *					has gone by moving it into sock.c
36  *		Alan Cox	:	tcp_send_reset() fixed to work for
37  *					everything not just packets for
38  *					unknown sockets.
39  *		Alan Cox	:	tcp option processing.
40  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
41  *					syn rule wrong]
42  *		Herp Rosmanith  :	More reset fixes
43  *		Alan Cox	:	No longer acks invalid rst frames.
44  *					Acking any kind of RST is right out.
45  *		Alan Cox	:	Sets an ignore me flag on an rst
46  *					receive otherwise odd bits of prattle
47  *					escape still
48  *		Alan Cox	:	Fixed another acking RST frame bug.
49  *					Should stop LAN workplace lockups.
50  *		Alan Cox	: 	Some tidyups using the new skb list
51  *					facilities
52  *		Alan Cox	:	sk->keepopen now seems to work
53  *		Alan Cox	:	Pulls options out correctly on accepts
54  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
55  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
56  *					bit to skb ops.
57  *		Alan Cox	:	Tidied tcp_data to avoid a potential
58  *					nasty.
59  *		Alan Cox	:	Added some better commenting, as the
60  *					tcp is hard to follow
61  *		Alan Cox	:	Removed incorrect check for 20 * psh
62  *	Michael O'Reilly	:	ack < copied bug fix.
63  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
64  *		Alan Cox	:	FIN with no memory -> CRASH
65  *		Alan Cox	:	Added socket option proto entries.
66  *					Also added awareness of them to accept.
67  *		Alan Cox	:	Added TCP options (SOL_TCP)
68  *		Alan Cox	:	Switched wakeup calls to callbacks,
69  *					so the kernel can layer network
70  *					sockets.
71  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
72  *		Alan Cox	:	Handle FIN (more) properly (we hope).
73  *		Alan Cox	:	RST frames sent on unsynchronised
74  *					state ack error.
75  *		Alan Cox	:	Put in missing check for SYN bit.
76  *		Alan Cox	:	Added tcp_select_window() aka NET2E
77  *					window non shrink trick.
78  *		Alan Cox	:	Added a couple of small NET2E timer
79  *					fixes
80  *		Charles Hedrick :	TCP fixes
81  *		Toomas Tamm	:	TCP window fixes
82  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
83  *		Charles Hedrick	:	Rewrote most of it to actually work
84  *		Linus		:	Rewrote tcp_read() and URG handling
85  *					completely
86  *		Gerhard Koerting:	Fixed some missing timer handling
87  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
88  *		Gerhard Koerting:	PC/TCP workarounds
89  *		Adam Caldwell	:	Assorted timer/timing errors
90  *		Matthew Dillon	:	Fixed another RST bug
91  *		Alan Cox	:	Move to kernel side addressing changes.
92  *		Alan Cox	:	Beginning work on TCP fastpathing
93  *					(not yet usable)
94  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
95  *		Alan Cox	:	TCP fast path debugging
96  *		Alan Cox	:	Window clamping
97  *		Michael Riepe	:	Bug in tcp_check()
98  *		Matt Dillon	:	More TCP improvements and RST bug fixes
99  *		Matt Dillon	:	Yet more small nasties remove from the
100  *					TCP code (Be very nice to this man if
101  *					tcp finally works 100%) 8)
102  *		Alan Cox	:	BSD accept semantics.
103  *		Alan Cox	:	Reset on closedown bug.
104  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
105  *		Michael Pall	:	Handle poll() after URG properly in
106  *					all cases.
107  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
108  *					(multi URG PUSH broke rlogin).
109  *		Michael Pall	:	Fix the multi URG PUSH problem in
110  *					tcp_readable(), poll() after URG
111  *					works now.
112  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
113  *					BSD api.
114  *		Alan Cox	:	Changed the semantics of sk->socket to
115  *					fix a race and a signal problem with
116  *					accept() and async I/O.
117  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
118  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
119  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
120  *					clients/servers which listen in on
121  *					fixed ports.
122  *		Alan Cox	:	Cleaned the above up and shrank it to
123  *					a sensible code size.
124  *		Alan Cox	:	Self connect lockup fix.
125  *		Alan Cox	:	No connect to multicast.
126  *		Ross Biro	:	Close unaccepted children on master
127  *					socket close.
128  *		Alan Cox	:	Reset tracing code.
129  *		Alan Cox	:	Spurious resets on shutdown.
130  *		Alan Cox	:	Giant 15 minute/60 second timer error
131  *		Alan Cox	:	Small whoops in polling before an
132  *					accept.
133  *		Alan Cox	:	Kept the state trace facility since
134  *					it's handy for debugging.
135  *		Alan Cox	:	More reset handler fixes.
136  *		Alan Cox	:	Started rewriting the code based on
137  *					the RFC's for other useful protocol
138  *					references see: Comer, KA9Q NOS, and
139  *					for a reference on the difference
140  *					between specifications and how BSD
141  *					works see the 4.4lite source.
142  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
143  *					close.
144  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
145  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
146  *		Alan Cox	:	Reimplemented timers as per the RFC
147  *					and using multiple timers for sanity.
148  *		Alan Cox	:	Small bug fixes, and a lot of new
149  *					comments.
150  *		Alan Cox	:	Fixed dual reader crash by locking
151  *					the buffers (much like datagram.c)
152  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
153  *					now gets fed up of retrying without
154  *					(even a no space) answer.
155  *		Alan Cox	:	Extracted closing code better
156  *		Alan Cox	:	Fixed the closing state machine to
157  *					resemble the RFC.
158  *		Alan Cox	:	More 'per spec' fixes.
159  *		Jorge Cwik	:	Even faster checksumming.
160  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
161  *					only frames. At least one pc tcp stack
162  *					generates them.
163  *		Alan Cox	:	Cache last socket.
164  *		Alan Cox	:	Per route irtt.
165  *		Matt Day	:	poll()->select() match BSD precisely on error
166  *		Alan Cox	:	New buffers
167  *		Marc Tamsky	:	Various sk->prot->retransmits and
168  *					sk->retransmits misupdating fixed.
169  *					Fixed tcp_write_timeout: stuck close,
170  *					and TCP syn retries gets used now.
171  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
172  *					ack if state is TCP_CLOSED.
173  *		Alan Cox	:	Look up device on a retransmit - routes may
174  *					change. Doesn't yet cope with MSS shrink right
175  *					but it's a start!
176  *		Marc Tamsky	:	Closing in closing fixes.
177  *		Mike Shaver	:	RFC1122 verifications.
178  *		Alan Cox	:	rcv_saddr errors.
179  *		Alan Cox	:	Block double connect().
180  *		Alan Cox	:	Small hooks for enSKIP.
181  *		Alexey Kuznetsov:	Path MTU discovery.
182  *		Alan Cox	:	Support soft errors.
183  *		Alan Cox	:	Fix MTU discovery pathological case
184  *					when the remote claims no mtu!
185  *		Marc Tamsky	:	TCP_CLOSE fix.
186  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
187  *					window but wrong (fixes NT lpd problems)
188  *		Pedro Roque	:	Better TCP window handling, delayed ack.
189  *		Joerg Reuter	:	No modification of locked buffers in
190  *					tcp_do_retransmit()
191  *		Eric Schenk	:	Changed receiver side silly window
192  *					avoidance algorithm to BSD style
193  *					algorithm. This doubles throughput
194  *					against machines running Solaris,
195  *					and seems to result in general
196  *					improvement.
197  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
198  *	Willy Konynenberg	:	Transparent proxying support.
199  *	Mike McLagan		:	Routing by source
200  *		Keith Owens	:	Do proper merging with partial SKB's in
201  *					tcp_do_sendmsg to avoid burstiness.
202  *		Eric Schenk	:	Fix fast close down bug with
203  *					shutdown() followed by close().
204  *		Andi Kleen 	:	Make poll agree with SIGIO
205  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
206  *					lingertime == 0 (RFC 793 ABORT Call)
207  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
208  *					csum_and_copy_from_user() if possible.
209  *
210  *		This program is free software; you can redistribute it and/or
211  *		modify it under the terms of the GNU General Public License
212  *		as published by the Free Software Foundation; either version
213  *		2 of the License, or(at your option) any later version.
214  *
215  * Description of States:
216  *
217  *	TCP_SYN_SENT		sent a connection request, waiting for ack
218  *
219  *	TCP_SYN_RECV		received a connection request, sent ack,
220  *				waiting for final ack in three-way handshake.
221  *
222  *	TCP_ESTABLISHED		connection established
223  *
224  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
225  *				transmission of remaining buffered data
226  *
227  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
228  *				to shutdown
229  *
230  *	TCP_CLOSING		both sides have shutdown but we still have
231  *				data we have to finish sending
232  *
233  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
234  *				closed, can only be entered from FIN_WAIT2
235  *				or CLOSING.  Required because the other end
236  *				may not have gotten our last ACK causing it
237  *				to retransmit the data packet (which we ignore)
238  *
239  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
240  *				us to finish writing our data and to shutdown
241  *				(we have to close() to move on to LAST_ACK)
242  *
243  *	TCP_LAST_ACK		out side has shutdown after remote has
244  *				shutdown.  There may still be data in our
245  *				buffer that we have to finish sending
246  *
247  *	TCP_CLOSE		socket is finished
248  */
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/splice.h>
259 #include <linux/net.h>
260 #include <linux/socket.h>
261 #include <linux/random.h>
262 #include <linux/bootmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/crypto.h>
266 
267 #include <net/icmp.h>
268 #include <net/tcp.h>
269 #include <net/xfrm.h>
270 #include <net/ip.h>
271 #include <net/netdma.h>
272 #include <net/sock.h>
273 
274 #include <asm/uaccess.h>
275 #include <asm/ioctls.h>
276 
277 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
278 
279 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
280 
281 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
282 
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 int sysctl_tcp_mem[3] __read_mostly;
286 int sysctl_tcp_wmem[3] __read_mostly;
287 int sysctl_tcp_rmem[3] __read_mostly;
288 
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294 atomic_t tcp_sockets_allocated;	/* Current number of TCP sockets. */
295 
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 EXPORT_SYMBOL(tcp_sockets_allocated);
298 
299 /*
300  * TCP splice context
301  */
302 struct tcp_splice_state {
303 	struct pipe_inode_info *pipe;
304 	size_t len;
305 	unsigned int flags;
306 };
307 
308 /*
309  * Pressure flag: try to collapse.
310  * Technical note: it is used by multiple contexts non atomically.
311  * All the __sk_mem_schedule() is of this nature: accounting
312  * is strict, actions are advisory and have some latency.
313  */
314 int tcp_memory_pressure __read_mostly;
315 
316 EXPORT_SYMBOL(tcp_memory_pressure);
317 
318 void tcp_enter_memory_pressure(void)
319 {
320 	if (!tcp_memory_pressure) {
321 		NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
322 		tcp_memory_pressure = 1;
323 	}
324 }
325 
326 EXPORT_SYMBOL(tcp_enter_memory_pressure);
327 
328 /*
329  *	Wait for a TCP event.
330  *
331  *	Note that we don't need to lock the socket, as the upper poll layers
332  *	take care of normal races (between the test and the event) and we don't
333  *	go look at any of the socket buffers directly.
334  */
335 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
336 {
337 	unsigned int mask;
338 	struct sock *sk = sock->sk;
339 	struct tcp_sock *tp = tcp_sk(sk);
340 
341 	poll_wait(file, sk->sk_sleep, wait);
342 	if (sk->sk_state == TCP_LISTEN)
343 		return inet_csk_listen_poll(sk);
344 
345 	/* Socket is not locked. We are protected from async events
346 	   by poll logic and correct handling of state changes
347 	   made by another threads is impossible in any case.
348 	 */
349 
350 	mask = 0;
351 	if (sk->sk_err)
352 		mask = POLLERR;
353 
354 	/*
355 	 * POLLHUP is certainly not done right. But poll() doesn't
356 	 * have a notion of HUP in just one direction, and for a
357 	 * socket the read side is more interesting.
358 	 *
359 	 * Some poll() documentation says that POLLHUP is incompatible
360 	 * with the POLLOUT/POLLWR flags, so somebody should check this
361 	 * all. But careful, it tends to be safer to return too many
362 	 * bits than too few, and you can easily break real applications
363 	 * if you don't tell them that something has hung up!
364 	 *
365 	 * Check-me.
366 	 *
367 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
368 	 * our fs/select.c). It means that after we received EOF,
369 	 * poll always returns immediately, making impossible poll() on write()
370 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
371 	 * if and only if shutdown has been made in both directions.
372 	 * Actually, it is interesting to look how Solaris and DUX
373 	 * solve this dilemma. I would prefer, if PULLHUP were maskable,
374 	 * then we could set it on SND_SHUTDOWN. BTW examples given
375 	 * in Stevens' books assume exactly this behaviour, it explains
376 	 * why PULLHUP is incompatible with POLLOUT.	--ANK
377 	 *
378 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
379 	 * blocking on fresh not-connected or disconnected socket. --ANK
380 	 */
381 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
382 		mask |= POLLHUP;
383 	if (sk->sk_shutdown & RCV_SHUTDOWN)
384 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
385 
386 	/* Connected? */
387 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
388 		/* Potential race condition. If read of tp below will
389 		 * escape above sk->sk_state, we can be illegally awaken
390 		 * in SYN_* states. */
391 		if ((tp->rcv_nxt != tp->copied_seq) &&
392 		    (tp->urg_seq != tp->copied_seq ||
393 		     tp->rcv_nxt != tp->copied_seq + 1 ||
394 		     sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
395 			mask |= POLLIN | POLLRDNORM;
396 
397 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
398 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
399 				mask |= POLLOUT | POLLWRNORM;
400 			} else {  /* send SIGIO later */
401 				set_bit(SOCK_ASYNC_NOSPACE,
402 					&sk->sk_socket->flags);
403 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
404 
405 				/* Race breaker. If space is freed after
406 				 * wspace test but before the flags are set,
407 				 * IO signal will be lost.
408 				 */
409 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
410 					mask |= POLLOUT | POLLWRNORM;
411 			}
412 		}
413 
414 		if (tp->urg_data & TCP_URG_VALID)
415 			mask |= POLLPRI;
416 	}
417 	return mask;
418 }
419 
420 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
421 {
422 	struct tcp_sock *tp = tcp_sk(sk);
423 	int answ;
424 
425 	switch (cmd) {
426 	case SIOCINQ:
427 		if (sk->sk_state == TCP_LISTEN)
428 			return -EINVAL;
429 
430 		lock_sock(sk);
431 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
432 			answ = 0;
433 		else if (sock_flag(sk, SOCK_URGINLINE) ||
434 			 !tp->urg_data ||
435 			 before(tp->urg_seq, tp->copied_seq) ||
436 			 !before(tp->urg_seq, tp->rcv_nxt)) {
437 			answ = tp->rcv_nxt - tp->copied_seq;
438 
439 			/* Subtract 1, if FIN is in queue. */
440 			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
441 				answ -=
442 		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
443 		} else
444 			answ = tp->urg_seq - tp->copied_seq;
445 		release_sock(sk);
446 		break;
447 	case SIOCATMARK:
448 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
449 		break;
450 	case SIOCOUTQ:
451 		if (sk->sk_state == TCP_LISTEN)
452 			return -EINVAL;
453 
454 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
455 			answ = 0;
456 		else
457 			answ = tp->write_seq - tp->snd_una;
458 		break;
459 	default:
460 		return -ENOIOCTLCMD;
461 	}
462 
463 	return put_user(answ, (int __user *)arg);
464 }
465 
466 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
467 {
468 	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
469 	tp->pushed_seq = tp->write_seq;
470 }
471 
472 static inline int forced_push(struct tcp_sock *tp)
473 {
474 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
475 }
476 
477 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
481 
482 	skb->csum    = 0;
483 	tcb->seq     = tcb->end_seq = tp->write_seq;
484 	tcb->flags   = TCPCB_FLAG_ACK;
485 	tcb->sacked  = 0;
486 	skb_header_release(skb);
487 	tcp_add_write_queue_tail(sk, skb);
488 	sk->sk_wmem_queued += skb->truesize;
489 	sk_mem_charge(sk, skb->truesize);
490 	if (tp->nonagle & TCP_NAGLE_PUSH)
491 		tp->nonagle &= ~TCP_NAGLE_PUSH;
492 }
493 
494 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
495 				struct sk_buff *skb)
496 {
497 	if (flags & MSG_OOB) {
498 		tp->urg_mode = 1;
499 		tp->snd_up = tp->write_seq;
500 	}
501 }
502 
503 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
504 			    int nonagle)
505 {
506 	struct tcp_sock *tp = tcp_sk(sk);
507 
508 	if (tcp_send_head(sk)) {
509 		struct sk_buff *skb = tcp_write_queue_tail(sk);
510 		if (!(flags & MSG_MORE) || forced_push(tp))
511 			tcp_mark_push(tp, skb);
512 		tcp_mark_urg(tp, flags, skb);
513 		__tcp_push_pending_frames(sk, mss_now,
514 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
515 	}
516 }
517 
518 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
519 				unsigned int offset, size_t len)
520 {
521 	struct tcp_splice_state *tss = rd_desc->arg.data;
522 
523 	return skb_splice_bits(skb, offset, tss->pipe, tss->len, tss->flags);
524 }
525 
526 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
527 {
528 	/* Store TCP splice context information in read_descriptor_t. */
529 	read_descriptor_t rd_desc = {
530 		.arg.data = tss,
531 	};
532 
533 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
534 }
535 
536 /**
537  *  tcp_splice_read - splice data from TCP socket to a pipe
538  * @sock:	socket to splice from
539  * @ppos:	position (not valid)
540  * @pipe:	pipe to splice to
541  * @len:	number of bytes to splice
542  * @flags:	splice modifier flags
543  *
544  * Description:
545  *    Will read pages from given socket and fill them into a pipe.
546  *
547  **/
548 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
549 			struct pipe_inode_info *pipe, size_t len,
550 			unsigned int flags)
551 {
552 	struct sock *sk = sock->sk;
553 	struct tcp_splice_state tss = {
554 		.pipe = pipe,
555 		.len = len,
556 		.flags = flags,
557 	};
558 	long timeo;
559 	ssize_t spliced;
560 	int ret;
561 
562 	/*
563 	 * We can't seek on a socket input
564 	 */
565 	if (unlikely(*ppos))
566 		return -ESPIPE;
567 
568 	ret = spliced = 0;
569 
570 	lock_sock(sk);
571 
572 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
573 	while (tss.len) {
574 		ret = __tcp_splice_read(sk, &tss);
575 		if (ret < 0)
576 			break;
577 		else if (!ret) {
578 			if (spliced)
579 				break;
580 			if (flags & SPLICE_F_NONBLOCK) {
581 				ret = -EAGAIN;
582 				break;
583 			}
584 			if (sock_flag(sk, SOCK_DONE))
585 				break;
586 			if (sk->sk_err) {
587 				ret = sock_error(sk);
588 				break;
589 			}
590 			if (sk->sk_shutdown & RCV_SHUTDOWN)
591 				break;
592 			if (sk->sk_state == TCP_CLOSE) {
593 				/*
594 				 * This occurs when user tries to read
595 				 * from never connected socket.
596 				 */
597 				if (!sock_flag(sk, SOCK_DONE))
598 					ret = -ENOTCONN;
599 				break;
600 			}
601 			if (!timeo) {
602 				ret = -EAGAIN;
603 				break;
604 			}
605 			sk_wait_data(sk, &timeo);
606 			if (signal_pending(current)) {
607 				ret = sock_intr_errno(timeo);
608 				break;
609 			}
610 			continue;
611 		}
612 		tss.len -= ret;
613 		spliced += ret;
614 
615 		release_sock(sk);
616 		lock_sock(sk);
617 
618 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
619 		    (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo ||
620 		    signal_pending(current))
621 			break;
622 	}
623 
624 	release_sock(sk);
625 
626 	if (spliced)
627 		return spliced;
628 
629 	return ret;
630 }
631 
632 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
633 {
634 	struct sk_buff *skb;
635 
636 	/* The TCP header must be at least 32-bit aligned.  */
637 	size = ALIGN(size, 4);
638 
639 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
640 	if (skb) {
641 		if (sk_wmem_schedule(sk, skb->truesize)) {
642 			/*
643 			 * Make sure that we have exactly size bytes
644 			 * available to the caller, no more, no less.
645 			 */
646 			skb_reserve(skb, skb_tailroom(skb) - size);
647 			return skb;
648 		}
649 		__kfree_skb(skb);
650 	} else {
651 		sk->sk_prot->enter_memory_pressure();
652 		sk_stream_moderate_sndbuf(sk);
653 	}
654 	return NULL;
655 }
656 
657 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
658 			 size_t psize, int flags)
659 {
660 	struct tcp_sock *tp = tcp_sk(sk);
661 	int mss_now, size_goal;
662 	int err;
663 	ssize_t copied;
664 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
665 
666 	/* Wait for a connection to finish. */
667 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
668 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
669 			goto out_err;
670 
671 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
672 
673 	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
674 	size_goal = tp->xmit_size_goal;
675 	copied = 0;
676 
677 	err = -EPIPE;
678 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
679 		goto do_error;
680 
681 	while (psize > 0) {
682 		struct sk_buff *skb = tcp_write_queue_tail(sk);
683 		struct page *page = pages[poffset / PAGE_SIZE];
684 		int copy, i, can_coalesce;
685 		int offset = poffset % PAGE_SIZE;
686 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
687 
688 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
689 new_segment:
690 			if (!sk_stream_memory_free(sk))
691 				goto wait_for_sndbuf;
692 
693 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
694 			if (!skb)
695 				goto wait_for_memory;
696 
697 			skb_entail(sk, skb);
698 			copy = size_goal;
699 		}
700 
701 		if (copy > size)
702 			copy = size;
703 
704 		i = skb_shinfo(skb)->nr_frags;
705 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
706 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
707 			tcp_mark_push(tp, skb);
708 			goto new_segment;
709 		}
710 		if (!sk_wmem_schedule(sk, copy))
711 			goto wait_for_memory;
712 
713 		if (can_coalesce) {
714 			skb_shinfo(skb)->frags[i - 1].size += copy;
715 		} else {
716 			get_page(page);
717 			skb_fill_page_desc(skb, i, page, offset, copy);
718 		}
719 
720 		skb->len += copy;
721 		skb->data_len += copy;
722 		skb->truesize += copy;
723 		sk->sk_wmem_queued += copy;
724 		sk_mem_charge(sk, copy);
725 		skb->ip_summed = CHECKSUM_PARTIAL;
726 		tp->write_seq += copy;
727 		TCP_SKB_CB(skb)->end_seq += copy;
728 		skb_shinfo(skb)->gso_segs = 0;
729 
730 		if (!copied)
731 			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
732 
733 		copied += copy;
734 		poffset += copy;
735 		if (!(psize -= copy))
736 			goto out;
737 
738 		if (skb->len < size_goal || (flags & MSG_OOB))
739 			continue;
740 
741 		if (forced_push(tp)) {
742 			tcp_mark_push(tp, skb);
743 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
744 		} else if (skb == tcp_send_head(sk))
745 			tcp_push_one(sk, mss_now);
746 		continue;
747 
748 wait_for_sndbuf:
749 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
750 wait_for_memory:
751 		if (copied)
752 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
753 
754 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
755 			goto do_error;
756 
757 		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
758 		size_goal = tp->xmit_size_goal;
759 	}
760 
761 out:
762 	if (copied)
763 		tcp_push(sk, flags, mss_now, tp->nonagle);
764 	return copied;
765 
766 do_error:
767 	if (copied)
768 		goto out;
769 out_err:
770 	return sk_stream_error(sk, flags, err);
771 }
772 
773 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
774 		     size_t size, int flags)
775 {
776 	ssize_t res;
777 	struct sock *sk = sock->sk;
778 
779 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
780 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
781 		return sock_no_sendpage(sock, page, offset, size, flags);
782 
783 	lock_sock(sk);
784 	TCP_CHECK_TIMER(sk);
785 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
786 	TCP_CHECK_TIMER(sk);
787 	release_sock(sk);
788 	return res;
789 }
790 
791 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
792 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
793 
794 static inline int select_size(struct sock *sk)
795 {
796 	struct tcp_sock *tp = tcp_sk(sk);
797 	int tmp = tp->mss_cache;
798 
799 	if (sk->sk_route_caps & NETIF_F_SG) {
800 		if (sk_can_gso(sk))
801 			tmp = 0;
802 		else {
803 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
804 
805 			if (tmp >= pgbreak &&
806 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
807 				tmp = pgbreak;
808 		}
809 	}
810 
811 	return tmp;
812 }
813 
814 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
815 		size_t size)
816 {
817 	struct sock *sk = sock->sk;
818 	struct iovec *iov;
819 	struct tcp_sock *tp = tcp_sk(sk);
820 	struct sk_buff *skb;
821 	int iovlen, flags;
822 	int mss_now, size_goal;
823 	int err, copied;
824 	long timeo;
825 
826 	lock_sock(sk);
827 	TCP_CHECK_TIMER(sk);
828 
829 	flags = msg->msg_flags;
830 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
831 
832 	/* Wait for a connection to finish. */
833 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
834 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
835 			goto out_err;
836 
837 	/* This should be in poll */
838 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
839 
840 	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
841 	size_goal = tp->xmit_size_goal;
842 
843 	/* Ok commence sending. */
844 	iovlen = msg->msg_iovlen;
845 	iov = msg->msg_iov;
846 	copied = 0;
847 
848 	err = -EPIPE;
849 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
850 		goto do_error;
851 
852 	while (--iovlen >= 0) {
853 		int seglen = iov->iov_len;
854 		unsigned char __user *from = iov->iov_base;
855 
856 		iov++;
857 
858 		while (seglen > 0) {
859 			int copy;
860 
861 			skb = tcp_write_queue_tail(sk);
862 
863 			if (!tcp_send_head(sk) ||
864 			    (copy = size_goal - skb->len) <= 0) {
865 
866 new_segment:
867 				/* Allocate new segment. If the interface is SG,
868 				 * allocate skb fitting to single page.
869 				 */
870 				if (!sk_stream_memory_free(sk))
871 					goto wait_for_sndbuf;
872 
873 				skb = sk_stream_alloc_skb(sk, select_size(sk),
874 						sk->sk_allocation);
875 				if (!skb)
876 					goto wait_for_memory;
877 
878 				/*
879 				 * Check whether we can use HW checksum.
880 				 */
881 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
882 					skb->ip_summed = CHECKSUM_PARTIAL;
883 
884 				skb_entail(sk, skb);
885 				copy = size_goal;
886 			}
887 
888 			/* Try to append data to the end of skb. */
889 			if (copy > seglen)
890 				copy = seglen;
891 
892 			/* Where to copy to? */
893 			if (skb_tailroom(skb) > 0) {
894 				/* We have some space in skb head. Superb! */
895 				if (copy > skb_tailroom(skb))
896 					copy = skb_tailroom(skb);
897 				if ((err = skb_add_data(skb, from, copy)) != 0)
898 					goto do_fault;
899 			} else {
900 				int merge = 0;
901 				int i = skb_shinfo(skb)->nr_frags;
902 				struct page *page = TCP_PAGE(sk);
903 				int off = TCP_OFF(sk);
904 
905 				if (skb_can_coalesce(skb, i, page, off) &&
906 				    off != PAGE_SIZE) {
907 					/* We can extend the last page
908 					 * fragment. */
909 					merge = 1;
910 				} else if (i == MAX_SKB_FRAGS ||
911 					   (!i &&
912 					   !(sk->sk_route_caps & NETIF_F_SG))) {
913 					/* Need to add new fragment and cannot
914 					 * do this because interface is non-SG,
915 					 * or because all the page slots are
916 					 * busy. */
917 					tcp_mark_push(tp, skb);
918 					goto new_segment;
919 				} else if (page) {
920 					if (off == PAGE_SIZE) {
921 						put_page(page);
922 						TCP_PAGE(sk) = page = NULL;
923 						off = 0;
924 					}
925 				} else
926 					off = 0;
927 
928 				if (copy > PAGE_SIZE - off)
929 					copy = PAGE_SIZE - off;
930 
931 				if (!sk_wmem_schedule(sk, copy))
932 					goto wait_for_memory;
933 
934 				if (!page) {
935 					/* Allocate new cache page. */
936 					if (!(page = sk_stream_alloc_page(sk)))
937 						goto wait_for_memory;
938 				}
939 
940 				/* Time to copy data. We are close to
941 				 * the end! */
942 				err = skb_copy_to_page(sk, from, skb, page,
943 						       off, copy);
944 				if (err) {
945 					/* If this page was new, give it to the
946 					 * socket so it does not get leaked.
947 					 */
948 					if (!TCP_PAGE(sk)) {
949 						TCP_PAGE(sk) = page;
950 						TCP_OFF(sk) = 0;
951 					}
952 					goto do_error;
953 				}
954 
955 				/* Update the skb. */
956 				if (merge) {
957 					skb_shinfo(skb)->frags[i - 1].size +=
958 									copy;
959 				} else {
960 					skb_fill_page_desc(skb, i, page, off, copy);
961 					if (TCP_PAGE(sk)) {
962 						get_page(page);
963 					} else if (off + copy < PAGE_SIZE) {
964 						get_page(page);
965 						TCP_PAGE(sk) = page;
966 					}
967 				}
968 
969 				TCP_OFF(sk) = off + copy;
970 			}
971 
972 			if (!copied)
973 				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
974 
975 			tp->write_seq += copy;
976 			TCP_SKB_CB(skb)->end_seq += copy;
977 			skb_shinfo(skb)->gso_segs = 0;
978 
979 			from += copy;
980 			copied += copy;
981 			if ((seglen -= copy) == 0 && iovlen == 0)
982 				goto out;
983 
984 			if (skb->len < size_goal || (flags & MSG_OOB))
985 				continue;
986 
987 			if (forced_push(tp)) {
988 				tcp_mark_push(tp, skb);
989 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
990 			} else if (skb == tcp_send_head(sk))
991 				tcp_push_one(sk, mss_now);
992 			continue;
993 
994 wait_for_sndbuf:
995 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
996 wait_for_memory:
997 			if (copied)
998 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
999 
1000 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1001 				goto do_error;
1002 
1003 			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1004 			size_goal = tp->xmit_size_goal;
1005 		}
1006 	}
1007 
1008 out:
1009 	if (copied)
1010 		tcp_push(sk, flags, mss_now, tp->nonagle);
1011 	TCP_CHECK_TIMER(sk);
1012 	release_sock(sk);
1013 	return copied;
1014 
1015 do_fault:
1016 	if (!skb->len) {
1017 		tcp_unlink_write_queue(skb, sk);
1018 		/* It is the one place in all of TCP, except connection
1019 		 * reset, where we can be unlinking the send_head.
1020 		 */
1021 		tcp_check_send_head(sk, skb);
1022 		sk_wmem_free_skb(sk, skb);
1023 	}
1024 
1025 do_error:
1026 	if (copied)
1027 		goto out;
1028 out_err:
1029 	err = sk_stream_error(sk, flags, err);
1030 	TCP_CHECK_TIMER(sk);
1031 	release_sock(sk);
1032 	return err;
1033 }
1034 
1035 /*
1036  *	Handle reading urgent data. BSD has very simple semantics for
1037  *	this, no blocking and very strange errors 8)
1038  */
1039 
1040 static int tcp_recv_urg(struct sock *sk, long timeo,
1041 			struct msghdr *msg, int len, int flags,
1042 			int *addr_len)
1043 {
1044 	struct tcp_sock *tp = tcp_sk(sk);
1045 
1046 	/* No URG data to read. */
1047 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1048 	    tp->urg_data == TCP_URG_READ)
1049 		return -EINVAL;	/* Yes this is right ! */
1050 
1051 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1052 		return -ENOTCONN;
1053 
1054 	if (tp->urg_data & TCP_URG_VALID) {
1055 		int err = 0;
1056 		char c = tp->urg_data;
1057 
1058 		if (!(flags & MSG_PEEK))
1059 			tp->urg_data = TCP_URG_READ;
1060 
1061 		/* Read urgent data. */
1062 		msg->msg_flags |= MSG_OOB;
1063 
1064 		if (len > 0) {
1065 			if (!(flags & MSG_TRUNC))
1066 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1067 			len = 1;
1068 		} else
1069 			msg->msg_flags |= MSG_TRUNC;
1070 
1071 		return err ? -EFAULT : len;
1072 	}
1073 
1074 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1075 		return 0;
1076 
1077 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1078 	 * the available implementations agree in this case:
1079 	 * this call should never block, independent of the
1080 	 * blocking state of the socket.
1081 	 * Mike <pall@rz.uni-karlsruhe.de>
1082 	 */
1083 	return -EAGAIN;
1084 }
1085 
1086 /* Clean up the receive buffer for full frames taken by the user,
1087  * then send an ACK if necessary.  COPIED is the number of bytes
1088  * tcp_recvmsg has given to the user so far, it speeds up the
1089  * calculation of whether or not we must ACK for the sake of
1090  * a window update.
1091  */
1092 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1093 {
1094 	struct tcp_sock *tp = tcp_sk(sk);
1095 	int time_to_ack = 0;
1096 
1097 #if TCP_DEBUG
1098 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1099 
1100 	BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1101 #endif
1102 
1103 	if (inet_csk_ack_scheduled(sk)) {
1104 		const struct inet_connection_sock *icsk = inet_csk(sk);
1105 		   /* Delayed ACKs frequently hit locked sockets during bulk
1106 		    * receive. */
1107 		if (icsk->icsk_ack.blocked ||
1108 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1109 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1110 		    /*
1111 		     * If this read emptied read buffer, we send ACK, if
1112 		     * connection is not bidirectional, user drained
1113 		     * receive buffer and there was a small segment
1114 		     * in queue.
1115 		     */
1116 		    (copied > 0 &&
1117 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1118 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1119 		       !icsk->icsk_ack.pingpong)) &&
1120 		      !atomic_read(&sk->sk_rmem_alloc)))
1121 			time_to_ack = 1;
1122 	}
1123 
1124 	/* We send an ACK if we can now advertise a non-zero window
1125 	 * which has been raised "significantly".
1126 	 *
1127 	 * Even if window raised up to infinity, do not send window open ACK
1128 	 * in states, where we will not receive more. It is useless.
1129 	 */
1130 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1131 		__u32 rcv_window_now = tcp_receive_window(tp);
1132 
1133 		/* Optimize, __tcp_select_window() is not cheap. */
1134 		if (2*rcv_window_now <= tp->window_clamp) {
1135 			__u32 new_window = __tcp_select_window(sk);
1136 
1137 			/* Send ACK now, if this read freed lots of space
1138 			 * in our buffer. Certainly, new_window is new window.
1139 			 * We can advertise it now, if it is not less than current one.
1140 			 * "Lots" means "at least twice" here.
1141 			 */
1142 			if (new_window && new_window >= 2 * rcv_window_now)
1143 				time_to_ack = 1;
1144 		}
1145 	}
1146 	if (time_to_ack)
1147 		tcp_send_ack(sk);
1148 }
1149 
1150 static void tcp_prequeue_process(struct sock *sk)
1151 {
1152 	struct sk_buff *skb;
1153 	struct tcp_sock *tp = tcp_sk(sk);
1154 
1155 	NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1156 
1157 	/* RX process wants to run with disabled BHs, though it is not
1158 	 * necessary */
1159 	local_bh_disable();
1160 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1161 		sk->sk_backlog_rcv(sk, skb);
1162 	local_bh_enable();
1163 
1164 	/* Clear memory counter. */
1165 	tp->ucopy.memory = 0;
1166 }
1167 
1168 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1169 {
1170 	struct sk_buff *skb;
1171 	u32 offset;
1172 
1173 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1174 		offset = seq - TCP_SKB_CB(skb)->seq;
1175 		if (tcp_hdr(skb)->syn)
1176 			offset--;
1177 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1178 			*off = offset;
1179 			return skb;
1180 		}
1181 	}
1182 	return NULL;
1183 }
1184 
1185 /*
1186  * This routine provides an alternative to tcp_recvmsg() for routines
1187  * that would like to handle copying from skbuffs directly in 'sendfile'
1188  * fashion.
1189  * Note:
1190  *	- It is assumed that the socket was locked by the caller.
1191  *	- The routine does not block.
1192  *	- At present, there is no support for reading OOB data
1193  *	  or for 'peeking' the socket using this routine
1194  *	  (although both would be easy to implement).
1195  */
1196 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1197 		  sk_read_actor_t recv_actor)
1198 {
1199 	struct sk_buff *skb;
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 	u32 seq = tp->copied_seq;
1202 	u32 offset;
1203 	int copied = 0;
1204 
1205 	if (sk->sk_state == TCP_LISTEN)
1206 		return -ENOTCONN;
1207 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1208 		if (offset < skb->len) {
1209 			size_t used, len;
1210 
1211 			len = skb->len - offset;
1212 			/* Stop reading if we hit a patch of urgent data */
1213 			if (tp->urg_data) {
1214 				u32 urg_offset = tp->urg_seq - seq;
1215 				if (urg_offset < len)
1216 					len = urg_offset;
1217 				if (!len)
1218 					break;
1219 			}
1220 			used = recv_actor(desc, skb, offset, len);
1221 			if (used < 0) {
1222 				if (!copied)
1223 					copied = used;
1224 				break;
1225 			} else if (used <= len) {
1226 				seq += used;
1227 				copied += used;
1228 				offset += used;
1229 			}
1230 			if (offset != skb->len)
1231 				break;
1232 		}
1233 		if (tcp_hdr(skb)->fin) {
1234 			sk_eat_skb(sk, skb, 0);
1235 			++seq;
1236 			break;
1237 		}
1238 		sk_eat_skb(sk, skb, 0);
1239 		if (!desc->count)
1240 			break;
1241 	}
1242 	tp->copied_seq = seq;
1243 
1244 	tcp_rcv_space_adjust(sk);
1245 
1246 	/* Clean up data we have read: This will do ACK frames. */
1247 	if (copied > 0)
1248 		tcp_cleanup_rbuf(sk, copied);
1249 	return copied;
1250 }
1251 
1252 /*
1253  *	This routine copies from a sock struct into the user buffer.
1254  *
1255  *	Technical note: in 2.3 we work on _locked_ socket, so that
1256  *	tricks with *seq access order and skb->users are not required.
1257  *	Probably, code can be easily improved even more.
1258  */
1259 
1260 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1261 		size_t len, int nonblock, int flags, int *addr_len)
1262 {
1263 	struct tcp_sock *tp = tcp_sk(sk);
1264 	int copied = 0;
1265 	u32 peek_seq;
1266 	u32 *seq;
1267 	unsigned long used;
1268 	int err;
1269 	int target;		/* Read at least this many bytes */
1270 	long timeo;
1271 	struct task_struct *user_recv = NULL;
1272 	int copied_early = 0;
1273 	struct sk_buff *skb;
1274 
1275 	lock_sock(sk);
1276 
1277 	TCP_CHECK_TIMER(sk);
1278 
1279 	err = -ENOTCONN;
1280 	if (sk->sk_state == TCP_LISTEN)
1281 		goto out;
1282 
1283 	timeo = sock_rcvtimeo(sk, nonblock);
1284 
1285 	/* Urgent data needs to be handled specially. */
1286 	if (flags & MSG_OOB)
1287 		goto recv_urg;
1288 
1289 	seq = &tp->copied_seq;
1290 	if (flags & MSG_PEEK) {
1291 		peek_seq = tp->copied_seq;
1292 		seq = &peek_seq;
1293 	}
1294 
1295 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1296 
1297 #ifdef CONFIG_NET_DMA
1298 	tp->ucopy.dma_chan = NULL;
1299 	preempt_disable();
1300 	skb = skb_peek_tail(&sk->sk_receive_queue);
1301 	{
1302 		int available = 0;
1303 
1304 		if (skb)
1305 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1306 		if ((available < target) &&
1307 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1308 		    !sysctl_tcp_low_latency &&
1309 		    __get_cpu_var(softnet_data).net_dma) {
1310 			preempt_enable_no_resched();
1311 			tp->ucopy.pinned_list =
1312 					dma_pin_iovec_pages(msg->msg_iov, len);
1313 		} else {
1314 			preempt_enable_no_resched();
1315 		}
1316 	}
1317 #endif
1318 
1319 	do {
1320 		u32 offset;
1321 
1322 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1323 		if (tp->urg_data && tp->urg_seq == *seq) {
1324 			if (copied)
1325 				break;
1326 			if (signal_pending(current)) {
1327 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1328 				break;
1329 			}
1330 		}
1331 
1332 		/* Next get a buffer. */
1333 
1334 		skb = skb_peek(&sk->sk_receive_queue);
1335 		do {
1336 			if (!skb)
1337 				break;
1338 
1339 			/* Now that we have two receive queues this
1340 			 * shouldn't happen.
1341 			 */
1342 			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1343 				printk(KERN_INFO "recvmsg bug: copied %X "
1344 				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1345 				break;
1346 			}
1347 			offset = *seq - TCP_SKB_CB(skb)->seq;
1348 			if (tcp_hdr(skb)->syn)
1349 				offset--;
1350 			if (offset < skb->len)
1351 				goto found_ok_skb;
1352 			if (tcp_hdr(skb)->fin)
1353 				goto found_fin_ok;
1354 			BUG_TRAP(flags & MSG_PEEK);
1355 			skb = skb->next;
1356 		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1357 
1358 		/* Well, if we have backlog, try to process it now yet. */
1359 
1360 		if (copied >= target && !sk->sk_backlog.tail)
1361 			break;
1362 
1363 		if (copied) {
1364 			if (sk->sk_err ||
1365 			    sk->sk_state == TCP_CLOSE ||
1366 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1367 			    !timeo ||
1368 			    signal_pending(current) ||
1369 			    (flags & MSG_PEEK))
1370 				break;
1371 		} else {
1372 			if (sock_flag(sk, SOCK_DONE))
1373 				break;
1374 
1375 			if (sk->sk_err) {
1376 				copied = sock_error(sk);
1377 				break;
1378 			}
1379 
1380 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1381 				break;
1382 
1383 			if (sk->sk_state == TCP_CLOSE) {
1384 				if (!sock_flag(sk, SOCK_DONE)) {
1385 					/* This occurs when user tries to read
1386 					 * from never connected socket.
1387 					 */
1388 					copied = -ENOTCONN;
1389 					break;
1390 				}
1391 				break;
1392 			}
1393 
1394 			if (!timeo) {
1395 				copied = -EAGAIN;
1396 				break;
1397 			}
1398 
1399 			if (signal_pending(current)) {
1400 				copied = sock_intr_errno(timeo);
1401 				break;
1402 			}
1403 		}
1404 
1405 		tcp_cleanup_rbuf(sk, copied);
1406 
1407 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1408 			/* Install new reader */
1409 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1410 				user_recv = current;
1411 				tp->ucopy.task = user_recv;
1412 				tp->ucopy.iov = msg->msg_iov;
1413 			}
1414 
1415 			tp->ucopy.len = len;
1416 
1417 			BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1418 				 (flags & (MSG_PEEK | MSG_TRUNC)));
1419 
1420 			/* Ugly... If prequeue is not empty, we have to
1421 			 * process it before releasing socket, otherwise
1422 			 * order will be broken at second iteration.
1423 			 * More elegant solution is required!!!
1424 			 *
1425 			 * Look: we have the following (pseudo)queues:
1426 			 *
1427 			 * 1. packets in flight
1428 			 * 2. backlog
1429 			 * 3. prequeue
1430 			 * 4. receive_queue
1431 			 *
1432 			 * Each queue can be processed only if the next ones
1433 			 * are empty. At this point we have empty receive_queue.
1434 			 * But prequeue _can_ be not empty after 2nd iteration,
1435 			 * when we jumped to start of loop because backlog
1436 			 * processing added something to receive_queue.
1437 			 * We cannot release_sock(), because backlog contains
1438 			 * packets arrived _after_ prequeued ones.
1439 			 *
1440 			 * Shortly, algorithm is clear --- to process all
1441 			 * the queues in order. We could make it more directly,
1442 			 * requeueing packets from backlog to prequeue, if
1443 			 * is not empty. It is more elegant, but eats cycles,
1444 			 * unfortunately.
1445 			 */
1446 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1447 				goto do_prequeue;
1448 
1449 			/* __ Set realtime policy in scheduler __ */
1450 		}
1451 
1452 		if (copied >= target) {
1453 			/* Do not sleep, just process backlog. */
1454 			release_sock(sk);
1455 			lock_sock(sk);
1456 		} else
1457 			sk_wait_data(sk, &timeo);
1458 
1459 #ifdef CONFIG_NET_DMA
1460 		tp->ucopy.wakeup = 0;
1461 #endif
1462 
1463 		if (user_recv) {
1464 			int chunk;
1465 
1466 			/* __ Restore normal policy in scheduler __ */
1467 
1468 			if ((chunk = len - tp->ucopy.len) != 0) {
1469 				NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1470 				len -= chunk;
1471 				copied += chunk;
1472 			}
1473 
1474 			if (tp->rcv_nxt == tp->copied_seq &&
1475 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1476 do_prequeue:
1477 				tcp_prequeue_process(sk);
1478 
1479 				if ((chunk = len - tp->ucopy.len) != 0) {
1480 					NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1481 					len -= chunk;
1482 					copied += chunk;
1483 				}
1484 			}
1485 		}
1486 		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1487 			if (net_ratelimit())
1488 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1489 				       current->comm, task_pid_nr(current));
1490 			peek_seq = tp->copied_seq;
1491 		}
1492 		continue;
1493 
1494 	found_ok_skb:
1495 		/* Ok so how much can we use? */
1496 		used = skb->len - offset;
1497 		if (len < used)
1498 			used = len;
1499 
1500 		/* Do we have urgent data here? */
1501 		if (tp->urg_data) {
1502 			u32 urg_offset = tp->urg_seq - *seq;
1503 			if (urg_offset < used) {
1504 				if (!urg_offset) {
1505 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1506 						++*seq;
1507 						offset++;
1508 						used--;
1509 						if (!used)
1510 							goto skip_copy;
1511 					}
1512 				} else
1513 					used = urg_offset;
1514 			}
1515 		}
1516 
1517 		if (!(flags & MSG_TRUNC)) {
1518 #ifdef CONFIG_NET_DMA
1519 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1520 				tp->ucopy.dma_chan = get_softnet_dma();
1521 
1522 			if (tp->ucopy.dma_chan) {
1523 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1524 					tp->ucopy.dma_chan, skb, offset,
1525 					msg->msg_iov, used,
1526 					tp->ucopy.pinned_list);
1527 
1528 				if (tp->ucopy.dma_cookie < 0) {
1529 
1530 					printk(KERN_ALERT "dma_cookie < 0\n");
1531 
1532 					/* Exception. Bailout! */
1533 					if (!copied)
1534 						copied = -EFAULT;
1535 					break;
1536 				}
1537 				if ((offset + used) == skb->len)
1538 					copied_early = 1;
1539 
1540 			} else
1541 #endif
1542 			{
1543 				err = skb_copy_datagram_iovec(skb, offset,
1544 						msg->msg_iov, used);
1545 				if (err) {
1546 					/* Exception. Bailout! */
1547 					if (!copied)
1548 						copied = -EFAULT;
1549 					break;
1550 				}
1551 			}
1552 		}
1553 
1554 		*seq += used;
1555 		copied += used;
1556 		len -= used;
1557 
1558 		tcp_rcv_space_adjust(sk);
1559 
1560 skip_copy:
1561 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1562 			tp->urg_data = 0;
1563 			tcp_fast_path_check(sk);
1564 		}
1565 		if (used + offset < skb->len)
1566 			continue;
1567 
1568 		if (tcp_hdr(skb)->fin)
1569 			goto found_fin_ok;
1570 		if (!(flags & MSG_PEEK)) {
1571 			sk_eat_skb(sk, skb, copied_early);
1572 			copied_early = 0;
1573 		}
1574 		continue;
1575 
1576 	found_fin_ok:
1577 		/* Process the FIN. */
1578 		++*seq;
1579 		if (!(flags & MSG_PEEK)) {
1580 			sk_eat_skb(sk, skb, copied_early);
1581 			copied_early = 0;
1582 		}
1583 		break;
1584 	} while (len > 0);
1585 
1586 	if (user_recv) {
1587 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1588 			int chunk;
1589 
1590 			tp->ucopy.len = copied > 0 ? len : 0;
1591 
1592 			tcp_prequeue_process(sk);
1593 
1594 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1595 				NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1596 				len -= chunk;
1597 				copied += chunk;
1598 			}
1599 		}
1600 
1601 		tp->ucopy.task = NULL;
1602 		tp->ucopy.len = 0;
1603 	}
1604 
1605 #ifdef CONFIG_NET_DMA
1606 	if (tp->ucopy.dma_chan) {
1607 		dma_cookie_t done, used;
1608 
1609 		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1610 
1611 		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1612 						 tp->ucopy.dma_cookie, &done,
1613 						 &used) == DMA_IN_PROGRESS) {
1614 			/* do partial cleanup of sk_async_wait_queue */
1615 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1616 			       (dma_async_is_complete(skb->dma_cookie, done,
1617 						      used) == DMA_SUCCESS)) {
1618 				__skb_dequeue(&sk->sk_async_wait_queue);
1619 				kfree_skb(skb);
1620 			}
1621 		}
1622 
1623 		/* Safe to free early-copied skbs now */
1624 		__skb_queue_purge(&sk->sk_async_wait_queue);
1625 		dma_chan_put(tp->ucopy.dma_chan);
1626 		tp->ucopy.dma_chan = NULL;
1627 	}
1628 	if (tp->ucopy.pinned_list) {
1629 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1630 		tp->ucopy.pinned_list = NULL;
1631 	}
1632 #endif
1633 
1634 	/* According to UNIX98, msg_name/msg_namelen are ignored
1635 	 * on connected socket. I was just happy when found this 8) --ANK
1636 	 */
1637 
1638 	/* Clean up data we have read: This will do ACK frames. */
1639 	tcp_cleanup_rbuf(sk, copied);
1640 
1641 	TCP_CHECK_TIMER(sk);
1642 	release_sock(sk);
1643 	return copied;
1644 
1645 out:
1646 	TCP_CHECK_TIMER(sk);
1647 	release_sock(sk);
1648 	return err;
1649 
1650 recv_urg:
1651 	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1652 	goto out;
1653 }
1654 
1655 void tcp_set_state(struct sock *sk, int state)
1656 {
1657 	int oldstate = sk->sk_state;
1658 
1659 	switch (state) {
1660 	case TCP_ESTABLISHED:
1661 		if (oldstate != TCP_ESTABLISHED)
1662 			TCP_INC_STATS(TCP_MIB_CURRESTAB);
1663 		break;
1664 
1665 	case TCP_CLOSE:
1666 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1667 			TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1668 
1669 		sk->sk_prot->unhash(sk);
1670 		if (inet_csk(sk)->icsk_bind_hash &&
1671 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1672 			inet_put_port(sk);
1673 		/* fall through */
1674 	default:
1675 		if (oldstate==TCP_ESTABLISHED)
1676 			TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1677 	}
1678 
1679 	/* Change state AFTER socket is unhashed to avoid closed
1680 	 * socket sitting in hash tables.
1681 	 */
1682 	sk->sk_state = state;
1683 
1684 #ifdef STATE_TRACE
1685 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1686 #endif
1687 }
1688 EXPORT_SYMBOL_GPL(tcp_set_state);
1689 
1690 /*
1691  *	State processing on a close. This implements the state shift for
1692  *	sending our FIN frame. Note that we only send a FIN for some
1693  *	states. A shutdown() may have already sent the FIN, or we may be
1694  *	closed.
1695  */
1696 
1697 static const unsigned char new_state[16] = {
1698   /* current state:        new state:      action:	*/
1699   /* (Invalid)		*/ TCP_CLOSE,
1700   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1701   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1702   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1703   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1704   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1705   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1706   /* TCP_CLOSE		*/ TCP_CLOSE,
1707   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1708   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1709   /* TCP_LISTEN		*/ TCP_CLOSE,
1710   /* TCP_CLOSING	*/ TCP_CLOSING,
1711 };
1712 
1713 static int tcp_close_state(struct sock *sk)
1714 {
1715 	int next = (int)new_state[sk->sk_state];
1716 	int ns = next & TCP_STATE_MASK;
1717 
1718 	tcp_set_state(sk, ns);
1719 
1720 	return next & TCP_ACTION_FIN;
1721 }
1722 
1723 /*
1724  *	Shutdown the sending side of a connection. Much like close except
1725  *	that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
1726  */
1727 
1728 void tcp_shutdown(struct sock *sk, int how)
1729 {
1730 	/*	We need to grab some memory, and put together a FIN,
1731 	 *	and then put it into the queue to be sent.
1732 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1733 	 */
1734 	if (!(how & SEND_SHUTDOWN))
1735 		return;
1736 
1737 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1738 	if ((1 << sk->sk_state) &
1739 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1740 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1741 		/* Clear out any half completed packets.  FIN if needed. */
1742 		if (tcp_close_state(sk))
1743 			tcp_send_fin(sk);
1744 	}
1745 }
1746 
1747 void tcp_close(struct sock *sk, long timeout)
1748 {
1749 	struct sk_buff *skb;
1750 	int data_was_unread = 0;
1751 	int state;
1752 
1753 	lock_sock(sk);
1754 	sk->sk_shutdown = SHUTDOWN_MASK;
1755 
1756 	if (sk->sk_state == TCP_LISTEN) {
1757 		tcp_set_state(sk, TCP_CLOSE);
1758 
1759 		/* Special case. */
1760 		inet_csk_listen_stop(sk);
1761 
1762 		goto adjudge_to_death;
1763 	}
1764 
1765 	/*  We need to flush the recv. buffs.  We do this only on the
1766 	 *  descriptor close, not protocol-sourced closes, because the
1767 	 *  reader process may not have drained the data yet!
1768 	 */
1769 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1770 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1771 			  tcp_hdr(skb)->fin;
1772 		data_was_unread += len;
1773 		__kfree_skb(skb);
1774 	}
1775 
1776 	sk_mem_reclaim(sk);
1777 
1778 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1779 	 * data was lost. To witness the awful effects of the old behavior of
1780 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1781 	 * GET in an FTP client, suspend the process, wait for the client to
1782 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1783 	 * Note: timeout is always zero in such a case.
1784 	 */
1785 	if (data_was_unread) {
1786 		/* Unread data was tossed, zap the connection. */
1787 		NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1788 		tcp_set_state(sk, TCP_CLOSE);
1789 		tcp_send_active_reset(sk, GFP_KERNEL);
1790 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1791 		/* Check zero linger _after_ checking for unread data. */
1792 		sk->sk_prot->disconnect(sk, 0);
1793 		NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1794 	} else if (tcp_close_state(sk)) {
1795 		/* We FIN if the application ate all the data before
1796 		 * zapping the connection.
1797 		 */
1798 
1799 		/* RED-PEN. Formally speaking, we have broken TCP state
1800 		 * machine. State transitions:
1801 		 *
1802 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1803 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1804 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1805 		 *
1806 		 * are legal only when FIN has been sent (i.e. in window),
1807 		 * rather than queued out of window. Purists blame.
1808 		 *
1809 		 * F.e. "RFC state" is ESTABLISHED,
1810 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1811 		 *
1812 		 * The visible declinations are that sometimes
1813 		 * we enter time-wait state, when it is not required really
1814 		 * (harmless), do not send active resets, when they are
1815 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1816 		 * they look as CLOSING or LAST_ACK for Linux)
1817 		 * Probably, I missed some more holelets.
1818 		 * 						--ANK
1819 		 */
1820 		tcp_send_fin(sk);
1821 	}
1822 
1823 	sk_stream_wait_close(sk, timeout);
1824 
1825 adjudge_to_death:
1826 	state = sk->sk_state;
1827 	sock_hold(sk);
1828 	sock_orphan(sk);
1829 	atomic_inc(sk->sk_prot->orphan_count);
1830 
1831 	/* It is the last release_sock in its life. It will remove backlog. */
1832 	release_sock(sk);
1833 
1834 
1835 	/* Now socket is owned by kernel and we acquire BH lock
1836 	   to finish close. No need to check for user refs.
1837 	 */
1838 	local_bh_disable();
1839 	bh_lock_sock(sk);
1840 	BUG_TRAP(!sock_owned_by_user(sk));
1841 
1842 	/* Have we already been destroyed by a softirq or backlog? */
1843 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1844 		goto out;
1845 
1846 	/*	This is a (useful) BSD violating of the RFC. There is a
1847 	 *	problem with TCP as specified in that the other end could
1848 	 *	keep a socket open forever with no application left this end.
1849 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1850 	 *	our end. If they send after that then tough - BUT: long enough
1851 	 *	that we won't make the old 4*rto = almost no time - whoops
1852 	 *	reset mistake.
1853 	 *
1854 	 *	Nope, it was not mistake. It is really desired behaviour
1855 	 *	f.e. on http servers, when such sockets are useless, but
1856 	 *	consume significant resources. Let's do it with special
1857 	 *	linger2	option.					--ANK
1858 	 */
1859 
1860 	if (sk->sk_state == TCP_FIN_WAIT2) {
1861 		struct tcp_sock *tp = tcp_sk(sk);
1862 		if (tp->linger2 < 0) {
1863 			tcp_set_state(sk, TCP_CLOSE);
1864 			tcp_send_active_reset(sk, GFP_ATOMIC);
1865 			NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1866 		} else {
1867 			const int tmo = tcp_fin_time(sk);
1868 
1869 			if (tmo > TCP_TIMEWAIT_LEN) {
1870 				inet_csk_reset_keepalive_timer(sk,
1871 						tmo - TCP_TIMEWAIT_LEN);
1872 			} else {
1873 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1874 				goto out;
1875 			}
1876 		}
1877 	}
1878 	if (sk->sk_state != TCP_CLOSE) {
1879 		sk_mem_reclaim(sk);
1880 		if (tcp_too_many_orphans(sk,
1881 				atomic_read(sk->sk_prot->orphan_count))) {
1882 			if (net_ratelimit())
1883 				printk(KERN_INFO "TCP: too many of orphaned "
1884 				       "sockets\n");
1885 			tcp_set_state(sk, TCP_CLOSE);
1886 			tcp_send_active_reset(sk, GFP_ATOMIC);
1887 			NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1888 		}
1889 	}
1890 
1891 	if (sk->sk_state == TCP_CLOSE)
1892 		inet_csk_destroy_sock(sk);
1893 	/* Otherwise, socket is reprieved until protocol close. */
1894 
1895 out:
1896 	bh_unlock_sock(sk);
1897 	local_bh_enable();
1898 	sock_put(sk);
1899 }
1900 
1901 /* These states need RST on ABORT according to RFC793 */
1902 
1903 static inline int tcp_need_reset(int state)
1904 {
1905 	return (1 << state) &
1906 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1907 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1908 }
1909 
1910 int tcp_disconnect(struct sock *sk, int flags)
1911 {
1912 	struct inet_sock *inet = inet_sk(sk);
1913 	struct inet_connection_sock *icsk = inet_csk(sk);
1914 	struct tcp_sock *tp = tcp_sk(sk);
1915 	int err = 0;
1916 	int old_state = sk->sk_state;
1917 
1918 	if (old_state != TCP_CLOSE)
1919 		tcp_set_state(sk, TCP_CLOSE);
1920 
1921 	/* ABORT function of RFC793 */
1922 	if (old_state == TCP_LISTEN) {
1923 		inet_csk_listen_stop(sk);
1924 	} else if (tcp_need_reset(old_state) ||
1925 		   (tp->snd_nxt != tp->write_seq &&
1926 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1927 		/* The last check adjusts for discrepancy of Linux wrt. RFC
1928 		 * states
1929 		 */
1930 		tcp_send_active_reset(sk, gfp_any());
1931 		sk->sk_err = ECONNRESET;
1932 	} else if (old_state == TCP_SYN_SENT)
1933 		sk->sk_err = ECONNRESET;
1934 
1935 	tcp_clear_xmit_timers(sk);
1936 	__skb_queue_purge(&sk->sk_receive_queue);
1937 	tcp_write_queue_purge(sk);
1938 	__skb_queue_purge(&tp->out_of_order_queue);
1939 #ifdef CONFIG_NET_DMA
1940 	__skb_queue_purge(&sk->sk_async_wait_queue);
1941 #endif
1942 
1943 	inet->dport = 0;
1944 
1945 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1946 		inet_reset_saddr(sk);
1947 
1948 	sk->sk_shutdown = 0;
1949 	sock_reset_flag(sk, SOCK_DONE);
1950 	tp->srtt = 0;
1951 	if ((tp->write_seq += tp->max_window + 2) == 0)
1952 		tp->write_seq = 1;
1953 	icsk->icsk_backoff = 0;
1954 	tp->snd_cwnd = 2;
1955 	icsk->icsk_probes_out = 0;
1956 	tp->packets_out = 0;
1957 	tp->snd_ssthresh = 0x7fffffff;
1958 	tp->snd_cwnd_cnt = 0;
1959 	tp->bytes_acked = 0;
1960 	tcp_set_ca_state(sk, TCP_CA_Open);
1961 	tcp_clear_retrans(tp);
1962 	inet_csk_delack_init(sk);
1963 	tcp_init_send_head(sk);
1964 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1965 	__sk_dst_reset(sk);
1966 
1967 	BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1968 
1969 	sk->sk_error_report(sk);
1970 	return err;
1971 }
1972 
1973 /*
1974  *	Socket option code for TCP.
1975  */
1976 static int do_tcp_setsockopt(struct sock *sk, int level,
1977 		int optname, char __user *optval, int optlen)
1978 {
1979 	struct tcp_sock *tp = tcp_sk(sk);
1980 	struct inet_connection_sock *icsk = inet_csk(sk);
1981 	int val;
1982 	int err = 0;
1983 
1984 	/* This is a string value all the others are int's */
1985 	if (optname == TCP_CONGESTION) {
1986 		char name[TCP_CA_NAME_MAX];
1987 
1988 		if (optlen < 1)
1989 			return -EINVAL;
1990 
1991 		val = strncpy_from_user(name, optval,
1992 					min(TCP_CA_NAME_MAX-1, optlen));
1993 		if (val < 0)
1994 			return -EFAULT;
1995 		name[val] = 0;
1996 
1997 		lock_sock(sk);
1998 		err = tcp_set_congestion_control(sk, name);
1999 		release_sock(sk);
2000 		return err;
2001 	}
2002 
2003 	if (optlen < sizeof(int))
2004 		return -EINVAL;
2005 
2006 	if (get_user(val, (int __user *)optval))
2007 		return -EFAULT;
2008 
2009 	lock_sock(sk);
2010 
2011 	switch (optname) {
2012 	case TCP_MAXSEG:
2013 		/* Values greater than interface MTU won't take effect. However
2014 		 * at the point when this call is done we typically don't yet
2015 		 * know which interface is going to be used */
2016 		if (val < 8 || val > MAX_TCP_WINDOW) {
2017 			err = -EINVAL;
2018 			break;
2019 		}
2020 		tp->rx_opt.user_mss = val;
2021 		break;
2022 
2023 	case TCP_NODELAY:
2024 		if (val) {
2025 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2026 			 * this option on corked socket is remembered, but
2027 			 * it is not activated until cork is cleared.
2028 			 *
2029 			 * However, when TCP_NODELAY is set we make
2030 			 * an explicit push, which overrides even TCP_CORK
2031 			 * for currently queued segments.
2032 			 */
2033 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2034 			tcp_push_pending_frames(sk);
2035 		} else {
2036 			tp->nonagle &= ~TCP_NAGLE_OFF;
2037 		}
2038 		break;
2039 
2040 	case TCP_CORK:
2041 		/* When set indicates to always queue non-full frames.
2042 		 * Later the user clears this option and we transmit
2043 		 * any pending partial frames in the queue.  This is
2044 		 * meant to be used alongside sendfile() to get properly
2045 		 * filled frames when the user (for example) must write
2046 		 * out headers with a write() call first and then use
2047 		 * sendfile to send out the data parts.
2048 		 *
2049 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2050 		 * stronger than TCP_NODELAY.
2051 		 */
2052 		if (val) {
2053 			tp->nonagle |= TCP_NAGLE_CORK;
2054 		} else {
2055 			tp->nonagle &= ~TCP_NAGLE_CORK;
2056 			if (tp->nonagle&TCP_NAGLE_OFF)
2057 				tp->nonagle |= TCP_NAGLE_PUSH;
2058 			tcp_push_pending_frames(sk);
2059 		}
2060 		break;
2061 
2062 	case TCP_KEEPIDLE:
2063 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2064 			err = -EINVAL;
2065 		else {
2066 			tp->keepalive_time = val * HZ;
2067 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2068 			    !((1 << sk->sk_state) &
2069 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2070 				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2071 				if (tp->keepalive_time > elapsed)
2072 					elapsed = tp->keepalive_time - elapsed;
2073 				else
2074 					elapsed = 0;
2075 				inet_csk_reset_keepalive_timer(sk, elapsed);
2076 			}
2077 		}
2078 		break;
2079 	case TCP_KEEPINTVL:
2080 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2081 			err = -EINVAL;
2082 		else
2083 			tp->keepalive_intvl = val * HZ;
2084 		break;
2085 	case TCP_KEEPCNT:
2086 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2087 			err = -EINVAL;
2088 		else
2089 			tp->keepalive_probes = val;
2090 		break;
2091 	case TCP_SYNCNT:
2092 		if (val < 1 || val > MAX_TCP_SYNCNT)
2093 			err = -EINVAL;
2094 		else
2095 			icsk->icsk_syn_retries = val;
2096 		break;
2097 
2098 	case TCP_LINGER2:
2099 		if (val < 0)
2100 			tp->linger2 = -1;
2101 		else if (val > sysctl_tcp_fin_timeout / HZ)
2102 			tp->linger2 = 0;
2103 		else
2104 			tp->linger2 = val * HZ;
2105 		break;
2106 
2107 	case TCP_DEFER_ACCEPT:
2108 		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2109 		if (val > 0) {
2110 			/* Translate value in seconds to number of
2111 			 * retransmits */
2112 			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2113 			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2114 				       icsk->icsk_accept_queue.rskq_defer_accept))
2115 				icsk->icsk_accept_queue.rskq_defer_accept++;
2116 			icsk->icsk_accept_queue.rskq_defer_accept++;
2117 		}
2118 		break;
2119 
2120 	case TCP_WINDOW_CLAMP:
2121 		if (!val) {
2122 			if (sk->sk_state != TCP_CLOSE) {
2123 				err = -EINVAL;
2124 				break;
2125 			}
2126 			tp->window_clamp = 0;
2127 		} else
2128 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2129 						SOCK_MIN_RCVBUF / 2 : val;
2130 		break;
2131 
2132 	case TCP_QUICKACK:
2133 		if (!val) {
2134 			icsk->icsk_ack.pingpong = 1;
2135 		} else {
2136 			icsk->icsk_ack.pingpong = 0;
2137 			if ((1 << sk->sk_state) &
2138 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2139 			    inet_csk_ack_scheduled(sk)) {
2140 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2141 				tcp_cleanup_rbuf(sk, 1);
2142 				if (!(val & 1))
2143 					icsk->icsk_ack.pingpong = 1;
2144 			}
2145 		}
2146 		break;
2147 
2148 #ifdef CONFIG_TCP_MD5SIG
2149 	case TCP_MD5SIG:
2150 		/* Read the IP->Key mappings from userspace */
2151 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2152 		break;
2153 #endif
2154 
2155 	default:
2156 		err = -ENOPROTOOPT;
2157 		break;
2158 	}
2159 
2160 	release_sock(sk);
2161 	return err;
2162 }
2163 
2164 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2165 		   int optlen)
2166 {
2167 	struct inet_connection_sock *icsk = inet_csk(sk);
2168 
2169 	if (level != SOL_TCP)
2170 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2171 						     optval, optlen);
2172 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2173 }
2174 
2175 #ifdef CONFIG_COMPAT
2176 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2177 			  char __user *optval, int optlen)
2178 {
2179 	if (level != SOL_TCP)
2180 		return inet_csk_compat_setsockopt(sk, level, optname,
2181 						  optval, optlen);
2182 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2183 }
2184 
2185 EXPORT_SYMBOL(compat_tcp_setsockopt);
2186 #endif
2187 
2188 /* Return information about state of tcp endpoint in API format. */
2189 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2190 {
2191 	struct tcp_sock *tp = tcp_sk(sk);
2192 	const struct inet_connection_sock *icsk = inet_csk(sk);
2193 	u32 now = tcp_time_stamp;
2194 
2195 	memset(info, 0, sizeof(*info));
2196 
2197 	info->tcpi_state = sk->sk_state;
2198 	info->tcpi_ca_state = icsk->icsk_ca_state;
2199 	info->tcpi_retransmits = icsk->icsk_retransmits;
2200 	info->tcpi_probes = icsk->icsk_probes_out;
2201 	info->tcpi_backoff = icsk->icsk_backoff;
2202 
2203 	if (tp->rx_opt.tstamp_ok)
2204 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2205 	if (tcp_is_sack(tp))
2206 		info->tcpi_options |= TCPI_OPT_SACK;
2207 	if (tp->rx_opt.wscale_ok) {
2208 		info->tcpi_options |= TCPI_OPT_WSCALE;
2209 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2210 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2211 	}
2212 
2213 	if (tp->ecn_flags&TCP_ECN_OK)
2214 		info->tcpi_options |= TCPI_OPT_ECN;
2215 
2216 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2217 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2218 	info->tcpi_snd_mss = tp->mss_cache;
2219 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2220 
2221 	if (sk->sk_state == TCP_LISTEN) {
2222 		info->tcpi_unacked = sk->sk_ack_backlog;
2223 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2224 	} else {
2225 		info->tcpi_unacked = tp->packets_out;
2226 		info->tcpi_sacked = tp->sacked_out;
2227 	}
2228 	info->tcpi_lost = tp->lost_out;
2229 	info->tcpi_retrans = tp->retrans_out;
2230 	info->tcpi_fackets = tp->fackets_out;
2231 
2232 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2233 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2234 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2235 
2236 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2237 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2238 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2239 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2240 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2241 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2242 	info->tcpi_advmss = tp->advmss;
2243 	info->tcpi_reordering = tp->reordering;
2244 
2245 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2246 	info->tcpi_rcv_space = tp->rcvq_space.space;
2247 
2248 	info->tcpi_total_retrans = tp->total_retrans;
2249 }
2250 
2251 EXPORT_SYMBOL_GPL(tcp_get_info);
2252 
2253 static int do_tcp_getsockopt(struct sock *sk, int level,
2254 		int optname, char __user *optval, int __user *optlen)
2255 {
2256 	struct inet_connection_sock *icsk = inet_csk(sk);
2257 	struct tcp_sock *tp = tcp_sk(sk);
2258 	int val, len;
2259 
2260 	if (get_user(len, optlen))
2261 		return -EFAULT;
2262 
2263 	len = min_t(unsigned int, len, sizeof(int));
2264 
2265 	if (len < 0)
2266 		return -EINVAL;
2267 
2268 	switch (optname) {
2269 	case TCP_MAXSEG:
2270 		val = tp->mss_cache;
2271 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2272 			val = tp->rx_opt.user_mss;
2273 		break;
2274 	case TCP_NODELAY:
2275 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2276 		break;
2277 	case TCP_CORK:
2278 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2279 		break;
2280 	case TCP_KEEPIDLE:
2281 		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2282 		break;
2283 	case TCP_KEEPINTVL:
2284 		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2285 		break;
2286 	case TCP_KEEPCNT:
2287 		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2288 		break;
2289 	case TCP_SYNCNT:
2290 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2291 		break;
2292 	case TCP_LINGER2:
2293 		val = tp->linger2;
2294 		if (val >= 0)
2295 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2296 		break;
2297 	case TCP_DEFER_ACCEPT:
2298 		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2299 			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2300 		break;
2301 	case TCP_WINDOW_CLAMP:
2302 		val = tp->window_clamp;
2303 		break;
2304 	case TCP_INFO: {
2305 		struct tcp_info info;
2306 
2307 		if (get_user(len, optlen))
2308 			return -EFAULT;
2309 
2310 		tcp_get_info(sk, &info);
2311 
2312 		len = min_t(unsigned int, len, sizeof(info));
2313 		if (put_user(len, optlen))
2314 			return -EFAULT;
2315 		if (copy_to_user(optval, &info, len))
2316 			return -EFAULT;
2317 		return 0;
2318 	}
2319 	case TCP_QUICKACK:
2320 		val = !icsk->icsk_ack.pingpong;
2321 		break;
2322 
2323 	case TCP_CONGESTION:
2324 		if (get_user(len, optlen))
2325 			return -EFAULT;
2326 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2327 		if (put_user(len, optlen))
2328 			return -EFAULT;
2329 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2330 			return -EFAULT;
2331 		return 0;
2332 	default:
2333 		return -ENOPROTOOPT;
2334 	}
2335 
2336 	if (put_user(len, optlen))
2337 		return -EFAULT;
2338 	if (copy_to_user(optval, &val, len))
2339 		return -EFAULT;
2340 	return 0;
2341 }
2342 
2343 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2344 		   int __user *optlen)
2345 {
2346 	struct inet_connection_sock *icsk = inet_csk(sk);
2347 
2348 	if (level != SOL_TCP)
2349 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2350 						     optval, optlen);
2351 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2352 }
2353 
2354 #ifdef CONFIG_COMPAT
2355 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2356 			  char __user *optval, int __user *optlen)
2357 {
2358 	if (level != SOL_TCP)
2359 		return inet_csk_compat_getsockopt(sk, level, optname,
2360 						  optval, optlen);
2361 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2362 }
2363 
2364 EXPORT_SYMBOL(compat_tcp_getsockopt);
2365 #endif
2366 
2367 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2368 {
2369 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2370 	struct tcphdr *th;
2371 	unsigned thlen;
2372 	unsigned int seq;
2373 	__be32 delta;
2374 	unsigned int oldlen;
2375 	unsigned int len;
2376 
2377 	if (!pskb_may_pull(skb, sizeof(*th)))
2378 		goto out;
2379 
2380 	th = tcp_hdr(skb);
2381 	thlen = th->doff * 4;
2382 	if (thlen < sizeof(*th))
2383 		goto out;
2384 
2385 	if (!pskb_may_pull(skb, thlen))
2386 		goto out;
2387 
2388 	oldlen = (u16)~skb->len;
2389 	__skb_pull(skb, thlen);
2390 
2391 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2392 		/* Packet is from an untrusted source, reset gso_segs. */
2393 		int type = skb_shinfo(skb)->gso_type;
2394 		int mss;
2395 
2396 		if (unlikely(type &
2397 			     ~(SKB_GSO_TCPV4 |
2398 			       SKB_GSO_DODGY |
2399 			       SKB_GSO_TCP_ECN |
2400 			       SKB_GSO_TCPV6 |
2401 			       0) ||
2402 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2403 			goto out;
2404 
2405 		mss = skb_shinfo(skb)->gso_size;
2406 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2407 
2408 		segs = NULL;
2409 		goto out;
2410 	}
2411 
2412 	segs = skb_segment(skb, features);
2413 	if (IS_ERR(segs))
2414 		goto out;
2415 
2416 	len = skb_shinfo(skb)->gso_size;
2417 	delta = htonl(oldlen + (thlen + len));
2418 
2419 	skb = segs;
2420 	th = tcp_hdr(skb);
2421 	seq = ntohl(th->seq);
2422 
2423 	do {
2424 		th->fin = th->psh = 0;
2425 
2426 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2427 				       (__force u32)delta));
2428 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2429 			th->check =
2430 			     csum_fold(csum_partial(skb_transport_header(skb),
2431 						    thlen, skb->csum));
2432 
2433 		seq += len;
2434 		skb = skb->next;
2435 		th = tcp_hdr(skb);
2436 
2437 		th->seq = htonl(seq);
2438 		th->cwr = 0;
2439 	} while (skb->next);
2440 
2441 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2442 		      skb->data_len);
2443 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2444 				(__force u32)delta));
2445 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2446 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2447 						   thlen, skb->csum));
2448 
2449 out:
2450 	return segs;
2451 }
2452 EXPORT_SYMBOL(tcp_tso_segment);
2453 
2454 #ifdef CONFIG_TCP_MD5SIG
2455 static unsigned long tcp_md5sig_users;
2456 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2457 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2458 
2459 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2460 {
2461 	int cpu;
2462 	for_each_possible_cpu(cpu) {
2463 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2464 		if (p) {
2465 			if (p->md5_desc.tfm)
2466 				crypto_free_hash(p->md5_desc.tfm);
2467 			kfree(p);
2468 			p = NULL;
2469 		}
2470 	}
2471 	free_percpu(pool);
2472 }
2473 
2474 void tcp_free_md5sig_pool(void)
2475 {
2476 	struct tcp_md5sig_pool **pool = NULL;
2477 
2478 	spin_lock_bh(&tcp_md5sig_pool_lock);
2479 	if (--tcp_md5sig_users == 0) {
2480 		pool = tcp_md5sig_pool;
2481 		tcp_md5sig_pool = NULL;
2482 	}
2483 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2484 	if (pool)
2485 		__tcp_free_md5sig_pool(pool);
2486 }
2487 
2488 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2489 
2490 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2491 {
2492 	int cpu;
2493 	struct tcp_md5sig_pool **pool;
2494 
2495 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2496 	if (!pool)
2497 		return NULL;
2498 
2499 	for_each_possible_cpu(cpu) {
2500 		struct tcp_md5sig_pool *p;
2501 		struct crypto_hash *hash;
2502 
2503 		p = kzalloc(sizeof(*p), GFP_KERNEL);
2504 		if (!p)
2505 			goto out_free;
2506 		*per_cpu_ptr(pool, cpu) = p;
2507 
2508 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2509 		if (!hash || IS_ERR(hash))
2510 			goto out_free;
2511 
2512 		p->md5_desc.tfm = hash;
2513 	}
2514 	return pool;
2515 out_free:
2516 	__tcp_free_md5sig_pool(pool);
2517 	return NULL;
2518 }
2519 
2520 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2521 {
2522 	struct tcp_md5sig_pool **pool;
2523 	int alloc = 0;
2524 
2525 retry:
2526 	spin_lock_bh(&tcp_md5sig_pool_lock);
2527 	pool = tcp_md5sig_pool;
2528 	if (tcp_md5sig_users++ == 0) {
2529 		alloc = 1;
2530 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2531 	} else if (!pool) {
2532 		tcp_md5sig_users--;
2533 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2534 		cpu_relax();
2535 		goto retry;
2536 	} else
2537 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2538 
2539 	if (alloc) {
2540 		/* we cannot hold spinlock here because this may sleep. */
2541 		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2542 		spin_lock_bh(&tcp_md5sig_pool_lock);
2543 		if (!p) {
2544 			tcp_md5sig_users--;
2545 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2546 			return NULL;
2547 		}
2548 		pool = tcp_md5sig_pool;
2549 		if (pool) {
2550 			/* oops, it has already been assigned. */
2551 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2552 			__tcp_free_md5sig_pool(p);
2553 		} else {
2554 			tcp_md5sig_pool = pool = p;
2555 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2556 		}
2557 	}
2558 	return pool;
2559 }
2560 
2561 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2562 
2563 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2564 {
2565 	struct tcp_md5sig_pool **p;
2566 	spin_lock_bh(&tcp_md5sig_pool_lock);
2567 	p = tcp_md5sig_pool;
2568 	if (p)
2569 		tcp_md5sig_users++;
2570 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2571 	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2572 }
2573 
2574 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2575 
2576 void __tcp_put_md5sig_pool(void)
2577 {
2578 	tcp_free_md5sig_pool();
2579 }
2580 
2581 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2582 #endif
2583 
2584 void tcp_done(struct sock *sk)
2585 {
2586 	if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2587 		TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
2588 
2589 	tcp_set_state(sk, TCP_CLOSE);
2590 	tcp_clear_xmit_timers(sk);
2591 
2592 	sk->sk_shutdown = SHUTDOWN_MASK;
2593 
2594 	if (!sock_flag(sk, SOCK_DEAD))
2595 		sk->sk_state_change(sk);
2596 	else
2597 		inet_csk_destroy_sock(sk);
2598 }
2599 EXPORT_SYMBOL_GPL(tcp_done);
2600 
2601 extern struct tcp_congestion_ops tcp_reno;
2602 
2603 static __initdata unsigned long thash_entries;
2604 static int __init set_thash_entries(char *str)
2605 {
2606 	if (!str)
2607 		return 0;
2608 	thash_entries = simple_strtoul(str, &str, 0);
2609 	return 1;
2610 }
2611 __setup("thash_entries=", set_thash_entries);
2612 
2613 void __init tcp_init(void)
2614 {
2615 	struct sk_buff *skb = NULL;
2616 	unsigned long limit;
2617 	int order, i, max_share;
2618 
2619 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2620 
2621 	tcp_hashinfo.bind_bucket_cachep =
2622 		kmem_cache_create("tcp_bind_bucket",
2623 				  sizeof(struct inet_bind_bucket), 0,
2624 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2625 
2626 	/* Size and allocate the main established and bind bucket
2627 	 * hash tables.
2628 	 *
2629 	 * The methodology is similar to that of the buffer cache.
2630 	 */
2631 	tcp_hashinfo.ehash =
2632 		alloc_large_system_hash("TCP established",
2633 					sizeof(struct inet_ehash_bucket),
2634 					thash_entries,
2635 					(num_physpages >= 128 * 1024) ?
2636 					13 : 15,
2637 					0,
2638 					&tcp_hashinfo.ehash_size,
2639 					NULL,
2640 					thash_entries ? 0 : 512 * 1024);
2641 	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2642 	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2643 		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2644 		INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2645 	}
2646 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2647 		panic("TCP: failed to alloc ehash_locks");
2648 	tcp_hashinfo.bhash =
2649 		alloc_large_system_hash("TCP bind",
2650 					sizeof(struct inet_bind_hashbucket),
2651 					tcp_hashinfo.ehash_size,
2652 					(num_physpages >= 128 * 1024) ?
2653 					13 : 15,
2654 					0,
2655 					&tcp_hashinfo.bhash_size,
2656 					NULL,
2657 					64 * 1024);
2658 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2659 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2660 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2661 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2662 	}
2663 
2664 	/* Try to be a bit smarter and adjust defaults depending
2665 	 * on available memory.
2666 	 */
2667 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2668 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2669 			order++)
2670 		;
2671 	if (order >= 4) {
2672 		tcp_death_row.sysctl_max_tw_buckets = 180000;
2673 		sysctl_tcp_max_orphans = 4096 << (order - 4);
2674 		sysctl_max_syn_backlog = 1024;
2675 	} else if (order < 3) {
2676 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2677 		sysctl_tcp_max_orphans >>= (3 - order);
2678 		sysctl_max_syn_backlog = 128;
2679 	}
2680 
2681 	/* Set the pressure threshold to be a fraction of global memory that
2682 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2683 	 * memory, with a floor of 128 pages.
2684 	 */
2685 	limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2686 	limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2687 	limit = max(limit, 128UL);
2688 	sysctl_tcp_mem[0] = limit / 4 * 3;
2689 	sysctl_tcp_mem[1] = limit;
2690 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2691 
2692 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2693 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2694 	max_share = min(4UL*1024*1024, limit);
2695 
2696 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2697 	sysctl_tcp_wmem[1] = 16*1024;
2698 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2699 
2700 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2701 	sysctl_tcp_rmem[1] = 87380;
2702 	sysctl_tcp_rmem[2] = max(87380, max_share);
2703 
2704 	printk(KERN_INFO "TCP: Hash tables configured "
2705 	       "(established %d bind %d)\n",
2706 	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2707 
2708 	tcp_register_congestion_control(&tcp_reno);
2709 }
2710 
2711 EXPORT_SYMBOL(tcp_close);
2712 EXPORT_SYMBOL(tcp_disconnect);
2713 EXPORT_SYMBOL(tcp_getsockopt);
2714 EXPORT_SYMBOL(tcp_ioctl);
2715 EXPORT_SYMBOL(tcp_poll);
2716 EXPORT_SYMBOL(tcp_read_sock);
2717 EXPORT_SYMBOL(tcp_recvmsg);
2718 EXPORT_SYMBOL(tcp_sendmsg);
2719 EXPORT_SYMBOL(tcp_splice_read);
2720 EXPORT_SYMBOL(tcp_sendpage);
2721 EXPORT_SYMBOL(tcp_setsockopt);
2722 EXPORT_SYMBOL(tcp_shutdown);
2723 EXPORT_SYMBOL(tcp_statistics);
2724