1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/sock.h> 277 278 #include <linux/uaccess.h> 279 #include <asm/ioctls.h> 280 #include <net/busy_poll.h> 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 EXPORT_SYMBOL(sysctl_tcp_mem); 287 288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 289 EXPORT_SYMBOL(tcp_memory_allocated); 290 291 #if IS_ENABLED(CONFIG_SMC) 292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 293 EXPORT_SYMBOL(tcp_have_smc); 294 #endif 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 unsigned long tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 319 320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 321 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 322 323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 324 325 void tcp_enter_memory_pressure(struct sock *sk) 326 { 327 unsigned long val; 328 329 if (tcp_memory_pressure) 330 return; 331 val = jiffies; 332 333 if (!val) 334 val--; 335 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 337 } 338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 339 340 void tcp_leave_memory_pressure(struct sock *sk) 341 { 342 unsigned long val; 343 344 if (!tcp_memory_pressure) 345 return; 346 val = xchg(&tcp_memory_pressure, 0); 347 if (val) 348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 349 jiffies_to_msecs(jiffies - val)); 350 } 351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 352 353 /* Convert seconds to retransmits based on initial and max timeout */ 354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 355 { 356 u8 res = 0; 357 358 if (seconds > 0) { 359 int period = timeout; 360 361 res = 1; 362 while (seconds > period && res < 255) { 363 res++; 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return res; 371 } 372 373 /* Convert retransmits to seconds based on initial and max timeout */ 374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 375 { 376 int period = 0; 377 378 if (retrans > 0) { 379 period = timeout; 380 while (--retrans) { 381 timeout <<= 1; 382 if (timeout > rto_max) 383 timeout = rto_max; 384 period += timeout; 385 } 386 } 387 return period; 388 } 389 390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 391 { 392 u32 rate = READ_ONCE(tp->rate_delivered); 393 u32 intv = READ_ONCE(tp->rate_interval_us); 394 u64 rate64 = 0; 395 396 if (rate && intv) { 397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 398 do_div(rate64, intv); 399 } 400 return rate64; 401 } 402 403 /* Address-family independent initialization for a tcp_sock. 404 * 405 * NOTE: A lot of things set to zero explicitly by call to 406 * sk_alloc() so need not be done here. 407 */ 408 void tcp_init_sock(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 tp->out_of_order_queue = RB_ROOT; 414 sk->tcp_rtx_queue = RB_ROOT; 415 tcp_init_xmit_timers(sk); 416 INIT_LIST_HEAD(&tp->tsq_node); 417 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 418 419 icsk->icsk_rto = TCP_TIMEOUT_INIT; 420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 422 423 /* So many TCP implementations out there (incorrectly) count the 424 * initial SYN frame in their delayed-ACK and congestion control 425 * algorithms that we must have the following bandaid to talk 426 * efficiently to them. -DaveM 427 */ 428 tp->snd_cwnd = TCP_INIT_CWND; 429 430 /* There's a bubble in the pipe until at least the first ACK. */ 431 tp->app_limited = ~0U; 432 433 /* See draft-stevens-tcpca-spec-01 for discussion of the 434 * initialization of these values. 435 */ 436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 437 tp->snd_cwnd_clamp = ~0; 438 tp->mss_cache = TCP_MSS_DEFAULT; 439 440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 441 tcp_assign_congestion_control(sk); 442 443 tp->tsoffset = 0; 444 tp->rack.reo_wnd_steps = 1; 445 446 sk->sk_state = TCP_CLOSE; 447 448 sk->sk_write_space = sk_stream_write_space; 449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 450 451 icsk->icsk_sync_mss = tcp_sync_mss; 452 453 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 454 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 455 456 sk_sockets_allocated_inc(sk); 457 sk->sk_route_forced_caps = NETIF_F_GSO; 458 } 459 EXPORT_SYMBOL(tcp_init_sock); 460 461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 462 { 463 struct sk_buff *skb = tcp_write_queue_tail(sk); 464 465 if (tsflags && skb) { 466 struct skb_shared_info *shinfo = skb_shinfo(skb); 467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 468 469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 470 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 471 tcb->txstamp_ack = 1; 472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 474 } 475 } 476 477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 478 int target, struct sock *sk) 479 { 480 return (tp->rcv_nxt - tp->copied_seq >= target) || 481 (sk->sk_prot->stream_memory_read ? 482 sk->sk_prot->stream_memory_read(sk) : false); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (tp->urg_seq == tp->copied_seq && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll); 593 594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 611 break; 612 case SIOCOUTQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 617 answ = 0; 618 else 619 answ = tp->write_seq - tp->snd_una; 620 break; 621 case SIOCOUTQNSD: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = tp->write_seq - tp->snd_nxt; 629 break; 630 default: 631 return -ENOIOCTLCMD; 632 } 633 634 return put_user(answ, (int __user *)arg); 635 } 636 EXPORT_SYMBOL(tcp_ioctl); 637 638 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 639 { 640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 641 tp->pushed_seq = tp->write_seq; 642 } 643 644 static inline bool forced_push(const struct tcp_sock *tp) 645 { 646 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 647 } 648 649 static void skb_entail(struct sock *sk, struct sk_buff *skb) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 653 654 skb->csum = 0; 655 tcb->seq = tcb->end_seq = tp->write_seq; 656 tcb->tcp_flags = TCPHDR_ACK; 657 tcb->sacked = 0; 658 __skb_header_release(skb); 659 tcp_add_write_queue_tail(sk, skb); 660 sk->sk_wmem_queued += skb->truesize; 661 sk_mem_charge(sk, skb->truesize); 662 if (tp->nonagle & TCP_NAGLE_PUSH) 663 tp->nonagle &= ~TCP_NAGLE_PUSH; 664 665 tcp_slow_start_after_idle_check(sk); 666 } 667 668 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 669 { 670 if (flags & MSG_OOB) 671 tp->snd_up = tp->write_seq; 672 } 673 674 /* If a not yet filled skb is pushed, do not send it if 675 * we have data packets in Qdisc or NIC queues : 676 * Because TX completion will happen shortly, it gives a chance 677 * to coalesce future sendmsg() payload into this skb, without 678 * need for a timer, and with no latency trade off. 679 * As packets containing data payload have a bigger truesize 680 * than pure acks (dataless) packets, the last checks prevent 681 * autocorking if we only have an ACK in Qdisc/NIC queues, 682 * or if TX completion was delayed after we processed ACK packet. 683 */ 684 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 685 int size_goal) 686 { 687 return skb->len < size_goal && 688 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 689 !tcp_rtx_queue_empty(sk) && 690 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 691 } 692 693 static void tcp_push(struct sock *sk, int flags, int mss_now, 694 int nonagle, int size_goal) 695 { 696 struct tcp_sock *tp = tcp_sk(sk); 697 struct sk_buff *skb; 698 699 skb = tcp_write_queue_tail(sk); 700 if (!skb) 701 return; 702 if (!(flags & MSG_MORE) || forced_push(tp)) 703 tcp_mark_push(tp, skb); 704 705 tcp_mark_urg(tp, flags); 706 707 if (tcp_should_autocork(sk, skb, size_goal)) { 708 709 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 710 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 712 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 713 } 714 /* It is possible TX completion already happened 715 * before we set TSQ_THROTTLED. 716 */ 717 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 718 return; 719 } 720 721 if (flags & MSG_MORE) 722 nonagle = TCP_NAGLE_CORK; 723 724 __tcp_push_pending_frames(sk, mss_now, nonagle); 725 } 726 727 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 728 unsigned int offset, size_t len) 729 { 730 struct tcp_splice_state *tss = rd_desc->arg.data; 731 int ret; 732 733 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 734 min(rd_desc->count, len), tss->flags); 735 if (ret > 0) 736 rd_desc->count -= ret; 737 return ret; 738 } 739 740 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 741 { 742 /* Store TCP splice context information in read_descriptor_t. */ 743 read_descriptor_t rd_desc = { 744 .arg.data = tss, 745 .count = tss->len, 746 }; 747 748 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 749 } 750 751 /** 752 * tcp_splice_read - splice data from TCP socket to a pipe 753 * @sock: socket to splice from 754 * @ppos: position (not valid) 755 * @pipe: pipe to splice to 756 * @len: number of bytes to splice 757 * @flags: splice modifier flags 758 * 759 * Description: 760 * Will read pages from given socket and fill them into a pipe. 761 * 762 **/ 763 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 764 struct pipe_inode_info *pipe, size_t len, 765 unsigned int flags) 766 { 767 struct sock *sk = sock->sk; 768 struct tcp_splice_state tss = { 769 .pipe = pipe, 770 .len = len, 771 .flags = flags, 772 }; 773 long timeo; 774 ssize_t spliced; 775 int ret; 776 777 sock_rps_record_flow(sk); 778 /* 779 * We can't seek on a socket input 780 */ 781 if (unlikely(*ppos)) 782 return -ESPIPE; 783 784 ret = spliced = 0; 785 786 lock_sock(sk); 787 788 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 789 while (tss.len) { 790 ret = __tcp_splice_read(sk, &tss); 791 if (ret < 0) 792 break; 793 else if (!ret) { 794 if (spliced) 795 break; 796 if (sock_flag(sk, SOCK_DONE)) 797 break; 798 if (sk->sk_err) { 799 ret = sock_error(sk); 800 break; 801 } 802 if (sk->sk_shutdown & RCV_SHUTDOWN) 803 break; 804 if (sk->sk_state == TCP_CLOSE) { 805 /* 806 * This occurs when user tries to read 807 * from never connected socket. 808 */ 809 ret = -ENOTCONN; 810 break; 811 } 812 if (!timeo) { 813 ret = -EAGAIN; 814 break; 815 } 816 /* if __tcp_splice_read() got nothing while we have 817 * an skb in receive queue, we do not want to loop. 818 * This might happen with URG data. 819 */ 820 if (!skb_queue_empty(&sk->sk_receive_queue)) 821 break; 822 sk_wait_data(sk, &timeo, NULL); 823 if (signal_pending(current)) { 824 ret = sock_intr_errno(timeo); 825 break; 826 } 827 continue; 828 } 829 tss.len -= ret; 830 spliced += ret; 831 832 if (!timeo) 833 break; 834 release_sock(sk); 835 lock_sock(sk); 836 837 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 838 (sk->sk_shutdown & RCV_SHUTDOWN) || 839 signal_pending(current)) 840 break; 841 } 842 843 release_sock(sk); 844 845 if (spliced) 846 return spliced; 847 848 return ret; 849 } 850 EXPORT_SYMBOL(tcp_splice_read); 851 852 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 853 bool force_schedule) 854 { 855 struct sk_buff *skb; 856 857 if (likely(!size)) { 858 skb = sk->sk_tx_skb_cache; 859 if (skb) { 860 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 861 sk->sk_tx_skb_cache = NULL; 862 pskb_trim(skb, 0); 863 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 864 skb_shinfo(skb)->tx_flags = 0; 865 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 866 return skb; 867 } 868 } 869 /* The TCP header must be at least 32-bit aligned. */ 870 size = ALIGN(size, 4); 871 872 if (unlikely(tcp_under_memory_pressure(sk))) 873 sk_mem_reclaim_partial(sk); 874 875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 876 if (likely(skb)) { 877 bool mem_scheduled; 878 879 if (force_schedule) { 880 mem_scheduled = true; 881 sk_forced_mem_schedule(sk, skb->truesize); 882 } else { 883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 884 } 885 if (likely(mem_scheduled)) { 886 skb_reserve(skb, sk->sk_prot->max_header); 887 /* 888 * Make sure that we have exactly size bytes 889 * available to the caller, no more, no less. 890 */ 891 skb->reserved_tailroom = skb->end - skb->tail - size; 892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 893 return skb; 894 } 895 __kfree_skb(skb); 896 } else { 897 sk->sk_prot->enter_memory_pressure(sk); 898 sk_stream_moderate_sndbuf(sk); 899 } 900 return NULL; 901 } 902 903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 904 int large_allowed) 905 { 906 struct tcp_sock *tp = tcp_sk(sk); 907 u32 new_size_goal, size_goal; 908 909 if (!large_allowed) 910 return mss_now; 911 912 /* Note : tcp_tso_autosize() will eventually split this later */ 913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 939 size_t size, int flags) 940 { 941 struct tcp_sock *tp = tcp_sk(sk); 942 int mss_now, size_goal; 943 int err; 944 ssize_t copied; 945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 946 947 if (IS_ENABLED(CONFIG_DEBUG_VM) && 948 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 949 return -EINVAL; 950 951 /* Wait for a connection to finish. One exception is TCP Fast Open 952 * (passive side) where data is allowed to be sent before a connection 953 * is fully established. 954 */ 955 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 956 !tcp_passive_fastopen(sk)) { 957 err = sk_stream_wait_connect(sk, &timeo); 958 if (err != 0) 959 goto out_err; 960 } 961 962 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 963 964 mss_now = tcp_send_mss(sk, &size_goal, flags); 965 copied = 0; 966 967 err = -EPIPE; 968 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 969 goto out_err; 970 971 while (size > 0) { 972 struct sk_buff *skb = tcp_write_queue_tail(sk); 973 int copy, i; 974 bool can_coalesce; 975 976 if (!skb || (copy = size_goal - skb->len) <= 0 || 977 !tcp_skb_can_collapse_to(skb)) { 978 new_segment: 979 if (!sk_stream_memory_free(sk)) 980 goto wait_for_sndbuf; 981 982 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 983 tcp_rtx_and_write_queues_empty(sk)); 984 if (!skb) 985 goto wait_for_memory; 986 987 skb_entail(sk, skb); 988 copy = size_goal; 989 } 990 991 if (copy > size) 992 copy = size; 993 994 i = skb_shinfo(skb)->nr_frags; 995 can_coalesce = skb_can_coalesce(skb, i, page, offset); 996 if (!can_coalesce && i >= sysctl_max_skb_frags) { 997 tcp_mark_push(tp, skb); 998 goto new_segment; 999 } 1000 if (!sk_wmem_schedule(sk, copy)) 1001 goto wait_for_memory; 1002 1003 if (can_coalesce) { 1004 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1005 } else { 1006 get_page(page); 1007 skb_fill_page_desc(skb, i, page, offset, copy); 1008 } 1009 1010 if (!(flags & MSG_NO_SHARED_FRAGS)) 1011 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1012 1013 skb->len += copy; 1014 skb->data_len += copy; 1015 skb->truesize += copy; 1016 sk->sk_wmem_queued += copy; 1017 sk_mem_charge(sk, copy); 1018 skb->ip_summed = CHECKSUM_PARTIAL; 1019 tp->write_seq += copy; 1020 TCP_SKB_CB(skb)->end_seq += copy; 1021 tcp_skb_pcount_set(skb, 0); 1022 1023 if (!copied) 1024 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1025 1026 copied += copy; 1027 offset += copy; 1028 size -= copy; 1029 if (!size) 1030 goto out; 1031 1032 if (skb->len < size_goal || (flags & MSG_OOB)) 1033 continue; 1034 1035 if (forced_push(tp)) { 1036 tcp_mark_push(tp, skb); 1037 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1038 } else if (skb == tcp_send_head(sk)) 1039 tcp_push_one(sk, mss_now); 1040 continue; 1041 1042 wait_for_sndbuf: 1043 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1044 wait_for_memory: 1045 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1046 TCP_NAGLE_PUSH, size_goal); 1047 1048 err = sk_stream_wait_memory(sk, &timeo); 1049 if (err != 0) 1050 goto do_error; 1051 1052 mss_now = tcp_send_mss(sk, &size_goal, flags); 1053 } 1054 1055 out: 1056 if (copied) { 1057 tcp_tx_timestamp(sk, sk->sk_tsflags); 1058 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1059 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1060 } 1061 return copied; 1062 1063 do_error: 1064 if (copied) 1065 goto out; 1066 out_err: 1067 /* make sure we wake any epoll edge trigger waiter */ 1068 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1069 err == -EAGAIN)) { 1070 sk->sk_write_space(sk); 1071 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1072 } 1073 return sk_stream_error(sk, flags, err); 1074 } 1075 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1076 1077 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1078 size_t size, int flags) 1079 { 1080 if (!(sk->sk_route_caps & NETIF_F_SG)) 1081 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1082 1083 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1084 1085 return do_tcp_sendpages(sk, page, offset, size, flags); 1086 } 1087 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1088 1089 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1090 size_t size, int flags) 1091 { 1092 int ret; 1093 1094 lock_sock(sk); 1095 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1096 release_sock(sk); 1097 1098 return ret; 1099 } 1100 EXPORT_SYMBOL(tcp_sendpage); 1101 1102 void tcp_free_fastopen_req(struct tcp_sock *tp) 1103 { 1104 if (tp->fastopen_req) { 1105 kfree(tp->fastopen_req); 1106 tp->fastopen_req = NULL; 1107 } 1108 } 1109 1110 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1111 int *copied, size_t size, 1112 struct ubuf_info *uarg) 1113 { 1114 struct tcp_sock *tp = tcp_sk(sk); 1115 struct inet_sock *inet = inet_sk(sk); 1116 struct sockaddr *uaddr = msg->msg_name; 1117 int err, flags; 1118 1119 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1120 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1121 uaddr->sa_family == AF_UNSPEC)) 1122 return -EOPNOTSUPP; 1123 if (tp->fastopen_req) 1124 return -EALREADY; /* Another Fast Open is in progress */ 1125 1126 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1127 sk->sk_allocation); 1128 if (unlikely(!tp->fastopen_req)) 1129 return -ENOBUFS; 1130 tp->fastopen_req->data = msg; 1131 tp->fastopen_req->size = size; 1132 tp->fastopen_req->uarg = uarg; 1133 1134 if (inet->defer_connect) { 1135 err = tcp_connect(sk); 1136 /* Same failure procedure as in tcp_v4/6_connect */ 1137 if (err) { 1138 tcp_set_state(sk, TCP_CLOSE); 1139 inet->inet_dport = 0; 1140 sk->sk_route_caps = 0; 1141 } 1142 } 1143 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1144 err = __inet_stream_connect(sk->sk_socket, uaddr, 1145 msg->msg_namelen, flags, 1); 1146 /* fastopen_req could already be freed in __inet_stream_connect 1147 * if the connection times out or gets rst 1148 */ 1149 if (tp->fastopen_req) { 1150 *copied = tp->fastopen_req->copied; 1151 tcp_free_fastopen_req(tp); 1152 inet->defer_connect = 0; 1153 } 1154 return err; 1155 } 1156 1157 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1158 { 1159 struct tcp_sock *tp = tcp_sk(sk); 1160 struct ubuf_info *uarg = NULL; 1161 struct sk_buff *skb; 1162 struct sockcm_cookie sockc; 1163 int flags, err, copied = 0; 1164 int mss_now = 0, size_goal, copied_syn = 0; 1165 bool process_backlog = false; 1166 bool zc = false; 1167 long timeo; 1168 1169 flags = msg->msg_flags; 1170 1171 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1172 skb = tcp_write_queue_tail(sk); 1173 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1174 if (!uarg) { 1175 err = -ENOBUFS; 1176 goto out_err; 1177 } 1178 1179 zc = sk->sk_route_caps & NETIF_F_SG; 1180 if (!zc) 1181 uarg->zerocopy = 0; 1182 } 1183 1184 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1185 !tp->repair) { 1186 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1187 if (err == -EINPROGRESS && copied_syn > 0) 1188 goto out; 1189 else if (err) 1190 goto out_err; 1191 } 1192 1193 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1194 1195 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1196 1197 /* Wait for a connection to finish. One exception is TCP Fast Open 1198 * (passive side) where data is allowed to be sent before a connection 1199 * is fully established. 1200 */ 1201 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1202 !tcp_passive_fastopen(sk)) { 1203 err = sk_stream_wait_connect(sk, &timeo); 1204 if (err != 0) 1205 goto do_error; 1206 } 1207 1208 if (unlikely(tp->repair)) { 1209 if (tp->repair_queue == TCP_RECV_QUEUE) { 1210 copied = tcp_send_rcvq(sk, msg, size); 1211 goto out_nopush; 1212 } 1213 1214 err = -EINVAL; 1215 if (tp->repair_queue == TCP_NO_QUEUE) 1216 goto out_err; 1217 1218 /* 'common' sending to sendq */ 1219 } 1220 1221 sockcm_init(&sockc, sk); 1222 if (msg->msg_controllen) { 1223 err = sock_cmsg_send(sk, msg, &sockc); 1224 if (unlikely(err)) { 1225 err = -EINVAL; 1226 goto out_err; 1227 } 1228 } 1229 1230 /* This should be in poll */ 1231 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1232 1233 /* Ok commence sending. */ 1234 copied = 0; 1235 1236 restart: 1237 mss_now = tcp_send_mss(sk, &size_goal, flags); 1238 1239 err = -EPIPE; 1240 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1241 goto do_error; 1242 1243 while (msg_data_left(msg)) { 1244 int copy = 0; 1245 1246 skb = tcp_write_queue_tail(sk); 1247 if (skb) 1248 copy = size_goal - skb->len; 1249 1250 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1251 bool first_skb; 1252 1253 new_segment: 1254 if (!sk_stream_memory_free(sk)) 1255 goto wait_for_sndbuf; 1256 1257 if (process_backlog && sk_flush_backlog(sk)) { 1258 process_backlog = false; 1259 goto restart; 1260 } 1261 first_skb = tcp_rtx_and_write_queues_empty(sk); 1262 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1263 first_skb); 1264 if (!skb) 1265 goto wait_for_memory; 1266 1267 process_backlog = true; 1268 skb->ip_summed = CHECKSUM_PARTIAL; 1269 1270 skb_entail(sk, skb); 1271 copy = size_goal; 1272 1273 /* All packets are restored as if they have 1274 * already been sent. skb_mstamp_ns isn't set to 1275 * avoid wrong rtt estimation. 1276 */ 1277 if (tp->repair) 1278 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1279 } 1280 1281 /* Try to append data to the end of skb. */ 1282 if (copy > msg_data_left(msg)) 1283 copy = msg_data_left(msg); 1284 1285 /* Where to copy to? */ 1286 if (skb_availroom(skb) > 0 && !zc) { 1287 /* We have some space in skb head. Superb! */ 1288 copy = min_t(int, copy, skb_availroom(skb)); 1289 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1290 if (err) 1291 goto do_fault; 1292 } else if (!zc) { 1293 bool merge = true; 1294 int i = skb_shinfo(skb)->nr_frags; 1295 struct page_frag *pfrag = sk_page_frag(sk); 1296 1297 if (!sk_page_frag_refill(sk, pfrag)) 1298 goto wait_for_memory; 1299 1300 if (!skb_can_coalesce(skb, i, pfrag->page, 1301 pfrag->offset)) { 1302 if (i >= sysctl_max_skb_frags) { 1303 tcp_mark_push(tp, skb); 1304 goto new_segment; 1305 } 1306 merge = false; 1307 } 1308 1309 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1310 1311 if (!sk_wmem_schedule(sk, copy)) 1312 goto wait_for_memory; 1313 1314 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1315 pfrag->page, 1316 pfrag->offset, 1317 copy); 1318 if (err) 1319 goto do_error; 1320 1321 /* Update the skb. */ 1322 if (merge) { 1323 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1324 } else { 1325 skb_fill_page_desc(skb, i, pfrag->page, 1326 pfrag->offset, copy); 1327 page_ref_inc(pfrag->page); 1328 } 1329 pfrag->offset += copy; 1330 } else { 1331 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1332 if (err == -EMSGSIZE || err == -EEXIST) { 1333 tcp_mark_push(tp, skb); 1334 goto new_segment; 1335 } 1336 if (err < 0) 1337 goto do_error; 1338 copy = err; 1339 } 1340 1341 if (!copied) 1342 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1343 1344 tp->write_seq += copy; 1345 TCP_SKB_CB(skb)->end_seq += copy; 1346 tcp_skb_pcount_set(skb, 0); 1347 1348 copied += copy; 1349 if (!msg_data_left(msg)) { 1350 if (unlikely(flags & MSG_EOR)) 1351 TCP_SKB_CB(skb)->eor = 1; 1352 goto out; 1353 } 1354 1355 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1356 continue; 1357 1358 if (forced_push(tp)) { 1359 tcp_mark_push(tp, skb); 1360 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1361 } else if (skb == tcp_send_head(sk)) 1362 tcp_push_one(sk, mss_now); 1363 continue; 1364 1365 wait_for_sndbuf: 1366 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1367 wait_for_memory: 1368 if (copied) 1369 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1370 TCP_NAGLE_PUSH, size_goal); 1371 1372 err = sk_stream_wait_memory(sk, &timeo); 1373 if (err != 0) 1374 goto do_error; 1375 1376 mss_now = tcp_send_mss(sk, &size_goal, flags); 1377 } 1378 1379 out: 1380 if (copied) { 1381 tcp_tx_timestamp(sk, sockc.tsflags); 1382 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1383 } 1384 out_nopush: 1385 sock_zerocopy_put(uarg); 1386 return copied + copied_syn; 1387 1388 do_fault: 1389 if (!skb->len) { 1390 tcp_unlink_write_queue(skb, sk); 1391 /* It is the one place in all of TCP, except connection 1392 * reset, where we can be unlinking the send_head. 1393 */ 1394 if (tcp_write_queue_empty(sk)) 1395 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 1396 sk_wmem_free_skb(sk, skb); 1397 } 1398 1399 do_error: 1400 if (copied + copied_syn) 1401 goto out; 1402 out_err: 1403 sock_zerocopy_put_abort(uarg, true); 1404 err = sk_stream_error(sk, flags, err); 1405 /* make sure we wake any epoll edge trigger waiter */ 1406 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1407 err == -EAGAIN)) { 1408 sk->sk_write_space(sk); 1409 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1410 } 1411 return err; 1412 } 1413 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1414 1415 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1416 { 1417 int ret; 1418 1419 lock_sock(sk); 1420 ret = tcp_sendmsg_locked(sk, msg, size); 1421 release_sock(sk); 1422 1423 return ret; 1424 } 1425 EXPORT_SYMBOL(tcp_sendmsg); 1426 1427 /* 1428 * Handle reading urgent data. BSD has very simple semantics for 1429 * this, no blocking and very strange errors 8) 1430 */ 1431 1432 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1433 { 1434 struct tcp_sock *tp = tcp_sk(sk); 1435 1436 /* No URG data to read. */ 1437 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1438 tp->urg_data == TCP_URG_READ) 1439 return -EINVAL; /* Yes this is right ! */ 1440 1441 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1442 return -ENOTCONN; 1443 1444 if (tp->urg_data & TCP_URG_VALID) { 1445 int err = 0; 1446 char c = tp->urg_data; 1447 1448 if (!(flags & MSG_PEEK)) 1449 tp->urg_data = TCP_URG_READ; 1450 1451 /* Read urgent data. */ 1452 msg->msg_flags |= MSG_OOB; 1453 1454 if (len > 0) { 1455 if (!(flags & MSG_TRUNC)) 1456 err = memcpy_to_msg(msg, &c, 1); 1457 len = 1; 1458 } else 1459 msg->msg_flags |= MSG_TRUNC; 1460 1461 return err ? -EFAULT : len; 1462 } 1463 1464 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1465 return 0; 1466 1467 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1468 * the available implementations agree in this case: 1469 * this call should never block, independent of the 1470 * blocking state of the socket. 1471 * Mike <pall@rz.uni-karlsruhe.de> 1472 */ 1473 return -EAGAIN; 1474 } 1475 1476 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1477 { 1478 struct sk_buff *skb; 1479 int copied = 0, err = 0; 1480 1481 /* XXX -- need to support SO_PEEK_OFF */ 1482 1483 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1484 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1485 if (err) 1486 return err; 1487 copied += skb->len; 1488 } 1489 1490 skb_queue_walk(&sk->sk_write_queue, skb) { 1491 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1492 if (err) 1493 break; 1494 1495 copied += skb->len; 1496 } 1497 1498 return err ?: copied; 1499 } 1500 1501 /* Clean up the receive buffer for full frames taken by the user, 1502 * then send an ACK if necessary. COPIED is the number of bytes 1503 * tcp_recvmsg has given to the user so far, it speeds up the 1504 * calculation of whether or not we must ACK for the sake of 1505 * a window update. 1506 */ 1507 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1508 { 1509 struct tcp_sock *tp = tcp_sk(sk); 1510 bool time_to_ack = false; 1511 1512 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1513 1514 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1515 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1516 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1517 1518 if (inet_csk_ack_scheduled(sk)) { 1519 const struct inet_connection_sock *icsk = inet_csk(sk); 1520 /* Delayed ACKs frequently hit locked sockets during bulk 1521 * receive. */ 1522 if (icsk->icsk_ack.blocked || 1523 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1524 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1525 /* 1526 * If this read emptied read buffer, we send ACK, if 1527 * connection is not bidirectional, user drained 1528 * receive buffer and there was a small segment 1529 * in queue. 1530 */ 1531 (copied > 0 && 1532 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1533 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1534 !inet_csk_in_pingpong_mode(sk))) && 1535 !atomic_read(&sk->sk_rmem_alloc))) 1536 time_to_ack = true; 1537 } 1538 1539 /* We send an ACK if we can now advertise a non-zero window 1540 * which has been raised "significantly". 1541 * 1542 * Even if window raised up to infinity, do not send window open ACK 1543 * in states, where we will not receive more. It is useless. 1544 */ 1545 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1546 __u32 rcv_window_now = tcp_receive_window(tp); 1547 1548 /* Optimize, __tcp_select_window() is not cheap. */ 1549 if (2*rcv_window_now <= tp->window_clamp) { 1550 __u32 new_window = __tcp_select_window(sk); 1551 1552 /* Send ACK now, if this read freed lots of space 1553 * in our buffer. Certainly, new_window is new window. 1554 * We can advertise it now, if it is not less than current one. 1555 * "Lots" means "at least twice" here. 1556 */ 1557 if (new_window && new_window >= 2 * rcv_window_now) 1558 time_to_ack = true; 1559 } 1560 } 1561 if (time_to_ack) 1562 tcp_send_ack(sk); 1563 } 1564 1565 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1566 { 1567 struct sk_buff *skb; 1568 u32 offset; 1569 1570 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1571 offset = seq - TCP_SKB_CB(skb)->seq; 1572 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1573 pr_err_once("%s: found a SYN, please report !\n", __func__); 1574 offset--; 1575 } 1576 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1577 *off = offset; 1578 return skb; 1579 } 1580 /* This looks weird, but this can happen if TCP collapsing 1581 * splitted a fat GRO packet, while we released socket lock 1582 * in skb_splice_bits() 1583 */ 1584 sk_eat_skb(sk, skb); 1585 } 1586 return NULL; 1587 } 1588 1589 /* 1590 * This routine provides an alternative to tcp_recvmsg() for routines 1591 * that would like to handle copying from skbuffs directly in 'sendfile' 1592 * fashion. 1593 * Note: 1594 * - It is assumed that the socket was locked by the caller. 1595 * - The routine does not block. 1596 * - At present, there is no support for reading OOB data 1597 * or for 'peeking' the socket using this routine 1598 * (although both would be easy to implement). 1599 */ 1600 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1601 sk_read_actor_t recv_actor) 1602 { 1603 struct sk_buff *skb; 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 u32 seq = tp->copied_seq; 1606 u32 offset; 1607 int copied = 0; 1608 1609 if (sk->sk_state == TCP_LISTEN) 1610 return -ENOTCONN; 1611 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1612 if (offset < skb->len) { 1613 int used; 1614 size_t len; 1615 1616 len = skb->len - offset; 1617 /* Stop reading if we hit a patch of urgent data */ 1618 if (tp->urg_data) { 1619 u32 urg_offset = tp->urg_seq - seq; 1620 if (urg_offset < len) 1621 len = urg_offset; 1622 if (!len) 1623 break; 1624 } 1625 used = recv_actor(desc, skb, offset, len); 1626 if (used <= 0) { 1627 if (!copied) 1628 copied = used; 1629 break; 1630 } else if (used <= len) { 1631 seq += used; 1632 copied += used; 1633 offset += used; 1634 } 1635 /* If recv_actor drops the lock (e.g. TCP splice 1636 * receive) the skb pointer might be invalid when 1637 * getting here: tcp_collapse might have deleted it 1638 * while aggregating skbs from the socket queue. 1639 */ 1640 skb = tcp_recv_skb(sk, seq - 1, &offset); 1641 if (!skb) 1642 break; 1643 /* TCP coalescing might have appended data to the skb. 1644 * Try to splice more frags 1645 */ 1646 if (offset + 1 != skb->len) 1647 continue; 1648 } 1649 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1650 sk_eat_skb(sk, skb); 1651 ++seq; 1652 break; 1653 } 1654 sk_eat_skb(sk, skb); 1655 if (!desc->count) 1656 break; 1657 tp->copied_seq = seq; 1658 } 1659 tp->copied_seq = seq; 1660 1661 tcp_rcv_space_adjust(sk); 1662 1663 /* Clean up data we have read: This will do ACK frames. */ 1664 if (copied > 0) { 1665 tcp_recv_skb(sk, seq, &offset); 1666 tcp_cleanup_rbuf(sk, copied); 1667 } 1668 return copied; 1669 } 1670 EXPORT_SYMBOL(tcp_read_sock); 1671 1672 int tcp_peek_len(struct socket *sock) 1673 { 1674 return tcp_inq(sock->sk); 1675 } 1676 EXPORT_SYMBOL(tcp_peek_len); 1677 1678 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1679 int tcp_set_rcvlowat(struct sock *sk, int val) 1680 { 1681 int cap; 1682 1683 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1684 cap = sk->sk_rcvbuf >> 1; 1685 else 1686 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1687 val = min(val, cap); 1688 sk->sk_rcvlowat = val ? : 1; 1689 1690 /* Check if we need to signal EPOLLIN right now */ 1691 tcp_data_ready(sk); 1692 1693 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1694 return 0; 1695 1696 val <<= 1; 1697 if (val > sk->sk_rcvbuf) { 1698 sk->sk_rcvbuf = val; 1699 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1700 } 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(tcp_set_rcvlowat); 1704 1705 #ifdef CONFIG_MMU 1706 static const struct vm_operations_struct tcp_vm_ops = { 1707 }; 1708 1709 int tcp_mmap(struct file *file, struct socket *sock, 1710 struct vm_area_struct *vma) 1711 { 1712 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1713 return -EPERM; 1714 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1715 1716 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1717 vma->vm_flags |= VM_MIXEDMAP; 1718 1719 vma->vm_ops = &tcp_vm_ops; 1720 return 0; 1721 } 1722 EXPORT_SYMBOL(tcp_mmap); 1723 1724 static int tcp_zerocopy_receive(struct sock *sk, 1725 struct tcp_zerocopy_receive *zc) 1726 { 1727 unsigned long address = (unsigned long)zc->address; 1728 const skb_frag_t *frags = NULL; 1729 u32 length = 0, seq, offset; 1730 struct vm_area_struct *vma; 1731 struct sk_buff *skb = NULL; 1732 struct tcp_sock *tp; 1733 int inq; 1734 int ret; 1735 1736 if (address & (PAGE_SIZE - 1) || address != zc->address) 1737 return -EINVAL; 1738 1739 if (sk->sk_state == TCP_LISTEN) 1740 return -ENOTCONN; 1741 1742 sock_rps_record_flow(sk); 1743 1744 down_read(¤t->mm->mmap_sem); 1745 1746 ret = -EINVAL; 1747 vma = find_vma(current->mm, address); 1748 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1749 goto out; 1750 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1751 1752 tp = tcp_sk(sk); 1753 seq = tp->copied_seq; 1754 inq = tcp_inq(sk); 1755 zc->length = min_t(u32, zc->length, inq); 1756 zc->length &= ~(PAGE_SIZE - 1); 1757 if (zc->length) { 1758 zap_page_range(vma, address, zc->length); 1759 zc->recv_skip_hint = 0; 1760 } else { 1761 zc->recv_skip_hint = inq; 1762 } 1763 ret = 0; 1764 while (length + PAGE_SIZE <= zc->length) { 1765 if (zc->recv_skip_hint < PAGE_SIZE) { 1766 if (skb) { 1767 skb = skb->next; 1768 offset = seq - TCP_SKB_CB(skb)->seq; 1769 } else { 1770 skb = tcp_recv_skb(sk, seq, &offset); 1771 } 1772 1773 zc->recv_skip_hint = skb->len - offset; 1774 offset -= skb_headlen(skb); 1775 if ((int)offset < 0 || skb_has_frag_list(skb)) 1776 break; 1777 frags = skb_shinfo(skb)->frags; 1778 while (offset) { 1779 if (frags->size > offset) 1780 goto out; 1781 offset -= frags->size; 1782 frags++; 1783 } 1784 } 1785 if (frags->size != PAGE_SIZE || frags->page_offset) { 1786 int remaining = zc->recv_skip_hint; 1787 1788 while (remaining && (frags->size != PAGE_SIZE || 1789 frags->page_offset)) { 1790 remaining -= frags->size; 1791 frags++; 1792 } 1793 zc->recv_skip_hint -= remaining; 1794 break; 1795 } 1796 ret = vm_insert_page(vma, address + length, 1797 skb_frag_page(frags)); 1798 if (ret) 1799 break; 1800 length += PAGE_SIZE; 1801 seq += PAGE_SIZE; 1802 zc->recv_skip_hint -= PAGE_SIZE; 1803 frags++; 1804 } 1805 out: 1806 up_read(¤t->mm->mmap_sem); 1807 if (length) { 1808 tp->copied_seq = seq; 1809 tcp_rcv_space_adjust(sk); 1810 1811 /* Clean up data we have read: This will do ACK frames. */ 1812 tcp_recv_skb(sk, seq, &offset); 1813 tcp_cleanup_rbuf(sk, length); 1814 ret = 0; 1815 if (length == zc->length) 1816 zc->recv_skip_hint = 0; 1817 } else { 1818 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1819 ret = -EIO; 1820 } 1821 zc->length = length; 1822 return ret; 1823 } 1824 #endif 1825 1826 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1827 struct scm_timestamping_internal *tss) 1828 { 1829 if (skb->tstamp) 1830 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1831 else 1832 tss->ts[0] = (struct timespec64) {0}; 1833 1834 if (skb_hwtstamps(skb)->hwtstamp) 1835 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1836 else 1837 tss->ts[2] = (struct timespec64) {0}; 1838 } 1839 1840 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1841 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1842 struct scm_timestamping_internal *tss) 1843 { 1844 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1845 bool has_timestamping = false; 1846 1847 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1848 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1849 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1850 if (new_tstamp) { 1851 struct __kernel_timespec kts = {tss->ts[0].tv_sec, tss->ts[0].tv_nsec}; 1852 1853 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1854 sizeof(kts), &kts); 1855 } else { 1856 struct timespec ts_old = timespec64_to_timespec(tss->ts[0]); 1857 1858 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1859 sizeof(ts_old), &ts_old); 1860 } 1861 } else { 1862 if (new_tstamp) { 1863 struct __kernel_sock_timeval stv; 1864 1865 stv.tv_sec = tss->ts[0].tv_sec; 1866 stv.tv_usec = tss->ts[0].tv_nsec / 1000; 1867 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1868 sizeof(stv), &stv); 1869 } else { 1870 struct __kernel_old_timeval tv; 1871 1872 tv.tv_sec = tss->ts[0].tv_sec; 1873 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1874 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1875 sizeof(tv), &tv); 1876 } 1877 } 1878 } 1879 1880 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1881 has_timestamping = true; 1882 else 1883 tss->ts[0] = (struct timespec64) {0}; 1884 } 1885 1886 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1887 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1888 has_timestamping = true; 1889 else 1890 tss->ts[2] = (struct timespec64) {0}; 1891 } 1892 1893 if (has_timestamping) { 1894 tss->ts[1] = (struct timespec64) {0}; 1895 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1896 put_cmsg_scm_timestamping64(msg, tss); 1897 else 1898 put_cmsg_scm_timestamping(msg, tss); 1899 } 1900 } 1901 1902 static int tcp_inq_hint(struct sock *sk) 1903 { 1904 const struct tcp_sock *tp = tcp_sk(sk); 1905 u32 copied_seq = READ_ONCE(tp->copied_seq); 1906 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1907 int inq; 1908 1909 inq = rcv_nxt - copied_seq; 1910 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1911 lock_sock(sk); 1912 inq = tp->rcv_nxt - tp->copied_seq; 1913 release_sock(sk); 1914 } 1915 /* After receiving a FIN, tell the user-space to continue reading 1916 * by returning a non-zero inq. 1917 */ 1918 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1919 inq = 1; 1920 return inq; 1921 } 1922 1923 /* 1924 * This routine copies from a sock struct into the user buffer. 1925 * 1926 * Technical note: in 2.3 we work on _locked_ socket, so that 1927 * tricks with *seq access order and skb->users are not required. 1928 * Probably, code can be easily improved even more. 1929 */ 1930 1931 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1932 int flags, int *addr_len) 1933 { 1934 struct tcp_sock *tp = tcp_sk(sk); 1935 int copied = 0; 1936 u32 peek_seq; 1937 u32 *seq; 1938 unsigned long used; 1939 int err, inq; 1940 int target; /* Read at least this many bytes */ 1941 long timeo; 1942 struct sk_buff *skb, *last; 1943 u32 urg_hole = 0; 1944 struct scm_timestamping_internal tss; 1945 bool has_tss = false; 1946 bool has_cmsg; 1947 1948 if (unlikely(flags & MSG_ERRQUEUE)) 1949 return inet_recv_error(sk, msg, len, addr_len); 1950 1951 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1952 (sk->sk_state == TCP_ESTABLISHED)) 1953 sk_busy_loop(sk, nonblock); 1954 1955 lock_sock(sk); 1956 1957 err = -ENOTCONN; 1958 if (sk->sk_state == TCP_LISTEN) 1959 goto out; 1960 1961 has_cmsg = tp->recvmsg_inq; 1962 timeo = sock_rcvtimeo(sk, nonblock); 1963 1964 /* Urgent data needs to be handled specially. */ 1965 if (flags & MSG_OOB) 1966 goto recv_urg; 1967 1968 if (unlikely(tp->repair)) { 1969 err = -EPERM; 1970 if (!(flags & MSG_PEEK)) 1971 goto out; 1972 1973 if (tp->repair_queue == TCP_SEND_QUEUE) 1974 goto recv_sndq; 1975 1976 err = -EINVAL; 1977 if (tp->repair_queue == TCP_NO_QUEUE) 1978 goto out; 1979 1980 /* 'common' recv queue MSG_PEEK-ing */ 1981 } 1982 1983 seq = &tp->copied_seq; 1984 if (flags & MSG_PEEK) { 1985 peek_seq = tp->copied_seq; 1986 seq = &peek_seq; 1987 } 1988 1989 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1990 1991 do { 1992 u32 offset; 1993 1994 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1995 if (tp->urg_data && tp->urg_seq == *seq) { 1996 if (copied) 1997 break; 1998 if (signal_pending(current)) { 1999 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2000 break; 2001 } 2002 } 2003 2004 /* Next get a buffer. */ 2005 2006 last = skb_peek_tail(&sk->sk_receive_queue); 2007 skb_queue_walk(&sk->sk_receive_queue, skb) { 2008 last = skb; 2009 /* Now that we have two receive queues this 2010 * shouldn't happen. 2011 */ 2012 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2013 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2014 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2015 flags)) 2016 break; 2017 2018 offset = *seq - TCP_SKB_CB(skb)->seq; 2019 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2020 pr_err_once("%s: found a SYN, please report !\n", __func__); 2021 offset--; 2022 } 2023 if (offset < skb->len) 2024 goto found_ok_skb; 2025 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2026 goto found_fin_ok; 2027 WARN(!(flags & MSG_PEEK), 2028 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2029 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2030 } 2031 2032 /* Well, if we have backlog, try to process it now yet. */ 2033 2034 if (copied >= target && !sk->sk_backlog.tail) 2035 break; 2036 2037 if (copied) { 2038 if (sk->sk_err || 2039 sk->sk_state == TCP_CLOSE || 2040 (sk->sk_shutdown & RCV_SHUTDOWN) || 2041 !timeo || 2042 signal_pending(current)) 2043 break; 2044 } else { 2045 if (sock_flag(sk, SOCK_DONE)) 2046 break; 2047 2048 if (sk->sk_err) { 2049 copied = sock_error(sk); 2050 break; 2051 } 2052 2053 if (sk->sk_shutdown & RCV_SHUTDOWN) 2054 break; 2055 2056 if (sk->sk_state == TCP_CLOSE) { 2057 /* This occurs when user tries to read 2058 * from never connected socket. 2059 */ 2060 copied = -ENOTCONN; 2061 break; 2062 } 2063 2064 if (!timeo) { 2065 copied = -EAGAIN; 2066 break; 2067 } 2068 2069 if (signal_pending(current)) { 2070 copied = sock_intr_errno(timeo); 2071 break; 2072 } 2073 } 2074 2075 tcp_cleanup_rbuf(sk, copied); 2076 2077 if (copied >= target) { 2078 /* Do not sleep, just process backlog. */ 2079 release_sock(sk); 2080 lock_sock(sk); 2081 } else { 2082 sk_wait_data(sk, &timeo, last); 2083 } 2084 2085 if ((flags & MSG_PEEK) && 2086 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2087 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2088 current->comm, 2089 task_pid_nr(current)); 2090 peek_seq = tp->copied_seq; 2091 } 2092 continue; 2093 2094 found_ok_skb: 2095 /* Ok so how much can we use? */ 2096 used = skb->len - offset; 2097 if (len < used) 2098 used = len; 2099 2100 /* Do we have urgent data here? */ 2101 if (tp->urg_data) { 2102 u32 urg_offset = tp->urg_seq - *seq; 2103 if (urg_offset < used) { 2104 if (!urg_offset) { 2105 if (!sock_flag(sk, SOCK_URGINLINE)) { 2106 ++*seq; 2107 urg_hole++; 2108 offset++; 2109 used--; 2110 if (!used) 2111 goto skip_copy; 2112 } 2113 } else 2114 used = urg_offset; 2115 } 2116 } 2117 2118 if (!(flags & MSG_TRUNC)) { 2119 err = skb_copy_datagram_msg(skb, offset, msg, used); 2120 if (err) { 2121 /* Exception. Bailout! */ 2122 if (!copied) 2123 copied = -EFAULT; 2124 break; 2125 } 2126 } 2127 2128 *seq += used; 2129 copied += used; 2130 len -= used; 2131 2132 tcp_rcv_space_adjust(sk); 2133 2134 skip_copy: 2135 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2136 tp->urg_data = 0; 2137 tcp_fast_path_check(sk); 2138 } 2139 if (used + offset < skb->len) 2140 continue; 2141 2142 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2143 tcp_update_recv_tstamps(skb, &tss); 2144 has_tss = true; 2145 has_cmsg = true; 2146 } 2147 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2148 goto found_fin_ok; 2149 if (!(flags & MSG_PEEK)) 2150 sk_eat_skb(sk, skb); 2151 continue; 2152 2153 found_fin_ok: 2154 /* Process the FIN. */ 2155 ++*seq; 2156 if (!(flags & MSG_PEEK)) 2157 sk_eat_skb(sk, skb); 2158 break; 2159 } while (len > 0); 2160 2161 /* According to UNIX98, msg_name/msg_namelen are ignored 2162 * on connected socket. I was just happy when found this 8) --ANK 2163 */ 2164 2165 /* Clean up data we have read: This will do ACK frames. */ 2166 tcp_cleanup_rbuf(sk, copied); 2167 2168 release_sock(sk); 2169 2170 if (has_cmsg) { 2171 if (has_tss) 2172 tcp_recv_timestamp(msg, sk, &tss); 2173 if (tp->recvmsg_inq) { 2174 inq = tcp_inq_hint(sk); 2175 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2176 } 2177 } 2178 2179 return copied; 2180 2181 out: 2182 release_sock(sk); 2183 return err; 2184 2185 recv_urg: 2186 err = tcp_recv_urg(sk, msg, len, flags); 2187 goto out; 2188 2189 recv_sndq: 2190 err = tcp_peek_sndq(sk, msg, len); 2191 goto out; 2192 } 2193 EXPORT_SYMBOL(tcp_recvmsg); 2194 2195 void tcp_set_state(struct sock *sk, int state) 2196 { 2197 int oldstate = sk->sk_state; 2198 2199 /* We defined a new enum for TCP states that are exported in BPF 2200 * so as not force the internal TCP states to be frozen. The 2201 * following checks will detect if an internal state value ever 2202 * differs from the BPF value. If this ever happens, then we will 2203 * need to remap the internal value to the BPF value before calling 2204 * tcp_call_bpf_2arg. 2205 */ 2206 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2207 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2208 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2209 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2210 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2211 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2212 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2213 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2214 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2215 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2216 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2217 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2218 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2219 2220 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2221 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2222 2223 switch (state) { 2224 case TCP_ESTABLISHED: 2225 if (oldstate != TCP_ESTABLISHED) 2226 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2227 break; 2228 2229 case TCP_CLOSE: 2230 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2231 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2232 2233 sk->sk_prot->unhash(sk); 2234 if (inet_csk(sk)->icsk_bind_hash && 2235 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2236 inet_put_port(sk); 2237 /* fall through */ 2238 default: 2239 if (oldstate == TCP_ESTABLISHED) 2240 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2241 } 2242 2243 /* Change state AFTER socket is unhashed to avoid closed 2244 * socket sitting in hash tables. 2245 */ 2246 inet_sk_state_store(sk, state); 2247 } 2248 EXPORT_SYMBOL_GPL(tcp_set_state); 2249 2250 /* 2251 * State processing on a close. This implements the state shift for 2252 * sending our FIN frame. Note that we only send a FIN for some 2253 * states. A shutdown() may have already sent the FIN, or we may be 2254 * closed. 2255 */ 2256 2257 static const unsigned char new_state[16] = { 2258 /* current state: new state: action: */ 2259 [0 /* (Invalid) */] = TCP_CLOSE, 2260 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2261 [TCP_SYN_SENT] = TCP_CLOSE, 2262 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2263 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2264 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2265 [TCP_TIME_WAIT] = TCP_CLOSE, 2266 [TCP_CLOSE] = TCP_CLOSE, 2267 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2268 [TCP_LAST_ACK] = TCP_LAST_ACK, 2269 [TCP_LISTEN] = TCP_CLOSE, 2270 [TCP_CLOSING] = TCP_CLOSING, 2271 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2272 }; 2273 2274 static int tcp_close_state(struct sock *sk) 2275 { 2276 int next = (int)new_state[sk->sk_state]; 2277 int ns = next & TCP_STATE_MASK; 2278 2279 tcp_set_state(sk, ns); 2280 2281 return next & TCP_ACTION_FIN; 2282 } 2283 2284 /* 2285 * Shutdown the sending side of a connection. Much like close except 2286 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2287 */ 2288 2289 void tcp_shutdown(struct sock *sk, int how) 2290 { 2291 /* We need to grab some memory, and put together a FIN, 2292 * and then put it into the queue to be sent. 2293 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2294 */ 2295 if (!(how & SEND_SHUTDOWN)) 2296 return; 2297 2298 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2299 if ((1 << sk->sk_state) & 2300 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2301 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2302 /* Clear out any half completed packets. FIN if needed. */ 2303 if (tcp_close_state(sk)) 2304 tcp_send_fin(sk); 2305 } 2306 } 2307 EXPORT_SYMBOL(tcp_shutdown); 2308 2309 bool tcp_check_oom(struct sock *sk, int shift) 2310 { 2311 bool too_many_orphans, out_of_socket_memory; 2312 2313 too_many_orphans = tcp_too_many_orphans(sk, shift); 2314 out_of_socket_memory = tcp_out_of_memory(sk); 2315 2316 if (too_many_orphans) 2317 net_info_ratelimited("too many orphaned sockets\n"); 2318 if (out_of_socket_memory) 2319 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2320 return too_many_orphans || out_of_socket_memory; 2321 } 2322 2323 void tcp_close(struct sock *sk, long timeout) 2324 { 2325 struct sk_buff *skb; 2326 int data_was_unread = 0; 2327 int state; 2328 2329 lock_sock(sk); 2330 sk->sk_shutdown = SHUTDOWN_MASK; 2331 2332 if (sk->sk_state == TCP_LISTEN) { 2333 tcp_set_state(sk, TCP_CLOSE); 2334 2335 /* Special case. */ 2336 inet_csk_listen_stop(sk); 2337 2338 goto adjudge_to_death; 2339 } 2340 2341 /* We need to flush the recv. buffs. We do this only on the 2342 * descriptor close, not protocol-sourced closes, because the 2343 * reader process may not have drained the data yet! 2344 */ 2345 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2346 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2347 2348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2349 len--; 2350 data_was_unread += len; 2351 __kfree_skb(skb); 2352 } 2353 2354 sk_mem_reclaim(sk); 2355 2356 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2357 if (sk->sk_state == TCP_CLOSE) 2358 goto adjudge_to_death; 2359 2360 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2361 * data was lost. To witness the awful effects of the old behavior of 2362 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2363 * GET in an FTP client, suspend the process, wait for the client to 2364 * advertise a zero window, then kill -9 the FTP client, wheee... 2365 * Note: timeout is always zero in such a case. 2366 */ 2367 if (unlikely(tcp_sk(sk)->repair)) { 2368 sk->sk_prot->disconnect(sk, 0); 2369 } else if (data_was_unread) { 2370 /* Unread data was tossed, zap the connection. */ 2371 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2372 tcp_set_state(sk, TCP_CLOSE); 2373 tcp_send_active_reset(sk, sk->sk_allocation); 2374 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2375 /* Check zero linger _after_ checking for unread data. */ 2376 sk->sk_prot->disconnect(sk, 0); 2377 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2378 } else if (tcp_close_state(sk)) { 2379 /* We FIN if the application ate all the data before 2380 * zapping the connection. 2381 */ 2382 2383 /* RED-PEN. Formally speaking, we have broken TCP state 2384 * machine. State transitions: 2385 * 2386 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2387 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2388 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2389 * 2390 * are legal only when FIN has been sent (i.e. in window), 2391 * rather than queued out of window. Purists blame. 2392 * 2393 * F.e. "RFC state" is ESTABLISHED, 2394 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2395 * 2396 * The visible declinations are that sometimes 2397 * we enter time-wait state, when it is not required really 2398 * (harmless), do not send active resets, when they are 2399 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2400 * they look as CLOSING or LAST_ACK for Linux) 2401 * Probably, I missed some more holelets. 2402 * --ANK 2403 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2404 * in a single packet! (May consider it later but will 2405 * probably need API support or TCP_CORK SYN-ACK until 2406 * data is written and socket is closed.) 2407 */ 2408 tcp_send_fin(sk); 2409 } 2410 2411 sk_stream_wait_close(sk, timeout); 2412 2413 adjudge_to_death: 2414 state = sk->sk_state; 2415 sock_hold(sk); 2416 sock_orphan(sk); 2417 2418 local_bh_disable(); 2419 bh_lock_sock(sk); 2420 /* remove backlog if any, without releasing ownership. */ 2421 __release_sock(sk); 2422 2423 percpu_counter_inc(sk->sk_prot->orphan_count); 2424 2425 /* Have we already been destroyed by a softirq or backlog? */ 2426 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2427 goto out; 2428 2429 /* This is a (useful) BSD violating of the RFC. There is a 2430 * problem with TCP as specified in that the other end could 2431 * keep a socket open forever with no application left this end. 2432 * We use a 1 minute timeout (about the same as BSD) then kill 2433 * our end. If they send after that then tough - BUT: long enough 2434 * that we won't make the old 4*rto = almost no time - whoops 2435 * reset mistake. 2436 * 2437 * Nope, it was not mistake. It is really desired behaviour 2438 * f.e. on http servers, when such sockets are useless, but 2439 * consume significant resources. Let's do it with special 2440 * linger2 option. --ANK 2441 */ 2442 2443 if (sk->sk_state == TCP_FIN_WAIT2) { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 if (tp->linger2 < 0) { 2446 tcp_set_state(sk, TCP_CLOSE); 2447 tcp_send_active_reset(sk, GFP_ATOMIC); 2448 __NET_INC_STATS(sock_net(sk), 2449 LINUX_MIB_TCPABORTONLINGER); 2450 } else { 2451 const int tmo = tcp_fin_time(sk); 2452 2453 if (tmo > TCP_TIMEWAIT_LEN) { 2454 inet_csk_reset_keepalive_timer(sk, 2455 tmo - TCP_TIMEWAIT_LEN); 2456 } else { 2457 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2458 goto out; 2459 } 2460 } 2461 } 2462 if (sk->sk_state != TCP_CLOSE) { 2463 sk_mem_reclaim(sk); 2464 if (tcp_check_oom(sk, 0)) { 2465 tcp_set_state(sk, TCP_CLOSE); 2466 tcp_send_active_reset(sk, GFP_ATOMIC); 2467 __NET_INC_STATS(sock_net(sk), 2468 LINUX_MIB_TCPABORTONMEMORY); 2469 } else if (!check_net(sock_net(sk))) { 2470 /* Not possible to send reset; just close */ 2471 tcp_set_state(sk, TCP_CLOSE); 2472 } 2473 } 2474 2475 if (sk->sk_state == TCP_CLOSE) { 2476 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2477 /* We could get here with a non-NULL req if the socket is 2478 * aborted (e.g., closed with unread data) before 3WHS 2479 * finishes. 2480 */ 2481 if (req) 2482 reqsk_fastopen_remove(sk, req, false); 2483 inet_csk_destroy_sock(sk); 2484 } 2485 /* Otherwise, socket is reprieved until protocol close. */ 2486 2487 out: 2488 bh_unlock_sock(sk); 2489 local_bh_enable(); 2490 release_sock(sk); 2491 sock_put(sk); 2492 } 2493 EXPORT_SYMBOL(tcp_close); 2494 2495 /* These states need RST on ABORT according to RFC793 */ 2496 2497 static inline bool tcp_need_reset(int state) 2498 { 2499 return (1 << state) & 2500 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2501 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2502 } 2503 2504 static void tcp_rtx_queue_purge(struct sock *sk) 2505 { 2506 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2507 2508 while (p) { 2509 struct sk_buff *skb = rb_to_skb(p); 2510 2511 p = rb_next(p); 2512 /* Since we are deleting whole queue, no need to 2513 * list_del(&skb->tcp_tsorted_anchor) 2514 */ 2515 tcp_rtx_queue_unlink(skb, sk); 2516 sk_wmem_free_skb(sk, skb); 2517 } 2518 } 2519 2520 void tcp_write_queue_purge(struct sock *sk) 2521 { 2522 struct sk_buff *skb; 2523 2524 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2525 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2526 tcp_skb_tsorted_anchor_cleanup(skb); 2527 sk_wmem_free_skb(sk, skb); 2528 } 2529 tcp_rtx_queue_purge(sk); 2530 skb = sk->sk_tx_skb_cache; 2531 if (skb) { 2532 __kfree_skb(skb); 2533 sk->sk_tx_skb_cache = NULL; 2534 } 2535 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2536 sk_mem_reclaim(sk); 2537 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2538 tcp_sk(sk)->packets_out = 0; 2539 inet_csk(sk)->icsk_backoff = 0; 2540 } 2541 2542 int tcp_disconnect(struct sock *sk, int flags) 2543 { 2544 struct inet_sock *inet = inet_sk(sk); 2545 struct inet_connection_sock *icsk = inet_csk(sk); 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 int old_state = sk->sk_state; 2548 2549 if (old_state != TCP_CLOSE) 2550 tcp_set_state(sk, TCP_CLOSE); 2551 2552 /* ABORT function of RFC793 */ 2553 if (old_state == TCP_LISTEN) { 2554 inet_csk_listen_stop(sk); 2555 } else if (unlikely(tp->repair)) { 2556 sk->sk_err = ECONNABORTED; 2557 } else if (tcp_need_reset(old_state) || 2558 (tp->snd_nxt != tp->write_seq && 2559 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2560 /* The last check adjusts for discrepancy of Linux wrt. RFC 2561 * states 2562 */ 2563 tcp_send_active_reset(sk, gfp_any()); 2564 sk->sk_err = ECONNRESET; 2565 } else if (old_state == TCP_SYN_SENT) 2566 sk->sk_err = ECONNRESET; 2567 2568 tcp_clear_xmit_timers(sk); 2569 __skb_queue_purge(&sk->sk_receive_queue); 2570 if (sk->sk_rx_skb_cache) { 2571 __kfree_skb(sk->sk_rx_skb_cache); 2572 sk->sk_rx_skb_cache = NULL; 2573 } 2574 tp->copied_seq = tp->rcv_nxt; 2575 tp->urg_data = 0; 2576 tcp_write_queue_purge(sk); 2577 tcp_fastopen_active_disable_ofo_check(sk); 2578 skb_rbtree_purge(&tp->out_of_order_queue); 2579 2580 inet->inet_dport = 0; 2581 2582 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2583 inet_reset_saddr(sk); 2584 2585 sk->sk_shutdown = 0; 2586 sock_reset_flag(sk, SOCK_DONE); 2587 tp->srtt_us = 0; 2588 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2589 tp->rcv_rtt_last_tsecr = 0; 2590 tp->write_seq += tp->max_window + 2; 2591 if (tp->write_seq == 0) 2592 tp->write_seq = 1; 2593 icsk->icsk_backoff = 0; 2594 tp->snd_cwnd = 2; 2595 icsk->icsk_probes_out = 0; 2596 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2597 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2598 tp->snd_cwnd = TCP_INIT_CWND; 2599 tp->snd_cwnd_cnt = 0; 2600 tp->window_clamp = 0; 2601 tp->delivered_ce = 0; 2602 tcp_set_ca_state(sk, TCP_CA_Open); 2603 tp->is_sack_reneg = 0; 2604 tcp_clear_retrans(tp); 2605 inet_csk_delack_init(sk); 2606 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2607 * issue in __tcp_select_window() 2608 */ 2609 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2610 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2611 __sk_dst_reset(sk); 2612 dst_release(sk->sk_rx_dst); 2613 sk->sk_rx_dst = NULL; 2614 tcp_saved_syn_free(tp); 2615 tp->compressed_ack = 0; 2616 tp->bytes_sent = 0; 2617 tp->bytes_retrans = 0; 2618 tp->duplicate_sack[0].start_seq = 0; 2619 tp->duplicate_sack[0].end_seq = 0; 2620 tp->dsack_dups = 0; 2621 tp->reord_seen = 0; 2622 tp->retrans_out = 0; 2623 tp->sacked_out = 0; 2624 tp->tlp_high_seq = 0; 2625 tp->last_oow_ack_time = 0; 2626 /* There's a bubble in the pipe until at least the first ACK. */ 2627 tp->app_limited = ~0U; 2628 tp->rack.mstamp = 0; 2629 tp->rack.advanced = 0; 2630 tp->rack.reo_wnd_steps = 1; 2631 tp->rack.last_delivered = 0; 2632 tp->rack.reo_wnd_persist = 0; 2633 tp->rack.dsack_seen = 0; 2634 tp->syn_data_acked = 0; 2635 tp->rx_opt.saw_tstamp = 0; 2636 tp->rx_opt.dsack = 0; 2637 tp->rx_opt.num_sacks = 0; 2638 2639 2640 /* Clean up fastopen related fields */ 2641 tcp_free_fastopen_req(tp); 2642 inet->defer_connect = 0; 2643 2644 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2645 2646 if (sk->sk_frag.page) { 2647 put_page(sk->sk_frag.page); 2648 sk->sk_frag.page = NULL; 2649 sk->sk_frag.offset = 0; 2650 } 2651 2652 sk->sk_error_report(sk); 2653 return 0; 2654 } 2655 EXPORT_SYMBOL(tcp_disconnect); 2656 2657 static inline bool tcp_can_repair_sock(const struct sock *sk) 2658 { 2659 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2660 (sk->sk_state != TCP_LISTEN); 2661 } 2662 2663 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2664 { 2665 struct tcp_repair_window opt; 2666 2667 if (!tp->repair) 2668 return -EPERM; 2669 2670 if (len != sizeof(opt)) 2671 return -EINVAL; 2672 2673 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2674 return -EFAULT; 2675 2676 if (opt.max_window < opt.snd_wnd) 2677 return -EINVAL; 2678 2679 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2680 return -EINVAL; 2681 2682 if (after(opt.rcv_wup, tp->rcv_nxt)) 2683 return -EINVAL; 2684 2685 tp->snd_wl1 = opt.snd_wl1; 2686 tp->snd_wnd = opt.snd_wnd; 2687 tp->max_window = opt.max_window; 2688 2689 tp->rcv_wnd = opt.rcv_wnd; 2690 tp->rcv_wup = opt.rcv_wup; 2691 2692 return 0; 2693 } 2694 2695 static int tcp_repair_options_est(struct sock *sk, 2696 struct tcp_repair_opt __user *optbuf, unsigned int len) 2697 { 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 struct tcp_repair_opt opt; 2700 2701 while (len >= sizeof(opt)) { 2702 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2703 return -EFAULT; 2704 2705 optbuf++; 2706 len -= sizeof(opt); 2707 2708 switch (opt.opt_code) { 2709 case TCPOPT_MSS: 2710 tp->rx_opt.mss_clamp = opt.opt_val; 2711 tcp_mtup_init(sk); 2712 break; 2713 case TCPOPT_WINDOW: 2714 { 2715 u16 snd_wscale = opt.opt_val & 0xFFFF; 2716 u16 rcv_wscale = opt.opt_val >> 16; 2717 2718 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2719 return -EFBIG; 2720 2721 tp->rx_opt.snd_wscale = snd_wscale; 2722 tp->rx_opt.rcv_wscale = rcv_wscale; 2723 tp->rx_opt.wscale_ok = 1; 2724 } 2725 break; 2726 case TCPOPT_SACK_PERM: 2727 if (opt.opt_val != 0) 2728 return -EINVAL; 2729 2730 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2731 break; 2732 case TCPOPT_TIMESTAMP: 2733 if (opt.opt_val != 0) 2734 return -EINVAL; 2735 2736 tp->rx_opt.tstamp_ok = 1; 2737 break; 2738 } 2739 } 2740 2741 return 0; 2742 } 2743 2744 /* 2745 * Socket option code for TCP. 2746 */ 2747 static int do_tcp_setsockopt(struct sock *sk, int level, 2748 int optname, char __user *optval, unsigned int optlen) 2749 { 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 struct inet_connection_sock *icsk = inet_csk(sk); 2752 struct net *net = sock_net(sk); 2753 int val; 2754 int err = 0; 2755 2756 /* These are data/string values, all the others are ints */ 2757 switch (optname) { 2758 case TCP_CONGESTION: { 2759 char name[TCP_CA_NAME_MAX]; 2760 2761 if (optlen < 1) 2762 return -EINVAL; 2763 2764 val = strncpy_from_user(name, optval, 2765 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2766 if (val < 0) 2767 return -EFAULT; 2768 name[val] = 0; 2769 2770 lock_sock(sk); 2771 err = tcp_set_congestion_control(sk, name, true, true); 2772 release_sock(sk); 2773 return err; 2774 } 2775 case TCP_ULP: { 2776 char name[TCP_ULP_NAME_MAX]; 2777 2778 if (optlen < 1) 2779 return -EINVAL; 2780 2781 val = strncpy_from_user(name, optval, 2782 min_t(long, TCP_ULP_NAME_MAX - 1, 2783 optlen)); 2784 if (val < 0) 2785 return -EFAULT; 2786 name[val] = 0; 2787 2788 lock_sock(sk); 2789 err = tcp_set_ulp(sk, name); 2790 release_sock(sk); 2791 return err; 2792 } 2793 case TCP_FASTOPEN_KEY: { 2794 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2795 2796 if (optlen != sizeof(key)) 2797 return -EINVAL; 2798 2799 if (copy_from_user(key, optval, optlen)) 2800 return -EFAULT; 2801 2802 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2803 } 2804 default: 2805 /* fallthru */ 2806 break; 2807 } 2808 2809 if (optlen < sizeof(int)) 2810 return -EINVAL; 2811 2812 if (get_user(val, (int __user *)optval)) 2813 return -EFAULT; 2814 2815 lock_sock(sk); 2816 2817 switch (optname) { 2818 case TCP_MAXSEG: 2819 /* Values greater than interface MTU won't take effect. However 2820 * at the point when this call is done we typically don't yet 2821 * know which interface is going to be used 2822 */ 2823 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2824 err = -EINVAL; 2825 break; 2826 } 2827 tp->rx_opt.user_mss = val; 2828 break; 2829 2830 case TCP_NODELAY: 2831 if (val) { 2832 /* TCP_NODELAY is weaker than TCP_CORK, so that 2833 * this option on corked socket is remembered, but 2834 * it is not activated until cork is cleared. 2835 * 2836 * However, when TCP_NODELAY is set we make 2837 * an explicit push, which overrides even TCP_CORK 2838 * for currently queued segments. 2839 */ 2840 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2841 tcp_push_pending_frames(sk); 2842 } else { 2843 tp->nonagle &= ~TCP_NAGLE_OFF; 2844 } 2845 break; 2846 2847 case TCP_THIN_LINEAR_TIMEOUTS: 2848 if (val < 0 || val > 1) 2849 err = -EINVAL; 2850 else 2851 tp->thin_lto = val; 2852 break; 2853 2854 case TCP_THIN_DUPACK: 2855 if (val < 0 || val > 1) 2856 err = -EINVAL; 2857 break; 2858 2859 case TCP_REPAIR: 2860 if (!tcp_can_repair_sock(sk)) 2861 err = -EPERM; 2862 else if (val == TCP_REPAIR_ON) { 2863 tp->repair = 1; 2864 sk->sk_reuse = SK_FORCE_REUSE; 2865 tp->repair_queue = TCP_NO_QUEUE; 2866 } else if (val == TCP_REPAIR_OFF) { 2867 tp->repair = 0; 2868 sk->sk_reuse = SK_NO_REUSE; 2869 tcp_send_window_probe(sk); 2870 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2871 tp->repair = 0; 2872 sk->sk_reuse = SK_NO_REUSE; 2873 } else 2874 err = -EINVAL; 2875 2876 break; 2877 2878 case TCP_REPAIR_QUEUE: 2879 if (!tp->repair) 2880 err = -EPERM; 2881 else if ((unsigned int)val < TCP_QUEUES_NR) 2882 tp->repair_queue = val; 2883 else 2884 err = -EINVAL; 2885 break; 2886 2887 case TCP_QUEUE_SEQ: 2888 if (sk->sk_state != TCP_CLOSE) 2889 err = -EPERM; 2890 else if (tp->repair_queue == TCP_SEND_QUEUE) 2891 tp->write_seq = val; 2892 else if (tp->repair_queue == TCP_RECV_QUEUE) 2893 tp->rcv_nxt = val; 2894 else 2895 err = -EINVAL; 2896 break; 2897 2898 case TCP_REPAIR_OPTIONS: 2899 if (!tp->repair) 2900 err = -EINVAL; 2901 else if (sk->sk_state == TCP_ESTABLISHED) 2902 err = tcp_repair_options_est(sk, 2903 (struct tcp_repair_opt __user *)optval, 2904 optlen); 2905 else 2906 err = -EPERM; 2907 break; 2908 2909 case TCP_CORK: 2910 /* When set indicates to always queue non-full frames. 2911 * Later the user clears this option and we transmit 2912 * any pending partial frames in the queue. This is 2913 * meant to be used alongside sendfile() to get properly 2914 * filled frames when the user (for example) must write 2915 * out headers with a write() call first and then use 2916 * sendfile to send out the data parts. 2917 * 2918 * TCP_CORK can be set together with TCP_NODELAY and it is 2919 * stronger than TCP_NODELAY. 2920 */ 2921 if (val) { 2922 tp->nonagle |= TCP_NAGLE_CORK; 2923 } else { 2924 tp->nonagle &= ~TCP_NAGLE_CORK; 2925 if (tp->nonagle&TCP_NAGLE_OFF) 2926 tp->nonagle |= TCP_NAGLE_PUSH; 2927 tcp_push_pending_frames(sk); 2928 } 2929 break; 2930 2931 case TCP_KEEPIDLE: 2932 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2933 err = -EINVAL; 2934 else { 2935 tp->keepalive_time = val * HZ; 2936 if (sock_flag(sk, SOCK_KEEPOPEN) && 2937 !((1 << sk->sk_state) & 2938 (TCPF_CLOSE | TCPF_LISTEN))) { 2939 u32 elapsed = keepalive_time_elapsed(tp); 2940 if (tp->keepalive_time > elapsed) 2941 elapsed = tp->keepalive_time - elapsed; 2942 else 2943 elapsed = 0; 2944 inet_csk_reset_keepalive_timer(sk, elapsed); 2945 } 2946 } 2947 break; 2948 case TCP_KEEPINTVL: 2949 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2950 err = -EINVAL; 2951 else 2952 tp->keepalive_intvl = val * HZ; 2953 break; 2954 case TCP_KEEPCNT: 2955 if (val < 1 || val > MAX_TCP_KEEPCNT) 2956 err = -EINVAL; 2957 else 2958 tp->keepalive_probes = val; 2959 break; 2960 case TCP_SYNCNT: 2961 if (val < 1 || val > MAX_TCP_SYNCNT) 2962 err = -EINVAL; 2963 else 2964 icsk->icsk_syn_retries = val; 2965 break; 2966 2967 case TCP_SAVE_SYN: 2968 if (val < 0 || val > 1) 2969 err = -EINVAL; 2970 else 2971 tp->save_syn = val; 2972 break; 2973 2974 case TCP_LINGER2: 2975 if (val < 0) 2976 tp->linger2 = -1; 2977 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2978 tp->linger2 = 0; 2979 else 2980 tp->linger2 = val * HZ; 2981 break; 2982 2983 case TCP_DEFER_ACCEPT: 2984 /* Translate value in seconds to number of retransmits */ 2985 icsk->icsk_accept_queue.rskq_defer_accept = 2986 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2987 TCP_RTO_MAX / HZ); 2988 break; 2989 2990 case TCP_WINDOW_CLAMP: 2991 if (!val) { 2992 if (sk->sk_state != TCP_CLOSE) { 2993 err = -EINVAL; 2994 break; 2995 } 2996 tp->window_clamp = 0; 2997 } else 2998 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2999 SOCK_MIN_RCVBUF / 2 : val; 3000 break; 3001 3002 case TCP_QUICKACK: 3003 if (!val) { 3004 inet_csk_enter_pingpong_mode(sk); 3005 } else { 3006 inet_csk_exit_pingpong_mode(sk); 3007 if ((1 << sk->sk_state) & 3008 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3009 inet_csk_ack_scheduled(sk)) { 3010 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3011 tcp_cleanup_rbuf(sk, 1); 3012 if (!(val & 1)) 3013 inet_csk_enter_pingpong_mode(sk); 3014 } 3015 } 3016 break; 3017 3018 #ifdef CONFIG_TCP_MD5SIG 3019 case TCP_MD5SIG: 3020 case TCP_MD5SIG_EXT: 3021 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3022 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3023 else 3024 err = -EINVAL; 3025 break; 3026 #endif 3027 case TCP_USER_TIMEOUT: 3028 /* Cap the max time in ms TCP will retry or probe the window 3029 * before giving up and aborting (ETIMEDOUT) a connection. 3030 */ 3031 if (val < 0) 3032 err = -EINVAL; 3033 else 3034 icsk->icsk_user_timeout = val; 3035 break; 3036 3037 case TCP_FASTOPEN: 3038 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3039 TCPF_LISTEN))) { 3040 tcp_fastopen_init_key_once(net); 3041 3042 fastopen_queue_tune(sk, val); 3043 } else { 3044 err = -EINVAL; 3045 } 3046 break; 3047 case TCP_FASTOPEN_CONNECT: 3048 if (val > 1 || val < 0) { 3049 err = -EINVAL; 3050 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3051 if (sk->sk_state == TCP_CLOSE) 3052 tp->fastopen_connect = val; 3053 else 3054 err = -EINVAL; 3055 } else { 3056 err = -EOPNOTSUPP; 3057 } 3058 break; 3059 case TCP_FASTOPEN_NO_COOKIE: 3060 if (val > 1 || val < 0) 3061 err = -EINVAL; 3062 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3063 err = -EINVAL; 3064 else 3065 tp->fastopen_no_cookie = val; 3066 break; 3067 case TCP_TIMESTAMP: 3068 if (!tp->repair) 3069 err = -EPERM; 3070 else 3071 tp->tsoffset = val - tcp_time_stamp_raw(); 3072 break; 3073 case TCP_REPAIR_WINDOW: 3074 err = tcp_repair_set_window(tp, optval, optlen); 3075 break; 3076 case TCP_NOTSENT_LOWAT: 3077 tp->notsent_lowat = val; 3078 sk->sk_write_space(sk); 3079 break; 3080 case TCP_INQ: 3081 if (val > 1 || val < 0) 3082 err = -EINVAL; 3083 else 3084 tp->recvmsg_inq = val; 3085 break; 3086 default: 3087 err = -ENOPROTOOPT; 3088 break; 3089 } 3090 3091 release_sock(sk); 3092 return err; 3093 } 3094 3095 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3096 unsigned int optlen) 3097 { 3098 const struct inet_connection_sock *icsk = inet_csk(sk); 3099 3100 if (level != SOL_TCP) 3101 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3102 optval, optlen); 3103 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3104 } 3105 EXPORT_SYMBOL(tcp_setsockopt); 3106 3107 #ifdef CONFIG_COMPAT 3108 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3109 char __user *optval, unsigned int optlen) 3110 { 3111 if (level != SOL_TCP) 3112 return inet_csk_compat_setsockopt(sk, level, optname, 3113 optval, optlen); 3114 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3115 } 3116 EXPORT_SYMBOL(compat_tcp_setsockopt); 3117 #endif 3118 3119 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3120 struct tcp_info *info) 3121 { 3122 u64 stats[__TCP_CHRONO_MAX], total = 0; 3123 enum tcp_chrono i; 3124 3125 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3126 stats[i] = tp->chrono_stat[i - 1]; 3127 if (i == tp->chrono_type) 3128 stats[i] += tcp_jiffies32 - tp->chrono_start; 3129 stats[i] *= USEC_PER_SEC / HZ; 3130 total += stats[i]; 3131 } 3132 3133 info->tcpi_busy_time = total; 3134 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3135 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3136 } 3137 3138 /* Return information about state of tcp endpoint in API format. */ 3139 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3140 { 3141 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3142 const struct inet_connection_sock *icsk = inet_csk(sk); 3143 unsigned long rate; 3144 u32 now; 3145 u64 rate64; 3146 bool slow; 3147 3148 memset(info, 0, sizeof(*info)); 3149 if (sk->sk_type != SOCK_STREAM) 3150 return; 3151 3152 info->tcpi_state = inet_sk_state_load(sk); 3153 3154 /* Report meaningful fields for all TCP states, including listeners */ 3155 rate = READ_ONCE(sk->sk_pacing_rate); 3156 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3157 info->tcpi_pacing_rate = rate64; 3158 3159 rate = READ_ONCE(sk->sk_max_pacing_rate); 3160 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3161 info->tcpi_max_pacing_rate = rate64; 3162 3163 info->tcpi_reordering = tp->reordering; 3164 info->tcpi_snd_cwnd = tp->snd_cwnd; 3165 3166 if (info->tcpi_state == TCP_LISTEN) { 3167 /* listeners aliased fields : 3168 * tcpi_unacked -> Number of children ready for accept() 3169 * tcpi_sacked -> max backlog 3170 */ 3171 info->tcpi_unacked = sk->sk_ack_backlog; 3172 info->tcpi_sacked = sk->sk_max_ack_backlog; 3173 return; 3174 } 3175 3176 slow = lock_sock_fast(sk); 3177 3178 info->tcpi_ca_state = icsk->icsk_ca_state; 3179 info->tcpi_retransmits = icsk->icsk_retransmits; 3180 info->tcpi_probes = icsk->icsk_probes_out; 3181 info->tcpi_backoff = icsk->icsk_backoff; 3182 3183 if (tp->rx_opt.tstamp_ok) 3184 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3185 if (tcp_is_sack(tp)) 3186 info->tcpi_options |= TCPI_OPT_SACK; 3187 if (tp->rx_opt.wscale_ok) { 3188 info->tcpi_options |= TCPI_OPT_WSCALE; 3189 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3190 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3191 } 3192 3193 if (tp->ecn_flags & TCP_ECN_OK) 3194 info->tcpi_options |= TCPI_OPT_ECN; 3195 if (tp->ecn_flags & TCP_ECN_SEEN) 3196 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3197 if (tp->syn_data_acked) 3198 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3199 3200 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3201 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3202 info->tcpi_snd_mss = tp->mss_cache; 3203 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3204 3205 info->tcpi_unacked = tp->packets_out; 3206 info->tcpi_sacked = tp->sacked_out; 3207 3208 info->tcpi_lost = tp->lost_out; 3209 info->tcpi_retrans = tp->retrans_out; 3210 3211 now = tcp_jiffies32; 3212 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3213 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3214 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3215 3216 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3217 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3218 info->tcpi_rtt = tp->srtt_us >> 3; 3219 info->tcpi_rttvar = tp->mdev_us >> 2; 3220 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3221 info->tcpi_advmss = tp->advmss; 3222 3223 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3224 info->tcpi_rcv_space = tp->rcvq_space.space; 3225 3226 info->tcpi_total_retrans = tp->total_retrans; 3227 3228 info->tcpi_bytes_acked = tp->bytes_acked; 3229 info->tcpi_bytes_received = tp->bytes_received; 3230 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3231 tcp_get_info_chrono_stats(tp, info); 3232 3233 info->tcpi_segs_out = tp->segs_out; 3234 info->tcpi_segs_in = tp->segs_in; 3235 3236 info->tcpi_min_rtt = tcp_min_rtt(tp); 3237 info->tcpi_data_segs_in = tp->data_segs_in; 3238 info->tcpi_data_segs_out = tp->data_segs_out; 3239 3240 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3241 rate64 = tcp_compute_delivery_rate(tp); 3242 if (rate64) 3243 info->tcpi_delivery_rate = rate64; 3244 info->tcpi_delivered = tp->delivered; 3245 info->tcpi_delivered_ce = tp->delivered_ce; 3246 info->tcpi_bytes_sent = tp->bytes_sent; 3247 info->tcpi_bytes_retrans = tp->bytes_retrans; 3248 info->tcpi_dsack_dups = tp->dsack_dups; 3249 info->tcpi_reord_seen = tp->reord_seen; 3250 unlock_sock_fast(sk, slow); 3251 } 3252 EXPORT_SYMBOL_GPL(tcp_get_info); 3253 3254 static size_t tcp_opt_stats_get_size(void) 3255 { 3256 return 3257 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3258 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3259 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3260 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3261 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3262 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3263 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3264 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3265 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3266 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3267 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3268 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3269 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3270 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3271 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3272 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3273 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3275 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3276 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3277 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3278 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3279 0; 3280 } 3281 3282 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3283 { 3284 const struct tcp_sock *tp = tcp_sk(sk); 3285 struct sk_buff *stats; 3286 struct tcp_info info; 3287 unsigned long rate; 3288 u64 rate64; 3289 3290 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3291 if (!stats) 3292 return NULL; 3293 3294 tcp_get_info_chrono_stats(tp, &info); 3295 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3296 info.tcpi_busy_time, TCP_NLA_PAD); 3297 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3298 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3299 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3300 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3301 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3302 tp->data_segs_out, TCP_NLA_PAD); 3303 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3304 tp->total_retrans, TCP_NLA_PAD); 3305 3306 rate = READ_ONCE(sk->sk_pacing_rate); 3307 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3308 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3309 3310 rate64 = tcp_compute_delivery_rate(tp); 3311 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3312 3313 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3314 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3315 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3316 3317 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3318 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3319 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3320 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3321 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3322 3323 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3324 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3325 3326 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3327 TCP_NLA_PAD); 3328 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3329 TCP_NLA_PAD); 3330 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3331 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3332 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3333 3334 return stats; 3335 } 3336 3337 static int do_tcp_getsockopt(struct sock *sk, int level, 3338 int optname, char __user *optval, int __user *optlen) 3339 { 3340 struct inet_connection_sock *icsk = inet_csk(sk); 3341 struct tcp_sock *tp = tcp_sk(sk); 3342 struct net *net = sock_net(sk); 3343 int val, len; 3344 3345 if (get_user(len, optlen)) 3346 return -EFAULT; 3347 3348 len = min_t(unsigned int, len, sizeof(int)); 3349 3350 if (len < 0) 3351 return -EINVAL; 3352 3353 switch (optname) { 3354 case TCP_MAXSEG: 3355 val = tp->mss_cache; 3356 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3357 val = tp->rx_opt.user_mss; 3358 if (tp->repair) 3359 val = tp->rx_opt.mss_clamp; 3360 break; 3361 case TCP_NODELAY: 3362 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3363 break; 3364 case TCP_CORK: 3365 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3366 break; 3367 case TCP_KEEPIDLE: 3368 val = keepalive_time_when(tp) / HZ; 3369 break; 3370 case TCP_KEEPINTVL: 3371 val = keepalive_intvl_when(tp) / HZ; 3372 break; 3373 case TCP_KEEPCNT: 3374 val = keepalive_probes(tp); 3375 break; 3376 case TCP_SYNCNT: 3377 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3378 break; 3379 case TCP_LINGER2: 3380 val = tp->linger2; 3381 if (val >= 0) 3382 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3383 break; 3384 case TCP_DEFER_ACCEPT: 3385 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3386 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3387 break; 3388 case TCP_WINDOW_CLAMP: 3389 val = tp->window_clamp; 3390 break; 3391 case TCP_INFO: { 3392 struct tcp_info info; 3393 3394 if (get_user(len, optlen)) 3395 return -EFAULT; 3396 3397 tcp_get_info(sk, &info); 3398 3399 len = min_t(unsigned int, len, sizeof(info)); 3400 if (put_user(len, optlen)) 3401 return -EFAULT; 3402 if (copy_to_user(optval, &info, len)) 3403 return -EFAULT; 3404 return 0; 3405 } 3406 case TCP_CC_INFO: { 3407 const struct tcp_congestion_ops *ca_ops; 3408 union tcp_cc_info info; 3409 size_t sz = 0; 3410 int attr; 3411 3412 if (get_user(len, optlen)) 3413 return -EFAULT; 3414 3415 ca_ops = icsk->icsk_ca_ops; 3416 if (ca_ops && ca_ops->get_info) 3417 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3418 3419 len = min_t(unsigned int, len, sz); 3420 if (put_user(len, optlen)) 3421 return -EFAULT; 3422 if (copy_to_user(optval, &info, len)) 3423 return -EFAULT; 3424 return 0; 3425 } 3426 case TCP_QUICKACK: 3427 val = !inet_csk_in_pingpong_mode(sk); 3428 break; 3429 3430 case TCP_CONGESTION: 3431 if (get_user(len, optlen)) 3432 return -EFAULT; 3433 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3434 if (put_user(len, optlen)) 3435 return -EFAULT; 3436 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3437 return -EFAULT; 3438 return 0; 3439 3440 case TCP_ULP: 3441 if (get_user(len, optlen)) 3442 return -EFAULT; 3443 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3444 if (!icsk->icsk_ulp_ops) { 3445 if (put_user(0, optlen)) 3446 return -EFAULT; 3447 return 0; 3448 } 3449 if (put_user(len, optlen)) 3450 return -EFAULT; 3451 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3452 return -EFAULT; 3453 return 0; 3454 3455 case TCP_FASTOPEN_KEY: { 3456 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3457 struct tcp_fastopen_context *ctx; 3458 3459 if (get_user(len, optlen)) 3460 return -EFAULT; 3461 3462 rcu_read_lock(); 3463 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3464 if (ctx) 3465 memcpy(key, ctx->key, sizeof(key)); 3466 else 3467 len = 0; 3468 rcu_read_unlock(); 3469 3470 len = min_t(unsigned int, len, sizeof(key)); 3471 if (put_user(len, optlen)) 3472 return -EFAULT; 3473 if (copy_to_user(optval, key, len)) 3474 return -EFAULT; 3475 return 0; 3476 } 3477 case TCP_THIN_LINEAR_TIMEOUTS: 3478 val = tp->thin_lto; 3479 break; 3480 3481 case TCP_THIN_DUPACK: 3482 val = 0; 3483 break; 3484 3485 case TCP_REPAIR: 3486 val = tp->repair; 3487 break; 3488 3489 case TCP_REPAIR_QUEUE: 3490 if (tp->repair) 3491 val = tp->repair_queue; 3492 else 3493 return -EINVAL; 3494 break; 3495 3496 case TCP_REPAIR_WINDOW: { 3497 struct tcp_repair_window opt; 3498 3499 if (get_user(len, optlen)) 3500 return -EFAULT; 3501 3502 if (len != sizeof(opt)) 3503 return -EINVAL; 3504 3505 if (!tp->repair) 3506 return -EPERM; 3507 3508 opt.snd_wl1 = tp->snd_wl1; 3509 opt.snd_wnd = tp->snd_wnd; 3510 opt.max_window = tp->max_window; 3511 opt.rcv_wnd = tp->rcv_wnd; 3512 opt.rcv_wup = tp->rcv_wup; 3513 3514 if (copy_to_user(optval, &opt, len)) 3515 return -EFAULT; 3516 return 0; 3517 } 3518 case TCP_QUEUE_SEQ: 3519 if (tp->repair_queue == TCP_SEND_QUEUE) 3520 val = tp->write_seq; 3521 else if (tp->repair_queue == TCP_RECV_QUEUE) 3522 val = tp->rcv_nxt; 3523 else 3524 return -EINVAL; 3525 break; 3526 3527 case TCP_USER_TIMEOUT: 3528 val = icsk->icsk_user_timeout; 3529 break; 3530 3531 case TCP_FASTOPEN: 3532 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3533 break; 3534 3535 case TCP_FASTOPEN_CONNECT: 3536 val = tp->fastopen_connect; 3537 break; 3538 3539 case TCP_FASTOPEN_NO_COOKIE: 3540 val = tp->fastopen_no_cookie; 3541 break; 3542 3543 case TCP_TIMESTAMP: 3544 val = tcp_time_stamp_raw() + tp->tsoffset; 3545 break; 3546 case TCP_NOTSENT_LOWAT: 3547 val = tp->notsent_lowat; 3548 break; 3549 case TCP_INQ: 3550 val = tp->recvmsg_inq; 3551 break; 3552 case TCP_SAVE_SYN: 3553 val = tp->save_syn; 3554 break; 3555 case TCP_SAVED_SYN: { 3556 if (get_user(len, optlen)) 3557 return -EFAULT; 3558 3559 lock_sock(sk); 3560 if (tp->saved_syn) { 3561 if (len < tp->saved_syn[0]) { 3562 if (put_user(tp->saved_syn[0], optlen)) { 3563 release_sock(sk); 3564 return -EFAULT; 3565 } 3566 release_sock(sk); 3567 return -EINVAL; 3568 } 3569 len = tp->saved_syn[0]; 3570 if (put_user(len, optlen)) { 3571 release_sock(sk); 3572 return -EFAULT; 3573 } 3574 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3575 release_sock(sk); 3576 return -EFAULT; 3577 } 3578 tcp_saved_syn_free(tp); 3579 release_sock(sk); 3580 } else { 3581 release_sock(sk); 3582 len = 0; 3583 if (put_user(len, optlen)) 3584 return -EFAULT; 3585 } 3586 return 0; 3587 } 3588 #ifdef CONFIG_MMU 3589 case TCP_ZEROCOPY_RECEIVE: { 3590 struct tcp_zerocopy_receive zc; 3591 int err; 3592 3593 if (get_user(len, optlen)) 3594 return -EFAULT; 3595 if (len != sizeof(zc)) 3596 return -EINVAL; 3597 if (copy_from_user(&zc, optval, len)) 3598 return -EFAULT; 3599 lock_sock(sk); 3600 err = tcp_zerocopy_receive(sk, &zc); 3601 release_sock(sk); 3602 if (!err && copy_to_user(optval, &zc, len)) 3603 err = -EFAULT; 3604 return err; 3605 } 3606 #endif 3607 default: 3608 return -ENOPROTOOPT; 3609 } 3610 3611 if (put_user(len, optlen)) 3612 return -EFAULT; 3613 if (copy_to_user(optval, &val, len)) 3614 return -EFAULT; 3615 return 0; 3616 } 3617 3618 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3619 int __user *optlen) 3620 { 3621 struct inet_connection_sock *icsk = inet_csk(sk); 3622 3623 if (level != SOL_TCP) 3624 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3625 optval, optlen); 3626 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3627 } 3628 EXPORT_SYMBOL(tcp_getsockopt); 3629 3630 #ifdef CONFIG_COMPAT 3631 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3632 char __user *optval, int __user *optlen) 3633 { 3634 if (level != SOL_TCP) 3635 return inet_csk_compat_getsockopt(sk, level, optname, 3636 optval, optlen); 3637 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3638 } 3639 EXPORT_SYMBOL(compat_tcp_getsockopt); 3640 #endif 3641 3642 #ifdef CONFIG_TCP_MD5SIG 3643 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3644 static DEFINE_MUTEX(tcp_md5sig_mutex); 3645 static bool tcp_md5sig_pool_populated = false; 3646 3647 static void __tcp_alloc_md5sig_pool(void) 3648 { 3649 struct crypto_ahash *hash; 3650 int cpu; 3651 3652 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3653 if (IS_ERR(hash)) 3654 return; 3655 3656 for_each_possible_cpu(cpu) { 3657 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3658 struct ahash_request *req; 3659 3660 if (!scratch) { 3661 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3662 sizeof(struct tcphdr), 3663 GFP_KERNEL, 3664 cpu_to_node(cpu)); 3665 if (!scratch) 3666 return; 3667 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3668 } 3669 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3670 continue; 3671 3672 req = ahash_request_alloc(hash, GFP_KERNEL); 3673 if (!req) 3674 return; 3675 3676 ahash_request_set_callback(req, 0, NULL, NULL); 3677 3678 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3679 } 3680 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3681 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3682 */ 3683 smp_wmb(); 3684 tcp_md5sig_pool_populated = true; 3685 } 3686 3687 bool tcp_alloc_md5sig_pool(void) 3688 { 3689 if (unlikely(!tcp_md5sig_pool_populated)) { 3690 mutex_lock(&tcp_md5sig_mutex); 3691 3692 if (!tcp_md5sig_pool_populated) { 3693 __tcp_alloc_md5sig_pool(); 3694 if (tcp_md5sig_pool_populated) 3695 static_branch_inc(&tcp_md5_needed); 3696 } 3697 3698 mutex_unlock(&tcp_md5sig_mutex); 3699 } 3700 return tcp_md5sig_pool_populated; 3701 } 3702 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3703 3704 3705 /** 3706 * tcp_get_md5sig_pool - get md5sig_pool for this user 3707 * 3708 * We use percpu structure, so if we succeed, we exit with preemption 3709 * and BH disabled, to make sure another thread or softirq handling 3710 * wont try to get same context. 3711 */ 3712 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3713 { 3714 local_bh_disable(); 3715 3716 if (tcp_md5sig_pool_populated) { 3717 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3718 smp_rmb(); 3719 return this_cpu_ptr(&tcp_md5sig_pool); 3720 } 3721 local_bh_enable(); 3722 return NULL; 3723 } 3724 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3725 3726 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3727 const struct sk_buff *skb, unsigned int header_len) 3728 { 3729 struct scatterlist sg; 3730 const struct tcphdr *tp = tcp_hdr(skb); 3731 struct ahash_request *req = hp->md5_req; 3732 unsigned int i; 3733 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3734 skb_headlen(skb) - header_len : 0; 3735 const struct skb_shared_info *shi = skb_shinfo(skb); 3736 struct sk_buff *frag_iter; 3737 3738 sg_init_table(&sg, 1); 3739 3740 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3741 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3742 if (crypto_ahash_update(req)) 3743 return 1; 3744 3745 for (i = 0; i < shi->nr_frags; ++i) { 3746 const struct skb_frag_struct *f = &shi->frags[i]; 3747 unsigned int offset = f->page_offset; 3748 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3749 3750 sg_set_page(&sg, page, skb_frag_size(f), 3751 offset_in_page(offset)); 3752 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3753 if (crypto_ahash_update(req)) 3754 return 1; 3755 } 3756 3757 skb_walk_frags(skb, frag_iter) 3758 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3759 return 1; 3760 3761 return 0; 3762 } 3763 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3764 3765 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3766 { 3767 struct scatterlist sg; 3768 3769 sg_init_one(&sg, key->key, key->keylen); 3770 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3771 return crypto_ahash_update(hp->md5_req); 3772 } 3773 EXPORT_SYMBOL(tcp_md5_hash_key); 3774 3775 #endif 3776 3777 void tcp_done(struct sock *sk) 3778 { 3779 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3780 3781 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3782 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3783 3784 tcp_set_state(sk, TCP_CLOSE); 3785 tcp_clear_xmit_timers(sk); 3786 if (req) 3787 reqsk_fastopen_remove(sk, req, false); 3788 3789 sk->sk_shutdown = SHUTDOWN_MASK; 3790 3791 if (!sock_flag(sk, SOCK_DEAD)) 3792 sk->sk_state_change(sk); 3793 else 3794 inet_csk_destroy_sock(sk); 3795 } 3796 EXPORT_SYMBOL_GPL(tcp_done); 3797 3798 int tcp_abort(struct sock *sk, int err) 3799 { 3800 if (!sk_fullsock(sk)) { 3801 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3802 struct request_sock *req = inet_reqsk(sk); 3803 3804 local_bh_disable(); 3805 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3806 local_bh_enable(); 3807 return 0; 3808 } 3809 return -EOPNOTSUPP; 3810 } 3811 3812 /* Don't race with userspace socket closes such as tcp_close. */ 3813 lock_sock(sk); 3814 3815 if (sk->sk_state == TCP_LISTEN) { 3816 tcp_set_state(sk, TCP_CLOSE); 3817 inet_csk_listen_stop(sk); 3818 } 3819 3820 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3821 local_bh_disable(); 3822 bh_lock_sock(sk); 3823 3824 if (!sock_flag(sk, SOCK_DEAD)) { 3825 sk->sk_err = err; 3826 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3827 smp_wmb(); 3828 sk->sk_error_report(sk); 3829 if (tcp_need_reset(sk->sk_state)) 3830 tcp_send_active_reset(sk, GFP_ATOMIC); 3831 tcp_done(sk); 3832 } 3833 3834 bh_unlock_sock(sk); 3835 local_bh_enable(); 3836 tcp_write_queue_purge(sk); 3837 release_sock(sk); 3838 return 0; 3839 } 3840 EXPORT_SYMBOL_GPL(tcp_abort); 3841 3842 extern struct tcp_congestion_ops tcp_reno; 3843 3844 static __initdata unsigned long thash_entries; 3845 static int __init set_thash_entries(char *str) 3846 { 3847 ssize_t ret; 3848 3849 if (!str) 3850 return 0; 3851 3852 ret = kstrtoul(str, 0, &thash_entries); 3853 if (ret) 3854 return 0; 3855 3856 return 1; 3857 } 3858 __setup("thash_entries=", set_thash_entries); 3859 3860 static void __init tcp_init_mem(void) 3861 { 3862 unsigned long limit = nr_free_buffer_pages() / 16; 3863 3864 limit = max(limit, 128UL); 3865 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3866 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3867 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3868 } 3869 3870 void __init tcp_init(void) 3871 { 3872 int max_rshare, max_wshare, cnt; 3873 unsigned long limit; 3874 unsigned int i; 3875 3876 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 3877 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3878 FIELD_SIZEOF(struct sk_buff, cb)); 3879 3880 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3881 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3882 inet_hashinfo_init(&tcp_hashinfo); 3883 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3884 thash_entries, 21, /* one slot per 2 MB*/ 3885 0, 64 * 1024); 3886 tcp_hashinfo.bind_bucket_cachep = 3887 kmem_cache_create("tcp_bind_bucket", 3888 sizeof(struct inet_bind_bucket), 0, 3889 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3890 3891 /* Size and allocate the main established and bind bucket 3892 * hash tables. 3893 * 3894 * The methodology is similar to that of the buffer cache. 3895 */ 3896 tcp_hashinfo.ehash = 3897 alloc_large_system_hash("TCP established", 3898 sizeof(struct inet_ehash_bucket), 3899 thash_entries, 3900 17, /* one slot per 128 KB of memory */ 3901 0, 3902 NULL, 3903 &tcp_hashinfo.ehash_mask, 3904 0, 3905 thash_entries ? 0 : 512 * 1024); 3906 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3907 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3908 3909 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3910 panic("TCP: failed to alloc ehash_locks"); 3911 tcp_hashinfo.bhash = 3912 alloc_large_system_hash("TCP bind", 3913 sizeof(struct inet_bind_hashbucket), 3914 tcp_hashinfo.ehash_mask + 1, 3915 17, /* one slot per 128 KB of memory */ 3916 0, 3917 &tcp_hashinfo.bhash_size, 3918 NULL, 3919 0, 3920 64 * 1024); 3921 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3922 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3923 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3924 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3925 } 3926 3927 3928 cnt = tcp_hashinfo.ehash_mask + 1; 3929 sysctl_tcp_max_orphans = cnt / 2; 3930 3931 tcp_init_mem(); 3932 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3933 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3934 max_wshare = min(4UL*1024*1024, limit); 3935 max_rshare = min(6UL*1024*1024, limit); 3936 3937 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3938 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3939 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3940 3941 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3942 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 3943 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 3944 3945 pr_info("Hash tables configured (established %u bind %u)\n", 3946 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3947 3948 tcp_v4_init(); 3949 tcp_metrics_init(); 3950 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3951 tcp_tasklet_init(); 3952 } 3953