1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 458 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 459 460 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 461 sk_sockets_allocated_inc(sk); 462 } 463 EXPORT_SYMBOL(tcp_init_sock); 464 465 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 466 { 467 struct sk_buff *skb = tcp_write_queue_tail(sk); 468 469 if (tsflags && skb) { 470 struct skb_shared_info *shinfo = skb_shinfo(skb); 471 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 472 473 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 474 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 475 tcb->txstamp_ack = 1; 476 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 477 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 478 } 479 } 480 481 static bool tcp_stream_is_readable(struct sock *sk, int target) 482 { 483 if (tcp_epollin_ready(sk, target)) 484 return true; 485 return sk_is_readable(sk); 486 } 487 488 /* 489 * Wait for a TCP event. 490 * 491 * Note that we don't need to lock the socket, as the upper poll layers 492 * take care of normal races (between the test and the event) and we don't 493 * go look at any of the socket buffers directly. 494 */ 495 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 496 { 497 __poll_t mask; 498 struct sock *sk = sock->sk; 499 const struct tcp_sock *tp = tcp_sk(sk); 500 int state; 501 502 sock_poll_wait(file, sock, wait); 503 504 state = inet_sk_state_load(sk); 505 if (state == TCP_LISTEN) 506 return inet_csk_listen_poll(sk); 507 508 /* Socket is not locked. We are protected from async events 509 * by poll logic and correct handling of state changes 510 * made by other threads is impossible in any case. 511 */ 512 513 mask = 0; 514 515 /* 516 * EPOLLHUP is certainly not done right. But poll() doesn't 517 * have a notion of HUP in just one direction, and for a 518 * socket the read side is more interesting. 519 * 520 * Some poll() documentation says that EPOLLHUP is incompatible 521 * with the EPOLLOUT/POLLWR flags, so somebody should check this 522 * all. But careful, it tends to be safer to return too many 523 * bits than too few, and you can easily break real applications 524 * if you don't tell them that something has hung up! 525 * 526 * Check-me. 527 * 528 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 529 * our fs/select.c). It means that after we received EOF, 530 * poll always returns immediately, making impossible poll() on write() 531 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 532 * if and only if shutdown has been made in both directions. 533 * Actually, it is interesting to look how Solaris and DUX 534 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 535 * then we could set it on SND_SHUTDOWN. BTW examples given 536 * in Stevens' books assume exactly this behaviour, it explains 537 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 538 * 539 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 540 * blocking on fresh not-connected or disconnected socket. --ANK 541 */ 542 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 543 mask |= EPOLLHUP; 544 if (sk->sk_shutdown & RCV_SHUTDOWN) 545 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 546 547 /* Connected or passive Fast Open socket? */ 548 if (state != TCP_SYN_SENT && 549 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 550 int target = sock_rcvlowat(sk, 0, INT_MAX); 551 u16 urg_data = READ_ONCE(tp->urg_data); 552 553 if (unlikely(urg_data) && 554 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 555 !sock_flag(sk, SOCK_URGINLINE)) 556 target++; 557 558 if (tcp_stream_is_readable(sk, target)) 559 mask |= EPOLLIN | EPOLLRDNORM; 560 561 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 562 if (__sk_stream_is_writeable(sk, 1)) { 563 mask |= EPOLLOUT | EPOLLWRNORM; 564 } else { /* send SIGIO later */ 565 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 566 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 567 568 /* Race breaker. If space is freed after 569 * wspace test but before the flags are set, 570 * IO signal will be lost. Memory barrier 571 * pairs with the input side. 572 */ 573 smp_mb__after_atomic(); 574 if (__sk_stream_is_writeable(sk, 1)) 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 } 577 } else 578 mask |= EPOLLOUT | EPOLLWRNORM; 579 580 if (urg_data & TCP_URG_VALID) 581 mask |= EPOLLPRI; 582 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 583 /* Active TCP fastopen socket with defer_connect 584 * Return EPOLLOUT so application can call write() 585 * in order for kernel to generate SYN+data 586 */ 587 mask |= EPOLLOUT | EPOLLWRNORM; 588 } 589 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 590 smp_rmb(); 591 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 592 mask |= EPOLLERR; 593 594 return mask; 595 } 596 EXPORT_SYMBOL(tcp_poll); 597 598 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 599 { 600 struct tcp_sock *tp = tcp_sk(sk); 601 int answ; 602 bool slow; 603 604 switch (cmd) { 605 case SIOCINQ: 606 if (sk->sk_state == TCP_LISTEN) 607 return -EINVAL; 608 609 slow = lock_sock_fast(sk); 610 answ = tcp_inq(sk); 611 unlock_sock_fast(sk, slow); 612 break; 613 case SIOCATMARK: 614 answ = READ_ONCE(tp->urg_data) && 615 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 616 break; 617 case SIOCOUTQ: 618 if (sk->sk_state == TCP_LISTEN) 619 return -EINVAL; 620 621 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 622 answ = 0; 623 else 624 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 625 break; 626 case SIOCOUTQNSD: 627 if (sk->sk_state == TCP_LISTEN) 628 return -EINVAL; 629 630 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 631 answ = 0; 632 else 633 answ = READ_ONCE(tp->write_seq) - 634 READ_ONCE(tp->snd_nxt); 635 break; 636 default: 637 return -ENOIOCTLCMD; 638 } 639 640 return put_user(answ, (int __user *)arg); 641 } 642 EXPORT_SYMBOL(tcp_ioctl); 643 644 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 645 { 646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 647 tp->pushed_seq = tp->write_seq; 648 } 649 650 static inline bool forced_push(const struct tcp_sock *tp) 651 { 652 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 653 } 654 655 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 656 { 657 struct tcp_sock *tp = tcp_sk(sk); 658 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 659 660 tcb->seq = tcb->end_seq = tp->write_seq; 661 tcb->tcp_flags = TCPHDR_ACK; 662 __skb_header_release(skb); 663 tcp_add_write_queue_tail(sk, skb); 664 sk_wmem_queued_add(sk, skb->truesize); 665 sk_mem_charge(sk, skb->truesize); 666 if (tp->nonagle & TCP_NAGLE_PUSH) 667 tp->nonagle &= ~TCP_NAGLE_PUSH; 668 669 tcp_slow_start_after_idle_check(sk); 670 } 671 672 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 673 { 674 if (flags & MSG_OOB) 675 tp->snd_up = tp->write_seq; 676 } 677 678 /* If a not yet filled skb is pushed, do not send it if 679 * we have data packets in Qdisc or NIC queues : 680 * Because TX completion will happen shortly, it gives a chance 681 * to coalesce future sendmsg() payload into this skb, without 682 * need for a timer, and with no latency trade off. 683 * As packets containing data payload have a bigger truesize 684 * than pure acks (dataless) packets, the last checks prevent 685 * autocorking if we only have an ACK in Qdisc/NIC queues, 686 * or if TX completion was delayed after we processed ACK packet. 687 */ 688 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 689 int size_goal) 690 { 691 return skb->len < size_goal && 692 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 693 !tcp_rtx_queue_empty(sk) && 694 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 695 tcp_skb_can_collapse_to(skb); 696 } 697 698 void tcp_push(struct sock *sk, int flags, int mss_now, 699 int nonagle, int size_goal) 700 { 701 struct tcp_sock *tp = tcp_sk(sk); 702 struct sk_buff *skb; 703 704 skb = tcp_write_queue_tail(sk); 705 if (!skb) 706 return; 707 if (!(flags & MSG_MORE) || forced_push(tp)) 708 tcp_mark_push(tp, skb); 709 710 tcp_mark_urg(tp, flags); 711 712 if (tcp_should_autocork(sk, skb, size_goal)) { 713 714 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 715 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 717 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 718 } 719 /* It is possible TX completion already happened 720 * before we set TSQ_THROTTLED. 721 */ 722 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 723 return; 724 } 725 726 if (flags & MSG_MORE) 727 nonagle = TCP_NAGLE_CORK; 728 729 __tcp_push_pending_frames(sk, mss_now, nonagle); 730 } 731 732 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 733 unsigned int offset, size_t len) 734 { 735 struct tcp_splice_state *tss = rd_desc->arg.data; 736 int ret; 737 738 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 739 min(rd_desc->count, len), tss->flags); 740 if (ret > 0) 741 rd_desc->count -= ret; 742 return ret; 743 } 744 745 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 746 { 747 /* Store TCP splice context information in read_descriptor_t. */ 748 read_descriptor_t rd_desc = { 749 .arg.data = tss, 750 .count = tss->len, 751 }; 752 753 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 754 } 755 756 /** 757 * tcp_splice_read - splice data from TCP socket to a pipe 758 * @sock: socket to splice from 759 * @ppos: position (not valid) 760 * @pipe: pipe to splice to 761 * @len: number of bytes to splice 762 * @flags: splice modifier flags 763 * 764 * Description: 765 * Will read pages from given socket and fill them into a pipe. 766 * 767 **/ 768 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 769 struct pipe_inode_info *pipe, size_t len, 770 unsigned int flags) 771 { 772 struct sock *sk = sock->sk; 773 struct tcp_splice_state tss = { 774 .pipe = pipe, 775 .len = len, 776 .flags = flags, 777 }; 778 long timeo; 779 ssize_t spliced; 780 int ret; 781 782 sock_rps_record_flow(sk); 783 /* 784 * We can't seek on a socket input 785 */ 786 if (unlikely(*ppos)) 787 return -ESPIPE; 788 789 ret = spliced = 0; 790 791 lock_sock(sk); 792 793 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 794 while (tss.len) { 795 ret = __tcp_splice_read(sk, &tss); 796 if (ret < 0) 797 break; 798 else if (!ret) { 799 if (spliced) 800 break; 801 if (sock_flag(sk, SOCK_DONE)) 802 break; 803 if (sk->sk_err) { 804 ret = sock_error(sk); 805 break; 806 } 807 if (sk->sk_shutdown & RCV_SHUTDOWN) 808 break; 809 if (sk->sk_state == TCP_CLOSE) { 810 /* 811 * This occurs when user tries to read 812 * from never connected socket. 813 */ 814 ret = -ENOTCONN; 815 break; 816 } 817 if (!timeo) { 818 ret = -EAGAIN; 819 break; 820 } 821 /* if __tcp_splice_read() got nothing while we have 822 * an skb in receive queue, we do not want to loop. 823 * This might happen with URG data. 824 */ 825 if (!skb_queue_empty(&sk->sk_receive_queue)) 826 break; 827 sk_wait_data(sk, &timeo, NULL); 828 if (signal_pending(current)) { 829 ret = sock_intr_errno(timeo); 830 break; 831 } 832 continue; 833 } 834 tss.len -= ret; 835 spliced += ret; 836 837 if (!timeo) 838 break; 839 release_sock(sk); 840 lock_sock(sk); 841 842 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 843 (sk->sk_shutdown & RCV_SHUTDOWN) || 844 signal_pending(current)) 845 break; 846 } 847 848 release_sock(sk); 849 850 if (spliced) 851 return spliced; 852 853 return ret; 854 } 855 EXPORT_SYMBOL(tcp_splice_read); 856 857 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 858 bool force_schedule) 859 { 860 struct sk_buff *skb; 861 862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 863 if (likely(skb)) { 864 bool mem_scheduled; 865 866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 867 if (force_schedule) { 868 mem_scheduled = true; 869 sk_forced_mem_schedule(sk, skb->truesize); 870 } else { 871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 872 } 873 if (likely(mem_scheduled)) { 874 skb_reserve(skb, MAX_TCP_HEADER); 875 skb->ip_summed = CHECKSUM_PARTIAL; 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 return skb; 878 } 879 __kfree_skb(skb); 880 } else { 881 sk->sk_prot->enter_memory_pressure(sk); 882 sk_stream_moderate_sndbuf(sk); 883 } 884 return NULL; 885 } 886 887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 888 int large_allowed) 889 { 890 struct tcp_sock *tp = tcp_sk(sk); 891 u32 new_size_goal, size_goal; 892 893 if (!large_allowed) 894 return mss_now; 895 896 /* Note : tcp_tso_autosize() will eventually split this later */ 897 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 898 899 /* We try hard to avoid divides here */ 900 size_goal = tp->gso_segs * mss_now; 901 if (unlikely(new_size_goal < size_goal || 902 new_size_goal >= size_goal + mss_now)) { 903 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 904 sk->sk_gso_max_segs); 905 size_goal = tp->gso_segs * mss_now; 906 } 907 908 return max(size_goal, mss_now); 909 } 910 911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 912 { 913 int mss_now; 914 915 mss_now = tcp_current_mss(sk); 916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 917 918 return mss_now; 919 } 920 921 /* In some cases, both sendpage() and sendmsg() could have added 922 * an skb to the write queue, but failed adding payload on it. 923 * We need to remove it to consume less memory, but more 924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 925 * users. 926 */ 927 void tcp_remove_empty_skb(struct sock *sk) 928 { 929 struct sk_buff *skb = tcp_write_queue_tail(sk); 930 931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 932 tcp_unlink_write_queue(skb, sk); 933 if (tcp_write_queue_empty(sk)) 934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 935 tcp_wmem_free_skb(sk, skb); 936 } 937 } 938 939 /* skb changing from pure zc to mixed, must charge zc */ 940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 941 { 942 if (unlikely(skb_zcopy_pure(skb))) { 943 u32 extra = skb->truesize - 944 SKB_TRUESIZE(skb_end_offset(skb)); 945 946 if (!sk_wmem_schedule(sk, extra)) 947 return -ENOMEM; 948 949 sk_mem_charge(sk, extra); 950 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 951 } 952 return 0; 953 } 954 955 956 static int tcp_wmem_schedule(struct sock *sk, int copy) 957 { 958 int left; 959 960 if (likely(sk_wmem_schedule(sk, copy))) 961 return copy; 962 963 /* We could be in trouble if we have nothing queued. 964 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 965 * to guarantee some progress. 966 */ 967 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 968 if (left > 0) 969 sk_forced_mem_schedule(sk, min(left, copy)); 970 return min(copy, sk->sk_forward_alloc); 971 } 972 973 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 974 struct page *page, int offset, size_t *size) 975 { 976 struct sk_buff *skb = tcp_write_queue_tail(sk); 977 struct tcp_sock *tp = tcp_sk(sk); 978 bool can_coalesce; 979 int copy, i; 980 981 if (!skb || (copy = size_goal - skb->len) <= 0 || 982 !tcp_skb_can_collapse_to(skb)) { 983 new_segment: 984 if (!sk_stream_memory_free(sk)) 985 return NULL; 986 987 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 988 tcp_rtx_and_write_queues_empty(sk)); 989 if (!skb) 990 return NULL; 991 992 #ifdef CONFIG_TLS_DEVICE 993 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 994 #endif 995 tcp_skb_entail(sk, skb); 996 copy = size_goal; 997 } 998 999 if (copy > *size) 1000 copy = *size; 1001 1002 i = skb_shinfo(skb)->nr_frags; 1003 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1004 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1005 tcp_mark_push(tp, skb); 1006 goto new_segment; 1007 } 1008 if (tcp_downgrade_zcopy_pure(sk, skb)) 1009 return NULL; 1010 1011 copy = tcp_wmem_schedule(sk, copy); 1012 if (!copy) 1013 return NULL; 1014 1015 if (can_coalesce) { 1016 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1017 } else { 1018 get_page(page); 1019 skb_fill_page_desc_noacc(skb, i, page, offset, copy); 1020 } 1021 1022 if (!(flags & MSG_NO_SHARED_FRAGS)) 1023 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1024 1025 skb->len += copy; 1026 skb->data_len += copy; 1027 skb->truesize += copy; 1028 sk_wmem_queued_add(sk, copy); 1029 sk_mem_charge(sk, copy); 1030 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1031 TCP_SKB_CB(skb)->end_seq += copy; 1032 tcp_skb_pcount_set(skb, 0); 1033 1034 *size = copy; 1035 return skb; 1036 } 1037 1038 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1039 size_t size, int flags) 1040 { 1041 struct tcp_sock *tp = tcp_sk(sk); 1042 int mss_now, size_goal; 1043 int err; 1044 ssize_t copied; 1045 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1046 1047 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1048 WARN_ONCE(!sendpage_ok(page), 1049 "page must not be a Slab one and have page_count > 0")) 1050 return -EINVAL; 1051 1052 /* Wait for a connection to finish. One exception is TCP Fast Open 1053 * (passive side) where data is allowed to be sent before a connection 1054 * is fully established. 1055 */ 1056 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1057 !tcp_passive_fastopen(sk)) { 1058 err = sk_stream_wait_connect(sk, &timeo); 1059 if (err != 0) 1060 goto out_err; 1061 } 1062 1063 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1064 1065 mss_now = tcp_send_mss(sk, &size_goal, flags); 1066 copied = 0; 1067 1068 err = -EPIPE; 1069 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1070 goto out_err; 1071 1072 while (size > 0) { 1073 struct sk_buff *skb; 1074 size_t copy = size; 1075 1076 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1077 if (!skb) 1078 goto wait_for_space; 1079 1080 if (!copied) 1081 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1082 1083 copied += copy; 1084 offset += copy; 1085 size -= copy; 1086 if (!size) 1087 goto out; 1088 1089 if (skb->len < size_goal || (flags & MSG_OOB)) 1090 continue; 1091 1092 if (forced_push(tp)) { 1093 tcp_mark_push(tp, skb); 1094 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1095 } else if (skb == tcp_send_head(sk)) 1096 tcp_push_one(sk, mss_now); 1097 continue; 1098 1099 wait_for_space: 1100 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1101 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1102 TCP_NAGLE_PUSH, size_goal); 1103 1104 err = sk_stream_wait_memory(sk, &timeo); 1105 if (err != 0) 1106 goto do_error; 1107 1108 mss_now = tcp_send_mss(sk, &size_goal, flags); 1109 } 1110 1111 out: 1112 if (copied) { 1113 tcp_tx_timestamp(sk, sk->sk_tsflags); 1114 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1115 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1116 } 1117 return copied; 1118 1119 do_error: 1120 tcp_remove_empty_skb(sk); 1121 if (copied) 1122 goto out; 1123 out_err: 1124 /* make sure we wake any epoll edge trigger waiter */ 1125 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1126 sk->sk_write_space(sk); 1127 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1128 } 1129 return sk_stream_error(sk, flags, err); 1130 } 1131 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1132 1133 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1134 size_t size, int flags) 1135 { 1136 if (!(sk->sk_route_caps & NETIF_F_SG)) 1137 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1138 1139 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1140 1141 return do_tcp_sendpages(sk, page, offset, size, flags); 1142 } 1143 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1144 1145 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1146 size_t size, int flags) 1147 { 1148 int ret; 1149 1150 lock_sock(sk); 1151 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1152 release_sock(sk); 1153 1154 return ret; 1155 } 1156 EXPORT_SYMBOL(tcp_sendpage); 1157 1158 void tcp_free_fastopen_req(struct tcp_sock *tp) 1159 { 1160 if (tp->fastopen_req) { 1161 kfree(tp->fastopen_req); 1162 tp->fastopen_req = NULL; 1163 } 1164 } 1165 1166 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1167 size_t size, struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1175 TFO_CLIENT_ENABLE) || 1176 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1177 uaddr->sa_family == AF_UNSPEC)) 1178 return -EOPNOTSUPP; 1179 if (tp->fastopen_req) 1180 return -EALREADY; /* Another Fast Open is in progress */ 1181 1182 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1183 sk->sk_allocation); 1184 if (unlikely(!tp->fastopen_req)) 1185 return -ENOBUFS; 1186 tp->fastopen_req->data = msg; 1187 tp->fastopen_req->size = size; 1188 tp->fastopen_req->uarg = uarg; 1189 1190 if (inet->defer_connect) { 1191 err = tcp_connect(sk); 1192 /* Same failure procedure as in tcp_v4/6_connect */ 1193 if (err) { 1194 tcp_set_state(sk, TCP_CLOSE); 1195 inet->inet_dport = 0; 1196 sk->sk_route_caps = 0; 1197 } 1198 } 1199 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1200 err = __inet_stream_connect(sk->sk_socket, uaddr, 1201 msg->msg_namelen, flags, 1); 1202 /* fastopen_req could already be freed in __inet_stream_connect 1203 * if the connection times out or gets rst 1204 */ 1205 if (tp->fastopen_req) { 1206 *copied = tp->fastopen_req->copied; 1207 tcp_free_fastopen_req(tp); 1208 inet->defer_connect = 0; 1209 } 1210 return err; 1211 } 1212 1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1214 { 1215 struct tcp_sock *tp = tcp_sk(sk); 1216 struct ubuf_info *uarg = NULL; 1217 struct sk_buff *skb; 1218 struct sockcm_cookie sockc; 1219 int flags, err, copied = 0; 1220 int mss_now = 0, size_goal, copied_syn = 0; 1221 int process_backlog = 0; 1222 bool zc = false; 1223 long timeo; 1224 1225 flags = msg->msg_flags; 1226 1227 if ((flags & MSG_ZEROCOPY) && size) { 1228 skb = tcp_write_queue_tail(sk); 1229 1230 if (msg->msg_ubuf) { 1231 uarg = msg->msg_ubuf; 1232 net_zcopy_get(uarg); 1233 zc = sk->sk_route_caps & NETIF_F_SG; 1234 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1235 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1236 if (!uarg) { 1237 err = -ENOBUFS; 1238 goto out_err; 1239 } 1240 zc = sk->sk_route_caps & NETIF_F_SG; 1241 if (!zc) 1242 uarg_to_msgzc(uarg)->zerocopy = 0; 1243 } 1244 } 1245 1246 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1247 !tp->repair) { 1248 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1249 if (err == -EINPROGRESS && copied_syn > 0) 1250 goto out; 1251 else if (err) 1252 goto out_err; 1253 } 1254 1255 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1256 1257 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1258 1259 /* Wait for a connection to finish. One exception is TCP Fast Open 1260 * (passive side) where data is allowed to be sent before a connection 1261 * is fully established. 1262 */ 1263 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1264 !tcp_passive_fastopen(sk)) { 1265 err = sk_stream_wait_connect(sk, &timeo); 1266 if (err != 0) 1267 goto do_error; 1268 } 1269 1270 if (unlikely(tp->repair)) { 1271 if (tp->repair_queue == TCP_RECV_QUEUE) { 1272 copied = tcp_send_rcvq(sk, msg, size); 1273 goto out_nopush; 1274 } 1275 1276 err = -EINVAL; 1277 if (tp->repair_queue == TCP_NO_QUEUE) 1278 goto out_err; 1279 1280 /* 'common' sending to sendq */ 1281 } 1282 1283 sockcm_init(&sockc, sk); 1284 if (msg->msg_controllen) { 1285 err = sock_cmsg_send(sk, msg, &sockc); 1286 if (unlikely(err)) { 1287 err = -EINVAL; 1288 goto out_err; 1289 } 1290 } 1291 1292 /* This should be in poll */ 1293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1294 1295 /* Ok commence sending. */ 1296 copied = 0; 1297 1298 restart: 1299 mss_now = tcp_send_mss(sk, &size_goal, flags); 1300 1301 err = -EPIPE; 1302 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1303 goto do_error; 1304 1305 while (msg_data_left(msg)) { 1306 int copy = 0; 1307 1308 skb = tcp_write_queue_tail(sk); 1309 if (skb) 1310 copy = size_goal - skb->len; 1311 1312 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1313 bool first_skb; 1314 1315 new_segment: 1316 if (!sk_stream_memory_free(sk)) 1317 goto wait_for_space; 1318 1319 if (unlikely(process_backlog >= 16)) { 1320 process_backlog = 0; 1321 if (sk_flush_backlog(sk)) 1322 goto restart; 1323 } 1324 first_skb = tcp_rtx_and_write_queues_empty(sk); 1325 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1326 first_skb); 1327 if (!skb) 1328 goto wait_for_space; 1329 1330 process_backlog++; 1331 1332 tcp_skb_entail(sk, skb); 1333 copy = size_goal; 1334 1335 /* All packets are restored as if they have 1336 * already been sent. skb_mstamp_ns isn't set to 1337 * avoid wrong rtt estimation. 1338 */ 1339 if (tp->repair) 1340 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1341 } 1342 1343 /* Try to append data to the end of skb. */ 1344 if (copy > msg_data_left(msg)) 1345 copy = msg_data_left(msg); 1346 1347 if (!zc) { 1348 bool merge = true; 1349 int i = skb_shinfo(skb)->nr_frags; 1350 struct page_frag *pfrag = sk_page_frag(sk); 1351 1352 if (!sk_page_frag_refill(sk, pfrag)) 1353 goto wait_for_space; 1354 1355 if (!skb_can_coalesce(skb, i, pfrag->page, 1356 pfrag->offset)) { 1357 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1358 tcp_mark_push(tp, skb); 1359 goto new_segment; 1360 } 1361 merge = false; 1362 } 1363 1364 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1365 1366 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1367 if (tcp_downgrade_zcopy_pure(sk, skb)) 1368 goto wait_for_space; 1369 skb_zcopy_downgrade_managed(skb); 1370 } 1371 1372 copy = tcp_wmem_schedule(sk, copy); 1373 if (!copy) 1374 goto wait_for_space; 1375 1376 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1377 pfrag->page, 1378 pfrag->offset, 1379 copy); 1380 if (err) 1381 goto do_error; 1382 1383 /* Update the skb. */ 1384 if (merge) { 1385 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1386 } else { 1387 skb_fill_page_desc(skb, i, pfrag->page, 1388 pfrag->offset, copy); 1389 page_ref_inc(pfrag->page); 1390 } 1391 pfrag->offset += copy; 1392 } else { 1393 /* First append to a fragless skb builds initial 1394 * pure zerocopy skb 1395 */ 1396 if (!skb->len) 1397 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1398 1399 if (!skb_zcopy_pure(skb)) { 1400 copy = tcp_wmem_schedule(sk, copy); 1401 if (!copy) 1402 goto wait_for_space; 1403 } 1404 1405 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1406 if (err == -EMSGSIZE || err == -EEXIST) { 1407 tcp_mark_push(tp, skb); 1408 goto new_segment; 1409 } 1410 if (err < 0) 1411 goto do_error; 1412 copy = err; 1413 } 1414 1415 if (!copied) 1416 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1417 1418 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1419 TCP_SKB_CB(skb)->end_seq += copy; 1420 tcp_skb_pcount_set(skb, 0); 1421 1422 copied += copy; 1423 if (!msg_data_left(msg)) { 1424 if (unlikely(flags & MSG_EOR)) 1425 TCP_SKB_CB(skb)->eor = 1; 1426 goto out; 1427 } 1428 1429 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1430 continue; 1431 1432 if (forced_push(tp)) { 1433 tcp_mark_push(tp, skb); 1434 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1435 } else if (skb == tcp_send_head(sk)) 1436 tcp_push_one(sk, mss_now); 1437 continue; 1438 1439 wait_for_space: 1440 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1441 if (copied) 1442 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1443 TCP_NAGLE_PUSH, size_goal); 1444 1445 err = sk_stream_wait_memory(sk, &timeo); 1446 if (err != 0) 1447 goto do_error; 1448 1449 mss_now = tcp_send_mss(sk, &size_goal, flags); 1450 } 1451 1452 out: 1453 if (copied) { 1454 tcp_tx_timestamp(sk, sockc.tsflags); 1455 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1456 } 1457 out_nopush: 1458 net_zcopy_put(uarg); 1459 return copied + copied_syn; 1460 1461 do_error: 1462 tcp_remove_empty_skb(sk); 1463 1464 if (copied + copied_syn) 1465 goto out; 1466 out_err: 1467 net_zcopy_put_abort(uarg, true); 1468 err = sk_stream_error(sk, flags, err); 1469 /* make sure we wake any epoll edge trigger waiter */ 1470 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1471 sk->sk_write_space(sk); 1472 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1473 } 1474 return err; 1475 } 1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1477 1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1479 { 1480 int ret; 1481 1482 lock_sock(sk); 1483 ret = tcp_sendmsg_locked(sk, msg, size); 1484 release_sock(sk); 1485 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(tcp_sendmsg); 1489 1490 /* 1491 * Handle reading urgent data. BSD has very simple semantics for 1492 * this, no blocking and very strange errors 8) 1493 */ 1494 1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1496 { 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 /* No URG data to read. */ 1500 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1501 tp->urg_data == TCP_URG_READ) 1502 return -EINVAL; /* Yes this is right ! */ 1503 1504 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1505 return -ENOTCONN; 1506 1507 if (tp->urg_data & TCP_URG_VALID) { 1508 int err = 0; 1509 char c = tp->urg_data; 1510 1511 if (!(flags & MSG_PEEK)) 1512 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1513 1514 /* Read urgent data. */ 1515 msg->msg_flags |= MSG_OOB; 1516 1517 if (len > 0) { 1518 if (!(flags & MSG_TRUNC)) 1519 err = memcpy_to_msg(msg, &c, 1); 1520 len = 1; 1521 } else 1522 msg->msg_flags |= MSG_TRUNC; 1523 1524 return err ? -EFAULT : len; 1525 } 1526 1527 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1528 return 0; 1529 1530 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1531 * the available implementations agree in this case: 1532 * this call should never block, independent of the 1533 * blocking state of the socket. 1534 * Mike <pall@rz.uni-karlsruhe.de> 1535 */ 1536 return -EAGAIN; 1537 } 1538 1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1540 { 1541 struct sk_buff *skb; 1542 int copied = 0, err = 0; 1543 1544 /* XXX -- need to support SO_PEEK_OFF */ 1545 1546 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1547 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1548 if (err) 1549 return err; 1550 copied += skb->len; 1551 } 1552 1553 skb_queue_walk(&sk->sk_write_queue, skb) { 1554 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1555 if (err) 1556 break; 1557 1558 copied += skb->len; 1559 } 1560 1561 return err ?: copied; 1562 } 1563 1564 /* Clean up the receive buffer for full frames taken by the user, 1565 * then send an ACK if necessary. COPIED is the number of bytes 1566 * tcp_recvmsg has given to the user so far, it speeds up the 1567 * calculation of whether or not we must ACK for the sake of 1568 * a window update. 1569 */ 1570 static void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1571 { 1572 struct tcp_sock *tp = tcp_sk(sk); 1573 bool time_to_ack = false; 1574 1575 if (inet_csk_ack_scheduled(sk)) { 1576 const struct inet_connection_sock *icsk = inet_csk(sk); 1577 1578 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1579 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1580 /* 1581 * If this read emptied read buffer, we send ACK, if 1582 * connection is not bidirectional, user drained 1583 * receive buffer and there was a small segment 1584 * in queue. 1585 */ 1586 (copied > 0 && 1587 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1588 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1589 !inet_csk_in_pingpong_mode(sk))) && 1590 !atomic_read(&sk->sk_rmem_alloc))) 1591 time_to_ack = true; 1592 } 1593 1594 /* We send an ACK if we can now advertise a non-zero window 1595 * which has been raised "significantly". 1596 * 1597 * Even if window raised up to infinity, do not send window open ACK 1598 * in states, where we will not receive more. It is useless. 1599 */ 1600 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1601 __u32 rcv_window_now = tcp_receive_window(tp); 1602 1603 /* Optimize, __tcp_select_window() is not cheap. */ 1604 if (2*rcv_window_now <= tp->window_clamp) { 1605 __u32 new_window = __tcp_select_window(sk); 1606 1607 /* Send ACK now, if this read freed lots of space 1608 * in our buffer. Certainly, new_window is new window. 1609 * We can advertise it now, if it is not less than current one. 1610 * "Lots" means "at least twice" here. 1611 */ 1612 if (new_window && new_window >= 2 * rcv_window_now) 1613 time_to_ack = true; 1614 } 1615 } 1616 if (time_to_ack) 1617 tcp_send_ack(sk); 1618 } 1619 1620 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1621 { 1622 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1623 struct tcp_sock *tp = tcp_sk(sk); 1624 1625 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1626 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1627 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1628 __tcp_cleanup_rbuf(sk, copied); 1629 } 1630 1631 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1632 { 1633 __skb_unlink(skb, &sk->sk_receive_queue); 1634 if (likely(skb->destructor == sock_rfree)) { 1635 sock_rfree(skb); 1636 skb->destructor = NULL; 1637 skb->sk = NULL; 1638 return skb_attempt_defer_free(skb); 1639 } 1640 __kfree_skb(skb); 1641 } 1642 1643 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1644 { 1645 struct sk_buff *skb; 1646 u32 offset; 1647 1648 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1649 offset = seq - TCP_SKB_CB(skb)->seq; 1650 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1651 pr_err_once("%s: found a SYN, please report !\n", __func__); 1652 offset--; 1653 } 1654 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1655 *off = offset; 1656 return skb; 1657 } 1658 /* This looks weird, but this can happen if TCP collapsing 1659 * splitted a fat GRO packet, while we released socket lock 1660 * in skb_splice_bits() 1661 */ 1662 tcp_eat_recv_skb(sk, skb); 1663 } 1664 return NULL; 1665 } 1666 EXPORT_SYMBOL(tcp_recv_skb); 1667 1668 /* 1669 * This routine provides an alternative to tcp_recvmsg() for routines 1670 * that would like to handle copying from skbuffs directly in 'sendfile' 1671 * fashion. 1672 * Note: 1673 * - It is assumed that the socket was locked by the caller. 1674 * - The routine does not block. 1675 * - At present, there is no support for reading OOB data 1676 * or for 'peeking' the socket using this routine 1677 * (although both would be easy to implement). 1678 */ 1679 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1680 sk_read_actor_t recv_actor) 1681 { 1682 struct sk_buff *skb; 1683 struct tcp_sock *tp = tcp_sk(sk); 1684 u32 seq = tp->copied_seq; 1685 u32 offset; 1686 int copied = 0; 1687 1688 if (sk->sk_state == TCP_LISTEN) 1689 return -ENOTCONN; 1690 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1691 if (offset < skb->len) { 1692 int used; 1693 size_t len; 1694 1695 len = skb->len - offset; 1696 /* Stop reading if we hit a patch of urgent data */ 1697 if (unlikely(tp->urg_data)) { 1698 u32 urg_offset = tp->urg_seq - seq; 1699 if (urg_offset < len) 1700 len = urg_offset; 1701 if (!len) 1702 break; 1703 } 1704 used = recv_actor(desc, skb, offset, len); 1705 if (used <= 0) { 1706 if (!copied) 1707 copied = used; 1708 break; 1709 } 1710 if (WARN_ON_ONCE(used > len)) 1711 used = len; 1712 seq += used; 1713 copied += used; 1714 offset += used; 1715 1716 /* If recv_actor drops the lock (e.g. TCP splice 1717 * receive) the skb pointer might be invalid when 1718 * getting here: tcp_collapse might have deleted it 1719 * while aggregating skbs from the socket queue. 1720 */ 1721 skb = tcp_recv_skb(sk, seq - 1, &offset); 1722 if (!skb) 1723 break; 1724 /* TCP coalescing might have appended data to the skb. 1725 * Try to splice more frags 1726 */ 1727 if (offset + 1 != skb->len) 1728 continue; 1729 } 1730 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1731 tcp_eat_recv_skb(sk, skb); 1732 ++seq; 1733 break; 1734 } 1735 tcp_eat_recv_skb(sk, skb); 1736 if (!desc->count) 1737 break; 1738 WRITE_ONCE(tp->copied_seq, seq); 1739 } 1740 WRITE_ONCE(tp->copied_seq, seq); 1741 1742 tcp_rcv_space_adjust(sk); 1743 1744 /* Clean up data we have read: This will do ACK frames. */ 1745 if (copied > 0) { 1746 tcp_recv_skb(sk, seq, &offset); 1747 tcp_cleanup_rbuf(sk, copied); 1748 } 1749 return copied; 1750 } 1751 EXPORT_SYMBOL(tcp_read_sock); 1752 1753 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1754 { 1755 struct tcp_sock *tp = tcp_sk(sk); 1756 u32 seq = tp->copied_seq; 1757 struct sk_buff *skb; 1758 int copied = 0; 1759 u32 offset; 1760 1761 if (sk->sk_state == TCP_LISTEN) 1762 return -ENOTCONN; 1763 1764 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1765 u8 tcp_flags; 1766 int used; 1767 1768 __skb_unlink(skb, &sk->sk_receive_queue); 1769 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1770 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1771 used = recv_actor(sk, skb); 1772 consume_skb(skb); 1773 if (used < 0) { 1774 if (!copied) 1775 copied = used; 1776 break; 1777 } 1778 seq += used; 1779 copied += used; 1780 1781 if (tcp_flags & TCPHDR_FIN) { 1782 ++seq; 1783 break; 1784 } 1785 } 1786 WRITE_ONCE(tp->copied_seq, seq); 1787 1788 tcp_rcv_space_adjust(sk); 1789 1790 /* Clean up data we have read: This will do ACK frames. */ 1791 if (copied > 0) 1792 __tcp_cleanup_rbuf(sk, copied); 1793 1794 return copied; 1795 } 1796 EXPORT_SYMBOL(tcp_read_skb); 1797 1798 void tcp_read_done(struct sock *sk, size_t len) 1799 { 1800 struct tcp_sock *tp = tcp_sk(sk); 1801 u32 seq = tp->copied_seq; 1802 struct sk_buff *skb; 1803 size_t left; 1804 u32 offset; 1805 1806 if (sk->sk_state == TCP_LISTEN) 1807 return; 1808 1809 left = len; 1810 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1811 int used; 1812 1813 used = min_t(size_t, skb->len - offset, left); 1814 seq += used; 1815 left -= used; 1816 1817 if (skb->len > offset + used) 1818 break; 1819 1820 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1821 tcp_eat_recv_skb(sk, skb); 1822 ++seq; 1823 break; 1824 } 1825 tcp_eat_recv_skb(sk, skb); 1826 } 1827 WRITE_ONCE(tp->copied_seq, seq); 1828 1829 tcp_rcv_space_adjust(sk); 1830 1831 /* Clean up data we have read: This will do ACK frames. */ 1832 if (left != len) 1833 tcp_cleanup_rbuf(sk, len - left); 1834 } 1835 EXPORT_SYMBOL(tcp_read_done); 1836 1837 int tcp_peek_len(struct socket *sock) 1838 { 1839 return tcp_inq(sock->sk); 1840 } 1841 EXPORT_SYMBOL(tcp_peek_len); 1842 1843 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1844 int tcp_set_rcvlowat(struct sock *sk, int val) 1845 { 1846 int cap; 1847 1848 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1849 cap = sk->sk_rcvbuf >> 1; 1850 else 1851 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1852 val = min(val, cap); 1853 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1854 1855 /* Check if we need to signal EPOLLIN right now */ 1856 tcp_data_ready(sk); 1857 1858 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1859 return 0; 1860 1861 val <<= 1; 1862 if (val > sk->sk_rcvbuf) { 1863 WRITE_ONCE(sk->sk_rcvbuf, val); 1864 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1865 } 1866 return 0; 1867 } 1868 EXPORT_SYMBOL(tcp_set_rcvlowat); 1869 1870 void tcp_update_recv_tstamps(struct sk_buff *skb, 1871 struct scm_timestamping_internal *tss) 1872 { 1873 if (skb->tstamp) 1874 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1875 else 1876 tss->ts[0] = (struct timespec64) {0}; 1877 1878 if (skb_hwtstamps(skb)->hwtstamp) 1879 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1880 else 1881 tss->ts[2] = (struct timespec64) {0}; 1882 } 1883 1884 #ifdef CONFIG_MMU 1885 static const struct vm_operations_struct tcp_vm_ops = { 1886 }; 1887 1888 int tcp_mmap(struct file *file, struct socket *sock, 1889 struct vm_area_struct *vma) 1890 { 1891 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1892 return -EPERM; 1893 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1894 1895 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1896 vma->vm_flags |= VM_MIXEDMAP; 1897 1898 vma->vm_ops = &tcp_vm_ops; 1899 return 0; 1900 } 1901 EXPORT_SYMBOL(tcp_mmap); 1902 1903 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1904 u32 *offset_frag) 1905 { 1906 skb_frag_t *frag; 1907 1908 if (unlikely(offset_skb >= skb->len)) 1909 return NULL; 1910 1911 offset_skb -= skb_headlen(skb); 1912 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1913 return NULL; 1914 1915 frag = skb_shinfo(skb)->frags; 1916 while (offset_skb) { 1917 if (skb_frag_size(frag) > offset_skb) { 1918 *offset_frag = offset_skb; 1919 return frag; 1920 } 1921 offset_skb -= skb_frag_size(frag); 1922 ++frag; 1923 } 1924 *offset_frag = 0; 1925 return frag; 1926 } 1927 1928 static bool can_map_frag(const skb_frag_t *frag) 1929 { 1930 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1931 } 1932 1933 static int find_next_mappable_frag(const skb_frag_t *frag, 1934 int remaining_in_skb) 1935 { 1936 int offset = 0; 1937 1938 if (likely(can_map_frag(frag))) 1939 return 0; 1940 1941 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1942 offset += skb_frag_size(frag); 1943 ++frag; 1944 } 1945 return offset; 1946 } 1947 1948 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1949 struct tcp_zerocopy_receive *zc, 1950 struct sk_buff *skb, u32 offset) 1951 { 1952 u32 frag_offset, partial_frag_remainder = 0; 1953 int mappable_offset; 1954 skb_frag_t *frag; 1955 1956 /* worst case: skip to next skb. try to improve on this case below */ 1957 zc->recv_skip_hint = skb->len - offset; 1958 1959 /* Find the frag containing this offset (and how far into that frag) */ 1960 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1961 if (!frag) 1962 return; 1963 1964 if (frag_offset) { 1965 struct skb_shared_info *info = skb_shinfo(skb); 1966 1967 /* We read part of the last frag, must recvmsg() rest of skb. */ 1968 if (frag == &info->frags[info->nr_frags - 1]) 1969 return; 1970 1971 /* Else, we must at least read the remainder in this frag. */ 1972 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1973 zc->recv_skip_hint -= partial_frag_remainder; 1974 ++frag; 1975 } 1976 1977 /* partial_frag_remainder: If part way through a frag, must read rest. 1978 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1979 * in partial_frag_remainder. 1980 */ 1981 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1982 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1983 } 1984 1985 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1986 int flags, struct scm_timestamping_internal *tss, 1987 int *cmsg_flags); 1988 static int receive_fallback_to_copy(struct sock *sk, 1989 struct tcp_zerocopy_receive *zc, int inq, 1990 struct scm_timestamping_internal *tss) 1991 { 1992 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1993 struct msghdr msg = {}; 1994 struct iovec iov; 1995 int err; 1996 1997 zc->length = 0; 1998 zc->recv_skip_hint = 0; 1999 2000 if (copy_address != zc->copybuf_address) 2001 return -EINVAL; 2002 2003 err = import_single_range(READ, (void __user *)copy_address, 2004 inq, &iov, &msg.msg_iter); 2005 if (err) 2006 return err; 2007 2008 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 2009 tss, &zc->msg_flags); 2010 if (err < 0) 2011 return err; 2012 2013 zc->copybuf_len = err; 2014 if (likely(zc->copybuf_len)) { 2015 struct sk_buff *skb; 2016 u32 offset; 2017 2018 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 2019 if (skb) 2020 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 2021 } 2022 return 0; 2023 } 2024 2025 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 2026 struct sk_buff *skb, u32 copylen, 2027 u32 *offset, u32 *seq) 2028 { 2029 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2030 struct msghdr msg = {}; 2031 struct iovec iov; 2032 int err; 2033 2034 if (copy_address != zc->copybuf_address) 2035 return -EINVAL; 2036 2037 err = import_single_range(READ, (void __user *)copy_address, 2038 copylen, &iov, &msg.msg_iter); 2039 if (err) 2040 return err; 2041 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 2042 if (err) 2043 return err; 2044 zc->recv_skip_hint -= copylen; 2045 *offset += copylen; 2046 *seq += copylen; 2047 return (__s32)copylen; 2048 } 2049 2050 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2051 struct sock *sk, 2052 struct sk_buff *skb, 2053 u32 *seq, 2054 s32 copybuf_len, 2055 struct scm_timestamping_internal *tss) 2056 { 2057 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2058 2059 if (!copylen) 2060 return 0; 2061 /* skb is null if inq < PAGE_SIZE. */ 2062 if (skb) { 2063 offset = *seq - TCP_SKB_CB(skb)->seq; 2064 } else { 2065 skb = tcp_recv_skb(sk, *seq, &offset); 2066 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2067 tcp_update_recv_tstamps(skb, tss); 2068 zc->msg_flags |= TCP_CMSG_TS; 2069 } 2070 } 2071 2072 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2073 seq); 2074 return zc->copybuf_len < 0 ? 0 : copylen; 2075 } 2076 2077 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2078 struct page **pending_pages, 2079 unsigned long pages_remaining, 2080 unsigned long *address, 2081 u32 *length, 2082 u32 *seq, 2083 struct tcp_zerocopy_receive *zc, 2084 u32 total_bytes_to_map, 2085 int err) 2086 { 2087 /* At least one page did not map. Try zapping if we skipped earlier. */ 2088 if (err == -EBUSY && 2089 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2090 u32 maybe_zap_len; 2091 2092 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2093 *length + /* Mapped or pending */ 2094 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2095 zap_page_range(vma, *address, maybe_zap_len); 2096 err = 0; 2097 } 2098 2099 if (!err) { 2100 unsigned long leftover_pages = pages_remaining; 2101 int bytes_mapped; 2102 2103 /* We called zap_page_range, try to reinsert. */ 2104 err = vm_insert_pages(vma, *address, 2105 pending_pages, 2106 &pages_remaining); 2107 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2108 *seq += bytes_mapped; 2109 *address += bytes_mapped; 2110 } 2111 if (err) { 2112 /* Either we were unable to zap, OR we zapped, retried an 2113 * insert, and still had an issue. Either ways, pages_remaining 2114 * is the number of pages we were unable to map, and we unroll 2115 * some state we speculatively touched before. 2116 */ 2117 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2118 2119 *length -= bytes_not_mapped; 2120 zc->recv_skip_hint += bytes_not_mapped; 2121 } 2122 return err; 2123 } 2124 2125 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2126 struct page **pages, 2127 unsigned int pages_to_map, 2128 unsigned long *address, 2129 u32 *length, 2130 u32 *seq, 2131 struct tcp_zerocopy_receive *zc, 2132 u32 total_bytes_to_map) 2133 { 2134 unsigned long pages_remaining = pages_to_map; 2135 unsigned int pages_mapped; 2136 unsigned int bytes_mapped; 2137 int err; 2138 2139 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2140 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2141 bytes_mapped = PAGE_SIZE * pages_mapped; 2142 /* Even if vm_insert_pages fails, it may have partially succeeded in 2143 * mapping (some but not all of the pages). 2144 */ 2145 *seq += bytes_mapped; 2146 *address += bytes_mapped; 2147 2148 if (likely(!err)) 2149 return 0; 2150 2151 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2152 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2153 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2154 err); 2155 } 2156 2157 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2158 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2159 struct tcp_zerocopy_receive *zc, 2160 struct scm_timestamping_internal *tss) 2161 { 2162 unsigned long msg_control_addr; 2163 struct msghdr cmsg_dummy; 2164 2165 msg_control_addr = (unsigned long)zc->msg_control; 2166 cmsg_dummy.msg_control = (void *)msg_control_addr; 2167 cmsg_dummy.msg_controllen = 2168 (__kernel_size_t)zc->msg_controllen; 2169 cmsg_dummy.msg_flags = in_compat_syscall() 2170 ? MSG_CMSG_COMPAT : 0; 2171 cmsg_dummy.msg_control_is_user = true; 2172 zc->msg_flags = 0; 2173 if (zc->msg_control == msg_control_addr && 2174 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2175 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2176 zc->msg_control = (__u64) 2177 ((uintptr_t)cmsg_dummy.msg_control); 2178 zc->msg_controllen = 2179 (__u64)cmsg_dummy.msg_controllen; 2180 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2181 } 2182 } 2183 2184 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2185 static int tcp_zerocopy_receive(struct sock *sk, 2186 struct tcp_zerocopy_receive *zc, 2187 struct scm_timestamping_internal *tss) 2188 { 2189 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2190 unsigned long address = (unsigned long)zc->address; 2191 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2192 s32 copybuf_len = zc->copybuf_len; 2193 struct tcp_sock *tp = tcp_sk(sk); 2194 const skb_frag_t *frags = NULL; 2195 unsigned int pages_to_map = 0; 2196 struct vm_area_struct *vma; 2197 struct sk_buff *skb = NULL; 2198 u32 seq = tp->copied_seq; 2199 u32 total_bytes_to_map; 2200 int inq = tcp_inq(sk); 2201 int ret; 2202 2203 zc->copybuf_len = 0; 2204 zc->msg_flags = 0; 2205 2206 if (address & (PAGE_SIZE - 1) || address != zc->address) 2207 return -EINVAL; 2208 2209 if (sk->sk_state == TCP_LISTEN) 2210 return -ENOTCONN; 2211 2212 sock_rps_record_flow(sk); 2213 2214 if (inq && inq <= copybuf_len) 2215 return receive_fallback_to_copy(sk, zc, inq, tss); 2216 2217 if (inq < PAGE_SIZE) { 2218 zc->length = 0; 2219 zc->recv_skip_hint = inq; 2220 if (!inq && sock_flag(sk, SOCK_DONE)) 2221 return -EIO; 2222 return 0; 2223 } 2224 2225 mmap_read_lock(current->mm); 2226 2227 vma = vma_lookup(current->mm, address); 2228 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2229 mmap_read_unlock(current->mm); 2230 return -EINVAL; 2231 } 2232 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2233 avail_len = min_t(u32, vma_len, inq); 2234 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2235 if (total_bytes_to_map) { 2236 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2237 zap_page_range(vma, address, total_bytes_to_map); 2238 zc->length = total_bytes_to_map; 2239 zc->recv_skip_hint = 0; 2240 } else { 2241 zc->length = avail_len; 2242 zc->recv_skip_hint = avail_len; 2243 } 2244 ret = 0; 2245 while (length + PAGE_SIZE <= zc->length) { 2246 int mappable_offset; 2247 struct page *page; 2248 2249 if (zc->recv_skip_hint < PAGE_SIZE) { 2250 u32 offset_frag; 2251 2252 if (skb) { 2253 if (zc->recv_skip_hint > 0) 2254 break; 2255 skb = skb->next; 2256 offset = seq - TCP_SKB_CB(skb)->seq; 2257 } else { 2258 skb = tcp_recv_skb(sk, seq, &offset); 2259 } 2260 2261 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2262 tcp_update_recv_tstamps(skb, tss); 2263 zc->msg_flags |= TCP_CMSG_TS; 2264 } 2265 zc->recv_skip_hint = skb->len - offset; 2266 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2267 if (!frags || offset_frag) 2268 break; 2269 } 2270 2271 mappable_offset = find_next_mappable_frag(frags, 2272 zc->recv_skip_hint); 2273 if (mappable_offset) { 2274 zc->recv_skip_hint = mappable_offset; 2275 break; 2276 } 2277 page = skb_frag_page(frags); 2278 prefetchw(page); 2279 pages[pages_to_map++] = page; 2280 length += PAGE_SIZE; 2281 zc->recv_skip_hint -= PAGE_SIZE; 2282 frags++; 2283 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2284 zc->recv_skip_hint < PAGE_SIZE) { 2285 /* Either full batch, or we're about to go to next skb 2286 * (and we cannot unroll failed ops across skbs). 2287 */ 2288 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2289 pages_to_map, 2290 &address, &length, 2291 &seq, zc, 2292 total_bytes_to_map); 2293 if (ret) 2294 goto out; 2295 pages_to_map = 0; 2296 } 2297 } 2298 if (pages_to_map) { 2299 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2300 &address, &length, &seq, 2301 zc, total_bytes_to_map); 2302 } 2303 out: 2304 mmap_read_unlock(current->mm); 2305 /* Try to copy straggler data. */ 2306 if (!ret) 2307 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2308 2309 if (length + copylen) { 2310 WRITE_ONCE(tp->copied_seq, seq); 2311 tcp_rcv_space_adjust(sk); 2312 2313 /* Clean up data we have read: This will do ACK frames. */ 2314 tcp_recv_skb(sk, seq, &offset); 2315 tcp_cleanup_rbuf(sk, length + copylen); 2316 ret = 0; 2317 if (length == zc->length) 2318 zc->recv_skip_hint = 0; 2319 } else { 2320 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2321 ret = -EIO; 2322 } 2323 zc->length = length; 2324 return ret; 2325 } 2326 #endif 2327 2328 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2329 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2330 struct scm_timestamping_internal *tss) 2331 { 2332 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2333 bool has_timestamping = false; 2334 2335 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2336 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2337 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2338 if (new_tstamp) { 2339 struct __kernel_timespec kts = { 2340 .tv_sec = tss->ts[0].tv_sec, 2341 .tv_nsec = tss->ts[0].tv_nsec, 2342 }; 2343 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2344 sizeof(kts), &kts); 2345 } else { 2346 struct __kernel_old_timespec ts_old = { 2347 .tv_sec = tss->ts[0].tv_sec, 2348 .tv_nsec = tss->ts[0].tv_nsec, 2349 }; 2350 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2351 sizeof(ts_old), &ts_old); 2352 } 2353 } else { 2354 if (new_tstamp) { 2355 struct __kernel_sock_timeval stv = { 2356 .tv_sec = tss->ts[0].tv_sec, 2357 .tv_usec = tss->ts[0].tv_nsec / 1000, 2358 }; 2359 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2360 sizeof(stv), &stv); 2361 } else { 2362 struct __kernel_old_timeval tv = { 2363 .tv_sec = tss->ts[0].tv_sec, 2364 .tv_usec = tss->ts[0].tv_nsec / 1000, 2365 }; 2366 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2367 sizeof(tv), &tv); 2368 } 2369 } 2370 } 2371 2372 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2373 has_timestamping = true; 2374 else 2375 tss->ts[0] = (struct timespec64) {0}; 2376 } 2377 2378 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2379 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2380 has_timestamping = true; 2381 else 2382 tss->ts[2] = (struct timespec64) {0}; 2383 } 2384 2385 if (has_timestamping) { 2386 tss->ts[1] = (struct timespec64) {0}; 2387 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2388 put_cmsg_scm_timestamping64(msg, tss); 2389 else 2390 put_cmsg_scm_timestamping(msg, tss); 2391 } 2392 } 2393 2394 static int tcp_inq_hint(struct sock *sk) 2395 { 2396 const struct tcp_sock *tp = tcp_sk(sk); 2397 u32 copied_seq = READ_ONCE(tp->copied_seq); 2398 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2399 int inq; 2400 2401 inq = rcv_nxt - copied_seq; 2402 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2403 lock_sock(sk); 2404 inq = tp->rcv_nxt - tp->copied_seq; 2405 release_sock(sk); 2406 } 2407 /* After receiving a FIN, tell the user-space to continue reading 2408 * by returning a non-zero inq. 2409 */ 2410 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2411 inq = 1; 2412 return inq; 2413 } 2414 2415 /* 2416 * This routine copies from a sock struct into the user buffer. 2417 * 2418 * Technical note: in 2.3 we work on _locked_ socket, so that 2419 * tricks with *seq access order and skb->users are not required. 2420 * Probably, code can be easily improved even more. 2421 */ 2422 2423 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2424 int flags, struct scm_timestamping_internal *tss, 2425 int *cmsg_flags) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 int copied = 0; 2429 u32 peek_seq; 2430 u32 *seq; 2431 unsigned long used; 2432 int err; 2433 int target; /* Read at least this many bytes */ 2434 long timeo; 2435 struct sk_buff *skb, *last; 2436 u32 urg_hole = 0; 2437 2438 err = -ENOTCONN; 2439 if (sk->sk_state == TCP_LISTEN) 2440 goto out; 2441 2442 if (tp->recvmsg_inq) { 2443 *cmsg_flags = TCP_CMSG_INQ; 2444 msg->msg_get_inq = 1; 2445 } 2446 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2447 2448 /* Urgent data needs to be handled specially. */ 2449 if (flags & MSG_OOB) 2450 goto recv_urg; 2451 2452 if (unlikely(tp->repair)) { 2453 err = -EPERM; 2454 if (!(flags & MSG_PEEK)) 2455 goto out; 2456 2457 if (tp->repair_queue == TCP_SEND_QUEUE) 2458 goto recv_sndq; 2459 2460 err = -EINVAL; 2461 if (tp->repair_queue == TCP_NO_QUEUE) 2462 goto out; 2463 2464 /* 'common' recv queue MSG_PEEK-ing */ 2465 } 2466 2467 seq = &tp->copied_seq; 2468 if (flags & MSG_PEEK) { 2469 peek_seq = tp->copied_seq; 2470 seq = &peek_seq; 2471 } 2472 2473 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2474 2475 do { 2476 u32 offset; 2477 2478 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2479 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2480 if (copied) 2481 break; 2482 if (signal_pending(current)) { 2483 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2484 break; 2485 } 2486 } 2487 2488 /* Next get a buffer. */ 2489 2490 last = skb_peek_tail(&sk->sk_receive_queue); 2491 skb_queue_walk(&sk->sk_receive_queue, skb) { 2492 last = skb; 2493 /* Now that we have two receive queues this 2494 * shouldn't happen. 2495 */ 2496 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2497 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2498 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2499 flags)) 2500 break; 2501 2502 offset = *seq - TCP_SKB_CB(skb)->seq; 2503 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2504 pr_err_once("%s: found a SYN, please report !\n", __func__); 2505 offset--; 2506 } 2507 if (offset < skb->len) 2508 goto found_ok_skb; 2509 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2510 goto found_fin_ok; 2511 WARN(!(flags & MSG_PEEK), 2512 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2513 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2514 } 2515 2516 /* Well, if we have backlog, try to process it now yet. */ 2517 2518 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2519 break; 2520 2521 if (copied) { 2522 if (!timeo || 2523 sk->sk_err || 2524 sk->sk_state == TCP_CLOSE || 2525 (sk->sk_shutdown & RCV_SHUTDOWN) || 2526 signal_pending(current)) 2527 break; 2528 } else { 2529 if (sock_flag(sk, SOCK_DONE)) 2530 break; 2531 2532 if (sk->sk_err) { 2533 copied = sock_error(sk); 2534 break; 2535 } 2536 2537 if (sk->sk_shutdown & RCV_SHUTDOWN) 2538 break; 2539 2540 if (sk->sk_state == TCP_CLOSE) { 2541 /* This occurs when user tries to read 2542 * from never connected socket. 2543 */ 2544 copied = -ENOTCONN; 2545 break; 2546 } 2547 2548 if (!timeo) { 2549 copied = -EAGAIN; 2550 break; 2551 } 2552 2553 if (signal_pending(current)) { 2554 copied = sock_intr_errno(timeo); 2555 break; 2556 } 2557 } 2558 2559 if (copied >= target) { 2560 /* Do not sleep, just process backlog. */ 2561 __sk_flush_backlog(sk); 2562 } else { 2563 tcp_cleanup_rbuf(sk, copied); 2564 sk_wait_data(sk, &timeo, last); 2565 } 2566 2567 if ((flags & MSG_PEEK) && 2568 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2569 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2570 current->comm, 2571 task_pid_nr(current)); 2572 peek_seq = tp->copied_seq; 2573 } 2574 continue; 2575 2576 found_ok_skb: 2577 /* Ok so how much can we use? */ 2578 used = skb->len - offset; 2579 if (len < used) 2580 used = len; 2581 2582 /* Do we have urgent data here? */ 2583 if (unlikely(tp->urg_data)) { 2584 u32 urg_offset = tp->urg_seq - *seq; 2585 if (urg_offset < used) { 2586 if (!urg_offset) { 2587 if (!sock_flag(sk, SOCK_URGINLINE)) { 2588 WRITE_ONCE(*seq, *seq + 1); 2589 urg_hole++; 2590 offset++; 2591 used--; 2592 if (!used) 2593 goto skip_copy; 2594 } 2595 } else 2596 used = urg_offset; 2597 } 2598 } 2599 2600 if (!(flags & MSG_TRUNC)) { 2601 err = skb_copy_datagram_msg(skb, offset, msg, used); 2602 if (err) { 2603 /* Exception. Bailout! */ 2604 if (!copied) 2605 copied = -EFAULT; 2606 break; 2607 } 2608 } 2609 2610 WRITE_ONCE(*seq, *seq + used); 2611 copied += used; 2612 len -= used; 2613 2614 tcp_rcv_space_adjust(sk); 2615 2616 skip_copy: 2617 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2618 WRITE_ONCE(tp->urg_data, 0); 2619 tcp_fast_path_check(sk); 2620 } 2621 2622 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2623 tcp_update_recv_tstamps(skb, tss); 2624 *cmsg_flags |= TCP_CMSG_TS; 2625 } 2626 2627 if (used + offset < skb->len) 2628 continue; 2629 2630 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2631 goto found_fin_ok; 2632 if (!(flags & MSG_PEEK)) 2633 tcp_eat_recv_skb(sk, skb); 2634 continue; 2635 2636 found_fin_ok: 2637 /* Process the FIN. */ 2638 WRITE_ONCE(*seq, *seq + 1); 2639 if (!(flags & MSG_PEEK)) 2640 tcp_eat_recv_skb(sk, skb); 2641 break; 2642 } while (len > 0); 2643 2644 /* According to UNIX98, msg_name/msg_namelen are ignored 2645 * on connected socket. I was just happy when found this 8) --ANK 2646 */ 2647 2648 /* Clean up data we have read: This will do ACK frames. */ 2649 tcp_cleanup_rbuf(sk, copied); 2650 return copied; 2651 2652 out: 2653 return err; 2654 2655 recv_urg: 2656 err = tcp_recv_urg(sk, msg, len, flags); 2657 goto out; 2658 2659 recv_sndq: 2660 err = tcp_peek_sndq(sk, msg, len); 2661 goto out; 2662 } 2663 2664 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2665 int *addr_len) 2666 { 2667 int cmsg_flags = 0, ret; 2668 struct scm_timestamping_internal tss; 2669 2670 if (unlikely(flags & MSG_ERRQUEUE)) 2671 return inet_recv_error(sk, msg, len, addr_len); 2672 2673 if (sk_can_busy_loop(sk) && 2674 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2675 sk->sk_state == TCP_ESTABLISHED) 2676 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2677 2678 lock_sock(sk); 2679 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2680 release_sock(sk); 2681 2682 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2683 if (cmsg_flags & TCP_CMSG_TS) 2684 tcp_recv_timestamp(msg, sk, &tss); 2685 if (msg->msg_get_inq) { 2686 msg->msg_inq = tcp_inq_hint(sk); 2687 if (cmsg_flags & TCP_CMSG_INQ) 2688 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2689 sizeof(msg->msg_inq), &msg->msg_inq); 2690 } 2691 } 2692 return ret; 2693 } 2694 EXPORT_SYMBOL(tcp_recvmsg); 2695 2696 void tcp_set_state(struct sock *sk, int state) 2697 { 2698 int oldstate = sk->sk_state; 2699 2700 /* We defined a new enum for TCP states that are exported in BPF 2701 * so as not force the internal TCP states to be frozen. The 2702 * following checks will detect if an internal state value ever 2703 * differs from the BPF value. If this ever happens, then we will 2704 * need to remap the internal value to the BPF value before calling 2705 * tcp_call_bpf_2arg. 2706 */ 2707 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2708 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2709 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2710 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2711 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2712 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2713 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2714 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2715 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2716 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2717 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2718 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2719 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2720 2721 /* bpf uapi header bpf.h defines an anonymous enum with values 2722 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2723 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2724 * But clang built vmlinux does not have this enum in DWARF 2725 * since clang removes the above code before generating IR/debuginfo. 2726 * Let us explicitly emit the type debuginfo to ensure the 2727 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2728 * regardless of which compiler is used. 2729 */ 2730 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2731 2732 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2733 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2734 2735 switch (state) { 2736 case TCP_ESTABLISHED: 2737 if (oldstate != TCP_ESTABLISHED) 2738 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2739 break; 2740 2741 case TCP_CLOSE: 2742 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2743 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2744 2745 sk->sk_prot->unhash(sk); 2746 if (inet_csk(sk)->icsk_bind_hash && 2747 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2748 inet_put_port(sk); 2749 fallthrough; 2750 default: 2751 if (oldstate == TCP_ESTABLISHED) 2752 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2753 } 2754 2755 /* Change state AFTER socket is unhashed to avoid closed 2756 * socket sitting in hash tables. 2757 */ 2758 inet_sk_state_store(sk, state); 2759 } 2760 EXPORT_SYMBOL_GPL(tcp_set_state); 2761 2762 /* 2763 * State processing on a close. This implements the state shift for 2764 * sending our FIN frame. Note that we only send a FIN for some 2765 * states. A shutdown() may have already sent the FIN, or we may be 2766 * closed. 2767 */ 2768 2769 static const unsigned char new_state[16] = { 2770 /* current state: new state: action: */ 2771 [0 /* (Invalid) */] = TCP_CLOSE, 2772 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2773 [TCP_SYN_SENT] = TCP_CLOSE, 2774 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2775 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2776 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2777 [TCP_TIME_WAIT] = TCP_CLOSE, 2778 [TCP_CLOSE] = TCP_CLOSE, 2779 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2780 [TCP_LAST_ACK] = TCP_LAST_ACK, 2781 [TCP_LISTEN] = TCP_CLOSE, 2782 [TCP_CLOSING] = TCP_CLOSING, 2783 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2784 }; 2785 2786 static int tcp_close_state(struct sock *sk) 2787 { 2788 int next = (int)new_state[sk->sk_state]; 2789 int ns = next & TCP_STATE_MASK; 2790 2791 tcp_set_state(sk, ns); 2792 2793 return next & TCP_ACTION_FIN; 2794 } 2795 2796 /* 2797 * Shutdown the sending side of a connection. Much like close except 2798 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2799 */ 2800 2801 void tcp_shutdown(struct sock *sk, int how) 2802 { 2803 /* We need to grab some memory, and put together a FIN, 2804 * and then put it into the queue to be sent. 2805 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2806 */ 2807 if (!(how & SEND_SHUTDOWN)) 2808 return; 2809 2810 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2811 if ((1 << sk->sk_state) & 2812 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2813 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2814 /* Clear out any half completed packets. FIN if needed. */ 2815 if (tcp_close_state(sk)) 2816 tcp_send_fin(sk); 2817 } 2818 } 2819 EXPORT_SYMBOL(tcp_shutdown); 2820 2821 int tcp_orphan_count_sum(void) 2822 { 2823 int i, total = 0; 2824 2825 for_each_possible_cpu(i) 2826 total += per_cpu(tcp_orphan_count, i); 2827 2828 return max(total, 0); 2829 } 2830 2831 static int tcp_orphan_cache; 2832 static struct timer_list tcp_orphan_timer; 2833 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2834 2835 static void tcp_orphan_update(struct timer_list *unused) 2836 { 2837 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2838 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2839 } 2840 2841 static bool tcp_too_many_orphans(int shift) 2842 { 2843 return READ_ONCE(tcp_orphan_cache) << shift > 2844 READ_ONCE(sysctl_tcp_max_orphans); 2845 } 2846 2847 bool tcp_check_oom(struct sock *sk, int shift) 2848 { 2849 bool too_many_orphans, out_of_socket_memory; 2850 2851 too_many_orphans = tcp_too_many_orphans(shift); 2852 out_of_socket_memory = tcp_out_of_memory(sk); 2853 2854 if (too_many_orphans) 2855 net_info_ratelimited("too many orphaned sockets\n"); 2856 if (out_of_socket_memory) 2857 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2858 return too_many_orphans || out_of_socket_memory; 2859 } 2860 2861 void __tcp_close(struct sock *sk, long timeout) 2862 { 2863 struct sk_buff *skb; 2864 int data_was_unread = 0; 2865 int state; 2866 2867 sk->sk_shutdown = SHUTDOWN_MASK; 2868 2869 if (sk->sk_state == TCP_LISTEN) { 2870 tcp_set_state(sk, TCP_CLOSE); 2871 2872 /* Special case. */ 2873 inet_csk_listen_stop(sk); 2874 2875 goto adjudge_to_death; 2876 } 2877 2878 /* We need to flush the recv. buffs. We do this only on the 2879 * descriptor close, not protocol-sourced closes, because the 2880 * reader process may not have drained the data yet! 2881 */ 2882 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2883 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2884 2885 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2886 len--; 2887 data_was_unread += len; 2888 __kfree_skb(skb); 2889 } 2890 2891 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2892 if (sk->sk_state == TCP_CLOSE) 2893 goto adjudge_to_death; 2894 2895 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2896 * data was lost. To witness the awful effects of the old behavior of 2897 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2898 * GET in an FTP client, suspend the process, wait for the client to 2899 * advertise a zero window, then kill -9 the FTP client, wheee... 2900 * Note: timeout is always zero in such a case. 2901 */ 2902 if (unlikely(tcp_sk(sk)->repair)) { 2903 sk->sk_prot->disconnect(sk, 0); 2904 } else if (data_was_unread) { 2905 /* Unread data was tossed, zap the connection. */ 2906 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2907 tcp_set_state(sk, TCP_CLOSE); 2908 tcp_send_active_reset(sk, sk->sk_allocation); 2909 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2910 /* Check zero linger _after_ checking for unread data. */ 2911 sk->sk_prot->disconnect(sk, 0); 2912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2913 } else if (tcp_close_state(sk)) { 2914 /* We FIN if the application ate all the data before 2915 * zapping the connection. 2916 */ 2917 2918 /* RED-PEN. Formally speaking, we have broken TCP state 2919 * machine. State transitions: 2920 * 2921 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2922 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2923 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2924 * 2925 * are legal only when FIN has been sent (i.e. in window), 2926 * rather than queued out of window. Purists blame. 2927 * 2928 * F.e. "RFC state" is ESTABLISHED, 2929 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2930 * 2931 * The visible declinations are that sometimes 2932 * we enter time-wait state, when it is not required really 2933 * (harmless), do not send active resets, when they are 2934 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2935 * they look as CLOSING or LAST_ACK for Linux) 2936 * Probably, I missed some more holelets. 2937 * --ANK 2938 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2939 * in a single packet! (May consider it later but will 2940 * probably need API support or TCP_CORK SYN-ACK until 2941 * data is written and socket is closed.) 2942 */ 2943 tcp_send_fin(sk); 2944 } 2945 2946 sk_stream_wait_close(sk, timeout); 2947 2948 adjudge_to_death: 2949 state = sk->sk_state; 2950 sock_hold(sk); 2951 sock_orphan(sk); 2952 2953 local_bh_disable(); 2954 bh_lock_sock(sk); 2955 /* remove backlog if any, without releasing ownership. */ 2956 __release_sock(sk); 2957 2958 this_cpu_inc(tcp_orphan_count); 2959 2960 /* Have we already been destroyed by a softirq or backlog? */ 2961 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2962 goto out; 2963 2964 /* This is a (useful) BSD violating of the RFC. There is a 2965 * problem with TCP as specified in that the other end could 2966 * keep a socket open forever with no application left this end. 2967 * We use a 1 minute timeout (about the same as BSD) then kill 2968 * our end. If they send after that then tough - BUT: long enough 2969 * that we won't make the old 4*rto = almost no time - whoops 2970 * reset mistake. 2971 * 2972 * Nope, it was not mistake. It is really desired behaviour 2973 * f.e. on http servers, when such sockets are useless, but 2974 * consume significant resources. Let's do it with special 2975 * linger2 option. --ANK 2976 */ 2977 2978 if (sk->sk_state == TCP_FIN_WAIT2) { 2979 struct tcp_sock *tp = tcp_sk(sk); 2980 if (tp->linger2 < 0) { 2981 tcp_set_state(sk, TCP_CLOSE); 2982 tcp_send_active_reset(sk, GFP_ATOMIC); 2983 __NET_INC_STATS(sock_net(sk), 2984 LINUX_MIB_TCPABORTONLINGER); 2985 } else { 2986 const int tmo = tcp_fin_time(sk); 2987 2988 if (tmo > TCP_TIMEWAIT_LEN) { 2989 inet_csk_reset_keepalive_timer(sk, 2990 tmo - TCP_TIMEWAIT_LEN); 2991 } else { 2992 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2993 goto out; 2994 } 2995 } 2996 } 2997 if (sk->sk_state != TCP_CLOSE) { 2998 if (tcp_check_oom(sk, 0)) { 2999 tcp_set_state(sk, TCP_CLOSE); 3000 tcp_send_active_reset(sk, GFP_ATOMIC); 3001 __NET_INC_STATS(sock_net(sk), 3002 LINUX_MIB_TCPABORTONMEMORY); 3003 } else if (!check_net(sock_net(sk))) { 3004 /* Not possible to send reset; just close */ 3005 tcp_set_state(sk, TCP_CLOSE); 3006 } 3007 } 3008 3009 if (sk->sk_state == TCP_CLOSE) { 3010 struct request_sock *req; 3011 3012 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3013 lockdep_sock_is_held(sk)); 3014 /* We could get here with a non-NULL req if the socket is 3015 * aborted (e.g., closed with unread data) before 3WHS 3016 * finishes. 3017 */ 3018 if (req) 3019 reqsk_fastopen_remove(sk, req, false); 3020 inet_csk_destroy_sock(sk); 3021 } 3022 /* Otherwise, socket is reprieved until protocol close. */ 3023 3024 out: 3025 bh_unlock_sock(sk); 3026 local_bh_enable(); 3027 } 3028 3029 void tcp_close(struct sock *sk, long timeout) 3030 { 3031 lock_sock(sk); 3032 __tcp_close(sk, timeout); 3033 release_sock(sk); 3034 sock_put(sk); 3035 } 3036 EXPORT_SYMBOL(tcp_close); 3037 3038 /* These states need RST on ABORT according to RFC793 */ 3039 3040 static inline bool tcp_need_reset(int state) 3041 { 3042 return (1 << state) & 3043 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3044 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3045 } 3046 3047 static void tcp_rtx_queue_purge(struct sock *sk) 3048 { 3049 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3050 3051 tcp_sk(sk)->highest_sack = NULL; 3052 while (p) { 3053 struct sk_buff *skb = rb_to_skb(p); 3054 3055 p = rb_next(p); 3056 /* Since we are deleting whole queue, no need to 3057 * list_del(&skb->tcp_tsorted_anchor) 3058 */ 3059 tcp_rtx_queue_unlink(skb, sk); 3060 tcp_wmem_free_skb(sk, skb); 3061 } 3062 } 3063 3064 void tcp_write_queue_purge(struct sock *sk) 3065 { 3066 struct sk_buff *skb; 3067 3068 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3069 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3070 tcp_skb_tsorted_anchor_cleanup(skb); 3071 tcp_wmem_free_skb(sk, skb); 3072 } 3073 tcp_rtx_queue_purge(sk); 3074 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3075 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3076 tcp_sk(sk)->packets_out = 0; 3077 inet_csk(sk)->icsk_backoff = 0; 3078 } 3079 3080 int tcp_disconnect(struct sock *sk, int flags) 3081 { 3082 struct inet_sock *inet = inet_sk(sk); 3083 struct inet_connection_sock *icsk = inet_csk(sk); 3084 struct tcp_sock *tp = tcp_sk(sk); 3085 int old_state = sk->sk_state; 3086 u32 seq; 3087 3088 if (old_state != TCP_CLOSE) 3089 tcp_set_state(sk, TCP_CLOSE); 3090 3091 /* ABORT function of RFC793 */ 3092 if (old_state == TCP_LISTEN) { 3093 inet_csk_listen_stop(sk); 3094 } else if (unlikely(tp->repair)) { 3095 sk->sk_err = ECONNABORTED; 3096 } else if (tcp_need_reset(old_state) || 3097 (tp->snd_nxt != tp->write_seq && 3098 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3099 /* The last check adjusts for discrepancy of Linux wrt. RFC 3100 * states 3101 */ 3102 tcp_send_active_reset(sk, gfp_any()); 3103 sk->sk_err = ECONNRESET; 3104 } else if (old_state == TCP_SYN_SENT) 3105 sk->sk_err = ECONNRESET; 3106 3107 tcp_clear_xmit_timers(sk); 3108 __skb_queue_purge(&sk->sk_receive_queue); 3109 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3110 WRITE_ONCE(tp->urg_data, 0); 3111 tcp_write_queue_purge(sk); 3112 tcp_fastopen_active_disable_ofo_check(sk); 3113 skb_rbtree_purge(&tp->out_of_order_queue); 3114 3115 inet->inet_dport = 0; 3116 3117 inet_bhash2_reset_saddr(sk); 3118 3119 sk->sk_shutdown = 0; 3120 sock_reset_flag(sk, SOCK_DONE); 3121 tp->srtt_us = 0; 3122 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3123 tp->rcv_rtt_last_tsecr = 0; 3124 3125 seq = tp->write_seq + tp->max_window + 2; 3126 if (!seq) 3127 seq = 1; 3128 WRITE_ONCE(tp->write_seq, seq); 3129 3130 icsk->icsk_backoff = 0; 3131 icsk->icsk_probes_out = 0; 3132 icsk->icsk_probes_tstamp = 0; 3133 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3134 icsk->icsk_rto_min = TCP_RTO_MIN; 3135 icsk->icsk_delack_max = TCP_DELACK_MAX; 3136 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3137 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3138 tp->snd_cwnd_cnt = 0; 3139 tp->is_cwnd_limited = 0; 3140 tp->max_packets_out = 0; 3141 tp->window_clamp = 0; 3142 tp->delivered = 0; 3143 tp->delivered_ce = 0; 3144 if (icsk->icsk_ca_ops->release) 3145 icsk->icsk_ca_ops->release(sk); 3146 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3147 icsk->icsk_ca_initialized = 0; 3148 tcp_set_ca_state(sk, TCP_CA_Open); 3149 tp->is_sack_reneg = 0; 3150 tcp_clear_retrans(tp); 3151 tp->total_retrans = 0; 3152 inet_csk_delack_init(sk); 3153 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3154 * issue in __tcp_select_window() 3155 */ 3156 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3157 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3158 __sk_dst_reset(sk); 3159 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3160 tcp_saved_syn_free(tp); 3161 tp->compressed_ack = 0; 3162 tp->segs_in = 0; 3163 tp->segs_out = 0; 3164 tp->bytes_sent = 0; 3165 tp->bytes_acked = 0; 3166 tp->bytes_received = 0; 3167 tp->bytes_retrans = 0; 3168 tp->data_segs_in = 0; 3169 tp->data_segs_out = 0; 3170 tp->duplicate_sack[0].start_seq = 0; 3171 tp->duplicate_sack[0].end_seq = 0; 3172 tp->dsack_dups = 0; 3173 tp->reord_seen = 0; 3174 tp->retrans_out = 0; 3175 tp->sacked_out = 0; 3176 tp->tlp_high_seq = 0; 3177 tp->last_oow_ack_time = 0; 3178 /* There's a bubble in the pipe until at least the first ACK. */ 3179 tp->app_limited = ~0U; 3180 tp->rack.mstamp = 0; 3181 tp->rack.advanced = 0; 3182 tp->rack.reo_wnd_steps = 1; 3183 tp->rack.last_delivered = 0; 3184 tp->rack.reo_wnd_persist = 0; 3185 tp->rack.dsack_seen = 0; 3186 tp->syn_data_acked = 0; 3187 tp->rx_opt.saw_tstamp = 0; 3188 tp->rx_opt.dsack = 0; 3189 tp->rx_opt.num_sacks = 0; 3190 tp->rcv_ooopack = 0; 3191 3192 3193 /* Clean up fastopen related fields */ 3194 tcp_free_fastopen_req(tp); 3195 inet->defer_connect = 0; 3196 tp->fastopen_client_fail = 0; 3197 3198 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3199 3200 if (sk->sk_frag.page) { 3201 put_page(sk->sk_frag.page); 3202 sk->sk_frag.page = NULL; 3203 sk->sk_frag.offset = 0; 3204 } 3205 sk_error_report(sk); 3206 return 0; 3207 } 3208 EXPORT_SYMBOL(tcp_disconnect); 3209 3210 static inline bool tcp_can_repair_sock(const struct sock *sk) 3211 { 3212 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3213 (sk->sk_state != TCP_LISTEN); 3214 } 3215 3216 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3217 { 3218 struct tcp_repair_window opt; 3219 3220 if (!tp->repair) 3221 return -EPERM; 3222 3223 if (len != sizeof(opt)) 3224 return -EINVAL; 3225 3226 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3227 return -EFAULT; 3228 3229 if (opt.max_window < opt.snd_wnd) 3230 return -EINVAL; 3231 3232 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3233 return -EINVAL; 3234 3235 if (after(opt.rcv_wup, tp->rcv_nxt)) 3236 return -EINVAL; 3237 3238 tp->snd_wl1 = opt.snd_wl1; 3239 tp->snd_wnd = opt.snd_wnd; 3240 tp->max_window = opt.max_window; 3241 3242 tp->rcv_wnd = opt.rcv_wnd; 3243 tp->rcv_wup = opt.rcv_wup; 3244 3245 return 0; 3246 } 3247 3248 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3249 unsigned int len) 3250 { 3251 struct tcp_sock *tp = tcp_sk(sk); 3252 struct tcp_repair_opt opt; 3253 size_t offset = 0; 3254 3255 while (len >= sizeof(opt)) { 3256 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3257 return -EFAULT; 3258 3259 offset += sizeof(opt); 3260 len -= sizeof(opt); 3261 3262 switch (opt.opt_code) { 3263 case TCPOPT_MSS: 3264 tp->rx_opt.mss_clamp = opt.opt_val; 3265 tcp_mtup_init(sk); 3266 break; 3267 case TCPOPT_WINDOW: 3268 { 3269 u16 snd_wscale = opt.opt_val & 0xFFFF; 3270 u16 rcv_wscale = opt.opt_val >> 16; 3271 3272 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3273 return -EFBIG; 3274 3275 tp->rx_opt.snd_wscale = snd_wscale; 3276 tp->rx_opt.rcv_wscale = rcv_wscale; 3277 tp->rx_opt.wscale_ok = 1; 3278 } 3279 break; 3280 case TCPOPT_SACK_PERM: 3281 if (opt.opt_val != 0) 3282 return -EINVAL; 3283 3284 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3285 break; 3286 case TCPOPT_TIMESTAMP: 3287 if (opt.opt_val != 0) 3288 return -EINVAL; 3289 3290 tp->rx_opt.tstamp_ok = 1; 3291 break; 3292 } 3293 } 3294 3295 return 0; 3296 } 3297 3298 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3299 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3300 3301 static void tcp_enable_tx_delay(void) 3302 { 3303 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3304 static int __tcp_tx_delay_enabled = 0; 3305 3306 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3307 static_branch_enable(&tcp_tx_delay_enabled); 3308 pr_info("TCP_TX_DELAY enabled\n"); 3309 } 3310 } 3311 } 3312 3313 /* When set indicates to always queue non-full frames. Later the user clears 3314 * this option and we transmit any pending partial frames in the queue. This is 3315 * meant to be used alongside sendfile() to get properly filled frames when the 3316 * user (for example) must write out headers with a write() call first and then 3317 * use sendfile to send out the data parts. 3318 * 3319 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3320 * TCP_NODELAY. 3321 */ 3322 void __tcp_sock_set_cork(struct sock *sk, bool on) 3323 { 3324 struct tcp_sock *tp = tcp_sk(sk); 3325 3326 if (on) { 3327 tp->nonagle |= TCP_NAGLE_CORK; 3328 } else { 3329 tp->nonagle &= ~TCP_NAGLE_CORK; 3330 if (tp->nonagle & TCP_NAGLE_OFF) 3331 tp->nonagle |= TCP_NAGLE_PUSH; 3332 tcp_push_pending_frames(sk); 3333 } 3334 } 3335 3336 void tcp_sock_set_cork(struct sock *sk, bool on) 3337 { 3338 lock_sock(sk); 3339 __tcp_sock_set_cork(sk, on); 3340 release_sock(sk); 3341 } 3342 EXPORT_SYMBOL(tcp_sock_set_cork); 3343 3344 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3345 * remembered, but it is not activated until cork is cleared. 3346 * 3347 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3348 * even TCP_CORK for currently queued segments. 3349 */ 3350 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3351 { 3352 if (on) { 3353 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3354 tcp_push_pending_frames(sk); 3355 } else { 3356 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3357 } 3358 } 3359 3360 void tcp_sock_set_nodelay(struct sock *sk) 3361 { 3362 lock_sock(sk); 3363 __tcp_sock_set_nodelay(sk, true); 3364 release_sock(sk); 3365 } 3366 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3367 3368 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3369 { 3370 if (!val) { 3371 inet_csk_enter_pingpong_mode(sk); 3372 return; 3373 } 3374 3375 inet_csk_exit_pingpong_mode(sk); 3376 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3377 inet_csk_ack_scheduled(sk)) { 3378 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3379 tcp_cleanup_rbuf(sk, 1); 3380 if (!(val & 1)) 3381 inet_csk_enter_pingpong_mode(sk); 3382 } 3383 } 3384 3385 void tcp_sock_set_quickack(struct sock *sk, int val) 3386 { 3387 lock_sock(sk); 3388 __tcp_sock_set_quickack(sk, val); 3389 release_sock(sk); 3390 } 3391 EXPORT_SYMBOL(tcp_sock_set_quickack); 3392 3393 int tcp_sock_set_syncnt(struct sock *sk, int val) 3394 { 3395 if (val < 1 || val > MAX_TCP_SYNCNT) 3396 return -EINVAL; 3397 3398 lock_sock(sk); 3399 inet_csk(sk)->icsk_syn_retries = val; 3400 release_sock(sk); 3401 return 0; 3402 } 3403 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3404 3405 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3406 { 3407 lock_sock(sk); 3408 inet_csk(sk)->icsk_user_timeout = val; 3409 release_sock(sk); 3410 } 3411 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3412 3413 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3414 { 3415 struct tcp_sock *tp = tcp_sk(sk); 3416 3417 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3418 return -EINVAL; 3419 3420 tp->keepalive_time = val * HZ; 3421 if (sock_flag(sk, SOCK_KEEPOPEN) && 3422 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3423 u32 elapsed = keepalive_time_elapsed(tp); 3424 3425 if (tp->keepalive_time > elapsed) 3426 elapsed = tp->keepalive_time - elapsed; 3427 else 3428 elapsed = 0; 3429 inet_csk_reset_keepalive_timer(sk, elapsed); 3430 } 3431 3432 return 0; 3433 } 3434 3435 int tcp_sock_set_keepidle(struct sock *sk, int val) 3436 { 3437 int err; 3438 3439 lock_sock(sk); 3440 err = tcp_sock_set_keepidle_locked(sk, val); 3441 release_sock(sk); 3442 return err; 3443 } 3444 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3445 3446 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3447 { 3448 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3449 return -EINVAL; 3450 3451 lock_sock(sk); 3452 tcp_sk(sk)->keepalive_intvl = val * HZ; 3453 release_sock(sk); 3454 return 0; 3455 } 3456 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3457 3458 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3459 { 3460 if (val < 1 || val > MAX_TCP_KEEPCNT) 3461 return -EINVAL; 3462 3463 lock_sock(sk); 3464 tcp_sk(sk)->keepalive_probes = val; 3465 release_sock(sk); 3466 return 0; 3467 } 3468 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3469 3470 int tcp_set_window_clamp(struct sock *sk, int val) 3471 { 3472 struct tcp_sock *tp = tcp_sk(sk); 3473 3474 if (!val) { 3475 if (sk->sk_state != TCP_CLOSE) 3476 return -EINVAL; 3477 tp->window_clamp = 0; 3478 } else { 3479 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3480 SOCK_MIN_RCVBUF / 2 : val; 3481 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3482 } 3483 return 0; 3484 } 3485 3486 /* 3487 * Socket option code for TCP. 3488 */ 3489 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3490 sockptr_t optval, unsigned int optlen) 3491 { 3492 struct tcp_sock *tp = tcp_sk(sk); 3493 struct inet_connection_sock *icsk = inet_csk(sk); 3494 struct net *net = sock_net(sk); 3495 int val; 3496 int err = 0; 3497 3498 /* These are data/string values, all the others are ints */ 3499 switch (optname) { 3500 case TCP_CONGESTION: { 3501 char name[TCP_CA_NAME_MAX]; 3502 3503 if (optlen < 1) 3504 return -EINVAL; 3505 3506 val = strncpy_from_sockptr(name, optval, 3507 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3508 if (val < 0) 3509 return -EFAULT; 3510 name[val] = 0; 3511 3512 sockopt_lock_sock(sk); 3513 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3514 sockopt_ns_capable(sock_net(sk)->user_ns, 3515 CAP_NET_ADMIN)); 3516 sockopt_release_sock(sk); 3517 return err; 3518 } 3519 case TCP_ULP: { 3520 char name[TCP_ULP_NAME_MAX]; 3521 3522 if (optlen < 1) 3523 return -EINVAL; 3524 3525 val = strncpy_from_sockptr(name, optval, 3526 min_t(long, TCP_ULP_NAME_MAX - 1, 3527 optlen)); 3528 if (val < 0) 3529 return -EFAULT; 3530 name[val] = 0; 3531 3532 sockopt_lock_sock(sk); 3533 err = tcp_set_ulp(sk, name); 3534 sockopt_release_sock(sk); 3535 return err; 3536 } 3537 case TCP_FASTOPEN_KEY: { 3538 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3539 __u8 *backup_key = NULL; 3540 3541 /* Allow a backup key as well to facilitate key rotation 3542 * First key is the active one. 3543 */ 3544 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3545 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3546 return -EINVAL; 3547 3548 if (copy_from_sockptr(key, optval, optlen)) 3549 return -EFAULT; 3550 3551 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3552 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3553 3554 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3555 } 3556 default: 3557 /* fallthru */ 3558 break; 3559 } 3560 3561 if (optlen < sizeof(int)) 3562 return -EINVAL; 3563 3564 if (copy_from_sockptr(&val, optval, sizeof(val))) 3565 return -EFAULT; 3566 3567 sockopt_lock_sock(sk); 3568 3569 switch (optname) { 3570 case TCP_MAXSEG: 3571 /* Values greater than interface MTU won't take effect. However 3572 * at the point when this call is done we typically don't yet 3573 * know which interface is going to be used 3574 */ 3575 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3576 err = -EINVAL; 3577 break; 3578 } 3579 tp->rx_opt.user_mss = val; 3580 break; 3581 3582 case TCP_NODELAY: 3583 __tcp_sock_set_nodelay(sk, val); 3584 break; 3585 3586 case TCP_THIN_LINEAR_TIMEOUTS: 3587 if (val < 0 || val > 1) 3588 err = -EINVAL; 3589 else 3590 tp->thin_lto = val; 3591 break; 3592 3593 case TCP_THIN_DUPACK: 3594 if (val < 0 || val > 1) 3595 err = -EINVAL; 3596 break; 3597 3598 case TCP_REPAIR: 3599 if (!tcp_can_repair_sock(sk)) 3600 err = -EPERM; 3601 else if (val == TCP_REPAIR_ON) { 3602 tp->repair = 1; 3603 sk->sk_reuse = SK_FORCE_REUSE; 3604 tp->repair_queue = TCP_NO_QUEUE; 3605 } else if (val == TCP_REPAIR_OFF) { 3606 tp->repair = 0; 3607 sk->sk_reuse = SK_NO_REUSE; 3608 tcp_send_window_probe(sk); 3609 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3610 tp->repair = 0; 3611 sk->sk_reuse = SK_NO_REUSE; 3612 } else 3613 err = -EINVAL; 3614 3615 break; 3616 3617 case TCP_REPAIR_QUEUE: 3618 if (!tp->repair) 3619 err = -EPERM; 3620 else if ((unsigned int)val < TCP_QUEUES_NR) 3621 tp->repair_queue = val; 3622 else 3623 err = -EINVAL; 3624 break; 3625 3626 case TCP_QUEUE_SEQ: 3627 if (sk->sk_state != TCP_CLOSE) { 3628 err = -EPERM; 3629 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3630 if (!tcp_rtx_queue_empty(sk)) 3631 err = -EPERM; 3632 else 3633 WRITE_ONCE(tp->write_seq, val); 3634 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3635 if (tp->rcv_nxt != tp->copied_seq) { 3636 err = -EPERM; 3637 } else { 3638 WRITE_ONCE(tp->rcv_nxt, val); 3639 WRITE_ONCE(tp->copied_seq, val); 3640 } 3641 } else { 3642 err = -EINVAL; 3643 } 3644 break; 3645 3646 case TCP_REPAIR_OPTIONS: 3647 if (!tp->repair) 3648 err = -EINVAL; 3649 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3650 err = tcp_repair_options_est(sk, optval, optlen); 3651 else 3652 err = -EPERM; 3653 break; 3654 3655 case TCP_CORK: 3656 __tcp_sock_set_cork(sk, val); 3657 break; 3658 3659 case TCP_KEEPIDLE: 3660 err = tcp_sock_set_keepidle_locked(sk, val); 3661 break; 3662 case TCP_KEEPINTVL: 3663 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3664 err = -EINVAL; 3665 else 3666 tp->keepalive_intvl = val * HZ; 3667 break; 3668 case TCP_KEEPCNT: 3669 if (val < 1 || val > MAX_TCP_KEEPCNT) 3670 err = -EINVAL; 3671 else 3672 tp->keepalive_probes = val; 3673 break; 3674 case TCP_SYNCNT: 3675 if (val < 1 || val > MAX_TCP_SYNCNT) 3676 err = -EINVAL; 3677 else 3678 icsk->icsk_syn_retries = val; 3679 break; 3680 3681 case TCP_SAVE_SYN: 3682 /* 0: disable, 1: enable, 2: start from ether_header */ 3683 if (val < 0 || val > 2) 3684 err = -EINVAL; 3685 else 3686 tp->save_syn = val; 3687 break; 3688 3689 case TCP_LINGER2: 3690 if (val < 0) 3691 tp->linger2 = -1; 3692 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3693 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3694 else 3695 tp->linger2 = val * HZ; 3696 break; 3697 3698 case TCP_DEFER_ACCEPT: 3699 /* Translate value in seconds to number of retransmits */ 3700 icsk->icsk_accept_queue.rskq_defer_accept = 3701 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3702 TCP_RTO_MAX / HZ); 3703 break; 3704 3705 case TCP_WINDOW_CLAMP: 3706 err = tcp_set_window_clamp(sk, val); 3707 break; 3708 3709 case TCP_QUICKACK: 3710 __tcp_sock_set_quickack(sk, val); 3711 break; 3712 3713 #ifdef CONFIG_TCP_MD5SIG 3714 case TCP_MD5SIG: 3715 case TCP_MD5SIG_EXT: 3716 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3717 break; 3718 #endif 3719 case TCP_USER_TIMEOUT: 3720 /* Cap the max time in ms TCP will retry or probe the window 3721 * before giving up and aborting (ETIMEDOUT) a connection. 3722 */ 3723 if (val < 0) 3724 err = -EINVAL; 3725 else 3726 icsk->icsk_user_timeout = val; 3727 break; 3728 3729 case TCP_FASTOPEN: 3730 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3731 TCPF_LISTEN))) { 3732 tcp_fastopen_init_key_once(net); 3733 3734 fastopen_queue_tune(sk, val); 3735 } else { 3736 err = -EINVAL; 3737 } 3738 break; 3739 case TCP_FASTOPEN_CONNECT: 3740 if (val > 1 || val < 0) { 3741 err = -EINVAL; 3742 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3743 TFO_CLIENT_ENABLE) { 3744 if (sk->sk_state == TCP_CLOSE) 3745 tp->fastopen_connect = val; 3746 else 3747 err = -EINVAL; 3748 } else { 3749 err = -EOPNOTSUPP; 3750 } 3751 break; 3752 case TCP_FASTOPEN_NO_COOKIE: 3753 if (val > 1 || val < 0) 3754 err = -EINVAL; 3755 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3756 err = -EINVAL; 3757 else 3758 tp->fastopen_no_cookie = val; 3759 break; 3760 case TCP_TIMESTAMP: 3761 if (!tp->repair) 3762 err = -EPERM; 3763 else 3764 tp->tsoffset = val - tcp_time_stamp_raw(); 3765 break; 3766 case TCP_REPAIR_WINDOW: 3767 err = tcp_repair_set_window(tp, optval, optlen); 3768 break; 3769 case TCP_NOTSENT_LOWAT: 3770 tp->notsent_lowat = val; 3771 sk->sk_write_space(sk); 3772 break; 3773 case TCP_INQ: 3774 if (val > 1 || val < 0) 3775 err = -EINVAL; 3776 else 3777 tp->recvmsg_inq = val; 3778 break; 3779 case TCP_TX_DELAY: 3780 if (val) 3781 tcp_enable_tx_delay(); 3782 tp->tcp_tx_delay = val; 3783 break; 3784 default: 3785 err = -ENOPROTOOPT; 3786 break; 3787 } 3788 3789 sockopt_release_sock(sk); 3790 return err; 3791 } 3792 3793 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3794 unsigned int optlen) 3795 { 3796 const struct inet_connection_sock *icsk = inet_csk(sk); 3797 3798 if (level != SOL_TCP) 3799 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3800 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3801 optval, optlen); 3802 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3803 } 3804 EXPORT_SYMBOL(tcp_setsockopt); 3805 3806 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3807 struct tcp_info *info) 3808 { 3809 u64 stats[__TCP_CHRONO_MAX], total = 0; 3810 enum tcp_chrono i; 3811 3812 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3813 stats[i] = tp->chrono_stat[i - 1]; 3814 if (i == tp->chrono_type) 3815 stats[i] += tcp_jiffies32 - tp->chrono_start; 3816 stats[i] *= USEC_PER_SEC / HZ; 3817 total += stats[i]; 3818 } 3819 3820 info->tcpi_busy_time = total; 3821 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3822 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3823 } 3824 3825 /* Return information about state of tcp endpoint in API format. */ 3826 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3827 { 3828 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3829 const struct inet_connection_sock *icsk = inet_csk(sk); 3830 unsigned long rate; 3831 u32 now; 3832 u64 rate64; 3833 bool slow; 3834 3835 memset(info, 0, sizeof(*info)); 3836 if (sk->sk_type != SOCK_STREAM) 3837 return; 3838 3839 info->tcpi_state = inet_sk_state_load(sk); 3840 3841 /* Report meaningful fields for all TCP states, including listeners */ 3842 rate = READ_ONCE(sk->sk_pacing_rate); 3843 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3844 info->tcpi_pacing_rate = rate64; 3845 3846 rate = READ_ONCE(sk->sk_max_pacing_rate); 3847 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3848 info->tcpi_max_pacing_rate = rate64; 3849 3850 info->tcpi_reordering = tp->reordering; 3851 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3852 3853 if (info->tcpi_state == TCP_LISTEN) { 3854 /* listeners aliased fields : 3855 * tcpi_unacked -> Number of children ready for accept() 3856 * tcpi_sacked -> max backlog 3857 */ 3858 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3859 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3860 return; 3861 } 3862 3863 slow = lock_sock_fast(sk); 3864 3865 info->tcpi_ca_state = icsk->icsk_ca_state; 3866 info->tcpi_retransmits = icsk->icsk_retransmits; 3867 info->tcpi_probes = icsk->icsk_probes_out; 3868 info->tcpi_backoff = icsk->icsk_backoff; 3869 3870 if (tp->rx_opt.tstamp_ok) 3871 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3872 if (tcp_is_sack(tp)) 3873 info->tcpi_options |= TCPI_OPT_SACK; 3874 if (tp->rx_opt.wscale_ok) { 3875 info->tcpi_options |= TCPI_OPT_WSCALE; 3876 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3877 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3878 } 3879 3880 if (tp->ecn_flags & TCP_ECN_OK) 3881 info->tcpi_options |= TCPI_OPT_ECN; 3882 if (tp->ecn_flags & TCP_ECN_SEEN) 3883 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3884 if (tp->syn_data_acked) 3885 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3886 3887 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3888 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3889 info->tcpi_snd_mss = tp->mss_cache; 3890 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3891 3892 info->tcpi_unacked = tp->packets_out; 3893 info->tcpi_sacked = tp->sacked_out; 3894 3895 info->tcpi_lost = tp->lost_out; 3896 info->tcpi_retrans = tp->retrans_out; 3897 3898 now = tcp_jiffies32; 3899 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3900 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3901 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3902 3903 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3904 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3905 info->tcpi_rtt = tp->srtt_us >> 3; 3906 info->tcpi_rttvar = tp->mdev_us >> 2; 3907 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3908 info->tcpi_advmss = tp->advmss; 3909 3910 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3911 info->tcpi_rcv_space = tp->rcvq_space.space; 3912 3913 info->tcpi_total_retrans = tp->total_retrans; 3914 3915 info->tcpi_bytes_acked = tp->bytes_acked; 3916 info->tcpi_bytes_received = tp->bytes_received; 3917 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3918 tcp_get_info_chrono_stats(tp, info); 3919 3920 info->tcpi_segs_out = tp->segs_out; 3921 3922 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3923 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3924 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3925 3926 info->tcpi_min_rtt = tcp_min_rtt(tp); 3927 info->tcpi_data_segs_out = tp->data_segs_out; 3928 3929 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3930 rate64 = tcp_compute_delivery_rate(tp); 3931 if (rate64) 3932 info->tcpi_delivery_rate = rate64; 3933 info->tcpi_delivered = tp->delivered; 3934 info->tcpi_delivered_ce = tp->delivered_ce; 3935 info->tcpi_bytes_sent = tp->bytes_sent; 3936 info->tcpi_bytes_retrans = tp->bytes_retrans; 3937 info->tcpi_dsack_dups = tp->dsack_dups; 3938 info->tcpi_reord_seen = tp->reord_seen; 3939 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3940 info->tcpi_snd_wnd = tp->snd_wnd; 3941 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3942 unlock_sock_fast(sk, slow); 3943 } 3944 EXPORT_SYMBOL_GPL(tcp_get_info); 3945 3946 static size_t tcp_opt_stats_get_size(void) 3947 { 3948 return 3949 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3950 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3951 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3952 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3953 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3954 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3955 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3956 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3957 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3958 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3959 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3960 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3961 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3962 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3963 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3964 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3965 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3966 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3967 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3968 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3969 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3970 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3971 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3972 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3973 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3974 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3975 0; 3976 } 3977 3978 /* Returns TTL or hop limit of an incoming packet from skb. */ 3979 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3980 { 3981 if (skb->protocol == htons(ETH_P_IP)) 3982 return ip_hdr(skb)->ttl; 3983 else if (skb->protocol == htons(ETH_P_IPV6)) 3984 return ipv6_hdr(skb)->hop_limit; 3985 else 3986 return 0; 3987 } 3988 3989 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3990 const struct sk_buff *orig_skb, 3991 const struct sk_buff *ack_skb) 3992 { 3993 const struct tcp_sock *tp = tcp_sk(sk); 3994 struct sk_buff *stats; 3995 struct tcp_info info; 3996 unsigned long rate; 3997 u64 rate64; 3998 3999 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 4000 if (!stats) 4001 return NULL; 4002 4003 tcp_get_info_chrono_stats(tp, &info); 4004 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 4005 info.tcpi_busy_time, TCP_NLA_PAD); 4006 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 4007 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4008 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4009 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4010 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4011 tp->data_segs_out, TCP_NLA_PAD); 4012 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4013 tp->total_retrans, TCP_NLA_PAD); 4014 4015 rate = READ_ONCE(sk->sk_pacing_rate); 4016 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4017 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4018 4019 rate64 = tcp_compute_delivery_rate(tp); 4020 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4021 4022 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4023 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4024 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4025 4026 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4027 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4028 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4029 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4030 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4031 4032 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4033 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4034 4035 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4036 TCP_NLA_PAD); 4037 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4038 TCP_NLA_PAD); 4039 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4040 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4041 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4042 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4043 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4044 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4045 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4046 TCP_NLA_PAD); 4047 if (ack_skb) 4048 nla_put_u8(stats, TCP_NLA_TTL, 4049 tcp_skb_ttl_or_hop_limit(ack_skb)); 4050 4051 return stats; 4052 } 4053 4054 int do_tcp_getsockopt(struct sock *sk, int level, 4055 int optname, sockptr_t optval, sockptr_t optlen) 4056 { 4057 struct inet_connection_sock *icsk = inet_csk(sk); 4058 struct tcp_sock *tp = tcp_sk(sk); 4059 struct net *net = sock_net(sk); 4060 int val, len; 4061 4062 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4063 return -EFAULT; 4064 4065 len = min_t(unsigned int, len, sizeof(int)); 4066 4067 if (len < 0) 4068 return -EINVAL; 4069 4070 switch (optname) { 4071 case TCP_MAXSEG: 4072 val = tp->mss_cache; 4073 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4074 val = tp->rx_opt.user_mss; 4075 if (tp->repair) 4076 val = tp->rx_opt.mss_clamp; 4077 break; 4078 case TCP_NODELAY: 4079 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4080 break; 4081 case TCP_CORK: 4082 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4083 break; 4084 case TCP_KEEPIDLE: 4085 val = keepalive_time_when(tp) / HZ; 4086 break; 4087 case TCP_KEEPINTVL: 4088 val = keepalive_intvl_when(tp) / HZ; 4089 break; 4090 case TCP_KEEPCNT: 4091 val = keepalive_probes(tp); 4092 break; 4093 case TCP_SYNCNT: 4094 val = icsk->icsk_syn_retries ? : 4095 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4096 break; 4097 case TCP_LINGER2: 4098 val = tp->linger2; 4099 if (val >= 0) 4100 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4101 break; 4102 case TCP_DEFER_ACCEPT: 4103 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4104 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4105 break; 4106 case TCP_WINDOW_CLAMP: 4107 val = tp->window_clamp; 4108 break; 4109 case TCP_INFO: { 4110 struct tcp_info info; 4111 4112 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4113 return -EFAULT; 4114 4115 tcp_get_info(sk, &info); 4116 4117 len = min_t(unsigned int, len, sizeof(info)); 4118 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4119 return -EFAULT; 4120 if (copy_to_sockptr(optval, &info, len)) 4121 return -EFAULT; 4122 return 0; 4123 } 4124 case TCP_CC_INFO: { 4125 const struct tcp_congestion_ops *ca_ops; 4126 union tcp_cc_info info; 4127 size_t sz = 0; 4128 int attr; 4129 4130 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4131 return -EFAULT; 4132 4133 ca_ops = icsk->icsk_ca_ops; 4134 if (ca_ops && ca_ops->get_info) 4135 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4136 4137 len = min_t(unsigned int, len, sz); 4138 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4139 return -EFAULT; 4140 if (copy_to_sockptr(optval, &info, len)) 4141 return -EFAULT; 4142 return 0; 4143 } 4144 case TCP_QUICKACK: 4145 val = !inet_csk_in_pingpong_mode(sk); 4146 break; 4147 4148 case TCP_CONGESTION: 4149 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4150 return -EFAULT; 4151 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4152 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4153 return -EFAULT; 4154 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4155 return -EFAULT; 4156 return 0; 4157 4158 case TCP_ULP: 4159 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4160 return -EFAULT; 4161 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4162 if (!icsk->icsk_ulp_ops) { 4163 len = 0; 4164 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4165 return -EFAULT; 4166 return 0; 4167 } 4168 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4169 return -EFAULT; 4170 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4171 return -EFAULT; 4172 return 0; 4173 4174 case TCP_FASTOPEN_KEY: { 4175 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4176 unsigned int key_len; 4177 4178 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4179 return -EFAULT; 4180 4181 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4182 TCP_FASTOPEN_KEY_LENGTH; 4183 len = min_t(unsigned int, len, key_len); 4184 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4185 return -EFAULT; 4186 if (copy_to_sockptr(optval, key, len)) 4187 return -EFAULT; 4188 return 0; 4189 } 4190 case TCP_THIN_LINEAR_TIMEOUTS: 4191 val = tp->thin_lto; 4192 break; 4193 4194 case TCP_THIN_DUPACK: 4195 val = 0; 4196 break; 4197 4198 case TCP_REPAIR: 4199 val = tp->repair; 4200 break; 4201 4202 case TCP_REPAIR_QUEUE: 4203 if (tp->repair) 4204 val = tp->repair_queue; 4205 else 4206 return -EINVAL; 4207 break; 4208 4209 case TCP_REPAIR_WINDOW: { 4210 struct tcp_repair_window opt; 4211 4212 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4213 return -EFAULT; 4214 4215 if (len != sizeof(opt)) 4216 return -EINVAL; 4217 4218 if (!tp->repair) 4219 return -EPERM; 4220 4221 opt.snd_wl1 = tp->snd_wl1; 4222 opt.snd_wnd = tp->snd_wnd; 4223 opt.max_window = tp->max_window; 4224 opt.rcv_wnd = tp->rcv_wnd; 4225 opt.rcv_wup = tp->rcv_wup; 4226 4227 if (copy_to_sockptr(optval, &opt, len)) 4228 return -EFAULT; 4229 return 0; 4230 } 4231 case TCP_QUEUE_SEQ: 4232 if (tp->repair_queue == TCP_SEND_QUEUE) 4233 val = tp->write_seq; 4234 else if (tp->repair_queue == TCP_RECV_QUEUE) 4235 val = tp->rcv_nxt; 4236 else 4237 return -EINVAL; 4238 break; 4239 4240 case TCP_USER_TIMEOUT: 4241 val = icsk->icsk_user_timeout; 4242 break; 4243 4244 case TCP_FASTOPEN: 4245 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4246 break; 4247 4248 case TCP_FASTOPEN_CONNECT: 4249 val = tp->fastopen_connect; 4250 break; 4251 4252 case TCP_FASTOPEN_NO_COOKIE: 4253 val = tp->fastopen_no_cookie; 4254 break; 4255 4256 case TCP_TX_DELAY: 4257 val = tp->tcp_tx_delay; 4258 break; 4259 4260 case TCP_TIMESTAMP: 4261 val = tcp_time_stamp_raw() + tp->tsoffset; 4262 break; 4263 case TCP_NOTSENT_LOWAT: 4264 val = tp->notsent_lowat; 4265 break; 4266 case TCP_INQ: 4267 val = tp->recvmsg_inq; 4268 break; 4269 case TCP_SAVE_SYN: 4270 val = tp->save_syn; 4271 break; 4272 case TCP_SAVED_SYN: { 4273 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4274 return -EFAULT; 4275 4276 sockopt_lock_sock(sk); 4277 if (tp->saved_syn) { 4278 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4279 len = tcp_saved_syn_len(tp->saved_syn); 4280 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4281 sockopt_release_sock(sk); 4282 return -EFAULT; 4283 } 4284 sockopt_release_sock(sk); 4285 return -EINVAL; 4286 } 4287 len = tcp_saved_syn_len(tp->saved_syn); 4288 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4289 sockopt_release_sock(sk); 4290 return -EFAULT; 4291 } 4292 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4293 sockopt_release_sock(sk); 4294 return -EFAULT; 4295 } 4296 tcp_saved_syn_free(tp); 4297 sockopt_release_sock(sk); 4298 } else { 4299 sockopt_release_sock(sk); 4300 len = 0; 4301 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4302 return -EFAULT; 4303 } 4304 return 0; 4305 } 4306 #ifdef CONFIG_MMU 4307 case TCP_ZEROCOPY_RECEIVE: { 4308 struct scm_timestamping_internal tss; 4309 struct tcp_zerocopy_receive zc = {}; 4310 int err; 4311 4312 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4313 return -EFAULT; 4314 if (len < 0 || 4315 len < offsetofend(struct tcp_zerocopy_receive, length)) 4316 return -EINVAL; 4317 if (unlikely(len > sizeof(zc))) { 4318 err = check_zeroed_sockptr(optval, sizeof(zc), 4319 len - sizeof(zc)); 4320 if (err < 1) 4321 return err == 0 ? -EINVAL : err; 4322 len = sizeof(zc); 4323 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4324 return -EFAULT; 4325 } 4326 if (copy_from_sockptr(&zc, optval, len)) 4327 return -EFAULT; 4328 if (zc.reserved) 4329 return -EINVAL; 4330 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4331 return -EINVAL; 4332 sockopt_lock_sock(sk); 4333 err = tcp_zerocopy_receive(sk, &zc, &tss); 4334 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4335 &zc, &len, err); 4336 sockopt_release_sock(sk); 4337 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4338 goto zerocopy_rcv_cmsg; 4339 switch (len) { 4340 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4341 goto zerocopy_rcv_cmsg; 4342 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4343 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4344 case offsetofend(struct tcp_zerocopy_receive, flags): 4345 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4346 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4347 case offsetofend(struct tcp_zerocopy_receive, err): 4348 goto zerocopy_rcv_sk_err; 4349 case offsetofend(struct tcp_zerocopy_receive, inq): 4350 goto zerocopy_rcv_inq; 4351 case offsetofend(struct tcp_zerocopy_receive, length): 4352 default: 4353 goto zerocopy_rcv_out; 4354 } 4355 zerocopy_rcv_cmsg: 4356 if (zc.msg_flags & TCP_CMSG_TS) 4357 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4358 else 4359 zc.msg_flags = 0; 4360 zerocopy_rcv_sk_err: 4361 if (!err) 4362 zc.err = sock_error(sk); 4363 zerocopy_rcv_inq: 4364 zc.inq = tcp_inq_hint(sk); 4365 zerocopy_rcv_out: 4366 if (!err && copy_to_sockptr(optval, &zc, len)) 4367 err = -EFAULT; 4368 return err; 4369 } 4370 #endif 4371 default: 4372 return -ENOPROTOOPT; 4373 } 4374 4375 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4376 return -EFAULT; 4377 if (copy_to_sockptr(optval, &val, len)) 4378 return -EFAULT; 4379 return 0; 4380 } 4381 4382 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4383 { 4384 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4385 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4386 */ 4387 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4388 return true; 4389 4390 return false; 4391 } 4392 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4393 4394 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4395 int __user *optlen) 4396 { 4397 struct inet_connection_sock *icsk = inet_csk(sk); 4398 4399 if (level != SOL_TCP) 4400 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4401 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4402 optval, optlen); 4403 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4404 USER_SOCKPTR(optlen)); 4405 } 4406 EXPORT_SYMBOL(tcp_getsockopt); 4407 4408 #ifdef CONFIG_TCP_MD5SIG 4409 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4410 static DEFINE_MUTEX(tcp_md5sig_mutex); 4411 static bool tcp_md5sig_pool_populated = false; 4412 4413 static void __tcp_alloc_md5sig_pool(void) 4414 { 4415 struct crypto_ahash *hash; 4416 int cpu; 4417 4418 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4419 if (IS_ERR(hash)) 4420 return; 4421 4422 for_each_possible_cpu(cpu) { 4423 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4424 struct ahash_request *req; 4425 4426 if (!scratch) { 4427 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4428 sizeof(struct tcphdr), 4429 GFP_KERNEL, 4430 cpu_to_node(cpu)); 4431 if (!scratch) 4432 return; 4433 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4434 } 4435 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4436 continue; 4437 4438 req = ahash_request_alloc(hash, GFP_KERNEL); 4439 if (!req) 4440 return; 4441 4442 ahash_request_set_callback(req, 0, NULL, NULL); 4443 4444 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4445 } 4446 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4447 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4448 */ 4449 smp_wmb(); 4450 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4451 * and tcp_get_md5sig_pool(). 4452 */ 4453 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4454 } 4455 4456 bool tcp_alloc_md5sig_pool(void) 4457 { 4458 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4459 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4460 mutex_lock(&tcp_md5sig_mutex); 4461 4462 if (!tcp_md5sig_pool_populated) { 4463 __tcp_alloc_md5sig_pool(); 4464 if (tcp_md5sig_pool_populated) 4465 static_branch_inc(&tcp_md5_needed); 4466 } 4467 4468 mutex_unlock(&tcp_md5sig_mutex); 4469 } 4470 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4471 return READ_ONCE(tcp_md5sig_pool_populated); 4472 } 4473 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4474 4475 4476 /** 4477 * tcp_get_md5sig_pool - get md5sig_pool for this user 4478 * 4479 * We use percpu structure, so if we succeed, we exit with preemption 4480 * and BH disabled, to make sure another thread or softirq handling 4481 * wont try to get same context. 4482 */ 4483 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4484 { 4485 local_bh_disable(); 4486 4487 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4488 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4489 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4490 smp_rmb(); 4491 return this_cpu_ptr(&tcp_md5sig_pool); 4492 } 4493 local_bh_enable(); 4494 return NULL; 4495 } 4496 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4497 4498 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4499 const struct sk_buff *skb, unsigned int header_len) 4500 { 4501 struct scatterlist sg; 4502 const struct tcphdr *tp = tcp_hdr(skb); 4503 struct ahash_request *req = hp->md5_req; 4504 unsigned int i; 4505 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4506 skb_headlen(skb) - header_len : 0; 4507 const struct skb_shared_info *shi = skb_shinfo(skb); 4508 struct sk_buff *frag_iter; 4509 4510 sg_init_table(&sg, 1); 4511 4512 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4513 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4514 if (crypto_ahash_update(req)) 4515 return 1; 4516 4517 for (i = 0; i < shi->nr_frags; ++i) { 4518 const skb_frag_t *f = &shi->frags[i]; 4519 unsigned int offset = skb_frag_off(f); 4520 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4521 4522 sg_set_page(&sg, page, skb_frag_size(f), 4523 offset_in_page(offset)); 4524 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4525 if (crypto_ahash_update(req)) 4526 return 1; 4527 } 4528 4529 skb_walk_frags(skb, frag_iter) 4530 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4531 return 1; 4532 4533 return 0; 4534 } 4535 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4536 4537 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4538 { 4539 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4540 struct scatterlist sg; 4541 4542 sg_init_one(&sg, key->key, keylen); 4543 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4544 4545 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4546 return data_race(crypto_ahash_update(hp->md5_req)); 4547 } 4548 EXPORT_SYMBOL(tcp_md5_hash_key); 4549 4550 /* Called with rcu_read_lock() */ 4551 enum skb_drop_reason 4552 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4553 const void *saddr, const void *daddr, 4554 int family, int dif, int sdif) 4555 { 4556 /* 4557 * This gets called for each TCP segment that arrives 4558 * so we want to be efficient. 4559 * We have 3 drop cases: 4560 * o No MD5 hash and one expected. 4561 * o MD5 hash and we're not expecting one. 4562 * o MD5 hash and its wrong. 4563 */ 4564 const __u8 *hash_location = NULL; 4565 struct tcp_md5sig_key *hash_expected; 4566 const struct tcphdr *th = tcp_hdr(skb); 4567 struct tcp_sock *tp = tcp_sk(sk); 4568 int genhash, l3index; 4569 u8 newhash[16]; 4570 4571 /* sdif set, means packet ingressed via a device 4572 * in an L3 domain and dif is set to the l3mdev 4573 */ 4574 l3index = sdif ? dif : 0; 4575 4576 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4577 hash_location = tcp_parse_md5sig_option(th); 4578 4579 /* We've parsed the options - do we have a hash? */ 4580 if (!hash_expected && !hash_location) 4581 return SKB_NOT_DROPPED_YET; 4582 4583 if (hash_expected && !hash_location) { 4584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4585 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4586 } 4587 4588 if (!hash_expected && hash_location) { 4589 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4590 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4591 } 4592 4593 /* Check the signature. 4594 * To support dual stack listeners, we need to handle 4595 * IPv4-mapped case. 4596 */ 4597 if (family == AF_INET) 4598 genhash = tcp_v4_md5_hash_skb(newhash, 4599 hash_expected, 4600 NULL, skb); 4601 else 4602 genhash = tp->af_specific->calc_md5_hash(newhash, 4603 hash_expected, 4604 NULL, skb); 4605 4606 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4608 if (family == AF_INET) { 4609 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4610 saddr, ntohs(th->source), 4611 daddr, ntohs(th->dest), 4612 genhash ? " tcp_v4_calc_md5_hash failed" 4613 : "", l3index); 4614 } else { 4615 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4616 genhash ? "failed" : "mismatch", 4617 saddr, ntohs(th->source), 4618 daddr, ntohs(th->dest), l3index); 4619 } 4620 return SKB_DROP_REASON_TCP_MD5FAILURE; 4621 } 4622 return SKB_NOT_DROPPED_YET; 4623 } 4624 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4625 4626 #endif 4627 4628 void tcp_done(struct sock *sk) 4629 { 4630 struct request_sock *req; 4631 4632 /* We might be called with a new socket, after 4633 * inet_csk_prepare_forced_close() has been called 4634 * so we can not use lockdep_sock_is_held(sk) 4635 */ 4636 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4637 4638 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4639 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4640 4641 tcp_set_state(sk, TCP_CLOSE); 4642 tcp_clear_xmit_timers(sk); 4643 if (req) 4644 reqsk_fastopen_remove(sk, req, false); 4645 4646 sk->sk_shutdown = SHUTDOWN_MASK; 4647 4648 if (!sock_flag(sk, SOCK_DEAD)) 4649 sk->sk_state_change(sk); 4650 else 4651 inet_csk_destroy_sock(sk); 4652 } 4653 EXPORT_SYMBOL_GPL(tcp_done); 4654 4655 int tcp_abort(struct sock *sk, int err) 4656 { 4657 int state = inet_sk_state_load(sk); 4658 4659 if (state == TCP_NEW_SYN_RECV) { 4660 struct request_sock *req = inet_reqsk(sk); 4661 4662 local_bh_disable(); 4663 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4664 local_bh_enable(); 4665 return 0; 4666 } 4667 if (state == TCP_TIME_WAIT) { 4668 struct inet_timewait_sock *tw = inet_twsk(sk); 4669 4670 refcount_inc(&tw->tw_refcnt); 4671 local_bh_disable(); 4672 inet_twsk_deschedule_put(tw); 4673 local_bh_enable(); 4674 return 0; 4675 } 4676 4677 /* Don't race with userspace socket closes such as tcp_close. */ 4678 lock_sock(sk); 4679 4680 if (sk->sk_state == TCP_LISTEN) { 4681 tcp_set_state(sk, TCP_CLOSE); 4682 inet_csk_listen_stop(sk); 4683 } 4684 4685 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4686 local_bh_disable(); 4687 bh_lock_sock(sk); 4688 4689 if (!sock_flag(sk, SOCK_DEAD)) { 4690 sk->sk_err = err; 4691 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4692 smp_wmb(); 4693 sk_error_report(sk); 4694 if (tcp_need_reset(sk->sk_state)) 4695 tcp_send_active_reset(sk, GFP_ATOMIC); 4696 tcp_done(sk); 4697 } 4698 4699 bh_unlock_sock(sk); 4700 local_bh_enable(); 4701 tcp_write_queue_purge(sk); 4702 release_sock(sk); 4703 return 0; 4704 } 4705 EXPORT_SYMBOL_GPL(tcp_abort); 4706 4707 extern struct tcp_congestion_ops tcp_reno; 4708 4709 static __initdata unsigned long thash_entries; 4710 static int __init set_thash_entries(char *str) 4711 { 4712 ssize_t ret; 4713 4714 if (!str) 4715 return 0; 4716 4717 ret = kstrtoul(str, 0, &thash_entries); 4718 if (ret) 4719 return 0; 4720 4721 return 1; 4722 } 4723 __setup("thash_entries=", set_thash_entries); 4724 4725 static void __init tcp_init_mem(void) 4726 { 4727 unsigned long limit = nr_free_buffer_pages() / 16; 4728 4729 limit = max(limit, 128UL); 4730 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4731 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4732 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4733 } 4734 4735 void __init tcp_init(void) 4736 { 4737 int max_rshare, max_wshare, cnt; 4738 unsigned long limit; 4739 unsigned int i; 4740 4741 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4742 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4743 sizeof_field(struct sk_buff, cb)); 4744 4745 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4746 4747 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4748 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4749 4750 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4751 thash_entries, 21, /* one slot per 2 MB*/ 4752 0, 64 * 1024); 4753 tcp_hashinfo.bind_bucket_cachep = 4754 kmem_cache_create("tcp_bind_bucket", 4755 sizeof(struct inet_bind_bucket), 0, 4756 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4757 SLAB_ACCOUNT, 4758 NULL); 4759 tcp_hashinfo.bind2_bucket_cachep = 4760 kmem_cache_create("tcp_bind2_bucket", 4761 sizeof(struct inet_bind2_bucket), 0, 4762 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4763 SLAB_ACCOUNT, 4764 NULL); 4765 4766 /* Size and allocate the main established and bind bucket 4767 * hash tables. 4768 * 4769 * The methodology is similar to that of the buffer cache. 4770 */ 4771 tcp_hashinfo.ehash = 4772 alloc_large_system_hash("TCP established", 4773 sizeof(struct inet_ehash_bucket), 4774 thash_entries, 4775 17, /* one slot per 128 KB of memory */ 4776 0, 4777 NULL, 4778 &tcp_hashinfo.ehash_mask, 4779 0, 4780 thash_entries ? 0 : 512 * 1024); 4781 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4782 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4783 4784 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4785 panic("TCP: failed to alloc ehash_locks"); 4786 tcp_hashinfo.bhash = 4787 alloc_large_system_hash("TCP bind", 4788 2 * sizeof(struct inet_bind_hashbucket), 4789 tcp_hashinfo.ehash_mask + 1, 4790 17, /* one slot per 128 KB of memory */ 4791 0, 4792 &tcp_hashinfo.bhash_size, 4793 NULL, 4794 0, 4795 64 * 1024); 4796 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4797 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4798 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4799 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4800 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4801 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4802 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4803 } 4804 4805 tcp_hashinfo.pernet = false; 4806 4807 cnt = tcp_hashinfo.ehash_mask + 1; 4808 sysctl_tcp_max_orphans = cnt / 2; 4809 4810 tcp_init_mem(); 4811 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4812 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4813 max_wshare = min(4UL*1024*1024, limit); 4814 max_rshare = min(6UL*1024*1024, limit); 4815 4816 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4817 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4818 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4819 4820 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4821 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4822 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4823 4824 pr_info("Hash tables configured (established %u bind %u)\n", 4825 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4826 4827 tcp_v4_init(); 4828 tcp_metrics_init(); 4829 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4830 tcp_tasklet_init(); 4831 mptcp_init(); 4832 } 4833