1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/inet_diag.h> 256 #include <linux/init.h> 257 #include <linux/fs.h> 258 #include <linux/skbuff.h> 259 #include <linux/scatterlist.h> 260 #include <linux/splice.h> 261 #include <linux/net.h> 262 #include <linux/socket.h> 263 #include <linux/random.h> 264 #include <linux/bootmem.h> 265 #include <linux/highmem.h> 266 #include <linux/swap.h> 267 #include <linux/cache.h> 268 #include <linux/err.h> 269 #include <linux/crypto.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286 int sysctl_tcp_min_tso_segs __read_mostly = 2; 287 288 int sysctl_tcp_autocorking __read_mostly = 1; 289 290 struct percpu_counter tcp_orphan_count; 291 EXPORT_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 int sysctl_tcp_wmem[3] __read_mostly; 295 int sysctl_tcp_rmem[3] __read_mostly; 296 297 EXPORT_SYMBOL(sysctl_tcp_mem); 298 EXPORT_SYMBOL(sysctl_tcp_rmem); 299 EXPORT_SYMBOL(sysctl_tcp_wmem); 300 301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 302 EXPORT_SYMBOL(tcp_memory_allocated); 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 int tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL(tcp_memory_pressure); 327 328 void tcp_enter_memory_pressure(struct sock *sk) 329 { 330 if (!tcp_memory_pressure) { 331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 332 tcp_memory_pressure = 1; 333 } 334 } 335 EXPORT_SYMBOL(tcp_enter_memory_pressure); 336 337 /* Convert seconds to retransmits based on initial and max timeout */ 338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 339 { 340 u8 res = 0; 341 342 if (seconds > 0) { 343 int period = timeout; 344 345 res = 1; 346 while (seconds > period && res < 255) { 347 res++; 348 timeout <<= 1; 349 if (timeout > rto_max) 350 timeout = rto_max; 351 period += timeout; 352 } 353 } 354 return res; 355 } 356 357 /* Convert retransmits to seconds based on initial and max timeout */ 358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 359 { 360 int period = 0; 361 362 if (retrans > 0) { 363 period = timeout; 364 while (--retrans) { 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return period; 372 } 373 374 /* Address-family independent initialization for a tcp_sock. 375 * 376 * NOTE: A lot of things set to zero explicitly by call to 377 * sk_alloc() so need not be done here. 378 */ 379 void tcp_init_sock(struct sock *sk) 380 { 381 struct inet_connection_sock *icsk = inet_csk(sk); 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 __skb_queue_head_init(&tp->out_of_order_queue); 385 tcp_init_xmit_timers(sk); 386 tcp_prequeue_init(tp); 387 INIT_LIST_HEAD(&tp->tsq_node); 388 389 icsk->icsk_rto = TCP_TIMEOUT_INIT; 390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* See draft-stevens-tcpca-spec-01 for discussion of the 400 * initialization of these values. 401 */ 402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 403 tp->snd_cwnd_clamp = ~0; 404 tp->mss_cache = TCP_MSS_DEFAULT; 405 406 tp->reordering = sysctl_tcp_reordering; 407 tcp_enable_early_retrans(tp); 408 tcp_assign_congestion_control(sk); 409 410 tp->tsoffset = 0; 411 412 sk->sk_state = TCP_CLOSE; 413 414 sk->sk_write_space = sk_stream_write_space; 415 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 416 417 icsk->icsk_sync_mss = tcp_sync_mss; 418 419 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 420 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 421 422 local_bh_disable(); 423 sock_update_memcg(sk); 424 sk_sockets_allocated_inc(sk); 425 local_bh_enable(); 426 } 427 EXPORT_SYMBOL(tcp_init_sock); 428 429 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 430 { 431 if (sk->sk_tsflags) { 432 struct skb_shared_info *shinfo = skb_shinfo(skb); 433 434 sock_tx_timestamp(sk, &shinfo->tx_flags); 435 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 436 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 437 } 438 } 439 440 /* 441 * Wait for a TCP event. 442 * 443 * Note that we don't need to lock the socket, as the upper poll layers 444 * take care of normal races (between the test and the event) and we don't 445 * go look at any of the socket buffers directly. 446 */ 447 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 448 { 449 unsigned int mask; 450 struct sock *sk = sock->sk; 451 const struct tcp_sock *tp = tcp_sk(sk); 452 453 sock_rps_record_flow(sk); 454 455 sock_poll_wait(file, sk_sleep(sk), wait); 456 if (sk->sk_state == TCP_LISTEN) 457 return inet_csk_listen_poll(sk); 458 459 /* Socket is not locked. We are protected from async events 460 * by poll logic and correct handling of state changes 461 * made by other threads is impossible in any case. 462 */ 463 464 mask = 0; 465 466 /* 467 * POLLHUP is certainly not done right. But poll() doesn't 468 * have a notion of HUP in just one direction, and for a 469 * socket the read side is more interesting. 470 * 471 * Some poll() documentation says that POLLHUP is incompatible 472 * with the POLLOUT/POLLWR flags, so somebody should check this 473 * all. But careful, it tends to be safer to return too many 474 * bits than too few, and you can easily break real applications 475 * if you don't tell them that something has hung up! 476 * 477 * Check-me. 478 * 479 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 480 * our fs/select.c). It means that after we received EOF, 481 * poll always returns immediately, making impossible poll() on write() 482 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 483 * if and only if shutdown has been made in both directions. 484 * Actually, it is interesting to look how Solaris and DUX 485 * solve this dilemma. I would prefer, if POLLHUP were maskable, 486 * then we could set it on SND_SHUTDOWN. BTW examples given 487 * in Stevens' books assume exactly this behaviour, it explains 488 * why POLLHUP is incompatible with POLLOUT. --ANK 489 * 490 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 491 * blocking on fresh not-connected or disconnected socket. --ANK 492 */ 493 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 494 mask |= POLLHUP; 495 if (sk->sk_shutdown & RCV_SHUTDOWN) 496 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 497 498 /* Connected or passive Fast Open socket? */ 499 if (sk->sk_state != TCP_SYN_SENT && 500 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) { 501 int target = sock_rcvlowat(sk, 0, INT_MAX); 502 503 if (tp->urg_seq == tp->copied_seq && 504 !sock_flag(sk, SOCK_URGINLINE) && 505 tp->urg_data) 506 target++; 507 508 /* Potential race condition. If read of tp below will 509 * escape above sk->sk_state, we can be illegally awaken 510 * in SYN_* states. */ 511 if (tp->rcv_nxt - tp->copied_seq >= target) 512 mask |= POLLIN | POLLRDNORM; 513 514 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 515 if (sk_stream_is_writeable(sk)) { 516 mask |= POLLOUT | POLLWRNORM; 517 } else { /* send SIGIO later */ 518 set_bit(SOCK_ASYNC_NOSPACE, 519 &sk->sk_socket->flags); 520 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 521 522 /* Race breaker. If space is freed after 523 * wspace test but before the flags are set, 524 * IO signal will be lost. Memory barrier 525 * pairs with the input side. 526 */ 527 smp_mb__after_atomic(); 528 if (sk_stream_is_writeable(sk)) 529 mask |= POLLOUT | POLLWRNORM; 530 } 531 } else 532 mask |= POLLOUT | POLLWRNORM; 533 534 if (tp->urg_data & TCP_URG_VALID) 535 mask |= POLLPRI; 536 } 537 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 538 smp_rmb(); 539 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 540 mask |= POLLERR; 541 542 return mask; 543 } 544 EXPORT_SYMBOL(tcp_poll); 545 546 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 547 { 548 struct tcp_sock *tp = tcp_sk(sk); 549 int answ; 550 bool slow; 551 552 switch (cmd) { 553 case SIOCINQ: 554 if (sk->sk_state == TCP_LISTEN) 555 return -EINVAL; 556 557 slow = lock_sock_fast(sk); 558 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 559 answ = 0; 560 else if (sock_flag(sk, SOCK_URGINLINE) || 561 !tp->urg_data || 562 before(tp->urg_seq, tp->copied_seq) || 563 !before(tp->urg_seq, tp->rcv_nxt)) { 564 565 answ = tp->rcv_nxt - tp->copied_seq; 566 567 /* Subtract 1, if FIN was received */ 568 if (answ && sock_flag(sk, SOCK_DONE)) 569 answ--; 570 } else 571 answ = tp->urg_seq - tp->copied_seq; 572 unlock_sock_fast(sk, slow); 573 break; 574 case SIOCATMARK: 575 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 576 break; 577 case SIOCOUTQ: 578 if (sk->sk_state == TCP_LISTEN) 579 return -EINVAL; 580 581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 582 answ = 0; 583 else 584 answ = tp->write_seq - tp->snd_una; 585 break; 586 case SIOCOUTQNSD: 587 if (sk->sk_state == TCP_LISTEN) 588 return -EINVAL; 589 590 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 591 answ = 0; 592 else 593 answ = tp->write_seq - tp->snd_nxt; 594 break; 595 default: 596 return -ENOIOCTLCMD; 597 } 598 599 return put_user(answ, (int __user *)arg); 600 } 601 EXPORT_SYMBOL(tcp_ioctl); 602 603 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 604 { 605 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 606 tp->pushed_seq = tp->write_seq; 607 } 608 609 static inline bool forced_push(const struct tcp_sock *tp) 610 { 611 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 612 } 613 614 static void skb_entail(struct sock *sk, struct sk_buff *skb) 615 { 616 struct tcp_sock *tp = tcp_sk(sk); 617 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 618 619 skb->csum = 0; 620 tcb->seq = tcb->end_seq = tp->write_seq; 621 tcb->tcp_flags = TCPHDR_ACK; 622 tcb->sacked = 0; 623 __skb_header_release(skb); 624 tcp_add_write_queue_tail(sk, skb); 625 sk->sk_wmem_queued += skb->truesize; 626 sk_mem_charge(sk, skb->truesize); 627 if (tp->nonagle & TCP_NAGLE_PUSH) 628 tp->nonagle &= ~TCP_NAGLE_PUSH; 629 } 630 631 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 632 { 633 if (flags & MSG_OOB) 634 tp->snd_up = tp->write_seq; 635 } 636 637 /* If a not yet filled skb is pushed, do not send it if 638 * we have data packets in Qdisc or NIC queues : 639 * Because TX completion will happen shortly, it gives a chance 640 * to coalesce future sendmsg() payload into this skb, without 641 * need for a timer, and with no latency trade off. 642 * As packets containing data payload have a bigger truesize 643 * than pure acks (dataless) packets, the last checks prevent 644 * autocorking if we only have an ACK in Qdisc/NIC queues, 645 * or if TX completion was delayed after we processed ACK packet. 646 */ 647 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 648 int size_goal) 649 { 650 return skb->len < size_goal && 651 sysctl_tcp_autocorking && 652 skb != tcp_write_queue_head(sk) && 653 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 654 } 655 656 static void tcp_push(struct sock *sk, int flags, int mss_now, 657 int nonagle, int size_goal) 658 { 659 struct tcp_sock *tp = tcp_sk(sk); 660 struct sk_buff *skb; 661 662 if (!tcp_send_head(sk)) 663 return; 664 665 skb = tcp_write_queue_tail(sk); 666 if (!(flags & MSG_MORE) || forced_push(tp)) 667 tcp_mark_push(tp, skb); 668 669 tcp_mark_urg(tp, flags); 670 671 if (tcp_should_autocork(sk, skb, size_goal)) { 672 673 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 674 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 675 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 676 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 677 } 678 /* It is possible TX completion already happened 679 * before we set TSQ_THROTTLED. 680 */ 681 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 682 return; 683 } 684 685 if (flags & MSG_MORE) 686 nonagle = TCP_NAGLE_CORK; 687 688 __tcp_push_pending_frames(sk, mss_now, nonagle); 689 } 690 691 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 692 unsigned int offset, size_t len) 693 { 694 struct tcp_splice_state *tss = rd_desc->arg.data; 695 int ret; 696 697 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 698 tss->flags); 699 if (ret > 0) 700 rd_desc->count -= ret; 701 return ret; 702 } 703 704 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 705 { 706 /* Store TCP splice context information in read_descriptor_t. */ 707 read_descriptor_t rd_desc = { 708 .arg.data = tss, 709 .count = tss->len, 710 }; 711 712 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 713 } 714 715 /** 716 * tcp_splice_read - splice data from TCP socket to a pipe 717 * @sock: socket to splice from 718 * @ppos: position (not valid) 719 * @pipe: pipe to splice to 720 * @len: number of bytes to splice 721 * @flags: splice modifier flags 722 * 723 * Description: 724 * Will read pages from given socket and fill them into a pipe. 725 * 726 **/ 727 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 728 struct pipe_inode_info *pipe, size_t len, 729 unsigned int flags) 730 { 731 struct sock *sk = sock->sk; 732 struct tcp_splice_state tss = { 733 .pipe = pipe, 734 .len = len, 735 .flags = flags, 736 }; 737 long timeo; 738 ssize_t spliced; 739 int ret; 740 741 sock_rps_record_flow(sk); 742 /* 743 * We can't seek on a socket input 744 */ 745 if (unlikely(*ppos)) 746 return -ESPIPE; 747 748 ret = spliced = 0; 749 750 lock_sock(sk); 751 752 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 753 while (tss.len) { 754 ret = __tcp_splice_read(sk, &tss); 755 if (ret < 0) 756 break; 757 else if (!ret) { 758 if (spliced) 759 break; 760 if (sock_flag(sk, SOCK_DONE)) 761 break; 762 if (sk->sk_err) { 763 ret = sock_error(sk); 764 break; 765 } 766 if (sk->sk_shutdown & RCV_SHUTDOWN) 767 break; 768 if (sk->sk_state == TCP_CLOSE) { 769 /* 770 * This occurs when user tries to read 771 * from never connected socket. 772 */ 773 if (!sock_flag(sk, SOCK_DONE)) 774 ret = -ENOTCONN; 775 break; 776 } 777 if (!timeo) { 778 ret = -EAGAIN; 779 break; 780 } 781 sk_wait_data(sk, &timeo); 782 if (signal_pending(current)) { 783 ret = sock_intr_errno(timeo); 784 break; 785 } 786 continue; 787 } 788 tss.len -= ret; 789 spliced += ret; 790 791 if (!timeo) 792 break; 793 release_sock(sk); 794 lock_sock(sk); 795 796 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 797 (sk->sk_shutdown & RCV_SHUTDOWN) || 798 signal_pending(current)) 799 break; 800 } 801 802 release_sock(sk); 803 804 if (spliced) 805 return spliced; 806 807 return ret; 808 } 809 EXPORT_SYMBOL(tcp_splice_read); 810 811 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 812 { 813 struct sk_buff *skb; 814 815 /* The TCP header must be at least 32-bit aligned. */ 816 size = ALIGN(size, 4); 817 818 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 819 if (skb) { 820 if (sk_wmem_schedule(sk, skb->truesize)) { 821 skb_reserve(skb, sk->sk_prot->max_header); 822 /* 823 * Make sure that we have exactly size bytes 824 * available to the caller, no more, no less. 825 */ 826 skb->reserved_tailroom = skb->end - skb->tail - size; 827 return skb; 828 } 829 __kfree_skb(skb); 830 } else { 831 sk->sk_prot->enter_memory_pressure(sk); 832 sk_stream_moderate_sndbuf(sk); 833 } 834 return NULL; 835 } 836 837 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 838 int large_allowed) 839 { 840 struct tcp_sock *tp = tcp_sk(sk); 841 u32 new_size_goal, size_goal; 842 843 if (!large_allowed || !sk_can_gso(sk)) 844 return mss_now; 845 846 /* Note : tcp_tso_autosize() will eventually split this later */ 847 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 848 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 849 850 /* We try hard to avoid divides here */ 851 size_goal = tp->gso_segs * mss_now; 852 if (unlikely(new_size_goal < size_goal || 853 new_size_goal >= size_goal + mss_now)) { 854 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 855 sk->sk_gso_max_segs); 856 size_goal = tp->gso_segs * mss_now; 857 } 858 859 return max(size_goal, mss_now); 860 } 861 862 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 863 { 864 int mss_now; 865 866 mss_now = tcp_current_mss(sk); 867 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 868 869 return mss_now; 870 } 871 872 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 873 size_t size, int flags) 874 { 875 struct tcp_sock *tp = tcp_sk(sk); 876 int mss_now, size_goal; 877 int err; 878 ssize_t copied; 879 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 880 881 /* Wait for a connection to finish. One exception is TCP Fast Open 882 * (passive side) where data is allowed to be sent before a connection 883 * is fully established. 884 */ 885 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 886 !tcp_passive_fastopen(sk)) { 887 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 888 goto out_err; 889 } 890 891 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 892 893 mss_now = tcp_send_mss(sk, &size_goal, flags); 894 copied = 0; 895 896 err = -EPIPE; 897 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 898 goto out_err; 899 900 while (size > 0) { 901 struct sk_buff *skb = tcp_write_queue_tail(sk); 902 int copy, i; 903 bool can_coalesce; 904 905 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 906 new_segment: 907 if (!sk_stream_memory_free(sk)) 908 goto wait_for_sndbuf; 909 910 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 911 if (!skb) 912 goto wait_for_memory; 913 914 skb_entail(sk, skb); 915 copy = size_goal; 916 } 917 918 if (copy > size) 919 copy = size; 920 921 i = skb_shinfo(skb)->nr_frags; 922 can_coalesce = skb_can_coalesce(skb, i, page, offset); 923 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 924 tcp_mark_push(tp, skb); 925 goto new_segment; 926 } 927 if (!sk_wmem_schedule(sk, copy)) 928 goto wait_for_memory; 929 930 if (can_coalesce) { 931 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 932 } else { 933 get_page(page); 934 skb_fill_page_desc(skb, i, page, offset, copy); 935 } 936 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 937 938 skb->len += copy; 939 skb->data_len += copy; 940 skb->truesize += copy; 941 sk->sk_wmem_queued += copy; 942 sk_mem_charge(sk, copy); 943 skb->ip_summed = CHECKSUM_PARTIAL; 944 tp->write_seq += copy; 945 TCP_SKB_CB(skb)->end_seq += copy; 946 tcp_skb_pcount_set(skb, 0); 947 948 if (!copied) 949 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 950 951 copied += copy; 952 offset += copy; 953 if (!(size -= copy)) { 954 tcp_tx_timestamp(sk, skb); 955 goto out; 956 } 957 958 if (skb->len < size_goal || (flags & MSG_OOB)) 959 continue; 960 961 if (forced_push(tp)) { 962 tcp_mark_push(tp, skb); 963 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 964 } else if (skb == tcp_send_head(sk)) 965 tcp_push_one(sk, mss_now); 966 continue; 967 968 wait_for_sndbuf: 969 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 970 wait_for_memory: 971 tcp_push(sk, flags & ~MSG_MORE, mss_now, 972 TCP_NAGLE_PUSH, size_goal); 973 974 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 975 goto do_error; 976 977 mss_now = tcp_send_mss(sk, &size_goal, flags); 978 } 979 980 out: 981 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 982 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 983 return copied; 984 985 do_error: 986 if (copied) 987 goto out; 988 out_err: 989 return sk_stream_error(sk, flags, err); 990 } 991 992 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 993 size_t size, int flags) 994 { 995 ssize_t res; 996 997 if (!(sk->sk_route_caps & NETIF_F_SG) || 998 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 999 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1000 flags); 1001 1002 lock_sock(sk); 1003 res = do_tcp_sendpages(sk, page, offset, size, flags); 1004 release_sock(sk); 1005 return res; 1006 } 1007 EXPORT_SYMBOL(tcp_sendpage); 1008 1009 static inline int select_size(const struct sock *sk, bool sg) 1010 { 1011 const struct tcp_sock *tp = tcp_sk(sk); 1012 int tmp = tp->mss_cache; 1013 1014 if (sg) { 1015 if (sk_can_gso(sk)) { 1016 /* Small frames wont use a full page: 1017 * Payload will immediately follow tcp header. 1018 */ 1019 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1020 } else { 1021 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1022 1023 if (tmp >= pgbreak && 1024 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1025 tmp = pgbreak; 1026 } 1027 } 1028 1029 return tmp; 1030 } 1031 1032 void tcp_free_fastopen_req(struct tcp_sock *tp) 1033 { 1034 if (tp->fastopen_req) { 1035 kfree(tp->fastopen_req); 1036 tp->fastopen_req = NULL; 1037 } 1038 } 1039 1040 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1041 int *copied, size_t size) 1042 { 1043 struct tcp_sock *tp = tcp_sk(sk); 1044 int err, flags; 1045 1046 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1047 return -EOPNOTSUPP; 1048 if (tp->fastopen_req) 1049 return -EALREADY; /* Another Fast Open is in progress */ 1050 1051 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1052 sk->sk_allocation); 1053 if (unlikely(!tp->fastopen_req)) 1054 return -ENOBUFS; 1055 tp->fastopen_req->data = msg; 1056 tp->fastopen_req->size = size; 1057 1058 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1059 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1060 msg->msg_namelen, flags); 1061 *copied = tp->fastopen_req->copied; 1062 tcp_free_fastopen_req(tp); 1063 return err; 1064 } 1065 1066 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 struct sk_buff *skb; 1070 int flags, err, copied = 0; 1071 int mss_now = 0, size_goal, copied_syn = 0; 1072 bool sg; 1073 long timeo; 1074 1075 lock_sock(sk); 1076 1077 flags = msg->msg_flags; 1078 if (flags & MSG_FASTOPEN) { 1079 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1080 if (err == -EINPROGRESS && copied_syn > 0) 1081 goto out; 1082 else if (err) 1083 goto out_err; 1084 } 1085 1086 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1087 1088 /* Wait for a connection to finish. One exception is TCP Fast Open 1089 * (passive side) where data is allowed to be sent before a connection 1090 * is fully established. 1091 */ 1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1093 !tcp_passive_fastopen(sk)) { 1094 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1095 goto do_error; 1096 } 1097 1098 if (unlikely(tp->repair)) { 1099 if (tp->repair_queue == TCP_RECV_QUEUE) { 1100 copied = tcp_send_rcvq(sk, msg, size); 1101 goto out_nopush; 1102 } 1103 1104 err = -EINVAL; 1105 if (tp->repair_queue == TCP_NO_QUEUE) 1106 goto out_err; 1107 1108 /* 'common' sending to sendq */ 1109 } 1110 1111 /* This should be in poll */ 1112 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1113 1114 mss_now = tcp_send_mss(sk, &size_goal, flags); 1115 1116 /* Ok commence sending. */ 1117 copied = 0; 1118 1119 err = -EPIPE; 1120 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1121 goto out_err; 1122 1123 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1124 1125 while (msg_data_left(msg)) { 1126 int copy = 0; 1127 int max = size_goal; 1128 1129 skb = tcp_write_queue_tail(sk); 1130 if (tcp_send_head(sk)) { 1131 if (skb->ip_summed == CHECKSUM_NONE) 1132 max = mss_now; 1133 copy = max - skb->len; 1134 } 1135 1136 if (copy <= 0) { 1137 new_segment: 1138 /* Allocate new segment. If the interface is SG, 1139 * allocate skb fitting to single page. 1140 */ 1141 if (!sk_stream_memory_free(sk)) 1142 goto wait_for_sndbuf; 1143 1144 skb = sk_stream_alloc_skb(sk, 1145 select_size(sk, sg), 1146 sk->sk_allocation); 1147 if (!skb) 1148 goto wait_for_memory; 1149 1150 /* 1151 * Check whether we can use HW checksum. 1152 */ 1153 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1154 skb->ip_summed = CHECKSUM_PARTIAL; 1155 1156 skb_entail(sk, skb); 1157 copy = size_goal; 1158 max = size_goal; 1159 1160 /* All packets are restored as if they have 1161 * already been sent. skb_mstamp isn't set to 1162 * avoid wrong rtt estimation. 1163 */ 1164 if (tp->repair) 1165 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1166 } 1167 1168 /* Try to append data to the end of skb. */ 1169 if (copy > msg_data_left(msg)) 1170 copy = msg_data_left(msg); 1171 1172 /* Where to copy to? */ 1173 if (skb_availroom(skb) > 0) { 1174 /* We have some space in skb head. Superb! */ 1175 copy = min_t(int, copy, skb_availroom(skb)); 1176 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1177 if (err) 1178 goto do_fault; 1179 } else { 1180 bool merge = true; 1181 int i = skb_shinfo(skb)->nr_frags; 1182 struct page_frag *pfrag = sk_page_frag(sk); 1183 1184 if (!sk_page_frag_refill(sk, pfrag)) 1185 goto wait_for_memory; 1186 1187 if (!skb_can_coalesce(skb, i, pfrag->page, 1188 pfrag->offset)) { 1189 if (i == MAX_SKB_FRAGS || !sg) { 1190 tcp_mark_push(tp, skb); 1191 goto new_segment; 1192 } 1193 merge = false; 1194 } 1195 1196 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1197 1198 if (!sk_wmem_schedule(sk, copy)) 1199 goto wait_for_memory; 1200 1201 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1202 pfrag->page, 1203 pfrag->offset, 1204 copy); 1205 if (err) 1206 goto do_error; 1207 1208 /* Update the skb. */ 1209 if (merge) { 1210 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1211 } else { 1212 skb_fill_page_desc(skb, i, pfrag->page, 1213 pfrag->offset, copy); 1214 get_page(pfrag->page); 1215 } 1216 pfrag->offset += copy; 1217 } 1218 1219 if (!copied) 1220 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1221 1222 tp->write_seq += copy; 1223 TCP_SKB_CB(skb)->end_seq += copy; 1224 tcp_skb_pcount_set(skb, 0); 1225 1226 copied += copy; 1227 if (!msg_data_left(msg)) { 1228 tcp_tx_timestamp(sk, skb); 1229 goto out; 1230 } 1231 1232 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1233 continue; 1234 1235 if (forced_push(tp)) { 1236 tcp_mark_push(tp, skb); 1237 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1238 } else if (skb == tcp_send_head(sk)) 1239 tcp_push_one(sk, mss_now); 1240 continue; 1241 1242 wait_for_sndbuf: 1243 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1244 wait_for_memory: 1245 if (copied) 1246 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1247 TCP_NAGLE_PUSH, size_goal); 1248 1249 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1250 goto do_error; 1251 1252 mss_now = tcp_send_mss(sk, &size_goal, flags); 1253 } 1254 1255 out: 1256 if (copied) 1257 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1258 out_nopush: 1259 release_sock(sk); 1260 return copied + copied_syn; 1261 1262 do_fault: 1263 if (!skb->len) { 1264 tcp_unlink_write_queue(skb, sk); 1265 /* It is the one place in all of TCP, except connection 1266 * reset, where we can be unlinking the send_head. 1267 */ 1268 tcp_check_send_head(sk, skb); 1269 sk_wmem_free_skb(sk, skb); 1270 } 1271 1272 do_error: 1273 if (copied + copied_syn) 1274 goto out; 1275 out_err: 1276 err = sk_stream_error(sk, flags, err); 1277 release_sock(sk); 1278 return err; 1279 } 1280 EXPORT_SYMBOL(tcp_sendmsg); 1281 1282 /* 1283 * Handle reading urgent data. BSD has very simple semantics for 1284 * this, no blocking and very strange errors 8) 1285 */ 1286 1287 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 1291 /* No URG data to read. */ 1292 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1293 tp->urg_data == TCP_URG_READ) 1294 return -EINVAL; /* Yes this is right ! */ 1295 1296 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1297 return -ENOTCONN; 1298 1299 if (tp->urg_data & TCP_URG_VALID) { 1300 int err = 0; 1301 char c = tp->urg_data; 1302 1303 if (!(flags & MSG_PEEK)) 1304 tp->urg_data = TCP_URG_READ; 1305 1306 /* Read urgent data. */ 1307 msg->msg_flags |= MSG_OOB; 1308 1309 if (len > 0) { 1310 if (!(flags & MSG_TRUNC)) 1311 err = memcpy_to_msg(msg, &c, 1); 1312 len = 1; 1313 } else 1314 msg->msg_flags |= MSG_TRUNC; 1315 1316 return err ? -EFAULT : len; 1317 } 1318 1319 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1320 return 0; 1321 1322 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1323 * the available implementations agree in this case: 1324 * this call should never block, independent of the 1325 * blocking state of the socket. 1326 * Mike <pall@rz.uni-karlsruhe.de> 1327 */ 1328 return -EAGAIN; 1329 } 1330 1331 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1332 { 1333 struct sk_buff *skb; 1334 int copied = 0, err = 0; 1335 1336 /* XXX -- need to support SO_PEEK_OFF */ 1337 1338 skb_queue_walk(&sk->sk_write_queue, skb) { 1339 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1340 if (err) 1341 break; 1342 1343 copied += skb->len; 1344 } 1345 1346 return err ?: copied; 1347 } 1348 1349 /* Clean up the receive buffer for full frames taken by the user, 1350 * then send an ACK if necessary. COPIED is the number of bytes 1351 * tcp_recvmsg has given to the user so far, it speeds up the 1352 * calculation of whether or not we must ACK for the sake of 1353 * a window update. 1354 */ 1355 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1356 { 1357 struct tcp_sock *tp = tcp_sk(sk); 1358 bool time_to_ack = false; 1359 1360 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1361 1362 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1363 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1364 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1365 1366 if (inet_csk_ack_scheduled(sk)) { 1367 const struct inet_connection_sock *icsk = inet_csk(sk); 1368 /* Delayed ACKs frequently hit locked sockets during bulk 1369 * receive. */ 1370 if (icsk->icsk_ack.blocked || 1371 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1372 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1373 /* 1374 * If this read emptied read buffer, we send ACK, if 1375 * connection is not bidirectional, user drained 1376 * receive buffer and there was a small segment 1377 * in queue. 1378 */ 1379 (copied > 0 && 1380 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1381 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1382 !icsk->icsk_ack.pingpong)) && 1383 !atomic_read(&sk->sk_rmem_alloc))) 1384 time_to_ack = true; 1385 } 1386 1387 /* We send an ACK if we can now advertise a non-zero window 1388 * which has been raised "significantly". 1389 * 1390 * Even if window raised up to infinity, do not send window open ACK 1391 * in states, where we will not receive more. It is useless. 1392 */ 1393 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1394 __u32 rcv_window_now = tcp_receive_window(tp); 1395 1396 /* Optimize, __tcp_select_window() is not cheap. */ 1397 if (2*rcv_window_now <= tp->window_clamp) { 1398 __u32 new_window = __tcp_select_window(sk); 1399 1400 /* Send ACK now, if this read freed lots of space 1401 * in our buffer. Certainly, new_window is new window. 1402 * We can advertise it now, if it is not less than current one. 1403 * "Lots" means "at least twice" here. 1404 */ 1405 if (new_window && new_window >= 2 * rcv_window_now) 1406 time_to_ack = true; 1407 } 1408 } 1409 if (time_to_ack) 1410 tcp_send_ack(sk); 1411 } 1412 1413 static void tcp_prequeue_process(struct sock *sk) 1414 { 1415 struct sk_buff *skb; 1416 struct tcp_sock *tp = tcp_sk(sk); 1417 1418 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1419 1420 /* RX process wants to run with disabled BHs, though it is not 1421 * necessary */ 1422 local_bh_disable(); 1423 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1424 sk_backlog_rcv(sk, skb); 1425 local_bh_enable(); 1426 1427 /* Clear memory counter. */ 1428 tp->ucopy.memory = 0; 1429 } 1430 1431 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1432 { 1433 struct sk_buff *skb; 1434 u32 offset; 1435 1436 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1437 offset = seq - TCP_SKB_CB(skb)->seq; 1438 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1439 offset--; 1440 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1441 *off = offset; 1442 return skb; 1443 } 1444 /* This looks weird, but this can happen if TCP collapsing 1445 * splitted a fat GRO packet, while we released socket lock 1446 * in skb_splice_bits() 1447 */ 1448 sk_eat_skb(sk, skb); 1449 } 1450 return NULL; 1451 } 1452 1453 /* 1454 * This routine provides an alternative to tcp_recvmsg() for routines 1455 * that would like to handle copying from skbuffs directly in 'sendfile' 1456 * fashion. 1457 * Note: 1458 * - It is assumed that the socket was locked by the caller. 1459 * - The routine does not block. 1460 * - At present, there is no support for reading OOB data 1461 * or for 'peeking' the socket using this routine 1462 * (although both would be easy to implement). 1463 */ 1464 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1465 sk_read_actor_t recv_actor) 1466 { 1467 struct sk_buff *skb; 1468 struct tcp_sock *tp = tcp_sk(sk); 1469 u32 seq = tp->copied_seq; 1470 u32 offset; 1471 int copied = 0; 1472 1473 if (sk->sk_state == TCP_LISTEN) 1474 return -ENOTCONN; 1475 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1476 if (offset < skb->len) { 1477 int used; 1478 size_t len; 1479 1480 len = skb->len - offset; 1481 /* Stop reading if we hit a patch of urgent data */ 1482 if (tp->urg_data) { 1483 u32 urg_offset = tp->urg_seq - seq; 1484 if (urg_offset < len) 1485 len = urg_offset; 1486 if (!len) 1487 break; 1488 } 1489 used = recv_actor(desc, skb, offset, len); 1490 if (used <= 0) { 1491 if (!copied) 1492 copied = used; 1493 break; 1494 } else if (used <= len) { 1495 seq += used; 1496 copied += used; 1497 offset += used; 1498 } 1499 /* If recv_actor drops the lock (e.g. TCP splice 1500 * receive) the skb pointer might be invalid when 1501 * getting here: tcp_collapse might have deleted it 1502 * while aggregating skbs from the socket queue. 1503 */ 1504 skb = tcp_recv_skb(sk, seq - 1, &offset); 1505 if (!skb) 1506 break; 1507 /* TCP coalescing might have appended data to the skb. 1508 * Try to splice more frags 1509 */ 1510 if (offset + 1 != skb->len) 1511 continue; 1512 } 1513 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1514 sk_eat_skb(sk, skb); 1515 ++seq; 1516 break; 1517 } 1518 sk_eat_skb(sk, skb); 1519 if (!desc->count) 1520 break; 1521 tp->copied_seq = seq; 1522 } 1523 tp->copied_seq = seq; 1524 1525 tcp_rcv_space_adjust(sk); 1526 1527 /* Clean up data we have read: This will do ACK frames. */ 1528 if (copied > 0) { 1529 tcp_recv_skb(sk, seq, &offset); 1530 tcp_cleanup_rbuf(sk, copied); 1531 } 1532 return copied; 1533 } 1534 EXPORT_SYMBOL(tcp_read_sock); 1535 1536 /* 1537 * This routine copies from a sock struct into the user buffer. 1538 * 1539 * Technical note: in 2.3 we work on _locked_ socket, so that 1540 * tricks with *seq access order and skb->users are not required. 1541 * Probably, code can be easily improved even more. 1542 */ 1543 1544 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1545 int flags, int *addr_len) 1546 { 1547 struct tcp_sock *tp = tcp_sk(sk); 1548 int copied = 0; 1549 u32 peek_seq; 1550 u32 *seq; 1551 unsigned long used; 1552 int err; 1553 int target; /* Read at least this many bytes */ 1554 long timeo; 1555 struct task_struct *user_recv = NULL; 1556 struct sk_buff *skb; 1557 u32 urg_hole = 0; 1558 1559 if (unlikely(flags & MSG_ERRQUEUE)) 1560 return inet_recv_error(sk, msg, len, addr_len); 1561 1562 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1563 (sk->sk_state == TCP_ESTABLISHED)) 1564 sk_busy_loop(sk, nonblock); 1565 1566 lock_sock(sk); 1567 1568 err = -ENOTCONN; 1569 if (sk->sk_state == TCP_LISTEN) 1570 goto out; 1571 1572 timeo = sock_rcvtimeo(sk, nonblock); 1573 1574 /* Urgent data needs to be handled specially. */ 1575 if (flags & MSG_OOB) 1576 goto recv_urg; 1577 1578 if (unlikely(tp->repair)) { 1579 err = -EPERM; 1580 if (!(flags & MSG_PEEK)) 1581 goto out; 1582 1583 if (tp->repair_queue == TCP_SEND_QUEUE) 1584 goto recv_sndq; 1585 1586 err = -EINVAL; 1587 if (tp->repair_queue == TCP_NO_QUEUE) 1588 goto out; 1589 1590 /* 'common' recv queue MSG_PEEK-ing */ 1591 } 1592 1593 seq = &tp->copied_seq; 1594 if (flags & MSG_PEEK) { 1595 peek_seq = tp->copied_seq; 1596 seq = &peek_seq; 1597 } 1598 1599 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1600 1601 do { 1602 u32 offset; 1603 1604 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1605 if (tp->urg_data && tp->urg_seq == *seq) { 1606 if (copied) 1607 break; 1608 if (signal_pending(current)) { 1609 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1610 break; 1611 } 1612 } 1613 1614 /* Next get a buffer. */ 1615 1616 skb_queue_walk(&sk->sk_receive_queue, skb) { 1617 /* Now that we have two receive queues this 1618 * shouldn't happen. 1619 */ 1620 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1621 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1622 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1623 flags)) 1624 break; 1625 1626 offset = *seq - TCP_SKB_CB(skb)->seq; 1627 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1628 offset--; 1629 if (offset < skb->len) 1630 goto found_ok_skb; 1631 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1632 goto found_fin_ok; 1633 WARN(!(flags & MSG_PEEK), 1634 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1635 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1636 } 1637 1638 /* Well, if we have backlog, try to process it now yet. */ 1639 1640 if (copied >= target && !sk->sk_backlog.tail) 1641 break; 1642 1643 if (copied) { 1644 if (sk->sk_err || 1645 sk->sk_state == TCP_CLOSE || 1646 (sk->sk_shutdown & RCV_SHUTDOWN) || 1647 !timeo || 1648 signal_pending(current)) 1649 break; 1650 } else { 1651 if (sock_flag(sk, SOCK_DONE)) 1652 break; 1653 1654 if (sk->sk_err) { 1655 copied = sock_error(sk); 1656 break; 1657 } 1658 1659 if (sk->sk_shutdown & RCV_SHUTDOWN) 1660 break; 1661 1662 if (sk->sk_state == TCP_CLOSE) { 1663 if (!sock_flag(sk, SOCK_DONE)) { 1664 /* This occurs when user tries to read 1665 * from never connected socket. 1666 */ 1667 copied = -ENOTCONN; 1668 break; 1669 } 1670 break; 1671 } 1672 1673 if (!timeo) { 1674 copied = -EAGAIN; 1675 break; 1676 } 1677 1678 if (signal_pending(current)) { 1679 copied = sock_intr_errno(timeo); 1680 break; 1681 } 1682 } 1683 1684 tcp_cleanup_rbuf(sk, copied); 1685 1686 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1687 /* Install new reader */ 1688 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1689 user_recv = current; 1690 tp->ucopy.task = user_recv; 1691 tp->ucopy.msg = msg; 1692 } 1693 1694 tp->ucopy.len = len; 1695 1696 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1697 !(flags & (MSG_PEEK | MSG_TRUNC))); 1698 1699 /* Ugly... If prequeue is not empty, we have to 1700 * process it before releasing socket, otherwise 1701 * order will be broken at second iteration. 1702 * More elegant solution is required!!! 1703 * 1704 * Look: we have the following (pseudo)queues: 1705 * 1706 * 1. packets in flight 1707 * 2. backlog 1708 * 3. prequeue 1709 * 4. receive_queue 1710 * 1711 * Each queue can be processed only if the next ones 1712 * are empty. At this point we have empty receive_queue. 1713 * But prequeue _can_ be not empty after 2nd iteration, 1714 * when we jumped to start of loop because backlog 1715 * processing added something to receive_queue. 1716 * We cannot release_sock(), because backlog contains 1717 * packets arrived _after_ prequeued ones. 1718 * 1719 * Shortly, algorithm is clear --- to process all 1720 * the queues in order. We could make it more directly, 1721 * requeueing packets from backlog to prequeue, if 1722 * is not empty. It is more elegant, but eats cycles, 1723 * unfortunately. 1724 */ 1725 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1726 goto do_prequeue; 1727 1728 /* __ Set realtime policy in scheduler __ */ 1729 } 1730 1731 if (copied >= target) { 1732 /* Do not sleep, just process backlog. */ 1733 release_sock(sk); 1734 lock_sock(sk); 1735 } else 1736 sk_wait_data(sk, &timeo); 1737 1738 if (user_recv) { 1739 int chunk; 1740 1741 /* __ Restore normal policy in scheduler __ */ 1742 1743 if ((chunk = len - tp->ucopy.len) != 0) { 1744 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1745 len -= chunk; 1746 copied += chunk; 1747 } 1748 1749 if (tp->rcv_nxt == tp->copied_seq && 1750 !skb_queue_empty(&tp->ucopy.prequeue)) { 1751 do_prequeue: 1752 tcp_prequeue_process(sk); 1753 1754 if ((chunk = len - tp->ucopy.len) != 0) { 1755 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1756 len -= chunk; 1757 copied += chunk; 1758 } 1759 } 1760 } 1761 if ((flags & MSG_PEEK) && 1762 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1763 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1764 current->comm, 1765 task_pid_nr(current)); 1766 peek_seq = tp->copied_seq; 1767 } 1768 continue; 1769 1770 found_ok_skb: 1771 /* Ok so how much can we use? */ 1772 used = skb->len - offset; 1773 if (len < used) 1774 used = len; 1775 1776 /* Do we have urgent data here? */ 1777 if (tp->urg_data) { 1778 u32 urg_offset = tp->urg_seq - *seq; 1779 if (urg_offset < used) { 1780 if (!urg_offset) { 1781 if (!sock_flag(sk, SOCK_URGINLINE)) { 1782 ++*seq; 1783 urg_hole++; 1784 offset++; 1785 used--; 1786 if (!used) 1787 goto skip_copy; 1788 } 1789 } else 1790 used = urg_offset; 1791 } 1792 } 1793 1794 if (!(flags & MSG_TRUNC)) { 1795 err = skb_copy_datagram_msg(skb, offset, msg, used); 1796 if (err) { 1797 /* Exception. Bailout! */ 1798 if (!copied) 1799 copied = -EFAULT; 1800 break; 1801 } 1802 } 1803 1804 *seq += used; 1805 copied += used; 1806 len -= used; 1807 1808 tcp_rcv_space_adjust(sk); 1809 1810 skip_copy: 1811 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1812 tp->urg_data = 0; 1813 tcp_fast_path_check(sk); 1814 } 1815 if (used + offset < skb->len) 1816 continue; 1817 1818 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1819 goto found_fin_ok; 1820 if (!(flags & MSG_PEEK)) 1821 sk_eat_skb(sk, skb); 1822 continue; 1823 1824 found_fin_ok: 1825 /* Process the FIN. */ 1826 ++*seq; 1827 if (!(flags & MSG_PEEK)) 1828 sk_eat_skb(sk, skb); 1829 break; 1830 } while (len > 0); 1831 1832 if (user_recv) { 1833 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1834 int chunk; 1835 1836 tp->ucopy.len = copied > 0 ? len : 0; 1837 1838 tcp_prequeue_process(sk); 1839 1840 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1841 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1842 len -= chunk; 1843 copied += chunk; 1844 } 1845 } 1846 1847 tp->ucopy.task = NULL; 1848 tp->ucopy.len = 0; 1849 } 1850 1851 /* According to UNIX98, msg_name/msg_namelen are ignored 1852 * on connected socket. I was just happy when found this 8) --ANK 1853 */ 1854 1855 /* Clean up data we have read: This will do ACK frames. */ 1856 tcp_cleanup_rbuf(sk, copied); 1857 1858 release_sock(sk); 1859 return copied; 1860 1861 out: 1862 release_sock(sk); 1863 return err; 1864 1865 recv_urg: 1866 err = tcp_recv_urg(sk, msg, len, flags); 1867 goto out; 1868 1869 recv_sndq: 1870 err = tcp_peek_sndq(sk, msg, len); 1871 goto out; 1872 } 1873 EXPORT_SYMBOL(tcp_recvmsg); 1874 1875 void tcp_set_state(struct sock *sk, int state) 1876 { 1877 int oldstate = sk->sk_state; 1878 1879 switch (state) { 1880 case TCP_ESTABLISHED: 1881 if (oldstate != TCP_ESTABLISHED) 1882 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1883 break; 1884 1885 case TCP_CLOSE: 1886 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1887 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1888 1889 sk->sk_prot->unhash(sk); 1890 if (inet_csk(sk)->icsk_bind_hash && 1891 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1892 inet_put_port(sk); 1893 /* fall through */ 1894 default: 1895 if (oldstate == TCP_ESTABLISHED) 1896 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1897 } 1898 1899 /* Change state AFTER socket is unhashed to avoid closed 1900 * socket sitting in hash tables. 1901 */ 1902 sk->sk_state = state; 1903 1904 #ifdef STATE_TRACE 1905 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1906 #endif 1907 } 1908 EXPORT_SYMBOL_GPL(tcp_set_state); 1909 1910 /* 1911 * State processing on a close. This implements the state shift for 1912 * sending our FIN frame. Note that we only send a FIN for some 1913 * states. A shutdown() may have already sent the FIN, or we may be 1914 * closed. 1915 */ 1916 1917 static const unsigned char new_state[16] = { 1918 /* current state: new state: action: */ 1919 [0 /* (Invalid) */] = TCP_CLOSE, 1920 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1921 [TCP_SYN_SENT] = TCP_CLOSE, 1922 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1923 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1924 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1925 [TCP_TIME_WAIT] = TCP_CLOSE, 1926 [TCP_CLOSE] = TCP_CLOSE, 1927 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1928 [TCP_LAST_ACK] = TCP_LAST_ACK, 1929 [TCP_LISTEN] = TCP_CLOSE, 1930 [TCP_CLOSING] = TCP_CLOSING, 1931 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1932 }; 1933 1934 static int tcp_close_state(struct sock *sk) 1935 { 1936 int next = (int)new_state[sk->sk_state]; 1937 int ns = next & TCP_STATE_MASK; 1938 1939 tcp_set_state(sk, ns); 1940 1941 return next & TCP_ACTION_FIN; 1942 } 1943 1944 /* 1945 * Shutdown the sending side of a connection. Much like close except 1946 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1947 */ 1948 1949 void tcp_shutdown(struct sock *sk, int how) 1950 { 1951 /* We need to grab some memory, and put together a FIN, 1952 * and then put it into the queue to be sent. 1953 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1954 */ 1955 if (!(how & SEND_SHUTDOWN)) 1956 return; 1957 1958 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1959 if ((1 << sk->sk_state) & 1960 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1961 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1962 /* Clear out any half completed packets. FIN if needed. */ 1963 if (tcp_close_state(sk)) 1964 tcp_send_fin(sk); 1965 } 1966 } 1967 EXPORT_SYMBOL(tcp_shutdown); 1968 1969 bool tcp_check_oom(struct sock *sk, int shift) 1970 { 1971 bool too_many_orphans, out_of_socket_memory; 1972 1973 too_many_orphans = tcp_too_many_orphans(sk, shift); 1974 out_of_socket_memory = tcp_out_of_memory(sk); 1975 1976 if (too_many_orphans) 1977 net_info_ratelimited("too many orphaned sockets\n"); 1978 if (out_of_socket_memory) 1979 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 1980 return too_many_orphans || out_of_socket_memory; 1981 } 1982 1983 void tcp_close(struct sock *sk, long timeout) 1984 { 1985 struct sk_buff *skb; 1986 int data_was_unread = 0; 1987 int state; 1988 1989 lock_sock(sk); 1990 sk->sk_shutdown = SHUTDOWN_MASK; 1991 1992 if (sk->sk_state == TCP_LISTEN) { 1993 tcp_set_state(sk, TCP_CLOSE); 1994 1995 /* Special case. */ 1996 inet_csk_listen_stop(sk); 1997 1998 goto adjudge_to_death; 1999 } 2000 2001 /* We need to flush the recv. buffs. We do this only on the 2002 * descriptor close, not protocol-sourced closes, because the 2003 * reader process may not have drained the data yet! 2004 */ 2005 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2006 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2007 2008 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2009 len--; 2010 data_was_unread += len; 2011 __kfree_skb(skb); 2012 } 2013 2014 sk_mem_reclaim(sk); 2015 2016 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2017 if (sk->sk_state == TCP_CLOSE) 2018 goto adjudge_to_death; 2019 2020 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2021 * data was lost. To witness the awful effects of the old behavior of 2022 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2023 * GET in an FTP client, suspend the process, wait for the client to 2024 * advertise a zero window, then kill -9 the FTP client, wheee... 2025 * Note: timeout is always zero in such a case. 2026 */ 2027 if (unlikely(tcp_sk(sk)->repair)) { 2028 sk->sk_prot->disconnect(sk, 0); 2029 } else if (data_was_unread) { 2030 /* Unread data was tossed, zap the connection. */ 2031 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2032 tcp_set_state(sk, TCP_CLOSE); 2033 tcp_send_active_reset(sk, sk->sk_allocation); 2034 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2035 /* Check zero linger _after_ checking for unread data. */ 2036 sk->sk_prot->disconnect(sk, 0); 2037 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2038 } else if (tcp_close_state(sk)) { 2039 /* We FIN if the application ate all the data before 2040 * zapping the connection. 2041 */ 2042 2043 /* RED-PEN. Formally speaking, we have broken TCP state 2044 * machine. State transitions: 2045 * 2046 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2047 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2048 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2049 * 2050 * are legal only when FIN has been sent (i.e. in window), 2051 * rather than queued out of window. Purists blame. 2052 * 2053 * F.e. "RFC state" is ESTABLISHED, 2054 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2055 * 2056 * The visible declinations are that sometimes 2057 * we enter time-wait state, when it is not required really 2058 * (harmless), do not send active resets, when they are 2059 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2060 * they look as CLOSING or LAST_ACK for Linux) 2061 * Probably, I missed some more holelets. 2062 * --ANK 2063 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2064 * in a single packet! (May consider it later but will 2065 * probably need API support or TCP_CORK SYN-ACK until 2066 * data is written and socket is closed.) 2067 */ 2068 tcp_send_fin(sk); 2069 } 2070 2071 sk_stream_wait_close(sk, timeout); 2072 2073 adjudge_to_death: 2074 state = sk->sk_state; 2075 sock_hold(sk); 2076 sock_orphan(sk); 2077 2078 /* It is the last release_sock in its life. It will remove backlog. */ 2079 release_sock(sk); 2080 2081 2082 /* Now socket is owned by kernel and we acquire BH lock 2083 to finish close. No need to check for user refs. 2084 */ 2085 local_bh_disable(); 2086 bh_lock_sock(sk); 2087 WARN_ON(sock_owned_by_user(sk)); 2088 2089 percpu_counter_inc(sk->sk_prot->orphan_count); 2090 2091 /* Have we already been destroyed by a softirq or backlog? */ 2092 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2093 goto out; 2094 2095 /* This is a (useful) BSD violating of the RFC. There is a 2096 * problem with TCP as specified in that the other end could 2097 * keep a socket open forever with no application left this end. 2098 * We use a 1 minute timeout (about the same as BSD) then kill 2099 * our end. If they send after that then tough - BUT: long enough 2100 * that we won't make the old 4*rto = almost no time - whoops 2101 * reset mistake. 2102 * 2103 * Nope, it was not mistake. It is really desired behaviour 2104 * f.e. on http servers, when such sockets are useless, but 2105 * consume significant resources. Let's do it with special 2106 * linger2 option. --ANK 2107 */ 2108 2109 if (sk->sk_state == TCP_FIN_WAIT2) { 2110 struct tcp_sock *tp = tcp_sk(sk); 2111 if (tp->linger2 < 0) { 2112 tcp_set_state(sk, TCP_CLOSE); 2113 tcp_send_active_reset(sk, GFP_ATOMIC); 2114 NET_INC_STATS_BH(sock_net(sk), 2115 LINUX_MIB_TCPABORTONLINGER); 2116 } else { 2117 const int tmo = tcp_fin_time(sk); 2118 2119 if (tmo > TCP_TIMEWAIT_LEN) { 2120 inet_csk_reset_keepalive_timer(sk, 2121 tmo - TCP_TIMEWAIT_LEN); 2122 } else { 2123 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2124 goto out; 2125 } 2126 } 2127 } 2128 if (sk->sk_state != TCP_CLOSE) { 2129 sk_mem_reclaim(sk); 2130 if (tcp_check_oom(sk, 0)) { 2131 tcp_set_state(sk, TCP_CLOSE); 2132 tcp_send_active_reset(sk, GFP_ATOMIC); 2133 NET_INC_STATS_BH(sock_net(sk), 2134 LINUX_MIB_TCPABORTONMEMORY); 2135 } 2136 } 2137 2138 if (sk->sk_state == TCP_CLOSE) { 2139 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2140 /* We could get here with a non-NULL req if the socket is 2141 * aborted (e.g., closed with unread data) before 3WHS 2142 * finishes. 2143 */ 2144 if (req) 2145 reqsk_fastopen_remove(sk, req, false); 2146 inet_csk_destroy_sock(sk); 2147 } 2148 /* Otherwise, socket is reprieved until protocol close. */ 2149 2150 out: 2151 bh_unlock_sock(sk); 2152 local_bh_enable(); 2153 sock_put(sk); 2154 } 2155 EXPORT_SYMBOL(tcp_close); 2156 2157 /* These states need RST on ABORT according to RFC793 */ 2158 2159 static inline bool tcp_need_reset(int state) 2160 { 2161 return (1 << state) & 2162 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2163 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2164 } 2165 2166 int tcp_disconnect(struct sock *sk, int flags) 2167 { 2168 struct inet_sock *inet = inet_sk(sk); 2169 struct inet_connection_sock *icsk = inet_csk(sk); 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 int err = 0; 2172 int old_state = sk->sk_state; 2173 2174 if (old_state != TCP_CLOSE) 2175 tcp_set_state(sk, TCP_CLOSE); 2176 2177 /* ABORT function of RFC793 */ 2178 if (old_state == TCP_LISTEN) { 2179 inet_csk_listen_stop(sk); 2180 } else if (unlikely(tp->repair)) { 2181 sk->sk_err = ECONNABORTED; 2182 } else if (tcp_need_reset(old_state) || 2183 (tp->snd_nxt != tp->write_seq && 2184 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2185 /* The last check adjusts for discrepancy of Linux wrt. RFC 2186 * states 2187 */ 2188 tcp_send_active_reset(sk, gfp_any()); 2189 sk->sk_err = ECONNRESET; 2190 } else if (old_state == TCP_SYN_SENT) 2191 sk->sk_err = ECONNRESET; 2192 2193 tcp_clear_xmit_timers(sk); 2194 __skb_queue_purge(&sk->sk_receive_queue); 2195 tcp_write_queue_purge(sk); 2196 __skb_queue_purge(&tp->out_of_order_queue); 2197 2198 inet->inet_dport = 0; 2199 2200 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2201 inet_reset_saddr(sk); 2202 2203 sk->sk_shutdown = 0; 2204 sock_reset_flag(sk, SOCK_DONE); 2205 tp->srtt_us = 0; 2206 if ((tp->write_seq += tp->max_window + 2) == 0) 2207 tp->write_seq = 1; 2208 icsk->icsk_backoff = 0; 2209 tp->snd_cwnd = 2; 2210 icsk->icsk_probes_out = 0; 2211 tp->packets_out = 0; 2212 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2213 tp->snd_cwnd_cnt = 0; 2214 tp->window_clamp = 0; 2215 tcp_set_ca_state(sk, TCP_CA_Open); 2216 tcp_clear_retrans(tp); 2217 inet_csk_delack_init(sk); 2218 tcp_init_send_head(sk); 2219 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2220 __sk_dst_reset(sk); 2221 2222 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2223 2224 sk->sk_error_report(sk); 2225 return err; 2226 } 2227 EXPORT_SYMBOL(tcp_disconnect); 2228 2229 void tcp_sock_destruct(struct sock *sk) 2230 { 2231 inet_sock_destruct(sk); 2232 2233 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2234 } 2235 2236 static inline bool tcp_can_repair_sock(const struct sock *sk) 2237 { 2238 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2239 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2240 } 2241 2242 static int tcp_repair_options_est(struct tcp_sock *tp, 2243 struct tcp_repair_opt __user *optbuf, unsigned int len) 2244 { 2245 struct tcp_repair_opt opt; 2246 2247 while (len >= sizeof(opt)) { 2248 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2249 return -EFAULT; 2250 2251 optbuf++; 2252 len -= sizeof(opt); 2253 2254 switch (opt.opt_code) { 2255 case TCPOPT_MSS: 2256 tp->rx_opt.mss_clamp = opt.opt_val; 2257 break; 2258 case TCPOPT_WINDOW: 2259 { 2260 u16 snd_wscale = opt.opt_val & 0xFFFF; 2261 u16 rcv_wscale = opt.opt_val >> 16; 2262 2263 if (snd_wscale > 14 || rcv_wscale > 14) 2264 return -EFBIG; 2265 2266 tp->rx_opt.snd_wscale = snd_wscale; 2267 tp->rx_opt.rcv_wscale = rcv_wscale; 2268 tp->rx_opt.wscale_ok = 1; 2269 } 2270 break; 2271 case TCPOPT_SACK_PERM: 2272 if (opt.opt_val != 0) 2273 return -EINVAL; 2274 2275 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2276 if (sysctl_tcp_fack) 2277 tcp_enable_fack(tp); 2278 break; 2279 case TCPOPT_TIMESTAMP: 2280 if (opt.opt_val != 0) 2281 return -EINVAL; 2282 2283 tp->rx_opt.tstamp_ok = 1; 2284 break; 2285 } 2286 } 2287 2288 return 0; 2289 } 2290 2291 /* 2292 * Socket option code for TCP. 2293 */ 2294 static int do_tcp_setsockopt(struct sock *sk, int level, 2295 int optname, char __user *optval, unsigned int optlen) 2296 { 2297 struct tcp_sock *tp = tcp_sk(sk); 2298 struct inet_connection_sock *icsk = inet_csk(sk); 2299 int val; 2300 int err = 0; 2301 2302 /* These are data/string values, all the others are ints */ 2303 switch (optname) { 2304 case TCP_CONGESTION: { 2305 char name[TCP_CA_NAME_MAX]; 2306 2307 if (optlen < 1) 2308 return -EINVAL; 2309 2310 val = strncpy_from_user(name, optval, 2311 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2312 if (val < 0) 2313 return -EFAULT; 2314 name[val] = 0; 2315 2316 lock_sock(sk); 2317 err = tcp_set_congestion_control(sk, name); 2318 release_sock(sk); 2319 return err; 2320 } 2321 default: 2322 /* fallthru */ 2323 break; 2324 } 2325 2326 if (optlen < sizeof(int)) 2327 return -EINVAL; 2328 2329 if (get_user(val, (int __user *)optval)) 2330 return -EFAULT; 2331 2332 lock_sock(sk); 2333 2334 switch (optname) { 2335 case TCP_MAXSEG: 2336 /* Values greater than interface MTU won't take effect. However 2337 * at the point when this call is done we typically don't yet 2338 * know which interface is going to be used */ 2339 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2340 err = -EINVAL; 2341 break; 2342 } 2343 tp->rx_opt.user_mss = val; 2344 break; 2345 2346 case TCP_NODELAY: 2347 if (val) { 2348 /* TCP_NODELAY is weaker than TCP_CORK, so that 2349 * this option on corked socket is remembered, but 2350 * it is not activated until cork is cleared. 2351 * 2352 * However, when TCP_NODELAY is set we make 2353 * an explicit push, which overrides even TCP_CORK 2354 * for currently queued segments. 2355 */ 2356 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2357 tcp_push_pending_frames(sk); 2358 } else { 2359 tp->nonagle &= ~TCP_NAGLE_OFF; 2360 } 2361 break; 2362 2363 case TCP_THIN_LINEAR_TIMEOUTS: 2364 if (val < 0 || val > 1) 2365 err = -EINVAL; 2366 else 2367 tp->thin_lto = val; 2368 break; 2369 2370 case TCP_THIN_DUPACK: 2371 if (val < 0 || val > 1) 2372 err = -EINVAL; 2373 else { 2374 tp->thin_dupack = val; 2375 if (tp->thin_dupack) 2376 tcp_disable_early_retrans(tp); 2377 } 2378 break; 2379 2380 case TCP_REPAIR: 2381 if (!tcp_can_repair_sock(sk)) 2382 err = -EPERM; 2383 else if (val == 1) { 2384 tp->repair = 1; 2385 sk->sk_reuse = SK_FORCE_REUSE; 2386 tp->repair_queue = TCP_NO_QUEUE; 2387 } else if (val == 0) { 2388 tp->repair = 0; 2389 sk->sk_reuse = SK_NO_REUSE; 2390 tcp_send_window_probe(sk); 2391 } else 2392 err = -EINVAL; 2393 2394 break; 2395 2396 case TCP_REPAIR_QUEUE: 2397 if (!tp->repair) 2398 err = -EPERM; 2399 else if (val < TCP_QUEUES_NR) 2400 tp->repair_queue = val; 2401 else 2402 err = -EINVAL; 2403 break; 2404 2405 case TCP_QUEUE_SEQ: 2406 if (sk->sk_state != TCP_CLOSE) 2407 err = -EPERM; 2408 else if (tp->repair_queue == TCP_SEND_QUEUE) 2409 tp->write_seq = val; 2410 else if (tp->repair_queue == TCP_RECV_QUEUE) 2411 tp->rcv_nxt = val; 2412 else 2413 err = -EINVAL; 2414 break; 2415 2416 case TCP_REPAIR_OPTIONS: 2417 if (!tp->repair) 2418 err = -EINVAL; 2419 else if (sk->sk_state == TCP_ESTABLISHED) 2420 err = tcp_repair_options_est(tp, 2421 (struct tcp_repair_opt __user *)optval, 2422 optlen); 2423 else 2424 err = -EPERM; 2425 break; 2426 2427 case TCP_CORK: 2428 /* When set indicates to always queue non-full frames. 2429 * Later the user clears this option and we transmit 2430 * any pending partial frames in the queue. This is 2431 * meant to be used alongside sendfile() to get properly 2432 * filled frames when the user (for example) must write 2433 * out headers with a write() call first and then use 2434 * sendfile to send out the data parts. 2435 * 2436 * TCP_CORK can be set together with TCP_NODELAY and it is 2437 * stronger than TCP_NODELAY. 2438 */ 2439 if (val) { 2440 tp->nonagle |= TCP_NAGLE_CORK; 2441 } else { 2442 tp->nonagle &= ~TCP_NAGLE_CORK; 2443 if (tp->nonagle&TCP_NAGLE_OFF) 2444 tp->nonagle |= TCP_NAGLE_PUSH; 2445 tcp_push_pending_frames(sk); 2446 } 2447 break; 2448 2449 case TCP_KEEPIDLE: 2450 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2451 err = -EINVAL; 2452 else { 2453 tp->keepalive_time = val * HZ; 2454 if (sock_flag(sk, SOCK_KEEPOPEN) && 2455 !((1 << sk->sk_state) & 2456 (TCPF_CLOSE | TCPF_LISTEN))) { 2457 u32 elapsed = keepalive_time_elapsed(tp); 2458 if (tp->keepalive_time > elapsed) 2459 elapsed = tp->keepalive_time - elapsed; 2460 else 2461 elapsed = 0; 2462 inet_csk_reset_keepalive_timer(sk, elapsed); 2463 } 2464 } 2465 break; 2466 case TCP_KEEPINTVL: 2467 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2468 err = -EINVAL; 2469 else 2470 tp->keepalive_intvl = val * HZ; 2471 break; 2472 case TCP_KEEPCNT: 2473 if (val < 1 || val > MAX_TCP_KEEPCNT) 2474 err = -EINVAL; 2475 else 2476 tp->keepalive_probes = val; 2477 break; 2478 case TCP_SYNCNT: 2479 if (val < 1 || val > MAX_TCP_SYNCNT) 2480 err = -EINVAL; 2481 else 2482 icsk->icsk_syn_retries = val; 2483 break; 2484 2485 case TCP_LINGER2: 2486 if (val < 0) 2487 tp->linger2 = -1; 2488 else if (val > sysctl_tcp_fin_timeout / HZ) 2489 tp->linger2 = 0; 2490 else 2491 tp->linger2 = val * HZ; 2492 break; 2493 2494 case TCP_DEFER_ACCEPT: 2495 /* Translate value in seconds to number of retransmits */ 2496 icsk->icsk_accept_queue.rskq_defer_accept = 2497 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2498 TCP_RTO_MAX / HZ); 2499 break; 2500 2501 case TCP_WINDOW_CLAMP: 2502 if (!val) { 2503 if (sk->sk_state != TCP_CLOSE) { 2504 err = -EINVAL; 2505 break; 2506 } 2507 tp->window_clamp = 0; 2508 } else 2509 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2510 SOCK_MIN_RCVBUF / 2 : val; 2511 break; 2512 2513 case TCP_QUICKACK: 2514 if (!val) { 2515 icsk->icsk_ack.pingpong = 1; 2516 } else { 2517 icsk->icsk_ack.pingpong = 0; 2518 if ((1 << sk->sk_state) & 2519 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2520 inet_csk_ack_scheduled(sk)) { 2521 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2522 tcp_cleanup_rbuf(sk, 1); 2523 if (!(val & 1)) 2524 icsk->icsk_ack.pingpong = 1; 2525 } 2526 } 2527 break; 2528 2529 #ifdef CONFIG_TCP_MD5SIG 2530 case TCP_MD5SIG: 2531 /* Read the IP->Key mappings from userspace */ 2532 err = tp->af_specific->md5_parse(sk, optval, optlen); 2533 break; 2534 #endif 2535 case TCP_USER_TIMEOUT: 2536 /* Cap the max time in ms TCP will retry or probe the window 2537 * before giving up and aborting (ETIMEDOUT) a connection. 2538 */ 2539 if (val < 0) 2540 err = -EINVAL; 2541 else 2542 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2543 break; 2544 2545 case TCP_FASTOPEN: 2546 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2547 TCPF_LISTEN))) 2548 err = fastopen_init_queue(sk, val); 2549 else 2550 err = -EINVAL; 2551 break; 2552 case TCP_TIMESTAMP: 2553 if (!tp->repair) 2554 err = -EPERM; 2555 else 2556 tp->tsoffset = val - tcp_time_stamp; 2557 break; 2558 case TCP_NOTSENT_LOWAT: 2559 tp->notsent_lowat = val; 2560 sk->sk_write_space(sk); 2561 break; 2562 default: 2563 err = -ENOPROTOOPT; 2564 break; 2565 } 2566 2567 release_sock(sk); 2568 return err; 2569 } 2570 2571 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2572 unsigned int optlen) 2573 { 2574 const struct inet_connection_sock *icsk = inet_csk(sk); 2575 2576 if (level != SOL_TCP) 2577 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2578 optval, optlen); 2579 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2580 } 2581 EXPORT_SYMBOL(tcp_setsockopt); 2582 2583 #ifdef CONFIG_COMPAT 2584 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2585 char __user *optval, unsigned int optlen) 2586 { 2587 if (level != SOL_TCP) 2588 return inet_csk_compat_setsockopt(sk, level, optname, 2589 optval, optlen); 2590 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2591 } 2592 EXPORT_SYMBOL(compat_tcp_setsockopt); 2593 #endif 2594 2595 /* Return information about state of tcp endpoint in API format. */ 2596 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2597 { 2598 const struct tcp_sock *tp = tcp_sk(sk); 2599 const struct inet_connection_sock *icsk = inet_csk(sk); 2600 u32 now = tcp_time_stamp; 2601 u32 rate; 2602 2603 memset(info, 0, sizeof(*info)); 2604 2605 info->tcpi_state = sk->sk_state; 2606 info->tcpi_ca_state = icsk->icsk_ca_state; 2607 info->tcpi_retransmits = icsk->icsk_retransmits; 2608 info->tcpi_probes = icsk->icsk_probes_out; 2609 info->tcpi_backoff = icsk->icsk_backoff; 2610 2611 if (tp->rx_opt.tstamp_ok) 2612 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2613 if (tcp_is_sack(tp)) 2614 info->tcpi_options |= TCPI_OPT_SACK; 2615 if (tp->rx_opt.wscale_ok) { 2616 info->tcpi_options |= TCPI_OPT_WSCALE; 2617 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2618 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2619 } 2620 2621 if (tp->ecn_flags & TCP_ECN_OK) 2622 info->tcpi_options |= TCPI_OPT_ECN; 2623 if (tp->ecn_flags & TCP_ECN_SEEN) 2624 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2625 if (tp->syn_data_acked) 2626 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2627 2628 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2629 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2630 info->tcpi_snd_mss = tp->mss_cache; 2631 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2632 2633 if (sk->sk_state == TCP_LISTEN) { 2634 info->tcpi_unacked = sk->sk_ack_backlog; 2635 info->tcpi_sacked = sk->sk_max_ack_backlog; 2636 } else { 2637 info->tcpi_unacked = tp->packets_out; 2638 info->tcpi_sacked = tp->sacked_out; 2639 } 2640 info->tcpi_lost = tp->lost_out; 2641 info->tcpi_retrans = tp->retrans_out; 2642 info->tcpi_fackets = tp->fackets_out; 2643 2644 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2645 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2646 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2647 2648 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2649 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2650 info->tcpi_rtt = tp->srtt_us >> 3; 2651 info->tcpi_rttvar = tp->mdev_us >> 2; 2652 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2653 info->tcpi_snd_cwnd = tp->snd_cwnd; 2654 info->tcpi_advmss = tp->advmss; 2655 info->tcpi_reordering = tp->reordering; 2656 2657 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2658 info->tcpi_rcv_space = tp->rcvq_space.space; 2659 2660 info->tcpi_total_retrans = tp->total_retrans; 2661 2662 rate = READ_ONCE(sk->sk_pacing_rate); 2663 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL; 2664 2665 rate = READ_ONCE(sk->sk_max_pacing_rate); 2666 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL; 2667 2668 spin_lock_bh(&sk->sk_lock.slock); 2669 info->tcpi_bytes_acked = tp->bytes_acked; 2670 info->tcpi_bytes_received = tp->bytes_received; 2671 spin_unlock_bh(&sk->sk_lock.slock); 2672 } 2673 EXPORT_SYMBOL_GPL(tcp_get_info); 2674 2675 static int do_tcp_getsockopt(struct sock *sk, int level, 2676 int optname, char __user *optval, int __user *optlen) 2677 { 2678 struct inet_connection_sock *icsk = inet_csk(sk); 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 int val, len; 2681 2682 if (get_user(len, optlen)) 2683 return -EFAULT; 2684 2685 len = min_t(unsigned int, len, sizeof(int)); 2686 2687 if (len < 0) 2688 return -EINVAL; 2689 2690 switch (optname) { 2691 case TCP_MAXSEG: 2692 val = tp->mss_cache; 2693 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2694 val = tp->rx_opt.user_mss; 2695 if (tp->repair) 2696 val = tp->rx_opt.mss_clamp; 2697 break; 2698 case TCP_NODELAY: 2699 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2700 break; 2701 case TCP_CORK: 2702 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2703 break; 2704 case TCP_KEEPIDLE: 2705 val = keepalive_time_when(tp) / HZ; 2706 break; 2707 case TCP_KEEPINTVL: 2708 val = keepalive_intvl_when(tp) / HZ; 2709 break; 2710 case TCP_KEEPCNT: 2711 val = keepalive_probes(tp); 2712 break; 2713 case TCP_SYNCNT: 2714 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2715 break; 2716 case TCP_LINGER2: 2717 val = tp->linger2; 2718 if (val >= 0) 2719 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2720 break; 2721 case TCP_DEFER_ACCEPT: 2722 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2723 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2724 break; 2725 case TCP_WINDOW_CLAMP: 2726 val = tp->window_clamp; 2727 break; 2728 case TCP_INFO: { 2729 struct tcp_info info; 2730 2731 if (get_user(len, optlen)) 2732 return -EFAULT; 2733 2734 tcp_get_info(sk, &info); 2735 2736 len = min_t(unsigned int, len, sizeof(info)); 2737 if (put_user(len, optlen)) 2738 return -EFAULT; 2739 if (copy_to_user(optval, &info, len)) 2740 return -EFAULT; 2741 return 0; 2742 } 2743 case TCP_CC_INFO: { 2744 const struct tcp_congestion_ops *ca_ops; 2745 union tcp_cc_info info; 2746 size_t sz = 0; 2747 int attr; 2748 2749 if (get_user(len, optlen)) 2750 return -EFAULT; 2751 2752 ca_ops = icsk->icsk_ca_ops; 2753 if (ca_ops && ca_ops->get_info) 2754 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2755 2756 len = min_t(unsigned int, len, sz); 2757 if (put_user(len, optlen)) 2758 return -EFAULT; 2759 if (copy_to_user(optval, &info, len)) 2760 return -EFAULT; 2761 return 0; 2762 } 2763 case TCP_QUICKACK: 2764 val = !icsk->icsk_ack.pingpong; 2765 break; 2766 2767 case TCP_CONGESTION: 2768 if (get_user(len, optlen)) 2769 return -EFAULT; 2770 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2771 if (put_user(len, optlen)) 2772 return -EFAULT; 2773 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2774 return -EFAULT; 2775 return 0; 2776 2777 case TCP_THIN_LINEAR_TIMEOUTS: 2778 val = tp->thin_lto; 2779 break; 2780 case TCP_THIN_DUPACK: 2781 val = tp->thin_dupack; 2782 break; 2783 2784 case TCP_REPAIR: 2785 val = tp->repair; 2786 break; 2787 2788 case TCP_REPAIR_QUEUE: 2789 if (tp->repair) 2790 val = tp->repair_queue; 2791 else 2792 return -EINVAL; 2793 break; 2794 2795 case TCP_QUEUE_SEQ: 2796 if (tp->repair_queue == TCP_SEND_QUEUE) 2797 val = tp->write_seq; 2798 else if (tp->repair_queue == TCP_RECV_QUEUE) 2799 val = tp->rcv_nxt; 2800 else 2801 return -EINVAL; 2802 break; 2803 2804 case TCP_USER_TIMEOUT: 2805 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2806 break; 2807 2808 case TCP_FASTOPEN: 2809 if (icsk->icsk_accept_queue.fastopenq) 2810 val = icsk->icsk_accept_queue.fastopenq->max_qlen; 2811 else 2812 val = 0; 2813 break; 2814 2815 case TCP_TIMESTAMP: 2816 val = tcp_time_stamp + tp->tsoffset; 2817 break; 2818 case TCP_NOTSENT_LOWAT: 2819 val = tp->notsent_lowat; 2820 break; 2821 default: 2822 return -ENOPROTOOPT; 2823 } 2824 2825 if (put_user(len, optlen)) 2826 return -EFAULT; 2827 if (copy_to_user(optval, &val, len)) 2828 return -EFAULT; 2829 return 0; 2830 } 2831 2832 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2833 int __user *optlen) 2834 { 2835 struct inet_connection_sock *icsk = inet_csk(sk); 2836 2837 if (level != SOL_TCP) 2838 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2839 optval, optlen); 2840 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2841 } 2842 EXPORT_SYMBOL(tcp_getsockopt); 2843 2844 #ifdef CONFIG_COMPAT 2845 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2846 char __user *optval, int __user *optlen) 2847 { 2848 if (level != SOL_TCP) 2849 return inet_csk_compat_getsockopt(sk, level, optname, 2850 optval, optlen); 2851 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2852 } 2853 EXPORT_SYMBOL(compat_tcp_getsockopt); 2854 #endif 2855 2856 #ifdef CONFIG_TCP_MD5SIG 2857 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2858 static DEFINE_MUTEX(tcp_md5sig_mutex); 2859 static bool tcp_md5sig_pool_populated = false; 2860 2861 static void __tcp_alloc_md5sig_pool(void) 2862 { 2863 int cpu; 2864 2865 for_each_possible_cpu(cpu) { 2866 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) { 2867 struct crypto_hash *hash; 2868 2869 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2870 if (IS_ERR_OR_NULL(hash)) 2871 return; 2872 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash; 2873 } 2874 } 2875 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2876 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2877 */ 2878 smp_wmb(); 2879 tcp_md5sig_pool_populated = true; 2880 } 2881 2882 bool tcp_alloc_md5sig_pool(void) 2883 { 2884 if (unlikely(!tcp_md5sig_pool_populated)) { 2885 mutex_lock(&tcp_md5sig_mutex); 2886 2887 if (!tcp_md5sig_pool_populated) 2888 __tcp_alloc_md5sig_pool(); 2889 2890 mutex_unlock(&tcp_md5sig_mutex); 2891 } 2892 return tcp_md5sig_pool_populated; 2893 } 2894 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2895 2896 2897 /** 2898 * tcp_get_md5sig_pool - get md5sig_pool for this user 2899 * 2900 * We use percpu structure, so if we succeed, we exit with preemption 2901 * and BH disabled, to make sure another thread or softirq handling 2902 * wont try to get same context. 2903 */ 2904 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2905 { 2906 local_bh_disable(); 2907 2908 if (tcp_md5sig_pool_populated) { 2909 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 2910 smp_rmb(); 2911 return this_cpu_ptr(&tcp_md5sig_pool); 2912 } 2913 local_bh_enable(); 2914 return NULL; 2915 } 2916 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2917 2918 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2919 const struct tcphdr *th) 2920 { 2921 struct scatterlist sg; 2922 struct tcphdr hdr; 2923 int err; 2924 2925 /* We are not allowed to change tcphdr, make a local copy */ 2926 memcpy(&hdr, th, sizeof(hdr)); 2927 hdr.check = 0; 2928 2929 /* options aren't included in the hash */ 2930 sg_init_one(&sg, &hdr, sizeof(hdr)); 2931 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 2932 return err; 2933 } 2934 EXPORT_SYMBOL(tcp_md5_hash_header); 2935 2936 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2937 const struct sk_buff *skb, unsigned int header_len) 2938 { 2939 struct scatterlist sg; 2940 const struct tcphdr *tp = tcp_hdr(skb); 2941 struct hash_desc *desc = &hp->md5_desc; 2942 unsigned int i; 2943 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 2944 skb_headlen(skb) - header_len : 0; 2945 const struct skb_shared_info *shi = skb_shinfo(skb); 2946 struct sk_buff *frag_iter; 2947 2948 sg_init_table(&sg, 1); 2949 2950 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2951 if (crypto_hash_update(desc, &sg, head_data_len)) 2952 return 1; 2953 2954 for (i = 0; i < shi->nr_frags; ++i) { 2955 const struct skb_frag_struct *f = &shi->frags[i]; 2956 unsigned int offset = f->page_offset; 2957 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 2958 2959 sg_set_page(&sg, page, skb_frag_size(f), 2960 offset_in_page(offset)); 2961 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 2962 return 1; 2963 } 2964 2965 skb_walk_frags(skb, frag_iter) 2966 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 2967 return 1; 2968 2969 return 0; 2970 } 2971 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2972 2973 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 2974 { 2975 struct scatterlist sg; 2976 2977 sg_init_one(&sg, key->key, key->keylen); 2978 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2979 } 2980 EXPORT_SYMBOL(tcp_md5_hash_key); 2981 2982 #endif 2983 2984 void tcp_done(struct sock *sk) 2985 { 2986 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2987 2988 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 2989 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 2990 2991 tcp_set_state(sk, TCP_CLOSE); 2992 tcp_clear_xmit_timers(sk); 2993 if (req) 2994 reqsk_fastopen_remove(sk, req, false); 2995 2996 sk->sk_shutdown = SHUTDOWN_MASK; 2997 2998 if (!sock_flag(sk, SOCK_DEAD)) 2999 sk->sk_state_change(sk); 3000 else 3001 inet_csk_destroy_sock(sk); 3002 } 3003 EXPORT_SYMBOL_GPL(tcp_done); 3004 3005 extern struct tcp_congestion_ops tcp_reno; 3006 3007 static __initdata unsigned long thash_entries; 3008 static int __init set_thash_entries(char *str) 3009 { 3010 ssize_t ret; 3011 3012 if (!str) 3013 return 0; 3014 3015 ret = kstrtoul(str, 0, &thash_entries); 3016 if (ret) 3017 return 0; 3018 3019 return 1; 3020 } 3021 __setup("thash_entries=", set_thash_entries); 3022 3023 static void __init tcp_init_mem(void) 3024 { 3025 unsigned long limit = nr_free_buffer_pages() / 8; 3026 limit = max(limit, 128UL); 3027 sysctl_tcp_mem[0] = limit / 4 * 3; 3028 sysctl_tcp_mem[1] = limit; 3029 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3030 } 3031 3032 void __init tcp_init(void) 3033 { 3034 unsigned long limit; 3035 int max_rshare, max_wshare, cnt; 3036 unsigned int i; 3037 3038 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb)); 3039 3040 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3041 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3042 tcp_hashinfo.bind_bucket_cachep = 3043 kmem_cache_create("tcp_bind_bucket", 3044 sizeof(struct inet_bind_bucket), 0, 3045 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3046 3047 /* Size and allocate the main established and bind bucket 3048 * hash tables. 3049 * 3050 * The methodology is similar to that of the buffer cache. 3051 */ 3052 tcp_hashinfo.ehash = 3053 alloc_large_system_hash("TCP established", 3054 sizeof(struct inet_ehash_bucket), 3055 thash_entries, 3056 17, /* one slot per 128 KB of memory */ 3057 0, 3058 NULL, 3059 &tcp_hashinfo.ehash_mask, 3060 0, 3061 thash_entries ? 0 : 512 * 1024); 3062 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3063 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3064 3065 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3066 panic("TCP: failed to alloc ehash_locks"); 3067 tcp_hashinfo.bhash = 3068 alloc_large_system_hash("TCP bind", 3069 sizeof(struct inet_bind_hashbucket), 3070 tcp_hashinfo.ehash_mask + 1, 3071 17, /* one slot per 128 KB of memory */ 3072 0, 3073 &tcp_hashinfo.bhash_size, 3074 NULL, 3075 0, 3076 64 * 1024); 3077 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3078 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3079 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3080 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3081 } 3082 3083 3084 cnt = tcp_hashinfo.ehash_mask + 1; 3085 3086 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3087 sysctl_tcp_max_orphans = cnt / 2; 3088 sysctl_max_syn_backlog = max(128, cnt / 256); 3089 3090 tcp_init_mem(); 3091 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3092 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3093 max_wshare = min(4UL*1024*1024, limit); 3094 max_rshare = min(6UL*1024*1024, limit); 3095 3096 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3097 sysctl_tcp_wmem[1] = 16*1024; 3098 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3099 3100 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3101 sysctl_tcp_rmem[1] = 87380; 3102 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3103 3104 pr_info("Hash tables configured (established %u bind %u)\n", 3105 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3106 3107 tcp_metrics_init(); 3108 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3109 tcp_tasklet_init(); 3110 } 3111