1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 smp_mb__after_atomic(); 726 } 727 /* It is possible TX completion already happened 728 * before we set TSQ_THROTTLED. 729 */ 730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 731 return; 732 } 733 734 if (flags & MSG_MORE) 735 nonagle = TCP_NAGLE_CORK; 736 737 __tcp_push_pending_frames(sk, mss_now, nonagle); 738 } 739 740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 741 unsigned int offset, size_t len) 742 { 743 struct tcp_splice_state *tss = rd_desc->arg.data; 744 int ret; 745 746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 747 min(rd_desc->count, len), tss->flags); 748 if (ret > 0) 749 rd_desc->count -= ret; 750 return ret; 751 } 752 753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 754 { 755 /* Store TCP splice context information in read_descriptor_t. */ 756 read_descriptor_t rd_desc = { 757 .arg.data = tss, 758 .count = tss->len, 759 }; 760 761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 762 } 763 764 /** 765 * tcp_splice_read - splice data from TCP socket to a pipe 766 * @sock: socket to splice from 767 * @ppos: position (not valid) 768 * @pipe: pipe to splice to 769 * @len: number of bytes to splice 770 * @flags: splice modifier flags 771 * 772 * Description: 773 * Will read pages from given socket and fill them into a pipe. 774 * 775 **/ 776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 777 struct pipe_inode_info *pipe, size_t len, 778 unsigned int flags) 779 { 780 struct sock *sk = sock->sk; 781 struct tcp_splice_state tss = { 782 .pipe = pipe, 783 .len = len, 784 .flags = flags, 785 }; 786 long timeo; 787 ssize_t spliced; 788 int ret; 789 790 sock_rps_record_flow(sk); 791 /* 792 * We can't seek on a socket input 793 */ 794 if (unlikely(*ppos)) 795 return -ESPIPE; 796 797 ret = spliced = 0; 798 799 lock_sock(sk); 800 801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 802 while (tss.len) { 803 ret = __tcp_splice_read(sk, &tss); 804 if (ret < 0) 805 break; 806 else if (!ret) { 807 if (spliced) 808 break; 809 if (sock_flag(sk, SOCK_DONE)) 810 break; 811 if (sk->sk_err) { 812 ret = sock_error(sk); 813 break; 814 } 815 if (sk->sk_shutdown & RCV_SHUTDOWN) 816 break; 817 if (sk->sk_state == TCP_CLOSE) { 818 /* 819 * This occurs when user tries to read 820 * from never connected socket. 821 */ 822 ret = -ENOTCONN; 823 break; 824 } 825 if (!timeo) { 826 ret = -EAGAIN; 827 break; 828 } 829 /* if __tcp_splice_read() got nothing while we have 830 * an skb in receive queue, we do not want to loop. 831 * This might happen with URG data. 832 */ 833 if (!skb_queue_empty(&sk->sk_receive_queue)) 834 break; 835 ret = sk_wait_data(sk, &timeo, NULL); 836 if (ret < 0) 837 break; 838 if (signal_pending(current)) { 839 ret = sock_intr_errno(timeo); 840 break; 841 } 842 continue; 843 } 844 tss.len -= ret; 845 spliced += ret; 846 847 if (!tss.len || !timeo) 848 break; 849 release_sock(sk); 850 lock_sock(sk); 851 852 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 853 (sk->sk_shutdown & RCV_SHUTDOWN) || 854 signal_pending(current)) 855 break; 856 } 857 858 release_sock(sk); 859 860 if (spliced) 861 return spliced; 862 863 return ret; 864 } 865 EXPORT_SYMBOL(tcp_splice_read); 866 867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 868 bool force_schedule) 869 { 870 struct sk_buff *skb; 871 872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 873 if (likely(skb)) { 874 bool mem_scheduled; 875 876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 877 if (force_schedule) { 878 mem_scheduled = true; 879 sk_forced_mem_schedule(sk, skb->truesize); 880 } else { 881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 882 } 883 if (likely(mem_scheduled)) { 884 skb_reserve(skb, MAX_TCP_HEADER); 885 skb->ip_summed = CHECKSUM_PARTIAL; 886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 887 return skb; 888 } 889 __kfree_skb(skb); 890 } else { 891 sk->sk_prot->enter_memory_pressure(sk); 892 sk_stream_moderate_sndbuf(sk); 893 } 894 return NULL; 895 } 896 897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 898 int large_allowed) 899 { 900 struct tcp_sock *tp = tcp_sk(sk); 901 u32 new_size_goal, size_goal; 902 903 if (!large_allowed) 904 return mss_now; 905 906 /* Note : tcp_tso_autosize() will eventually split this later */ 907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 908 909 /* We try hard to avoid divides here */ 910 size_goal = tp->gso_segs * mss_now; 911 if (unlikely(new_size_goal < size_goal || 912 new_size_goal >= size_goal + mss_now)) { 913 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 914 sk->sk_gso_max_segs); 915 size_goal = tp->gso_segs * mss_now; 916 } 917 918 return max(size_goal, mss_now); 919 } 920 921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 922 { 923 int mss_now; 924 925 mss_now = tcp_current_mss(sk); 926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 927 928 return mss_now; 929 } 930 931 /* In some cases, sendmsg() could have added an skb to the write queue, 932 * but failed adding payload on it. We need to remove it to consume less 933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 934 * epoll() users. Another reason is that tcp_write_xmit() does not like 935 * finding an empty skb in the write queue. 936 */ 937 void tcp_remove_empty_skb(struct sock *sk) 938 { 939 struct sk_buff *skb = tcp_write_queue_tail(sk); 940 941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 942 tcp_unlink_write_queue(skb, sk); 943 if (tcp_write_queue_empty(sk)) 944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 945 tcp_wmem_free_skb(sk, skb); 946 } 947 } 948 949 /* skb changing from pure zc to mixed, must charge zc */ 950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 951 { 952 if (unlikely(skb_zcopy_pure(skb))) { 953 u32 extra = skb->truesize - 954 SKB_TRUESIZE(skb_end_offset(skb)); 955 956 if (!sk_wmem_schedule(sk, extra)) 957 return -ENOMEM; 958 959 sk_mem_charge(sk, extra); 960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 961 } 962 return 0; 963 } 964 965 966 int tcp_wmem_schedule(struct sock *sk, int copy) 967 { 968 int left; 969 970 if (likely(sk_wmem_schedule(sk, copy))) 971 return copy; 972 973 /* We could be in trouble if we have nothing queued. 974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 975 * to guarantee some progress. 976 */ 977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 978 if (left > 0) 979 sk_forced_mem_schedule(sk, min(left, copy)); 980 return min(copy, sk->sk_forward_alloc); 981 } 982 983 void tcp_free_fastopen_req(struct tcp_sock *tp) 984 { 985 if (tp->fastopen_req) { 986 kfree(tp->fastopen_req); 987 tp->fastopen_req = NULL; 988 } 989 } 990 991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 992 size_t size, struct ubuf_info *uarg) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 struct inet_sock *inet = inet_sk(sk); 996 struct sockaddr *uaddr = msg->msg_name; 997 int err, flags; 998 999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1000 TFO_CLIENT_ENABLE) || 1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1002 uaddr->sa_family == AF_UNSPEC)) 1003 return -EOPNOTSUPP; 1004 if (tp->fastopen_req) 1005 return -EALREADY; /* Another Fast Open is in progress */ 1006 1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1008 sk->sk_allocation); 1009 if (unlikely(!tp->fastopen_req)) 1010 return -ENOBUFS; 1011 tp->fastopen_req->data = msg; 1012 tp->fastopen_req->size = size; 1013 tp->fastopen_req->uarg = uarg; 1014 1015 if (inet_test_bit(DEFER_CONNECT, sk)) { 1016 err = tcp_connect(sk); 1017 /* Same failure procedure as in tcp_v4/6_connect */ 1018 if (err) { 1019 tcp_set_state(sk, TCP_CLOSE); 1020 inet->inet_dport = 0; 1021 sk->sk_route_caps = 0; 1022 } 1023 } 1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1025 err = __inet_stream_connect(sk->sk_socket, uaddr, 1026 msg->msg_namelen, flags, 1); 1027 /* fastopen_req could already be freed in __inet_stream_connect 1028 * if the connection times out or gets rst 1029 */ 1030 if (tp->fastopen_req) { 1031 *copied = tp->fastopen_req->copied; 1032 tcp_free_fastopen_req(tp); 1033 inet_clear_bit(DEFER_CONNECT, sk); 1034 } 1035 return err; 1036 } 1037 1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 struct ubuf_info *uarg = NULL; 1042 struct sk_buff *skb; 1043 struct sockcm_cookie sockc; 1044 int flags, err, copied = 0; 1045 int mss_now = 0, size_goal, copied_syn = 0; 1046 int process_backlog = 0; 1047 int zc = 0; 1048 long timeo; 1049 1050 flags = msg->msg_flags; 1051 1052 if ((flags & MSG_ZEROCOPY) && size) { 1053 if (msg->msg_ubuf) { 1054 uarg = msg->msg_ubuf; 1055 if (sk->sk_route_caps & NETIF_F_SG) 1056 zc = MSG_ZEROCOPY; 1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1058 skb = tcp_write_queue_tail(sk); 1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1060 if (!uarg) { 1061 err = -ENOBUFS; 1062 goto out_err; 1063 } 1064 if (sk->sk_route_caps & NETIF_F_SG) 1065 zc = MSG_ZEROCOPY; 1066 else 1067 uarg_to_msgzc(uarg)->zerocopy = 0; 1068 } 1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1070 if (sk->sk_route_caps & NETIF_F_SG) 1071 zc = MSG_SPLICE_PAGES; 1072 } 1073 1074 if (unlikely(flags & MSG_FASTOPEN || 1075 inet_test_bit(DEFER_CONNECT, sk)) && 1076 !tp->repair) { 1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1078 if (err == -EINPROGRESS && copied_syn > 0) 1079 goto out; 1080 else if (err) 1081 goto out_err; 1082 } 1083 1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1085 1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1087 1088 /* Wait for a connection to finish. One exception is TCP Fast Open 1089 * (passive side) where data is allowed to be sent before a connection 1090 * is fully established. 1091 */ 1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1093 !tcp_passive_fastopen(sk)) { 1094 err = sk_stream_wait_connect(sk, &timeo); 1095 if (err != 0) 1096 goto do_error; 1097 } 1098 1099 if (unlikely(tp->repair)) { 1100 if (tp->repair_queue == TCP_RECV_QUEUE) { 1101 copied = tcp_send_rcvq(sk, msg, size); 1102 goto out_nopush; 1103 } 1104 1105 err = -EINVAL; 1106 if (tp->repair_queue == TCP_NO_QUEUE) 1107 goto out_err; 1108 1109 /* 'common' sending to sendq */ 1110 } 1111 1112 sockcm_init(&sockc, sk); 1113 if (msg->msg_controllen) { 1114 err = sock_cmsg_send(sk, msg, &sockc); 1115 if (unlikely(err)) { 1116 err = -EINVAL; 1117 goto out_err; 1118 } 1119 } 1120 1121 /* This should be in poll */ 1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1123 1124 /* Ok commence sending. */ 1125 copied = 0; 1126 1127 restart: 1128 mss_now = tcp_send_mss(sk, &size_goal, flags); 1129 1130 err = -EPIPE; 1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1132 goto do_error; 1133 1134 while (msg_data_left(msg)) { 1135 ssize_t copy = 0; 1136 1137 skb = tcp_write_queue_tail(sk); 1138 if (skb) 1139 copy = size_goal - skb->len; 1140 1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1142 bool first_skb; 1143 1144 new_segment: 1145 if (!sk_stream_memory_free(sk)) 1146 goto wait_for_space; 1147 1148 if (unlikely(process_backlog >= 16)) { 1149 process_backlog = 0; 1150 if (sk_flush_backlog(sk)) 1151 goto restart; 1152 } 1153 first_skb = tcp_rtx_and_write_queues_empty(sk); 1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1155 first_skb); 1156 if (!skb) 1157 goto wait_for_space; 1158 1159 process_backlog++; 1160 1161 tcp_skb_entail(sk, skb); 1162 copy = size_goal; 1163 1164 /* All packets are restored as if they have 1165 * already been sent. skb_mstamp_ns isn't set to 1166 * avoid wrong rtt estimation. 1167 */ 1168 if (tp->repair) 1169 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1170 } 1171 1172 /* Try to append data to the end of skb. */ 1173 if (copy > msg_data_left(msg)) 1174 copy = msg_data_left(msg); 1175 1176 if (zc == 0) { 1177 bool merge = true; 1178 int i = skb_shinfo(skb)->nr_frags; 1179 struct page_frag *pfrag = sk_page_frag(sk); 1180 1181 if (!sk_page_frag_refill(sk, pfrag)) 1182 goto wait_for_space; 1183 1184 if (!skb_can_coalesce(skb, i, pfrag->page, 1185 pfrag->offset)) { 1186 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1187 tcp_mark_push(tp, skb); 1188 goto new_segment; 1189 } 1190 merge = false; 1191 } 1192 1193 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1194 1195 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1196 if (tcp_downgrade_zcopy_pure(sk, skb)) 1197 goto wait_for_space; 1198 skb_zcopy_downgrade_managed(skb); 1199 } 1200 1201 copy = tcp_wmem_schedule(sk, copy); 1202 if (!copy) 1203 goto wait_for_space; 1204 1205 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1206 pfrag->page, 1207 pfrag->offset, 1208 copy); 1209 if (err) 1210 goto do_error; 1211 1212 /* Update the skb. */ 1213 if (merge) { 1214 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1215 } else { 1216 skb_fill_page_desc(skb, i, pfrag->page, 1217 pfrag->offset, copy); 1218 page_ref_inc(pfrag->page); 1219 } 1220 pfrag->offset += copy; 1221 } else if (zc == MSG_ZEROCOPY) { 1222 /* First append to a fragless skb builds initial 1223 * pure zerocopy skb 1224 */ 1225 if (!skb->len) 1226 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1227 1228 if (!skb_zcopy_pure(skb)) { 1229 copy = tcp_wmem_schedule(sk, copy); 1230 if (!copy) 1231 goto wait_for_space; 1232 } 1233 1234 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1235 if (err == -EMSGSIZE || err == -EEXIST) { 1236 tcp_mark_push(tp, skb); 1237 goto new_segment; 1238 } 1239 if (err < 0) 1240 goto do_error; 1241 copy = err; 1242 } else if (zc == MSG_SPLICE_PAGES) { 1243 /* Splice in data if we can; copy if we can't. */ 1244 if (tcp_downgrade_zcopy_pure(sk, skb)) 1245 goto wait_for_space; 1246 copy = tcp_wmem_schedule(sk, copy); 1247 if (!copy) 1248 goto wait_for_space; 1249 1250 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1251 sk->sk_allocation); 1252 if (err < 0) { 1253 if (err == -EMSGSIZE) { 1254 tcp_mark_push(tp, skb); 1255 goto new_segment; 1256 } 1257 goto do_error; 1258 } 1259 copy = err; 1260 1261 if (!(flags & MSG_NO_SHARED_FRAGS)) 1262 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1263 1264 sk_wmem_queued_add(sk, copy); 1265 sk_mem_charge(sk, copy); 1266 } 1267 1268 if (!copied) 1269 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1270 1271 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1272 TCP_SKB_CB(skb)->end_seq += copy; 1273 tcp_skb_pcount_set(skb, 0); 1274 1275 copied += copy; 1276 if (!msg_data_left(msg)) { 1277 if (unlikely(flags & MSG_EOR)) 1278 TCP_SKB_CB(skb)->eor = 1; 1279 goto out; 1280 } 1281 1282 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1283 continue; 1284 1285 if (forced_push(tp)) { 1286 tcp_mark_push(tp, skb); 1287 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1288 } else if (skb == tcp_send_head(sk)) 1289 tcp_push_one(sk, mss_now); 1290 continue; 1291 1292 wait_for_space: 1293 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1294 tcp_remove_empty_skb(sk); 1295 if (copied) 1296 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1297 TCP_NAGLE_PUSH, size_goal); 1298 1299 err = sk_stream_wait_memory(sk, &timeo); 1300 if (err != 0) 1301 goto do_error; 1302 1303 mss_now = tcp_send_mss(sk, &size_goal, flags); 1304 } 1305 1306 out: 1307 if (copied) { 1308 tcp_tx_timestamp(sk, sockc.tsflags); 1309 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1310 } 1311 out_nopush: 1312 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1313 if (uarg && !msg->msg_ubuf) 1314 net_zcopy_put(uarg); 1315 return copied + copied_syn; 1316 1317 do_error: 1318 tcp_remove_empty_skb(sk); 1319 1320 if (copied + copied_syn) 1321 goto out; 1322 out_err: 1323 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1324 if (uarg && !msg->msg_ubuf) 1325 net_zcopy_put_abort(uarg, true); 1326 err = sk_stream_error(sk, flags, err); 1327 /* make sure we wake any epoll edge trigger waiter */ 1328 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1329 sk->sk_write_space(sk); 1330 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1331 } 1332 return err; 1333 } 1334 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1335 1336 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1337 { 1338 int ret; 1339 1340 lock_sock(sk); 1341 ret = tcp_sendmsg_locked(sk, msg, size); 1342 release_sock(sk); 1343 1344 return ret; 1345 } 1346 EXPORT_SYMBOL(tcp_sendmsg); 1347 1348 void tcp_splice_eof(struct socket *sock) 1349 { 1350 struct sock *sk = sock->sk; 1351 struct tcp_sock *tp = tcp_sk(sk); 1352 int mss_now, size_goal; 1353 1354 if (!tcp_write_queue_tail(sk)) 1355 return; 1356 1357 lock_sock(sk); 1358 mss_now = tcp_send_mss(sk, &size_goal, 0); 1359 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1360 release_sock(sk); 1361 } 1362 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1363 1364 /* 1365 * Handle reading urgent data. BSD has very simple semantics for 1366 * this, no blocking and very strange errors 8) 1367 */ 1368 1369 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1370 { 1371 struct tcp_sock *tp = tcp_sk(sk); 1372 1373 /* No URG data to read. */ 1374 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1375 tp->urg_data == TCP_URG_READ) 1376 return -EINVAL; /* Yes this is right ! */ 1377 1378 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1379 return -ENOTCONN; 1380 1381 if (tp->urg_data & TCP_URG_VALID) { 1382 int err = 0; 1383 char c = tp->urg_data; 1384 1385 if (!(flags & MSG_PEEK)) 1386 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1387 1388 /* Read urgent data. */ 1389 msg->msg_flags |= MSG_OOB; 1390 1391 if (len > 0) { 1392 if (!(flags & MSG_TRUNC)) 1393 err = memcpy_to_msg(msg, &c, 1); 1394 len = 1; 1395 } else 1396 msg->msg_flags |= MSG_TRUNC; 1397 1398 return err ? -EFAULT : len; 1399 } 1400 1401 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1402 return 0; 1403 1404 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1405 * the available implementations agree in this case: 1406 * this call should never block, independent of the 1407 * blocking state of the socket. 1408 * Mike <pall@rz.uni-karlsruhe.de> 1409 */ 1410 return -EAGAIN; 1411 } 1412 1413 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1414 { 1415 struct sk_buff *skb; 1416 int copied = 0, err = 0; 1417 1418 /* XXX -- need to support SO_PEEK_OFF */ 1419 1420 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1421 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1422 if (err) 1423 return err; 1424 copied += skb->len; 1425 } 1426 1427 skb_queue_walk(&sk->sk_write_queue, skb) { 1428 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1429 if (err) 1430 break; 1431 1432 copied += skb->len; 1433 } 1434 1435 return err ?: copied; 1436 } 1437 1438 /* Clean up the receive buffer for full frames taken by the user, 1439 * then send an ACK if necessary. COPIED is the number of bytes 1440 * tcp_recvmsg has given to the user so far, it speeds up the 1441 * calculation of whether or not we must ACK for the sake of 1442 * a window update. 1443 */ 1444 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1445 { 1446 struct tcp_sock *tp = tcp_sk(sk); 1447 bool time_to_ack = false; 1448 1449 if (inet_csk_ack_scheduled(sk)) { 1450 const struct inet_connection_sock *icsk = inet_csk(sk); 1451 1452 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1453 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1454 /* 1455 * If this read emptied read buffer, we send ACK, if 1456 * connection is not bidirectional, user drained 1457 * receive buffer and there was a small segment 1458 * in queue. 1459 */ 1460 (copied > 0 && 1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1462 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1463 !inet_csk_in_pingpong_mode(sk))) && 1464 !atomic_read(&sk->sk_rmem_alloc))) 1465 time_to_ack = true; 1466 } 1467 1468 /* We send an ACK if we can now advertise a non-zero window 1469 * which has been raised "significantly". 1470 * 1471 * Even if window raised up to infinity, do not send window open ACK 1472 * in states, where we will not receive more. It is useless. 1473 */ 1474 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1475 __u32 rcv_window_now = tcp_receive_window(tp); 1476 1477 /* Optimize, __tcp_select_window() is not cheap. */ 1478 if (2*rcv_window_now <= tp->window_clamp) { 1479 __u32 new_window = __tcp_select_window(sk); 1480 1481 /* Send ACK now, if this read freed lots of space 1482 * in our buffer. Certainly, new_window is new window. 1483 * We can advertise it now, if it is not less than current one. 1484 * "Lots" means "at least twice" here. 1485 */ 1486 if (new_window && new_window >= 2 * rcv_window_now) 1487 time_to_ack = true; 1488 } 1489 } 1490 if (time_to_ack) 1491 tcp_send_ack(sk); 1492 } 1493 1494 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1495 { 1496 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1500 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1501 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1502 __tcp_cleanup_rbuf(sk, copied); 1503 } 1504 1505 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1506 { 1507 __skb_unlink(skb, &sk->sk_receive_queue); 1508 if (likely(skb->destructor == sock_rfree)) { 1509 sock_rfree(skb); 1510 skb->destructor = NULL; 1511 skb->sk = NULL; 1512 return skb_attempt_defer_free(skb); 1513 } 1514 __kfree_skb(skb); 1515 } 1516 1517 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1518 { 1519 struct sk_buff *skb; 1520 u32 offset; 1521 1522 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1523 offset = seq - TCP_SKB_CB(skb)->seq; 1524 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1525 pr_err_once("%s: found a SYN, please report !\n", __func__); 1526 offset--; 1527 } 1528 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1529 *off = offset; 1530 return skb; 1531 } 1532 /* This looks weird, but this can happen if TCP collapsing 1533 * splitted a fat GRO packet, while we released socket lock 1534 * in skb_splice_bits() 1535 */ 1536 tcp_eat_recv_skb(sk, skb); 1537 } 1538 return NULL; 1539 } 1540 EXPORT_SYMBOL(tcp_recv_skb); 1541 1542 /* 1543 * This routine provides an alternative to tcp_recvmsg() for routines 1544 * that would like to handle copying from skbuffs directly in 'sendfile' 1545 * fashion. 1546 * Note: 1547 * - It is assumed that the socket was locked by the caller. 1548 * - The routine does not block. 1549 * - At present, there is no support for reading OOB data 1550 * or for 'peeking' the socket using this routine 1551 * (although both would be easy to implement). 1552 */ 1553 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1554 sk_read_actor_t recv_actor) 1555 { 1556 struct sk_buff *skb; 1557 struct tcp_sock *tp = tcp_sk(sk); 1558 u32 seq = tp->copied_seq; 1559 u32 offset; 1560 int copied = 0; 1561 1562 if (sk->sk_state == TCP_LISTEN) 1563 return -ENOTCONN; 1564 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1565 if (offset < skb->len) { 1566 int used; 1567 size_t len; 1568 1569 len = skb->len - offset; 1570 /* Stop reading if we hit a patch of urgent data */ 1571 if (unlikely(tp->urg_data)) { 1572 u32 urg_offset = tp->urg_seq - seq; 1573 if (urg_offset < len) 1574 len = urg_offset; 1575 if (!len) 1576 break; 1577 } 1578 used = recv_actor(desc, skb, offset, len); 1579 if (used <= 0) { 1580 if (!copied) 1581 copied = used; 1582 break; 1583 } 1584 if (WARN_ON_ONCE(used > len)) 1585 used = len; 1586 seq += used; 1587 copied += used; 1588 offset += used; 1589 1590 /* If recv_actor drops the lock (e.g. TCP splice 1591 * receive) the skb pointer might be invalid when 1592 * getting here: tcp_collapse might have deleted it 1593 * while aggregating skbs from the socket queue. 1594 */ 1595 skb = tcp_recv_skb(sk, seq - 1, &offset); 1596 if (!skb) 1597 break; 1598 /* TCP coalescing might have appended data to the skb. 1599 * Try to splice more frags 1600 */ 1601 if (offset + 1 != skb->len) 1602 continue; 1603 } 1604 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1605 tcp_eat_recv_skb(sk, skb); 1606 ++seq; 1607 break; 1608 } 1609 tcp_eat_recv_skb(sk, skb); 1610 if (!desc->count) 1611 break; 1612 WRITE_ONCE(tp->copied_seq, seq); 1613 } 1614 WRITE_ONCE(tp->copied_seq, seq); 1615 1616 tcp_rcv_space_adjust(sk); 1617 1618 /* Clean up data we have read: This will do ACK frames. */ 1619 if (copied > 0) { 1620 tcp_recv_skb(sk, seq, &offset); 1621 tcp_cleanup_rbuf(sk, copied); 1622 } 1623 return copied; 1624 } 1625 EXPORT_SYMBOL(tcp_read_sock); 1626 1627 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1628 { 1629 struct sk_buff *skb; 1630 int copied = 0; 1631 1632 if (sk->sk_state == TCP_LISTEN) 1633 return -ENOTCONN; 1634 1635 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1636 u8 tcp_flags; 1637 int used; 1638 1639 __skb_unlink(skb, &sk->sk_receive_queue); 1640 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1641 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1642 used = recv_actor(sk, skb); 1643 if (used < 0) { 1644 if (!copied) 1645 copied = used; 1646 break; 1647 } 1648 copied += used; 1649 1650 if (tcp_flags & TCPHDR_FIN) 1651 break; 1652 } 1653 return copied; 1654 } 1655 EXPORT_SYMBOL(tcp_read_skb); 1656 1657 void tcp_read_done(struct sock *sk, size_t len) 1658 { 1659 struct tcp_sock *tp = tcp_sk(sk); 1660 u32 seq = tp->copied_seq; 1661 struct sk_buff *skb; 1662 size_t left; 1663 u32 offset; 1664 1665 if (sk->sk_state == TCP_LISTEN) 1666 return; 1667 1668 left = len; 1669 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1670 int used; 1671 1672 used = min_t(size_t, skb->len - offset, left); 1673 seq += used; 1674 left -= used; 1675 1676 if (skb->len > offset + used) 1677 break; 1678 1679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1680 tcp_eat_recv_skb(sk, skb); 1681 ++seq; 1682 break; 1683 } 1684 tcp_eat_recv_skb(sk, skb); 1685 } 1686 WRITE_ONCE(tp->copied_seq, seq); 1687 1688 tcp_rcv_space_adjust(sk); 1689 1690 /* Clean up data we have read: This will do ACK frames. */ 1691 if (left != len) 1692 tcp_cleanup_rbuf(sk, len - left); 1693 } 1694 EXPORT_SYMBOL(tcp_read_done); 1695 1696 int tcp_peek_len(struct socket *sock) 1697 { 1698 return tcp_inq(sock->sk); 1699 } 1700 EXPORT_SYMBOL(tcp_peek_len); 1701 1702 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1703 int tcp_set_rcvlowat(struct sock *sk, int val) 1704 { 1705 int space, cap; 1706 1707 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1708 cap = sk->sk_rcvbuf >> 1; 1709 else 1710 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1711 val = min(val, cap); 1712 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1713 1714 /* Check if we need to signal EPOLLIN right now */ 1715 tcp_data_ready(sk); 1716 1717 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1718 return 0; 1719 1720 space = tcp_space_from_win(sk, val); 1721 if (space > sk->sk_rcvbuf) { 1722 WRITE_ONCE(sk->sk_rcvbuf, space); 1723 tcp_sk(sk)->window_clamp = val; 1724 } 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(tcp_set_rcvlowat); 1728 1729 void tcp_update_recv_tstamps(struct sk_buff *skb, 1730 struct scm_timestamping_internal *tss) 1731 { 1732 if (skb->tstamp) 1733 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1734 else 1735 tss->ts[0] = (struct timespec64) {0}; 1736 1737 if (skb_hwtstamps(skb)->hwtstamp) 1738 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1739 else 1740 tss->ts[2] = (struct timespec64) {0}; 1741 } 1742 1743 #ifdef CONFIG_MMU 1744 static const struct vm_operations_struct tcp_vm_ops = { 1745 }; 1746 1747 int tcp_mmap(struct file *file, struct socket *sock, 1748 struct vm_area_struct *vma) 1749 { 1750 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1751 return -EPERM; 1752 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1753 1754 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1755 vm_flags_set(vma, VM_MIXEDMAP); 1756 1757 vma->vm_ops = &tcp_vm_ops; 1758 return 0; 1759 } 1760 EXPORT_SYMBOL(tcp_mmap); 1761 1762 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1763 u32 *offset_frag) 1764 { 1765 skb_frag_t *frag; 1766 1767 if (unlikely(offset_skb >= skb->len)) 1768 return NULL; 1769 1770 offset_skb -= skb_headlen(skb); 1771 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1772 return NULL; 1773 1774 frag = skb_shinfo(skb)->frags; 1775 while (offset_skb) { 1776 if (skb_frag_size(frag) > offset_skb) { 1777 *offset_frag = offset_skb; 1778 return frag; 1779 } 1780 offset_skb -= skb_frag_size(frag); 1781 ++frag; 1782 } 1783 *offset_frag = 0; 1784 return frag; 1785 } 1786 1787 static bool can_map_frag(const skb_frag_t *frag) 1788 { 1789 struct page *page; 1790 1791 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1792 return false; 1793 1794 page = skb_frag_page(frag); 1795 1796 if (PageCompound(page) || page->mapping) 1797 return false; 1798 1799 return true; 1800 } 1801 1802 static int find_next_mappable_frag(const skb_frag_t *frag, 1803 int remaining_in_skb) 1804 { 1805 int offset = 0; 1806 1807 if (likely(can_map_frag(frag))) 1808 return 0; 1809 1810 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1811 offset += skb_frag_size(frag); 1812 ++frag; 1813 } 1814 return offset; 1815 } 1816 1817 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1818 struct tcp_zerocopy_receive *zc, 1819 struct sk_buff *skb, u32 offset) 1820 { 1821 u32 frag_offset, partial_frag_remainder = 0; 1822 int mappable_offset; 1823 skb_frag_t *frag; 1824 1825 /* worst case: skip to next skb. try to improve on this case below */ 1826 zc->recv_skip_hint = skb->len - offset; 1827 1828 /* Find the frag containing this offset (and how far into that frag) */ 1829 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1830 if (!frag) 1831 return; 1832 1833 if (frag_offset) { 1834 struct skb_shared_info *info = skb_shinfo(skb); 1835 1836 /* We read part of the last frag, must recvmsg() rest of skb. */ 1837 if (frag == &info->frags[info->nr_frags - 1]) 1838 return; 1839 1840 /* Else, we must at least read the remainder in this frag. */ 1841 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1842 zc->recv_skip_hint -= partial_frag_remainder; 1843 ++frag; 1844 } 1845 1846 /* partial_frag_remainder: If part way through a frag, must read rest. 1847 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1848 * in partial_frag_remainder. 1849 */ 1850 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1851 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1852 } 1853 1854 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1855 int flags, struct scm_timestamping_internal *tss, 1856 int *cmsg_flags); 1857 static int receive_fallback_to_copy(struct sock *sk, 1858 struct tcp_zerocopy_receive *zc, int inq, 1859 struct scm_timestamping_internal *tss) 1860 { 1861 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1862 struct msghdr msg = {}; 1863 struct iovec iov; 1864 int err; 1865 1866 zc->length = 0; 1867 zc->recv_skip_hint = 0; 1868 1869 if (copy_address != zc->copybuf_address) 1870 return -EINVAL; 1871 1872 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1873 inq, &iov, &msg.msg_iter); 1874 if (err) 1875 return err; 1876 1877 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1878 tss, &zc->msg_flags); 1879 if (err < 0) 1880 return err; 1881 1882 zc->copybuf_len = err; 1883 if (likely(zc->copybuf_len)) { 1884 struct sk_buff *skb; 1885 u32 offset; 1886 1887 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1888 if (skb) 1889 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1890 } 1891 return 0; 1892 } 1893 1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1895 struct sk_buff *skb, u32 copylen, 1896 u32 *offset, u32 *seq) 1897 { 1898 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1899 struct msghdr msg = {}; 1900 struct iovec iov; 1901 int err; 1902 1903 if (copy_address != zc->copybuf_address) 1904 return -EINVAL; 1905 1906 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1907 copylen, &iov, &msg.msg_iter); 1908 if (err) 1909 return err; 1910 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1911 if (err) 1912 return err; 1913 zc->recv_skip_hint -= copylen; 1914 *offset += copylen; 1915 *seq += copylen; 1916 return (__s32)copylen; 1917 } 1918 1919 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1920 struct sock *sk, 1921 struct sk_buff *skb, 1922 u32 *seq, 1923 s32 copybuf_len, 1924 struct scm_timestamping_internal *tss) 1925 { 1926 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1927 1928 if (!copylen) 1929 return 0; 1930 /* skb is null if inq < PAGE_SIZE. */ 1931 if (skb) { 1932 offset = *seq - TCP_SKB_CB(skb)->seq; 1933 } else { 1934 skb = tcp_recv_skb(sk, *seq, &offset); 1935 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1936 tcp_update_recv_tstamps(skb, tss); 1937 zc->msg_flags |= TCP_CMSG_TS; 1938 } 1939 } 1940 1941 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1942 seq); 1943 return zc->copybuf_len < 0 ? 0 : copylen; 1944 } 1945 1946 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1947 struct page **pending_pages, 1948 unsigned long pages_remaining, 1949 unsigned long *address, 1950 u32 *length, 1951 u32 *seq, 1952 struct tcp_zerocopy_receive *zc, 1953 u32 total_bytes_to_map, 1954 int err) 1955 { 1956 /* At least one page did not map. Try zapping if we skipped earlier. */ 1957 if (err == -EBUSY && 1958 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1959 u32 maybe_zap_len; 1960 1961 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1962 *length + /* Mapped or pending */ 1963 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1964 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1965 err = 0; 1966 } 1967 1968 if (!err) { 1969 unsigned long leftover_pages = pages_remaining; 1970 int bytes_mapped; 1971 1972 /* We called zap_page_range_single, try to reinsert. */ 1973 err = vm_insert_pages(vma, *address, 1974 pending_pages, 1975 &pages_remaining); 1976 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1977 *seq += bytes_mapped; 1978 *address += bytes_mapped; 1979 } 1980 if (err) { 1981 /* Either we were unable to zap, OR we zapped, retried an 1982 * insert, and still had an issue. Either ways, pages_remaining 1983 * is the number of pages we were unable to map, and we unroll 1984 * some state we speculatively touched before. 1985 */ 1986 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1987 1988 *length -= bytes_not_mapped; 1989 zc->recv_skip_hint += bytes_not_mapped; 1990 } 1991 return err; 1992 } 1993 1994 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1995 struct page **pages, 1996 unsigned int pages_to_map, 1997 unsigned long *address, 1998 u32 *length, 1999 u32 *seq, 2000 struct tcp_zerocopy_receive *zc, 2001 u32 total_bytes_to_map) 2002 { 2003 unsigned long pages_remaining = pages_to_map; 2004 unsigned int pages_mapped; 2005 unsigned int bytes_mapped; 2006 int err; 2007 2008 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2009 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2010 bytes_mapped = PAGE_SIZE * pages_mapped; 2011 /* Even if vm_insert_pages fails, it may have partially succeeded in 2012 * mapping (some but not all of the pages). 2013 */ 2014 *seq += bytes_mapped; 2015 *address += bytes_mapped; 2016 2017 if (likely(!err)) 2018 return 0; 2019 2020 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2021 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2022 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2023 err); 2024 } 2025 2026 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2027 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2028 struct tcp_zerocopy_receive *zc, 2029 struct scm_timestamping_internal *tss) 2030 { 2031 unsigned long msg_control_addr; 2032 struct msghdr cmsg_dummy; 2033 2034 msg_control_addr = (unsigned long)zc->msg_control; 2035 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2036 cmsg_dummy.msg_controllen = 2037 (__kernel_size_t)zc->msg_controllen; 2038 cmsg_dummy.msg_flags = in_compat_syscall() 2039 ? MSG_CMSG_COMPAT : 0; 2040 cmsg_dummy.msg_control_is_user = true; 2041 zc->msg_flags = 0; 2042 if (zc->msg_control == msg_control_addr && 2043 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2044 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2045 zc->msg_control = (__u64) 2046 ((uintptr_t)cmsg_dummy.msg_control_user); 2047 zc->msg_controllen = 2048 (__u64)cmsg_dummy.msg_controllen; 2049 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2050 } 2051 } 2052 2053 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2054 unsigned long address, 2055 bool *mmap_locked) 2056 { 2057 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2058 2059 if (vma) { 2060 if (vma->vm_ops != &tcp_vm_ops) { 2061 vma_end_read(vma); 2062 return NULL; 2063 } 2064 *mmap_locked = false; 2065 return vma; 2066 } 2067 2068 mmap_read_lock(mm); 2069 vma = vma_lookup(mm, address); 2070 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2071 mmap_read_unlock(mm); 2072 return NULL; 2073 } 2074 *mmap_locked = true; 2075 return vma; 2076 } 2077 2078 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2079 static int tcp_zerocopy_receive(struct sock *sk, 2080 struct tcp_zerocopy_receive *zc, 2081 struct scm_timestamping_internal *tss) 2082 { 2083 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2084 unsigned long address = (unsigned long)zc->address; 2085 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2086 s32 copybuf_len = zc->copybuf_len; 2087 struct tcp_sock *tp = tcp_sk(sk); 2088 const skb_frag_t *frags = NULL; 2089 unsigned int pages_to_map = 0; 2090 struct vm_area_struct *vma; 2091 struct sk_buff *skb = NULL; 2092 u32 seq = tp->copied_seq; 2093 u32 total_bytes_to_map; 2094 int inq = tcp_inq(sk); 2095 bool mmap_locked; 2096 int ret; 2097 2098 zc->copybuf_len = 0; 2099 zc->msg_flags = 0; 2100 2101 if (address & (PAGE_SIZE - 1) || address != zc->address) 2102 return -EINVAL; 2103 2104 if (sk->sk_state == TCP_LISTEN) 2105 return -ENOTCONN; 2106 2107 sock_rps_record_flow(sk); 2108 2109 if (inq && inq <= copybuf_len) 2110 return receive_fallback_to_copy(sk, zc, inq, tss); 2111 2112 if (inq < PAGE_SIZE) { 2113 zc->length = 0; 2114 zc->recv_skip_hint = inq; 2115 if (!inq && sock_flag(sk, SOCK_DONE)) 2116 return -EIO; 2117 return 0; 2118 } 2119 2120 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2121 if (!vma) 2122 return -EINVAL; 2123 2124 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2125 avail_len = min_t(u32, vma_len, inq); 2126 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2127 if (total_bytes_to_map) { 2128 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2129 zap_page_range_single(vma, address, total_bytes_to_map, 2130 NULL); 2131 zc->length = total_bytes_to_map; 2132 zc->recv_skip_hint = 0; 2133 } else { 2134 zc->length = avail_len; 2135 zc->recv_skip_hint = avail_len; 2136 } 2137 ret = 0; 2138 while (length + PAGE_SIZE <= zc->length) { 2139 int mappable_offset; 2140 struct page *page; 2141 2142 if (zc->recv_skip_hint < PAGE_SIZE) { 2143 u32 offset_frag; 2144 2145 if (skb) { 2146 if (zc->recv_skip_hint > 0) 2147 break; 2148 skb = skb->next; 2149 offset = seq - TCP_SKB_CB(skb)->seq; 2150 } else { 2151 skb = tcp_recv_skb(sk, seq, &offset); 2152 } 2153 2154 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2155 tcp_update_recv_tstamps(skb, tss); 2156 zc->msg_flags |= TCP_CMSG_TS; 2157 } 2158 zc->recv_skip_hint = skb->len - offset; 2159 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2160 if (!frags || offset_frag) 2161 break; 2162 } 2163 2164 mappable_offset = find_next_mappable_frag(frags, 2165 zc->recv_skip_hint); 2166 if (mappable_offset) { 2167 zc->recv_skip_hint = mappable_offset; 2168 break; 2169 } 2170 page = skb_frag_page(frags); 2171 prefetchw(page); 2172 pages[pages_to_map++] = page; 2173 length += PAGE_SIZE; 2174 zc->recv_skip_hint -= PAGE_SIZE; 2175 frags++; 2176 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2177 zc->recv_skip_hint < PAGE_SIZE) { 2178 /* Either full batch, or we're about to go to next skb 2179 * (and we cannot unroll failed ops across skbs). 2180 */ 2181 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2182 pages_to_map, 2183 &address, &length, 2184 &seq, zc, 2185 total_bytes_to_map); 2186 if (ret) 2187 goto out; 2188 pages_to_map = 0; 2189 } 2190 } 2191 if (pages_to_map) { 2192 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2193 &address, &length, &seq, 2194 zc, total_bytes_to_map); 2195 } 2196 out: 2197 if (mmap_locked) 2198 mmap_read_unlock(current->mm); 2199 else 2200 vma_end_read(vma); 2201 /* Try to copy straggler data. */ 2202 if (!ret) 2203 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2204 2205 if (length + copylen) { 2206 WRITE_ONCE(tp->copied_seq, seq); 2207 tcp_rcv_space_adjust(sk); 2208 2209 /* Clean up data we have read: This will do ACK frames. */ 2210 tcp_recv_skb(sk, seq, &offset); 2211 tcp_cleanup_rbuf(sk, length + copylen); 2212 ret = 0; 2213 if (length == zc->length) 2214 zc->recv_skip_hint = 0; 2215 } else { 2216 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2217 ret = -EIO; 2218 } 2219 zc->length = length; 2220 return ret; 2221 } 2222 #endif 2223 2224 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2225 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2226 struct scm_timestamping_internal *tss) 2227 { 2228 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2229 bool has_timestamping = false; 2230 2231 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2232 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2233 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2234 if (new_tstamp) { 2235 struct __kernel_timespec kts = { 2236 .tv_sec = tss->ts[0].tv_sec, 2237 .tv_nsec = tss->ts[0].tv_nsec, 2238 }; 2239 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2240 sizeof(kts), &kts); 2241 } else { 2242 struct __kernel_old_timespec ts_old = { 2243 .tv_sec = tss->ts[0].tv_sec, 2244 .tv_nsec = tss->ts[0].tv_nsec, 2245 }; 2246 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2247 sizeof(ts_old), &ts_old); 2248 } 2249 } else { 2250 if (new_tstamp) { 2251 struct __kernel_sock_timeval stv = { 2252 .tv_sec = tss->ts[0].tv_sec, 2253 .tv_usec = tss->ts[0].tv_nsec / 1000, 2254 }; 2255 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2256 sizeof(stv), &stv); 2257 } else { 2258 struct __kernel_old_timeval tv = { 2259 .tv_sec = tss->ts[0].tv_sec, 2260 .tv_usec = tss->ts[0].tv_nsec / 1000, 2261 }; 2262 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2263 sizeof(tv), &tv); 2264 } 2265 } 2266 } 2267 2268 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2269 has_timestamping = true; 2270 else 2271 tss->ts[0] = (struct timespec64) {0}; 2272 } 2273 2274 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2275 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2276 has_timestamping = true; 2277 else 2278 tss->ts[2] = (struct timespec64) {0}; 2279 } 2280 2281 if (has_timestamping) { 2282 tss->ts[1] = (struct timespec64) {0}; 2283 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2284 put_cmsg_scm_timestamping64(msg, tss); 2285 else 2286 put_cmsg_scm_timestamping(msg, tss); 2287 } 2288 } 2289 2290 static int tcp_inq_hint(struct sock *sk) 2291 { 2292 const struct tcp_sock *tp = tcp_sk(sk); 2293 u32 copied_seq = READ_ONCE(tp->copied_seq); 2294 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2295 int inq; 2296 2297 inq = rcv_nxt - copied_seq; 2298 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2299 lock_sock(sk); 2300 inq = tp->rcv_nxt - tp->copied_seq; 2301 release_sock(sk); 2302 } 2303 /* After receiving a FIN, tell the user-space to continue reading 2304 * by returning a non-zero inq. 2305 */ 2306 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2307 inq = 1; 2308 return inq; 2309 } 2310 2311 /* 2312 * This routine copies from a sock struct into the user buffer. 2313 * 2314 * Technical note: in 2.3 we work on _locked_ socket, so that 2315 * tricks with *seq access order and skb->users are not required. 2316 * Probably, code can be easily improved even more. 2317 */ 2318 2319 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2320 int flags, struct scm_timestamping_internal *tss, 2321 int *cmsg_flags) 2322 { 2323 struct tcp_sock *tp = tcp_sk(sk); 2324 int copied = 0; 2325 u32 peek_seq; 2326 u32 *seq; 2327 unsigned long used; 2328 int err; 2329 int target; /* Read at least this many bytes */ 2330 long timeo; 2331 struct sk_buff *skb, *last; 2332 u32 urg_hole = 0; 2333 2334 err = -ENOTCONN; 2335 if (sk->sk_state == TCP_LISTEN) 2336 goto out; 2337 2338 if (tp->recvmsg_inq) { 2339 *cmsg_flags = TCP_CMSG_INQ; 2340 msg->msg_get_inq = 1; 2341 } 2342 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2343 2344 /* Urgent data needs to be handled specially. */ 2345 if (flags & MSG_OOB) 2346 goto recv_urg; 2347 2348 if (unlikely(tp->repair)) { 2349 err = -EPERM; 2350 if (!(flags & MSG_PEEK)) 2351 goto out; 2352 2353 if (tp->repair_queue == TCP_SEND_QUEUE) 2354 goto recv_sndq; 2355 2356 err = -EINVAL; 2357 if (tp->repair_queue == TCP_NO_QUEUE) 2358 goto out; 2359 2360 /* 'common' recv queue MSG_PEEK-ing */ 2361 } 2362 2363 seq = &tp->copied_seq; 2364 if (flags & MSG_PEEK) { 2365 peek_seq = tp->copied_seq; 2366 seq = &peek_seq; 2367 } 2368 2369 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2370 2371 do { 2372 u32 offset; 2373 2374 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2375 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2376 if (copied) 2377 break; 2378 if (signal_pending(current)) { 2379 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2380 break; 2381 } 2382 } 2383 2384 /* Next get a buffer. */ 2385 2386 last = skb_peek_tail(&sk->sk_receive_queue); 2387 skb_queue_walk(&sk->sk_receive_queue, skb) { 2388 last = skb; 2389 /* Now that we have two receive queues this 2390 * shouldn't happen. 2391 */ 2392 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2393 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2394 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2395 flags)) 2396 break; 2397 2398 offset = *seq - TCP_SKB_CB(skb)->seq; 2399 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2400 pr_err_once("%s: found a SYN, please report !\n", __func__); 2401 offset--; 2402 } 2403 if (offset < skb->len) 2404 goto found_ok_skb; 2405 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2406 goto found_fin_ok; 2407 WARN(!(flags & MSG_PEEK), 2408 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2409 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2410 } 2411 2412 /* Well, if we have backlog, try to process it now yet. */ 2413 2414 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2415 break; 2416 2417 if (copied) { 2418 if (!timeo || 2419 sk->sk_err || 2420 sk->sk_state == TCP_CLOSE || 2421 (sk->sk_shutdown & RCV_SHUTDOWN) || 2422 signal_pending(current)) 2423 break; 2424 } else { 2425 if (sock_flag(sk, SOCK_DONE)) 2426 break; 2427 2428 if (sk->sk_err) { 2429 copied = sock_error(sk); 2430 break; 2431 } 2432 2433 if (sk->sk_shutdown & RCV_SHUTDOWN) 2434 break; 2435 2436 if (sk->sk_state == TCP_CLOSE) { 2437 /* This occurs when user tries to read 2438 * from never connected socket. 2439 */ 2440 copied = -ENOTCONN; 2441 break; 2442 } 2443 2444 if (!timeo) { 2445 copied = -EAGAIN; 2446 break; 2447 } 2448 2449 if (signal_pending(current)) { 2450 copied = sock_intr_errno(timeo); 2451 break; 2452 } 2453 } 2454 2455 if (copied >= target) { 2456 /* Do not sleep, just process backlog. */ 2457 __sk_flush_backlog(sk); 2458 } else { 2459 tcp_cleanup_rbuf(sk, copied); 2460 err = sk_wait_data(sk, &timeo, last); 2461 if (err < 0) { 2462 err = copied ? : err; 2463 goto out; 2464 } 2465 } 2466 2467 if ((flags & MSG_PEEK) && 2468 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2469 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2470 current->comm, 2471 task_pid_nr(current)); 2472 peek_seq = tp->copied_seq; 2473 } 2474 continue; 2475 2476 found_ok_skb: 2477 /* Ok so how much can we use? */ 2478 used = skb->len - offset; 2479 if (len < used) 2480 used = len; 2481 2482 /* Do we have urgent data here? */ 2483 if (unlikely(tp->urg_data)) { 2484 u32 urg_offset = tp->urg_seq - *seq; 2485 if (urg_offset < used) { 2486 if (!urg_offset) { 2487 if (!sock_flag(sk, SOCK_URGINLINE)) { 2488 WRITE_ONCE(*seq, *seq + 1); 2489 urg_hole++; 2490 offset++; 2491 used--; 2492 if (!used) 2493 goto skip_copy; 2494 } 2495 } else 2496 used = urg_offset; 2497 } 2498 } 2499 2500 if (!(flags & MSG_TRUNC)) { 2501 err = skb_copy_datagram_msg(skb, offset, msg, used); 2502 if (err) { 2503 /* Exception. Bailout! */ 2504 if (!copied) 2505 copied = -EFAULT; 2506 break; 2507 } 2508 } 2509 2510 WRITE_ONCE(*seq, *seq + used); 2511 copied += used; 2512 len -= used; 2513 2514 tcp_rcv_space_adjust(sk); 2515 2516 skip_copy: 2517 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2518 WRITE_ONCE(tp->urg_data, 0); 2519 tcp_fast_path_check(sk); 2520 } 2521 2522 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2523 tcp_update_recv_tstamps(skb, tss); 2524 *cmsg_flags |= TCP_CMSG_TS; 2525 } 2526 2527 if (used + offset < skb->len) 2528 continue; 2529 2530 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2531 goto found_fin_ok; 2532 if (!(flags & MSG_PEEK)) 2533 tcp_eat_recv_skb(sk, skb); 2534 continue; 2535 2536 found_fin_ok: 2537 /* Process the FIN. */ 2538 WRITE_ONCE(*seq, *seq + 1); 2539 if (!(flags & MSG_PEEK)) 2540 tcp_eat_recv_skb(sk, skb); 2541 break; 2542 } while (len > 0); 2543 2544 /* According to UNIX98, msg_name/msg_namelen are ignored 2545 * on connected socket. I was just happy when found this 8) --ANK 2546 */ 2547 2548 /* Clean up data we have read: This will do ACK frames. */ 2549 tcp_cleanup_rbuf(sk, copied); 2550 return copied; 2551 2552 out: 2553 return err; 2554 2555 recv_urg: 2556 err = tcp_recv_urg(sk, msg, len, flags); 2557 goto out; 2558 2559 recv_sndq: 2560 err = tcp_peek_sndq(sk, msg, len); 2561 goto out; 2562 } 2563 2564 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2565 int *addr_len) 2566 { 2567 int cmsg_flags = 0, ret; 2568 struct scm_timestamping_internal tss; 2569 2570 if (unlikely(flags & MSG_ERRQUEUE)) 2571 return inet_recv_error(sk, msg, len, addr_len); 2572 2573 if (sk_can_busy_loop(sk) && 2574 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2575 sk->sk_state == TCP_ESTABLISHED) 2576 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2577 2578 lock_sock(sk); 2579 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2580 release_sock(sk); 2581 2582 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2583 if (cmsg_flags & TCP_CMSG_TS) 2584 tcp_recv_timestamp(msg, sk, &tss); 2585 if (msg->msg_get_inq) { 2586 msg->msg_inq = tcp_inq_hint(sk); 2587 if (cmsg_flags & TCP_CMSG_INQ) 2588 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2589 sizeof(msg->msg_inq), &msg->msg_inq); 2590 } 2591 } 2592 return ret; 2593 } 2594 EXPORT_SYMBOL(tcp_recvmsg); 2595 2596 void tcp_set_state(struct sock *sk, int state) 2597 { 2598 int oldstate = sk->sk_state; 2599 2600 /* We defined a new enum for TCP states that are exported in BPF 2601 * so as not force the internal TCP states to be frozen. The 2602 * following checks will detect if an internal state value ever 2603 * differs from the BPF value. If this ever happens, then we will 2604 * need to remap the internal value to the BPF value before calling 2605 * tcp_call_bpf_2arg. 2606 */ 2607 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2608 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2609 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2610 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2611 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2612 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2613 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2614 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2615 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2616 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2617 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2618 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2619 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2620 2621 /* bpf uapi header bpf.h defines an anonymous enum with values 2622 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2623 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2624 * But clang built vmlinux does not have this enum in DWARF 2625 * since clang removes the above code before generating IR/debuginfo. 2626 * Let us explicitly emit the type debuginfo to ensure the 2627 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2628 * regardless of which compiler is used. 2629 */ 2630 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2631 2632 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2633 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2634 2635 switch (state) { 2636 case TCP_ESTABLISHED: 2637 if (oldstate != TCP_ESTABLISHED) 2638 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2639 break; 2640 2641 case TCP_CLOSE: 2642 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2643 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2644 2645 sk->sk_prot->unhash(sk); 2646 if (inet_csk(sk)->icsk_bind_hash && 2647 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2648 inet_put_port(sk); 2649 fallthrough; 2650 default: 2651 if (oldstate == TCP_ESTABLISHED) 2652 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2653 } 2654 2655 /* Change state AFTER socket is unhashed to avoid closed 2656 * socket sitting in hash tables. 2657 */ 2658 inet_sk_state_store(sk, state); 2659 } 2660 EXPORT_SYMBOL_GPL(tcp_set_state); 2661 2662 /* 2663 * State processing on a close. This implements the state shift for 2664 * sending our FIN frame. Note that we only send a FIN for some 2665 * states. A shutdown() may have already sent the FIN, or we may be 2666 * closed. 2667 */ 2668 2669 static const unsigned char new_state[16] = { 2670 /* current state: new state: action: */ 2671 [0 /* (Invalid) */] = TCP_CLOSE, 2672 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2673 [TCP_SYN_SENT] = TCP_CLOSE, 2674 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2675 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2676 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2677 [TCP_TIME_WAIT] = TCP_CLOSE, 2678 [TCP_CLOSE] = TCP_CLOSE, 2679 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2680 [TCP_LAST_ACK] = TCP_LAST_ACK, 2681 [TCP_LISTEN] = TCP_CLOSE, 2682 [TCP_CLOSING] = TCP_CLOSING, 2683 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2684 }; 2685 2686 static int tcp_close_state(struct sock *sk) 2687 { 2688 int next = (int)new_state[sk->sk_state]; 2689 int ns = next & TCP_STATE_MASK; 2690 2691 tcp_set_state(sk, ns); 2692 2693 return next & TCP_ACTION_FIN; 2694 } 2695 2696 /* 2697 * Shutdown the sending side of a connection. Much like close except 2698 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2699 */ 2700 2701 void tcp_shutdown(struct sock *sk, int how) 2702 { 2703 /* We need to grab some memory, and put together a FIN, 2704 * and then put it into the queue to be sent. 2705 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2706 */ 2707 if (!(how & SEND_SHUTDOWN)) 2708 return; 2709 2710 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2711 if ((1 << sk->sk_state) & 2712 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2713 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2714 /* Clear out any half completed packets. FIN if needed. */ 2715 if (tcp_close_state(sk)) 2716 tcp_send_fin(sk); 2717 } 2718 } 2719 EXPORT_SYMBOL(tcp_shutdown); 2720 2721 int tcp_orphan_count_sum(void) 2722 { 2723 int i, total = 0; 2724 2725 for_each_possible_cpu(i) 2726 total += per_cpu(tcp_orphan_count, i); 2727 2728 return max(total, 0); 2729 } 2730 2731 static int tcp_orphan_cache; 2732 static struct timer_list tcp_orphan_timer; 2733 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2734 2735 static void tcp_orphan_update(struct timer_list *unused) 2736 { 2737 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2738 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2739 } 2740 2741 static bool tcp_too_many_orphans(int shift) 2742 { 2743 return READ_ONCE(tcp_orphan_cache) << shift > 2744 READ_ONCE(sysctl_tcp_max_orphans); 2745 } 2746 2747 bool tcp_check_oom(struct sock *sk, int shift) 2748 { 2749 bool too_many_orphans, out_of_socket_memory; 2750 2751 too_many_orphans = tcp_too_many_orphans(shift); 2752 out_of_socket_memory = tcp_out_of_memory(sk); 2753 2754 if (too_many_orphans) 2755 net_info_ratelimited("too many orphaned sockets\n"); 2756 if (out_of_socket_memory) 2757 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2758 return too_many_orphans || out_of_socket_memory; 2759 } 2760 2761 void __tcp_close(struct sock *sk, long timeout) 2762 { 2763 struct sk_buff *skb; 2764 int data_was_unread = 0; 2765 int state; 2766 2767 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2768 2769 if (sk->sk_state == TCP_LISTEN) { 2770 tcp_set_state(sk, TCP_CLOSE); 2771 2772 /* Special case. */ 2773 inet_csk_listen_stop(sk); 2774 2775 goto adjudge_to_death; 2776 } 2777 2778 /* We need to flush the recv. buffs. We do this only on the 2779 * descriptor close, not protocol-sourced closes, because the 2780 * reader process may not have drained the data yet! 2781 */ 2782 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2783 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2784 2785 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2786 len--; 2787 data_was_unread += len; 2788 __kfree_skb(skb); 2789 } 2790 2791 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2792 if (sk->sk_state == TCP_CLOSE) 2793 goto adjudge_to_death; 2794 2795 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2796 * data was lost. To witness the awful effects of the old behavior of 2797 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2798 * GET in an FTP client, suspend the process, wait for the client to 2799 * advertise a zero window, then kill -9 the FTP client, wheee... 2800 * Note: timeout is always zero in such a case. 2801 */ 2802 if (unlikely(tcp_sk(sk)->repair)) { 2803 sk->sk_prot->disconnect(sk, 0); 2804 } else if (data_was_unread) { 2805 /* Unread data was tossed, zap the connection. */ 2806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2807 tcp_set_state(sk, TCP_CLOSE); 2808 tcp_send_active_reset(sk, sk->sk_allocation); 2809 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2810 /* Check zero linger _after_ checking for unread data. */ 2811 sk->sk_prot->disconnect(sk, 0); 2812 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2813 } else if (tcp_close_state(sk)) { 2814 /* We FIN if the application ate all the data before 2815 * zapping the connection. 2816 */ 2817 2818 /* RED-PEN. Formally speaking, we have broken TCP state 2819 * machine. State transitions: 2820 * 2821 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2822 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2823 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2824 * 2825 * are legal only when FIN has been sent (i.e. in window), 2826 * rather than queued out of window. Purists blame. 2827 * 2828 * F.e. "RFC state" is ESTABLISHED, 2829 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2830 * 2831 * The visible declinations are that sometimes 2832 * we enter time-wait state, when it is not required really 2833 * (harmless), do not send active resets, when they are 2834 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2835 * they look as CLOSING or LAST_ACK for Linux) 2836 * Probably, I missed some more holelets. 2837 * --ANK 2838 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2839 * in a single packet! (May consider it later but will 2840 * probably need API support or TCP_CORK SYN-ACK until 2841 * data is written and socket is closed.) 2842 */ 2843 tcp_send_fin(sk); 2844 } 2845 2846 sk_stream_wait_close(sk, timeout); 2847 2848 adjudge_to_death: 2849 state = sk->sk_state; 2850 sock_hold(sk); 2851 sock_orphan(sk); 2852 2853 local_bh_disable(); 2854 bh_lock_sock(sk); 2855 /* remove backlog if any, without releasing ownership. */ 2856 __release_sock(sk); 2857 2858 this_cpu_inc(tcp_orphan_count); 2859 2860 /* Have we already been destroyed by a softirq or backlog? */ 2861 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2862 goto out; 2863 2864 /* This is a (useful) BSD violating of the RFC. There is a 2865 * problem with TCP as specified in that the other end could 2866 * keep a socket open forever with no application left this end. 2867 * We use a 1 minute timeout (about the same as BSD) then kill 2868 * our end. If they send after that then tough - BUT: long enough 2869 * that we won't make the old 4*rto = almost no time - whoops 2870 * reset mistake. 2871 * 2872 * Nope, it was not mistake. It is really desired behaviour 2873 * f.e. on http servers, when such sockets are useless, but 2874 * consume significant resources. Let's do it with special 2875 * linger2 option. --ANK 2876 */ 2877 2878 if (sk->sk_state == TCP_FIN_WAIT2) { 2879 struct tcp_sock *tp = tcp_sk(sk); 2880 if (READ_ONCE(tp->linger2) < 0) { 2881 tcp_set_state(sk, TCP_CLOSE); 2882 tcp_send_active_reset(sk, GFP_ATOMIC); 2883 __NET_INC_STATS(sock_net(sk), 2884 LINUX_MIB_TCPABORTONLINGER); 2885 } else { 2886 const int tmo = tcp_fin_time(sk); 2887 2888 if (tmo > TCP_TIMEWAIT_LEN) { 2889 inet_csk_reset_keepalive_timer(sk, 2890 tmo - TCP_TIMEWAIT_LEN); 2891 } else { 2892 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2893 goto out; 2894 } 2895 } 2896 } 2897 if (sk->sk_state != TCP_CLOSE) { 2898 if (tcp_check_oom(sk, 0)) { 2899 tcp_set_state(sk, TCP_CLOSE); 2900 tcp_send_active_reset(sk, GFP_ATOMIC); 2901 __NET_INC_STATS(sock_net(sk), 2902 LINUX_MIB_TCPABORTONMEMORY); 2903 } else if (!check_net(sock_net(sk))) { 2904 /* Not possible to send reset; just close */ 2905 tcp_set_state(sk, TCP_CLOSE); 2906 } 2907 } 2908 2909 if (sk->sk_state == TCP_CLOSE) { 2910 struct request_sock *req; 2911 2912 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2913 lockdep_sock_is_held(sk)); 2914 /* We could get here with a non-NULL req if the socket is 2915 * aborted (e.g., closed with unread data) before 3WHS 2916 * finishes. 2917 */ 2918 if (req) 2919 reqsk_fastopen_remove(sk, req, false); 2920 inet_csk_destroy_sock(sk); 2921 } 2922 /* Otherwise, socket is reprieved until protocol close. */ 2923 2924 out: 2925 bh_unlock_sock(sk); 2926 local_bh_enable(); 2927 } 2928 2929 void tcp_close(struct sock *sk, long timeout) 2930 { 2931 lock_sock(sk); 2932 __tcp_close(sk, timeout); 2933 release_sock(sk); 2934 if (!sk->sk_net_refcnt) 2935 inet_csk_clear_xmit_timers_sync(sk); 2936 sock_put(sk); 2937 } 2938 EXPORT_SYMBOL(tcp_close); 2939 2940 /* These states need RST on ABORT according to RFC793 */ 2941 2942 static inline bool tcp_need_reset(int state) 2943 { 2944 return (1 << state) & 2945 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2946 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2947 } 2948 2949 static void tcp_rtx_queue_purge(struct sock *sk) 2950 { 2951 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2952 2953 tcp_sk(sk)->highest_sack = NULL; 2954 while (p) { 2955 struct sk_buff *skb = rb_to_skb(p); 2956 2957 p = rb_next(p); 2958 /* Since we are deleting whole queue, no need to 2959 * list_del(&skb->tcp_tsorted_anchor) 2960 */ 2961 tcp_rtx_queue_unlink(skb, sk); 2962 tcp_wmem_free_skb(sk, skb); 2963 } 2964 } 2965 2966 void tcp_write_queue_purge(struct sock *sk) 2967 { 2968 struct sk_buff *skb; 2969 2970 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2971 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2972 tcp_skb_tsorted_anchor_cleanup(skb); 2973 tcp_wmem_free_skb(sk, skb); 2974 } 2975 tcp_rtx_queue_purge(sk); 2976 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2977 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2978 tcp_sk(sk)->packets_out = 0; 2979 inet_csk(sk)->icsk_backoff = 0; 2980 } 2981 2982 int tcp_disconnect(struct sock *sk, int flags) 2983 { 2984 struct inet_sock *inet = inet_sk(sk); 2985 struct inet_connection_sock *icsk = inet_csk(sk); 2986 struct tcp_sock *tp = tcp_sk(sk); 2987 int old_state = sk->sk_state; 2988 u32 seq; 2989 2990 if (old_state != TCP_CLOSE) 2991 tcp_set_state(sk, TCP_CLOSE); 2992 2993 /* ABORT function of RFC793 */ 2994 if (old_state == TCP_LISTEN) { 2995 inet_csk_listen_stop(sk); 2996 } else if (unlikely(tp->repair)) { 2997 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2998 } else if (tcp_need_reset(old_state) || 2999 (tp->snd_nxt != tp->write_seq && 3000 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3001 /* The last check adjusts for discrepancy of Linux wrt. RFC 3002 * states 3003 */ 3004 tcp_send_active_reset(sk, gfp_any()); 3005 WRITE_ONCE(sk->sk_err, ECONNRESET); 3006 } else if (old_state == TCP_SYN_SENT) 3007 WRITE_ONCE(sk->sk_err, ECONNRESET); 3008 3009 tcp_clear_xmit_timers(sk); 3010 __skb_queue_purge(&sk->sk_receive_queue); 3011 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3012 WRITE_ONCE(tp->urg_data, 0); 3013 tcp_write_queue_purge(sk); 3014 tcp_fastopen_active_disable_ofo_check(sk); 3015 skb_rbtree_purge(&tp->out_of_order_queue); 3016 3017 inet->inet_dport = 0; 3018 3019 inet_bhash2_reset_saddr(sk); 3020 3021 WRITE_ONCE(sk->sk_shutdown, 0); 3022 sock_reset_flag(sk, SOCK_DONE); 3023 tp->srtt_us = 0; 3024 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3025 tp->rcv_rtt_last_tsecr = 0; 3026 3027 seq = tp->write_seq + tp->max_window + 2; 3028 if (!seq) 3029 seq = 1; 3030 WRITE_ONCE(tp->write_seq, seq); 3031 3032 icsk->icsk_backoff = 0; 3033 icsk->icsk_probes_out = 0; 3034 icsk->icsk_probes_tstamp = 0; 3035 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3036 icsk->icsk_rto_min = TCP_RTO_MIN; 3037 icsk->icsk_delack_max = TCP_DELACK_MAX; 3038 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3039 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3040 tp->snd_cwnd_cnt = 0; 3041 tp->is_cwnd_limited = 0; 3042 tp->max_packets_out = 0; 3043 tp->window_clamp = 0; 3044 tp->delivered = 0; 3045 tp->delivered_ce = 0; 3046 if (icsk->icsk_ca_ops->release) 3047 icsk->icsk_ca_ops->release(sk); 3048 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3049 icsk->icsk_ca_initialized = 0; 3050 tcp_set_ca_state(sk, TCP_CA_Open); 3051 tp->is_sack_reneg = 0; 3052 tcp_clear_retrans(tp); 3053 tp->total_retrans = 0; 3054 inet_csk_delack_init(sk); 3055 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3056 * issue in __tcp_select_window() 3057 */ 3058 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3059 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3060 __sk_dst_reset(sk); 3061 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3062 tcp_saved_syn_free(tp); 3063 tp->compressed_ack = 0; 3064 tp->segs_in = 0; 3065 tp->segs_out = 0; 3066 tp->bytes_sent = 0; 3067 tp->bytes_acked = 0; 3068 tp->bytes_received = 0; 3069 tp->bytes_retrans = 0; 3070 tp->data_segs_in = 0; 3071 tp->data_segs_out = 0; 3072 tp->duplicate_sack[0].start_seq = 0; 3073 tp->duplicate_sack[0].end_seq = 0; 3074 tp->dsack_dups = 0; 3075 tp->reord_seen = 0; 3076 tp->retrans_out = 0; 3077 tp->sacked_out = 0; 3078 tp->tlp_high_seq = 0; 3079 tp->last_oow_ack_time = 0; 3080 tp->plb_rehash = 0; 3081 /* There's a bubble in the pipe until at least the first ACK. */ 3082 tp->app_limited = ~0U; 3083 tp->rate_app_limited = 1; 3084 tp->rack.mstamp = 0; 3085 tp->rack.advanced = 0; 3086 tp->rack.reo_wnd_steps = 1; 3087 tp->rack.last_delivered = 0; 3088 tp->rack.reo_wnd_persist = 0; 3089 tp->rack.dsack_seen = 0; 3090 tp->syn_data_acked = 0; 3091 tp->rx_opt.saw_tstamp = 0; 3092 tp->rx_opt.dsack = 0; 3093 tp->rx_opt.num_sacks = 0; 3094 tp->rcv_ooopack = 0; 3095 3096 3097 /* Clean up fastopen related fields */ 3098 tcp_free_fastopen_req(tp); 3099 inet_clear_bit(DEFER_CONNECT, sk); 3100 tp->fastopen_client_fail = 0; 3101 3102 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3103 3104 if (sk->sk_frag.page) { 3105 put_page(sk->sk_frag.page); 3106 sk->sk_frag.page = NULL; 3107 sk->sk_frag.offset = 0; 3108 } 3109 sk_error_report(sk); 3110 return 0; 3111 } 3112 EXPORT_SYMBOL(tcp_disconnect); 3113 3114 static inline bool tcp_can_repair_sock(const struct sock *sk) 3115 { 3116 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3117 (sk->sk_state != TCP_LISTEN); 3118 } 3119 3120 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3121 { 3122 struct tcp_repair_window opt; 3123 3124 if (!tp->repair) 3125 return -EPERM; 3126 3127 if (len != sizeof(opt)) 3128 return -EINVAL; 3129 3130 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3131 return -EFAULT; 3132 3133 if (opt.max_window < opt.snd_wnd) 3134 return -EINVAL; 3135 3136 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3137 return -EINVAL; 3138 3139 if (after(opt.rcv_wup, tp->rcv_nxt)) 3140 return -EINVAL; 3141 3142 tp->snd_wl1 = opt.snd_wl1; 3143 tp->snd_wnd = opt.snd_wnd; 3144 tp->max_window = opt.max_window; 3145 3146 tp->rcv_wnd = opt.rcv_wnd; 3147 tp->rcv_wup = opt.rcv_wup; 3148 3149 return 0; 3150 } 3151 3152 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3153 unsigned int len) 3154 { 3155 struct tcp_sock *tp = tcp_sk(sk); 3156 struct tcp_repair_opt opt; 3157 size_t offset = 0; 3158 3159 while (len >= sizeof(opt)) { 3160 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3161 return -EFAULT; 3162 3163 offset += sizeof(opt); 3164 len -= sizeof(opt); 3165 3166 switch (opt.opt_code) { 3167 case TCPOPT_MSS: 3168 tp->rx_opt.mss_clamp = opt.opt_val; 3169 tcp_mtup_init(sk); 3170 break; 3171 case TCPOPT_WINDOW: 3172 { 3173 u16 snd_wscale = opt.opt_val & 0xFFFF; 3174 u16 rcv_wscale = opt.opt_val >> 16; 3175 3176 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3177 return -EFBIG; 3178 3179 tp->rx_opt.snd_wscale = snd_wscale; 3180 tp->rx_opt.rcv_wscale = rcv_wscale; 3181 tp->rx_opt.wscale_ok = 1; 3182 } 3183 break; 3184 case TCPOPT_SACK_PERM: 3185 if (opt.opt_val != 0) 3186 return -EINVAL; 3187 3188 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3189 break; 3190 case TCPOPT_TIMESTAMP: 3191 if (opt.opt_val != 0) 3192 return -EINVAL; 3193 3194 tp->rx_opt.tstamp_ok = 1; 3195 break; 3196 } 3197 } 3198 3199 return 0; 3200 } 3201 3202 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3203 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3204 3205 static void tcp_enable_tx_delay(void) 3206 { 3207 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3208 static int __tcp_tx_delay_enabled = 0; 3209 3210 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3211 static_branch_enable(&tcp_tx_delay_enabled); 3212 pr_info("TCP_TX_DELAY enabled\n"); 3213 } 3214 } 3215 } 3216 3217 /* When set indicates to always queue non-full frames. Later the user clears 3218 * this option and we transmit any pending partial frames in the queue. This is 3219 * meant to be used alongside sendfile() to get properly filled frames when the 3220 * user (for example) must write out headers with a write() call first and then 3221 * use sendfile to send out the data parts. 3222 * 3223 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3224 * TCP_NODELAY. 3225 */ 3226 void __tcp_sock_set_cork(struct sock *sk, bool on) 3227 { 3228 struct tcp_sock *tp = tcp_sk(sk); 3229 3230 if (on) { 3231 tp->nonagle |= TCP_NAGLE_CORK; 3232 } else { 3233 tp->nonagle &= ~TCP_NAGLE_CORK; 3234 if (tp->nonagle & TCP_NAGLE_OFF) 3235 tp->nonagle |= TCP_NAGLE_PUSH; 3236 tcp_push_pending_frames(sk); 3237 } 3238 } 3239 3240 void tcp_sock_set_cork(struct sock *sk, bool on) 3241 { 3242 lock_sock(sk); 3243 __tcp_sock_set_cork(sk, on); 3244 release_sock(sk); 3245 } 3246 EXPORT_SYMBOL(tcp_sock_set_cork); 3247 3248 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3249 * remembered, but it is not activated until cork is cleared. 3250 * 3251 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3252 * even TCP_CORK for currently queued segments. 3253 */ 3254 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3255 { 3256 if (on) { 3257 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3258 tcp_push_pending_frames(sk); 3259 } else { 3260 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3261 } 3262 } 3263 3264 void tcp_sock_set_nodelay(struct sock *sk) 3265 { 3266 lock_sock(sk); 3267 __tcp_sock_set_nodelay(sk, true); 3268 release_sock(sk); 3269 } 3270 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3271 3272 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3273 { 3274 if (!val) { 3275 inet_csk_enter_pingpong_mode(sk); 3276 return; 3277 } 3278 3279 inet_csk_exit_pingpong_mode(sk); 3280 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3281 inet_csk_ack_scheduled(sk)) { 3282 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3283 tcp_cleanup_rbuf(sk, 1); 3284 if (!(val & 1)) 3285 inet_csk_enter_pingpong_mode(sk); 3286 } 3287 } 3288 3289 void tcp_sock_set_quickack(struct sock *sk, int val) 3290 { 3291 lock_sock(sk); 3292 __tcp_sock_set_quickack(sk, val); 3293 release_sock(sk); 3294 } 3295 EXPORT_SYMBOL(tcp_sock_set_quickack); 3296 3297 int tcp_sock_set_syncnt(struct sock *sk, int val) 3298 { 3299 if (val < 1 || val > MAX_TCP_SYNCNT) 3300 return -EINVAL; 3301 3302 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3303 return 0; 3304 } 3305 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3306 3307 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3308 { 3309 /* Cap the max time in ms TCP will retry or probe the window 3310 * before giving up and aborting (ETIMEDOUT) a connection. 3311 */ 3312 if (val < 0) 3313 return -EINVAL; 3314 3315 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3316 return 0; 3317 } 3318 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3319 3320 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3321 { 3322 struct tcp_sock *tp = tcp_sk(sk); 3323 3324 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3325 return -EINVAL; 3326 3327 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3328 WRITE_ONCE(tp->keepalive_time, val * HZ); 3329 if (sock_flag(sk, SOCK_KEEPOPEN) && 3330 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3331 u32 elapsed = keepalive_time_elapsed(tp); 3332 3333 if (tp->keepalive_time > elapsed) 3334 elapsed = tp->keepalive_time - elapsed; 3335 else 3336 elapsed = 0; 3337 inet_csk_reset_keepalive_timer(sk, elapsed); 3338 } 3339 3340 return 0; 3341 } 3342 3343 int tcp_sock_set_keepidle(struct sock *sk, int val) 3344 { 3345 int err; 3346 3347 lock_sock(sk); 3348 err = tcp_sock_set_keepidle_locked(sk, val); 3349 release_sock(sk); 3350 return err; 3351 } 3352 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3353 3354 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3355 { 3356 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3357 return -EINVAL; 3358 3359 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3360 return 0; 3361 } 3362 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3363 3364 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3365 { 3366 if (val < 1 || val > MAX_TCP_KEEPCNT) 3367 return -EINVAL; 3368 3369 /* Paired with READ_ONCE() in keepalive_probes() */ 3370 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3371 return 0; 3372 } 3373 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3374 3375 int tcp_set_window_clamp(struct sock *sk, int val) 3376 { 3377 struct tcp_sock *tp = tcp_sk(sk); 3378 3379 if (!val) { 3380 if (sk->sk_state != TCP_CLOSE) 3381 return -EINVAL; 3382 tp->window_clamp = 0; 3383 } else { 3384 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3385 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3386 SOCK_MIN_RCVBUF / 2 : val; 3387 3388 if (new_window_clamp == old_window_clamp) 3389 return 0; 3390 3391 tp->window_clamp = new_window_clamp; 3392 if (new_window_clamp < old_window_clamp) { 3393 /* need to apply the reserved mem provisioning only 3394 * when shrinking the window clamp 3395 */ 3396 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3397 3398 } else { 3399 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3400 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3401 tp->rcv_ssthresh); 3402 } 3403 } 3404 return 0; 3405 } 3406 3407 /* 3408 * Socket option code for TCP. 3409 */ 3410 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3411 sockptr_t optval, unsigned int optlen) 3412 { 3413 struct tcp_sock *tp = tcp_sk(sk); 3414 struct inet_connection_sock *icsk = inet_csk(sk); 3415 struct net *net = sock_net(sk); 3416 int val; 3417 int err = 0; 3418 3419 /* These are data/string values, all the others are ints */ 3420 switch (optname) { 3421 case TCP_CONGESTION: { 3422 char name[TCP_CA_NAME_MAX]; 3423 3424 if (optlen < 1) 3425 return -EINVAL; 3426 3427 val = strncpy_from_sockptr(name, optval, 3428 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3429 if (val < 0) 3430 return -EFAULT; 3431 name[val] = 0; 3432 3433 sockopt_lock_sock(sk); 3434 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3435 sockopt_ns_capable(sock_net(sk)->user_ns, 3436 CAP_NET_ADMIN)); 3437 sockopt_release_sock(sk); 3438 return err; 3439 } 3440 case TCP_ULP: { 3441 char name[TCP_ULP_NAME_MAX]; 3442 3443 if (optlen < 1) 3444 return -EINVAL; 3445 3446 val = strncpy_from_sockptr(name, optval, 3447 min_t(long, TCP_ULP_NAME_MAX - 1, 3448 optlen)); 3449 if (val < 0) 3450 return -EFAULT; 3451 name[val] = 0; 3452 3453 sockopt_lock_sock(sk); 3454 err = tcp_set_ulp(sk, name); 3455 sockopt_release_sock(sk); 3456 return err; 3457 } 3458 case TCP_FASTOPEN_KEY: { 3459 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3460 __u8 *backup_key = NULL; 3461 3462 /* Allow a backup key as well to facilitate key rotation 3463 * First key is the active one. 3464 */ 3465 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3466 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3467 return -EINVAL; 3468 3469 if (copy_from_sockptr(key, optval, optlen)) 3470 return -EFAULT; 3471 3472 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3473 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3474 3475 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3476 } 3477 default: 3478 /* fallthru */ 3479 break; 3480 } 3481 3482 if (optlen < sizeof(int)) 3483 return -EINVAL; 3484 3485 if (copy_from_sockptr(&val, optval, sizeof(val))) 3486 return -EFAULT; 3487 3488 /* Handle options that can be set without locking the socket. */ 3489 switch (optname) { 3490 case TCP_SYNCNT: 3491 return tcp_sock_set_syncnt(sk, val); 3492 case TCP_USER_TIMEOUT: 3493 return tcp_sock_set_user_timeout(sk, val); 3494 case TCP_KEEPINTVL: 3495 return tcp_sock_set_keepintvl(sk, val); 3496 case TCP_KEEPCNT: 3497 return tcp_sock_set_keepcnt(sk, val); 3498 case TCP_LINGER2: 3499 if (val < 0) 3500 WRITE_ONCE(tp->linger2, -1); 3501 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3502 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3503 else 3504 WRITE_ONCE(tp->linger2, val * HZ); 3505 return 0; 3506 case TCP_DEFER_ACCEPT: 3507 /* Translate value in seconds to number of retransmits */ 3508 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3509 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3510 TCP_RTO_MAX / HZ)); 3511 return 0; 3512 } 3513 3514 sockopt_lock_sock(sk); 3515 3516 switch (optname) { 3517 case TCP_MAXSEG: 3518 /* Values greater than interface MTU won't take effect. However 3519 * at the point when this call is done we typically don't yet 3520 * know which interface is going to be used 3521 */ 3522 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3523 err = -EINVAL; 3524 break; 3525 } 3526 tp->rx_opt.user_mss = val; 3527 break; 3528 3529 case TCP_NODELAY: 3530 __tcp_sock_set_nodelay(sk, val); 3531 break; 3532 3533 case TCP_THIN_LINEAR_TIMEOUTS: 3534 if (val < 0 || val > 1) 3535 err = -EINVAL; 3536 else 3537 tp->thin_lto = val; 3538 break; 3539 3540 case TCP_THIN_DUPACK: 3541 if (val < 0 || val > 1) 3542 err = -EINVAL; 3543 break; 3544 3545 case TCP_REPAIR: 3546 if (!tcp_can_repair_sock(sk)) 3547 err = -EPERM; 3548 else if (val == TCP_REPAIR_ON) { 3549 tp->repair = 1; 3550 sk->sk_reuse = SK_FORCE_REUSE; 3551 tp->repair_queue = TCP_NO_QUEUE; 3552 } else if (val == TCP_REPAIR_OFF) { 3553 tp->repair = 0; 3554 sk->sk_reuse = SK_NO_REUSE; 3555 tcp_send_window_probe(sk); 3556 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3557 tp->repair = 0; 3558 sk->sk_reuse = SK_NO_REUSE; 3559 } else 3560 err = -EINVAL; 3561 3562 break; 3563 3564 case TCP_REPAIR_QUEUE: 3565 if (!tp->repair) 3566 err = -EPERM; 3567 else if ((unsigned int)val < TCP_QUEUES_NR) 3568 tp->repair_queue = val; 3569 else 3570 err = -EINVAL; 3571 break; 3572 3573 case TCP_QUEUE_SEQ: 3574 if (sk->sk_state != TCP_CLOSE) { 3575 err = -EPERM; 3576 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3577 if (!tcp_rtx_queue_empty(sk)) 3578 err = -EPERM; 3579 else 3580 WRITE_ONCE(tp->write_seq, val); 3581 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3582 if (tp->rcv_nxt != tp->copied_seq) { 3583 err = -EPERM; 3584 } else { 3585 WRITE_ONCE(tp->rcv_nxt, val); 3586 WRITE_ONCE(tp->copied_seq, val); 3587 } 3588 } else { 3589 err = -EINVAL; 3590 } 3591 break; 3592 3593 case TCP_REPAIR_OPTIONS: 3594 if (!tp->repair) 3595 err = -EINVAL; 3596 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3597 err = tcp_repair_options_est(sk, optval, optlen); 3598 else 3599 err = -EPERM; 3600 break; 3601 3602 case TCP_CORK: 3603 __tcp_sock_set_cork(sk, val); 3604 break; 3605 3606 case TCP_KEEPIDLE: 3607 err = tcp_sock_set_keepidle_locked(sk, val); 3608 break; 3609 case TCP_SAVE_SYN: 3610 /* 0: disable, 1: enable, 2: start from ether_header */ 3611 if (val < 0 || val > 2) 3612 err = -EINVAL; 3613 else 3614 tp->save_syn = val; 3615 break; 3616 3617 case TCP_WINDOW_CLAMP: 3618 err = tcp_set_window_clamp(sk, val); 3619 break; 3620 3621 case TCP_QUICKACK: 3622 __tcp_sock_set_quickack(sk, val); 3623 break; 3624 3625 #ifdef CONFIG_TCP_MD5SIG 3626 case TCP_MD5SIG: 3627 case TCP_MD5SIG_EXT: 3628 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3629 break; 3630 #endif 3631 case TCP_FASTOPEN: 3632 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3633 TCPF_LISTEN))) { 3634 tcp_fastopen_init_key_once(net); 3635 3636 fastopen_queue_tune(sk, val); 3637 } else { 3638 err = -EINVAL; 3639 } 3640 break; 3641 case TCP_FASTOPEN_CONNECT: 3642 if (val > 1 || val < 0) { 3643 err = -EINVAL; 3644 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3645 TFO_CLIENT_ENABLE) { 3646 if (sk->sk_state == TCP_CLOSE) 3647 tp->fastopen_connect = val; 3648 else 3649 err = -EINVAL; 3650 } else { 3651 err = -EOPNOTSUPP; 3652 } 3653 break; 3654 case TCP_FASTOPEN_NO_COOKIE: 3655 if (val > 1 || val < 0) 3656 err = -EINVAL; 3657 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3658 err = -EINVAL; 3659 else 3660 tp->fastopen_no_cookie = val; 3661 break; 3662 case TCP_TIMESTAMP: 3663 if (!tp->repair) 3664 err = -EPERM; 3665 else 3666 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3667 break; 3668 case TCP_REPAIR_WINDOW: 3669 err = tcp_repair_set_window(tp, optval, optlen); 3670 break; 3671 case TCP_NOTSENT_LOWAT: 3672 WRITE_ONCE(tp->notsent_lowat, val); 3673 sk->sk_write_space(sk); 3674 break; 3675 case TCP_INQ: 3676 if (val > 1 || val < 0) 3677 err = -EINVAL; 3678 else 3679 tp->recvmsg_inq = val; 3680 break; 3681 case TCP_TX_DELAY: 3682 if (val) 3683 tcp_enable_tx_delay(); 3684 WRITE_ONCE(tp->tcp_tx_delay, val); 3685 break; 3686 default: 3687 err = -ENOPROTOOPT; 3688 break; 3689 } 3690 3691 sockopt_release_sock(sk); 3692 return err; 3693 } 3694 3695 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3696 unsigned int optlen) 3697 { 3698 const struct inet_connection_sock *icsk = inet_csk(sk); 3699 3700 if (level != SOL_TCP) 3701 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3702 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3703 optval, optlen); 3704 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3705 } 3706 EXPORT_SYMBOL(tcp_setsockopt); 3707 3708 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3709 struct tcp_info *info) 3710 { 3711 u64 stats[__TCP_CHRONO_MAX], total = 0; 3712 enum tcp_chrono i; 3713 3714 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3715 stats[i] = tp->chrono_stat[i - 1]; 3716 if (i == tp->chrono_type) 3717 stats[i] += tcp_jiffies32 - tp->chrono_start; 3718 stats[i] *= USEC_PER_SEC / HZ; 3719 total += stats[i]; 3720 } 3721 3722 info->tcpi_busy_time = total; 3723 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3724 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3725 } 3726 3727 /* Return information about state of tcp endpoint in API format. */ 3728 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3729 { 3730 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3731 const struct inet_connection_sock *icsk = inet_csk(sk); 3732 unsigned long rate; 3733 u32 now; 3734 u64 rate64; 3735 bool slow; 3736 3737 memset(info, 0, sizeof(*info)); 3738 if (sk->sk_type != SOCK_STREAM) 3739 return; 3740 3741 info->tcpi_state = inet_sk_state_load(sk); 3742 3743 /* Report meaningful fields for all TCP states, including listeners */ 3744 rate = READ_ONCE(sk->sk_pacing_rate); 3745 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3746 info->tcpi_pacing_rate = rate64; 3747 3748 rate = READ_ONCE(sk->sk_max_pacing_rate); 3749 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3750 info->tcpi_max_pacing_rate = rate64; 3751 3752 info->tcpi_reordering = tp->reordering; 3753 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3754 3755 if (info->tcpi_state == TCP_LISTEN) { 3756 /* listeners aliased fields : 3757 * tcpi_unacked -> Number of children ready for accept() 3758 * tcpi_sacked -> max backlog 3759 */ 3760 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3761 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3762 return; 3763 } 3764 3765 slow = lock_sock_fast(sk); 3766 3767 info->tcpi_ca_state = icsk->icsk_ca_state; 3768 info->tcpi_retransmits = icsk->icsk_retransmits; 3769 info->tcpi_probes = icsk->icsk_probes_out; 3770 info->tcpi_backoff = icsk->icsk_backoff; 3771 3772 if (tp->rx_opt.tstamp_ok) 3773 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3774 if (tcp_is_sack(tp)) 3775 info->tcpi_options |= TCPI_OPT_SACK; 3776 if (tp->rx_opt.wscale_ok) { 3777 info->tcpi_options |= TCPI_OPT_WSCALE; 3778 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3779 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3780 } 3781 3782 if (tp->ecn_flags & TCP_ECN_OK) 3783 info->tcpi_options |= TCPI_OPT_ECN; 3784 if (tp->ecn_flags & TCP_ECN_SEEN) 3785 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3786 if (tp->syn_data_acked) 3787 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3788 3789 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3790 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato, 3791 tcp_delack_max(sk))); 3792 info->tcpi_snd_mss = tp->mss_cache; 3793 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3794 3795 info->tcpi_unacked = tp->packets_out; 3796 info->tcpi_sacked = tp->sacked_out; 3797 3798 info->tcpi_lost = tp->lost_out; 3799 info->tcpi_retrans = tp->retrans_out; 3800 3801 now = tcp_jiffies32; 3802 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3803 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3804 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3805 3806 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3807 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3808 info->tcpi_rtt = tp->srtt_us >> 3; 3809 info->tcpi_rttvar = tp->mdev_us >> 2; 3810 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3811 info->tcpi_advmss = tp->advmss; 3812 3813 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3814 info->tcpi_rcv_space = tp->rcvq_space.space; 3815 3816 info->tcpi_total_retrans = tp->total_retrans; 3817 3818 info->tcpi_bytes_acked = tp->bytes_acked; 3819 info->tcpi_bytes_received = tp->bytes_received; 3820 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3821 tcp_get_info_chrono_stats(tp, info); 3822 3823 info->tcpi_segs_out = tp->segs_out; 3824 3825 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3826 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3827 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3828 3829 info->tcpi_min_rtt = tcp_min_rtt(tp); 3830 info->tcpi_data_segs_out = tp->data_segs_out; 3831 3832 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3833 rate64 = tcp_compute_delivery_rate(tp); 3834 if (rate64) 3835 info->tcpi_delivery_rate = rate64; 3836 info->tcpi_delivered = tp->delivered; 3837 info->tcpi_delivered_ce = tp->delivered_ce; 3838 info->tcpi_bytes_sent = tp->bytes_sent; 3839 info->tcpi_bytes_retrans = tp->bytes_retrans; 3840 info->tcpi_dsack_dups = tp->dsack_dups; 3841 info->tcpi_reord_seen = tp->reord_seen; 3842 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3843 info->tcpi_snd_wnd = tp->snd_wnd; 3844 info->tcpi_rcv_wnd = tp->rcv_wnd; 3845 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3846 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3847 unlock_sock_fast(sk, slow); 3848 } 3849 EXPORT_SYMBOL_GPL(tcp_get_info); 3850 3851 static size_t tcp_opt_stats_get_size(void) 3852 { 3853 return 3854 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3855 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3856 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3857 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3858 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3859 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3860 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3862 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3863 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3864 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3865 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3867 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3868 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3869 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3870 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3871 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3872 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3873 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3874 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3875 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3876 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3877 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3878 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3879 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3880 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3881 0; 3882 } 3883 3884 /* Returns TTL or hop limit of an incoming packet from skb. */ 3885 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3886 { 3887 if (skb->protocol == htons(ETH_P_IP)) 3888 return ip_hdr(skb)->ttl; 3889 else if (skb->protocol == htons(ETH_P_IPV6)) 3890 return ipv6_hdr(skb)->hop_limit; 3891 else 3892 return 0; 3893 } 3894 3895 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3896 const struct sk_buff *orig_skb, 3897 const struct sk_buff *ack_skb) 3898 { 3899 const struct tcp_sock *tp = tcp_sk(sk); 3900 struct sk_buff *stats; 3901 struct tcp_info info; 3902 unsigned long rate; 3903 u64 rate64; 3904 3905 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3906 if (!stats) 3907 return NULL; 3908 3909 tcp_get_info_chrono_stats(tp, &info); 3910 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3911 info.tcpi_busy_time, TCP_NLA_PAD); 3912 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3913 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3914 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3915 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3916 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3917 tp->data_segs_out, TCP_NLA_PAD); 3918 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3919 tp->total_retrans, TCP_NLA_PAD); 3920 3921 rate = READ_ONCE(sk->sk_pacing_rate); 3922 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3923 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3924 3925 rate64 = tcp_compute_delivery_rate(tp); 3926 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3927 3928 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3929 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3930 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3931 3932 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3933 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3934 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3935 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3936 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3937 3938 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3939 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3940 3941 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3942 TCP_NLA_PAD); 3943 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3944 TCP_NLA_PAD); 3945 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3946 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3947 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3948 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3949 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3950 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3951 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3952 TCP_NLA_PAD); 3953 if (ack_skb) 3954 nla_put_u8(stats, TCP_NLA_TTL, 3955 tcp_skb_ttl_or_hop_limit(ack_skb)); 3956 3957 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3958 return stats; 3959 } 3960 3961 int do_tcp_getsockopt(struct sock *sk, int level, 3962 int optname, sockptr_t optval, sockptr_t optlen) 3963 { 3964 struct inet_connection_sock *icsk = inet_csk(sk); 3965 struct tcp_sock *tp = tcp_sk(sk); 3966 struct net *net = sock_net(sk); 3967 int val, len; 3968 3969 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3970 return -EFAULT; 3971 3972 if (len < 0) 3973 return -EINVAL; 3974 3975 len = min_t(unsigned int, len, sizeof(int)); 3976 3977 switch (optname) { 3978 case TCP_MAXSEG: 3979 val = tp->mss_cache; 3980 if (tp->rx_opt.user_mss && 3981 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3982 val = tp->rx_opt.user_mss; 3983 if (tp->repair) 3984 val = tp->rx_opt.mss_clamp; 3985 break; 3986 case TCP_NODELAY: 3987 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3988 break; 3989 case TCP_CORK: 3990 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3991 break; 3992 case TCP_KEEPIDLE: 3993 val = keepalive_time_when(tp) / HZ; 3994 break; 3995 case TCP_KEEPINTVL: 3996 val = keepalive_intvl_when(tp) / HZ; 3997 break; 3998 case TCP_KEEPCNT: 3999 val = keepalive_probes(tp); 4000 break; 4001 case TCP_SYNCNT: 4002 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4003 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4004 break; 4005 case TCP_LINGER2: 4006 val = READ_ONCE(tp->linger2); 4007 if (val >= 0) 4008 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4009 break; 4010 case TCP_DEFER_ACCEPT: 4011 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4012 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4013 TCP_RTO_MAX / HZ); 4014 break; 4015 case TCP_WINDOW_CLAMP: 4016 val = tp->window_clamp; 4017 break; 4018 case TCP_INFO: { 4019 struct tcp_info info; 4020 4021 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4022 return -EFAULT; 4023 4024 tcp_get_info(sk, &info); 4025 4026 len = min_t(unsigned int, len, sizeof(info)); 4027 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4028 return -EFAULT; 4029 if (copy_to_sockptr(optval, &info, len)) 4030 return -EFAULT; 4031 return 0; 4032 } 4033 case TCP_CC_INFO: { 4034 const struct tcp_congestion_ops *ca_ops; 4035 union tcp_cc_info info; 4036 size_t sz = 0; 4037 int attr; 4038 4039 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4040 return -EFAULT; 4041 4042 ca_ops = icsk->icsk_ca_ops; 4043 if (ca_ops && ca_ops->get_info) 4044 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4045 4046 len = min_t(unsigned int, len, sz); 4047 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4048 return -EFAULT; 4049 if (copy_to_sockptr(optval, &info, len)) 4050 return -EFAULT; 4051 return 0; 4052 } 4053 case TCP_QUICKACK: 4054 val = !inet_csk_in_pingpong_mode(sk); 4055 break; 4056 4057 case TCP_CONGESTION: 4058 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4059 return -EFAULT; 4060 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4061 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4062 return -EFAULT; 4063 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4064 return -EFAULT; 4065 return 0; 4066 4067 case TCP_ULP: 4068 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4069 return -EFAULT; 4070 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4071 if (!icsk->icsk_ulp_ops) { 4072 len = 0; 4073 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4074 return -EFAULT; 4075 return 0; 4076 } 4077 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4078 return -EFAULT; 4079 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4080 return -EFAULT; 4081 return 0; 4082 4083 case TCP_FASTOPEN_KEY: { 4084 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4085 unsigned int key_len; 4086 4087 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4088 return -EFAULT; 4089 4090 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4091 TCP_FASTOPEN_KEY_LENGTH; 4092 len = min_t(unsigned int, len, key_len); 4093 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4094 return -EFAULT; 4095 if (copy_to_sockptr(optval, key, len)) 4096 return -EFAULT; 4097 return 0; 4098 } 4099 case TCP_THIN_LINEAR_TIMEOUTS: 4100 val = tp->thin_lto; 4101 break; 4102 4103 case TCP_THIN_DUPACK: 4104 val = 0; 4105 break; 4106 4107 case TCP_REPAIR: 4108 val = tp->repair; 4109 break; 4110 4111 case TCP_REPAIR_QUEUE: 4112 if (tp->repair) 4113 val = tp->repair_queue; 4114 else 4115 return -EINVAL; 4116 break; 4117 4118 case TCP_REPAIR_WINDOW: { 4119 struct tcp_repair_window opt; 4120 4121 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4122 return -EFAULT; 4123 4124 if (len != sizeof(opt)) 4125 return -EINVAL; 4126 4127 if (!tp->repair) 4128 return -EPERM; 4129 4130 opt.snd_wl1 = tp->snd_wl1; 4131 opt.snd_wnd = tp->snd_wnd; 4132 opt.max_window = tp->max_window; 4133 opt.rcv_wnd = tp->rcv_wnd; 4134 opt.rcv_wup = tp->rcv_wup; 4135 4136 if (copy_to_sockptr(optval, &opt, len)) 4137 return -EFAULT; 4138 return 0; 4139 } 4140 case TCP_QUEUE_SEQ: 4141 if (tp->repair_queue == TCP_SEND_QUEUE) 4142 val = tp->write_seq; 4143 else if (tp->repair_queue == TCP_RECV_QUEUE) 4144 val = tp->rcv_nxt; 4145 else 4146 return -EINVAL; 4147 break; 4148 4149 case TCP_USER_TIMEOUT: 4150 val = READ_ONCE(icsk->icsk_user_timeout); 4151 break; 4152 4153 case TCP_FASTOPEN: 4154 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4155 break; 4156 4157 case TCP_FASTOPEN_CONNECT: 4158 val = tp->fastopen_connect; 4159 break; 4160 4161 case TCP_FASTOPEN_NO_COOKIE: 4162 val = tp->fastopen_no_cookie; 4163 break; 4164 4165 case TCP_TX_DELAY: 4166 val = READ_ONCE(tp->tcp_tx_delay); 4167 break; 4168 4169 case TCP_TIMESTAMP: 4170 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4171 break; 4172 case TCP_NOTSENT_LOWAT: 4173 val = READ_ONCE(tp->notsent_lowat); 4174 break; 4175 case TCP_INQ: 4176 val = tp->recvmsg_inq; 4177 break; 4178 case TCP_SAVE_SYN: 4179 val = tp->save_syn; 4180 break; 4181 case TCP_SAVED_SYN: { 4182 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4183 return -EFAULT; 4184 4185 sockopt_lock_sock(sk); 4186 if (tp->saved_syn) { 4187 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4188 len = tcp_saved_syn_len(tp->saved_syn); 4189 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4190 sockopt_release_sock(sk); 4191 return -EFAULT; 4192 } 4193 sockopt_release_sock(sk); 4194 return -EINVAL; 4195 } 4196 len = tcp_saved_syn_len(tp->saved_syn); 4197 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4198 sockopt_release_sock(sk); 4199 return -EFAULT; 4200 } 4201 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4202 sockopt_release_sock(sk); 4203 return -EFAULT; 4204 } 4205 tcp_saved_syn_free(tp); 4206 sockopt_release_sock(sk); 4207 } else { 4208 sockopt_release_sock(sk); 4209 len = 0; 4210 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4211 return -EFAULT; 4212 } 4213 return 0; 4214 } 4215 #ifdef CONFIG_MMU 4216 case TCP_ZEROCOPY_RECEIVE: { 4217 struct scm_timestamping_internal tss; 4218 struct tcp_zerocopy_receive zc = {}; 4219 int err; 4220 4221 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4222 return -EFAULT; 4223 if (len < 0 || 4224 len < offsetofend(struct tcp_zerocopy_receive, length)) 4225 return -EINVAL; 4226 if (unlikely(len > sizeof(zc))) { 4227 err = check_zeroed_sockptr(optval, sizeof(zc), 4228 len - sizeof(zc)); 4229 if (err < 1) 4230 return err == 0 ? -EINVAL : err; 4231 len = sizeof(zc); 4232 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4233 return -EFAULT; 4234 } 4235 if (copy_from_sockptr(&zc, optval, len)) 4236 return -EFAULT; 4237 if (zc.reserved) 4238 return -EINVAL; 4239 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4240 return -EINVAL; 4241 sockopt_lock_sock(sk); 4242 err = tcp_zerocopy_receive(sk, &zc, &tss); 4243 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4244 &zc, &len, err); 4245 sockopt_release_sock(sk); 4246 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4247 goto zerocopy_rcv_cmsg; 4248 switch (len) { 4249 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4250 goto zerocopy_rcv_cmsg; 4251 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4252 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4253 case offsetofend(struct tcp_zerocopy_receive, flags): 4254 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4255 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4256 case offsetofend(struct tcp_zerocopy_receive, err): 4257 goto zerocopy_rcv_sk_err; 4258 case offsetofend(struct tcp_zerocopy_receive, inq): 4259 goto zerocopy_rcv_inq; 4260 case offsetofend(struct tcp_zerocopy_receive, length): 4261 default: 4262 goto zerocopy_rcv_out; 4263 } 4264 zerocopy_rcv_cmsg: 4265 if (zc.msg_flags & TCP_CMSG_TS) 4266 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4267 else 4268 zc.msg_flags = 0; 4269 zerocopy_rcv_sk_err: 4270 if (!err) 4271 zc.err = sock_error(sk); 4272 zerocopy_rcv_inq: 4273 zc.inq = tcp_inq_hint(sk); 4274 zerocopy_rcv_out: 4275 if (!err && copy_to_sockptr(optval, &zc, len)) 4276 err = -EFAULT; 4277 return err; 4278 } 4279 #endif 4280 default: 4281 return -ENOPROTOOPT; 4282 } 4283 4284 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4285 return -EFAULT; 4286 if (copy_to_sockptr(optval, &val, len)) 4287 return -EFAULT; 4288 return 0; 4289 } 4290 4291 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4292 { 4293 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4294 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4295 */ 4296 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4297 return true; 4298 4299 return false; 4300 } 4301 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4302 4303 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4304 int __user *optlen) 4305 { 4306 struct inet_connection_sock *icsk = inet_csk(sk); 4307 4308 if (level != SOL_TCP) 4309 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4310 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4311 optval, optlen); 4312 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4313 USER_SOCKPTR(optlen)); 4314 } 4315 EXPORT_SYMBOL(tcp_getsockopt); 4316 4317 #ifdef CONFIG_TCP_MD5SIG 4318 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4319 static DEFINE_MUTEX(tcp_md5sig_mutex); 4320 static bool tcp_md5sig_pool_populated = false; 4321 4322 static void __tcp_alloc_md5sig_pool(void) 4323 { 4324 struct crypto_ahash *hash; 4325 int cpu; 4326 4327 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4328 if (IS_ERR(hash)) 4329 return; 4330 4331 for_each_possible_cpu(cpu) { 4332 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4333 struct ahash_request *req; 4334 4335 if (!scratch) { 4336 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4337 sizeof(struct tcphdr), 4338 GFP_KERNEL, 4339 cpu_to_node(cpu)); 4340 if (!scratch) 4341 return; 4342 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4343 } 4344 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4345 continue; 4346 4347 req = ahash_request_alloc(hash, GFP_KERNEL); 4348 if (!req) 4349 return; 4350 4351 ahash_request_set_callback(req, 0, NULL, NULL); 4352 4353 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4354 } 4355 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4356 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4357 */ 4358 smp_wmb(); 4359 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4360 * and tcp_get_md5sig_pool(). 4361 */ 4362 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4363 } 4364 4365 bool tcp_alloc_md5sig_pool(void) 4366 { 4367 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4368 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4369 mutex_lock(&tcp_md5sig_mutex); 4370 4371 if (!tcp_md5sig_pool_populated) 4372 __tcp_alloc_md5sig_pool(); 4373 4374 mutex_unlock(&tcp_md5sig_mutex); 4375 } 4376 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4377 return READ_ONCE(tcp_md5sig_pool_populated); 4378 } 4379 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4380 4381 4382 /** 4383 * tcp_get_md5sig_pool - get md5sig_pool for this user 4384 * 4385 * We use percpu structure, so if we succeed, we exit with preemption 4386 * and BH disabled, to make sure another thread or softirq handling 4387 * wont try to get same context. 4388 */ 4389 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4390 { 4391 local_bh_disable(); 4392 4393 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4394 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4395 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4396 smp_rmb(); 4397 return this_cpu_ptr(&tcp_md5sig_pool); 4398 } 4399 local_bh_enable(); 4400 return NULL; 4401 } 4402 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4403 4404 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4405 const struct sk_buff *skb, unsigned int header_len) 4406 { 4407 struct scatterlist sg; 4408 const struct tcphdr *tp = tcp_hdr(skb); 4409 struct ahash_request *req = hp->md5_req; 4410 unsigned int i; 4411 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4412 skb_headlen(skb) - header_len : 0; 4413 const struct skb_shared_info *shi = skb_shinfo(skb); 4414 struct sk_buff *frag_iter; 4415 4416 sg_init_table(&sg, 1); 4417 4418 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4419 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4420 if (crypto_ahash_update(req)) 4421 return 1; 4422 4423 for (i = 0; i < shi->nr_frags; ++i) { 4424 const skb_frag_t *f = &shi->frags[i]; 4425 unsigned int offset = skb_frag_off(f); 4426 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4427 4428 sg_set_page(&sg, page, skb_frag_size(f), 4429 offset_in_page(offset)); 4430 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4431 if (crypto_ahash_update(req)) 4432 return 1; 4433 } 4434 4435 skb_walk_frags(skb, frag_iter) 4436 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4437 return 1; 4438 4439 return 0; 4440 } 4441 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4442 4443 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4444 { 4445 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4446 struct scatterlist sg; 4447 4448 sg_init_one(&sg, key->key, keylen); 4449 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4450 4451 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4452 return data_race(crypto_ahash_update(hp->md5_req)); 4453 } 4454 EXPORT_SYMBOL(tcp_md5_hash_key); 4455 4456 /* Called with rcu_read_lock() */ 4457 enum skb_drop_reason 4458 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4459 const void *saddr, const void *daddr, 4460 int family, int dif, int sdif) 4461 { 4462 /* 4463 * This gets called for each TCP segment that arrives 4464 * so we want to be efficient. 4465 * We have 3 drop cases: 4466 * o No MD5 hash and one expected. 4467 * o MD5 hash and we're not expecting one. 4468 * o MD5 hash and its wrong. 4469 */ 4470 const __u8 *hash_location = NULL; 4471 struct tcp_md5sig_key *hash_expected; 4472 const struct tcphdr *th = tcp_hdr(skb); 4473 const struct tcp_sock *tp = tcp_sk(sk); 4474 int genhash, l3index; 4475 u8 newhash[16]; 4476 4477 /* sdif set, means packet ingressed via a device 4478 * in an L3 domain and dif is set to the l3mdev 4479 */ 4480 l3index = sdif ? dif : 0; 4481 4482 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4483 hash_location = tcp_parse_md5sig_option(th); 4484 4485 /* We've parsed the options - do we have a hash? */ 4486 if (!hash_expected && !hash_location) 4487 return SKB_NOT_DROPPED_YET; 4488 4489 if (hash_expected && !hash_location) { 4490 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4491 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4492 } 4493 4494 if (!hash_expected && hash_location) { 4495 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4496 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4497 } 4498 4499 /* Check the signature. 4500 * To support dual stack listeners, we need to handle 4501 * IPv4-mapped case. 4502 */ 4503 if (family == AF_INET) 4504 genhash = tcp_v4_md5_hash_skb(newhash, 4505 hash_expected, 4506 NULL, skb); 4507 else 4508 genhash = tp->af_specific->calc_md5_hash(newhash, 4509 hash_expected, 4510 NULL, skb); 4511 4512 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4513 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4514 if (family == AF_INET) { 4515 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4516 saddr, ntohs(th->source), 4517 daddr, ntohs(th->dest), 4518 genhash ? " tcp_v4_calc_md5_hash failed" 4519 : "", l3index); 4520 } else { 4521 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4522 genhash ? "failed" : "mismatch", 4523 saddr, ntohs(th->source), 4524 daddr, ntohs(th->dest), l3index); 4525 } 4526 return SKB_DROP_REASON_TCP_MD5FAILURE; 4527 } 4528 return SKB_NOT_DROPPED_YET; 4529 } 4530 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4531 4532 #endif 4533 4534 void tcp_done(struct sock *sk) 4535 { 4536 struct request_sock *req; 4537 4538 /* We might be called with a new socket, after 4539 * inet_csk_prepare_forced_close() has been called 4540 * so we can not use lockdep_sock_is_held(sk) 4541 */ 4542 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4543 4544 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4545 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4546 4547 tcp_set_state(sk, TCP_CLOSE); 4548 tcp_clear_xmit_timers(sk); 4549 if (req) 4550 reqsk_fastopen_remove(sk, req, false); 4551 4552 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4553 4554 if (!sock_flag(sk, SOCK_DEAD)) 4555 sk->sk_state_change(sk); 4556 else 4557 inet_csk_destroy_sock(sk); 4558 } 4559 EXPORT_SYMBOL_GPL(tcp_done); 4560 4561 int tcp_abort(struct sock *sk, int err) 4562 { 4563 int state = inet_sk_state_load(sk); 4564 4565 if (state == TCP_NEW_SYN_RECV) { 4566 struct request_sock *req = inet_reqsk(sk); 4567 4568 local_bh_disable(); 4569 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4570 local_bh_enable(); 4571 return 0; 4572 } 4573 if (state == TCP_TIME_WAIT) { 4574 struct inet_timewait_sock *tw = inet_twsk(sk); 4575 4576 refcount_inc(&tw->tw_refcnt); 4577 local_bh_disable(); 4578 inet_twsk_deschedule_put(tw); 4579 local_bh_enable(); 4580 return 0; 4581 } 4582 4583 /* BPF context ensures sock locking. */ 4584 if (!has_current_bpf_ctx()) 4585 /* Don't race with userspace socket closes such as tcp_close. */ 4586 lock_sock(sk); 4587 4588 if (sk->sk_state == TCP_LISTEN) { 4589 tcp_set_state(sk, TCP_CLOSE); 4590 inet_csk_listen_stop(sk); 4591 } 4592 4593 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4594 local_bh_disable(); 4595 bh_lock_sock(sk); 4596 4597 if (!sock_flag(sk, SOCK_DEAD)) { 4598 WRITE_ONCE(sk->sk_err, err); 4599 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4600 smp_wmb(); 4601 sk_error_report(sk); 4602 if (tcp_need_reset(sk->sk_state)) 4603 tcp_send_active_reset(sk, GFP_ATOMIC); 4604 tcp_done(sk); 4605 } 4606 4607 bh_unlock_sock(sk); 4608 local_bh_enable(); 4609 tcp_write_queue_purge(sk); 4610 if (!has_current_bpf_ctx()) 4611 release_sock(sk); 4612 return 0; 4613 } 4614 EXPORT_SYMBOL_GPL(tcp_abort); 4615 4616 extern struct tcp_congestion_ops tcp_reno; 4617 4618 static __initdata unsigned long thash_entries; 4619 static int __init set_thash_entries(char *str) 4620 { 4621 ssize_t ret; 4622 4623 if (!str) 4624 return 0; 4625 4626 ret = kstrtoul(str, 0, &thash_entries); 4627 if (ret) 4628 return 0; 4629 4630 return 1; 4631 } 4632 __setup("thash_entries=", set_thash_entries); 4633 4634 static void __init tcp_init_mem(void) 4635 { 4636 unsigned long limit = nr_free_buffer_pages() / 16; 4637 4638 limit = max(limit, 128UL); 4639 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4640 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4641 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4642 } 4643 4644 void __init tcp_init(void) 4645 { 4646 int max_rshare, max_wshare, cnt; 4647 unsigned long limit; 4648 unsigned int i; 4649 4650 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4651 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4652 sizeof_field(struct sk_buff, cb)); 4653 4654 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4655 4656 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4657 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4658 4659 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4660 thash_entries, 21, /* one slot per 2 MB*/ 4661 0, 64 * 1024); 4662 tcp_hashinfo.bind_bucket_cachep = 4663 kmem_cache_create("tcp_bind_bucket", 4664 sizeof(struct inet_bind_bucket), 0, 4665 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4666 SLAB_ACCOUNT, 4667 NULL); 4668 tcp_hashinfo.bind2_bucket_cachep = 4669 kmem_cache_create("tcp_bind2_bucket", 4670 sizeof(struct inet_bind2_bucket), 0, 4671 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4672 SLAB_ACCOUNT, 4673 NULL); 4674 4675 /* Size and allocate the main established and bind bucket 4676 * hash tables. 4677 * 4678 * The methodology is similar to that of the buffer cache. 4679 */ 4680 tcp_hashinfo.ehash = 4681 alloc_large_system_hash("TCP established", 4682 sizeof(struct inet_ehash_bucket), 4683 thash_entries, 4684 17, /* one slot per 128 KB of memory */ 4685 0, 4686 NULL, 4687 &tcp_hashinfo.ehash_mask, 4688 0, 4689 thash_entries ? 0 : 512 * 1024); 4690 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4691 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4692 4693 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4694 panic("TCP: failed to alloc ehash_locks"); 4695 tcp_hashinfo.bhash = 4696 alloc_large_system_hash("TCP bind", 4697 2 * sizeof(struct inet_bind_hashbucket), 4698 tcp_hashinfo.ehash_mask + 1, 4699 17, /* one slot per 128 KB of memory */ 4700 0, 4701 &tcp_hashinfo.bhash_size, 4702 NULL, 4703 0, 4704 64 * 1024); 4705 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4706 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4707 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4708 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4709 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4710 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4711 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4712 } 4713 4714 tcp_hashinfo.pernet = false; 4715 4716 cnt = tcp_hashinfo.ehash_mask + 1; 4717 sysctl_tcp_max_orphans = cnt / 2; 4718 4719 tcp_init_mem(); 4720 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4721 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4722 max_wshare = min(4UL*1024*1024, limit); 4723 max_rshare = min(6UL*1024*1024, limit); 4724 4725 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4726 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4727 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4728 4729 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4730 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4731 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4732 4733 pr_info("Hash tables configured (established %u bind %u)\n", 4734 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4735 4736 tcp_v4_init(); 4737 tcp_metrics_init(); 4738 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4739 tcp_tasklet_init(); 4740 mptcp_init(); 4741 } 4742