xref: /openbmc/linux/net/ipv4/tcp.c (revision 92a76f6d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	__skb_queue_head_init(&tp->out_of_order_queue);
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 	tp->rtt_min[0].rtt = ~0U;
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* See draft-stevens-tcpca-spec-01 for discussion of the
400 	 * initialization of these values.
401 	 */
402 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 	tp->snd_cwnd_clamp = ~0;
404 	tp->mss_cache = TCP_MSS_DEFAULT;
405 	u64_stats_init(&tp->syncp);
406 
407 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 	tcp_enable_early_retrans(tp);
409 	tcp_assign_congestion_control(sk);
410 
411 	tp->tsoffset = 0;
412 
413 	sk->sk_state = TCP_CLOSE;
414 
415 	sk->sk_write_space = sk_stream_write_space;
416 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417 
418 	icsk->icsk_sync_mss = tcp_sync_mss;
419 
420 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422 
423 	local_bh_disable();
424 	if (mem_cgroup_sockets_enabled)
425 		sock_update_memcg(sk);
426 	sk_sockets_allocated_inc(sk);
427 	local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430 
431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
432 {
433 	if (sk->sk_tsflags) {
434 		struct skb_shared_info *shinfo = skb_shinfo(skb);
435 
436 		sock_tx_timestamp(sk, &shinfo->tx_flags);
437 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
438 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
439 	}
440 }
441 
442 /*
443  *	Wait for a TCP event.
444  *
445  *	Note that we don't need to lock the socket, as the upper poll layers
446  *	take care of normal races (between the test and the event) and we don't
447  *	go look at any of the socket buffers directly.
448  */
449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
450 {
451 	unsigned int mask;
452 	struct sock *sk = sock->sk;
453 	const struct tcp_sock *tp = tcp_sk(sk);
454 	int state;
455 
456 	sock_rps_record_flow(sk);
457 
458 	sock_poll_wait(file, sk_sleep(sk), wait);
459 
460 	state = sk_state_load(sk);
461 	if (state == TCP_LISTEN)
462 		return inet_csk_listen_poll(sk);
463 
464 	/* Socket is not locked. We are protected from async events
465 	 * by poll logic and correct handling of state changes
466 	 * made by other threads is impossible in any case.
467 	 */
468 
469 	mask = 0;
470 
471 	/*
472 	 * POLLHUP is certainly not done right. But poll() doesn't
473 	 * have a notion of HUP in just one direction, and for a
474 	 * socket the read side is more interesting.
475 	 *
476 	 * Some poll() documentation says that POLLHUP is incompatible
477 	 * with the POLLOUT/POLLWR flags, so somebody should check this
478 	 * all. But careful, it tends to be safer to return too many
479 	 * bits than too few, and you can easily break real applications
480 	 * if you don't tell them that something has hung up!
481 	 *
482 	 * Check-me.
483 	 *
484 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
485 	 * our fs/select.c). It means that after we received EOF,
486 	 * poll always returns immediately, making impossible poll() on write()
487 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
488 	 * if and only if shutdown has been made in both directions.
489 	 * Actually, it is interesting to look how Solaris and DUX
490 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
491 	 * then we could set it on SND_SHUTDOWN. BTW examples given
492 	 * in Stevens' books assume exactly this behaviour, it explains
493 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
494 	 *
495 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
496 	 * blocking on fresh not-connected or disconnected socket. --ANK
497 	 */
498 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
499 		mask |= POLLHUP;
500 	if (sk->sk_shutdown & RCV_SHUTDOWN)
501 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
502 
503 	/* Connected or passive Fast Open socket? */
504 	if (state != TCP_SYN_SENT &&
505 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
506 		int target = sock_rcvlowat(sk, 0, INT_MAX);
507 
508 		if (tp->urg_seq == tp->copied_seq &&
509 		    !sock_flag(sk, SOCK_URGINLINE) &&
510 		    tp->urg_data)
511 			target++;
512 
513 		if (tp->rcv_nxt - tp->copied_seq >= target)
514 			mask |= POLLIN | POLLRDNORM;
515 
516 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
517 			if (sk_stream_is_writeable(sk)) {
518 				mask |= POLLOUT | POLLWRNORM;
519 			} else {  /* send SIGIO later */
520 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
521 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522 
523 				/* Race breaker. If space is freed after
524 				 * wspace test but before the flags are set,
525 				 * IO signal will be lost. Memory barrier
526 				 * pairs with the input side.
527 				 */
528 				smp_mb__after_atomic();
529 				if (sk_stream_is_writeable(sk))
530 					mask |= POLLOUT | POLLWRNORM;
531 			}
532 		} else
533 			mask |= POLLOUT | POLLWRNORM;
534 
535 		if (tp->urg_data & TCP_URG_VALID)
536 			mask |= POLLPRI;
537 	}
538 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
539 	smp_rmb();
540 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 		mask |= POLLERR;
542 
543 	return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546 
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 	int answ;
551 	bool slow;
552 
553 	switch (cmd) {
554 	case SIOCINQ:
555 		if (sk->sk_state == TCP_LISTEN)
556 			return -EINVAL;
557 
558 		slow = lock_sock_fast(sk);
559 		answ = tcp_inq(sk);
560 		unlock_sock_fast(sk, slow);
561 		break;
562 	case SIOCATMARK:
563 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
564 		break;
565 	case SIOCOUTQ:
566 		if (sk->sk_state == TCP_LISTEN)
567 			return -EINVAL;
568 
569 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
570 			answ = 0;
571 		else
572 			answ = tp->write_seq - tp->snd_una;
573 		break;
574 	case SIOCOUTQNSD:
575 		if (sk->sk_state == TCP_LISTEN)
576 			return -EINVAL;
577 
578 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579 			answ = 0;
580 		else
581 			answ = tp->write_seq - tp->snd_nxt;
582 		break;
583 	default:
584 		return -ENOIOCTLCMD;
585 	}
586 
587 	return put_user(answ, (int __user *)arg);
588 }
589 EXPORT_SYMBOL(tcp_ioctl);
590 
591 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
592 {
593 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
594 	tp->pushed_seq = tp->write_seq;
595 }
596 
597 static inline bool forced_push(const struct tcp_sock *tp)
598 {
599 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
600 }
601 
602 static void skb_entail(struct sock *sk, struct sk_buff *skb)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
606 
607 	skb->csum    = 0;
608 	tcb->seq     = tcb->end_seq = tp->write_seq;
609 	tcb->tcp_flags = TCPHDR_ACK;
610 	tcb->sacked  = 0;
611 	__skb_header_release(skb);
612 	tcp_add_write_queue_tail(sk, skb);
613 	sk->sk_wmem_queued += skb->truesize;
614 	sk_mem_charge(sk, skb->truesize);
615 	if (tp->nonagle & TCP_NAGLE_PUSH)
616 		tp->nonagle &= ~TCP_NAGLE_PUSH;
617 
618 	tcp_slow_start_after_idle_check(sk);
619 }
620 
621 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
622 {
623 	if (flags & MSG_OOB)
624 		tp->snd_up = tp->write_seq;
625 }
626 
627 /* If a not yet filled skb is pushed, do not send it if
628  * we have data packets in Qdisc or NIC queues :
629  * Because TX completion will happen shortly, it gives a chance
630  * to coalesce future sendmsg() payload into this skb, without
631  * need for a timer, and with no latency trade off.
632  * As packets containing data payload have a bigger truesize
633  * than pure acks (dataless) packets, the last checks prevent
634  * autocorking if we only have an ACK in Qdisc/NIC queues,
635  * or if TX completion was delayed after we processed ACK packet.
636  */
637 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
638 				int size_goal)
639 {
640 	return skb->len < size_goal &&
641 	       sysctl_tcp_autocorking &&
642 	       skb != tcp_write_queue_head(sk) &&
643 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
644 }
645 
646 static void tcp_push(struct sock *sk, int flags, int mss_now,
647 		     int nonagle, int size_goal)
648 {
649 	struct tcp_sock *tp = tcp_sk(sk);
650 	struct sk_buff *skb;
651 
652 	if (!tcp_send_head(sk))
653 		return;
654 
655 	skb = tcp_write_queue_tail(sk);
656 	if (!(flags & MSG_MORE) || forced_push(tp))
657 		tcp_mark_push(tp, skb);
658 
659 	tcp_mark_urg(tp, flags);
660 
661 	if (tcp_should_autocork(sk, skb, size_goal)) {
662 
663 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
664 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
665 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
666 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
667 		}
668 		/* It is possible TX completion already happened
669 		 * before we set TSQ_THROTTLED.
670 		 */
671 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
672 			return;
673 	}
674 
675 	if (flags & MSG_MORE)
676 		nonagle = TCP_NAGLE_CORK;
677 
678 	__tcp_push_pending_frames(sk, mss_now, nonagle);
679 }
680 
681 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
682 				unsigned int offset, size_t len)
683 {
684 	struct tcp_splice_state *tss = rd_desc->arg.data;
685 	int ret;
686 
687 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
688 			      min(rd_desc->count, len), tss->flags,
689 			      skb_socket_splice);
690 	if (ret > 0)
691 		rd_desc->count -= ret;
692 	return ret;
693 }
694 
695 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
696 {
697 	/* Store TCP splice context information in read_descriptor_t. */
698 	read_descriptor_t rd_desc = {
699 		.arg.data = tss,
700 		.count	  = tss->len,
701 	};
702 
703 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
704 }
705 
706 /**
707  *  tcp_splice_read - splice data from TCP socket to a pipe
708  * @sock:	socket to splice from
709  * @ppos:	position (not valid)
710  * @pipe:	pipe to splice to
711  * @len:	number of bytes to splice
712  * @flags:	splice modifier flags
713  *
714  * Description:
715  *    Will read pages from given socket and fill them into a pipe.
716  *
717  **/
718 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
719 			struct pipe_inode_info *pipe, size_t len,
720 			unsigned int flags)
721 {
722 	struct sock *sk = sock->sk;
723 	struct tcp_splice_state tss = {
724 		.pipe = pipe,
725 		.len = len,
726 		.flags = flags,
727 	};
728 	long timeo;
729 	ssize_t spliced;
730 	int ret;
731 
732 	sock_rps_record_flow(sk);
733 	/*
734 	 * We can't seek on a socket input
735 	 */
736 	if (unlikely(*ppos))
737 		return -ESPIPE;
738 
739 	ret = spliced = 0;
740 
741 	lock_sock(sk);
742 
743 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
744 	while (tss.len) {
745 		ret = __tcp_splice_read(sk, &tss);
746 		if (ret < 0)
747 			break;
748 		else if (!ret) {
749 			if (spliced)
750 				break;
751 			if (sock_flag(sk, SOCK_DONE))
752 				break;
753 			if (sk->sk_err) {
754 				ret = sock_error(sk);
755 				break;
756 			}
757 			if (sk->sk_shutdown & RCV_SHUTDOWN)
758 				break;
759 			if (sk->sk_state == TCP_CLOSE) {
760 				/*
761 				 * This occurs when user tries to read
762 				 * from never connected socket.
763 				 */
764 				if (!sock_flag(sk, SOCK_DONE))
765 					ret = -ENOTCONN;
766 				break;
767 			}
768 			if (!timeo) {
769 				ret = -EAGAIN;
770 				break;
771 			}
772 			sk_wait_data(sk, &timeo, NULL);
773 			if (signal_pending(current)) {
774 				ret = sock_intr_errno(timeo);
775 				break;
776 			}
777 			continue;
778 		}
779 		tss.len -= ret;
780 		spliced += ret;
781 
782 		if (!timeo)
783 			break;
784 		release_sock(sk);
785 		lock_sock(sk);
786 
787 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
788 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
789 		    signal_pending(current))
790 			break;
791 	}
792 
793 	release_sock(sk);
794 
795 	if (spliced)
796 		return spliced;
797 
798 	return ret;
799 }
800 EXPORT_SYMBOL(tcp_splice_read);
801 
802 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
803 				    bool force_schedule)
804 {
805 	struct sk_buff *skb;
806 
807 	/* The TCP header must be at least 32-bit aligned.  */
808 	size = ALIGN(size, 4);
809 
810 	if (unlikely(tcp_under_memory_pressure(sk)))
811 		sk_mem_reclaim_partial(sk);
812 
813 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
814 	if (likely(skb)) {
815 		bool mem_scheduled;
816 
817 		if (force_schedule) {
818 			mem_scheduled = true;
819 			sk_forced_mem_schedule(sk, skb->truesize);
820 		} else {
821 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
822 		}
823 		if (likely(mem_scheduled)) {
824 			skb_reserve(skb, sk->sk_prot->max_header);
825 			/*
826 			 * Make sure that we have exactly size bytes
827 			 * available to the caller, no more, no less.
828 			 */
829 			skb->reserved_tailroom = skb->end - skb->tail - size;
830 			return skb;
831 		}
832 		__kfree_skb(skb);
833 	} else {
834 		sk->sk_prot->enter_memory_pressure(sk);
835 		sk_stream_moderate_sndbuf(sk);
836 	}
837 	return NULL;
838 }
839 
840 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
841 				       int large_allowed)
842 {
843 	struct tcp_sock *tp = tcp_sk(sk);
844 	u32 new_size_goal, size_goal;
845 
846 	if (!large_allowed || !sk_can_gso(sk))
847 		return mss_now;
848 
849 	/* Note : tcp_tso_autosize() will eventually split this later */
850 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
851 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
852 
853 	/* We try hard to avoid divides here */
854 	size_goal = tp->gso_segs * mss_now;
855 	if (unlikely(new_size_goal < size_goal ||
856 		     new_size_goal >= size_goal + mss_now)) {
857 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
858 				     sk->sk_gso_max_segs);
859 		size_goal = tp->gso_segs * mss_now;
860 	}
861 
862 	return max(size_goal, mss_now);
863 }
864 
865 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
866 {
867 	int mss_now;
868 
869 	mss_now = tcp_current_mss(sk);
870 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
871 
872 	return mss_now;
873 }
874 
875 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
876 				size_t size, int flags)
877 {
878 	struct tcp_sock *tp = tcp_sk(sk);
879 	int mss_now, size_goal;
880 	int err;
881 	ssize_t copied;
882 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
883 
884 	/* Wait for a connection to finish. One exception is TCP Fast Open
885 	 * (passive side) where data is allowed to be sent before a connection
886 	 * is fully established.
887 	 */
888 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
889 	    !tcp_passive_fastopen(sk)) {
890 		err = sk_stream_wait_connect(sk, &timeo);
891 		if (err != 0)
892 			goto out_err;
893 	}
894 
895 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
896 
897 	mss_now = tcp_send_mss(sk, &size_goal, flags);
898 	copied = 0;
899 
900 	err = -EPIPE;
901 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
902 		goto out_err;
903 
904 	while (size > 0) {
905 		struct sk_buff *skb = tcp_write_queue_tail(sk);
906 		int copy, i;
907 		bool can_coalesce;
908 
909 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
910 new_segment:
911 			if (!sk_stream_memory_free(sk))
912 				goto wait_for_sndbuf;
913 
914 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
915 						  skb_queue_empty(&sk->sk_write_queue));
916 			if (!skb)
917 				goto wait_for_memory;
918 
919 			skb_entail(sk, skb);
920 			copy = size_goal;
921 		}
922 
923 		if (copy > size)
924 			copy = size;
925 
926 		i = skb_shinfo(skb)->nr_frags;
927 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
928 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
929 			tcp_mark_push(tp, skb);
930 			goto new_segment;
931 		}
932 		if (!sk_wmem_schedule(sk, copy))
933 			goto wait_for_memory;
934 
935 		if (can_coalesce) {
936 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
937 		} else {
938 			get_page(page);
939 			skb_fill_page_desc(skb, i, page, offset, copy);
940 		}
941 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
942 
943 		skb->len += copy;
944 		skb->data_len += copy;
945 		skb->truesize += copy;
946 		sk->sk_wmem_queued += copy;
947 		sk_mem_charge(sk, copy);
948 		skb->ip_summed = CHECKSUM_PARTIAL;
949 		tp->write_seq += copy;
950 		TCP_SKB_CB(skb)->end_seq += copy;
951 		tcp_skb_pcount_set(skb, 0);
952 
953 		if (!copied)
954 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
955 
956 		copied += copy;
957 		offset += copy;
958 		size -= copy;
959 		if (!size) {
960 			tcp_tx_timestamp(sk, skb);
961 			goto out;
962 		}
963 
964 		if (skb->len < size_goal || (flags & MSG_OOB))
965 			continue;
966 
967 		if (forced_push(tp)) {
968 			tcp_mark_push(tp, skb);
969 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
970 		} else if (skb == tcp_send_head(sk))
971 			tcp_push_one(sk, mss_now);
972 		continue;
973 
974 wait_for_sndbuf:
975 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
976 wait_for_memory:
977 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
978 			 TCP_NAGLE_PUSH, size_goal);
979 
980 		err = sk_stream_wait_memory(sk, &timeo);
981 		if (err != 0)
982 			goto do_error;
983 
984 		mss_now = tcp_send_mss(sk, &size_goal, flags);
985 	}
986 
987 out:
988 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
989 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
990 	return copied;
991 
992 do_error:
993 	if (copied)
994 		goto out;
995 out_err:
996 	/* make sure we wake any epoll edge trigger waiter */
997 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
998 		sk->sk_write_space(sk);
999 	return sk_stream_error(sk, flags, err);
1000 }
1001 
1002 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1003 		 size_t size, int flags)
1004 {
1005 	ssize_t res;
1006 
1007 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1008 	    !sk_check_csum_caps(sk))
1009 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1010 					flags);
1011 
1012 	lock_sock(sk);
1013 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1014 	release_sock(sk);
1015 	return res;
1016 }
1017 EXPORT_SYMBOL(tcp_sendpage);
1018 
1019 static inline int select_size(const struct sock *sk, bool sg)
1020 {
1021 	const struct tcp_sock *tp = tcp_sk(sk);
1022 	int tmp = tp->mss_cache;
1023 
1024 	if (sg) {
1025 		if (sk_can_gso(sk)) {
1026 			/* Small frames wont use a full page:
1027 			 * Payload will immediately follow tcp header.
1028 			 */
1029 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1030 		} else {
1031 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1032 
1033 			if (tmp >= pgbreak &&
1034 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1035 				tmp = pgbreak;
1036 		}
1037 	}
1038 
1039 	return tmp;
1040 }
1041 
1042 void tcp_free_fastopen_req(struct tcp_sock *tp)
1043 {
1044 	if (tp->fastopen_req) {
1045 		kfree(tp->fastopen_req);
1046 		tp->fastopen_req = NULL;
1047 	}
1048 }
1049 
1050 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1051 				int *copied, size_t size)
1052 {
1053 	struct tcp_sock *tp = tcp_sk(sk);
1054 	int err, flags;
1055 
1056 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1057 		return -EOPNOTSUPP;
1058 	if (tp->fastopen_req)
1059 		return -EALREADY; /* Another Fast Open is in progress */
1060 
1061 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1062 				   sk->sk_allocation);
1063 	if (unlikely(!tp->fastopen_req))
1064 		return -ENOBUFS;
1065 	tp->fastopen_req->data = msg;
1066 	tp->fastopen_req->size = size;
1067 
1068 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1069 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1070 				    msg->msg_namelen, flags);
1071 	*copied = tp->fastopen_req->copied;
1072 	tcp_free_fastopen_req(tp);
1073 	return err;
1074 }
1075 
1076 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1077 {
1078 	struct tcp_sock *tp = tcp_sk(sk);
1079 	struct sk_buff *skb;
1080 	int flags, err, copied = 0;
1081 	int mss_now = 0, size_goal, copied_syn = 0;
1082 	bool sg;
1083 	long timeo;
1084 
1085 	lock_sock(sk);
1086 
1087 	flags = msg->msg_flags;
1088 	if (flags & MSG_FASTOPEN) {
1089 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1090 		if (err == -EINPROGRESS && copied_syn > 0)
1091 			goto out;
1092 		else if (err)
1093 			goto out_err;
1094 	}
1095 
1096 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1097 
1098 	/* Wait for a connection to finish. One exception is TCP Fast Open
1099 	 * (passive side) where data is allowed to be sent before a connection
1100 	 * is fully established.
1101 	 */
1102 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103 	    !tcp_passive_fastopen(sk)) {
1104 		err = sk_stream_wait_connect(sk, &timeo);
1105 		if (err != 0)
1106 			goto do_error;
1107 	}
1108 
1109 	if (unlikely(tp->repair)) {
1110 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1111 			copied = tcp_send_rcvq(sk, msg, size);
1112 			goto out_nopush;
1113 		}
1114 
1115 		err = -EINVAL;
1116 		if (tp->repair_queue == TCP_NO_QUEUE)
1117 			goto out_err;
1118 
1119 		/* 'common' sending to sendq */
1120 	}
1121 
1122 	/* This should be in poll */
1123 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1124 
1125 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1126 
1127 	/* Ok commence sending. */
1128 	copied = 0;
1129 
1130 	err = -EPIPE;
1131 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132 		goto out_err;
1133 
1134 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1135 
1136 	while (msg_data_left(msg)) {
1137 		int copy = 0;
1138 		int max = size_goal;
1139 
1140 		skb = tcp_write_queue_tail(sk);
1141 		if (tcp_send_head(sk)) {
1142 			if (skb->ip_summed == CHECKSUM_NONE)
1143 				max = mss_now;
1144 			copy = max - skb->len;
1145 		}
1146 
1147 		if (copy <= 0) {
1148 new_segment:
1149 			/* Allocate new segment. If the interface is SG,
1150 			 * allocate skb fitting to single page.
1151 			 */
1152 			if (!sk_stream_memory_free(sk))
1153 				goto wait_for_sndbuf;
1154 
1155 			skb = sk_stream_alloc_skb(sk,
1156 						  select_size(sk, sg),
1157 						  sk->sk_allocation,
1158 						  skb_queue_empty(&sk->sk_write_queue));
1159 			if (!skb)
1160 				goto wait_for_memory;
1161 
1162 			/*
1163 			 * Check whether we can use HW checksum.
1164 			 */
1165 			if (sk_check_csum_caps(sk))
1166 				skb->ip_summed = CHECKSUM_PARTIAL;
1167 
1168 			skb_entail(sk, skb);
1169 			copy = size_goal;
1170 			max = size_goal;
1171 
1172 			/* All packets are restored as if they have
1173 			 * already been sent. skb_mstamp isn't set to
1174 			 * avoid wrong rtt estimation.
1175 			 */
1176 			if (tp->repair)
1177 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1178 		}
1179 
1180 		/* Try to append data to the end of skb. */
1181 		if (copy > msg_data_left(msg))
1182 			copy = msg_data_left(msg);
1183 
1184 		/* Where to copy to? */
1185 		if (skb_availroom(skb) > 0) {
1186 			/* We have some space in skb head. Superb! */
1187 			copy = min_t(int, copy, skb_availroom(skb));
1188 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1189 			if (err)
1190 				goto do_fault;
1191 		} else {
1192 			bool merge = true;
1193 			int i = skb_shinfo(skb)->nr_frags;
1194 			struct page_frag *pfrag = sk_page_frag(sk);
1195 
1196 			if (!sk_page_frag_refill(sk, pfrag))
1197 				goto wait_for_memory;
1198 
1199 			if (!skb_can_coalesce(skb, i, pfrag->page,
1200 					      pfrag->offset)) {
1201 				if (i == sysctl_max_skb_frags || !sg) {
1202 					tcp_mark_push(tp, skb);
1203 					goto new_segment;
1204 				}
1205 				merge = false;
1206 			}
1207 
1208 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1209 
1210 			if (!sk_wmem_schedule(sk, copy))
1211 				goto wait_for_memory;
1212 
1213 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1214 						       pfrag->page,
1215 						       pfrag->offset,
1216 						       copy);
1217 			if (err)
1218 				goto do_error;
1219 
1220 			/* Update the skb. */
1221 			if (merge) {
1222 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1223 			} else {
1224 				skb_fill_page_desc(skb, i, pfrag->page,
1225 						   pfrag->offset, copy);
1226 				get_page(pfrag->page);
1227 			}
1228 			pfrag->offset += copy;
1229 		}
1230 
1231 		if (!copied)
1232 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1233 
1234 		tp->write_seq += copy;
1235 		TCP_SKB_CB(skb)->end_seq += copy;
1236 		tcp_skb_pcount_set(skb, 0);
1237 
1238 		copied += copy;
1239 		if (!msg_data_left(msg)) {
1240 			tcp_tx_timestamp(sk, skb);
1241 			goto out;
1242 		}
1243 
1244 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1245 			continue;
1246 
1247 		if (forced_push(tp)) {
1248 			tcp_mark_push(tp, skb);
1249 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1250 		} else if (skb == tcp_send_head(sk))
1251 			tcp_push_one(sk, mss_now);
1252 		continue;
1253 
1254 wait_for_sndbuf:
1255 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1256 wait_for_memory:
1257 		if (copied)
1258 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1259 				 TCP_NAGLE_PUSH, size_goal);
1260 
1261 		err = sk_stream_wait_memory(sk, &timeo);
1262 		if (err != 0)
1263 			goto do_error;
1264 
1265 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1266 	}
1267 
1268 out:
1269 	if (copied)
1270 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1271 out_nopush:
1272 	release_sock(sk);
1273 	return copied + copied_syn;
1274 
1275 do_fault:
1276 	if (!skb->len) {
1277 		tcp_unlink_write_queue(skb, sk);
1278 		/* It is the one place in all of TCP, except connection
1279 		 * reset, where we can be unlinking the send_head.
1280 		 */
1281 		tcp_check_send_head(sk, skb);
1282 		sk_wmem_free_skb(sk, skb);
1283 	}
1284 
1285 do_error:
1286 	if (copied + copied_syn)
1287 		goto out;
1288 out_err:
1289 	err = sk_stream_error(sk, flags, err);
1290 	/* make sure we wake any epoll edge trigger waiter */
1291 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1292 		sk->sk_write_space(sk);
1293 	release_sock(sk);
1294 	return err;
1295 }
1296 EXPORT_SYMBOL(tcp_sendmsg);
1297 
1298 /*
1299  *	Handle reading urgent data. BSD has very simple semantics for
1300  *	this, no blocking and very strange errors 8)
1301  */
1302 
1303 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1304 {
1305 	struct tcp_sock *tp = tcp_sk(sk);
1306 
1307 	/* No URG data to read. */
1308 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1309 	    tp->urg_data == TCP_URG_READ)
1310 		return -EINVAL;	/* Yes this is right ! */
1311 
1312 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1313 		return -ENOTCONN;
1314 
1315 	if (tp->urg_data & TCP_URG_VALID) {
1316 		int err = 0;
1317 		char c = tp->urg_data;
1318 
1319 		if (!(flags & MSG_PEEK))
1320 			tp->urg_data = TCP_URG_READ;
1321 
1322 		/* Read urgent data. */
1323 		msg->msg_flags |= MSG_OOB;
1324 
1325 		if (len > 0) {
1326 			if (!(flags & MSG_TRUNC))
1327 				err = memcpy_to_msg(msg, &c, 1);
1328 			len = 1;
1329 		} else
1330 			msg->msg_flags |= MSG_TRUNC;
1331 
1332 		return err ? -EFAULT : len;
1333 	}
1334 
1335 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1336 		return 0;
1337 
1338 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1339 	 * the available implementations agree in this case:
1340 	 * this call should never block, independent of the
1341 	 * blocking state of the socket.
1342 	 * Mike <pall@rz.uni-karlsruhe.de>
1343 	 */
1344 	return -EAGAIN;
1345 }
1346 
1347 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1348 {
1349 	struct sk_buff *skb;
1350 	int copied = 0, err = 0;
1351 
1352 	/* XXX -- need to support SO_PEEK_OFF */
1353 
1354 	skb_queue_walk(&sk->sk_write_queue, skb) {
1355 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1356 		if (err)
1357 			break;
1358 
1359 		copied += skb->len;
1360 	}
1361 
1362 	return err ?: copied;
1363 }
1364 
1365 /* Clean up the receive buffer for full frames taken by the user,
1366  * then send an ACK if necessary.  COPIED is the number of bytes
1367  * tcp_recvmsg has given to the user so far, it speeds up the
1368  * calculation of whether or not we must ACK for the sake of
1369  * a window update.
1370  */
1371 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1372 {
1373 	struct tcp_sock *tp = tcp_sk(sk);
1374 	bool time_to_ack = false;
1375 
1376 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1377 
1378 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1379 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1380 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1381 
1382 	if (inet_csk_ack_scheduled(sk)) {
1383 		const struct inet_connection_sock *icsk = inet_csk(sk);
1384 		   /* Delayed ACKs frequently hit locked sockets during bulk
1385 		    * receive. */
1386 		if (icsk->icsk_ack.blocked ||
1387 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1388 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1389 		    /*
1390 		     * If this read emptied read buffer, we send ACK, if
1391 		     * connection is not bidirectional, user drained
1392 		     * receive buffer and there was a small segment
1393 		     * in queue.
1394 		     */
1395 		    (copied > 0 &&
1396 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1397 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1398 		       !icsk->icsk_ack.pingpong)) &&
1399 		      !atomic_read(&sk->sk_rmem_alloc)))
1400 			time_to_ack = true;
1401 	}
1402 
1403 	/* We send an ACK if we can now advertise a non-zero window
1404 	 * which has been raised "significantly".
1405 	 *
1406 	 * Even if window raised up to infinity, do not send window open ACK
1407 	 * in states, where we will not receive more. It is useless.
1408 	 */
1409 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1410 		__u32 rcv_window_now = tcp_receive_window(tp);
1411 
1412 		/* Optimize, __tcp_select_window() is not cheap. */
1413 		if (2*rcv_window_now <= tp->window_clamp) {
1414 			__u32 new_window = __tcp_select_window(sk);
1415 
1416 			/* Send ACK now, if this read freed lots of space
1417 			 * in our buffer. Certainly, new_window is new window.
1418 			 * We can advertise it now, if it is not less than current one.
1419 			 * "Lots" means "at least twice" here.
1420 			 */
1421 			if (new_window && new_window >= 2 * rcv_window_now)
1422 				time_to_ack = true;
1423 		}
1424 	}
1425 	if (time_to_ack)
1426 		tcp_send_ack(sk);
1427 }
1428 
1429 static void tcp_prequeue_process(struct sock *sk)
1430 {
1431 	struct sk_buff *skb;
1432 	struct tcp_sock *tp = tcp_sk(sk);
1433 
1434 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1435 
1436 	/* RX process wants to run with disabled BHs, though it is not
1437 	 * necessary */
1438 	local_bh_disable();
1439 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1440 		sk_backlog_rcv(sk, skb);
1441 	local_bh_enable();
1442 
1443 	/* Clear memory counter. */
1444 	tp->ucopy.memory = 0;
1445 }
1446 
1447 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1448 {
1449 	struct sk_buff *skb;
1450 	u32 offset;
1451 
1452 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1453 		offset = seq - TCP_SKB_CB(skb)->seq;
1454 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1455 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1456 			offset--;
1457 		}
1458 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1459 			*off = offset;
1460 			return skb;
1461 		}
1462 		/* This looks weird, but this can happen if TCP collapsing
1463 		 * splitted a fat GRO packet, while we released socket lock
1464 		 * in skb_splice_bits()
1465 		 */
1466 		sk_eat_skb(sk, skb);
1467 	}
1468 	return NULL;
1469 }
1470 
1471 /*
1472  * This routine provides an alternative to tcp_recvmsg() for routines
1473  * that would like to handle copying from skbuffs directly in 'sendfile'
1474  * fashion.
1475  * Note:
1476  *	- It is assumed that the socket was locked by the caller.
1477  *	- The routine does not block.
1478  *	- At present, there is no support for reading OOB data
1479  *	  or for 'peeking' the socket using this routine
1480  *	  (although both would be easy to implement).
1481  */
1482 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1483 		  sk_read_actor_t recv_actor)
1484 {
1485 	struct sk_buff *skb;
1486 	struct tcp_sock *tp = tcp_sk(sk);
1487 	u32 seq = tp->copied_seq;
1488 	u32 offset;
1489 	int copied = 0;
1490 
1491 	if (sk->sk_state == TCP_LISTEN)
1492 		return -ENOTCONN;
1493 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1494 		if (offset < skb->len) {
1495 			int used;
1496 			size_t len;
1497 
1498 			len = skb->len - offset;
1499 			/* Stop reading if we hit a patch of urgent data */
1500 			if (tp->urg_data) {
1501 				u32 urg_offset = tp->urg_seq - seq;
1502 				if (urg_offset < len)
1503 					len = urg_offset;
1504 				if (!len)
1505 					break;
1506 			}
1507 			used = recv_actor(desc, skb, offset, len);
1508 			if (used <= 0) {
1509 				if (!copied)
1510 					copied = used;
1511 				break;
1512 			} else if (used <= len) {
1513 				seq += used;
1514 				copied += used;
1515 				offset += used;
1516 			}
1517 			/* If recv_actor drops the lock (e.g. TCP splice
1518 			 * receive) the skb pointer might be invalid when
1519 			 * getting here: tcp_collapse might have deleted it
1520 			 * while aggregating skbs from the socket queue.
1521 			 */
1522 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1523 			if (!skb)
1524 				break;
1525 			/* TCP coalescing might have appended data to the skb.
1526 			 * Try to splice more frags
1527 			 */
1528 			if (offset + 1 != skb->len)
1529 				continue;
1530 		}
1531 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1532 			sk_eat_skb(sk, skb);
1533 			++seq;
1534 			break;
1535 		}
1536 		sk_eat_skb(sk, skb);
1537 		if (!desc->count)
1538 			break;
1539 		tp->copied_seq = seq;
1540 	}
1541 	tp->copied_seq = seq;
1542 
1543 	tcp_rcv_space_adjust(sk);
1544 
1545 	/* Clean up data we have read: This will do ACK frames. */
1546 	if (copied > 0) {
1547 		tcp_recv_skb(sk, seq, &offset);
1548 		tcp_cleanup_rbuf(sk, copied);
1549 	}
1550 	return copied;
1551 }
1552 EXPORT_SYMBOL(tcp_read_sock);
1553 
1554 /*
1555  *	This routine copies from a sock struct into the user buffer.
1556  *
1557  *	Technical note: in 2.3 we work on _locked_ socket, so that
1558  *	tricks with *seq access order and skb->users are not required.
1559  *	Probably, code can be easily improved even more.
1560  */
1561 
1562 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1563 		int flags, int *addr_len)
1564 {
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 	int copied = 0;
1567 	u32 peek_seq;
1568 	u32 *seq;
1569 	unsigned long used;
1570 	int err;
1571 	int target;		/* Read at least this many bytes */
1572 	long timeo;
1573 	struct task_struct *user_recv = NULL;
1574 	struct sk_buff *skb, *last;
1575 	u32 urg_hole = 0;
1576 
1577 	if (unlikely(flags & MSG_ERRQUEUE))
1578 		return inet_recv_error(sk, msg, len, addr_len);
1579 
1580 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1581 	    (sk->sk_state == TCP_ESTABLISHED))
1582 		sk_busy_loop(sk, nonblock);
1583 
1584 	lock_sock(sk);
1585 
1586 	err = -ENOTCONN;
1587 	if (sk->sk_state == TCP_LISTEN)
1588 		goto out;
1589 
1590 	timeo = sock_rcvtimeo(sk, nonblock);
1591 
1592 	/* Urgent data needs to be handled specially. */
1593 	if (flags & MSG_OOB)
1594 		goto recv_urg;
1595 
1596 	if (unlikely(tp->repair)) {
1597 		err = -EPERM;
1598 		if (!(flags & MSG_PEEK))
1599 			goto out;
1600 
1601 		if (tp->repair_queue == TCP_SEND_QUEUE)
1602 			goto recv_sndq;
1603 
1604 		err = -EINVAL;
1605 		if (tp->repair_queue == TCP_NO_QUEUE)
1606 			goto out;
1607 
1608 		/* 'common' recv queue MSG_PEEK-ing */
1609 	}
1610 
1611 	seq = &tp->copied_seq;
1612 	if (flags & MSG_PEEK) {
1613 		peek_seq = tp->copied_seq;
1614 		seq = &peek_seq;
1615 	}
1616 
1617 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1618 
1619 	do {
1620 		u32 offset;
1621 
1622 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1623 		if (tp->urg_data && tp->urg_seq == *seq) {
1624 			if (copied)
1625 				break;
1626 			if (signal_pending(current)) {
1627 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1628 				break;
1629 			}
1630 		}
1631 
1632 		/* Next get a buffer. */
1633 
1634 		last = skb_peek_tail(&sk->sk_receive_queue);
1635 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1636 			last = skb;
1637 			/* Now that we have two receive queues this
1638 			 * shouldn't happen.
1639 			 */
1640 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1641 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1642 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1643 				 flags))
1644 				break;
1645 
1646 			offset = *seq - TCP_SKB_CB(skb)->seq;
1647 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1648 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1649 				offset--;
1650 			}
1651 			if (offset < skb->len)
1652 				goto found_ok_skb;
1653 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1654 				goto found_fin_ok;
1655 			WARN(!(flags & MSG_PEEK),
1656 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1657 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1658 		}
1659 
1660 		/* Well, if we have backlog, try to process it now yet. */
1661 
1662 		if (copied >= target && !sk->sk_backlog.tail)
1663 			break;
1664 
1665 		if (copied) {
1666 			if (sk->sk_err ||
1667 			    sk->sk_state == TCP_CLOSE ||
1668 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1669 			    !timeo ||
1670 			    signal_pending(current))
1671 				break;
1672 		} else {
1673 			if (sock_flag(sk, SOCK_DONE))
1674 				break;
1675 
1676 			if (sk->sk_err) {
1677 				copied = sock_error(sk);
1678 				break;
1679 			}
1680 
1681 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1682 				break;
1683 
1684 			if (sk->sk_state == TCP_CLOSE) {
1685 				if (!sock_flag(sk, SOCK_DONE)) {
1686 					/* This occurs when user tries to read
1687 					 * from never connected socket.
1688 					 */
1689 					copied = -ENOTCONN;
1690 					break;
1691 				}
1692 				break;
1693 			}
1694 
1695 			if (!timeo) {
1696 				copied = -EAGAIN;
1697 				break;
1698 			}
1699 
1700 			if (signal_pending(current)) {
1701 				copied = sock_intr_errno(timeo);
1702 				break;
1703 			}
1704 		}
1705 
1706 		tcp_cleanup_rbuf(sk, copied);
1707 
1708 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1709 			/* Install new reader */
1710 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1711 				user_recv = current;
1712 				tp->ucopy.task = user_recv;
1713 				tp->ucopy.msg = msg;
1714 			}
1715 
1716 			tp->ucopy.len = len;
1717 
1718 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1719 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1720 
1721 			/* Ugly... If prequeue is not empty, we have to
1722 			 * process it before releasing socket, otherwise
1723 			 * order will be broken at second iteration.
1724 			 * More elegant solution is required!!!
1725 			 *
1726 			 * Look: we have the following (pseudo)queues:
1727 			 *
1728 			 * 1. packets in flight
1729 			 * 2. backlog
1730 			 * 3. prequeue
1731 			 * 4. receive_queue
1732 			 *
1733 			 * Each queue can be processed only if the next ones
1734 			 * are empty. At this point we have empty receive_queue.
1735 			 * But prequeue _can_ be not empty after 2nd iteration,
1736 			 * when we jumped to start of loop because backlog
1737 			 * processing added something to receive_queue.
1738 			 * We cannot release_sock(), because backlog contains
1739 			 * packets arrived _after_ prequeued ones.
1740 			 *
1741 			 * Shortly, algorithm is clear --- to process all
1742 			 * the queues in order. We could make it more directly,
1743 			 * requeueing packets from backlog to prequeue, if
1744 			 * is not empty. It is more elegant, but eats cycles,
1745 			 * unfortunately.
1746 			 */
1747 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1748 				goto do_prequeue;
1749 
1750 			/* __ Set realtime policy in scheduler __ */
1751 		}
1752 
1753 		if (copied >= target) {
1754 			/* Do not sleep, just process backlog. */
1755 			release_sock(sk);
1756 			lock_sock(sk);
1757 		} else {
1758 			sk_wait_data(sk, &timeo, last);
1759 		}
1760 
1761 		if (user_recv) {
1762 			int chunk;
1763 
1764 			/* __ Restore normal policy in scheduler __ */
1765 
1766 			chunk = len - tp->ucopy.len;
1767 			if (chunk != 0) {
1768 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1769 				len -= chunk;
1770 				copied += chunk;
1771 			}
1772 
1773 			if (tp->rcv_nxt == tp->copied_seq &&
1774 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1775 do_prequeue:
1776 				tcp_prequeue_process(sk);
1777 
1778 				chunk = len - tp->ucopy.len;
1779 				if (chunk != 0) {
1780 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1781 					len -= chunk;
1782 					copied += chunk;
1783 				}
1784 			}
1785 		}
1786 		if ((flags & MSG_PEEK) &&
1787 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1788 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1789 					    current->comm,
1790 					    task_pid_nr(current));
1791 			peek_seq = tp->copied_seq;
1792 		}
1793 		continue;
1794 
1795 	found_ok_skb:
1796 		/* Ok so how much can we use? */
1797 		used = skb->len - offset;
1798 		if (len < used)
1799 			used = len;
1800 
1801 		/* Do we have urgent data here? */
1802 		if (tp->urg_data) {
1803 			u32 urg_offset = tp->urg_seq - *seq;
1804 			if (urg_offset < used) {
1805 				if (!urg_offset) {
1806 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1807 						++*seq;
1808 						urg_hole++;
1809 						offset++;
1810 						used--;
1811 						if (!used)
1812 							goto skip_copy;
1813 					}
1814 				} else
1815 					used = urg_offset;
1816 			}
1817 		}
1818 
1819 		if (!(flags & MSG_TRUNC)) {
1820 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1821 			if (err) {
1822 				/* Exception. Bailout! */
1823 				if (!copied)
1824 					copied = -EFAULT;
1825 				break;
1826 			}
1827 		}
1828 
1829 		*seq += used;
1830 		copied += used;
1831 		len -= used;
1832 
1833 		tcp_rcv_space_adjust(sk);
1834 
1835 skip_copy:
1836 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1837 			tp->urg_data = 0;
1838 			tcp_fast_path_check(sk);
1839 		}
1840 		if (used + offset < skb->len)
1841 			continue;
1842 
1843 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1844 			goto found_fin_ok;
1845 		if (!(flags & MSG_PEEK))
1846 			sk_eat_skb(sk, skb);
1847 		continue;
1848 
1849 	found_fin_ok:
1850 		/* Process the FIN. */
1851 		++*seq;
1852 		if (!(flags & MSG_PEEK))
1853 			sk_eat_skb(sk, skb);
1854 		break;
1855 	} while (len > 0);
1856 
1857 	if (user_recv) {
1858 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1859 			int chunk;
1860 
1861 			tp->ucopy.len = copied > 0 ? len : 0;
1862 
1863 			tcp_prequeue_process(sk);
1864 
1865 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1866 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1867 				len -= chunk;
1868 				copied += chunk;
1869 			}
1870 		}
1871 
1872 		tp->ucopy.task = NULL;
1873 		tp->ucopy.len = 0;
1874 	}
1875 
1876 	/* According to UNIX98, msg_name/msg_namelen are ignored
1877 	 * on connected socket. I was just happy when found this 8) --ANK
1878 	 */
1879 
1880 	/* Clean up data we have read: This will do ACK frames. */
1881 	tcp_cleanup_rbuf(sk, copied);
1882 
1883 	release_sock(sk);
1884 	return copied;
1885 
1886 out:
1887 	release_sock(sk);
1888 	return err;
1889 
1890 recv_urg:
1891 	err = tcp_recv_urg(sk, msg, len, flags);
1892 	goto out;
1893 
1894 recv_sndq:
1895 	err = tcp_peek_sndq(sk, msg, len);
1896 	goto out;
1897 }
1898 EXPORT_SYMBOL(tcp_recvmsg);
1899 
1900 void tcp_set_state(struct sock *sk, int state)
1901 {
1902 	int oldstate = sk->sk_state;
1903 
1904 	switch (state) {
1905 	case TCP_ESTABLISHED:
1906 		if (oldstate != TCP_ESTABLISHED)
1907 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1908 		break;
1909 
1910 	case TCP_CLOSE:
1911 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1912 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1913 
1914 		sk->sk_prot->unhash(sk);
1915 		if (inet_csk(sk)->icsk_bind_hash &&
1916 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1917 			inet_put_port(sk);
1918 		/* fall through */
1919 	default:
1920 		if (oldstate == TCP_ESTABLISHED)
1921 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1922 	}
1923 
1924 	/* Change state AFTER socket is unhashed to avoid closed
1925 	 * socket sitting in hash tables.
1926 	 */
1927 	sk_state_store(sk, state);
1928 
1929 #ifdef STATE_TRACE
1930 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1931 #endif
1932 }
1933 EXPORT_SYMBOL_GPL(tcp_set_state);
1934 
1935 /*
1936  *	State processing on a close. This implements the state shift for
1937  *	sending our FIN frame. Note that we only send a FIN for some
1938  *	states. A shutdown() may have already sent the FIN, or we may be
1939  *	closed.
1940  */
1941 
1942 static const unsigned char new_state[16] = {
1943   /* current state:        new state:      action:	*/
1944   [0 /* (Invalid) */]	= TCP_CLOSE,
1945   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1946   [TCP_SYN_SENT]	= TCP_CLOSE,
1947   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1948   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1949   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1950   [TCP_TIME_WAIT]	= TCP_CLOSE,
1951   [TCP_CLOSE]		= TCP_CLOSE,
1952   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1953   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1954   [TCP_LISTEN]		= TCP_CLOSE,
1955   [TCP_CLOSING]		= TCP_CLOSING,
1956   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1957 };
1958 
1959 static int tcp_close_state(struct sock *sk)
1960 {
1961 	int next = (int)new_state[sk->sk_state];
1962 	int ns = next & TCP_STATE_MASK;
1963 
1964 	tcp_set_state(sk, ns);
1965 
1966 	return next & TCP_ACTION_FIN;
1967 }
1968 
1969 /*
1970  *	Shutdown the sending side of a connection. Much like close except
1971  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1972  */
1973 
1974 void tcp_shutdown(struct sock *sk, int how)
1975 {
1976 	/*	We need to grab some memory, and put together a FIN,
1977 	 *	and then put it into the queue to be sent.
1978 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1979 	 */
1980 	if (!(how & SEND_SHUTDOWN))
1981 		return;
1982 
1983 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1984 	if ((1 << sk->sk_state) &
1985 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1986 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1987 		/* Clear out any half completed packets.  FIN if needed. */
1988 		if (tcp_close_state(sk))
1989 			tcp_send_fin(sk);
1990 	}
1991 }
1992 EXPORT_SYMBOL(tcp_shutdown);
1993 
1994 bool tcp_check_oom(struct sock *sk, int shift)
1995 {
1996 	bool too_many_orphans, out_of_socket_memory;
1997 
1998 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1999 	out_of_socket_memory = tcp_out_of_memory(sk);
2000 
2001 	if (too_many_orphans)
2002 		net_info_ratelimited("too many orphaned sockets\n");
2003 	if (out_of_socket_memory)
2004 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2005 	return too_many_orphans || out_of_socket_memory;
2006 }
2007 
2008 void tcp_close(struct sock *sk, long timeout)
2009 {
2010 	struct sk_buff *skb;
2011 	int data_was_unread = 0;
2012 	int state;
2013 
2014 	lock_sock(sk);
2015 	sk->sk_shutdown = SHUTDOWN_MASK;
2016 
2017 	if (sk->sk_state == TCP_LISTEN) {
2018 		tcp_set_state(sk, TCP_CLOSE);
2019 
2020 		/* Special case. */
2021 		inet_csk_listen_stop(sk);
2022 
2023 		goto adjudge_to_death;
2024 	}
2025 
2026 	/*  We need to flush the recv. buffs.  We do this only on the
2027 	 *  descriptor close, not protocol-sourced closes, because the
2028 	 *  reader process may not have drained the data yet!
2029 	 */
2030 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2031 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2032 
2033 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2034 			len--;
2035 		data_was_unread += len;
2036 		__kfree_skb(skb);
2037 	}
2038 
2039 	sk_mem_reclaim(sk);
2040 
2041 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2042 	if (sk->sk_state == TCP_CLOSE)
2043 		goto adjudge_to_death;
2044 
2045 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2046 	 * data was lost. To witness the awful effects of the old behavior of
2047 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2048 	 * GET in an FTP client, suspend the process, wait for the client to
2049 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2050 	 * Note: timeout is always zero in such a case.
2051 	 */
2052 	if (unlikely(tcp_sk(sk)->repair)) {
2053 		sk->sk_prot->disconnect(sk, 0);
2054 	} else if (data_was_unread) {
2055 		/* Unread data was tossed, zap the connection. */
2056 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2057 		tcp_set_state(sk, TCP_CLOSE);
2058 		tcp_send_active_reset(sk, sk->sk_allocation);
2059 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2060 		/* Check zero linger _after_ checking for unread data. */
2061 		sk->sk_prot->disconnect(sk, 0);
2062 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2063 	} else if (tcp_close_state(sk)) {
2064 		/* We FIN if the application ate all the data before
2065 		 * zapping the connection.
2066 		 */
2067 
2068 		/* RED-PEN. Formally speaking, we have broken TCP state
2069 		 * machine. State transitions:
2070 		 *
2071 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2072 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2073 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2074 		 *
2075 		 * are legal only when FIN has been sent (i.e. in window),
2076 		 * rather than queued out of window. Purists blame.
2077 		 *
2078 		 * F.e. "RFC state" is ESTABLISHED,
2079 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2080 		 *
2081 		 * The visible declinations are that sometimes
2082 		 * we enter time-wait state, when it is not required really
2083 		 * (harmless), do not send active resets, when they are
2084 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2085 		 * they look as CLOSING or LAST_ACK for Linux)
2086 		 * Probably, I missed some more holelets.
2087 		 * 						--ANK
2088 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2089 		 * in a single packet! (May consider it later but will
2090 		 * probably need API support or TCP_CORK SYN-ACK until
2091 		 * data is written and socket is closed.)
2092 		 */
2093 		tcp_send_fin(sk);
2094 	}
2095 
2096 	sk_stream_wait_close(sk, timeout);
2097 
2098 adjudge_to_death:
2099 	state = sk->sk_state;
2100 	sock_hold(sk);
2101 	sock_orphan(sk);
2102 
2103 	/* It is the last release_sock in its life. It will remove backlog. */
2104 	release_sock(sk);
2105 
2106 
2107 	/* Now socket is owned by kernel and we acquire BH lock
2108 	   to finish close. No need to check for user refs.
2109 	 */
2110 	local_bh_disable();
2111 	bh_lock_sock(sk);
2112 	WARN_ON(sock_owned_by_user(sk));
2113 
2114 	percpu_counter_inc(sk->sk_prot->orphan_count);
2115 
2116 	/* Have we already been destroyed by a softirq or backlog? */
2117 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2118 		goto out;
2119 
2120 	/*	This is a (useful) BSD violating of the RFC. There is a
2121 	 *	problem with TCP as specified in that the other end could
2122 	 *	keep a socket open forever with no application left this end.
2123 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2124 	 *	our end. If they send after that then tough - BUT: long enough
2125 	 *	that we won't make the old 4*rto = almost no time - whoops
2126 	 *	reset mistake.
2127 	 *
2128 	 *	Nope, it was not mistake. It is really desired behaviour
2129 	 *	f.e. on http servers, when such sockets are useless, but
2130 	 *	consume significant resources. Let's do it with special
2131 	 *	linger2	option.					--ANK
2132 	 */
2133 
2134 	if (sk->sk_state == TCP_FIN_WAIT2) {
2135 		struct tcp_sock *tp = tcp_sk(sk);
2136 		if (tp->linger2 < 0) {
2137 			tcp_set_state(sk, TCP_CLOSE);
2138 			tcp_send_active_reset(sk, GFP_ATOMIC);
2139 			NET_INC_STATS_BH(sock_net(sk),
2140 					LINUX_MIB_TCPABORTONLINGER);
2141 		} else {
2142 			const int tmo = tcp_fin_time(sk);
2143 
2144 			if (tmo > TCP_TIMEWAIT_LEN) {
2145 				inet_csk_reset_keepalive_timer(sk,
2146 						tmo - TCP_TIMEWAIT_LEN);
2147 			} else {
2148 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2149 				goto out;
2150 			}
2151 		}
2152 	}
2153 	if (sk->sk_state != TCP_CLOSE) {
2154 		sk_mem_reclaim(sk);
2155 		if (tcp_check_oom(sk, 0)) {
2156 			tcp_set_state(sk, TCP_CLOSE);
2157 			tcp_send_active_reset(sk, GFP_ATOMIC);
2158 			NET_INC_STATS_BH(sock_net(sk),
2159 					LINUX_MIB_TCPABORTONMEMORY);
2160 		}
2161 	}
2162 
2163 	if (sk->sk_state == TCP_CLOSE) {
2164 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2165 		/* We could get here with a non-NULL req if the socket is
2166 		 * aborted (e.g., closed with unread data) before 3WHS
2167 		 * finishes.
2168 		 */
2169 		if (req)
2170 			reqsk_fastopen_remove(sk, req, false);
2171 		inet_csk_destroy_sock(sk);
2172 	}
2173 	/* Otherwise, socket is reprieved until protocol close. */
2174 
2175 out:
2176 	bh_unlock_sock(sk);
2177 	local_bh_enable();
2178 	sock_put(sk);
2179 }
2180 EXPORT_SYMBOL(tcp_close);
2181 
2182 /* These states need RST on ABORT according to RFC793 */
2183 
2184 static inline bool tcp_need_reset(int state)
2185 {
2186 	return (1 << state) &
2187 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2188 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2189 }
2190 
2191 int tcp_disconnect(struct sock *sk, int flags)
2192 {
2193 	struct inet_sock *inet = inet_sk(sk);
2194 	struct inet_connection_sock *icsk = inet_csk(sk);
2195 	struct tcp_sock *tp = tcp_sk(sk);
2196 	int err = 0;
2197 	int old_state = sk->sk_state;
2198 
2199 	if (old_state != TCP_CLOSE)
2200 		tcp_set_state(sk, TCP_CLOSE);
2201 
2202 	/* ABORT function of RFC793 */
2203 	if (old_state == TCP_LISTEN) {
2204 		inet_csk_listen_stop(sk);
2205 	} else if (unlikely(tp->repair)) {
2206 		sk->sk_err = ECONNABORTED;
2207 	} else if (tcp_need_reset(old_state) ||
2208 		   (tp->snd_nxt != tp->write_seq &&
2209 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2210 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2211 		 * states
2212 		 */
2213 		tcp_send_active_reset(sk, gfp_any());
2214 		sk->sk_err = ECONNRESET;
2215 	} else if (old_state == TCP_SYN_SENT)
2216 		sk->sk_err = ECONNRESET;
2217 
2218 	tcp_clear_xmit_timers(sk);
2219 	__skb_queue_purge(&sk->sk_receive_queue);
2220 	tcp_write_queue_purge(sk);
2221 	__skb_queue_purge(&tp->out_of_order_queue);
2222 
2223 	inet->inet_dport = 0;
2224 
2225 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2226 		inet_reset_saddr(sk);
2227 
2228 	sk->sk_shutdown = 0;
2229 	sock_reset_flag(sk, SOCK_DONE);
2230 	tp->srtt_us = 0;
2231 	tp->write_seq += tp->max_window + 2;
2232 	if (tp->write_seq == 0)
2233 		tp->write_seq = 1;
2234 	icsk->icsk_backoff = 0;
2235 	tp->snd_cwnd = 2;
2236 	icsk->icsk_probes_out = 0;
2237 	tp->packets_out = 0;
2238 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2239 	tp->snd_cwnd_cnt = 0;
2240 	tp->window_clamp = 0;
2241 	tcp_set_ca_state(sk, TCP_CA_Open);
2242 	tcp_clear_retrans(tp);
2243 	inet_csk_delack_init(sk);
2244 	tcp_init_send_head(sk);
2245 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2246 	__sk_dst_reset(sk);
2247 
2248 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2249 
2250 	sk->sk_error_report(sk);
2251 	return err;
2252 }
2253 EXPORT_SYMBOL(tcp_disconnect);
2254 
2255 static inline bool tcp_can_repair_sock(const struct sock *sk)
2256 {
2257 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2258 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2259 }
2260 
2261 static int tcp_repair_options_est(struct tcp_sock *tp,
2262 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2263 {
2264 	struct tcp_repair_opt opt;
2265 
2266 	while (len >= sizeof(opt)) {
2267 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2268 			return -EFAULT;
2269 
2270 		optbuf++;
2271 		len -= sizeof(opt);
2272 
2273 		switch (opt.opt_code) {
2274 		case TCPOPT_MSS:
2275 			tp->rx_opt.mss_clamp = opt.opt_val;
2276 			break;
2277 		case TCPOPT_WINDOW:
2278 			{
2279 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2280 				u16 rcv_wscale = opt.opt_val >> 16;
2281 
2282 				if (snd_wscale > 14 || rcv_wscale > 14)
2283 					return -EFBIG;
2284 
2285 				tp->rx_opt.snd_wscale = snd_wscale;
2286 				tp->rx_opt.rcv_wscale = rcv_wscale;
2287 				tp->rx_opt.wscale_ok = 1;
2288 			}
2289 			break;
2290 		case TCPOPT_SACK_PERM:
2291 			if (opt.opt_val != 0)
2292 				return -EINVAL;
2293 
2294 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2295 			if (sysctl_tcp_fack)
2296 				tcp_enable_fack(tp);
2297 			break;
2298 		case TCPOPT_TIMESTAMP:
2299 			if (opt.opt_val != 0)
2300 				return -EINVAL;
2301 
2302 			tp->rx_opt.tstamp_ok = 1;
2303 			break;
2304 		}
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 /*
2311  *	Socket option code for TCP.
2312  */
2313 static int do_tcp_setsockopt(struct sock *sk, int level,
2314 		int optname, char __user *optval, unsigned int optlen)
2315 {
2316 	struct tcp_sock *tp = tcp_sk(sk);
2317 	struct inet_connection_sock *icsk = inet_csk(sk);
2318 	struct net *net = sock_net(sk);
2319 	int val;
2320 	int err = 0;
2321 
2322 	/* These are data/string values, all the others are ints */
2323 	switch (optname) {
2324 	case TCP_CONGESTION: {
2325 		char name[TCP_CA_NAME_MAX];
2326 
2327 		if (optlen < 1)
2328 			return -EINVAL;
2329 
2330 		val = strncpy_from_user(name, optval,
2331 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2332 		if (val < 0)
2333 			return -EFAULT;
2334 		name[val] = 0;
2335 
2336 		lock_sock(sk);
2337 		err = tcp_set_congestion_control(sk, name);
2338 		release_sock(sk);
2339 		return err;
2340 	}
2341 	default:
2342 		/* fallthru */
2343 		break;
2344 	}
2345 
2346 	if (optlen < sizeof(int))
2347 		return -EINVAL;
2348 
2349 	if (get_user(val, (int __user *)optval))
2350 		return -EFAULT;
2351 
2352 	lock_sock(sk);
2353 
2354 	switch (optname) {
2355 	case TCP_MAXSEG:
2356 		/* Values greater than interface MTU won't take effect. However
2357 		 * at the point when this call is done we typically don't yet
2358 		 * know which interface is going to be used */
2359 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2360 			err = -EINVAL;
2361 			break;
2362 		}
2363 		tp->rx_opt.user_mss = val;
2364 		break;
2365 
2366 	case TCP_NODELAY:
2367 		if (val) {
2368 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2369 			 * this option on corked socket is remembered, but
2370 			 * it is not activated until cork is cleared.
2371 			 *
2372 			 * However, when TCP_NODELAY is set we make
2373 			 * an explicit push, which overrides even TCP_CORK
2374 			 * for currently queued segments.
2375 			 */
2376 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2377 			tcp_push_pending_frames(sk);
2378 		} else {
2379 			tp->nonagle &= ~TCP_NAGLE_OFF;
2380 		}
2381 		break;
2382 
2383 	case TCP_THIN_LINEAR_TIMEOUTS:
2384 		if (val < 0 || val > 1)
2385 			err = -EINVAL;
2386 		else
2387 			tp->thin_lto = val;
2388 		break;
2389 
2390 	case TCP_THIN_DUPACK:
2391 		if (val < 0 || val > 1)
2392 			err = -EINVAL;
2393 		else {
2394 			tp->thin_dupack = val;
2395 			if (tp->thin_dupack)
2396 				tcp_disable_early_retrans(tp);
2397 		}
2398 		break;
2399 
2400 	case TCP_REPAIR:
2401 		if (!tcp_can_repair_sock(sk))
2402 			err = -EPERM;
2403 		else if (val == 1) {
2404 			tp->repair = 1;
2405 			sk->sk_reuse = SK_FORCE_REUSE;
2406 			tp->repair_queue = TCP_NO_QUEUE;
2407 		} else if (val == 0) {
2408 			tp->repair = 0;
2409 			sk->sk_reuse = SK_NO_REUSE;
2410 			tcp_send_window_probe(sk);
2411 		} else
2412 			err = -EINVAL;
2413 
2414 		break;
2415 
2416 	case TCP_REPAIR_QUEUE:
2417 		if (!tp->repair)
2418 			err = -EPERM;
2419 		else if (val < TCP_QUEUES_NR)
2420 			tp->repair_queue = val;
2421 		else
2422 			err = -EINVAL;
2423 		break;
2424 
2425 	case TCP_QUEUE_SEQ:
2426 		if (sk->sk_state != TCP_CLOSE)
2427 			err = -EPERM;
2428 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2429 			tp->write_seq = val;
2430 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2431 			tp->rcv_nxt = val;
2432 		else
2433 			err = -EINVAL;
2434 		break;
2435 
2436 	case TCP_REPAIR_OPTIONS:
2437 		if (!tp->repair)
2438 			err = -EINVAL;
2439 		else if (sk->sk_state == TCP_ESTABLISHED)
2440 			err = tcp_repair_options_est(tp,
2441 					(struct tcp_repair_opt __user *)optval,
2442 					optlen);
2443 		else
2444 			err = -EPERM;
2445 		break;
2446 
2447 	case TCP_CORK:
2448 		/* When set indicates to always queue non-full frames.
2449 		 * Later the user clears this option and we transmit
2450 		 * any pending partial frames in the queue.  This is
2451 		 * meant to be used alongside sendfile() to get properly
2452 		 * filled frames when the user (for example) must write
2453 		 * out headers with a write() call first and then use
2454 		 * sendfile to send out the data parts.
2455 		 *
2456 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2457 		 * stronger than TCP_NODELAY.
2458 		 */
2459 		if (val) {
2460 			tp->nonagle |= TCP_NAGLE_CORK;
2461 		} else {
2462 			tp->nonagle &= ~TCP_NAGLE_CORK;
2463 			if (tp->nonagle&TCP_NAGLE_OFF)
2464 				tp->nonagle |= TCP_NAGLE_PUSH;
2465 			tcp_push_pending_frames(sk);
2466 		}
2467 		break;
2468 
2469 	case TCP_KEEPIDLE:
2470 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2471 			err = -EINVAL;
2472 		else {
2473 			tp->keepalive_time = val * HZ;
2474 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2475 			    !((1 << sk->sk_state) &
2476 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2477 				u32 elapsed = keepalive_time_elapsed(tp);
2478 				if (tp->keepalive_time > elapsed)
2479 					elapsed = tp->keepalive_time - elapsed;
2480 				else
2481 					elapsed = 0;
2482 				inet_csk_reset_keepalive_timer(sk, elapsed);
2483 			}
2484 		}
2485 		break;
2486 	case TCP_KEEPINTVL:
2487 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2488 			err = -EINVAL;
2489 		else
2490 			tp->keepalive_intvl = val * HZ;
2491 		break;
2492 	case TCP_KEEPCNT:
2493 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2494 			err = -EINVAL;
2495 		else
2496 			tp->keepalive_probes = val;
2497 		break;
2498 	case TCP_SYNCNT:
2499 		if (val < 1 || val > MAX_TCP_SYNCNT)
2500 			err = -EINVAL;
2501 		else
2502 			icsk->icsk_syn_retries = val;
2503 		break;
2504 
2505 	case TCP_SAVE_SYN:
2506 		if (val < 0 || val > 1)
2507 			err = -EINVAL;
2508 		else
2509 			tp->save_syn = val;
2510 		break;
2511 
2512 	case TCP_LINGER2:
2513 		if (val < 0)
2514 			tp->linger2 = -1;
2515 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2516 			tp->linger2 = 0;
2517 		else
2518 			tp->linger2 = val * HZ;
2519 		break;
2520 
2521 	case TCP_DEFER_ACCEPT:
2522 		/* Translate value in seconds to number of retransmits */
2523 		icsk->icsk_accept_queue.rskq_defer_accept =
2524 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2525 					TCP_RTO_MAX / HZ);
2526 		break;
2527 
2528 	case TCP_WINDOW_CLAMP:
2529 		if (!val) {
2530 			if (sk->sk_state != TCP_CLOSE) {
2531 				err = -EINVAL;
2532 				break;
2533 			}
2534 			tp->window_clamp = 0;
2535 		} else
2536 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2537 						SOCK_MIN_RCVBUF / 2 : val;
2538 		break;
2539 
2540 	case TCP_QUICKACK:
2541 		if (!val) {
2542 			icsk->icsk_ack.pingpong = 1;
2543 		} else {
2544 			icsk->icsk_ack.pingpong = 0;
2545 			if ((1 << sk->sk_state) &
2546 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2547 			    inet_csk_ack_scheduled(sk)) {
2548 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2549 				tcp_cleanup_rbuf(sk, 1);
2550 				if (!(val & 1))
2551 					icsk->icsk_ack.pingpong = 1;
2552 			}
2553 		}
2554 		break;
2555 
2556 #ifdef CONFIG_TCP_MD5SIG
2557 	case TCP_MD5SIG:
2558 		/* Read the IP->Key mappings from userspace */
2559 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2560 		break;
2561 #endif
2562 	case TCP_USER_TIMEOUT:
2563 		/* Cap the max time in ms TCP will retry or probe the window
2564 		 * before giving up and aborting (ETIMEDOUT) a connection.
2565 		 */
2566 		if (val < 0)
2567 			err = -EINVAL;
2568 		else
2569 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2570 		break;
2571 
2572 	case TCP_FASTOPEN:
2573 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2574 		    TCPF_LISTEN))) {
2575 			tcp_fastopen_init_key_once(true);
2576 
2577 			fastopen_queue_tune(sk, val);
2578 		} else {
2579 			err = -EINVAL;
2580 		}
2581 		break;
2582 	case TCP_TIMESTAMP:
2583 		if (!tp->repair)
2584 			err = -EPERM;
2585 		else
2586 			tp->tsoffset = val - tcp_time_stamp;
2587 		break;
2588 	case TCP_NOTSENT_LOWAT:
2589 		tp->notsent_lowat = val;
2590 		sk->sk_write_space(sk);
2591 		break;
2592 	default:
2593 		err = -ENOPROTOOPT;
2594 		break;
2595 	}
2596 
2597 	release_sock(sk);
2598 	return err;
2599 }
2600 
2601 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2602 		   unsigned int optlen)
2603 {
2604 	const struct inet_connection_sock *icsk = inet_csk(sk);
2605 
2606 	if (level != SOL_TCP)
2607 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2608 						     optval, optlen);
2609 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2610 }
2611 EXPORT_SYMBOL(tcp_setsockopt);
2612 
2613 #ifdef CONFIG_COMPAT
2614 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2615 			  char __user *optval, unsigned int optlen)
2616 {
2617 	if (level != SOL_TCP)
2618 		return inet_csk_compat_setsockopt(sk, level, optname,
2619 						  optval, optlen);
2620 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2621 }
2622 EXPORT_SYMBOL(compat_tcp_setsockopt);
2623 #endif
2624 
2625 /* Return information about state of tcp endpoint in API format. */
2626 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2627 {
2628 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2629 	const struct inet_connection_sock *icsk = inet_csk(sk);
2630 	u32 now = tcp_time_stamp;
2631 	unsigned int start;
2632 	int notsent_bytes;
2633 	u64 rate64;
2634 	u32 rate;
2635 
2636 	memset(info, 0, sizeof(*info));
2637 	if (sk->sk_type != SOCK_STREAM)
2638 		return;
2639 
2640 	info->tcpi_state = sk_state_load(sk);
2641 
2642 	info->tcpi_ca_state = icsk->icsk_ca_state;
2643 	info->tcpi_retransmits = icsk->icsk_retransmits;
2644 	info->tcpi_probes = icsk->icsk_probes_out;
2645 	info->tcpi_backoff = icsk->icsk_backoff;
2646 
2647 	if (tp->rx_opt.tstamp_ok)
2648 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2649 	if (tcp_is_sack(tp))
2650 		info->tcpi_options |= TCPI_OPT_SACK;
2651 	if (tp->rx_opt.wscale_ok) {
2652 		info->tcpi_options |= TCPI_OPT_WSCALE;
2653 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2654 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2655 	}
2656 
2657 	if (tp->ecn_flags & TCP_ECN_OK)
2658 		info->tcpi_options |= TCPI_OPT_ECN;
2659 	if (tp->ecn_flags & TCP_ECN_SEEN)
2660 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2661 	if (tp->syn_data_acked)
2662 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2663 
2664 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2665 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2666 	info->tcpi_snd_mss = tp->mss_cache;
2667 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2668 
2669 	if (info->tcpi_state == TCP_LISTEN) {
2670 		info->tcpi_unacked = sk->sk_ack_backlog;
2671 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2672 	} else {
2673 		info->tcpi_unacked = tp->packets_out;
2674 		info->tcpi_sacked = tp->sacked_out;
2675 	}
2676 	info->tcpi_lost = tp->lost_out;
2677 	info->tcpi_retrans = tp->retrans_out;
2678 	info->tcpi_fackets = tp->fackets_out;
2679 
2680 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2681 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2682 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2683 
2684 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2685 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2686 	info->tcpi_rtt = tp->srtt_us >> 3;
2687 	info->tcpi_rttvar = tp->mdev_us >> 2;
2688 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2689 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2690 	info->tcpi_advmss = tp->advmss;
2691 	info->tcpi_reordering = tp->reordering;
2692 
2693 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2694 	info->tcpi_rcv_space = tp->rcvq_space.space;
2695 
2696 	info->tcpi_total_retrans = tp->total_retrans;
2697 
2698 	rate = READ_ONCE(sk->sk_pacing_rate);
2699 	rate64 = rate != ~0U ? rate : ~0ULL;
2700 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2701 
2702 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2703 	rate64 = rate != ~0U ? rate : ~0ULL;
2704 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2705 
2706 	do {
2707 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2708 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2709 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2710 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2711 	info->tcpi_segs_out = tp->segs_out;
2712 	info->tcpi_segs_in = tp->segs_in;
2713 
2714 	notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2715 	info->tcpi_notsent_bytes = max(0, notsent_bytes);
2716 
2717 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2718 	info->tcpi_data_segs_in = tp->data_segs_in;
2719 	info->tcpi_data_segs_out = tp->data_segs_out;
2720 }
2721 EXPORT_SYMBOL_GPL(tcp_get_info);
2722 
2723 static int do_tcp_getsockopt(struct sock *sk, int level,
2724 		int optname, char __user *optval, int __user *optlen)
2725 {
2726 	struct inet_connection_sock *icsk = inet_csk(sk);
2727 	struct tcp_sock *tp = tcp_sk(sk);
2728 	struct net *net = sock_net(sk);
2729 	int val, len;
2730 
2731 	if (get_user(len, optlen))
2732 		return -EFAULT;
2733 
2734 	len = min_t(unsigned int, len, sizeof(int));
2735 
2736 	if (len < 0)
2737 		return -EINVAL;
2738 
2739 	switch (optname) {
2740 	case TCP_MAXSEG:
2741 		val = tp->mss_cache;
2742 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2743 			val = tp->rx_opt.user_mss;
2744 		if (tp->repair)
2745 			val = tp->rx_opt.mss_clamp;
2746 		break;
2747 	case TCP_NODELAY:
2748 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2749 		break;
2750 	case TCP_CORK:
2751 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2752 		break;
2753 	case TCP_KEEPIDLE:
2754 		val = keepalive_time_when(tp) / HZ;
2755 		break;
2756 	case TCP_KEEPINTVL:
2757 		val = keepalive_intvl_when(tp) / HZ;
2758 		break;
2759 	case TCP_KEEPCNT:
2760 		val = keepalive_probes(tp);
2761 		break;
2762 	case TCP_SYNCNT:
2763 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2764 		break;
2765 	case TCP_LINGER2:
2766 		val = tp->linger2;
2767 		if (val >= 0)
2768 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2769 		break;
2770 	case TCP_DEFER_ACCEPT:
2771 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2772 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2773 		break;
2774 	case TCP_WINDOW_CLAMP:
2775 		val = tp->window_clamp;
2776 		break;
2777 	case TCP_INFO: {
2778 		struct tcp_info info;
2779 
2780 		if (get_user(len, optlen))
2781 			return -EFAULT;
2782 
2783 		tcp_get_info(sk, &info);
2784 
2785 		len = min_t(unsigned int, len, sizeof(info));
2786 		if (put_user(len, optlen))
2787 			return -EFAULT;
2788 		if (copy_to_user(optval, &info, len))
2789 			return -EFAULT;
2790 		return 0;
2791 	}
2792 	case TCP_CC_INFO: {
2793 		const struct tcp_congestion_ops *ca_ops;
2794 		union tcp_cc_info info;
2795 		size_t sz = 0;
2796 		int attr;
2797 
2798 		if (get_user(len, optlen))
2799 			return -EFAULT;
2800 
2801 		ca_ops = icsk->icsk_ca_ops;
2802 		if (ca_ops && ca_ops->get_info)
2803 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2804 
2805 		len = min_t(unsigned int, len, sz);
2806 		if (put_user(len, optlen))
2807 			return -EFAULT;
2808 		if (copy_to_user(optval, &info, len))
2809 			return -EFAULT;
2810 		return 0;
2811 	}
2812 	case TCP_QUICKACK:
2813 		val = !icsk->icsk_ack.pingpong;
2814 		break;
2815 
2816 	case TCP_CONGESTION:
2817 		if (get_user(len, optlen))
2818 			return -EFAULT;
2819 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2820 		if (put_user(len, optlen))
2821 			return -EFAULT;
2822 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2823 			return -EFAULT;
2824 		return 0;
2825 
2826 	case TCP_THIN_LINEAR_TIMEOUTS:
2827 		val = tp->thin_lto;
2828 		break;
2829 	case TCP_THIN_DUPACK:
2830 		val = tp->thin_dupack;
2831 		break;
2832 
2833 	case TCP_REPAIR:
2834 		val = tp->repair;
2835 		break;
2836 
2837 	case TCP_REPAIR_QUEUE:
2838 		if (tp->repair)
2839 			val = tp->repair_queue;
2840 		else
2841 			return -EINVAL;
2842 		break;
2843 
2844 	case TCP_QUEUE_SEQ:
2845 		if (tp->repair_queue == TCP_SEND_QUEUE)
2846 			val = tp->write_seq;
2847 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2848 			val = tp->rcv_nxt;
2849 		else
2850 			return -EINVAL;
2851 		break;
2852 
2853 	case TCP_USER_TIMEOUT:
2854 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2855 		break;
2856 
2857 	case TCP_FASTOPEN:
2858 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2859 		break;
2860 
2861 	case TCP_TIMESTAMP:
2862 		val = tcp_time_stamp + tp->tsoffset;
2863 		break;
2864 	case TCP_NOTSENT_LOWAT:
2865 		val = tp->notsent_lowat;
2866 		break;
2867 	case TCP_SAVE_SYN:
2868 		val = tp->save_syn;
2869 		break;
2870 	case TCP_SAVED_SYN: {
2871 		if (get_user(len, optlen))
2872 			return -EFAULT;
2873 
2874 		lock_sock(sk);
2875 		if (tp->saved_syn) {
2876 			if (len < tp->saved_syn[0]) {
2877 				if (put_user(tp->saved_syn[0], optlen)) {
2878 					release_sock(sk);
2879 					return -EFAULT;
2880 				}
2881 				release_sock(sk);
2882 				return -EINVAL;
2883 			}
2884 			len = tp->saved_syn[0];
2885 			if (put_user(len, optlen)) {
2886 				release_sock(sk);
2887 				return -EFAULT;
2888 			}
2889 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2890 				release_sock(sk);
2891 				return -EFAULT;
2892 			}
2893 			tcp_saved_syn_free(tp);
2894 			release_sock(sk);
2895 		} else {
2896 			release_sock(sk);
2897 			len = 0;
2898 			if (put_user(len, optlen))
2899 				return -EFAULT;
2900 		}
2901 		return 0;
2902 	}
2903 	default:
2904 		return -ENOPROTOOPT;
2905 	}
2906 
2907 	if (put_user(len, optlen))
2908 		return -EFAULT;
2909 	if (copy_to_user(optval, &val, len))
2910 		return -EFAULT;
2911 	return 0;
2912 }
2913 
2914 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2915 		   int __user *optlen)
2916 {
2917 	struct inet_connection_sock *icsk = inet_csk(sk);
2918 
2919 	if (level != SOL_TCP)
2920 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2921 						     optval, optlen);
2922 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2923 }
2924 EXPORT_SYMBOL(tcp_getsockopt);
2925 
2926 #ifdef CONFIG_COMPAT
2927 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2928 			  char __user *optval, int __user *optlen)
2929 {
2930 	if (level != SOL_TCP)
2931 		return inet_csk_compat_getsockopt(sk, level, optname,
2932 						  optval, optlen);
2933 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2934 }
2935 EXPORT_SYMBOL(compat_tcp_getsockopt);
2936 #endif
2937 
2938 #ifdef CONFIG_TCP_MD5SIG
2939 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2940 static DEFINE_MUTEX(tcp_md5sig_mutex);
2941 static bool tcp_md5sig_pool_populated = false;
2942 
2943 static void __tcp_alloc_md5sig_pool(void)
2944 {
2945 	struct crypto_ahash *hash;
2946 	int cpu;
2947 
2948 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
2949 	if (IS_ERR(hash))
2950 		return;
2951 
2952 	for_each_possible_cpu(cpu) {
2953 		struct ahash_request *req;
2954 
2955 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
2956 			continue;
2957 
2958 		req = ahash_request_alloc(hash, GFP_KERNEL);
2959 		if (!req)
2960 			return;
2961 
2962 		ahash_request_set_callback(req, 0, NULL, NULL);
2963 
2964 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
2965 	}
2966 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2967 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2968 	 */
2969 	smp_wmb();
2970 	tcp_md5sig_pool_populated = true;
2971 }
2972 
2973 bool tcp_alloc_md5sig_pool(void)
2974 {
2975 	if (unlikely(!tcp_md5sig_pool_populated)) {
2976 		mutex_lock(&tcp_md5sig_mutex);
2977 
2978 		if (!tcp_md5sig_pool_populated)
2979 			__tcp_alloc_md5sig_pool();
2980 
2981 		mutex_unlock(&tcp_md5sig_mutex);
2982 	}
2983 	return tcp_md5sig_pool_populated;
2984 }
2985 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2986 
2987 
2988 /**
2989  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2990  *
2991  *	We use percpu structure, so if we succeed, we exit with preemption
2992  *	and BH disabled, to make sure another thread or softirq handling
2993  *	wont try to get same context.
2994  */
2995 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2996 {
2997 	local_bh_disable();
2998 
2999 	if (tcp_md5sig_pool_populated) {
3000 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3001 		smp_rmb();
3002 		return this_cpu_ptr(&tcp_md5sig_pool);
3003 	}
3004 	local_bh_enable();
3005 	return NULL;
3006 }
3007 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3008 
3009 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3010 			const struct tcphdr *th)
3011 {
3012 	struct scatterlist sg;
3013 	struct tcphdr hdr;
3014 
3015 	/* We are not allowed to change tcphdr, make a local copy */
3016 	memcpy(&hdr, th, sizeof(hdr));
3017 	hdr.check = 0;
3018 
3019 	/* options aren't included in the hash */
3020 	sg_init_one(&sg, &hdr, sizeof(hdr));
3021 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr));
3022 	return crypto_ahash_update(hp->md5_req);
3023 }
3024 EXPORT_SYMBOL(tcp_md5_hash_header);
3025 
3026 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3027 			  const struct sk_buff *skb, unsigned int header_len)
3028 {
3029 	struct scatterlist sg;
3030 	const struct tcphdr *tp = tcp_hdr(skb);
3031 	struct ahash_request *req = hp->md5_req;
3032 	unsigned int i;
3033 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3034 					   skb_headlen(skb) - header_len : 0;
3035 	const struct skb_shared_info *shi = skb_shinfo(skb);
3036 	struct sk_buff *frag_iter;
3037 
3038 	sg_init_table(&sg, 1);
3039 
3040 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3041 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3042 	if (crypto_ahash_update(req))
3043 		return 1;
3044 
3045 	for (i = 0; i < shi->nr_frags; ++i) {
3046 		const struct skb_frag_struct *f = &shi->frags[i];
3047 		unsigned int offset = f->page_offset;
3048 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3049 
3050 		sg_set_page(&sg, page, skb_frag_size(f),
3051 			    offset_in_page(offset));
3052 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3053 		if (crypto_ahash_update(req))
3054 			return 1;
3055 	}
3056 
3057 	skb_walk_frags(skb, frag_iter)
3058 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3059 			return 1;
3060 
3061 	return 0;
3062 }
3063 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3064 
3065 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3066 {
3067 	struct scatterlist sg;
3068 
3069 	sg_init_one(&sg, key->key, key->keylen);
3070 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3071 	return crypto_ahash_update(hp->md5_req);
3072 }
3073 EXPORT_SYMBOL(tcp_md5_hash_key);
3074 
3075 #endif
3076 
3077 void tcp_done(struct sock *sk)
3078 {
3079 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3080 
3081 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3082 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3083 
3084 	tcp_set_state(sk, TCP_CLOSE);
3085 	tcp_clear_xmit_timers(sk);
3086 	if (req)
3087 		reqsk_fastopen_remove(sk, req, false);
3088 
3089 	sk->sk_shutdown = SHUTDOWN_MASK;
3090 
3091 	if (!sock_flag(sk, SOCK_DEAD))
3092 		sk->sk_state_change(sk);
3093 	else
3094 		inet_csk_destroy_sock(sk);
3095 }
3096 EXPORT_SYMBOL_GPL(tcp_done);
3097 
3098 int tcp_abort(struct sock *sk, int err)
3099 {
3100 	if (!sk_fullsock(sk)) {
3101 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3102 			struct request_sock *req = inet_reqsk(sk);
3103 
3104 			local_bh_disable();
3105 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3106 							  req);
3107 			local_bh_enable();
3108 			return 0;
3109 		}
3110 		sock_gen_put(sk);
3111 		return -EOPNOTSUPP;
3112 	}
3113 
3114 	/* Don't race with userspace socket closes such as tcp_close. */
3115 	lock_sock(sk);
3116 
3117 	if (sk->sk_state == TCP_LISTEN) {
3118 		tcp_set_state(sk, TCP_CLOSE);
3119 		inet_csk_listen_stop(sk);
3120 	}
3121 
3122 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3123 	local_bh_disable();
3124 	bh_lock_sock(sk);
3125 
3126 	if (!sock_flag(sk, SOCK_DEAD)) {
3127 		sk->sk_err = err;
3128 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3129 		smp_wmb();
3130 		sk->sk_error_report(sk);
3131 		if (tcp_need_reset(sk->sk_state))
3132 			tcp_send_active_reset(sk, GFP_ATOMIC);
3133 		tcp_done(sk);
3134 	}
3135 
3136 	bh_unlock_sock(sk);
3137 	local_bh_enable();
3138 	release_sock(sk);
3139 	sock_put(sk);
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(tcp_abort);
3143 
3144 extern struct tcp_congestion_ops tcp_reno;
3145 
3146 static __initdata unsigned long thash_entries;
3147 static int __init set_thash_entries(char *str)
3148 {
3149 	ssize_t ret;
3150 
3151 	if (!str)
3152 		return 0;
3153 
3154 	ret = kstrtoul(str, 0, &thash_entries);
3155 	if (ret)
3156 		return 0;
3157 
3158 	return 1;
3159 }
3160 __setup("thash_entries=", set_thash_entries);
3161 
3162 static void __init tcp_init_mem(void)
3163 {
3164 	unsigned long limit = nr_free_buffer_pages() / 16;
3165 
3166 	limit = max(limit, 128UL);
3167 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3168 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3169 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3170 }
3171 
3172 void __init tcp_init(void)
3173 {
3174 	unsigned long limit;
3175 	int max_rshare, max_wshare, cnt;
3176 	unsigned int i;
3177 
3178 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3179 
3180 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3181 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3182 	tcp_hashinfo.bind_bucket_cachep =
3183 		kmem_cache_create("tcp_bind_bucket",
3184 				  sizeof(struct inet_bind_bucket), 0,
3185 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3186 
3187 	/* Size and allocate the main established and bind bucket
3188 	 * hash tables.
3189 	 *
3190 	 * The methodology is similar to that of the buffer cache.
3191 	 */
3192 	tcp_hashinfo.ehash =
3193 		alloc_large_system_hash("TCP established",
3194 					sizeof(struct inet_ehash_bucket),
3195 					thash_entries,
3196 					17, /* one slot per 128 KB of memory */
3197 					0,
3198 					NULL,
3199 					&tcp_hashinfo.ehash_mask,
3200 					0,
3201 					thash_entries ? 0 : 512 * 1024);
3202 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3203 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3204 
3205 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3206 		panic("TCP: failed to alloc ehash_locks");
3207 	tcp_hashinfo.bhash =
3208 		alloc_large_system_hash("TCP bind",
3209 					sizeof(struct inet_bind_hashbucket),
3210 					tcp_hashinfo.ehash_mask + 1,
3211 					17, /* one slot per 128 KB of memory */
3212 					0,
3213 					&tcp_hashinfo.bhash_size,
3214 					NULL,
3215 					0,
3216 					64 * 1024);
3217 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3218 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3219 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3220 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3221 	}
3222 
3223 
3224 	cnt = tcp_hashinfo.ehash_mask + 1;
3225 
3226 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3227 	sysctl_tcp_max_orphans = cnt / 2;
3228 	sysctl_max_syn_backlog = max(128, cnt / 256);
3229 
3230 	tcp_init_mem();
3231 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3232 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3233 	max_wshare = min(4UL*1024*1024, limit);
3234 	max_rshare = min(6UL*1024*1024, limit);
3235 
3236 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3237 	sysctl_tcp_wmem[1] = 16*1024;
3238 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3239 
3240 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3241 	sysctl_tcp_rmem[1] = 87380;
3242 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3243 
3244 	pr_info("Hash tables configured (established %u bind %u)\n",
3245 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3246 
3247 	tcp_metrics_init();
3248 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3249 	tcp_tasklet_init();
3250 }
3251