1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <asm/unaligned.h> 283 #include <net/busy_poll.h> 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 int tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 if (!tcp_memory_pressure) { 330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 331 tcp_memory_pressure = 1; 332 } 333 } 334 EXPORT_SYMBOL(tcp_enter_memory_pressure); 335 336 /* Convert seconds to retransmits based on initial and max timeout */ 337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 338 { 339 u8 res = 0; 340 341 if (seconds > 0) { 342 int period = timeout; 343 344 res = 1; 345 while (seconds > period && res < 255) { 346 res++; 347 timeout <<= 1; 348 if (timeout > rto_max) 349 timeout = rto_max; 350 period += timeout; 351 } 352 } 353 return res; 354 } 355 356 /* Convert retransmits to seconds based on initial and max timeout */ 357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 358 { 359 int period = 0; 360 361 if (retrans > 0) { 362 period = timeout; 363 while (--retrans) { 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return period; 371 } 372 373 /* Address-family independent initialization for a tcp_sock. 374 * 375 * NOTE: A lot of things set to zero explicitly by call to 376 * sk_alloc() so need not be done here. 377 */ 378 void tcp_init_sock(struct sock *sk) 379 { 380 struct inet_connection_sock *icsk = inet_csk(sk); 381 struct tcp_sock *tp = tcp_sk(sk); 382 383 __skb_queue_head_init(&tp->out_of_order_queue); 384 tcp_init_xmit_timers(sk); 385 tcp_prequeue_init(tp); 386 INIT_LIST_HEAD(&tp->tsq_node); 387 388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 390 tp->rtt_min[0].rtt = ~0U; 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* See draft-stevens-tcpca-spec-01 for discussion of the 400 * initialization of these values. 401 */ 402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 403 tp->snd_cwnd_clamp = ~0; 404 tp->mss_cache = TCP_MSS_DEFAULT; 405 u64_stats_init(&tp->syncp); 406 407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 408 tcp_enable_early_retrans(tp); 409 tcp_assign_congestion_control(sk); 410 411 tp->tsoffset = 0; 412 413 sk->sk_state = TCP_CLOSE; 414 415 sk->sk_write_space = sk_stream_write_space; 416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 417 418 icsk->icsk_sync_mss = tcp_sync_mss; 419 420 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 421 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 422 423 local_bh_disable(); 424 if (mem_cgroup_sockets_enabled) 425 sock_update_memcg(sk); 426 sk_sockets_allocated_inc(sk); 427 local_bh_enable(); 428 } 429 EXPORT_SYMBOL(tcp_init_sock); 430 431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 432 { 433 if (sk->sk_tsflags) { 434 struct skb_shared_info *shinfo = skb_shinfo(skb); 435 436 sock_tx_timestamp(sk, &shinfo->tx_flags); 437 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 438 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 439 } 440 } 441 442 /* 443 * Wait for a TCP event. 444 * 445 * Note that we don't need to lock the socket, as the upper poll layers 446 * take care of normal races (between the test and the event) and we don't 447 * go look at any of the socket buffers directly. 448 */ 449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 450 { 451 unsigned int mask; 452 struct sock *sk = sock->sk; 453 const struct tcp_sock *tp = tcp_sk(sk); 454 int state; 455 456 sock_rps_record_flow(sk); 457 458 sock_poll_wait(file, sk_sleep(sk), wait); 459 460 state = sk_state_load(sk); 461 if (state == TCP_LISTEN) 462 return inet_csk_listen_poll(sk); 463 464 /* Socket is not locked. We are protected from async events 465 * by poll logic and correct handling of state changes 466 * made by other threads is impossible in any case. 467 */ 468 469 mask = 0; 470 471 /* 472 * POLLHUP is certainly not done right. But poll() doesn't 473 * have a notion of HUP in just one direction, and for a 474 * socket the read side is more interesting. 475 * 476 * Some poll() documentation says that POLLHUP is incompatible 477 * with the POLLOUT/POLLWR flags, so somebody should check this 478 * all. But careful, it tends to be safer to return too many 479 * bits than too few, and you can easily break real applications 480 * if you don't tell them that something has hung up! 481 * 482 * Check-me. 483 * 484 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 485 * our fs/select.c). It means that after we received EOF, 486 * poll always returns immediately, making impossible poll() on write() 487 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 488 * if and only if shutdown has been made in both directions. 489 * Actually, it is interesting to look how Solaris and DUX 490 * solve this dilemma. I would prefer, if POLLHUP were maskable, 491 * then we could set it on SND_SHUTDOWN. BTW examples given 492 * in Stevens' books assume exactly this behaviour, it explains 493 * why POLLHUP is incompatible with POLLOUT. --ANK 494 * 495 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 496 * blocking on fresh not-connected or disconnected socket. --ANK 497 */ 498 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 499 mask |= POLLHUP; 500 if (sk->sk_shutdown & RCV_SHUTDOWN) 501 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 502 503 /* Connected or passive Fast Open socket? */ 504 if (state != TCP_SYN_SENT && 505 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 506 int target = sock_rcvlowat(sk, 0, INT_MAX); 507 508 if (tp->urg_seq == tp->copied_seq && 509 !sock_flag(sk, SOCK_URGINLINE) && 510 tp->urg_data) 511 target++; 512 513 if (tp->rcv_nxt - tp->copied_seq >= target) 514 mask |= POLLIN | POLLRDNORM; 515 516 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 517 if (sk_stream_is_writeable(sk)) { 518 mask |= POLLOUT | POLLWRNORM; 519 } else { /* send SIGIO later */ 520 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 522 523 /* Race breaker. If space is freed after 524 * wspace test but before the flags are set, 525 * IO signal will be lost. Memory barrier 526 * pairs with the input side. 527 */ 528 smp_mb__after_atomic(); 529 if (sk_stream_is_writeable(sk)) 530 mask |= POLLOUT | POLLWRNORM; 531 } 532 } else 533 mask |= POLLOUT | POLLWRNORM; 534 535 if (tp->urg_data & TCP_URG_VALID) 536 mask |= POLLPRI; 537 } 538 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 539 smp_rmb(); 540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 541 mask |= POLLERR; 542 543 return mask; 544 } 545 EXPORT_SYMBOL(tcp_poll); 546 547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 548 { 549 struct tcp_sock *tp = tcp_sk(sk); 550 int answ; 551 bool slow; 552 553 switch (cmd) { 554 case SIOCINQ: 555 if (sk->sk_state == TCP_LISTEN) 556 return -EINVAL; 557 558 slow = lock_sock_fast(sk); 559 answ = tcp_inq(sk); 560 unlock_sock_fast(sk, slow); 561 break; 562 case SIOCATMARK: 563 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 564 break; 565 case SIOCOUTQ: 566 if (sk->sk_state == TCP_LISTEN) 567 return -EINVAL; 568 569 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 570 answ = 0; 571 else 572 answ = tp->write_seq - tp->snd_una; 573 break; 574 case SIOCOUTQNSD: 575 if (sk->sk_state == TCP_LISTEN) 576 return -EINVAL; 577 578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 579 answ = 0; 580 else 581 answ = tp->write_seq - tp->snd_nxt; 582 break; 583 default: 584 return -ENOIOCTLCMD; 585 } 586 587 return put_user(answ, (int __user *)arg); 588 } 589 EXPORT_SYMBOL(tcp_ioctl); 590 591 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 592 { 593 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 594 tp->pushed_seq = tp->write_seq; 595 } 596 597 static inline bool forced_push(const struct tcp_sock *tp) 598 { 599 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 600 } 601 602 static void skb_entail(struct sock *sk, struct sk_buff *skb) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 606 607 skb->csum = 0; 608 tcb->seq = tcb->end_seq = tp->write_seq; 609 tcb->tcp_flags = TCPHDR_ACK; 610 tcb->sacked = 0; 611 __skb_header_release(skb); 612 tcp_add_write_queue_tail(sk, skb); 613 sk->sk_wmem_queued += skb->truesize; 614 sk_mem_charge(sk, skb->truesize); 615 if (tp->nonagle & TCP_NAGLE_PUSH) 616 tp->nonagle &= ~TCP_NAGLE_PUSH; 617 618 tcp_slow_start_after_idle_check(sk); 619 } 620 621 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 622 { 623 if (flags & MSG_OOB) 624 tp->snd_up = tp->write_seq; 625 } 626 627 /* If a not yet filled skb is pushed, do not send it if 628 * we have data packets in Qdisc or NIC queues : 629 * Because TX completion will happen shortly, it gives a chance 630 * to coalesce future sendmsg() payload into this skb, without 631 * need for a timer, and with no latency trade off. 632 * As packets containing data payload have a bigger truesize 633 * than pure acks (dataless) packets, the last checks prevent 634 * autocorking if we only have an ACK in Qdisc/NIC queues, 635 * or if TX completion was delayed after we processed ACK packet. 636 */ 637 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 638 int size_goal) 639 { 640 return skb->len < size_goal && 641 sysctl_tcp_autocorking && 642 skb != tcp_write_queue_head(sk) && 643 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 644 } 645 646 static void tcp_push(struct sock *sk, int flags, int mss_now, 647 int nonagle, int size_goal) 648 { 649 struct tcp_sock *tp = tcp_sk(sk); 650 struct sk_buff *skb; 651 652 if (!tcp_send_head(sk)) 653 return; 654 655 skb = tcp_write_queue_tail(sk); 656 if (!(flags & MSG_MORE) || forced_push(tp)) 657 tcp_mark_push(tp, skb); 658 659 tcp_mark_urg(tp, flags); 660 661 if (tcp_should_autocork(sk, skb, size_goal)) { 662 663 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 664 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 665 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 666 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 667 } 668 /* It is possible TX completion already happened 669 * before we set TSQ_THROTTLED. 670 */ 671 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 672 return; 673 } 674 675 if (flags & MSG_MORE) 676 nonagle = TCP_NAGLE_CORK; 677 678 __tcp_push_pending_frames(sk, mss_now, nonagle); 679 } 680 681 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 682 unsigned int offset, size_t len) 683 { 684 struct tcp_splice_state *tss = rd_desc->arg.data; 685 int ret; 686 687 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 688 min(rd_desc->count, len), tss->flags, 689 skb_socket_splice); 690 if (ret > 0) 691 rd_desc->count -= ret; 692 return ret; 693 } 694 695 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 696 { 697 /* Store TCP splice context information in read_descriptor_t. */ 698 read_descriptor_t rd_desc = { 699 .arg.data = tss, 700 .count = tss->len, 701 }; 702 703 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 704 } 705 706 /** 707 * tcp_splice_read - splice data from TCP socket to a pipe 708 * @sock: socket to splice from 709 * @ppos: position (not valid) 710 * @pipe: pipe to splice to 711 * @len: number of bytes to splice 712 * @flags: splice modifier flags 713 * 714 * Description: 715 * Will read pages from given socket and fill them into a pipe. 716 * 717 **/ 718 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 719 struct pipe_inode_info *pipe, size_t len, 720 unsigned int flags) 721 { 722 struct sock *sk = sock->sk; 723 struct tcp_splice_state tss = { 724 .pipe = pipe, 725 .len = len, 726 .flags = flags, 727 }; 728 long timeo; 729 ssize_t spliced; 730 int ret; 731 732 sock_rps_record_flow(sk); 733 /* 734 * We can't seek on a socket input 735 */ 736 if (unlikely(*ppos)) 737 return -ESPIPE; 738 739 ret = spliced = 0; 740 741 lock_sock(sk); 742 743 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 744 while (tss.len) { 745 ret = __tcp_splice_read(sk, &tss); 746 if (ret < 0) 747 break; 748 else if (!ret) { 749 if (spliced) 750 break; 751 if (sock_flag(sk, SOCK_DONE)) 752 break; 753 if (sk->sk_err) { 754 ret = sock_error(sk); 755 break; 756 } 757 if (sk->sk_shutdown & RCV_SHUTDOWN) 758 break; 759 if (sk->sk_state == TCP_CLOSE) { 760 /* 761 * This occurs when user tries to read 762 * from never connected socket. 763 */ 764 if (!sock_flag(sk, SOCK_DONE)) 765 ret = -ENOTCONN; 766 break; 767 } 768 if (!timeo) { 769 ret = -EAGAIN; 770 break; 771 } 772 sk_wait_data(sk, &timeo, NULL); 773 if (signal_pending(current)) { 774 ret = sock_intr_errno(timeo); 775 break; 776 } 777 continue; 778 } 779 tss.len -= ret; 780 spliced += ret; 781 782 if (!timeo) 783 break; 784 release_sock(sk); 785 lock_sock(sk); 786 787 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 788 (sk->sk_shutdown & RCV_SHUTDOWN) || 789 signal_pending(current)) 790 break; 791 } 792 793 release_sock(sk); 794 795 if (spliced) 796 return spliced; 797 798 return ret; 799 } 800 EXPORT_SYMBOL(tcp_splice_read); 801 802 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 803 bool force_schedule) 804 { 805 struct sk_buff *skb; 806 807 /* The TCP header must be at least 32-bit aligned. */ 808 size = ALIGN(size, 4); 809 810 if (unlikely(tcp_under_memory_pressure(sk))) 811 sk_mem_reclaim_partial(sk); 812 813 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 814 if (likely(skb)) { 815 bool mem_scheduled; 816 817 if (force_schedule) { 818 mem_scheduled = true; 819 sk_forced_mem_schedule(sk, skb->truesize); 820 } else { 821 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 822 } 823 if (likely(mem_scheduled)) { 824 skb_reserve(skb, sk->sk_prot->max_header); 825 /* 826 * Make sure that we have exactly size bytes 827 * available to the caller, no more, no less. 828 */ 829 skb->reserved_tailroom = skb->end - skb->tail - size; 830 return skb; 831 } 832 __kfree_skb(skb); 833 } else { 834 sk->sk_prot->enter_memory_pressure(sk); 835 sk_stream_moderate_sndbuf(sk); 836 } 837 return NULL; 838 } 839 840 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 841 int large_allowed) 842 { 843 struct tcp_sock *tp = tcp_sk(sk); 844 u32 new_size_goal, size_goal; 845 846 if (!large_allowed || !sk_can_gso(sk)) 847 return mss_now; 848 849 /* Note : tcp_tso_autosize() will eventually split this later */ 850 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 851 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 852 853 /* We try hard to avoid divides here */ 854 size_goal = tp->gso_segs * mss_now; 855 if (unlikely(new_size_goal < size_goal || 856 new_size_goal >= size_goal + mss_now)) { 857 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 858 sk->sk_gso_max_segs); 859 size_goal = tp->gso_segs * mss_now; 860 } 861 862 return max(size_goal, mss_now); 863 } 864 865 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 866 { 867 int mss_now; 868 869 mss_now = tcp_current_mss(sk); 870 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 871 872 return mss_now; 873 } 874 875 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 876 size_t size, int flags) 877 { 878 struct tcp_sock *tp = tcp_sk(sk); 879 int mss_now, size_goal; 880 int err; 881 ssize_t copied; 882 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 883 884 /* Wait for a connection to finish. One exception is TCP Fast Open 885 * (passive side) where data is allowed to be sent before a connection 886 * is fully established. 887 */ 888 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 889 !tcp_passive_fastopen(sk)) { 890 err = sk_stream_wait_connect(sk, &timeo); 891 if (err != 0) 892 goto out_err; 893 } 894 895 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 896 897 mss_now = tcp_send_mss(sk, &size_goal, flags); 898 copied = 0; 899 900 err = -EPIPE; 901 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 902 goto out_err; 903 904 while (size > 0) { 905 struct sk_buff *skb = tcp_write_queue_tail(sk); 906 int copy, i; 907 bool can_coalesce; 908 909 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 910 new_segment: 911 if (!sk_stream_memory_free(sk)) 912 goto wait_for_sndbuf; 913 914 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 915 skb_queue_empty(&sk->sk_write_queue)); 916 if (!skb) 917 goto wait_for_memory; 918 919 skb_entail(sk, skb); 920 copy = size_goal; 921 } 922 923 if (copy > size) 924 copy = size; 925 926 i = skb_shinfo(skb)->nr_frags; 927 can_coalesce = skb_can_coalesce(skb, i, page, offset); 928 if (!can_coalesce && i >= sysctl_max_skb_frags) { 929 tcp_mark_push(tp, skb); 930 goto new_segment; 931 } 932 if (!sk_wmem_schedule(sk, copy)) 933 goto wait_for_memory; 934 935 if (can_coalesce) { 936 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 937 } else { 938 get_page(page); 939 skb_fill_page_desc(skb, i, page, offset, copy); 940 } 941 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 942 943 skb->len += copy; 944 skb->data_len += copy; 945 skb->truesize += copy; 946 sk->sk_wmem_queued += copy; 947 sk_mem_charge(sk, copy); 948 skb->ip_summed = CHECKSUM_PARTIAL; 949 tp->write_seq += copy; 950 TCP_SKB_CB(skb)->end_seq += copy; 951 tcp_skb_pcount_set(skb, 0); 952 953 if (!copied) 954 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 955 956 copied += copy; 957 offset += copy; 958 size -= copy; 959 if (!size) { 960 tcp_tx_timestamp(sk, skb); 961 goto out; 962 } 963 964 if (skb->len < size_goal || (flags & MSG_OOB)) 965 continue; 966 967 if (forced_push(tp)) { 968 tcp_mark_push(tp, skb); 969 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 970 } else if (skb == tcp_send_head(sk)) 971 tcp_push_one(sk, mss_now); 972 continue; 973 974 wait_for_sndbuf: 975 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 976 wait_for_memory: 977 tcp_push(sk, flags & ~MSG_MORE, mss_now, 978 TCP_NAGLE_PUSH, size_goal); 979 980 err = sk_stream_wait_memory(sk, &timeo); 981 if (err != 0) 982 goto do_error; 983 984 mss_now = tcp_send_mss(sk, &size_goal, flags); 985 } 986 987 out: 988 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 989 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 990 return copied; 991 992 do_error: 993 if (copied) 994 goto out; 995 out_err: 996 /* make sure we wake any epoll edge trigger waiter */ 997 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 998 sk->sk_write_space(sk); 999 return sk_stream_error(sk, flags, err); 1000 } 1001 1002 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1003 size_t size, int flags) 1004 { 1005 ssize_t res; 1006 1007 if (!(sk->sk_route_caps & NETIF_F_SG) || 1008 !sk_check_csum_caps(sk)) 1009 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1010 flags); 1011 1012 lock_sock(sk); 1013 res = do_tcp_sendpages(sk, page, offset, size, flags); 1014 release_sock(sk); 1015 return res; 1016 } 1017 EXPORT_SYMBOL(tcp_sendpage); 1018 1019 static inline int select_size(const struct sock *sk, bool sg) 1020 { 1021 const struct tcp_sock *tp = tcp_sk(sk); 1022 int tmp = tp->mss_cache; 1023 1024 if (sg) { 1025 if (sk_can_gso(sk)) { 1026 /* Small frames wont use a full page: 1027 * Payload will immediately follow tcp header. 1028 */ 1029 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1030 } else { 1031 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1032 1033 if (tmp >= pgbreak && 1034 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1035 tmp = pgbreak; 1036 } 1037 } 1038 1039 return tmp; 1040 } 1041 1042 void tcp_free_fastopen_req(struct tcp_sock *tp) 1043 { 1044 if (tp->fastopen_req) { 1045 kfree(tp->fastopen_req); 1046 tp->fastopen_req = NULL; 1047 } 1048 } 1049 1050 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1051 int *copied, size_t size) 1052 { 1053 struct tcp_sock *tp = tcp_sk(sk); 1054 int err, flags; 1055 1056 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1057 return -EOPNOTSUPP; 1058 if (tp->fastopen_req) 1059 return -EALREADY; /* Another Fast Open is in progress */ 1060 1061 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1062 sk->sk_allocation); 1063 if (unlikely(!tp->fastopen_req)) 1064 return -ENOBUFS; 1065 tp->fastopen_req->data = msg; 1066 tp->fastopen_req->size = size; 1067 1068 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1069 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1070 msg->msg_namelen, flags); 1071 *copied = tp->fastopen_req->copied; 1072 tcp_free_fastopen_req(tp); 1073 return err; 1074 } 1075 1076 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1077 { 1078 struct tcp_sock *tp = tcp_sk(sk); 1079 struct sk_buff *skb; 1080 int flags, err, copied = 0; 1081 int mss_now = 0, size_goal, copied_syn = 0; 1082 bool sg; 1083 long timeo; 1084 1085 lock_sock(sk); 1086 1087 flags = msg->msg_flags; 1088 if (flags & MSG_FASTOPEN) { 1089 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1090 if (err == -EINPROGRESS && copied_syn > 0) 1091 goto out; 1092 else if (err) 1093 goto out_err; 1094 } 1095 1096 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1097 1098 /* Wait for a connection to finish. One exception is TCP Fast Open 1099 * (passive side) where data is allowed to be sent before a connection 1100 * is fully established. 1101 */ 1102 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1103 !tcp_passive_fastopen(sk)) { 1104 err = sk_stream_wait_connect(sk, &timeo); 1105 if (err != 0) 1106 goto do_error; 1107 } 1108 1109 if (unlikely(tp->repair)) { 1110 if (tp->repair_queue == TCP_RECV_QUEUE) { 1111 copied = tcp_send_rcvq(sk, msg, size); 1112 goto out_nopush; 1113 } 1114 1115 err = -EINVAL; 1116 if (tp->repair_queue == TCP_NO_QUEUE) 1117 goto out_err; 1118 1119 /* 'common' sending to sendq */ 1120 } 1121 1122 /* This should be in poll */ 1123 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1124 1125 mss_now = tcp_send_mss(sk, &size_goal, flags); 1126 1127 /* Ok commence sending. */ 1128 copied = 0; 1129 1130 err = -EPIPE; 1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1132 goto out_err; 1133 1134 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1135 1136 while (msg_data_left(msg)) { 1137 int copy = 0; 1138 int max = size_goal; 1139 1140 skb = tcp_write_queue_tail(sk); 1141 if (tcp_send_head(sk)) { 1142 if (skb->ip_summed == CHECKSUM_NONE) 1143 max = mss_now; 1144 copy = max - skb->len; 1145 } 1146 1147 if (copy <= 0) { 1148 new_segment: 1149 /* Allocate new segment. If the interface is SG, 1150 * allocate skb fitting to single page. 1151 */ 1152 if (!sk_stream_memory_free(sk)) 1153 goto wait_for_sndbuf; 1154 1155 skb = sk_stream_alloc_skb(sk, 1156 select_size(sk, sg), 1157 sk->sk_allocation, 1158 skb_queue_empty(&sk->sk_write_queue)); 1159 if (!skb) 1160 goto wait_for_memory; 1161 1162 /* 1163 * Check whether we can use HW checksum. 1164 */ 1165 if (sk_check_csum_caps(sk)) 1166 skb->ip_summed = CHECKSUM_PARTIAL; 1167 1168 skb_entail(sk, skb); 1169 copy = size_goal; 1170 max = size_goal; 1171 1172 /* All packets are restored as if they have 1173 * already been sent. skb_mstamp isn't set to 1174 * avoid wrong rtt estimation. 1175 */ 1176 if (tp->repair) 1177 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1178 } 1179 1180 /* Try to append data to the end of skb. */ 1181 if (copy > msg_data_left(msg)) 1182 copy = msg_data_left(msg); 1183 1184 /* Where to copy to? */ 1185 if (skb_availroom(skb) > 0) { 1186 /* We have some space in skb head. Superb! */ 1187 copy = min_t(int, copy, skb_availroom(skb)); 1188 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1189 if (err) 1190 goto do_fault; 1191 } else { 1192 bool merge = true; 1193 int i = skb_shinfo(skb)->nr_frags; 1194 struct page_frag *pfrag = sk_page_frag(sk); 1195 1196 if (!sk_page_frag_refill(sk, pfrag)) 1197 goto wait_for_memory; 1198 1199 if (!skb_can_coalesce(skb, i, pfrag->page, 1200 pfrag->offset)) { 1201 if (i == sysctl_max_skb_frags || !sg) { 1202 tcp_mark_push(tp, skb); 1203 goto new_segment; 1204 } 1205 merge = false; 1206 } 1207 1208 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1209 1210 if (!sk_wmem_schedule(sk, copy)) 1211 goto wait_for_memory; 1212 1213 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1214 pfrag->page, 1215 pfrag->offset, 1216 copy); 1217 if (err) 1218 goto do_error; 1219 1220 /* Update the skb. */ 1221 if (merge) { 1222 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1223 } else { 1224 skb_fill_page_desc(skb, i, pfrag->page, 1225 pfrag->offset, copy); 1226 get_page(pfrag->page); 1227 } 1228 pfrag->offset += copy; 1229 } 1230 1231 if (!copied) 1232 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1233 1234 tp->write_seq += copy; 1235 TCP_SKB_CB(skb)->end_seq += copy; 1236 tcp_skb_pcount_set(skb, 0); 1237 1238 copied += copy; 1239 if (!msg_data_left(msg)) { 1240 tcp_tx_timestamp(sk, skb); 1241 goto out; 1242 } 1243 1244 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1245 continue; 1246 1247 if (forced_push(tp)) { 1248 tcp_mark_push(tp, skb); 1249 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1250 } else if (skb == tcp_send_head(sk)) 1251 tcp_push_one(sk, mss_now); 1252 continue; 1253 1254 wait_for_sndbuf: 1255 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1256 wait_for_memory: 1257 if (copied) 1258 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1259 TCP_NAGLE_PUSH, size_goal); 1260 1261 err = sk_stream_wait_memory(sk, &timeo); 1262 if (err != 0) 1263 goto do_error; 1264 1265 mss_now = tcp_send_mss(sk, &size_goal, flags); 1266 } 1267 1268 out: 1269 if (copied) 1270 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1271 out_nopush: 1272 release_sock(sk); 1273 return copied + copied_syn; 1274 1275 do_fault: 1276 if (!skb->len) { 1277 tcp_unlink_write_queue(skb, sk); 1278 /* It is the one place in all of TCP, except connection 1279 * reset, where we can be unlinking the send_head. 1280 */ 1281 tcp_check_send_head(sk, skb); 1282 sk_wmem_free_skb(sk, skb); 1283 } 1284 1285 do_error: 1286 if (copied + copied_syn) 1287 goto out; 1288 out_err: 1289 err = sk_stream_error(sk, flags, err); 1290 /* make sure we wake any epoll edge trigger waiter */ 1291 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1292 sk->sk_write_space(sk); 1293 release_sock(sk); 1294 return err; 1295 } 1296 EXPORT_SYMBOL(tcp_sendmsg); 1297 1298 /* 1299 * Handle reading urgent data. BSD has very simple semantics for 1300 * this, no blocking and very strange errors 8) 1301 */ 1302 1303 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1304 { 1305 struct tcp_sock *tp = tcp_sk(sk); 1306 1307 /* No URG data to read. */ 1308 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1309 tp->urg_data == TCP_URG_READ) 1310 return -EINVAL; /* Yes this is right ! */ 1311 1312 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1313 return -ENOTCONN; 1314 1315 if (tp->urg_data & TCP_URG_VALID) { 1316 int err = 0; 1317 char c = tp->urg_data; 1318 1319 if (!(flags & MSG_PEEK)) 1320 tp->urg_data = TCP_URG_READ; 1321 1322 /* Read urgent data. */ 1323 msg->msg_flags |= MSG_OOB; 1324 1325 if (len > 0) { 1326 if (!(flags & MSG_TRUNC)) 1327 err = memcpy_to_msg(msg, &c, 1); 1328 len = 1; 1329 } else 1330 msg->msg_flags |= MSG_TRUNC; 1331 1332 return err ? -EFAULT : len; 1333 } 1334 1335 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1336 return 0; 1337 1338 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1339 * the available implementations agree in this case: 1340 * this call should never block, independent of the 1341 * blocking state of the socket. 1342 * Mike <pall@rz.uni-karlsruhe.de> 1343 */ 1344 return -EAGAIN; 1345 } 1346 1347 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1348 { 1349 struct sk_buff *skb; 1350 int copied = 0, err = 0; 1351 1352 /* XXX -- need to support SO_PEEK_OFF */ 1353 1354 skb_queue_walk(&sk->sk_write_queue, skb) { 1355 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1356 if (err) 1357 break; 1358 1359 copied += skb->len; 1360 } 1361 1362 return err ?: copied; 1363 } 1364 1365 /* Clean up the receive buffer for full frames taken by the user, 1366 * then send an ACK if necessary. COPIED is the number of bytes 1367 * tcp_recvmsg has given to the user so far, it speeds up the 1368 * calculation of whether or not we must ACK for the sake of 1369 * a window update. 1370 */ 1371 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1372 { 1373 struct tcp_sock *tp = tcp_sk(sk); 1374 bool time_to_ack = false; 1375 1376 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1377 1378 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1379 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1380 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1381 1382 if (inet_csk_ack_scheduled(sk)) { 1383 const struct inet_connection_sock *icsk = inet_csk(sk); 1384 /* Delayed ACKs frequently hit locked sockets during bulk 1385 * receive. */ 1386 if (icsk->icsk_ack.blocked || 1387 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1388 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1389 /* 1390 * If this read emptied read buffer, we send ACK, if 1391 * connection is not bidirectional, user drained 1392 * receive buffer and there was a small segment 1393 * in queue. 1394 */ 1395 (copied > 0 && 1396 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1397 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1398 !icsk->icsk_ack.pingpong)) && 1399 !atomic_read(&sk->sk_rmem_alloc))) 1400 time_to_ack = true; 1401 } 1402 1403 /* We send an ACK if we can now advertise a non-zero window 1404 * which has been raised "significantly". 1405 * 1406 * Even if window raised up to infinity, do not send window open ACK 1407 * in states, where we will not receive more. It is useless. 1408 */ 1409 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1410 __u32 rcv_window_now = tcp_receive_window(tp); 1411 1412 /* Optimize, __tcp_select_window() is not cheap. */ 1413 if (2*rcv_window_now <= tp->window_clamp) { 1414 __u32 new_window = __tcp_select_window(sk); 1415 1416 /* Send ACK now, if this read freed lots of space 1417 * in our buffer. Certainly, new_window is new window. 1418 * We can advertise it now, if it is not less than current one. 1419 * "Lots" means "at least twice" here. 1420 */ 1421 if (new_window && new_window >= 2 * rcv_window_now) 1422 time_to_ack = true; 1423 } 1424 } 1425 if (time_to_ack) 1426 tcp_send_ack(sk); 1427 } 1428 1429 static void tcp_prequeue_process(struct sock *sk) 1430 { 1431 struct sk_buff *skb; 1432 struct tcp_sock *tp = tcp_sk(sk); 1433 1434 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1435 1436 /* RX process wants to run with disabled BHs, though it is not 1437 * necessary */ 1438 local_bh_disable(); 1439 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1440 sk_backlog_rcv(sk, skb); 1441 local_bh_enable(); 1442 1443 /* Clear memory counter. */ 1444 tp->ucopy.memory = 0; 1445 } 1446 1447 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1448 { 1449 struct sk_buff *skb; 1450 u32 offset; 1451 1452 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1453 offset = seq - TCP_SKB_CB(skb)->seq; 1454 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1455 pr_err_once("%s: found a SYN, please report !\n", __func__); 1456 offset--; 1457 } 1458 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1459 *off = offset; 1460 return skb; 1461 } 1462 /* This looks weird, but this can happen if TCP collapsing 1463 * splitted a fat GRO packet, while we released socket lock 1464 * in skb_splice_bits() 1465 */ 1466 sk_eat_skb(sk, skb); 1467 } 1468 return NULL; 1469 } 1470 1471 /* 1472 * This routine provides an alternative to tcp_recvmsg() for routines 1473 * that would like to handle copying from skbuffs directly in 'sendfile' 1474 * fashion. 1475 * Note: 1476 * - It is assumed that the socket was locked by the caller. 1477 * - The routine does not block. 1478 * - At present, there is no support for reading OOB data 1479 * or for 'peeking' the socket using this routine 1480 * (although both would be easy to implement). 1481 */ 1482 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1483 sk_read_actor_t recv_actor) 1484 { 1485 struct sk_buff *skb; 1486 struct tcp_sock *tp = tcp_sk(sk); 1487 u32 seq = tp->copied_seq; 1488 u32 offset; 1489 int copied = 0; 1490 1491 if (sk->sk_state == TCP_LISTEN) 1492 return -ENOTCONN; 1493 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1494 if (offset < skb->len) { 1495 int used; 1496 size_t len; 1497 1498 len = skb->len - offset; 1499 /* Stop reading if we hit a patch of urgent data */ 1500 if (tp->urg_data) { 1501 u32 urg_offset = tp->urg_seq - seq; 1502 if (urg_offset < len) 1503 len = urg_offset; 1504 if (!len) 1505 break; 1506 } 1507 used = recv_actor(desc, skb, offset, len); 1508 if (used <= 0) { 1509 if (!copied) 1510 copied = used; 1511 break; 1512 } else if (used <= len) { 1513 seq += used; 1514 copied += used; 1515 offset += used; 1516 } 1517 /* If recv_actor drops the lock (e.g. TCP splice 1518 * receive) the skb pointer might be invalid when 1519 * getting here: tcp_collapse might have deleted it 1520 * while aggregating skbs from the socket queue. 1521 */ 1522 skb = tcp_recv_skb(sk, seq - 1, &offset); 1523 if (!skb) 1524 break; 1525 /* TCP coalescing might have appended data to the skb. 1526 * Try to splice more frags 1527 */ 1528 if (offset + 1 != skb->len) 1529 continue; 1530 } 1531 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1532 sk_eat_skb(sk, skb); 1533 ++seq; 1534 break; 1535 } 1536 sk_eat_skb(sk, skb); 1537 if (!desc->count) 1538 break; 1539 tp->copied_seq = seq; 1540 } 1541 tp->copied_seq = seq; 1542 1543 tcp_rcv_space_adjust(sk); 1544 1545 /* Clean up data we have read: This will do ACK frames. */ 1546 if (copied > 0) { 1547 tcp_recv_skb(sk, seq, &offset); 1548 tcp_cleanup_rbuf(sk, copied); 1549 } 1550 return copied; 1551 } 1552 EXPORT_SYMBOL(tcp_read_sock); 1553 1554 /* 1555 * This routine copies from a sock struct into the user buffer. 1556 * 1557 * Technical note: in 2.3 we work on _locked_ socket, so that 1558 * tricks with *seq access order and skb->users are not required. 1559 * Probably, code can be easily improved even more. 1560 */ 1561 1562 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1563 int flags, int *addr_len) 1564 { 1565 struct tcp_sock *tp = tcp_sk(sk); 1566 int copied = 0; 1567 u32 peek_seq; 1568 u32 *seq; 1569 unsigned long used; 1570 int err; 1571 int target; /* Read at least this many bytes */ 1572 long timeo; 1573 struct task_struct *user_recv = NULL; 1574 struct sk_buff *skb, *last; 1575 u32 urg_hole = 0; 1576 1577 if (unlikely(flags & MSG_ERRQUEUE)) 1578 return inet_recv_error(sk, msg, len, addr_len); 1579 1580 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1581 (sk->sk_state == TCP_ESTABLISHED)) 1582 sk_busy_loop(sk, nonblock); 1583 1584 lock_sock(sk); 1585 1586 err = -ENOTCONN; 1587 if (sk->sk_state == TCP_LISTEN) 1588 goto out; 1589 1590 timeo = sock_rcvtimeo(sk, nonblock); 1591 1592 /* Urgent data needs to be handled specially. */ 1593 if (flags & MSG_OOB) 1594 goto recv_urg; 1595 1596 if (unlikely(tp->repair)) { 1597 err = -EPERM; 1598 if (!(flags & MSG_PEEK)) 1599 goto out; 1600 1601 if (tp->repair_queue == TCP_SEND_QUEUE) 1602 goto recv_sndq; 1603 1604 err = -EINVAL; 1605 if (tp->repair_queue == TCP_NO_QUEUE) 1606 goto out; 1607 1608 /* 'common' recv queue MSG_PEEK-ing */ 1609 } 1610 1611 seq = &tp->copied_seq; 1612 if (flags & MSG_PEEK) { 1613 peek_seq = tp->copied_seq; 1614 seq = &peek_seq; 1615 } 1616 1617 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1618 1619 do { 1620 u32 offset; 1621 1622 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1623 if (tp->urg_data && tp->urg_seq == *seq) { 1624 if (copied) 1625 break; 1626 if (signal_pending(current)) { 1627 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1628 break; 1629 } 1630 } 1631 1632 /* Next get a buffer. */ 1633 1634 last = skb_peek_tail(&sk->sk_receive_queue); 1635 skb_queue_walk(&sk->sk_receive_queue, skb) { 1636 last = skb; 1637 /* Now that we have two receive queues this 1638 * shouldn't happen. 1639 */ 1640 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1641 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1642 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1643 flags)) 1644 break; 1645 1646 offset = *seq - TCP_SKB_CB(skb)->seq; 1647 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1648 pr_err_once("%s: found a SYN, please report !\n", __func__); 1649 offset--; 1650 } 1651 if (offset < skb->len) 1652 goto found_ok_skb; 1653 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1654 goto found_fin_ok; 1655 WARN(!(flags & MSG_PEEK), 1656 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1657 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1658 } 1659 1660 /* Well, if we have backlog, try to process it now yet. */ 1661 1662 if (copied >= target && !sk->sk_backlog.tail) 1663 break; 1664 1665 if (copied) { 1666 if (sk->sk_err || 1667 sk->sk_state == TCP_CLOSE || 1668 (sk->sk_shutdown & RCV_SHUTDOWN) || 1669 !timeo || 1670 signal_pending(current)) 1671 break; 1672 } else { 1673 if (sock_flag(sk, SOCK_DONE)) 1674 break; 1675 1676 if (sk->sk_err) { 1677 copied = sock_error(sk); 1678 break; 1679 } 1680 1681 if (sk->sk_shutdown & RCV_SHUTDOWN) 1682 break; 1683 1684 if (sk->sk_state == TCP_CLOSE) { 1685 if (!sock_flag(sk, SOCK_DONE)) { 1686 /* This occurs when user tries to read 1687 * from never connected socket. 1688 */ 1689 copied = -ENOTCONN; 1690 break; 1691 } 1692 break; 1693 } 1694 1695 if (!timeo) { 1696 copied = -EAGAIN; 1697 break; 1698 } 1699 1700 if (signal_pending(current)) { 1701 copied = sock_intr_errno(timeo); 1702 break; 1703 } 1704 } 1705 1706 tcp_cleanup_rbuf(sk, copied); 1707 1708 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1709 /* Install new reader */ 1710 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1711 user_recv = current; 1712 tp->ucopy.task = user_recv; 1713 tp->ucopy.msg = msg; 1714 } 1715 1716 tp->ucopy.len = len; 1717 1718 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1719 !(flags & (MSG_PEEK | MSG_TRUNC))); 1720 1721 /* Ugly... If prequeue is not empty, we have to 1722 * process it before releasing socket, otherwise 1723 * order will be broken at second iteration. 1724 * More elegant solution is required!!! 1725 * 1726 * Look: we have the following (pseudo)queues: 1727 * 1728 * 1. packets in flight 1729 * 2. backlog 1730 * 3. prequeue 1731 * 4. receive_queue 1732 * 1733 * Each queue can be processed only if the next ones 1734 * are empty. At this point we have empty receive_queue. 1735 * But prequeue _can_ be not empty after 2nd iteration, 1736 * when we jumped to start of loop because backlog 1737 * processing added something to receive_queue. 1738 * We cannot release_sock(), because backlog contains 1739 * packets arrived _after_ prequeued ones. 1740 * 1741 * Shortly, algorithm is clear --- to process all 1742 * the queues in order. We could make it more directly, 1743 * requeueing packets from backlog to prequeue, if 1744 * is not empty. It is more elegant, but eats cycles, 1745 * unfortunately. 1746 */ 1747 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1748 goto do_prequeue; 1749 1750 /* __ Set realtime policy in scheduler __ */ 1751 } 1752 1753 if (copied >= target) { 1754 /* Do not sleep, just process backlog. */ 1755 release_sock(sk); 1756 lock_sock(sk); 1757 } else { 1758 sk_wait_data(sk, &timeo, last); 1759 } 1760 1761 if (user_recv) { 1762 int chunk; 1763 1764 /* __ Restore normal policy in scheduler __ */ 1765 1766 chunk = len - tp->ucopy.len; 1767 if (chunk != 0) { 1768 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1769 len -= chunk; 1770 copied += chunk; 1771 } 1772 1773 if (tp->rcv_nxt == tp->copied_seq && 1774 !skb_queue_empty(&tp->ucopy.prequeue)) { 1775 do_prequeue: 1776 tcp_prequeue_process(sk); 1777 1778 chunk = len - tp->ucopy.len; 1779 if (chunk != 0) { 1780 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1781 len -= chunk; 1782 copied += chunk; 1783 } 1784 } 1785 } 1786 if ((flags & MSG_PEEK) && 1787 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1788 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1789 current->comm, 1790 task_pid_nr(current)); 1791 peek_seq = tp->copied_seq; 1792 } 1793 continue; 1794 1795 found_ok_skb: 1796 /* Ok so how much can we use? */ 1797 used = skb->len - offset; 1798 if (len < used) 1799 used = len; 1800 1801 /* Do we have urgent data here? */ 1802 if (tp->urg_data) { 1803 u32 urg_offset = tp->urg_seq - *seq; 1804 if (urg_offset < used) { 1805 if (!urg_offset) { 1806 if (!sock_flag(sk, SOCK_URGINLINE)) { 1807 ++*seq; 1808 urg_hole++; 1809 offset++; 1810 used--; 1811 if (!used) 1812 goto skip_copy; 1813 } 1814 } else 1815 used = urg_offset; 1816 } 1817 } 1818 1819 if (!(flags & MSG_TRUNC)) { 1820 err = skb_copy_datagram_msg(skb, offset, msg, used); 1821 if (err) { 1822 /* Exception. Bailout! */ 1823 if (!copied) 1824 copied = -EFAULT; 1825 break; 1826 } 1827 } 1828 1829 *seq += used; 1830 copied += used; 1831 len -= used; 1832 1833 tcp_rcv_space_adjust(sk); 1834 1835 skip_copy: 1836 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1837 tp->urg_data = 0; 1838 tcp_fast_path_check(sk); 1839 } 1840 if (used + offset < skb->len) 1841 continue; 1842 1843 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1844 goto found_fin_ok; 1845 if (!(flags & MSG_PEEK)) 1846 sk_eat_skb(sk, skb); 1847 continue; 1848 1849 found_fin_ok: 1850 /* Process the FIN. */ 1851 ++*seq; 1852 if (!(flags & MSG_PEEK)) 1853 sk_eat_skb(sk, skb); 1854 break; 1855 } while (len > 0); 1856 1857 if (user_recv) { 1858 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1859 int chunk; 1860 1861 tp->ucopy.len = copied > 0 ? len : 0; 1862 1863 tcp_prequeue_process(sk); 1864 1865 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1866 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1867 len -= chunk; 1868 copied += chunk; 1869 } 1870 } 1871 1872 tp->ucopy.task = NULL; 1873 tp->ucopy.len = 0; 1874 } 1875 1876 /* According to UNIX98, msg_name/msg_namelen are ignored 1877 * on connected socket. I was just happy when found this 8) --ANK 1878 */ 1879 1880 /* Clean up data we have read: This will do ACK frames. */ 1881 tcp_cleanup_rbuf(sk, copied); 1882 1883 release_sock(sk); 1884 return copied; 1885 1886 out: 1887 release_sock(sk); 1888 return err; 1889 1890 recv_urg: 1891 err = tcp_recv_urg(sk, msg, len, flags); 1892 goto out; 1893 1894 recv_sndq: 1895 err = tcp_peek_sndq(sk, msg, len); 1896 goto out; 1897 } 1898 EXPORT_SYMBOL(tcp_recvmsg); 1899 1900 void tcp_set_state(struct sock *sk, int state) 1901 { 1902 int oldstate = sk->sk_state; 1903 1904 switch (state) { 1905 case TCP_ESTABLISHED: 1906 if (oldstate != TCP_ESTABLISHED) 1907 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1908 break; 1909 1910 case TCP_CLOSE: 1911 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1912 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1913 1914 sk->sk_prot->unhash(sk); 1915 if (inet_csk(sk)->icsk_bind_hash && 1916 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1917 inet_put_port(sk); 1918 /* fall through */ 1919 default: 1920 if (oldstate == TCP_ESTABLISHED) 1921 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1922 } 1923 1924 /* Change state AFTER socket is unhashed to avoid closed 1925 * socket sitting in hash tables. 1926 */ 1927 sk_state_store(sk, state); 1928 1929 #ifdef STATE_TRACE 1930 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1931 #endif 1932 } 1933 EXPORT_SYMBOL_GPL(tcp_set_state); 1934 1935 /* 1936 * State processing on a close. This implements the state shift for 1937 * sending our FIN frame. Note that we only send a FIN for some 1938 * states. A shutdown() may have already sent the FIN, or we may be 1939 * closed. 1940 */ 1941 1942 static const unsigned char new_state[16] = { 1943 /* current state: new state: action: */ 1944 [0 /* (Invalid) */] = TCP_CLOSE, 1945 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1946 [TCP_SYN_SENT] = TCP_CLOSE, 1947 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1948 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1949 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1950 [TCP_TIME_WAIT] = TCP_CLOSE, 1951 [TCP_CLOSE] = TCP_CLOSE, 1952 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1953 [TCP_LAST_ACK] = TCP_LAST_ACK, 1954 [TCP_LISTEN] = TCP_CLOSE, 1955 [TCP_CLOSING] = TCP_CLOSING, 1956 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1957 }; 1958 1959 static int tcp_close_state(struct sock *sk) 1960 { 1961 int next = (int)new_state[sk->sk_state]; 1962 int ns = next & TCP_STATE_MASK; 1963 1964 tcp_set_state(sk, ns); 1965 1966 return next & TCP_ACTION_FIN; 1967 } 1968 1969 /* 1970 * Shutdown the sending side of a connection. Much like close except 1971 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1972 */ 1973 1974 void tcp_shutdown(struct sock *sk, int how) 1975 { 1976 /* We need to grab some memory, and put together a FIN, 1977 * and then put it into the queue to be sent. 1978 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1979 */ 1980 if (!(how & SEND_SHUTDOWN)) 1981 return; 1982 1983 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1984 if ((1 << sk->sk_state) & 1985 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1986 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1987 /* Clear out any half completed packets. FIN if needed. */ 1988 if (tcp_close_state(sk)) 1989 tcp_send_fin(sk); 1990 } 1991 } 1992 EXPORT_SYMBOL(tcp_shutdown); 1993 1994 bool tcp_check_oom(struct sock *sk, int shift) 1995 { 1996 bool too_many_orphans, out_of_socket_memory; 1997 1998 too_many_orphans = tcp_too_many_orphans(sk, shift); 1999 out_of_socket_memory = tcp_out_of_memory(sk); 2000 2001 if (too_many_orphans) 2002 net_info_ratelimited("too many orphaned sockets\n"); 2003 if (out_of_socket_memory) 2004 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2005 return too_many_orphans || out_of_socket_memory; 2006 } 2007 2008 void tcp_close(struct sock *sk, long timeout) 2009 { 2010 struct sk_buff *skb; 2011 int data_was_unread = 0; 2012 int state; 2013 2014 lock_sock(sk); 2015 sk->sk_shutdown = SHUTDOWN_MASK; 2016 2017 if (sk->sk_state == TCP_LISTEN) { 2018 tcp_set_state(sk, TCP_CLOSE); 2019 2020 /* Special case. */ 2021 inet_csk_listen_stop(sk); 2022 2023 goto adjudge_to_death; 2024 } 2025 2026 /* We need to flush the recv. buffs. We do this only on the 2027 * descriptor close, not protocol-sourced closes, because the 2028 * reader process may not have drained the data yet! 2029 */ 2030 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2031 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2032 2033 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2034 len--; 2035 data_was_unread += len; 2036 __kfree_skb(skb); 2037 } 2038 2039 sk_mem_reclaim(sk); 2040 2041 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2042 if (sk->sk_state == TCP_CLOSE) 2043 goto adjudge_to_death; 2044 2045 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2046 * data was lost. To witness the awful effects of the old behavior of 2047 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2048 * GET in an FTP client, suspend the process, wait for the client to 2049 * advertise a zero window, then kill -9 the FTP client, wheee... 2050 * Note: timeout is always zero in such a case. 2051 */ 2052 if (unlikely(tcp_sk(sk)->repair)) { 2053 sk->sk_prot->disconnect(sk, 0); 2054 } else if (data_was_unread) { 2055 /* Unread data was tossed, zap the connection. */ 2056 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2057 tcp_set_state(sk, TCP_CLOSE); 2058 tcp_send_active_reset(sk, sk->sk_allocation); 2059 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2060 /* Check zero linger _after_ checking for unread data. */ 2061 sk->sk_prot->disconnect(sk, 0); 2062 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2063 } else if (tcp_close_state(sk)) { 2064 /* We FIN if the application ate all the data before 2065 * zapping the connection. 2066 */ 2067 2068 /* RED-PEN. Formally speaking, we have broken TCP state 2069 * machine. State transitions: 2070 * 2071 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2072 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2073 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2074 * 2075 * are legal only when FIN has been sent (i.e. in window), 2076 * rather than queued out of window. Purists blame. 2077 * 2078 * F.e. "RFC state" is ESTABLISHED, 2079 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2080 * 2081 * The visible declinations are that sometimes 2082 * we enter time-wait state, when it is not required really 2083 * (harmless), do not send active resets, when they are 2084 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2085 * they look as CLOSING or LAST_ACK for Linux) 2086 * Probably, I missed some more holelets. 2087 * --ANK 2088 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2089 * in a single packet! (May consider it later but will 2090 * probably need API support or TCP_CORK SYN-ACK until 2091 * data is written and socket is closed.) 2092 */ 2093 tcp_send_fin(sk); 2094 } 2095 2096 sk_stream_wait_close(sk, timeout); 2097 2098 adjudge_to_death: 2099 state = sk->sk_state; 2100 sock_hold(sk); 2101 sock_orphan(sk); 2102 2103 /* It is the last release_sock in its life. It will remove backlog. */ 2104 release_sock(sk); 2105 2106 2107 /* Now socket is owned by kernel and we acquire BH lock 2108 to finish close. No need to check for user refs. 2109 */ 2110 local_bh_disable(); 2111 bh_lock_sock(sk); 2112 WARN_ON(sock_owned_by_user(sk)); 2113 2114 percpu_counter_inc(sk->sk_prot->orphan_count); 2115 2116 /* Have we already been destroyed by a softirq or backlog? */ 2117 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2118 goto out; 2119 2120 /* This is a (useful) BSD violating of the RFC. There is a 2121 * problem with TCP as specified in that the other end could 2122 * keep a socket open forever with no application left this end. 2123 * We use a 1 minute timeout (about the same as BSD) then kill 2124 * our end. If they send after that then tough - BUT: long enough 2125 * that we won't make the old 4*rto = almost no time - whoops 2126 * reset mistake. 2127 * 2128 * Nope, it was not mistake. It is really desired behaviour 2129 * f.e. on http servers, when such sockets are useless, but 2130 * consume significant resources. Let's do it with special 2131 * linger2 option. --ANK 2132 */ 2133 2134 if (sk->sk_state == TCP_FIN_WAIT2) { 2135 struct tcp_sock *tp = tcp_sk(sk); 2136 if (tp->linger2 < 0) { 2137 tcp_set_state(sk, TCP_CLOSE); 2138 tcp_send_active_reset(sk, GFP_ATOMIC); 2139 NET_INC_STATS_BH(sock_net(sk), 2140 LINUX_MIB_TCPABORTONLINGER); 2141 } else { 2142 const int tmo = tcp_fin_time(sk); 2143 2144 if (tmo > TCP_TIMEWAIT_LEN) { 2145 inet_csk_reset_keepalive_timer(sk, 2146 tmo - TCP_TIMEWAIT_LEN); 2147 } else { 2148 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2149 goto out; 2150 } 2151 } 2152 } 2153 if (sk->sk_state != TCP_CLOSE) { 2154 sk_mem_reclaim(sk); 2155 if (tcp_check_oom(sk, 0)) { 2156 tcp_set_state(sk, TCP_CLOSE); 2157 tcp_send_active_reset(sk, GFP_ATOMIC); 2158 NET_INC_STATS_BH(sock_net(sk), 2159 LINUX_MIB_TCPABORTONMEMORY); 2160 } 2161 } 2162 2163 if (sk->sk_state == TCP_CLOSE) { 2164 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2165 /* We could get here with a non-NULL req if the socket is 2166 * aborted (e.g., closed with unread data) before 3WHS 2167 * finishes. 2168 */ 2169 if (req) 2170 reqsk_fastopen_remove(sk, req, false); 2171 inet_csk_destroy_sock(sk); 2172 } 2173 /* Otherwise, socket is reprieved until protocol close. */ 2174 2175 out: 2176 bh_unlock_sock(sk); 2177 local_bh_enable(); 2178 sock_put(sk); 2179 } 2180 EXPORT_SYMBOL(tcp_close); 2181 2182 /* These states need RST on ABORT according to RFC793 */ 2183 2184 static inline bool tcp_need_reset(int state) 2185 { 2186 return (1 << state) & 2187 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2188 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2189 } 2190 2191 int tcp_disconnect(struct sock *sk, int flags) 2192 { 2193 struct inet_sock *inet = inet_sk(sk); 2194 struct inet_connection_sock *icsk = inet_csk(sk); 2195 struct tcp_sock *tp = tcp_sk(sk); 2196 int err = 0; 2197 int old_state = sk->sk_state; 2198 2199 if (old_state != TCP_CLOSE) 2200 tcp_set_state(sk, TCP_CLOSE); 2201 2202 /* ABORT function of RFC793 */ 2203 if (old_state == TCP_LISTEN) { 2204 inet_csk_listen_stop(sk); 2205 } else if (unlikely(tp->repair)) { 2206 sk->sk_err = ECONNABORTED; 2207 } else if (tcp_need_reset(old_state) || 2208 (tp->snd_nxt != tp->write_seq && 2209 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2210 /* The last check adjusts for discrepancy of Linux wrt. RFC 2211 * states 2212 */ 2213 tcp_send_active_reset(sk, gfp_any()); 2214 sk->sk_err = ECONNRESET; 2215 } else if (old_state == TCP_SYN_SENT) 2216 sk->sk_err = ECONNRESET; 2217 2218 tcp_clear_xmit_timers(sk); 2219 __skb_queue_purge(&sk->sk_receive_queue); 2220 tcp_write_queue_purge(sk); 2221 __skb_queue_purge(&tp->out_of_order_queue); 2222 2223 inet->inet_dport = 0; 2224 2225 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2226 inet_reset_saddr(sk); 2227 2228 sk->sk_shutdown = 0; 2229 sock_reset_flag(sk, SOCK_DONE); 2230 tp->srtt_us = 0; 2231 tp->write_seq += tp->max_window + 2; 2232 if (tp->write_seq == 0) 2233 tp->write_seq = 1; 2234 icsk->icsk_backoff = 0; 2235 tp->snd_cwnd = 2; 2236 icsk->icsk_probes_out = 0; 2237 tp->packets_out = 0; 2238 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2239 tp->snd_cwnd_cnt = 0; 2240 tp->window_clamp = 0; 2241 tcp_set_ca_state(sk, TCP_CA_Open); 2242 tcp_clear_retrans(tp); 2243 inet_csk_delack_init(sk); 2244 tcp_init_send_head(sk); 2245 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2246 __sk_dst_reset(sk); 2247 2248 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2249 2250 sk->sk_error_report(sk); 2251 return err; 2252 } 2253 EXPORT_SYMBOL(tcp_disconnect); 2254 2255 static inline bool tcp_can_repair_sock(const struct sock *sk) 2256 { 2257 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2258 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2259 } 2260 2261 static int tcp_repair_options_est(struct tcp_sock *tp, 2262 struct tcp_repair_opt __user *optbuf, unsigned int len) 2263 { 2264 struct tcp_repair_opt opt; 2265 2266 while (len >= sizeof(opt)) { 2267 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2268 return -EFAULT; 2269 2270 optbuf++; 2271 len -= sizeof(opt); 2272 2273 switch (opt.opt_code) { 2274 case TCPOPT_MSS: 2275 tp->rx_opt.mss_clamp = opt.opt_val; 2276 break; 2277 case TCPOPT_WINDOW: 2278 { 2279 u16 snd_wscale = opt.opt_val & 0xFFFF; 2280 u16 rcv_wscale = opt.opt_val >> 16; 2281 2282 if (snd_wscale > 14 || rcv_wscale > 14) 2283 return -EFBIG; 2284 2285 tp->rx_opt.snd_wscale = snd_wscale; 2286 tp->rx_opt.rcv_wscale = rcv_wscale; 2287 tp->rx_opt.wscale_ok = 1; 2288 } 2289 break; 2290 case TCPOPT_SACK_PERM: 2291 if (opt.opt_val != 0) 2292 return -EINVAL; 2293 2294 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2295 if (sysctl_tcp_fack) 2296 tcp_enable_fack(tp); 2297 break; 2298 case TCPOPT_TIMESTAMP: 2299 if (opt.opt_val != 0) 2300 return -EINVAL; 2301 2302 tp->rx_opt.tstamp_ok = 1; 2303 break; 2304 } 2305 } 2306 2307 return 0; 2308 } 2309 2310 /* 2311 * Socket option code for TCP. 2312 */ 2313 static int do_tcp_setsockopt(struct sock *sk, int level, 2314 int optname, char __user *optval, unsigned int optlen) 2315 { 2316 struct tcp_sock *tp = tcp_sk(sk); 2317 struct inet_connection_sock *icsk = inet_csk(sk); 2318 struct net *net = sock_net(sk); 2319 int val; 2320 int err = 0; 2321 2322 /* These are data/string values, all the others are ints */ 2323 switch (optname) { 2324 case TCP_CONGESTION: { 2325 char name[TCP_CA_NAME_MAX]; 2326 2327 if (optlen < 1) 2328 return -EINVAL; 2329 2330 val = strncpy_from_user(name, optval, 2331 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2332 if (val < 0) 2333 return -EFAULT; 2334 name[val] = 0; 2335 2336 lock_sock(sk); 2337 err = tcp_set_congestion_control(sk, name); 2338 release_sock(sk); 2339 return err; 2340 } 2341 default: 2342 /* fallthru */ 2343 break; 2344 } 2345 2346 if (optlen < sizeof(int)) 2347 return -EINVAL; 2348 2349 if (get_user(val, (int __user *)optval)) 2350 return -EFAULT; 2351 2352 lock_sock(sk); 2353 2354 switch (optname) { 2355 case TCP_MAXSEG: 2356 /* Values greater than interface MTU won't take effect. However 2357 * at the point when this call is done we typically don't yet 2358 * know which interface is going to be used */ 2359 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2360 err = -EINVAL; 2361 break; 2362 } 2363 tp->rx_opt.user_mss = val; 2364 break; 2365 2366 case TCP_NODELAY: 2367 if (val) { 2368 /* TCP_NODELAY is weaker than TCP_CORK, so that 2369 * this option on corked socket is remembered, but 2370 * it is not activated until cork is cleared. 2371 * 2372 * However, when TCP_NODELAY is set we make 2373 * an explicit push, which overrides even TCP_CORK 2374 * for currently queued segments. 2375 */ 2376 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2377 tcp_push_pending_frames(sk); 2378 } else { 2379 tp->nonagle &= ~TCP_NAGLE_OFF; 2380 } 2381 break; 2382 2383 case TCP_THIN_LINEAR_TIMEOUTS: 2384 if (val < 0 || val > 1) 2385 err = -EINVAL; 2386 else 2387 tp->thin_lto = val; 2388 break; 2389 2390 case TCP_THIN_DUPACK: 2391 if (val < 0 || val > 1) 2392 err = -EINVAL; 2393 else { 2394 tp->thin_dupack = val; 2395 if (tp->thin_dupack) 2396 tcp_disable_early_retrans(tp); 2397 } 2398 break; 2399 2400 case TCP_REPAIR: 2401 if (!tcp_can_repair_sock(sk)) 2402 err = -EPERM; 2403 else if (val == 1) { 2404 tp->repair = 1; 2405 sk->sk_reuse = SK_FORCE_REUSE; 2406 tp->repair_queue = TCP_NO_QUEUE; 2407 } else if (val == 0) { 2408 tp->repair = 0; 2409 sk->sk_reuse = SK_NO_REUSE; 2410 tcp_send_window_probe(sk); 2411 } else 2412 err = -EINVAL; 2413 2414 break; 2415 2416 case TCP_REPAIR_QUEUE: 2417 if (!tp->repair) 2418 err = -EPERM; 2419 else if (val < TCP_QUEUES_NR) 2420 tp->repair_queue = val; 2421 else 2422 err = -EINVAL; 2423 break; 2424 2425 case TCP_QUEUE_SEQ: 2426 if (sk->sk_state != TCP_CLOSE) 2427 err = -EPERM; 2428 else if (tp->repair_queue == TCP_SEND_QUEUE) 2429 tp->write_seq = val; 2430 else if (tp->repair_queue == TCP_RECV_QUEUE) 2431 tp->rcv_nxt = val; 2432 else 2433 err = -EINVAL; 2434 break; 2435 2436 case TCP_REPAIR_OPTIONS: 2437 if (!tp->repair) 2438 err = -EINVAL; 2439 else if (sk->sk_state == TCP_ESTABLISHED) 2440 err = tcp_repair_options_est(tp, 2441 (struct tcp_repair_opt __user *)optval, 2442 optlen); 2443 else 2444 err = -EPERM; 2445 break; 2446 2447 case TCP_CORK: 2448 /* When set indicates to always queue non-full frames. 2449 * Later the user clears this option and we transmit 2450 * any pending partial frames in the queue. This is 2451 * meant to be used alongside sendfile() to get properly 2452 * filled frames when the user (for example) must write 2453 * out headers with a write() call first and then use 2454 * sendfile to send out the data parts. 2455 * 2456 * TCP_CORK can be set together with TCP_NODELAY and it is 2457 * stronger than TCP_NODELAY. 2458 */ 2459 if (val) { 2460 tp->nonagle |= TCP_NAGLE_CORK; 2461 } else { 2462 tp->nonagle &= ~TCP_NAGLE_CORK; 2463 if (tp->nonagle&TCP_NAGLE_OFF) 2464 tp->nonagle |= TCP_NAGLE_PUSH; 2465 tcp_push_pending_frames(sk); 2466 } 2467 break; 2468 2469 case TCP_KEEPIDLE: 2470 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2471 err = -EINVAL; 2472 else { 2473 tp->keepalive_time = val * HZ; 2474 if (sock_flag(sk, SOCK_KEEPOPEN) && 2475 !((1 << sk->sk_state) & 2476 (TCPF_CLOSE | TCPF_LISTEN))) { 2477 u32 elapsed = keepalive_time_elapsed(tp); 2478 if (tp->keepalive_time > elapsed) 2479 elapsed = tp->keepalive_time - elapsed; 2480 else 2481 elapsed = 0; 2482 inet_csk_reset_keepalive_timer(sk, elapsed); 2483 } 2484 } 2485 break; 2486 case TCP_KEEPINTVL: 2487 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2488 err = -EINVAL; 2489 else 2490 tp->keepalive_intvl = val * HZ; 2491 break; 2492 case TCP_KEEPCNT: 2493 if (val < 1 || val > MAX_TCP_KEEPCNT) 2494 err = -EINVAL; 2495 else 2496 tp->keepalive_probes = val; 2497 break; 2498 case TCP_SYNCNT: 2499 if (val < 1 || val > MAX_TCP_SYNCNT) 2500 err = -EINVAL; 2501 else 2502 icsk->icsk_syn_retries = val; 2503 break; 2504 2505 case TCP_SAVE_SYN: 2506 if (val < 0 || val > 1) 2507 err = -EINVAL; 2508 else 2509 tp->save_syn = val; 2510 break; 2511 2512 case TCP_LINGER2: 2513 if (val < 0) 2514 tp->linger2 = -1; 2515 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2516 tp->linger2 = 0; 2517 else 2518 tp->linger2 = val * HZ; 2519 break; 2520 2521 case TCP_DEFER_ACCEPT: 2522 /* Translate value in seconds to number of retransmits */ 2523 icsk->icsk_accept_queue.rskq_defer_accept = 2524 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2525 TCP_RTO_MAX / HZ); 2526 break; 2527 2528 case TCP_WINDOW_CLAMP: 2529 if (!val) { 2530 if (sk->sk_state != TCP_CLOSE) { 2531 err = -EINVAL; 2532 break; 2533 } 2534 tp->window_clamp = 0; 2535 } else 2536 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2537 SOCK_MIN_RCVBUF / 2 : val; 2538 break; 2539 2540 case TCP_QUICKACK: 2541 if (!val) { 2542 icsk->icsk_ack.pingpong = 1; 2543 } else { 2544 icsk->icsk_ack.pingpong = 0; 2545 if ((1 << sk->sk_state) & 2546 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2547 inet_csk_ack_scheduled(sk)) { 2548 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2549 tcp_cleanup_rbuf(sk, 1); 2550 if (!(val & 1)) 2551 icsk->icsk_ack.pingpong = 1; 2552 } 2553 } 2554 break; 2555 2556 #ifdef CONFIG_TCP_MD5SIG 2557 case TCP_MD5SIG: 2558 /* Read the IP->Key mappings from userspace */ 2559 err = tp->af_specific->md5_parse(sk, optval, optlen); 2560 break; 2561 #endif 2562 case TCP_USER_TIMEOUT: 2563 /* Cap the max time in ms TCP will retry or probe the window 2564 * before giving up and aborting (ETIMEDOUT) a connection. 2565 */ 2566 if (val < 0) 2567 err = -EINVAL; 2568 else 2569 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2570 break; 2571 2572 case TCP_FASTOPEN: 2573 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2574 TCPF_LISTEN))) { 2575 tcp_fastopen_init_key_once(true); 2576 2577 fastopen_queue_tune(sk, val); 2578 } else { 2579 err = -EINVAL; 2580 } 2581 break; 2582 case TCP_TIMESTAMP: 2583 if (!tp->repair) 2584 err = -EPERM; 2585 else 2586 tp->tsoffset = val - tcp_time_stamp; 2587 break; 2588 case TCP_NOTSENT_LOWAT: 2589 tp->notsent_lowat = val; 2590 sk->sk_write_space(sk); 2591 break; 2592 default: 2593 err = -ENOPROTOOPT; 2594 break; 2595 } 2596 2597 release_sock(sk); 2598 return err; 2599 } 2600 2601 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2602 unsigned int optlen) 2603 { 2604 const struct inet_connection_sock *icsk = inet_csk(sk); 2605 2606 if (level != SOL_TCP) 2607 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2608 optval, optlen); 2609 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2610 } 2611 EXPORT_SYMBOL(tcp_setsockopt); 2612 2613 #ifdef CONFIG_COMPAT 2614 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2615 char __user *optval, unsigned int optlen) 2616 { 2617 if (level != SOL_TCP) 2618 return inet_csk_compat_setsockopt(sk, level, optname, 2619 optval, optlen); 2620 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2621 } 2622 EXPORT_SYMBOL(compat_tcp_setsockopt); 2623 #endif 2624 2625 /* Return information about state of tcp endpoint in API format. */ 2626 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2627 { 2628 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2629 const struct inet_connection_sock *icsk = inet_csk(sk); 2630 u32 now = tcp_time_stamp; 2631 unsigned int start; 2632 int notsent_bytes; 2633 u64 rate64; 2634 u32 rate; 2635 2636 memset(info, 0, sizeof(*info)); 2637 if (sk->sk_type != SOCK_STREAM) 2638 return; 2639 2640 info->tcpi_state = sk_state_load(sk); 2641 2642 info->tcpi_ca_state = icsk->icsk_ca_state; 2643 info->tcpi_retransmits = icsk->icsk_retransmits; 2644 info->tcpi_probes = icsk->icsk_probes_out; 2645 info->tcpi_backoff = icsk->icsk_backoff; 2646 2647 if (tp->rx_opt.tstamp_ok) 2648 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2649 if (tcp_is_sack(tp)) 2650 info->tcpi_options |= TCPI_OPT_SACK; 2651 if (tp->rx_opt.wscale_ok) { 2652 info->tcpi_options |= TCPI_OPT_WSCALE; 2653 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2654 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2655 } 2656 2657 if (tp->ecn_flags & TCP_ECN_OK) 2658 info->tcpi_options |= TCPI_OPT_ECN; 2659 if (tp->ecn_flags & TCP_ECN_SEEN) 2660 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2661 if (tp->syn_data_acked) 2662 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2663 2664 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2665 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2666 info->tcpi_snd_mss = tp->mss_cache; 2667 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2668 2669 if (info->tcpi_state == TCP_LISTEN) { 2670 info->tcpi_unacked = sk->sk_ack_backlog; 2671 info->tcpi_sacked = sk->sk_max_ack_backlog; 2672 } else { 2673 info->tcpi_unacked = tp->packets_out; 2674 info->tcpi_sacked = tp->sacked_out; 2675 } 2676 info->tcpi_lost = tp->lost_out; 2677 info->tcpi_retrans = tp->retrans_out; 2678 info->tcpi_fackets = tp->fackets_out; 2679 2680 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2681 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2682 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2683 2684 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2685 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2686 info->tcpi_rtt = tp->srtt_us >> 3; 2687 info->tcpi_rttvar = tp->mdev_us >> 2; 2688 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2689 info->tcpi_snd_cwnd = tp->snd_cwnd; 2690 info->tcpi_advmss = tp->advmss; 2691 info->tcpi_reordering = tp->reordering; 2692 2693 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2694 info->tcpi_rcv_space = tp->rcvq_space.space; 2695 2696 info->tcpi_total_retrans = tp->total_retrans; 2697 2698 rate = READ_ONCE(sk->sk_pacing_rate); 2699 rate64 = rate != ~0U ? rate : ~0ULL; 2700 put_unaligned(rate64, &info->tcpi_pacing_rate); 2701 2702 rate = READ_ONCE(sk->sk_max_pacing_rate); 2703 rate64 = rate != ~0U ? rate : ~0ULL; 2704 put_unaligned(rate64, &info->tcpi_max_pacing_rate); 2705 2706 do { 2707 start = u64_stats_fetch_begin_irq(&tp->syncp); 2708 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked); 2709 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received); 2710 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2711 info->tcpi_segs_out = tp->segs_out; 2712 info->tcpi_segs_in = tp->segs_in; 2713 2714 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); 2715 info->tcpi_notsent_bytes = max(0, notsent_bytes); 2716 2717 info->tcpi_min_rtt = tcp_min_rtt(tp); 2718 info->tcpi_data_segs_in = tp->data_segs_in; 2719 info->tcpi_data_segs_out = tp->data_segs_out; 2720 } 2721 EXPORT_SYMBOL_GPL(tcp_get_info); 2722 2723 static int do_tcp_getsockopt(struct sock *sk, int level, 2724 int optname, char __user *optval, int __user *optlen) 2725 { 2726 struct inet_connection_sock *icsk = inet_csk(sk); 2727 struct tcp_sock *tp = tcp_sk(sk); 2728 struct net *net = sock_net(sk); 2729 int val, len; 2730 2731 if (get_user(len, optlen)) 2732 return -EFAULT; 2733 2734 len = min_t(unsigned int, len, sizeof(int)); 2735 2736 if (len < 0) 2737 return -EINVAL; 2738 2739 switch (optname) { 2740 case TCP_MAXSEG: 2741 val = tp->mss_cache; 2742 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2743 val = tp->rx_opt.user_mss; 2744 if (tp->repair) 2745 val = tp->rx_opt.mss_clamp; 2746 break; 2747 case TCP_NODELAY: 2748 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2749 break; 2750 case TCP_CORK: 2751 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2752 break; 2753 case TCP_KEEPIDLE: 2754 val = keepalive_time_when(tp) / HZ; 2755 break; 2756 case TCP_KEEPINTVL: 2757 val = keepalive_intvl_when(tp) / HZ; 2758 break; 2759 case TCP_KEEPCNT: 2760 val = keepalive_probes(tp); 2761 break; 2762 case TCP_SYNCNT: 2763 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2764 break; 2765 case TCP_LINGER2: 2766 val = tp->linger2; 2767 if (val >= 0) 2768 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2769 break; 2770 case TCP_DEFER_ACCEPT: 2771 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2772 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2773 break; 2774 case TCP_WINDOW_CLAMP: 2775 val = tp->window_clamp; 2776 break; 2777 case TCP_INFO: { 2778 struct tcp_info info; 2779 2780 if (get_user(len, optlen)) 2781 return -EFAULT; 2782 2783 tcp_get_info(sk, &info); 2784 2785 len = min_t(unsigned int, len, sizeof(info)); 2786 if (put_user(len, optlen)) 2787 return -EFAULT; 2788 if (copy_to_user(optval, &info, len)) 2789 return -EFAULT; 2790 return 0; 2791 } 2792 case TCP_CC_INFO: { 2793 const struct tcp_congestion_ops *ca_ops; 2794 union tcp_cc_info info; 2795 size_t sz = 0; 2796 int attr; 2797 2798 if (get_user(len, optlen)) 2799 return -EFAULT; 2800 2801 ca_ops = icsk->icsk_ca_ops; 2802 if (ca_ops && ca_ops->get_info) 2803 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2804 2805 len = min_t(unsigned int, len, sz); 2806 if (put_user(len, optlen)) 2807 return -EFAULT; 2808 if (copy_to_user(optval, &info, len)) 2809 return -EFAULT; 2810 return 0; 2811 } 2812 case TCP_QUICKACK: 2813 val = !icsk->icsk_ack.pingpong; 2814 break; 2815 2816 case TCP_CONGESTION: 2817 if (get_user(len, optlen)) 2818 return -EFAULT; 2819 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2820 if (put_user(len, optlen)) 2821 return -EFAULT; 2822 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2823 return -EFAULT; 2824 return 0; 2825 2826 case TCP_THIN_LINEAR_TIMEOUTS: 2827 val = tp->thin_lto; 2828 break; 2829 case TCP_THIN_DUPACK: 2830 val = tp->thin_dupack; 2831 break; 2832 2833 case TCP_REPAIR: 2834 val = tp->repair; 2835 break; 2836 2837 case TCP_REPAIR_QUEUE: 2838 if (tp->repair) 2839 val = tp->repair_queue; 2840 else 2841 return -EINVAL; 2842 break; 2843 2844 case TCP_QUEUE_SEQ: 2845 if (tp->repair_queue == TCP_SEND_QUEUE) 2846 val = tp->write_seq; 2847 else if (tp->repair_queue == TCP_RECV_QUEUE) 2848 val = tp->rcv_nxt; 2849 else 2850 return -EINVAL; 2851 break; 2852 2853 case TCP_USER_TIMEOUT: 2854 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2855 break; 2856 2857 case TCP_FASTOPEN: 2858 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2859 break; 2860 2861 case TCP_TIMESTAMP: 2862 val = tcp_time_stamp + tp->tsoffset; 2863 break; 2864 case TCP_NOTSENT_LOWAT: 2865 val = tp->notsent_lowat; 2866 break; 2867 case TCP_SAVE_SYN: 2868 val = tp->save_syn; 2869 break; 2870 case TCP_SAVED_SYN: { 2871 if (get_user(len, optlen)) 2872 return -EFAULT; 2873 2874 lock_sock(sk); 2875 if (tp->saved_syn) { 2876 if (len < tp->saved_syn[0]) { 2877 if (put_user(tp->saved_syn[0], optlen)) { 2878 release_sock(sk); 2879 return -EFAULT; 2880 } 2881 release_sock(sk); 2882 return -EINVAL; 2883 } 2884 len = tp->saved_syn[0]; 2885 if (put_user(len, optlen)) { 2886 release_sock(sk); 2887 return -EFAULT; 2888 } 2889 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 2890 release_sock(sk); 2891 return -EFAULT; 2892 } 2893 tcp_saved_syn_free(tp); 2894 release_sock(sk); 2895 } else { 2896 release_sock(sk); 2897 len = 0; 2898 if (put_user(len, optlen)) 2899 return -EFAULT; 2900 } 2901 return 0; 2902 } 2903 default: 2904 return -ENOPROTOOPT; 2905 } 2906 2907 if (put_user(len, optlen)) 2908 return -EFAULT; 2909 if (copy_to_user(optval, &val, len)) 2910 return -EFAULT; 2911 return 0; 2912 } 2913 2914 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2915 int __user *optlen) 2916 { 2917 struct inet_connection_sock *icsk = inet_csk(sk); 2918 2919 if (level != SOL_TCP) 2920 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2921 optval, optlen); 2922 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2923 } 2924 EXPORT_SYMBOL(tcp_getsockopt); 2925 2926 #ifdef CONFIG_COMPAT 2927 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2928 char __user *optval, int __user *optlen) 2929 { 2930 if (level != SOL_TCP) 2931 return inet_csk_compat_getsockopt(sk, level, optname, 2932 optval, optlen); 2933 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2934 } 2935 EXPORT_SYMBOL(compat_tcp_getsockopt); 2936 #endif 2937 2938 #ifdef CONFIG_TCP_MD5SIG 2939 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2940 static DEFINE_MUTEX(tcp_md5sig_mutex); 2941 static bool tcp_md5sig_pool_populated = false; 2942 2943 static void __tcp_alloc_md5sig_pool(void) 2944 { 2945 struct crypto_ahash *hash; 2946 int cpu; 2947 2948 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 2949 if (IS_ERR(hash)) 2950 return; 2951 2952 for_each_possible_cpu(cpu) { 2953 struct ahash_request *req; 2954 2955 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 2956 continue; 2957 2958 req = ahash_request_alloc(hash, GFP_KERNEL); 2959 if (!req) 2960 return; 2961 2962 ahash_request_set_callback(req, 0, NULL, NULL); 2963 2964 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 2965 } 2966 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2967 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2968 */ 2969 smp_wmb(); 2970 tcp_md5sig_pool_populated = true; 2971 } 2972 2973 bool tcp_alloc_md5sig_pool(void) 2974 { 2975 if (unlikely(!tcp_md5sig_pool_populated)) { 2976 mutex_lock(&tcp_md5sig_mutex); 2977 2978 if (!tcp_md5sig_pool_populated) 2979 __tcp_alloc_md5sig_pool(); 2980 2981 mutex_unlock(&tcp_md5sig_mutex); 2982 } 2983 return tcp_md5sig_pool_populated; 2984 } 2985 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2986 2987 2988 /** 2989 * tcp_get_md5sig_pool - get md5sig_pool for this user 2990 * 2991 * We use percpu structure, so if we succeed, we exit with preemption 2992 * and BH disabled, to make sure another thread or softirq handling 2993 * wont try to get same context. 2994 */ 2995 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2996 { 2997 local_bh_disable(); 2998 2999 if (tcp_md5sig_pool_populated) { 3000 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3001 smp_rmb(); 3002 return this_cpu_ptr(&tcp_md5sig_pool); 3003 } 3004 local_bh_enable(); 3005 return NULL; 3006 } 3007 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3008 3009 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3010 const struct tcphdr *th) 3011 { 3012 struct scatterlist sg; 3013 struct tcphdr hdr; 3014 3015 /* We are not allowed to change tcphdr, make a local copy */ 3016 memcpy(&hdr, th, sizeof(hdr)); 3017 hdr.check = 0; 3018 3019 /* options aren't included in the hash */ 3020 sg_init_one(&sg, &hdr, sizeof(hdr)); 3021 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr)); 3022 return crypto_ahash_update(hp->md5_req); 3023 } 3024 EXPORT_SYMBOL(tcp_md5_hash_header); 3025 3026 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3027 const struct sk_buff *skb, unsigned int header_len) 3028 { 3029 struct scatterlist sg; 3030 const struct tcphdr *tp = tcp_hdr(skb); 3031 struct ahash_request *req = hp->md5_req; 3032 unsigned int i; 3033 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3034 skb_headlen(skb) - header_len : 0; 3035 const struct skb_shared_info *shi = skb_shinfo(skb); 3036 struct sk_buff *frag_iter; 3037 3038 sg_init_table(&sg, 1); 3039 3040 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3041 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3042 if (crypto_ahash_update(req)) 3043 return 1; 3044 3045 for (i = 0; i < shi->nr_frags; ++i) { 3046 const struct skb_frag_struct *f = &shi->frags[i]; 3047 unsigned int offset = f->page_offset; 3048 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3049 3050 sg_set_page(&sg, page, skb_frag_size(f), 3051 offset_in_page(offset)); 3052 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3053 if (crypto_ahash_update(req)) 3054 return 1; 3055 } 3056 3057 skb_walk_frags(skb, frag_iter) 3058 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3059 return 1; 3060 3061 return 0; 3062 } 3063 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3064 3065 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3066 { 3067 struct scatterlist sg; 3068 3069 sg_init_one(&sg, key->key, key->keylen); 3070 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3071 return crypto_ahash_update(hp->md5_req); 3072 } 3073 EXPORT_SYMBOL(tcp_md5_hash_key); 3074 3075 #endif 3076 3077 void tcp_done(struct sock *sk) 3078 { 3079 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3080 3081 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3082 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3083 3084 tcp_set_state(sk, TCP_CLOSE); 3085 tcp_clear_xmit_timers(sk); 3086 if (req) 3087 reqsk_fastopen_remove(sk, req, false); 3088 3089 sk->sk_shutdown = SHUTDOWN_MASK; 3090 3091 if (!sock_flag(sk, SOCK_DEAD)) 3092 sk->sk_state_change(sk); 3093 else 3094 inet_csk_destroy_sock(sk); 3095 } 3096 EXPORT_SYMBOL_GPL(tcp_done); 3097 3098 int tcp_abort(struct sock *sk, int err) 3099 { 3100 if (!sk_fullsock(sk)) { 3101 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3102 struct request_sock *req = inet_reqsk(sk); 3103 3104 local_bh_disable(); 3105 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3106 req); 3107 local_bh_enable(); 3108 return 0; 3109 } 3110 sock_gen_put(sk); 3111 return -EOPNOTSUPP; 3112 } 3113 3114 /* Don't race with userspace socket closes such as tcp_close. */ 3115 lock_sock(sk); 3116 3117 if (sk->sk_state == TCP_LISTEN) { 3118 tcp_set_state(sk, TCP_CLOSE); 3119 inet_csk_listen_stop(sk); 3120 } 3121 3122 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3123 local_bh_disable(); 3124 bh_lock_sock(sk); 3125 3126 if (!sock_flag(sk, SOCK_DEAD)) { 3127 sk->sk_err = err; 3128 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3129 smp_wmb(); 3130 sk->sk_error_report(sk); 3131 if (tcp_need_reset(sk->sk_state)) 3132 tcp_send_active_reset(sk, GFP_ATOMIC); 3133 tcp_done(sk); 3134 } 3135 3136 bh_unlock_sock(sk); 3137 local_bh_enable(); 3138 release_sock(sk); 3139 sock_put(sk); 3140 return 0; 3141 } 3142 EXPORT_SYMBOL_GPL(tcp_abort); 3143 3144 extern struct tcp_congestion_ops tcp_reno; 3145 3146 static __initdata unsigned long thash_entries; 3147 static int __init set_thash_entries(char *str) 3148 { 3149 ssize_t ret; 3150 3151 if (!str) 3152 return 0; 3153 3154 ret = kstrtoul(str, 0, &thash_entries); 3155 if (ret) 3156 return 0; 3157 3158 return 1; 3159 } 3160 __setup("thash_entries=", set_thash_entries); 3161 3162 static void __init tcp_init_mem(void) 3163 { 3164 unsigned long limit = nr_free_buffer_pages() / 16; 3165 3166 limit = max(limit, 128UL); 3167 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3168 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3169 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3170 } 3171 3172 void __init tcp_init(void) 3173 { 3174 unsigned long limit; 3175 int max_rshare, max_wshare, cnt; 3176 unsigned int i; 3177 3178 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb)); 3179 3180 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3181 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3182 tcp_hashinfo.bind_bucket_cachep = 3183 kmem_cache_create("tcp_bind_bucket", 3184 sizeof(struct inet_bind_bucket), 0, 3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3186 3187 /* Size and allocate the main established and bind bucket 3188 * hash tables. 3189 * 3190 * The methodology is similar to that of the buffer cache. 3191 */ 3192 tcp_hashinfo.ehash = 3193 alloc_large_system_hash("TCP established", 3194 sizeof(struct inet_ehash_bucket), 3195 thash_entries, 3196 17, /* one slot per 128 KB of memory */ 3197 0, 3198 NULL, 3199 &tcp_hashinfo.ehash_mask, 3200 0, 3201 thash_entries ? 0 : 512 * 1024); 3202 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3203 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3204 3205 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3206 panic("TCP: failed to alloc ehash_locks"); 3207 tcp_hashinfo.bhash = 3208 alloc_large_system_hash("TCP bind", 3209 sizeof(struct inet_bind_hashbucket), 3210 tcp_hashinfo.ehash_mask + 1, 3211 17, /* one slot per 128 KB of memory */ 3212 0, 3213 &tcp_hashinfo.bhash_size, 3214 NULL, 3215 0, 3216 64 * 1024); 3217 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3218 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3219 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3220 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3221 } 3222 3223 3224 cnt = tcp_hashinfo.ehash_mask + 1; 3225 3226 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3227 sysctl_tcp_max_orphans = cnt / 2; 3228 sysctl_max_syn_backlog = max(128, cnt / 256); 3229 3230 tcp_init_mem(); 3231 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3232 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3233 max_wshare = min(4UL*1024*1024, limit); 3234 max_rshare = min(6UL*1024*1024, limit); 3235 3236 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3237 sysctl_tcp_wmem[1] = 16*1024; 3238 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3239 3240 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3241 sysctl_tcp_rmem[1] = 87380; 3242 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3243 3244 pr_info("Hash tables configured (established %u bind %u)\n", 3245 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3246 3247 tcp_metrics_init(); 3248 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3249 tcp_tasklet_init(); 3250 } 3251