1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 #include <linux/btf.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/mptcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 /* Track pending CMSGs. */ 285 enum { 286 TCP_CMSG_INQ = 1, 287 TCP_CMSG_TS = 2 288 }; 289 290 struct percpu_counter tcp_orphan_count; 291 EXPORT_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 EXPORT_SYMBOL(sysctl_tcp_mem); 295 296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 297 EXPORT_SYMBOL(tcp_memory_allocated); 298 299 #if IS_ENABLED(CONFIG_SMC) 300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 301 EXPORT_SYMBOL(tcp_have_smc); 302 #endif 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 unsigned long tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 327 328 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 329 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 330 331 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 332 333 void tcp_enter_memory_pressure(struct sock *sk) 334 { 335 unsigned long val; 336 337 if (READ_ONCE(tcp_memory_pressure)) 338 return; 339 val = jiffies; 340 341 if (!val) 342 val--; 343 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 344 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 345 } 346 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 347 348 void tcp_leave_memory_pressure(struct sock *sk) 349 { 350 unsigned long val; 351 352 if (!READ_ONCE(tcp_memory_pressure)) 353 return; 354 val = xchg(&tcp_memory_pressure, 0); 355 if (val) 356 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 357 jiffies_to_msecs(jiffies - val)); 358 } 359 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 360 361 /* Convert seconds to retransmits based on initial and max timeout */ 362 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 363 { 364 u8 res = 0; 365 366 if (seconds > 0) { 367 int period = timeout; 368 369 res = 1; 370 while (seconds > period && res < 255) { 371 res++; 372 timeout <<= 1; 373 if (timeout > rto_max) 374 timeout = rto_max; 375 period += timeout; 376 } 377 } 378 return res; 379 } 380 381 /* Convert retransmits to seconds based on initial and max timeout */ 382 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 383 { 384 int period = 0; 385 386 if (retrans > 0) { 387 period = timeout; 388 while (--retrans) { 389 timeout <<= 1; 390 if (timeout > rto_max) 391 timeout = rto_max; 392 period += timeout; 393 } 394 } 395 return period; 396 } 397 398 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 399 { 400 u32 rate = READ_ONCE(tp->rate_delivered); 401 u32 intv = READ_ONCE(tp->rate_interval_us); 402 u64 rate64 = 0; 403 404 if (rate && intv) { 405 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 406 do_div(rate64, intv); 407 } 408 return rate64; 409 } 410 411 /* Address-family independent initialization for a tcp_sock. 412 * 413 * NOTE: A lot of things set to zero explicitly by call to 414 * sk_alloc() so need not be done here. 415 */ 416 void tcp_init_sock(struct sock *sk) 417 { 418 struct inet_connection_sock *icsk = inet_csk(sk); 419 struct tcp_sock *tp = tcp_sk(sk); 420 421 tp->out_of_order_queue = RB_ROOT; 422 sk->tcp_rtx_queue = RB_ROOT; 423 tcp_init_xmit_timers(sk); 424 INIT_LIST_HEAD(&tp->tsq_node); 425 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 426 427 icsk->icsk_rto = TCP_TIMEOUT_INIT; 428 icsk->icsk_rto_min = TCP_RTO_MIN; 429 icsk->icsk_delack_max = TCP_DELACK_MAX; 430 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 431 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 432 433 /* So many TCP implementations out there (incorrectly) count the 434 * initial SYN frame in their delayed-ACK and congestion control 435 * algorithms that we must have the following bandaid to talk 436 * efficiently to them. -DaveM 437 */ 438 tp->snd_cwnd = TCP_INIT_CWND; 439 440 /* There's a bubble in the pipe until at least the first ACK. */ 441 tp->app_limited = ~0U; 442 443 /* See draft-stevens-tcpca-spec-01 for discussion of the 444 * initialization of these values. 445 */ 446 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 447 tp->snd_cwnd_clamp = ~0; 448 tp->mss_cache = TCP_MSS_DEFAULT; 449 450 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 451 tcp_assign_congestion_control(sk); 452 453 tp->tsoffset = 0; 454 tp->rack.reo_wnd_steps = 1; 455 456 sk->sk_write_space = sk_stream_write_space; 457 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 458 459 icsk->icsk_sync_mss = tcp_sync_mss; 460 461 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 462 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 463 464 sk_sockets_allocated_inc(sk); 465 sk->sk_route_forced_caps = NETIF_F_GSO; 466 } 467 EXPORT_SYMBOL(tcp_init_sock); 468 469 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 470 { 471 struct sk_buff *skb = tcp_write_queue_tail(sk); 472 473 if (tsflags && skb) { 474 struct skb_shared_info *shinfo = skb_shinfo(skb); 475 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 476 477 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 478 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 479 tcb->txstamp_ack = 1; 480 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 481 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 482 } 483 } 484 485 static bool tcp_stream_is_readable(struct sock *sk, int target) 486 { 487 if (tcp_epollin_ready(sk, target)) 488 return true; 489 490 if (sk->sk_prot->stream_memory_read) 491 return sk->sk_prot->stream_memory_read(sk); 492 return false; 493 } 494 495 /* 496 * Wait for a TCP event. 497 * 498 * Note that we don't need to lock the socket, as the upper poll layers 499 * take care of normal races (between the test and the event) and we don't 500 * go look at any of the socket buffers directly. 501 */ 502 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 503 { 504 __poll_t mask; 505 struct sock *sk = sock->sk; 506 const struct tcp_sock *tp = tcp_sk(sk); 507 int state; 508 509 sock_poll_wait(file, sock, wait); 510 511 state = inet_sk_state_load(sk); 512 if (state == TCP_LISTEN) 513 return inet_csk_listen_poll(sk); 514 515 /* Socket is not locked. We are protected from async events 516 * by poll logic and correct handling of state changes 517 * made by other threads is impossible in any case. 518 */ 519 520 mask = 0; 521 522 /* 523 * EPOLLHUP is certainly not done right. But poll() doesn't 524 * have a notion of HUP in just one direction, and for a 525 * socket the read side is more interesting. 526 * 527 * Some poll() documentation says that EPOLLHUP is incompatible 528 * with the EPOLLOUT/POLLWR flags, so somebody should check this 529 * all. But careful, it tends to be safer to return too many 530 * bits than too few, and you can easily break real applications 531 * if you don't tell them that something has hung up! 532 * 533 * Check-me. 534 * 535 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 536 * our fs/select.c). It means that after we received EOF, 537 * poll always returns immediately, making impossible poll() on write() 538 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 539 * if and only if shutdown has been made in both directions. 540 * Actually, it is interesting to look how Solaris and DUX 541 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 542 * then we could set it on SND_SHUTDOWN. BTW examples given 543 * in Stevens' books assume exactly this behaviour, it explains 544 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 545 * 546 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 547 * blocking on fresh not-connected or disconnected socket. --ANK 548 */ 549 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 550 mask |= EPOLLHUP; 551 if (sk->sk_shutdown & RCV_SHUTDOWN) 552 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 553 554 /* Connected or passive Fast Open socket? */ 555 if (state != TCP_SYN_SENT && 556 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 557 int target = sock_rcvlowat(sk, 0, INT_MAX); 558 559 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 560 !sock_flag(sk, SOCK_URGINLINE) && 561 tp->urg_data) 562 target++; 563 564 if (tcp_stream_is_readable(sk, target)) 565 mask |= EPOLLIN | EPOLLRDNORM; 566 567 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 568 if (__sk_stream_is_writeable(sk, 1)) { 569 mask |= EPOLLOUT | EPOLLWRNORM; 570 } else { /* send SIGIO later */ 571 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 572 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 573 574 /* Race breaker. If space is freed after 575 * wspace test but before the flags are set, 576 * IO signal will be lost. Memory barrier 577 * pairs with the input side. 578 */ 579 smp_mb__after_atomic(); 580 if (__sk_stream_is_writeable(sk, 1)) 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 } 583 } else 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 586 if (tp->urg_data & TCP_URG_VALID) 587 mask |= EPOLLPRI; 588 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 589 /* Active TCP fastopen socket with defer_connect 590 * Return EPOLLOUT so application can call write() 591 * in order for kernel to generate SYN+data 592 */ 593 mask |= EPOLLOUT | EPOLLWRNORM; 594 } 595 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 596 smp_rmb(); 597 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = tp->urg_data && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 return put_user(answ, (int __user *)arg); 647 } 648 EXPORT_SYMBOL(tcp_ioctl); 649 650 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 651 { 652 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 653 tp->pushed_seq = tp->write_seq; 654 } 655 656 static inline bool forced_push(const struct tcp_sock *tp) 657 { 658 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 659 } 660 661 static void skb_entail(struct sock *sk, struct sk_buff *skb) 662 { 663 struct tcp_sock *tp = tcp_sk(sk); 664 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 665 666 skb->csum = 0; 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 tcb->sacked = 0; 670 __skb_header_release(skb); 671 tcp_add_write_queue_tail(sk, skb); 672 sk_wmem_queued_add(sk, skb->truesize); 673 sk_mem_charge(sk, skb->truesize); 674 if (tp->nonagle & TCP_NAGLE_PUSH) 675 tp->nonagle &= ~TCP_NAGLE_PUSH; 676 677 tcp_slow_start_after_idle_check(sk); 678 } 679 680 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 681 { 682 if (flags & MSG_OOB) 683 tp->snd_up = tp->write_seq; 684 } 685 686 /* If a not yet filled skb is pushed, do not send it if 687 * we have data packets in Qdisc or NIC queues : 688 * Because TX completion will happen shortly, it gives a chance 689 * to coalesce future sendmsg() payload into this skb, without 690 * need for a timer, and with no latency trade off. 691 * As packets containing data payload have a bigger truesize 692 * than pure acks (dataless) packets, the last checks prevent 693 * autocorking if we only have an ACK in Qdisc/NIC queues, 694 * or if TX completion was delayed after we processed ACK packet. 695 */ 696 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 697 int size_goal) 698 { 699 return skb->len < size_goal && 700 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 701 !tcp_rtx_queue_empty(sk) && 702 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 } 726 /* It is possible TX completion already happened 727 * before we set TSQ_THROTTLED. 728 */ 729 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 730 return; 731 } 732 733 if (flags & MSG_MORE) 734 nonagle = TCP_NAGLE_CORK; 735 736 __tcp_push_pending_frames(sk, mss_now, nonagle); 737 } 738 739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 740 unsigned int offset, size_t len) 741 { 742 struct tcp_splice_state *tss = rd_desc->arg.data; 743 int ret; 744 745 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 746 min(rd_desc->count, len), tss->flags); 747 if (ret > 0) 748 rd_desc->count -= ret; 749 return ret; 750 } 751 752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 753 { 754 /* Store TCP splice context information in read_descriptor_t. */ 755 read_descriptor_t rd_desc = { 756 .arg.data = tss, 757 .count = tss->len, 758 }; 759 760 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 761 } 762 763 /** 764 * tcp_splice_read - splice data from TCP socket to a pipe 765 * @sock: socket to splice from 766 * @ppos: position (not valid) 767 * @pipe: pipe to splice to 768 * @len: number of bytes to splice 769 * @flags: splice modifier flags 770 * 771 * Description: 772 * Will read pages from given socket and fill them into a pipe. 773 * 774 **/ 775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 776 struct pipe_inode_info *pipe, size_t len, 777 unsigned int flags) 778 { 779 struct sock *sk = sock->sk; 780 struct tcp_splice_state tss = { 781 .pipe = pipe, 782 .len = len, 783 .flags = flags, 784 }; 785 long timeo; 786 ssize_t spliced; 787 int ret; 788 789 sock_rps_record_flow(sk); 790 /* 791 * We can't seek on a socket input 792 */ 793 if (unlikely(*ppos)) 794 return -ESPIPE; 795 796 ret = spliced = 0; 797 798 lock_sock(sk); 799 800 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 801 while (tss.len) { 802 ret = __tcp_splice_read(sk, &tss); 803 if (ret < 0) 804 break; 805 else if (!ret) { 806 if (spliced) 807 break; 808 if (sock_flag(sk, SOCK_DONE)) 809 break; 810 if (sk->sk_err) { 811 ret = sock_error(sk); 812 break; 813 } 814 if (sk->sk_shutdown & RCV_SHUTDOWN) 815 break; 816 if (sk->sk_state == TCP_CLOSE) { 817 /* 818 * This occurs when user tries to read 819 * from never connected socket. 820 */ 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 sk_wait_data(sk, &timeo, NULL); 835 if (signal_pending(current)) { 836 ret = sock_intr_errno(timeo); 837 break; 838 } 839 continue; 840 } 841 tss.len -= ret; 842 spliced += ret; 843 844 if (!timeo) 845 break; 846 release_sock(sk); 847 lock_sock(sk); 848 849 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 850 (sk->sk_shutdown & RCV_SHUTDOWN) || 851 signal_pending(current)) 852 break; 853 } 854 855 release_sock(sk); 856 857 if (spliced) 858 return spliced; 859 860 return ret; 861 } 862 EXPORT_SYMBOL(tcp_splice_read); 863 864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 865 bool force_schedule) 866 { 867 struct sk_buff *skb; 868 869 if (likely(!size)) { 870 skb = sk->sk_tx_skb_cache; 871 if (skb) { 872 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 873 sk->sk_tx_skb_cache = NULL; 874 pskb_trim(skb, 0); 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 skb_shinfo(skb)->tx_flags = 0; 877 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 878 return skb; 879 } 880 } 881 /* The TCP header must be at least 32-bit aligned. */ 882 size = ALIGN(size, 4); 883 884 if (unlikely(tcp_under_memory_pressure(sk))) 885 sk_mem_reclaim_partial(sk); 886 887 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 888 if (likely(skb)) { 889 bool mem_scheduled; 890 891 if (force_schedule) { 892 mem_scheduled = true; 893 sk_forced_mem_schedule(sk, skb->truesize); 894 } else { 895 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 896 } 897 if (likely(mem_scheduled)) { 898 skb_reserve(skb, sk->sk_prot->max_header); 899 /* 900 * Make sure that we have exactly size bytes 901 * available to the caller, no more, no less. 902 */ 903 skb->reserved_tailroom = skb->end - skb->tail - size; 904 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 905 return skb; 906 } 907 __kfree_skb(skb); 908 } else { 909 sk->sk_prot->enter_memory_pressure(sk); 910 sk_stream_moderate_sndbuf(sk); 911 } 912 return NULL; 913 } 914 915 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 916 int large_allowed) 917 { 918 struct tcp_sock *tp = tcp_sk(sk); 919 u32 new_size_goal, size_goal; 920 921 if (!large_allowed) 922 return mss_now; 923 924 /* Note : tcp_tso_autosize() will eventually split this later */ 925 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 926 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 927 928 /* We try hard to avoid divides here */ 929 size_goal = tp->gso_segs * mss_now; 930 if (unlikely(new_size_goal < size_goal || 931 new_size_goal >= size_goal + mss_now)) { 932 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 933 sk->sk_gso_max_segs); 934 size_goal = tp->gso_segs * mss_now; 935 } 936 937 return max(size_goal, mss_now); 938 } 939 940 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 941 { 942 int mss_now; 943 944 mss_now = tcp_current_mss(sk); 945 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 946 947 return mss_now; 948 } 949 950 /* In some cases, both sendpage() and sendmsg() could have added 951 * an skb to the write queue, but failed adding payload on it. 952 * We need to remove it to consume less memory, but more 953 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 954 * users. 955 */ 956 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 957 { 958 if (skb && !skb->len) { 959 tcp_unlink_write_queue(skb, sk); 960 if (tcp_write_queue_empty(sk)) 961 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 962 sk_wmem_free_skb(sk, skb); 963 } 964 } 965 966 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 967 struct page *page, int offset, size_t *size) 968 { 969 struct sk_buff *skb = tcp_write_queue_tail(sk); 970 struct tcp_sock *tp = tcp_sk(sk); 971 bool can_coalesce; 972 int copy, i; 973 974 if (!skb || (copy = size_goal - skb->len) <= 0 || 975 !tcp_skb_can_collapse_to(skb)) { 976 new_segment: 977 if (!sk_stream_memory_free(sk)) 978 return NULL; 979 980 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 981 tcp_rtx_and_write_queues_empty(sk)); 982 if (!skb) 983 return NULL; 984 985 #ifdef CONFIG_TLS_DEVICE 986 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 987 #endif 988 skb_entail(sk, skb); 989 copy = size_goal; 990 } 991 992 if (copy > *size) 993 copy = *size; 994 995 i = skb_shinfo(skb)->nr_frags; 996 can_coalesce = skb_can_coalesce(skb, i, page, offset); 997 if (!can_coalesce && i >= sysctl_max_skb_frags) { 998 tcp_mark_push(tp, skb); 999 goto new_segment; 1000 } 1001 if (!sk_wmem_schedule(sk, copy)) 1002 return NULL; 1003 1004 if (can_coalesce) { 1005 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1006 } else { 1007 get_page(page); 1008 skb_fill_page_desc(skb, i, page, offset, copy); 1009 } 1010 1011 if (!(flags & MSG_NO_SHARED_FRAGS)) 1012 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1013 1014 skb->len += copy; 1015 skb->data_len += copy; 1016 skb->truesize += copy; 1017 sk_wmem_queued_add(sk, copy); 1018 sk_mem_charge(sk, copy); 1019 skb->ip_summed = CHECKSUM_PARTIAL; 1020 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1021 TCP_SKB_CB(skb)->end_seq += copy; 1022 tcp_skb_pcount_set(skb, 0); 1023 1024 *size = copy; 1025 return skb; 1026 } 1027 1028 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1029 size_t size, int flags) 1030 { 1031 struct tcp_sock *tp = tcp_sk(sk); 1032 int mss_now, size_goal; 1033 int err; 1034 ssize_t copied; 1035 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1036 1037 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1038 WARN_ONCE(!sendpage_ok(page), 1039 "page must not be a Slab one and have page_count > 0")) 1040 return -EINVAL; 1041 1042 /* Wait for a connection to finish. One exception is TCP Fast Open 1043 * (passive side) where data is allowed to be sent before a connection 1044 * is fully established. 1045 */ 1046 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1047 !tcp_passive_fastopen(sk)) { 1048 err = sk_stream_wait_connect(sk, &timeo); 1049 if (err != 0) 1050 goto out_err; 1051 } 1052 1053 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1054 1055 mss_now = tcp_send_mss(sk, &size_goal, flags); 1056 copied = 0; 1057 1058 err = -EPIPE; 1059 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1060 goto out_err; 1061 1062 while (size > 0) { 1063 struct sk_buff *skb; 1064 size_t copy = size; 1065 1066 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1067 if (!skb) 1068 goto wait_for_space; 1069 1070 if (!copied) 1071 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1072 1073 copied += copy; 1074 offset += copy; 1075 size -= copy; 1076 if (!size) 1077 goto out; 1078 1079 if (skb->len < size_goal || (flags & MSG_OOB)) 1080 continue; 1081 1082 if (forced_push(tp)) { 1083 tcp_mark_push(tp, skb); 1084 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1085 } else if (skb == tcp_send_head(sk)) 1086 tcp_push_one(sk, mss_now); 1087 continue; 1088 1089 wait_for_space: 1090 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1091 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1092 TCP_NAGLE_PUSH, size_goal); 1093 1094 err = sk_stream_wait_memory(sk, &timeo); 1095 if (err != 0) 1096 goto do_error; 1097 1098 mss_now = tcp_send_mss(sk, &size_goal, flags); 1099 } 1100 1101 out: 1102 if (copied) { 1103 tcp_tx_timestamp(sk, sk->sk_tsflags); 1104 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1105 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1106 } 1107 return copied; 1108 1109 do_error: 1110 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1111 if (copied) 1112 goto out; 1113 out_err: 1114 /* make sure we wake any epoll edge trigger waiter */ 1115 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1116 sk->sk_write_space(sk); 1117 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1118 } 1119 return sk_stream_error(sk, flags, err); 1120 } 1121 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1122 1123 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1124 size_t size, int flags) 1125 { 1126 if (!(sk->sk_route_caps & NETIF_F_SG)) 1127 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1128 1129 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1130 1131 return do_tcp_sendpages(sk, page, offset, size, flags); 1132 } 1133 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1134 1135 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1136 size_t size, int flags) 1137 { 1138 int ret; 1139 1140 lock_sock(sk); 1141 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1142 release_sock(sk); 1143 1144 return ret; 1145 } 1146 EXPORT_SYMBOL(tcp_sendpage); 1147 1148 void tcp_free_fastopen_req(struct tcp_sock *tp) 1149 { 1150 if (tp->fastopen_req) { 1151 kfree(tp->fastopen_req); 1152 tp->fastopen_req = NULL; 1153 } 1154 } 1155 1156 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1157 int *copied, size_t size, 1158 struct ubuf_info *uarg) 1159 { 1160 struct tcp_sock *tp = tcp_sk(sk); 1161 struct inet_sock *inet = inet_sk(sk); 1162 struct sockaddr *uaddr = msg->msg_name; 1163 int err, flags; 1164 1165 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1166 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1167 uaddr->sa_family == AF_UNSPEC)) 1168 return -EOPNOTSUPP; 1169 if (tp->fastopen_req) 1170 return -EALREADY; /* Another Fast Open is in progress */ 1171 1172 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1173 sk->sk_allocation); 1174 if (unlikely(!tp->fastopen_req)) 1175 return -ENOBUFS; 1176 tp->fastopen_req->data = msg; 1177 tp->fastopen_req->size = size; 1178 tp->fastopen_req->uarg = uarg; 1179 1180 if (inet->defer_connect) { 1181 err = tcp_connect(sk); 1182 /* Same failure procedure as in tcp_v4/6_connect */ 1183 if (err) { 1184 tcp_set_state(sk, TCP_CLOSE); 1185 inet->inet_dport = 0; 1186 sk->sk_route_caps = 0; 1187 } 1188 } 1189 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1190 err = __inet_stream_connect(sk->sk_socket, uaddr, 1191 msg->msg_namelen, flags, 1); 1192 /* fastopen_req could already be freed in __inet_stream_connect 1193 * if the connection times out or gets rst 1194 */ 1195 if (tp->fastopen_req) { 1196 *copied = tp->fastopen_req->copied; 1197 tcp_free_fastopen_req(tp); 1198 inet->defer_connect = 0; 1199 } 1200 return err; 1201 } 1202 1203 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1204 { 1205 struct tcp_sock *tp = tcp_sk(sk); 1206 struct ubuf_info *uarg = NULL; 1207 struct sk_buff *skb; 1208 struct sockcm_cookie sockc; 1209 int flags, err, copied = 0; 1210 int mss_now = 0, size_goal, copied_syn = 0; 1211 int process_backlog = 0; 1212 bool zc = false; 1213 long timeo; 1214 1215 flags = msg->msg_flags; 1216 1217 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1218 skb = tcp_write_queue_tail(sk); 1219 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1220 if (!uarg) { 1221 err = -ENOBUFS; 1222 goto out_err; 1223 } 1224 1225 zc = sk->sk_route_caps & NETIF_F_SG; 1226 if (!zc) 1227 uarg->zerocopy = 0; 1228 } 1229 1230 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1231 !tp->repair) { 1232 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1233 if (err == -EINPROGRESS && copied_syn > 0) 1234 goto out; 1235 else if (err) 1236 goto out_err; 1237 } 1238 1239 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1240 1241 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1242 1243 /* Wait for a connection to finish. One exception is TCP Fast Open 1244 * (passive side) where data is allowed to be sent before a connection 1245 * is fully established. 1246 */ 1247 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1248 !tcp_passive_fastopen(sk)) { 1249 err = sk_stream_wait_connect(sk, &timeo); 1250 if (err != 0) 1251 goto do_error; 1252 } 1253 1254 if (unlikely(tp->repair)) { 1255 if (tp->repair_queue == TCP_RECV_QUEUE) { 1256 copied = tcp_send_rcvq(sk, msg, size); 1257 goto out_nopush; 1258 } 1259 1260 err = -EINVAL; 1261 if (tp->repair_queue == TCP_NO_QUEUE) 1262 goto out_err; 1263 1264 /* 'common' sending to sendq */ 1265 } 1266 1267 sockcm_init(&sockc, sk); 1268 if (msg->msg_controllen) { 1269 err = sock_cmsg_send(sk, msg, &sockc); 1270 if (unlikely(err)) { 1271 err = -EINVAL; 1272 goto out_err; 1273 } 1274 } 1275 1276 /* This should be in poll */ 1277 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1278 1279 /* Ok commence sending. */ 1280 copied = 0; 1281 1282 restart: 1283 mss_now = tcp_send_mss(sk, &size_goal, flags); 1284 1285 err = -EPIPE; 1286 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1287 goto do_error; 1288 1289 while (msg_data_left(msg)) { 1290 int copy = 0; 1291 1292 skb = tcp_write_queue_tail(sk); 1293 if (skb) 1294 copy = size_goal - skb->len; 1295 1296 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1297 bool first_skb; 1298 1299 new_segment: 1300 if (!sk_stream_memory_free(sk)) 1301 goto wait_for_space; 1302 1303 if (unlikely(process_backlog >= 16)) { 1304 process_backlog = 0; 1305 if (sk_flush_backlog(sk)) 1306 goto restart; 1307 } 1308 first_skb = tcp_rtx_and_write_queues_empty(sk); 1309 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1310 first_skb); 1311 if (!skb) 1312 goto wait_for_space; 1313 1314 process_backlog++; 1315 skb->ip_summed = CHECKSUM_PARTIAL; 1316 1317 skb_entail(sk, skb); 1318 copy = size_goal; 1319 1320 /* All packets are restored as if they have 1321 * already been sent. skb_mstamp_ns isn't set to 1322 * avoid wrong rtt estimation. 1323 */ 1324 if (tp->repair) 1325 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1326 } 1327 1328 /* Try to append data to the end of skb. */ 1329 if (copy > msg_data_left(msg)) 1330 copy = msg_data_left(msg); 1331 1332 /* Where to copy to? */ 1333 if (skb_availroom(skb) > 0 && !zc) { 1334 /* We have some space in skb head. Superb! */ 1335 copy = min_t(int, copy, skb_availroom(skb)); 1336 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1337 if (err) 1338 goto do_fault; 1339 } else if (!zc) { 1340 bool merge = true; 1341 int i = skb_shinfo(skb)->nr_frags; 1342 struct page_frag *pfrag = sk_page_frag(sk); 1343 1344 if (!sk_page_frag_refill(sk, pfrag)) 1345 goto wait_for_space; 1346 1347 if (!skb_can_coalesce(skb, i, pfrag->page, 1348 pfrag->offset)) { 1349 if (i >= sysctl_max_skb_frags) { 1350 tcp_mark_push(tp, skb); 1351 goto new_segment; 1352 } 1353 merge = false; 1354 } 1355 1356 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1357 1358 if (!sk_wmem_schedule(sk, copy)) 1359 goto wait_for_space; 1360 1361 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1362 pfrag->page, 1363 pfrag->offset, 1364 copy); 1365 if (err) 1366 goto do_error; 1367 1368 /* Update the skb. */ 1369 if (merge) { 1370 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1371 } else { 1372 skb_fill_page_desc(skb, i, pfrag->page, 1373 pfrag->offset, copy); 1374 page_ref_inc(pfrag->page); 1375 } 1376 pfrag->offset += copy; 1377 } else { 1378 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1379 if (err == -EMSGSIZE || err == -EEXIST) { 1380 tcp_mark_push(tp, skb); 1381 goto new_segment; 1382 } 1383 if (err < 0) 1384 goto do_error; 1385 copy = err; 1386 } 1387 1388 if (!copied) 1389 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1390 1391 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1392 TCP_SKB_CB(skb)->end_seq += copy; 1393 tcp_skb_pcount_set(skb, 0); 1394 1395 copied += copy; 1396 if (!msg_data_left(msg)) { 1397 if (unlikely(flags & MSG_EOR)) 1398 TCP_SKB_CB(skb)->eor = 1; 1399 goto out; 1400 } 1401 1402 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1403 continue; 1404 1405 if (forced_push(tp)) { 1406 tcp_mark_push(tp, skb); 1407 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1408 } else if (skb == tcp_send_head(sk)) 1409 tcp_push_one(sk, mss_now); 1410 continue; 1411 1412 wait_for_space: 1413 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1414 if (copied) 1415 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1416 TCP_NAGLE_PUSH, size_goal); 1417 1418 err = sk_stream_wait_memory(sk, &timeo); 1419 if (err != 0) 1420 goto do_error; 1421 1422 mss_now = tcp_send_mss(sk, &size_goal, flags); 1423 } 1424 1425 out: 1426 if (copied) { 1427 tcp_tx_timestamp(sk, sockc.tsflags); 1428 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1429 } 1430 out_nopush: 1431 net_zcopy_put(uarg); 1432 return copied + copied_syn; 1433 1434 do_error: 1435 skb = tcp_write_queue_tail(sk); 1436 do_fault: 1437 tcp_remove_empty_skb(sk, skb); 1438 1439 if (copied + copied_syn) 1440 goto out; 1441 out_err: 1442 net_zcopy_put_abort(uarg, true); 1443 err = sk_stream_error(sk, flags, err); 1444 /* make sure we wake any epoll edge trigger waiter */ 1445 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1446 sk->sk_write_space(sk); 1447 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1448 } 1449 return err; 1450 } 1451 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1452 1453 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1454 { 1455 int ret; 1456 1457 lock_sock(sk); 1458 ret = tcp_sendmsg_locked(sk, msg, size); 1459 release_sock(sk); 1460 1461 return ret; 1462 } 1463 EXPORT_SYMBOL(tcp_sendmsg); 1464 1465 /* 1466 * Handle reading urgent data. BSD has very simple semantics for 1467 * this, no blocking and very strange errors 8) 1468 */ 1469 1470 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1471 { 1472 struct tcp_sock *tp = tcp_sk(sk); 1473 1474 /* No URG data to read. */ 1475 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1476 tp->urg_data == TCP_URG_READ) 1477 return -EINVAL; /* Yes this is right ! */ 1478 1479 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1480 return -ENOTCONN; 1481 1482 if (tp->urg_data & TCP_URG_VALID) { 1483 int err = 0; 1484 char c = tp->urg_data; 1485 1486 if (!(flags & MSG_PEEK)) 1487 tp->urg_data = TCP_URG_READ; 1488 1489 /* Read urgent data. */ 1490 msg->msg_flags |= MSG_OOB; 1491 1492 if (len > 0) { 1493 if (!(flags & MSG_TRUNC)) 1494 err = memcpy_to_msg(msg, &c, 1); 1495 len = 1; 1496 } else 1497 msg->msg_flags |= MSG_TRUNC; 1498 1499 return err ? -EFAULT : len; 1500 } 1501 1502 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1503 return 0; 1504 1505 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1506 * the available implementations agree in this case: 1507 * this call should never block, independent of the 1508 * blocking state of the socket. 1509 * Mike <pall@rz.uni-karlsruhe.de> 1510 */ 1511 return -EAGAIN; 1512 } 1513 1514 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1515 { 1516 struct sk_buff *skb; 1517 int copied = 0, err = 0; 1518 1519 /* XXX -- need to support SO_PEEK_OFF */ 1520 1521 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1522 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1523 if (err) 1524 return err; 1525 copied += skb->len; 1526 } 1527 1528 skb_queue_walk(&sk->sk_write_queue, skb) { 1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1530 if (err) 1531 break; 1532 1533 copied += skb->len; 1534 } 1535 1536 return err ?: copied; 1537 } 1538 1539 /* Clean up the receive buffer for full frames taken by the user, 1540 * then send an ACK if necessary. COPIED is the number of bytes 1541 * tcp_recvmsg has given to the user so far, it speeds up the 1542 * calculation of whether or not we must ACK for the sake of 1543 * a window update. 1544 */ 1545 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1546 { 1547 struct tcp_sock *tp = tcp_sk(sk); 1548 bool time_to_ack = false; 1549 1550 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1551 1552 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1553 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1554 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1555 1556 if (inet_csk_ack_scheduled(sk)) { 1557 const struct inet_connection_sock *icsk = inet_csk(sk); 1558 1559 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1560 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1561 /* 1562 * If this read emptied read buffer, we send ACK, if 1563 * connection is not bidirectional, user drained 1564 * receive buffer and there was a small segment 1565 * in queue. 1566 */ 1567 (copied > 0 && 1568 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1569 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1570 !inet_csk_in_pingpong_mode(sk))) && 1571 !atomic_read(&sk->sk_rmem_alloc))) 1572 time_to_ack = true; 1573 } 1574 1575 /* We send an ACK if we can now advertise a non-zero window 1576 * which has been raised "significantly". 1577 * 1578 * Even if window raised up to infinity, do not send window open ACK 1579 * in states, where we will not receive more. It is useless. 1580 */ 1581 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1582 __u32 rcv_window_now = tcp_receive_window(tp); 1583 1584 /* Optimize, __tcp_select_window() is not cheap. */ 1585 if (2*rcv_window_now <= tp->window_clamp) { 1586 __u32 new_window = __tcp_select_window(sk); 1587 1588 /* Send ACK now, if this read freed lots of space 1589 * in our buffer. Certainly, new_window is new window. 1590 * We can advertise it now, if it is not less than current one. 1591 * "Lots" means "at least twice" here. 1592 */ 1593 if (new_window && new_window >= 2 * rcv_window_now) 1594 time_to_ack = true; 1595 } 1596 } 1597 if (time_to_ack) 1598 tcp_send_ack(sk); 1599 } 1600 1601 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1602 { 1603 struct sk_buff *skb; 1604 u32 offset; 1605 1606 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1607 offset = seq - TCP_SKB_CB(skb)->seq; 1608 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1609 pr_err_once("%s: found a SYN, please report !\n", __func__); 1610 offset--; 1611 } 1612 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1613 *off = offset; 1614 return skb; 1615 } 1616 /* This looks weird, but this can happen if TCP collapsing 1617 * splitted a fat GRO packet, while we released socket lock 1618 * in skb_splice_bits() 1619 */ 1620 sk_eat_skb(sk, skb); 1621 } 1622 return NULL; 1623 } 1624 1625 /* 1626 * This routine provides an alternative to tcp_recvmsg() for routines 1627 * that would like to handle copying from skbuffs directly in 'sendfile' 1628 * fashion. 1629 * Note: 1630 * - It is assumed that the socket was locked by the caller. 1631 * - The routine does not block. 1632 * - At present, there is no support for reading OOB data 1633 * or for 'peeking' the socket using this routine 1634 * (although both would be easy to implement). 1635 */ 1636 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1637 sk_read_actor_t recv_actor) 1638 { 1639 struct sk_buff *skb; 1640 struct tcp_sock *tp = tcp_sk(sk); 1641 u32 seq = tp->copied_seq; 1642 u32 offset; 1643 int copied = 0; 1644 1645 if (sk->sk_state == TCP_LISTEN) 1646 return -ENOTCONN; 1647 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1648 if (offset < skb->len) { 1649 int used; 1650 size_t len; 1651 1652 len = skb->len - offset; 1653 /* Stop reading if we hit a patch of urgent data */ 1654 if (tp->urg_data) { 1655 u32 urg_offset = tp->urg_seq - seq; 1656 if (urg_offset < len) 1657 len = urg_offset; 1658 if (!len) 1659 break; 1660 } 1661 used = recv_actor(desc, skb, offset, len); 1662 if (used <= 0) { 1663 if (!copied) 1664 copied = used; 1665 break; 1666 } else if (used <= len) { 1667 seq += used; 1668 copied += used; 1669 offset += used; 1670 } 1671 /* If recv_actor drops the lock (e.g. TCP splice 1672 * receive) the skb pointer might be invalid when 1673 * getting here: tcp_collapse might have deleted it 1674 * while aggregating skbs from the socket queue. 1675 */ 1676 skb = tcp_recv_skb(sk, seq - 1, &offset); 1677 if (!skb) 1678 break; 1679 /* TCP coalescing might have appended data to the skb. 1680 * Try to splice more frags 1681 */ 1682 if (offset + 1 != skb->len) 1683 continue; 1684 } 1685 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1686 sk_eat_skb(sk, skb); 1687 ++seq; 1688 break; 1689 } 1690 sk_eat_skb(sk, skb); 1691 if (!desc->count) 1692 break; 1693 WRITE_ONCE(tp->copied_seq, seq); 1694 } 1695 WRITE_ONCE(tp->copied_seq, seq); 1696 1697 tcp_rcv_space_adjust(sk); 1698 1699 /* Clean up data we have read: This will do ACK frames. */ 1700 if (copied > 0) { 1701 tcp_recv_skb(sk, seq, &offset); 1702 tcp_cleanup_rbuf(sk, copied); 1703 } 1704 return copied; 1705 } 1706 EXPORT_SYMBOL(tcp_read_sock); 1707 1708 int tcp_peek_len(struct socket *sock) 1709 { 1710 return tcp_inq(sock->sk); 1711 } 1712 EXPORT_SYMBOL(tcp_peek_len); 1713 1714 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1715 int tcp_set_rcvlowat(struct sock *sk, int val) 1716 { 1717 int cap; 1718 1719 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1720 cap = sk->sk_rcvbuf >> 1; 1721 else 1722 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1723 val = min(val, cap); 1724 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1725 1726 /* Check if we need to signal EPOLLIN right now */ 1727 tcp_data_ready(sk); 1728 1729 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1730 return 0; 1731 1732 val <<= 1; 1733 if (val > sk->sk_rcvbuf) { 1734 WRITE_ONCE(sk->sk_rcvbuf, val); 1735 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1736 } 1737 return 0; 1738 } 1739 EXPORT_SYMBOL(tcp_set_rcvlowat); 1740 1741 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1742 struct scm_timestamping_internal *tss) 1743 { 1744 if (skb->tstamp) 1745 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1746 else 1747 tss->ts[0] = (struct timespec64) {0}; 1748 1749 if (skb_hwtstamps(skb)->hwtstamp) 1750 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1751 else 1752 tss->ts[2] = (struct timespec64) {0}; 1753 } 1754 1755 #ifdef CONFIG_MMU 1756 static const struct vm_operations_struct tcp_vm_ops = { 1757 }; 1758 1759 int tcp_mmap(struct file *file, struct socket *sock, 1760 struct vm_area_struct *vma) 1761 { 1762 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1763 return -EPERM; 1764 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1765 1766 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1767 vma->vm_flags |= VM_MIXEDMAP; 1768 1769 vma->vm_ops = &tcp_vm_ops; 1770 return 0; 1771 } 1772 EXPORT_SYMBOL(tcp_mmap); 1773 1774 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1775 u32 *offset_frag) 1776 { 1777 skb_frag_t *frag; 1778 1779 offset_skb -= skb_headlen(skb); 1780 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1781 return NULL; 1782 1783 frag = skb_shinfo(skb)->frags; 1784 while (offset_skb) { 1785 if (skb_frag_size(frag) > offset_skb) { 1786 *offset_frag = offset_skb; 1787 return frag; 1788 } 1789 offset_skb -= skb_frag_size(frag); 1790 ++frag; 1791 } 1792 *offset_frag = 0; 1793 return frag; 1794 } 1795 1796 static bool can_map_frag(const skb_frag_t *frag) 1797 { 1798 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1799 } 1800 1801 static int find_next_mappable_frag(const skb_frag_t *frag, 1802 int remaining_in_skb) 1803 { 1804 int offset = 0; 1805 1806 if (likely(can_map_frag(frag))) 1807 return 0; 1808 1809 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1810 offset += skb_frag_size(frag); 1811 ++frag; 1812 } 1813 return offset; 1814 } 1815 1816 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1817 struct tcp_zerocopy_receive *zc, 1818 struct sk_buff *skb, u32 offset) 1819 { 1820 u32 frag_offset, partial_frag_remainder = 0; 1821 int mappable_offset; 1822 skb_frag_t *frag; 1823 1824 /* worst case: skip to next skb. try to improve on this case below */ 1825 zc->recv_skip_hint = skb->len - offset; 1826 1827 /* Find the frag containing this offset (and how far into that frag) */ 1828 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1829 if (!frag) 1830 return; 1831 1832 if (frag_offset) { 1833 struct skb_shared_info *info = skb_shinfo(skb); 1834 1835 /* We read part of the last frag, must recvmsg() rest of skb. */ 1836 if (frag == &info->frags[info->nr_frags - 1]) 1837 return; 1838 1839 /* Else, we must at least read the remainder in this frag. */ 1840 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1841 zc->recv_skip_hint -= partial_frag_remainder; 1842 ++frag; 1843 } 1844 1845 /* partial_frag_remainder: If part way through a frag, must read rest. 1846 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1847 * in partial_frag_remainder. 1848 */ 1849 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1850 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1851 } 1852 1853 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1854 int nonblock, int flags, 1855 struct scm_timestamping_internal *tss, 1856 int *cmsg_flags); 1857 static int receive_fallback_to_copy(struct sock *sk, 1858 struct tcp_zerocopy_receive *zc, int inq, 1859 struct scm_timestamping_internal *tss) 1860 { 1861 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1862 struct msghdr msg = {}; 1863 struct iovec iov; 1864 int err; 1865 1866 zc->length = 0; 1867 zc->recv_skip_hint = 0; 1868 1869 if (copy_address != zc->copybuf_address) 1870 return -EINVAL; 1871 1872 err = import_single_range(READ, (void __user *)copy_address, 1873 inq, &iov, &msg.msg_iter); 1874 if (err) 1875 return err; 1876 1877 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1878 tss, &zc->msg_flags); 1879 if (err < 0) 1880 return err; 1881 1882 zc->copybuf_len = err; 1883 if (likely(zc->copybuf_len)) { 1884 struct sk_buff *skb; 1885 u32 offset; 1886 1887 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1888 if (skb) 1889 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1890 } 1891 return 0; 1892 } 1893 1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1895 struct sk_buff *skb, u32 copylen, 1896 u32 *offset, u32 *seq) 1897 { 1898 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1899 struct msghdr msg = {}; 1900 struct iovec iov; 1901 int err; 1902 1903 if (copy_address != zc->copybuf_address) 1904 return -EINVAL; 1905 1906 err = import_single_range(READ, (void __user *)copy_address, 1907 copylen, &iov, &msg.msg_iter); 1908 if (err) 1909 return err; 1910 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1911 if (err) 1912 return err; 1913 zc->recv_skip_hint -= copylen; 1914 *offset += copylen; 1915 *seq += copylen; 1916 return (__s32)copylen; 1917 } 1918 1919 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1920 struct sock *sk, 1921 struct sk_buff *skb, 1922 u32 *seq, 1923 s32 copybuf_len, 1924 struct scm_timestamping_internal *tss) 1925 { 1926 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1927 1928 if (!copylen) 1929 return 0; 1930 /* skb is null if inq < PAGE_SIZE. */ 1931 if (skb) { 1932 offset = *seq - TCP_SKB_CB(skb)->seq; 1933 } else { 1934 skb = tcp_recv_skb(sk, *seq, &offset); 1935 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1936 tcp_update_recv_tstamps(skb, tss); 1937 zc->msg_flags |= TCP_CMSG_TS; 1938 } 1939 } 1940 1941 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1942 seq); 1943 return zc->copybuf_len < 0 ? 0 : copylen; 1944 } 1945 1946 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1947 struct page **pending_pages, 1948 unsigned long pages_remaining, 1949 unsigned long *address, 1950 u32 *length, 1951 u32 *seq, 1952 struct tcp_zerocopy_receive *zc, 1953 u32 total_bytes_to_map, 1954 int err) 1955 { 1956 /* At least one page did not map. Try zapping if we skipped earlier. */ 1957 if (err == -EBUSY && 1958 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1959 u32 maybe_zap_len; 1960 1961 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1962 *length + /* Mapped or pending */ 1963 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1964 zap_page_range(vma, *address, maybe_zap_len); 1965 err = 0; 1966 } 1967 1968 if (!err) { 1969 unsigned long leftover_pages = pages_remaining; 1970 int bytes_mapped; 1971 1972 /* We called zap_page_range, try to reinsert. */ 1973 err = vm_insert_pages(vma, *address, 1974 pending_pages, 1975 &pages_remaining); 1976 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1977 *seq += bytes_mapped; 1978 *address += bytes_mapped; 1979 } 1980 if (err) { 1981 /* Either we were unable to zap, OR we zapped, retried an 1982 * insert, and still had an issue. Either ways, pages_remaining 1983 * is the number of pages we were unable to map, and we unroll 1984 * some state we speculatively touched before. 1985 */ 1986 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1987 1988 *length -= bytes_not_mapped; 1989 zc->recv_skip_hint += bytes_not_mapped; 1990 } 1991 return err; 1992 } 1993 1994 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1995 struct page **pages, 1996 unsigned int pages_to_map, 1997 unsigned long *address, 1998 u32 *length, 1999 u32 *seq, 2000 struct tcp_zerocopy_receive *zc, 2001 u32 total_bytes_to_map) 2002 { 2003 unsigned long pages_remaining = pages_to_map; 2004 unsigned int pages_mapped; 2005 unsigned int bytes_mapped; 2006 int err; 2007 2008 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2009 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2010 bytes_mapped = PAGE_SIZE * pages_mapped; 2011 /* Even if vm_insert_pages fails, it may have partially succeeded in 2012 * mapping (some but not all of the pages). 2013 */ 2014 *seq += bytes_mapped; 2015 *address += bytes_mapped; 2016 2017 if (likely(!err)) 2018 return 0; 2019 2020 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2021 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2022 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2023 err); 2024 } 2025 2026 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2027 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2028 struct scm_timestamping_internal *tss); 2029 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2030 struct tcp_zerocopy_receive *zc, 2031 struct scm_timestamping_internal *tss) 2032 { 2033 unsigned long msg_control_addr; 2034 struct msghdr cmsg_dummy; 2035 2036 msg_control_addr = (unsigned long)zc->msg_control; 2037 cmsg_dummy.msg_control = (void *)msg_control_addr; 2038 cmsg_dummy.msg_controllen = 2039 (__kernel_size_t)zc->msg_controllen; 2040 cmsg_dummy.msg_flags = in_compat_syscall() 2041 ? MSG_CMSG_COMPAT : 0; 2042 zc->msg_flags = 0; 2043 if (zc->msg_control == msg_control_addr && 2044 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2045 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2046 zc->msg_control = (__u64) 2047 ((uintptr_t)cmsg_dummy.msg_control); 2048 zc->msg_controllen = 2049 (__u64)cmsg_dummy.msg_controllen; 2050 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2051 } 2052 } 2053 2054 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2055 static int tcp_zerocopy_receive(struct sock *sk, 2056 struct tcp_zerocopy_receive *zc, 2057 struct scm_timestamping_internal *tss) 2058 { 2059 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2060 unsigned long address = (unsigned long)zc->address; 2061 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2062 s32 copybuf_len = zc->copybuf_len; 2063 struct tcp_sock *tp = tcp_sk(sk); 2064 const skb_frag_t *frags = NULL; 2065 unsigned int pages_to_map = 0; 2066 struct vm_area_struct *vma; 2067 struct sk_buff *skb = NULL; 2068 u32 seq = tp->copied_seq; 2069 u32 total_bytes_to_map; 2070 int inq = tcp_inq(sk); 2071 int ret; 2072 2073 zc->copybuf_len = 0; 2074 zc->msg_flags = 0; 2075 2076 if (address & (PAGE_SIZE - 1) || address != zc->address) 2077 return -EINVAL; 2078 2079 if (sk->sk_state == TCP_LISTEN) 2080 return -ENOTCONN; 2081 2082 sock_rps_record_flow(sk); 2083 2084 if (inq && inq <= copybuf_len) 2085 return receive_fallback_to_copy(sk, zc, inq, tss); 2086 2087 if (inq < PAGE_SIZE) { 2088 zc->length = 0; 2089 zc->recv_skip_hint = inq; 2090 if (!inq && sock_flag(sk, SOCK_DONE)) 2091 return -EIO; 2092 return 0; 2093 } 2094 2095 mmap_read_lock(current->mm); 2096 2097 vma = find_vma(current->mm, address); 2098 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 2099 mmap_read_unlock(current->mm); 2100 return -EINVAL; 2101 } 2102 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2103 avail_len = min_t(u32, vma_len, inq); 2104 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2105 if (total_bytes_to_map) { 2106 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2107 zap_page_range(vma, address, total_bytes_to_map); 2108 zc->length = total_bytes_to_map; 2109 zc->recv_skip_hint = 0; 2110 } else { 2111 zc->length = avail_len; 2112 zc->recv_skip_hint = avail_len; 2113 } 2114 ret = 0; 2115 while (length + PAGE_SIZE <= zc->length) { 2116 int mappable_offset; 2117 struct page *page; 2118 2119 if (zc->recv_skip_hint < PAGE_SIZE) { 2120 u32 offset_frag; 2121 2122 if (skb) { 2123 if (zc->recv_skip_hint > 0) 2124 break; 2125 skb = skb->next; 2126 offset = seq - TCP_SKB_CB(skb)->seq; 2127 } else { 2128 skb = tcp_recv_skb(sk, seq, &offset); 2129 } 2130 2131 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2132 tcp_update_recv_tstamps(skb, tss); 2133 zc->msg_flags |= TCP_CMSG_TS; 2134 } 2135 zc->recv_skip_hint = skb->len - offset; 2136 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2137 if (!frags || offset_frag) 2138 break; 2139 } 2140 2141 mappable_offset = find_next_mappable_frag(frags, 2142 zc->recv_skip_hint); 2143 if (mappable_offset) { 2144 zc->recv_skip_hint = mappable_offset; 2145 break; 2146 } 2147 page = skb_frag_page(frags); 2148 prefetchw(page); 2149 pages[pages_to_map++] = page; 2150 length += PAGE_SIZE; 2151 zc->recv_skip_hint -= PAGE_SIZE; 2152 frags++; 2153 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2154 zc->recv_skip_hint < PAGE_SIZE) { 2155 /* Either full batch, or we're about to go to next skb 2156 * (and we cannot unroll failed ops across skbs). 2157 */ 2158 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2159 pages_to_map, 2160 &address, &length, 2161 &seq, zc, 2162 total_bytes_to_map); 2163 if (ret) 2164 goto out; 2165 pages_to_map = 0; 2166 } 2167 } 2168 if (pages_to_map) { 2169 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2170 &address, &length, &seq, 2171 zc, total_bytes_to_map); 2172 } 2173 out: 2174 mmap_read_unlock(current->mm); 2175 /* Try to copy straggler data. */ 2176 if (!ret) 2177 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2178 2179 if (length + copylen) { 2180 WRITE_ONCE(tp->copied_seq, seq); 2181 tcp_rcv_space_adjust(sk); 2182 2183 /* Clean up data we have read: This will do ACK frames. */ 2184 tcp_recv_skb(sk, seq, &offset); 2185 tcp_cleanup_rbuf(sk, length + copylen); 2186 ret = 0; 2187 if (length == zc->length) 2188 zc->recv_skip_hint = 0; 2189 } else { 2190 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2191 ret = -EIO; 2192 } 2193 zc->length = length; 2194 return ret; 2195 } 2196 #endif 2197 2198 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2199 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2200 struct scm_timestamping_internal *tss) 2201 { 2202 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2203 bool has_timestamping = false; 2204 2205 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2206 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2207 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2208 if (new_tstamp) { 2209 struct __kernel_timespec kts = { 2210 .tv_sec = tss->ts[0].tv_sec, 2211 .tv_nsec = tss->ts[0].tv_nsec, 2212 }; 2213 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2214 sizeof(kts), &kts); 2215 } else { 2216 struct __kernel_old_timespec ts_old = { 2217 .tv_sec = tss->ts[0].tv_sec, 2218 .tv_nsec = tss->ts[0].tv_nsec, 2219 }; 2220 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2221 sizeof(ts_old), &ts_old); 2222 } 2223 } else { 2224 if (new_tstamp) { 2225 struct __kernel_sock_timeval stv = { 2226 .tv_sec = tss->ts[0].tv_sec, 2227 .tv_usec = tss->ts[0].tv_nsec / 1000, 2228 }; 2229 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2230 sizeof(stv), &stv); 2231 } else { 2232 struct __kernel_old_timeval tv = { 2233 .tv_sec = tss->ts[0].tv_sec, 2234 .tv_usec = tss->ts[0].tv_nsec / 1000, 2235 }; 2236 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2237 sizeof(tv), &tv); 2238 } 2239 } 2240 } 2241 2242 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2243 has_timestamping = true; 2244 else 2245 tss->ts[0] = (struct timespec64) {0}; 2246 } 2247 2248 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2249 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2250 has_timestamping = true; 2251 else 2252 tss->ts[2] = (struct timespec64) {0}; 2253 } 2254 2255 if (has_timestamping) { 2256 tss->ts[1] = (struct timespec64) {0}; 2257 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2258 put_cmsg_scm_timestamping64(msg, tss); 2259 else 2260 put_cmsg_scm_timestamping(msg, tss); 2261 } 2262 } 2263 2264 static int tcp_inq_hint(struct sock *sk) 2265 { 2266 const struct tcp_sock *tp = tcp_sk(sk); 2267 u32 copied_seq = READ_ONCE(tp->copied_seq); 2268 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2269 int inq; 2270 2271 inq = rcv_nxt - copied_seq; 2272 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2273 lock_sock(sk); 2274 inq = tp->rcv_nxt - tp->copied_seq; 2275 release_sock(sk); 2276 } 2277 /* After receiving a FIN, tell the user-space to continue reading 2278 * by returning a non-zero inq. 2279 */ 2280 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2281 inq = 1; 2282 return inq; 2283 } 2284 2285 /* 2286 * This routine copies from a sock struct into the user buffer. 2287 * 2288 * Technical note: in 2.3 we work on _locked_ socket, so that 2289 * tricks with *seq access order and skb->users are not required. 2290 * Probably, code can be easily improved even more. 2291 */ 2292 2293 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2294 int nonblock, int flags, 2295 struct scm_timestamping_internal *tss, 2296 int *cmsg_flags) 2297 { 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 int copied = 0; 2300 u32 peek_seq; 2301 u32 *seq; 2302 unsigned long used; 2303 int err; 2304 int target; /* Read at least this many bytes */ 2305 long timeo; 2306 struct sk_buff *skb, *last; 2307 u32 urg_hole = 0; 2308 2309 err = -ENOTCONN; 2310 if (sk->sk_state == TCP_LISTEN) 2311 goto out; 2312 2313 if (tp->recvmsg_inq) 2314 *cmsg_flags = TCP_CMSG_INQ; 2315 timeo = sock_rcvtimeo(sk, nonblock); 2316 2317 /* Urgent data needs to be handled specially. */ 2318 if (flags & MSG_OOB) 2319 goto recv_urg; 2320 2321 if (unlikely(tp->repair)) { 2322 err = -EPERM; 2323 if (!(flags & MSG_PEEK)) 2324 goto out; 2325 2326 if (tp->repair_queue == TCP_SEND_QUEUE) 2327 goto recv_sndq; 2328 2329 err = -EINVAL; 2330 if (tp->repair_queue == TCP_NO_QUEUE) 2331 goto out; 2332 2333 /* 'common' recv queue MSG_PEEK-ing */ 2334 } 2335 2336 seq = &tp->copied_seq; 2337 if (flags & MSG_PEEK) { 2338 peek_seq = tp->copied_seq; 2339 seq = &peek_seq; 2340 } 2341 2342 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2343 2344 do { 2345 u32 offset; 2346 2347 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2348 if (tp->urg_data && tp->urg_seq == *seq) { 2349 if (copied) 2350 break; 2351 if (signal_pending(current)) { 2352 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2353 break; 2354 } 2355 } 2356 2357 /* Next get a buffer. */ 2358 2359 last = skb_peek_tail(&sk->sk_receive_queue); 2360 skb_queue_walk(&sk->sk_receive_queue, skb) { 2361 last = skb; 2362 /* Now that we have two receive queues this 2363 * shouldn't happen. 2364 */ 2365 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2366 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2367 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2368 flags)) 2369 break; 2370 2371 offset = *seq - TCP_SKB_CB(skb)->seq; 2372 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2373 pr_err_once("%s: found a SYN, please report !\n", __func__); 2374 offset--; 2375 } 2376 if (offset < skb->len) 2377 goto found_ok_skb; 2378 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2379 goto found_fin_ok; 2380 WARN(!(flags & MSG_PEEK), 2381 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2382 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2383 } 2384 2385 /* Well, if we have backlog, try to process it now yet. */ 2386 2387 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2388 break; 2389 2390 if (copied) { 2391 if (sk->sk_err || 2392 sk->sk_state == TCP_CLOSE || 2393 (sk->sk_shutdown & RCV_SHUTDOWN) || 2394 !timeo || 2395 signal_pending(current)) 2396 break; 2397 } else { 2398 if (sock_flag(sk, SOCK_DONE)) 2399 break; 2400 2401 if (sk->sk_err) { 2402 copied = sock_error(sk); 2403 break; 2404 } 2405 2406 if (sk->sk_shutdown & RCV_SHUTDOWN) 2407 break; 2408 2409 if (sk->sk_state == TCP_CLOSE) { 2410 /* This occurs when user tries to read 2411 * from never connected socket. 2412 */ 2413 copied = -ENOTCONN; 2414 break; 2415 } 2416 2417 if (!timeo) { 2418 copied = -EAGAIN; 2419 break; 2420 } 2421 2422 if (signal_pending(current)) { 2423 copied = sock_intr_errno(timeo); 2424 break; 2425 } 2426 } 2427 2428 tcp_cleanup_rbuf(sk, copied); 2429 2430 if (copied >= target) { 2431 /* Do not sleep, just process backlog. */ 2432 release_sock(sk); 2433 lock_sock(sk); 2434 } else { 2435 sk_wait_data(sk, &timeo, last); 2436 } 2437 2438 if ((flags & MSG_PEEK) && 2439 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2440 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2441 current->comm, 2442 task_pid_nr(current)); 2443 peek_seq = tp->copied_seq; 2444 } 2445 continue; 2446 2447 found_ok_skb: 2448 /* Ok so how much can we use? */ 2449 used = skb->len - offset; 2450 if (len < used) 2451 used = len; 2452 2453 /* Do we have urgent data here? */ 2454 if (tp->urg_data) { 2455 u32 urg_offset = tp->urg_seq - *seq; 2456 if (urg_offset < used) { 2457 if (!urg_offset) { 2458 if (!sock_flag(sk, SOCK_URGINLINE)) { 2459 WRITE_ONCE(*seq, *seq + 1); 2460 urg_hole++; 2461 offset++; 2462 used--; 2463 if (!used) 2464 goto skip_copy; 2465 } 2466 } else 2467 used = urg_offset; 2468 } 2469 } 2470 2471 if (!(flags & MSG_TRUNC)) { 2472 err = skb_copy_datagram_msg(skb, offset, msg, used); 2473 if (err) { 2474 /* Exception. Bailout! */ 2475 if (!copied) 2476 copied = -EFAULT; 2477 break; 2478 } 2479 } 2480 2481 WRITE_ONCE(*seq, *seq + used); 2482 copied += used; 2483 len -= used; 2484 2485 tcp_rcv_space_adjust(sk); 2486 2487 skip_copy: 2488 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2489 tp->urg_data = 0; 2490 tcp_fast_path_check(sk); 2491 } 2492 2493 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2494 tcp_update_recv_tstamps(skb, tss); 2495 *cmsg_flags |= TCP_CMSG_TS; 2496 } 2497 2498 if (used + offset < skb->len) 2499 continue; 2500 2501 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2502 goto found_fin_ok; 2503 if (!(flags & MSG_PEEK)) 2504 sk_eat_skb(sk, skb); 2505 continue; 2506 2507 found_fin_ok: 2508 /* Process the FIN. */ 2509 WRITE_ONCE(*seq, *seq + 1); 2510 if (!(flags & MSG_PEEK)) 2511 sk_eat_skb(sk, skb); 2512 break; 2513 } while (len > 0); 2514 2515 /* According to UNIX98, msg_name/msg_namelen are ignored 2516 * on connected socket. I was just happy when found this 8) --ANK 2517 */ 2518 2519 /* Clean up data we have read: This will do ACK frames. */ 2520 tcp_cleanup_rbuf(sk, copied); 2521 return copied; 2522 2523 out: 2524 return err; 2525 2526 recv_urg: 2527 err = tcp_recv_urg(sk, msg, len, flags); 2528 goto out; 2529 2530 recv_sndq: 2531 err = tcp_peek_sndq(sk, msg, len); 2532 goto out; 2533 } 2534 2535 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2536 int flags, int *addr_len) 2537 { 2538 int cmsg_flags = 0, ret, inq; 2539 struct scm_timestamping_internal tss; 2540 2541 if (unlikely(flags & MSG_ERRQUEUE)) 2542 return inet_recv_error(sk, msg, len, addr_len); 2543 2544 if (sk_can_busy_loop(sk) && 2545 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2546 sk->sk_state == TCP_ESTABLISHED) 2547 sk_busy_loop(sk, nonblock); 2548 2549 lock_sock(sk); 2550 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2551 &cmsg_flags); 2552 release_sock(sk); 2553 2554 if (cmsg_flags && ret >= 0) { 2555 if (cmsg_flags & TCP_CMSG_TS) 2556 tcp_recv_timestamp(msg, sk, &tss); 2557 if (cmsg_flags & TCP_CMSG_INQ) { 2558 inq = tcp_inq_hint(sk); 2559 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2560 } 2561 } 2562 return ret; 2563 } 2564 EXPORT_SYMBOL(tcp_recvmsg); 2565 2566 void tcp_set_state(struct sock *sk, int state) 2567 { 2568 int oldstate = sk->sk_state; 2569 2570 /* We defined a new enum for TCP states that are exported in BPF 2571 * so as not force the internal TCP states to be frozen. The 2572 * following checks will detect if an internal state value ever 2573 * differs from the BPF value. If this ever happens, then we will 2574 * need to remap the internal value to the BPF value before calling 2575 * tcp_call_bpf_2arg. 2576 */ 2577 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2578 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2579 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2580 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2581 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2582 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2583 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2584 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2585 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2586 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2587 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2588 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2589 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2590 2591 /* bpf uapi header bpf.h defines an anonymous enum with values 2592 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2593 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2594 * But clang built vmlinux does not have this enum in DWARF 2595 * since clang removes the above code before generating IR/debuginfo. 2596 * Let us explicitly emit the type debuginfo to ensure the 2597 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2598 * regardless of which compiler is used. 2599 */ 2600 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2601 2602 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2603 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2604 2605 switch (state) { 2606 case TCP_ESTABLISHED: 2607 if (oldstate != TCP_ESTABLISHED) 2608 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2609 break; 2610 2611 case TCP_CLOSE: 2612 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2613 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2614 2615 sk->sk_prot->unhash(sk); 2616 if (inet_csk(sk)->icsk_bind_hash && 2617 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2618 inet_put_port(sk); 2619 fallthrough; 2620 default: 2621 if (oldstate == TCP_ESTABLISHED) 2622 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2623 } 2624 2625 /* Change state AFTER socket is unhashed to avoid closed 2626 * socket sitting in hash tables. 2627 */ 2628 inet_sk_state_store(sk, state); 2629 } 2630 EXPORT_SYMBOL_GPL(tcp_set_state); 2631 2632 /* 2633 * State processing on a close. This implements the state shift for 2634 * sending our FIN frame. Note that we only send a FIN for some 2635 * states. A shutdown() may have already sent the FIN, or we may be 2636 * closed. 2637 */ 2638 2639 static const unsigned char new_state[16] = { 2640 /* current state: new state: action: */ 2641 [0 /* (Invalid) */] = TCP_CLOSE, 2642 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2643 [TCP_SYN_SENT] = TCP_CLOSE, 2644 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2645 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2646 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2647 [TCP_TIME_WAIT] = TCP_CLOSE, 2648 [TCP_CLOSE] = TCP_CLOSE, 2649 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2650 [TCP_LAST_ACK] = TCP_LAST_ACK, 2651 [TCP_LISTEN] = TCP_CLOSE, 2652 [TCP_CLOSING] = TCP_CLOSING, 2653 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2654 }; 2655 2656 static int tcp_close_state(struct sock *sk) 2657 { 2658 int next = (int)new_state[sk->sk_state]; 2659 int ns = next & TCP_STATE_MASK; 2660 2661 tcp_set_state(sk, ns); 2662 2663 return next & TCP_ACTION_FIN; 2664 } 2665 2666 /* 2667 * Shutdown the sending side of a connection. Much like close except 2668 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2669 */ 2670 2671 void tcp_shutdown(struct sock *sk, int how) 2672 { 2673 /* We need to grab some memory, and put together a FIN, 2674 * and then put it into the queue to be sent. 2675 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2676 */ 2677 if (!(how & SEND_SHUTDOWN)) 2678 return; 2679 2680 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2681 if ((1 << sk->sk_state) & 2682 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2683 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2684 /* Clear out any half completed packets. FIN if needed. */ 2685 if (tcp_close_state(sk)) 2686 tcp_send_fin(sk); 2687 } 2688 } 2689 EXPORT_SYMBOL(tcp_shutdown); 2690 2691 bool tcp_check_oom(struct sock *sk, int shift) 2692 { 2693 bool too_many_orphans, out_of_socket_memory; 2694 2695 too_many_orphans = tcp_too_many_orphans(sk, shift); 2696 out_of_socket_memory = tcp_out_of_memory(sk); 2697 2698 if (too_many_orphans) 2699 net_info_ratelimited("too many orphaned sockets\n"); 2700 if (out_of_socket_memory) 2701 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2702 return too_many_orphans || out_of_socket_memory; 2703 } 2704 2705 void __tcp_close(struct sock *sk, long timeout) 2706 { 2707 struct sk_buff *skb; 2708 int data_was_unread = 0; 2709 int state; 2710 2711 sk->sk_shutdown = SHUTDOWN_MASK; 2712 2713 if (sk->sk_state == TCP_LISTEN) { 2714 tcp_set_state(sk, TCP_CLOSE); 2715 2716 /* Special case. */ 2717 inet_csk_listen_stop(sk); 2718 2719 goto adjudge_to_death; 2720 } 2721 2722 /* We need to flush the recv. buffs. We do this only on the 2723 * descriptor close, not protocol-sourced closes, because the 2724 * reader process may not have drained the data yet! 2725 */ 2726 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2727 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2728 2729 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2730 len--; 2731 data_was_unread += len; 2732 __kfree_skb(skb); 2733 } 2734 2735 sk_mem_reclaim(sk); 2736 2737 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2738 if (sk->sk_state == TCP_CLOSE) 2739 goto adjudge_to_death; 2740 2741 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2742 * data was lost. To witness the awful effects of the old behavior of 2743 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2744 * GET in an FTP client, suspend the process, wait for the client to 2745 * advertise a zero window, then kill -9 the FTP client, wheee... 2746 * Note: timeout is always zero in such a case. 2747 */ 2748 if (unlikely(tcp_sk(sk)->repair)) { 2749 sk->sk_prot->disconnect(sk, 0); 2750 } else if (data_was_unread) { 2751 /* Unread data was tossed, zap the connection. */ 2752 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2753 tcp_set_state(sk, TCP_CLOSE); 2754 tcp_send_active_reset(sk, sk->sk_allocation); 2755 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2756 /* Check zero linger _after_ checking for unread data. */ 2757 sk->sk_prot->disconnect(sk, 0); 2758 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2759 } else if (tcp_close_state(sk)) { 2760 /* We FIN if the application ate all the data before 2761 * zapping the connection. 2762 */ 2763 2764 /* RED-PEN. Formally speaking, we have broken TCP state 2765 * machine. State transitions: 2766 * 2767 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2768 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2769 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2770 * 2771 * are legal only when FIN has been sent (i.e. in window), 2772 * rather than queued out of window. Purists blame. 2773 * 2774 * F.e. "RFC state" is ESTABLISHED, 2775 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2776 * 2777 * The visible declinations are that sometimes 2778 * we enter time-wait state, when it is not required really 2779 * (harmless), do not send active resets, when they are 2780 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2781 * they look as CLOSING or LAST_ACK for Linux) 2782 * Probably, I missed some more holelets. 2783 * --ANK 2784 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2785 * in a single packet! (May consider it later but will 2786 * probably need API support or TCP_CORK SYN-ACK until 2787 * data is written and socket is closed.) 2788 */ 2789 tcp_send_fin(sk); 2790 } 2791 2792 sk_stream_wait_close(sk, timeout); 2793 2794 adjudge_to_death: 2795 state = sk->sk_state; 2796 sock_hold(sk); 2797 sock_orphan(sk); 2798 2799 local_bh_disable(); 2800 bh_lock_sock(sk); 2801 /* remove backlog if any, without releasing ownership. */ 2802 __release_sock(sk); 2803 2804 percpu_counter_inc(sk->sk_prot->orphan_count); 2805 2806 /* Have we already been destroyed by a softirq or backlog? */ 2807 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2808 goto out; 2809 2810 /* This is a (useful) BSD violating of the RFC. There is a 2811 * problem with TCP as specified in that the other end could 2812 * keep a socket open forever with no application left this end. 2813 * We use a 1 minute timeout (about the same as BSD) then kill 2814 * our end. If they send after that then tough - BUT: long enough 2815 * that we won't make the old 4*rto = almost no time - whoops 2816 * reset mistake. 2817 * 2818 * Nope, it was not mistake. It is really desired behaviour 2819 * f.e. on http servers, when such sockets are useless, but 2820 * consume significant resources. Let's do it with special 2821 * linger2 option. --ANK 2822 */ 2823 2824 if (sk->sk_state == TCP_FIN_WAIT2) { 2825 struct tcp_sock *tp = tcp_sk(sk); 2826 if (tp->linger2 < 0) { 2827 tcp_set_state(sk, TCP_CLOSE); 2828 tcp_send_active_reset(sk, GFP_ATOMIC); 2829 __NET_INC_STATS(sock_net(sk), 2830 LINUX_MIB_TCPABORTONLINGER); 2831 } else { 2832 const int tmo = tcp_fin_time(sk); 2833 2834 if (tmo > TCP_TIMEWAIT_LEN) { 2835 inet_csk_reset_keepalive_timer(sk, 2836 tmo - TCP_TIMEWAIT_LEN); 2837 } else { 2838 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2839 goto out; 2840 } 2841 } 2842 } 2843 if (sk->sk_state != TCP_CLOSE) { 2844 sk_mem_reclaim(sk); 2845 if (tcp_check_oom(sk, 0)) { 2846 tcp_set_state(sk, TCP_CLOSE); 2847 tcp_send_active_reset(sk, GFP_ATOMIC); 2848 __NET_INC_STATS(sock_net(sk), 2849 LINUX_MIB_TCPABORTONMEMORY); 2850 } else if (!check_net(sock_net(sk))) { 2851 /* Not possible to send reset; just close */ 2852 tcp_set_state(sk, TCP_CLOSE); 2853 } 2854 } 2855 2856 if (sk->sk_state == TCP_CLOSE) { 2857 struct request_sock *req; 2858 2859 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2860 lockdep_sock_is_held(sk)); 2861 /* We could get here with a non-NULL req if the socket is 2862 * aborted (e.g., closed with unread data) before 3WHS 2863 * finishes. 2864 */ 2865 if (req) 2866 reqsk_fastopen_remove(sk, req, false); 2867 inet_csk_destroy_sock(sk); 2868 } 2869 /* Otherwise, socket is reprieved until protocol close. */ 2870 2871 out: 2872 bh_unlock_sock(sk); 2873 local_bh_enable(); 2874 } 2875 2876 void tcp_close(struct sock *sk, long timeout) 2877 { 2878 lock_sock(sk); 2879 __tcp_close(sk, timeout); 2880 release_sock(sk); 2881 sock_put(sk); 2882 } 2883 EXPORT_SYMBOL(tcp_close); 2884 2885 /* These states need RST on ABORT according to RFC793 */ 2886 2887 static inline bool tcp_need_reset(int state) 2888 { 2889 return (1 << state) & 2890 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2891 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2892 } 2893 2894 static void tcp_rtx_queue_purge(struct sock *sk) 2895 { 2896 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2897 2898 tcp_sk(sk)->highest_sack = NULL; 2899 while (p) { 2900 struct sk_buff *skb = rb_to_skb(p); 2901 2902 p = rb_next(p); 2903 /* Since we are deleting whole queue, no need to 2904 * list_del(&skb->tcp_tsorted_anchor) 2905 */ 2906 tcp_rtx_queue_unlink(skb, sk); 2907 sk_wmem_free_skb(sk, skb); 2908 } 2909 } 2910 2911 void tcp_write_queue_purge(struct sock *sk) 2912 { 2913 struct sk_buff *skb; 2914 2915 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2916 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2917 tcp_skb_tsorted_anchor_cleanup(skb); 2918 sk_wmem_free_skb(sk, skb); 2919 } 2920 tcp_rtx_queue_purge(sk); 2921 skb = sk->sk_tx_skb_cache; 2922 if (skb) { 2923 __kfree_skb(skb); 2924 sk->sk_tx_skb_cache = NULL; 2925 } 2926 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2927 sk_mem_reclaim(sk); 2928 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2929 tcp_sk(sk)->packets_out = 0; 2930 inet_csk(sk)->icsk_backoff = 0; 2931 } 2932 2933 int tcp_disconnect(struct sock *sk, int flags) 2934 { 2935 struct inet_sock *inet = inet_sk(sk); 2936 struct inet_connection_sock *icsk = inet_csk(sk); 2937 struct tcp_sock *tp = tcp_sk(sk); 2938 int old_state = sk->sk_state; 2939 u32 seq; 2940 2941 if (old_state != TCP_CLOSE) 2942 tcp_set_state(sk, TCP_CLOSE); 2943 2944 /* ABORT function of RFC793 */ 2945 if (old_state == TCP_LISTEN) { 2946 inet_csk_listen_stop(sk); 2947 } else if (unlikely(tp->repair)) { 2948 sk->sk_err = ECONNABORTED; 2949 } else if (tcp_need_reset(old_state) || 2950 (tp->snd_nxt != tp->write_seq && 2951 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2952 /* The last check adjusts for discrepancy of Linux wrt. RFC 2953 * states 2954 */ 2955 tcp_send_active_reset(sk, gfp_any()); 2956 sk->sk_err = ECONNRESET; 2957 } else if (old_state == TCP_SYN_SENT) 2958 sk->sk_err = ECONNRESET; 2959 2960 tcp_clear_xmit_timers(sk); 2961 __skb_queue_purge(&sk->sk_receive_queue); 2962 if (sk->sk_rx_skb_cache) { 2963 __kfree_skb(sk->sk_rx_skb_cache); 2964 sk->sk_rx_skb_cache = NULL; 2965 } 2966 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2967 tp->urg_data = 0; 2968 tcp_write_queue_purge(sk); 2969 tcp_fastopen_active_disable_ofo_check(sk); 2970 skb_rbtree_purge(&tp->out_of_order_queue); 2971 2972 inet->inet_dport = 0; 2973 2974 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2975 inet_reset_saddr(sk); 2976 2977 sk->sk_shutdown = 0; 2978 sock_reset_flag(sk, SOCK_DONE); 2979 tp->srtt_us = 0; 2980 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2981 tp->rcv_rtt_last_tsecr = 0; 2982 2983 seq = tp->write_seq + tp->max_window + 2; 2984 if (!seq) 2985 seq = 1; 2986 WRITE_ONCE(tp->write_seq, seq); 2987 2988 icsk->icsk_backoff = 0; 2989 icsk->icsk_probes_out = 0; 2990 icsk->icsk_probes_tstamp = 0; 2991 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2992 icsk->icsk_rto_min = TCP_RTO_MIN; 2993 icsk->icsk_delack_max = TCP_DELACK_MAX; 2994 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2995 tp->snd_cwnd = TCP_INIT_CWND; 2996 tp->snd_cwnd_cnt = 0; 2997 tp->window_clamp = 0; 2998 tp->delivered = 0; 2999 tp->delivered_ce = 0; 3000 if (icsk->icsk_ca_ops->release) 3001 icsk->icsk_ca_ops->release(sk); 3002 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3003 icsk->icsk_ca_initialized = 0; 3004 tcp_set_ca_state(sk, TCP_CA_Open); 3005 tp->is_sack_reneg = 0; 3006 tcp_clear_retrans(tp); 3007 tp->total_retrans = 0; 3008 inet_csk_delack_init(sk); 3009 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3010 * issue in __tcp_select_window() 3011 */ 3012 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3013 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3014 __sk_dst_reset(sk); 3015 dst_release(sk->sk_rx_dst); 3016 sk->sk_rx_dst = NULL; 3017 tcp_saved_syn_free(tp); 3018 tp->compressed_ack = 0; 3019 tp->segs_in = 0; 3020 tp->segs_out = 0; 3021 tp->bytes_sent = 0; 3022 tp->bytes_acked = 0; 3023 tp->bytes_received = 0; 3024 tp->bytes_retrans = 0; 3025 tp->data_segs_in = 0; 3026 tp->data_segs_out = 0; 3027 tp->duplicate_sack[0].start_seq = 0; 3028 tp->duplicate_sack[0].end_seq = 0; 3029 tp->dsack_dups = 0; 3030 tp->reord_seen = 0; 3031 tp->retrans_out = 0; 3032 tp->sacked_out = 0; 3033 tp->tlp_high_seq = 0; 3034 tp->last_oow_ack_time = 0; 3035 /* There's a bubble in the pipe until at least the first ACK. */ 3036 tp->app_limited = ~0U; 3037 tp->rack.mstamp = 0; 3038 tp->rack.advanced = 0; 3039 tp->rack.reo_wnd_steps = 1; 3040 tp->rack.last_delivered = 0; 3041 tp->rack.reo_wnd_persist = 0; 3042 tp->rack.dsack_seen = 0; 3043 tp->syn_data_acked = 0; 3044 tp->rx_opt.saw_tstamp = 0; 3045 tp->rx_opt.dsack = 0; 3046 tp->rx_opt.num_sacks = 0; 3047 tp->rcv_ooopack = 0; 3048 3049 3050 /* Clean up fastopen related fields */ 3051 tcp_free_fastopen_req(tp); 3052 inet->defer_connect = 0; 3053 tp->fastopen_client_fail = 0; 3054 3055 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3056 3057 if (sk->sk_frag.page) { 3058 put_page(sk->sk_frag.page); 3059 sk->sk_frag.page = NULL; 3060 sk->sk_frag.offset = 0; 3061 } 3062 3063 sk->sk_error_report(sk); 3064 return 0; 3065 } 3066 EXPORT_SYMBOL(tcp_disconnect); 3067 3068 static inline bool tcp_can_repair_sock(const struct sock *sk) 3069 { 3070 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3071 (sk->sk_state != TCP_LISTEN); 3072 } 3073 3074 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3075 { 3076 struct tcp_repair_window opt; 3077 3078 if (!tp->repair) 3079 return -EPERM; 3080 3081 if (len != sizeof(opt)) 3082 return -EINVAL; 3083 3084 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3085 return -EFAULT; 3086 3087 if (opt.max_window < opt.snd_wnd) 3088 return -EINVAL; 3089 3090 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3091 return -EINVAL; 3092 3093 if (after(opt.rcv_wup, tp->rcv_nxt)) 3094 return -EINVAL; 3095 3096 tp->snd_wl1 = opt.snd_wl1; 3097 tp->snd_wnd = opt.snd_wnd; 3098 tp->max_window = opt.max_window; 3099 3100 tp->rcv_wnd = opt.rcv_wnd; 3101 tp->rcv_wup = opt.rcv_wup; 3102 3103 return 0; 3104 } 3105 3106 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3107 unsigned int len) 3108 { 3109 struct tcp_sock *tp = tcp_sk(sk); 3110 struct tcp_repair_opt opt; 3111 size_t offset = 0; 3112 3113 while (len >= sizeof(opt)) { 3114 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3115 return -EFAULT; 3116 3117 offset += sizeof(opt); 3118 len -= sizeof(opt); 3119 3120 switch (opt.opt_code) { 3121 case TCPOPT_MSS: 3122 tp->rx_opt.mss_clamp = opt.opt_val; 3123 tcp_mtup_init(sk); 3124 break; 3125 case TCPOPT_WINDOW: 3126 { 3127 u16 snd_wscale = opt.opt_val & 0xFFFF; 3128 u16 rcv_wscale = opt.opt_val >> 16; 3129 3130 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3131 return -EFBIG; 3132 3133 tp->rx_opt.snd_wscale = snd_wscale; 3134 tp->rx_opt.rcv_wscale = rcv_wscale; 3135 tp->rx_opt.wscale_ok = 1; 3136 } 3137 break; 3138 case TCPOPT_SACK_PERM: 3139 if (opt.opt_val != 0) 3140 return -EINVAL; 3141 3142 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3143 break; 3144 case TCPOPT_TIMESTAMP: 3145 if (opt.opt_val != 0) 3146 return -EINVAL; 3147 3148 tp->rx_opt.tstamp_ok = 1; 3149 break; 3150 } 3151 } 3152 3153 return 0; 3154 } 3155 3156 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3157 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3158 3159 static void tcp_enable_tx_delay(void) 3160 { 3161 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3162 static int __tcp_tx_delay_enabled = 0; 3163 3164 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3165 static_branch_enable(&tcp_tx_delay_enabled); 3166 pr_info("TCP_TX_DELAY enabled\n"); 3167 } 3168 } 3169 } 3170 3171 /* When set indicates to always queue non-full frames. Later the user clears 3172 * this option and we transmit any pending partial frames in the queue. This is 3173 * meant to be used alongside sendfile() to get properly filled frames when the 3174 * user (for example) must write out headers with a write() call first and then 3175 * use sendfile to send out the data parts. 3176 * 3177 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3178 * TCP_NODELAY. 3179 */ 3180 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3181 { 3182 struct tcp_sock *tp = tcp_sk(sk); 3183 3184 if (on) { 3185 tp->nonagle |= TCP_NAGLE_CORK; 3186 } else { 3187 tp->nonagle &= ~TCP_NAGLE_CORK; 3188 if (tp->nonagle & TCP_NAGLE_OFF) 3189 tp->nonagle |= TCP_NAGLE_PUSH; 3190 tcp_push_pending_frames(sk); 3191 } 3192 } 3193 3194 void tcp_sock_set_cork(struct sock *sk, bool on) 3195 { 3196 lock_sock(sk); 3197 __tcp_sock_set_cork(sk, on); 3198 release_sock(sk); 3199 } 3200 EXPORT_SYMBOL(tcp_sock_set_cork); 3201 3202 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3203 * remembered, but it is not activated until cork is cleared. 3204 * 3205 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3206 * even TCP_CORK for currently queued segments. 3207 */ 3208 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3209 { 3210 if (on) { 3211 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3212 tcp_push_pending_frames(sk); 3213 } else { 3214 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3215 } 3216 } 3217 3218 void tcp_sock_set_nodelay(struct sock *sk) 3219 { 3220 lock_sock(sk); 3221 __tcp_sock_set_nodelay(sk, true); 3222 release_sock(sk); 3223 } 3224 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3225 3226 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3227 { 3228 if (!val) { 3229 inet_csk_enter_pingpong_mode(sk); 3230 return; 3231 } 3232 3233 inet_csk_exit_pingpong_mode(sk); 3234 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3235 inet_csk_ack_scheduled(sk)) { 3236 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3237 tcp_cleanup_rbuf(sk, 1); 3238 if (!(val & 1)) 3239 inet_csk_enter_pingpong_mode(sk); 3240 } 3241 } 3242 3243 void tcp_sock_set_quickack(struct sock *sk, int val) 3244 { 3245 lock_sock(sk); 3246 __tcp_sock_set_quickack(sk, val); 3247 release_sock(sk); 3248 } 3249 EXPORT_SYMBOL(tcp_sock_set_quickack); 3250 3251 int tcp_sock_set_syncnt(struct sock *sk, int val) 3252 { 3253 if (val < 1 || val > MAX_TCP_SYNCNT) 3254 return -EINVAL; 3255 3256 lock_sock(sk); 3257 inet_csk(sk)->icsk_syn_retries = val; 3258 release_sock(sk); 3259 return 0; 3260 } 3261 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3262 3263 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3264 { 3265 lock_sock(sk); 3266 inet_csk(sk)->icsk_user_timeout = val; 3267 release_sock(sk); 3268 } 3269 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3270 3271 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3272 { 3273 struct tcp_sock *tp = tcp_sk(sk); 3274 3275 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3276 return -EINVAL; 3277 3278 tp->keepalive_time = val * HZ; 3279 if (sock_flag(sk, SOCK_KEEPOPEN) && 3280 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3281 u32 elapsed = keepalive_time_elapsed(tp); 3282 3283 if (tp->keepalive_time > elapsed) 3284 elapsed = tp->keepalive_time - elapsed; 3285 else 3286 elapsed = 0; 3287 inet_csk_reset_keepalive_timer(sk, elapsed); 3288 } 3289 3290 return 0; 3291 } 3292 3293 int tcp_sock_set_keepidle(struct sock *sk, int val) 3294 { 3295 int err; 3296 3297 lock_sock(sk); 3298 err = tcp_sock_set_keepidle_locked(sk, val); 3299 release_sock(sk); 3300 return err; 3301 } 3302 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3303 3304 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3305 { 3306 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3307 return -EINVAL; 3308 3309 lock_sock(sk); 3310 tcp_sk(sk)->keepalive_intvl = val * HZ; 3311 release_sock(sk); 3312 return 0; 3313 } 3314 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3315 3316 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3317 { 3318 if (val < 1 || val > MAX_TCP_KEEPCNT) 3319 return -EINVAL; 3320 3321 lock_sock(sk); 3322 tcp_sk(sk)->keepalive_probes = val; 3323 release_sock(sk); 3324 return 0; 3325 } 3326 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3327 3328 int tcp_set_window_clamp(struct sock *sk, int val) 3329 { 3330 struct tcp_sock *tp = tcp_sk(sk); 3331 3332 if (!val) { 3333 if (sk->sk_state != TCP_CLOSE) 3334 return -EINVAL; 3335 tp->window_clamp = 0; 3336 } else { 3337 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3338 SOCK_MIN_RCVBUF / 2 : val; 3339 } 3340 return 0; 3341 } 3342 3343 /* 3344 * Socket option code for TCP. 3345 */ 3346 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3347 sockptr_t optval, unsigned int optlen) 3348 { 3349 struct tcp_sock *tp = tcp_sk(sk); 3350 struct inet_connection_sock *icsk = inet_csk(sk); 3351 struct net *net = sock_net(sk); 3352 int val; 3353 int err = 0; 3354 3355 /* These are data/string values, all the others are ints */ 3356 switch (optname) { 3357 case TCP_CONGESTION: { 3358 char name[TCP_CA_NAME_MAX]; 3359 3360 if (optlen < 1) 3361 return -EINVAL; 3362 3363 val = strncpy_from_sockptr(name, optval, 3364 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3365 if (val < 0) 3366 return -EFAULT; 3367 name[val] = 0; 3368 3369 lock_sock(sk); 3370 err = tcp_set_congestion_control(sk, name, true, 3371 ns_capable(sock_net(sk)->user_ns, 3372 CAP_NET_ADMIN)); 3373 release_sock(sk); 3374 return err; 3375 } 3376 case TCP_ULP: { 3377 char name[TCP_ULP_NAME_MAX]; 3378 3379 if (optlen < 1) 3380 return -EINVAL; 3381 3382 val = strncpy_from_sockptr(name, optval, 3383 min_t(long, TCP_ULP_NAME_MAX - 1, 3384 optlen)); 3385 if (val < 0) 3386 return -EFAULT; 3387 name[val] = 0; 3388 3389 lock_sock(sk); 3390 err = tcp_set_ulp(sk, name); 3391 release_sock(sk); 3392 return err; 3393 } 3394 case TCP_FASTOPEN_KEY: { 3395 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3396 __u8 *backup_key = NULL; 3397 3398 /* Allow a backup key as well to facilitate key rotation 3399 * First key is the active one. 3400 */ 3401 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3402 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3403 return -EINVAL; 3404 3405 if (copy_from_sockptr(key, optval, optlen)) 3406 return -EFAULT; 3407 3408 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3409 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3410 3411 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3412 } 3413 default: 3414 /* fallthru */ 3415 break; 3416 } 3417 3418 if (optlen < sizeof(int)) 3419 return -EINVAL; 3420 3421 if (copy_from_sockptr(&val, optval, sizeof(val))) 3422 return -EFAULT; 3423 3424 lock_sock(sk); 3425 3426 switch (optname) { 3427 case TCP_MAXSEG: 3428 /* Values greater than interface MTU won't take effect. However 3429 * at the point when this call is done we typically don't yet 3430 * know which interface is going to be used 3431 */ 3432 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3433 err = -EINVAL; 3434 break; 3435 } 3436 tp->rx_opt.user_mss = val; 3437 break; 3438 3439 case TCP_NODELAY: 3440 __tcp_sock_set_nodelay(sk, val); 3441 break; 3442 3443 case TCP_THIN_LINEAR_TIMEOUTS: 3444 if (val < 0 || val > 1) 3445 err = -EINVAL; 3446 else 3447 tp->thin_lto = val; 3448 break; 3449 3450 case TCP_THIN_DUPACK: 3451 if (val < 0 || val > 1) 3452 err = -EINVAL; 3453 break; 3454 3455 case TCP_REPAIR: 3456 if (!tcp_can_repair_sock(sk)) 3457 err = -EPERM; 3458 else if (val == TCP_REPAIR_ON) { 3459 tp->repair = 1; 3460 sk->sk_reuse = SK_FORCE_REUSE; 3461 tp->repair_queue = TCP_NO_QUEUE; 3462 } else if (val == TCP_REPAIR_OFF) { 3463 tp->repair = 0; 3464 sk->sk_reuse = SK_NO_REUSE; 3465 tcp_send_window_probe(sk); 3466 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3467 tp->repair = 0; 3468 sk->sk_reuse = SK_NO_REUSE; 3469 } else 3470 err = -EINVAL; 3471 3472 break; 3473 3474 case TCP_REPAIR_QUEUE: 3475 if (!tp->repair) 3476 err = -EPERM; 3477 else if ((unsigned int)val < TCP_QUEUES_NR) 3478 tp->repair_queue = val; 3479 else 3480 err = -EINVAL; 3481 break; 3482 3483 case TCP_QUEUE_SEQ: 3484 if (sk->sk_state != TCP_CLOSE) { 3485 err = -EPERM; 3486 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3487 if (!tcp_rtx_queue_empty(sk)) 3488 err = -EPERM; 3489 else 3490 WRITE_ONCE(tp->write_seq, val); 3491 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3492 if (tp->rcv_nxt != tp->copied_seq) { 3493 err = -EPERM; 3494 } else { 3495 WRITE_ONCE(tp->rcv_nxt, val); 3496 WRITE_ONCE(tp->copied_seq, val); 3497 } 3498 } else { 3499 err = -EINVAL; 3500 } 3501 break; 3502 3503 case TCP_REPAIR_OPTIONS: 3504 if (!tp->repair) 3505 err = -EINVAL; 3506 else if (sk->sk_state == TCP_ESTABLISHED) 3507 err = tcp_repair_options_est(sk, optval, optlen); 3508 else 3509 err = -EPERM; 3510 break; 3511 3512 case TCP_CORK: 3513 __tcp_sock_set_cork(sk, val); 3514 break; 3515 3516 case TCP_KEEPIDLE: 3517 err = tcp_sock_set_keepidle_locked(sk, val); 3518 break; 3519 case TCP_KEEPINTVL: 3520 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3521 err = -EINVAL; 3522 else 3523 tp->keepalive_intvl = val * HZ; 3524 break; 3525 case TCP_KEEPCNT: 3526 if (val < 1 || val > MAX_TCP_KEEPCNT) 3527 err = -EINVAL; 3528 else 3529 tp->keepalive_probes = val; 3530 break; 3531 case TCP_SYNCNT: 3532 if (val < 1 || val > MAX_TCP_SYNCNT) 3533 err = -EINVAL; 3534 else 3535 icsk->icsk_syn_retries = val; 3536 break; 3537 3538 case TCP_SAVE_SYN: 3539 /* 0: disable, 1: enable, 2: start from ether_header */ 3540 if (val < 0 || val > 2) 3541 err = -EINVAL; 3542 else 3543 tp->save_syn = val; 3544 break; 3545 3546 case TCP_LINGER2: 3547 if (val < 0) 3548 tp->linger2 = -1; 3549 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3550 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3551 else 3552 tp->linger2 = val * HZ; 3553 break; 3554 3555 case TCP_DEFER_ACCEPT: 3556 /* Translate value in seconds to number of retransmits */ 3557 icsk->icsk_accept_queue.rskq_defer_accept = 3558 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3559 TCP_RTO_MAX / HZ); 3560 break; 3561 3562 case TCP_WINDOW_CLAMP: 3563 err = tcp_set_window_clamp(sk, val); 3564 break; 3565 3566 case TCP_QUICKACK: 3567 __tcp_sock_set_quickack(sk, val); 3568 break; 3569 3570 #ifdef CONFIG_TCP_MD5SIG 3571 case TCP_MD5SIG: 3572 case TCP_MD5SIG_EXT: 3573 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3574 break; 3575 #endif 3576 case TCP_USER_TIMEOUT: 3577 /* Cap the max time in ms TCP will retry or probe the window 3578 * before giving up and aborting (ETIMEDOUT) a connection. 3579 */ 3580 if (val < 0) 3581 err = -EINVAL; 3582 else 3583 icsk->icsk_user_timeout = val; 3584 break; 3585 3586 case TCP_FASTOPEN: 3587 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3588 TCPF_LISTEN))) { 3589 tcp_fastopen_init_key_once(net); 3590 3591 fastopen_queue_tune(sk, val); 3592 } else { 3593 err = -EINVAL; 3594 } 3595 break; 3596 case TCP_FASTOPEN_CONNECT: 3597 if (val > 1 || val < 0) { 3598 err = -EINVAL; 3599 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3600 if (sk->sk_state == TCP_CLOSE) 3601 tp->fastopen_connect = val; 3602 else 3603 err = -EINVAL; 3604 } else { 3605 err = -EOPNOTSUPP; 3606 } 3607 break; 3608 case TCP_FASTOPEN_NO_COOKIE: 3609 if (val > 1 || val < 0) 3610 err = -EINVAL; 3611 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3612 err = -EINVAL; 3613 else 3614 tp->fastopen_no_cookie = val; 3615 break; 3616 case TCP_TIMESTAMP: 3617 if (!tp->repair) 3618 err = -EPERM; 3619 else 3620 tp->tsoffset = val - tcp_time_stamp_raw(); 3621 break; 3622 case TCP_REPAIR_WINDOW: 3623 err = tcp_repair_set_window(tp, optval, optlen); 3624 break; 3625 case TCP_NOTSENT_LOWAT: 3626 tp->notsent_lowat = val; 3627 sk->sk_write_space(sk); 3628 break; 3629 case TCP_INQ: 3630 if (val > 1 || val < 0) 3631 err = -EINVAL; 3632 else 3633 tp->recvmsg_inq = val; 3634 break; 3635 case TCP_TX_DELAY: 3636 if (val) 3637 tcp_enable_tx_delay(); 3638 tp->tcp_tx_delay = val; 3639 break; 3640 default: 3641 err = -ENOPROTOOPT; 3642 break; 3643 } 3644 3645 release_sock(sk); 3646 return err; 3647 } 3648 3649 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3650 unsigned int optlen) 3651 { 3652 const struct inet_connection_sock *icsk = inet_csk(sk); 3653 3654 if (level != SOL_TCP) 3655 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3656 optval, optlen); 3657 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3658 } 3659 EXPORT_SYMBOL(tcp_setsockopt); 3660 3661 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3662 struct tcp_info *info) 3663 { 3664 u64 stats[__TCP_CHRONO_MAX], total = 0; 3665 enum tcp_chrono i; 3666 3667 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3668 stats[i] = tp->chrono_stat[i - 1]; 3669 if (i == tp->chrono_type) 3670 stats[i] += tcp_jiffies32 - tp->chrono_start; 3671 stats[i] *= USEC_PER_SEC / HZ; 3672 total += stats[i]; 3673 } 3674 3675 info->tcpi_busy_time = total; 3676 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3677 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3678 } 3679 3680 /* Return information about state of tcp endpoint in API format. */ 3681 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3682 { 3683 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3684 const struct inet_connection_sock *icsk = inet_csk(sk); 3685 unsigned long rate; 3686 u32 now; 3687 u64 rate64; 3688 bool slow; 3689 3690 memset(info, 0, sizeof(*info)); 3691 if (sk->sk_type != SOCK_STREAM) 3692 return; 3693 3694 info->tcpi_state = inet_sk_state_load(sk); 3695 3696 /* Report meaningful fields for all TCP states, including listeners */ 3697 rate = READ_ONCE(sk->sk_pacing_rate); 3698 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3699 info->tcpi_pacing_rate = rate64; 3700 3701 rate = READ_ONCE(sk->sk_max_pacing_rate); 3702 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3703 info->tcpi_max_pacing_rate = rate64; 3704 3705 info->tcpi_reordering = tp->reordering; 3706 info->tcpi_snd_cwnd = tp->snd_cwnd; 3707 3708 if (info->tcpi_state == TCP_LISTEN) { 3709 /* listeners aliased fields : 3710 * tcpi_unacked -> Number of children ready for accept() 3711 * tcpi_sacked -> max backlog 3712 */ 3713 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3714 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3715 return; 3716 } 3717 3718 slow = lock_sock_fast(sk); 3719 3720 info->tcpi_ca_state = icsk->icsk_ca_state; 3721 info->tcpi_retransmits = icsk->icsk_retransmits; 3722 info->tcpi_probes = icsk->icsk_probes_out; 3723 info->tcpi_backoff = icsk->icsk_backoff; 3724 3725 if (tp->rx_opt.tstamp_ok) 3726 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3727 if (tcp_is_sack(tp)) 3728 info->tcpi_options |= TCPI_OPT_SACK; 3729 if (tp->rx_opt.wscale_ok) { 3730 info->tcpi_options |= TCPI_OPT_WSCALE; 3731 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3732 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3733 } 3734 3735 if (tp->ecn_flags & TCP_ECN_OK) 3736 info->tcpi_options |= TCPI_OPT_ECN; 3737 if (tp->ecn_flags & TCP_ECN_SEEN) 3738 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3739 if (tp->syn_data_acked) 3740 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3741 3742 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3743 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3744 info->tcpi_snd_mss = tp->mss_cache; 3745 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3746 3747 info->tcpi_unacked = tp->packets_out; 3748 info->tcpi_sacked = tp->sacked_out; 3749 3750 info->tcpi_lost = tp->lost_out; 3751 info->tcpi_retrans = tp->retrans_out; 3752 3753 now = tcp_jiffies32; 3754 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3755 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3756 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3757 3758 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3759 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3760 info->tcpi_rtt = tp->srtt_us >> 3; 3761 info->tcpi_rttvar = tp->mdev_us >> 2; 3762 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3763 info->tcpi_advmss = tp->advmss; 3764 3765 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3766 info->tcpi_rcv_space = tp->rcvq_space.space; 3767 3768 info->tcpi_total_retrans = tp->total_retrans; 3769 3770 info->tcpi_bytes_acked = tp->bytes_acked; 3771 info->tcpi_bytes_received = tp->bytes_received; 3772 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3773 tcp_get_info_chrono_stats(tp, info); 3774 3775 info->tcpi_segs_out = tp->segs_out; 3776 info->tcpi_segs_in = tp->segs_in; 3777 3778 info->tcpi_min_rtt = tcp_min_rtt(tp); 3779 info->tcpi_data_segs_in = tp->data_segs_in; 3780 info->tcpi_data_segs_out = tp->data_segs_out; 3781 3782 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3783 rate64 = tcp_compute_delivery_rate(tp); 3784 if (rate64) 3785 info->tcpi_delivery_rate = rate64; 3786 info->tcpi_delivered = tp->delivered; 3787 info->tcpi_delivered_ce = tp->delivered_ce; 3788 info->tcpi_bytes_sent = tp->bytes_sent; 3789 info->tcpi_bytes_retrans = tp->bytes_retrans; 3790 info->tcpi_dsack_dups = tp->dsack_dups; 3791 info->tcpi_reord_seen = tp->reord_seen; 3792 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3793 info->tcpi_snd_wnd = tp->snd_wnd; 3794 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3795 unlock_sock_fast(sk, slow); 3796 } 3797 EXPORT_SYMBOL_GPL(tcp_get_info); 3798 3799 static size_t tcp_opt_stats_get_size(void) 3800 { 3801 return 3802 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3803 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3812 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3813 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3814 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3815 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3816 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3817 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3818 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3819 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3820 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3821 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3822 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3823 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3824 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3825 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3826 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3827 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3828 0; 3829 } 3830 3831 /* Returns TTL or hop limit of an incoming packet from skb. */ 3832 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3833 { 3834 if (skb->protocol == htons(ETH_P_IP)) 3835 return ip_hdr(skb)->ttl; 3836 else if (skb->protocol == htons(ETH_P_IPV6)) 3837 return ipv6_hdr(skb)->hop_limit; 3838 else 3839 return 0; 3840 } 3841 3842 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3843 const struct sk_buff *orig_skb, 3844 const struct sk_buff *ack_skb) 3845 { 3846 const struct tcp_sock *tp = tcp_sk(sk); 3847 struct sk_buff *stats; 3848 struct tcp_info info; 3849 unsigned long rate; 3850 u64 rate64; 3851 3852 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3853 if (!stats) 3854 return NULL; 3855 3856 tcp_get_info_chrono_stats(tp, &info); 3857 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3858 info.tcpi_busy_time, TCP_NLA_PAD); 3859 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3860 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3861 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3862 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3863 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3864 tp->data_segs_out, TCP_NLA_PAD); 3865 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3866 tp->total_retrans, TCP_NLA_PAD); 3867 3868 rate = READ_ONCE(sk->sk_pacing_rate); 3869 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3870 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3871 3872 rate64 = tcp_compute_delivery_rate(tp); 3873 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3874 3875 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3876 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3877 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3878 3879 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3880 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3881 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3882 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3883 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3884 3885 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3886 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3887 3888 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3889 TCP_NLA_PAD); 3890 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3891 TCP_NLA_PAD); 3892 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3893 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3894 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3895 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3896 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3897 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3898 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3899 TCP_NLA_PAD); 3900 if (ack_skb) 3901 nla_put_u8(stats, TCP_NLA_TTL, 3902 tcp_skb_ttl_or_hop_limit(ack_skb)); 3903 3904 return stats; 3905 } 3906 3907 static int do_tcp_getsockopt(struct sock *sk, int level, 3908 int optname, char __user *optval, int __user *optlen) 3909 { 3910 struct inet_connection_sock *icsk = inet_csk(sk); 3911 struct tcp_sock *tp = tcp_sk(sk); 3912 struct net *net = sock_net(sk); 3913 int val, len; 3914 3915 if (get_user(len, optlen)) 3916 return -EFAULT; 3917 3918 len = min_t(unsigned int, len, sizeof(int)); 3919 3920 if (len < 0) 3921 return -EINVAL; 3922 3923 switch (optname) { 3924 case TCP_MAXSEG: 3925 val = tp->mss_cache; 3926 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3927 val = tp->rx_opt.user_mss; 3928 if (tp->repair) 3929 val = tp->rx_opt.mss_clamp; 3930 break; 3931 case TCP_NODELAY: 3932 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3933 break; 3934 case TCP_CORK: 3935 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3936 break; 3937 case TCP_KEEPIDLE: 3938 val = keepalive_time_when(tp) / HZ; 3939 break; 3940 case TCP_KEEPINTVL: 3941 val = keepalive_intvl_when(tp) / HZ; 3942 break; 3943 case TCP_KEEPCNT: 3944 val = keepalive_probes(tp); 3945 break; 3946 case TCP_SYNCNT: 3947 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3948 break; 3949 case TCP_LINGER2: 3950 val = tp->linger2; 3951 if (val >= 0) 3952 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3953 break; 3954 case TCP_DEFER_ACCEPT: 3955 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3956 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3957 break; 3958 case TCP_WINDOW_CLAMP: 3959 val = tp->window_clamp; 3960 break; 3961 case TCP_INFO: { 3962 struct tcp_info info; 3963 3964 if (get_user(len, optlen)) 3965 return -EFAULT; 3966 3967 tcp_get_info(sk, &info); 3968 3969 len = min_t(unsigned int, len, sizeof(info)); 3970 if (put_user(len, optlen)) 3971 return -EFAULT; 3972 if (copy_to_user(optval, &info, len)) 3973 return -EFAULT; 3974 return 0; 3975 } 3976 case TCP_CC_INFO: { 3977 const struct tcp_congestion_ops *ca_ops; 3978 union tcp_cc_info info; 3979 size_t sz = 0; 3980 int attr; 3981 3982 if (get_user(len, optlen)) 3983 return -EFAULT; 3984 3985 ca_ops = icsk->icsk_ca_ops; 3986 if (ca_ops && ca_ops->get_info) 3987 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3988 3989 len = min_t(unsigned int, len, sz); 3990 if (put_user(len, optlen)) 3991 return -EFAULT; 3992 if (copy_to_user(optval, &info, len)) 3993 return -EFAULT; 3994 return 0; 3995 } 3996 case TCP_QUICKACK: 3997 val = !inet_csk_in_pingpong_mode(sk); 3998 break; 3999 4000 case TCP_CONGESTION: 4001 if (get_user(len, optlen)) 4002 return -EFAULT; 4003 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4004 if (put_user(len, optlen)) 4005 return -EFAULT; 4006 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4007 return -EFAULT; 4008 return 0; 4009 4010 case TCP_ULP: 4011 if (get_user(len, optlen)) 4012 return -EFAULT; 4013 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4014 if (!icsk->icsk_ulp_ops) { 4015 if (put_user(0, optlen)) 4016 return -EFAULT; 4017 return 0; 4018 } 4019 if (put_user(len, optlen)) 4020 return -EFAULT; 4021 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4022 return -EFAULT; 4023 return 0; 4024 4025 case TCP_FASTOPEN_KEY: { 4026 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4027 unsigned int key_len; 4028 4029 if (get_user(len, optlen)) 4030 return -EFAULT; 4031 4032 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4033 TCP_FASTOPEN_KEY_LENGTH; 4034 len = min_t(unsigned int, len, key_len); 4035 if (put_user(len, optlen)) 4036 return -EFAULT; 4037 if (copy_to_user(optval, key, len)) 4038 return -EFAULT; 4039 return 0; 4040 } 4041 case TCP_THIN_LINEAR_TIMEOUTS: 4042 val = tp->thin_lto; 4043 break; 4044 4045 case TCP_THIN_DUPACK: 4046 val = 0; 4047 break; 4048 4049 case TCP_REPAIR: 4050 val = tp->repair; 4051 break; 4052 4053 case TCP_REPAIR_QUEUE: 4054 if (tp->repair) 4055 val = tp->repair_queue; 4056 else 4057 return -EINVAL; 4058 break; 4059 4060 case TCP_REPAIR_WINDOW: { 4061 struct tcp_repair_window opt; 4062 4063 if (get_user(len, optlen)) 4064 return -EFAULT; 4065 4066 if (len != sizeof(opt)) 4067 return -EINVAL; 4068 4069 if (!tp->repair) 4070 return -EPERM; 4071 4072 opt.snd_wl1 = tp->snd_wl1; 4073 opt.snd_wnd = tp->snd_wnd; 4074 opt.max_window = tp->max_window; 4075 opt.rcv_wnd = tp->rcv_wnd; 4076 opt.rcv_wup = tp->rcv_wup; 4077 4078 if (copy_to_user(optval, &opt, len)) 4079 return -EFAULT; 4080 return 0; 4081 } 4082 case TCP_QUEUE_SEQ: 4083 if (tp->repair_queue == TCP_SEND_QUEUE) 4084 val = tp->write_seq; 4085 else if (tp->repair_queue == TCP_RECV_QUEUE) 4086 val = tp->rcv_nxt; 4087 else 4088 return -EINVAL; 4089 break; 4090 4091 case TCP_USER_TIMEOUT: 4092 val = icsk->icsk_user_timeout; 4093 break; 4094 4095 case TCP_FASTOPEN: 4096 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4097 break; 4098 4099 case TCP_FASTOPEN_CONNECT: 4100 val = tp->fastopen_connect; 4101 break; 4102 4103 case TCP_FASTOPEN_NO_COOKIE: 4104 val = tp->fastopen_no_cookie; 4105 break; 4106 4107 case TCP_TX_DELAY: 4108 val = tp->tcp_tx_delay; 4109 break; 4110 4111 case TCP_TIMESTAMP: 4112 val = tcp_time_stamp_raw() + tp->tsoffset; 4113 break; 4114 case TCP_NOTSENT_LOWAT: 4115 val = tp->notsent_lowat; 4116 break; 4117 case TCP_INQ: 4118 val = tp->recvmsg_inq; 4119 break; 4120 case TCP_SAVE_SYN: 4121 val = tp->save_syn; 4122 break; 4123 case TCP_SAVED_SYN: { 4124 if (get_user(len, optlen)) 4125 return -EFAULT; 4126 4127 lock_sock(sk); 4128 if (tp->saved_syn) { 4129 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4130 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4131 optlen)) { 4132 release_sock(sk); 4133 return -EFAULT; 4134 } 4135 release_sock(sk); 4136 return -EINVAL; 4137 } 4138 len = tcp_saved_syn_len(tp->saved_syn); 4139 if (put_user(len, optlen)) { 4140 release_sock(sk); 4141 return -EFAULT; 4142 } 4143 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4144 release_sock(sk); 4145 return -EFAULT; 4146 } 4147 tcp_saved_syn_free(tp); 4148 release_sock(sk); 4149 } else { 4150 release_sock(sk); 4151 len = 0; 4152 if (put_user(len, optlen)) 4153 return -EFAULT; 4154 } 4155 return 0; 4156 } 4157 #ifdef CONFIG_MMU 4158 case TCP_ZEROCOPY_RECEIVE: { 4159 struct scm_timestamping_internal tss; 4160 struct tcp_zerocopy_receive zc = {}; 4161 int err; 4162 4163 if (get_user(len, optlen)) 4164 return -EFAULT; 4165 if (len < 0 || 4166 len < offsetofend(struct tcp_zerocopy_receive, length)) 4167 return -EINVAL; 4168 if (unlikely(len > sizeof(zc))) { 4169 err = check_zeroed_user(optval + sizeof(zc), 4170 len - sizeof(zc)); 4171 if (err < 1) 4172 return err == 0 ? -EINVAL : err; 4173 len = sizeof(zc); 4174 if (put_user(len, optlen)) 4175 return -EFAULT; 4176 } 4177 if (copy_from_user(&zc, optval, len)) 4178 return -EFAULT; 4179 if (zc.reserved) 4180 return -EINVAL; 4181 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4182 return -EINVAL; 4183 lock_sock(sk); 4184 err = tcp_zerocopy_receive(sk, &zc, &tss); 4185 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4186 &zc, &len, err); 4187 release_sock(sk); 4188 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4189 goto zerocopy_rcv_cmsg; 4190 switch (len) { 4191 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4192 goto zerocopy_rcv_cmsg; 4193 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4194 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4195 case offsetofend(struct tcp_zerocopy_receive, flags): 4196 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4197 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4198 case offsetofend(struct tcp_zerocopy_receive, err): 4199 goto zerocopy_rcv_sk_err; 4200 case offsetofend(struct tcp_zerocopy_receive, inq): 4201 goto zerocopy_rcv_inq; 4202 case offsetofend(struct tcp_zerocopy_receive, length): 4203 default: 4204 goto zerocopy_rcv_out; 4205 } 4206 zerocopy_rcv_cmsg: 4207 if (zc.msg_flags & TCP_CMSG_TS) 4208 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4209 else 4210 zc.msg_flags = 0; 4211 zerocopy_rcv_sk_err: 4212 if (!err) 4213 zc.err = sock_error(sk); 4214 zerocopy_rcv_inq: 4215 zc.inq = tcp_inq_hint(sk); 4216 zerocopy_rcv_out: 4217 if (!err && copy_to_user(optval, &zc, len)) 4218 err = -EFAULT; 4219 return err; 4220 } 4221 #endif 4222 default: 4223 return -ENOPROTOOPT; 4224 } 4225 4226 if (put_user(len, optlen)) 4227 return -EFAULT; 4228 if (copy_to_user(optval, &val, len)) 4229 return -EFAULT; 4230 return 0; 4231 } 4232 4233 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4234 { 4235 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4236 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4237 */ 4238 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4239 return true; 4240 4241 return false; 4242 } 4243 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4244 4245 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4246 int __user *optlen) 4247 { 4248 struct inet_connection_sock *icsk = inet_csk(sk); 4249 4250 if (level != SOL_TCP) 4251 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4252 optval, optlen); 4253 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4254 } 4255 EXPORT_SYMBOL(tcp_getsockopt); 4256 4257 #ifdef CONFIG_TCP_MD5SIG 4258 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4259 static DEFINE_MUTEX(tcp_md5sig_mutex); 4260 static bool tcp_md5sig_pool_populated = false; 4261 4262 static void __tcp_alloc_md5sig_pool(void) 4263 { 4264 struct crypto_ahash *hash; 4265 int cpu; 4266 4267 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4268 if (IS_ERR(hash)) 4269 return; 4270 4271 for_each_possible_cpu(cpu) { 4272 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4273 struct ahash_request *req; 4274 4275 if (!scratch) { 4276 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4277 sizeof(struct tcphdr), 4278 GFP_KERNEL, 4279 cpu_to_node(cpu)); 4280 if (!scratch) 4281 return; 4282 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4283 } 4284 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4285 continue; 4286 4287 req = ahash_request_alloc(hash, GFP_KERNEL); 4288 if (!req) 4289 return; 4290 4291 ahash_request_set_callback(req, 0, NULL, NULL); 4292 4293 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4294 } 4295 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4296 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4297 */ 4298 smp_wmb(); 4299 tcp_md5sig_pool_populated = true; 4300 } 4301 4302 bool tcp_alloc_md5sig_pool(void) 4303 { 4304 if (unlikely(!tcp_md5sig_pool_populated)) { 4305 mutex_lock(&tcp_md5sig_mutex); 4306 4307 if (!tcp_md5sig_pool_populated) { 4308 __tcp_alloc_md5sig_pool(); 4309 if (tcp_md5sig_pool_populated) 4310 static_branch_inc(&tcp_md5_needed); 4311 } 4312 4313 mutex_unlock(&tcp_md5sig_mutex); 4314 } 4315 return tcp_md5sig_pool_populated; 4316 } 4317 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4318 4319 4320 /** 4321 * tcp_get_md5sig_pool - get md5sig_pool for this user 4322 * 4323 * We use percpu structure, so if we succeed, we exit with preemption 4324 * and BH disabled, to make sure another thread or softirq handling 4325 * wont try to get same context. 4326 */ 4327 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4328 { 4329 local_bh_disable(); 4330 4331 if (tcp_md5sig_pool_populated) { 4332 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4333 smp_rmb(); 4334 return this_cpu_ptr(&tcp_md5sig_pool); 4335 } 4336 local_bh_enable(); 4337 return NULL; 4338 } 4339 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4340 4341 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4342 const struct sk_buff *skb, unsigned int header_len) 4343 { 4344 struct scatterlist sg; 4345 const struct tcphdr *tp = tcp_hdr(skb); 4346 struct ahash_request *req = hp->md5_req; 4347 unsigned int i; 4348 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4349 skb_headlen(skb) - header_len : 0; 4350 const struct skb_shared_info *shi = skb_shinfo(skb); 4351 struct sk_buff *frag_iter; 4352 4353 sg_init_table(&sg, 1); 4354 4355 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4356 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4357 if (crypto_ahash_update(req)) 4358 return 1; 4359 4360 for (i = 0; i < shi->nr_frags; ++i) { 4361 const skb_frag_t *f = &shi->frags[i]; 4362 unsigned int offset = skb_frag_off(f); 4363 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4364 4365 sg_set_page(&sg, page, skb_frag_size(f), 4366 offset_in_page(offset)); 4367 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4368 if (crypto_ahash_update(req)) 4369 return 1; 4370 } 4371 4372 skb_walk_frags(skb, frag_iter) 4373 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4374 return 1; 4375 4376 return 0; 4377 } 4378 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4379 4380 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4381 { 4382 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4383 struct scatterlist sg; 4384 4385 sg_init_one(&sg, key->key, keylen); 4386 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4387 4388 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4389 return data_race(crypto_ahash_update(hp->md5_req)); 4390 } 4391 EXPORT_SYMBOL(tcp_md5_hash_key); 4392 4393 #endif 4394 4395 void tcp_done(struct sock *sk) 4396 { 4397 struct request_sock *req; 4398 4399 /* We might be called with a new socket, after 4400 * inet_csk_prepare_forced_close() has been called 4401 * so we can not use lockdep_sock_is_held(sk) 4402 */ 4403 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4404 4405 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4406 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4407 4408 tcp_set_state(sk, TCP_CLOSE); 4409 tcp_clear_xmit_timers(sk); 4410 if (req) 4411 reqsk_fastopen_remove(sk, req, false); 4412 4413 sk->sk_shutdown = SHUTDOWN_MASK; 4414 4415 if (!sock_flag(sk, SOCK_DEAD)) 4416 sk->sk_state_change(sk); 4417 else 4418 inet_csk_destroy_sock(sk); 4419 } 4420 EXPORT_SYMBOL_GPL(tcp_done); 4421 4422 int tcp_abort(struct sock *sk, int err) 4423 { 4424 if (!sk_fullsock(sk)) { 4425 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4426 struct request_sock *req = inet_reqsk(sk); 4427 4428 local_bh_disable(); 4429 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4430 local_bh_enable(); 4431 return 0; 4432 } 4433 return -EOPNOTSUPP; 4434 } 4435 4436 /* Don't race with userspace socket closes such as tcp_close. */ 4437 lock_sock(sk); 4438 4439 if (sk->sk_state == TCP_LISTEN) { 4440 tcp_set_state(sk, TCP_CLOSE); 4441 inet_csk_listen_stop(sk); 4442 } 4443 4444 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4445 local_bh_disable(); 4446 bh_lock_sock(sk); 4447 4448 if (!sock_flag(sk, SOCK_DEAD)) { 4449 sk->sk_err = err; 4450 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4451 smp_wmb(); 4452 sk->sk_error_report(sk); 4453 if (tcp_need_reset(sk->sk_state)) 4454 tcp_send_active_reset(sk, GFP_ATOMIC); 4455 tcp_done(sk); 4456 } 4457 4458 bh_unlock_sock(sk); 4459 local_bh_enable(); 4460 tcp_write_queue_purge(sk); 4461 release_sock(sk); 4462 return 0; 4463 } 4464 EXPORT_SYMBOL_GPL(tcp_abort); 4465 4466 extern struct tcp_congestion_ops tcp_reno; 4467 4468 static __initdata unsigned long thash_entries; 4469 static int __init set_thash_entries(char *str) 4470 { 4471 ssize_t ret; 4472 4473 if (!str) 4474 return 0; 4475 4476 ret = kstrtoul(str, 0, &thash_entries); 4477 if (ret) 4478 return 0; 4479 4480 return 1; 4481 } 4482 __setup("thash_entries=", set_thash_entries); 4483 4484 static void __init tcp_init_mem(void) 4485 { 4486 unsigned long limit = nr_free_buffer_pages() / 16; 4487 4488 limit = max(limit, 128UL); 4489 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4490 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4491 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4492 } 4493 4494 void __init tcp_init(void) 4495 { 4496 int max_rshare, max_wshare, cnt; 4497 unsigned long limit; 4498 unsigned int i; 4499 4500 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4501 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4502 sizeof_field(struct sk_buff, cb)); 4503 4504 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4505 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 4506 inet_hashinfo_init(&tcp_hashinfo); 4507 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4508 thash_entries, 21, /* one slot per 2 MB*/ 4509 0, 64 * 1024); 4510 tcp_hashinfo.bind_bucket_cachep = 4511 kmem_cache_create("tcp_bind_bucket", 4512 sizeof(struct inet_bind_bucket), 0, 4513 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4514 4515 /* Size and allocate the main established and bind bucket 4516 * hash tables. 4517 * 4518 * The methodology is similar to that of the buffer cache. 4519 */ 4520 tcp_hashinfo.ehash = 4521 alloc_large_system_hash("TCP established", 4522 sizeof(struct inet_ehash_bucket), 4523 thash_entries, 4524 17, /* one slot per 128 KB of memory */ 4525 0, 4526 NULL, 4527 &tcp_hashinfo.ehash_mask, 4528 0, 4529 thash_entries ? 0 : 512 * 1024); 4530 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4531 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4532 4533 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4534 panic("TCP: failed to alloc ehash_locks"); 4535 tcp_hashinfo.bhash = 4536 alloc_large_system_hash("TCP bind", 4537 sizeof(struct inet_bind_hashbucket), 4538 tcp_hashinfo.ehash_mask + 1, 4539 17, /* one slot per 128 KB of memory */ 4540 0, 4541 &tcp_hashinfo.bhash_size, 4542 NULL, 4543 0, 4544 64 * 1024); 4545 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4546 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4547 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4548 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4549 } 4550 4551 4552 cnt = tcp_hashinfo.ehash_mask + 1; 4553 sysctl_tcp_max_orphans = cnt / 2; 4554 4555 tcp_init_mem(); 4556 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4557 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4558 max_wshare = min(4UL*1024*1024, limit); 4559 max_rshare = min(6UL*1024*1024, limit); 4560 4561 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4562 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4563 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4564 4565 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4566 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4567 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4568 4569 pr_info("Hash tables configured (established %u bind %u)\n", 4570 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4571 4572 tcp_v4_init(); 4573 tcp_metrics_init(); 4574 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4575 tcp_tasklet_init(); 4576 mptcp_init(); 4577 } 4578