xref: /openbmc/linux/net/ipv4/tcp.c (revision 8957261c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 	tcp_scaling_ratio_init(sk);
461 
462 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 	sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466 
467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 	struct sk_buff *skb = tcp_write_queue_tail(sk);
470 
471 	if (tsflags && skb) {
472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
473 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474 
475 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 			tcb->txstamp_ack = 1;
478 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 	}
481 }
482 
483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 	if (tcp_epollin_ready(sk, target))
486 		return true;
487 	return sk_is_readable(sk);
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	u8 shutdown;
503 	int state;
504 
505 	sock_poll_wait(file, sock, wait);
506 
507 	state = inet_sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * EPOLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that EPOLLHUP is incompatible
524 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	shutdown = READ_ONCE(sk->sk_shutdown);
546 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 		u16 urg_data = READ_ONCE(tp->urg_data);
556 
557 		if (unlikely(urg_data) &&
558 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE))
560 			target++;
561 
562 		if (tcp_stream_is_readable(sk, target))
563 			mask |= EPOLLIN | EPOLLRDNORM;
564 
565 		if (!(shutdown & SEND_SHUTDOWN)) {
566 			if (__sk_stream_is_writeable(sk, 1)) {
567 				mask |= EPOLLOUT | EPOLLWRNORM;
568 			} else {  /* send SIGIO later */
569 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571 
572 				/* Race breaker. If space is freed after
573 				 * wspace test but before the flags are set,
574 				 * IO signal will be lost. Memory barrier
575 				 * pairs with the input side.
576 				 */
577 				smp_mb__after_atomic();
578 				if (__sk_stream_is_writeable(sk, 1))
579 					mask |= EPOLLOUT | EPOLLWRNORM;
580 			}
581 		} else
582 			mask |= EPOLLOUT | EPOLLWRNORM;
583 
584 		if (urg_data & TCP_URG_VALID)
585 			mask |= EPOLLPRI;
586 	} else if (state == TCP_SYN_SENT &&
587 		   inet_test_bit(DEFER_CONNECT, sk)) {
588 		/* Active TCP fastopen socket with defer_connect
589 		 * Return EPOLLOUT so application can call write()
590 		 * in order for kernel to generate SYN+data
591 		 */
592 		mask |= EPOLLOUT | EPOLLWRNORM;
593 	}
594 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
595 	smp_rmb();
596 	if (READ_ONCE(sk->sk_err) ||
597 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
598 		mask |= EPOLLERR;
599 
600 	return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603 
604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	int answ;
608 	bool slow;
609 
610 	switch (cmd) {
611 	case SIOCINQ:
612 		if (sk->sk_state == TCP_LISTEN)
613 			return -EINVAL;
614 
615 		slow = lock_sock_fast(sk);
616 		answ = tcp_inq(sk);
617 		unlock_sock_fast(sk, slow);
618 		break;
619 	case SIOCATMARK:
620 		answ = READ_ONCE(tp->urg_data) &&
621 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = READ_ONCE(tp->write_seq) -
640 			       READ_ONCE(tp->snd_nxt);
641 		break;
642 	default:
643 		return -ENOIOCTLCMD;
644 	}
645 
646 	*karg = answ;
647 	return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650 
651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 	tp->pushed_seq = tp->write_seq;
655 }
656 
657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661 
662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666 
667 	tcb->seq     = tcb->end_seq = tp->write_seq;
668 	tcb->tcp_flags = TCPHDR_ACK;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk_wmem_queued_add(sk, skb->truesize);
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 	       tcp_skb_can_collapse_to(skb);
703 }
704 
705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 	      int nonagle, int size_goal)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct sk_buff *skb;
710 
711 	skb = tcp_write_queue_tail(sk);
712 	if (!skb)
713 		return;
714 	if (!(flags & MSG_MORE) || forced_push(tp))
715 		tcp_mark_push(tp, skb);
716 
717 	tcp_mark_urg(tp, flags);
718 
719 	if (tcp_should_autocork(sk, skb, size_goal)) {
720 
721 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
722 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 		}
726 		/* It is possible TX completion already happened
727 		 * before we set TSQ_THROTTLED.
728 		 */
729 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
730 			return;
731 	}
732 
733 	if (flags & MSG_MORE)
734 		nonagle = TCP_NAGLE_CORK;
735 
736 	__tcp_push_pending_frames(sk, mss_now, nonagle);
737 }
738 
739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
740 				unsigned int offset, size_t len)
741 {
742 	struct tcp_splice_state *tss = rd_desc->arg.data;
743 	int ret;
744 
745 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
746 			      min(rd_desc->count, len), tss->flags);
747 	if (ret > 0)
748 		rd_desc->count -= ret;
749 	return ret;
750 }
751 
752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
753 {
754 	/* Store TCP splice context information in read_descriptor_t. */
755 	read_descriptor_t rd_desc = {
756 		.arg.data = tss,
757 		.count	  = tss->len,
758 	};
759 
760 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
761 }
762 
763 /**
764  *  tcp_splice_read - splice data from TCP socket to a pipe
765  * @sock:	socket to splice from
766  * @ppos:	position (not valid)
767  * @pipe:	pipe to splice to
768  * @len:	number of bytes to splice
769  * @flags:	splice modifier flags
770  *
771  * Description:
772  *    Will read pages from given socket and fill them into a pipe.
773  *
774  **/
775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
776 			struct pipe_inode_info *pipe, size_t len,
777 			unsigned int flags)
778 {
779 	struct sock *sk = sock->sk;
780 	struct tcp_splice_state tss = {
781 		.pipe = pipe,
782 		.len = len,
783 		.flags = flags,
784 	};
785 	long timeo;
786 	ssize_t spliced;
787 	int ret;
788 
789 	sock_rps_record_flow(sk);
790 	/*
791 	 * We can't seek on a socket input
792 	 */
793 	if (unlikely(*ppos))
794 		return -ESPIPE;
795 
796 	ret = spliced = 0;
797 
798 	lock_sock(sk);
799 
800 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
801 	while (tss.len) {
802 		ret = __tcp_splice_read(sk, &tss);
803 		if (ret < 0)
804 			break;
805 		else if (!ret) {
806 			if (spliced)
807 				break;
808 			if (sock_flag(sk, SOCK_DONE))
809 				break;
810 			if (sk->sk_err) {
811 				ret = sock_error(sk);
812 				break;
813 			}
814 			if (sk->sk_shutdown & RCV_SHUTDOWN)
815 				break;
816 			if (sk->sk_state == TCP_CLOSE) {
817 				/*
818 				 * This occurs when user tries to read
819 				 * from never connected socket.
820 				 */
821 				ret = -ENOTCONN;
822 				break;
823 			}
824 			if (!timeo) {
825 				ret = -EAGAIN;
826 				break;
827 			}
828 			/* if __tcp_splice_read() got nothing while we have
829 			 * an skb in receive queue, we do not want to loop.
830 			 * This might happen with URG data.
831 			 */
832 			if (!skb_queue_empty(&sk->sk_receive_queue))
833 				break;
834 			sk_wait_data(sk, &timeo, NULL);
835 			if (signal_pending(current)) {
836 				ret = sock_intr_errno(timeo);
837 				break;
838 			}
839 			continue;
840 		}
841 		tss.len -= ret;
842 		spliced += ret;
843 
844 		if (!tss.len || !timeo)
845 			break;
846 		release_sock(sk);
847 		lock_sock(sk);
848 
849 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
850 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
851 		    signal_pending(current))
852 			break;
853 	}
854 
855 	release_sock(sk);
856 
857 	if (spliced)
858 		return spliced;
859 
860 	return ret;
861 }
862 EXPORT_SYMBOL(tcp_splice_read);
863 
864 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
865 				     bool force_schedule)
866 {
867 	struct sk_buff *skb;
868 
869 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
870 	if (likely(skb)) {
871 		bool mem_scheduled;
872 
873 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 		if (force_schedule) {
875 			mem_scheduled = true;
876 			sk_forced_mem_schedule(sk, skb->truesize);
877 		} else {
878 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
879 		}
880 		if (likely(mem_scheduled)) {
881 			skb_reserve(skb, MAX_TCP_HEADER);
882 			skb->ip_summed = CHECKSUM_PARTIAL;
883 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
884 			return skb;
885 		}
886 		__kfree_skb(skb);
887 	} else {
888 		sk->sk_prot->enter_memory_pressure(sk);
889 		sk_stream_moderate_sndbuf(sk);
890 	}
891 	return NULL;
892 }
893 
894 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
895 				       int large_allowed)
896 {
897 	struct tcp_sock *tp = tcp_sk(sk);
898 	u32 new_size_goal, size_goal;
899 
900 	if (!large_allowed)
901 		return mss_now;
902 
903 	/* Note : tcp_tso_autosize() will eventually split this later */
904 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
905 
906 	/* We try hard to avoid divides here */
907 	size_goal = tp->gso_segs * mss_now;
908 	if (unlikely(new_size_goal < size_goal ||
909 		     new_size_goal >= size_goal + mss_now)) {
910 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
911 				     sk->sk_gso_max_segs);
912 		size_goal = tp->gso_segs * mss_now;
913 	}
914 
915 	return max(size_goal, mss_now);
916 }
917 
918 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
919 {
920 	int mss_now;
921 
922 	mss_now = tcp_current_mss(sk);
923 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
924 
925 	return mss_now;
926 }
927 
928 /* In some cases, both sendmsg() could have added an skb to the write queue,
929  * but failed adding payload on it.  We need to remove it to consume less
930  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
931  * epoll() users.
932  */
933 void tcp_remove_empty_skb(struct sock *sk)
934 {
935 	struct sk_buff *skb = tcp_write_queue_tail(sk);
936 
937 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
938 		tcp_unlink_write_queue(skb, sk);
939 		if (tcp_write_queue_empty(sk))
940 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
941 		tcp_wmem_free_skb(sk, skb);
942 	}
943 }
944 
945 /* skb changing from pure zc to mixed, must charge zc */
946 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
947 {
948 	if (unlikely(skb_zcopy_pure(skb))) {
949 		u32 extra = skb->truesize -
950 			    SKB_TRUESIZE(skb_end_offset(skb));
951 
952 		if (!sk_wmem_schedule(sk, extra))
953 			return -ENOMEM;
954 
955 		sk_mem_charge(sk, extra);
956 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
957 	}
958 	return 0;
959 }
960 
961 
962 int tcp_wmem_schedule(struct sock *sk, int copy)
963 {
964 	int left;
965 
966 	if (likely(sk_wmem_schedule(sk, copy)))
967 		return copy;
968 
969 	/* We could be in trouble if we have nothing queued.
970 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
971 	 * to guarantee some progress.
972 	 */
973 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
974 	if (left > 0)
975 		sk_forced_mem_schedule(sk, min(left, copy));
976 	return min(copy, sk->sk_forward_alloc);
977 }
978 
979 void tcp_free_fastopen_req(struct tcp_sock *tp)
980 {
981 	if (tp->fastopen_req) {
982 		kfree(tp->fastopen_req);
983 		tp->fastopen_req = NULL;
984 	}
985 }
986 
987 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
988 			 size_t size, struct ubuf_info *uarg)
989 {
990 	struct tcp_sock *tp = tcp_sk(sk);
991 	struct inet_sock *inet = inet_sk(sk);
992 	struct sockaddr *uaddr = msg->msg_name;
993 	int err, flags;
994 
995 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
996 	      TFO_CLIENT_ENABLE) ||
997 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
998 	     uaddr->sa_family == AF_UNSPEC))
999 		return -EOPNOTSUPP;
1000 	if (tp->fastopen_req)
1001 		return -EALREADY; /* Another Fast Open is in progress */
1002 
1003 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1004 				   sk->sk_allocation);
1005 	if (unlikely(!tp->fastopen_req))
1006 		return -ENOBUFS;
1007 	tp->fastopen_req->data = msg;
1008 	tp->fastopen_req->size = size;
1009 	tp->fastopen_req->uarg = uarg;
1010 
1011 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1012 		err = tcp_connect(sk);
1013 		/* Same failure procedure as in tcp_v4/6_connect */
1014 		if (err) {
1015 			tcp_set_state(sk, TCP_CLOSE);
1016 			inet->inet_dport = 0;
1017 			sk->sk_route_caps = 0;
1018 		}
1019 	}
1020 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1021 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1022 				    msg->msg_namelen, flags, 1);
1023 	/* fastopen_req could already be freed in __inet_stream_connect
1024 	 * if the connection times out or gets rst
1025 	 */
1026 	if (tp->fastopen_req) {
1027 		*copied = tp->fastopen_req->copied;
1028 		tcp_free_fastopen_req(tp);
1029 		inet_clear_bit(DEFER_CONNECT, sk);
1030 	}
1031 	return err;
1032 }
1033 
1034 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1035 {
1036 	struct tcp_sock *tp = tcp_sk(sk);
1037 	struct ubuf_info *uarg = NULL;
1038 	struct sk_buff *skb;
1039 	struct sockcm_cookie sockc;
1040 	int flags, err, copied = 0;
1041 	int mss_now = 0, size_goal, copied_syn = 0;
1042 	int process_backlog = 0;
1043 	int zc = 0;
1044 	long timeo;
1045 
1046 	flags = msg->msg_flags;
1047 
1048 	if ((flags & MSG_ZEROCOPY) && size) {
1049 		if (msg->msg_ubuf) {
1050 			uarg = msg->msg_ubuf;
1051 			if (sk->sk_route_caps & NETIF_F_SG)
1052 				zc = MSG_ZEROCOPY;
1053 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1054 			skb = tcp_write_queue_tail(sk);
1055 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1056 			if (!uarg) {
1057 				err = -ENOBUFS;
1058 				goto out_err;
1059 			}
1060 			if (sk->sk_route_caps & NETIF_F_SG)
1061 				zc = MSG_ZEROCOPY;
1062 			else
1063 				uarg_to_msgzc(uarg)->zerocopy = 0;
1064 		}
1065 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1066 		if (sk->sk_route_caps & NETIF_F_SG)
1067 			zc = MSG_SPLICE_PAGES;
1068 	}
1069 
1070 	if (unlikely(flags & MSG_FASTOPEN ||
1071 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1072 	    !tp->repair) {
1073 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1074 		if (err == -EINPROGRESS && copied_syn > 0)
1075 			goto out;
1076 		else if (err)
1077 			goto out_err;
1078 	}
1079 
1080 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1081 
1082 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1083 
1084 	/* Wait for a connection to finish. One exception is TCP Fast Open
1085 	 * (passive side) where data is allowed to be sent before a connection
1086 	 * is fully established.
1087 	 */
1088 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1089 	    !tcp_passive_fastopen(sk)) {
1090 		err = sk_stream_wait_connect(sk, &timeo);
1091 		if (err != 0)
1092 			goto do_error;
1093 	}
1094 
1095 	if (unlikely(tp->repair)) {
1096 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1097 			copied = tcp_send_rcvq(sk, msg, size);
1098 			goto out_nopush;
1099 		}
1100 
1101 		err = -EINVAL;
1102 		if (tp->repair_queue == TCP_NO_QUEUE)
1103 			goto out_err;
1104 
1105 		/* 'common' sending to sendq */
1106 	}
1107 
1108 	sockcm_init(&sockc, sk);
1109 	if (msg->msg_controllen) {
1110 		err = sock_cmsg_send(sk, msg, &sockc);
1111 		if (unlikely(err)) {
1112 			err = -EINVAL;
1113 			goto out_err;
1114 		}
1115 	}
1116 
1117 	/* This should be in poll */
1118 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1119 
1120 	/* Ok commence sending. */
1121 	copied = 0;
1122 
1123 restart:
1124 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1125 
1126 	err = -EPIPE;
1127 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1128 		goto do_error;
1129 
1130 	while (msg_data_left(msg)) {
1131 		ssize_t copy = 0;
1132 
1133 		skb = tcp_write_queue_tail(sk);
1134 		if (skb)
1135 			copy = size_goal - skb->len;
1136 
1137 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1138 			bool first_skb;
1139 
1140 new_segment:
1141 			if (!sk_stream_memory_free(sk))
1142 				goto wait_for_space;
1143 
1144 			if (unlikely(process_backlog >= 16)) {
1145 				process_backlog = 0;
1146 				if (sk_flush_backlog(sk))
1147 					goto restart;
1148 			}
1149 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1150 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1151 						   first_skb);
1152 			if (!skb)
1153 				goto wait_for_space;
1154 
1155 			process_backlog++;
1156 
1157 			tcp_skb_entail(sk, skb);
1158 			copy = size_goal;
1159 
1160 			/* All packets are restored as if they have
1161 			 * already been sent. skb_mstamp_ns isn't set to
1162 			 * avoid wrong rtt estimation.
1163 			 */
1164 			if (tp->repair)
1165 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1166 		}
1167 
1168 		/* Try to append data to the end of skb. */
1169 		if (copy > msg_data_left(msg))
1170 			copy = msg_data_left(msg);
1171 
1172 		if (zc == 0) {
1173 			bool merge = true;
1174 			int i = skb_shinfo(skb)->nr_frags;
1175 			struct page_frag *pfrag = sk_page_frag(sk);
1176 
1177 			if (!sk_page_frag_refill(sk, pfrag))
1178 				goto wait_for_space;
1179 
1180 			if (!skb_can_coalesce(skb, i, pfrag->page,
1181 					      pfrag->offset)) {
1182 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1183 					tcp_mark_push(tp, skb);
1184 					goto new_segment;
1185 				}
1186 				merge = false;
1187 			}
1188 
1189 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1190 
1191 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1192 				if (tcp_downgrade_zcopy_pure(sk, skb))
1193 					goto wait_for_space;
1194 				skb_zcopy_downgrade_managed(skb);
1195 			}
1196 
1197 			copy = tcp_wmem_schedule(sk, copy);
1198 			if (!copy)
1199 				goto wait_for_space;
1200 
1201 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1202 						       pfrag->page,
1203 						       pfrag->offset,
1204 						       copy);
1205 			if (err)
1206 				goto do_error;
1207 
1208 			/* Update the skb. */
1209 			if (merge) {
1210 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1211 			} else {
1212 				skb_fill_page_desc(skb, i, pfrag->page,
1213 						   pfrag->offset, copy);
1214 				page_ref_inc(pfrag->page);
1215 			}
1216 			pfrag->offset += copy;
1217 		} else if (zc == MSG_ZEROCOPY)  {
1218 			/* First append to a fragless skb builds initial
1219 			 * pure zerocopy skb
1220 			 */
1221 			if (!skb->len)
1222 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1223 
1224 			if (!skb_zcopy_pure(skb)) {
1225 				copy = tcp_wmem_schedule(sk, copy);
1226 				if (!copy)
1227 					goto wait_for_space;
1228 			}
1229 
1230 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1231 			if (err == -EMSGSIZE || err == -EEXIST) {
1232 				tcp_mark_push(tp, skb);
1233 				goto new_segment;
1234 			}
1235 			if (err < 0)
1236 				goto do_error;
1237 			copy = err;
1238 		} else if (zc == MSG_SPLICE_PAGES) {
1239 			/* Splice in data if we can; copy if we can't. */
1240 			if (tcp_downgrade_zcopy_pure(sk, skb))
1241 				goto wait_for_space;
1242 			copy = tcp_wmem_schedule(sk, copy);
1243 			if (!copy)
1244 				goto wait_for_space;
1245 
1246 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1247 						   sk->sk_allocation);
1248 			if (err < 0) {
1249 				if (err == -EMSGSIZE) {
1250 					tcp_mark_push(tp, skb);
1251 					goto new_segment;
1252 				}
1253 				goto do_error;
1254 			}
1255 			copy = err;
1256 
1257 			if (!(flags & MSG_NO_SHARED_FRAGS))
1258 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1259 
1260 			sk_wmem_queued_add(sk, copy);
1261 			sk_mem_charge(sk, copy);
1262 		}
1263 
1264 		if (!copied)
1265 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1266 
1267 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1268 		TCP_SKB_CB(skb)->end_seq += copy;
1269 		tcp_skb_pcount_set(skb, 0);
1270 
1271 		copied += copy;
1272 		if (!msg_data_left(msg)) {
1273 			if (unlikely(flags & MSG_EOR))
1274 				TCP_SKB_CB(skb)->eor = 1;
1275 			goto out;
1276 		}
1277 
1278 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1279 			continue;
1280 
1281 		if (forced_push(tp)) {
1282 			tcp_mark_push(tp, skb);
1283 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1284 		} else if (skb == tcp_send_head(sk))
1285 			tcp_push_one(sk, mss_now);
1286 		continue;
1287 
1288 wait_for_space:
1289 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1290 		if (copied)
1291 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1292 				 TCP_NAGLE_PUSH, size_goal);
1293 
1294 		err = sk_stream_wait_memory(sk, &timeo);
1295 		if (err != 0)
1296 			goto do_error;
1297 
1298 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1299 	}
1300 
1301 out:
1302 	if (copied) {
1303 		tcp_tx_timestamp(sk, sockc.tsflags);
1304 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1305 	}
1306 out_nopush:
1307 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1308 	if (uarg && !msg->msg_ubuf)
1309 		net_zcopy_put(uarg);
1310 	return copied + copied_syn;
1311 
1312 do_error:
1313 	tcp_remove_empty_skb(sk);
1314 
1315 	if (copied + copied_syn)
1316 		goto out;
1317 out_err:
1318 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1319 	if (uarg && !msg->msg_ubuf)
1320 		net_zcopy_put_abort(uarg, true);
1321 	err = sk_stream_error(sk, flags, err);
1322 	/* make sure we wake any epoll edge trigger waiter */
1323 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1324 		sk->sk_write_space(sk);
1325 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1326 	}
1327 	return err;
1328 }
1329 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1330 
1331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1332 {
1333 	int ret;
1334 
1335 	lock_sock(sk);
1336 	ret = tcp_sendmsg_locked(sk, msg, size);
1337 	release_sock(sk);
1338 
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL(tcp_sendmsg);
1342 
1343 void tcp_splice_eof(struct socket *sock)
1344 {
1345 	struct sock *sk = sock->sk;
1346 	struct tcp_sock *tp = tcp_sk(sk);
1347 	int mss_now, size_goal;
1348 
1349 	if (!tcp_write_queue_tail(sk))
1350 		return;
1351 
1352 	lock_sock(sk);
1353 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1354 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1355 	release_sock(sk);
1356 }
1357 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1358 
1359 /*
1360  *	Handle reading urgent data. BSD has very simple semantics for
1361  *	this, no blocking and very strange errors 8)
1362  */
1363 
1364 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1365 {
1366 	struct tcp_sock *tp = tcp_sk(sk);
1367 
1368 	/* No URG data to read. */
1369 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1370 	    tp->urg_data == TCP_URG_READ)
1371 		return -EINVAL;	/* Yes this is right ! */
1372 
1373 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1374 		return -ENOTCONN;
1375 
1376 	if (tp->urg_data & TCP_URG_VALID) {
1377 		int err = 0;
1378 		char c = tp->urg_data;
1379 
1380 		if (!(flags & MSG_PEEK))
1381 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1382 
1383 		/* Read urgent data. */
1384 		msg->msg_flags |= MSG_OOB;
1385 
1386 		if (len > 0) {
1387 			if (!(flags & MSG_TRUNC))
1388 				err = memcpy_to_msg(msg, &c, 1);
1389 			len = 1;
1390 		} else
1391 			msg->msg_flags |= MSG_TRUNC;
1392 
1393 		return err ? -EFAULT : len;
1394 	}
1395 
1396 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1397 		return 0;
1398 
1399 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1400 	 * the available implementations agree in this case:
1401 	 * this call should never block, independent of the
1402 	 * blocking state of the socket.
1403 	 * Mike <pall@rz.uni-karlsruhe.de>
1404 	 */
1405 	return -EAGAIN;
1406 }
1407 
1408 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1409 {
1410 	struct sk_buff *skb;
1411 	int copied = 0, err = 0;
1412 
1413 	/* XXX -- need to support SO_PEEK_OFF */
1414 
1415 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1416 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1417 		if (err)
1418 			return err;
1419 		copied += skb->len;
1420 	}
1421 
1422 	skb_queue_walk(&sk->sk_write_queue, skb) {
1423 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1424 		if (err)
1425 			break;
1426 
1427 		copied += skb->len;
1428 	}
1429 
1430 	return err ?: copied;
1431 }
1432 
1433 /* Clean up the receive buffer for full frames taken by the user,
1434  * then send an ACK if necessary.  COPIED is the number of bytes
1435  * tcp_recvmsg has given to the user so far, it speeds up the
1436  * calculation of whether or not we must ACK for the sake of
1437  * a window update.
1438  */
1439 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1440 {
1441 	struct tcp_sock *tp = tcp_sk(sk);
1442 	bool time_to_ack = false;
1443 
1444 	if (inet_csk_ack_scheduled(sk)) {
1445 		const struct inet_connection_sock *icsk = inet_csk(sk);
1446 
1447 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1448 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1449 		    /*
1450 		     * If this read emptied read buffer, we send ACK, if
1451 		     * connection is not bidirectional, user drained
1452 		     * receive buffer and there was a small segment
1453 		     * in queue.
1454 		     */
1455 		    (copied > 0 &&
1456 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1457 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1458 		       !inet_csk_in_pingpong_mode(sk))) &&
1459 		      !atomic_read(&sk->sk_rmem_alloc)))
1460 			time_to_ack = true;
1461 	}
1462 
1463 	/* We send an ACK if we can now advertise a non-zero window
1464 	 * which has been raised "significantly".
1465 	 *
1466 	 * Even if window raised up to infinity, do not send window open ACK
1467 	 * in states, where we will not receive more. It is useless.
1468 	 */
1469 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1470 		__u32 rcv_window_now = tcp_receive_window(tp);
1471 
1472 		/* Optimize, __tcp_select_window() is not cheap. */
1473 		if (2*rcv_window_now <= tp->window_clamp) {
1474 			__u32 new_window = __tcp_select_window(sk);
1475 
1476 			/* Send ACK now, if this read freed lots of space
1477 			 * in our buffer. Certainly, new_window is new window.
1478 			 * We can advertise it now, if it is not less than current one.
1479 			 * "Lots" means "at least twice" here.
1480 			 */
1481 			if (new_window && new_window >= 2 * rcv_window_now)
1482 				time_to_ack = true;
1483 		}
1484 	}
1485 	if (time_to_ack)
1486 		tcp_send_ack(sk);
1487 }
1488 
1489 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1490 {
1491 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1492 	struct tcp_sock *tp = tcp_sk(sk);
1493 
1494 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1495 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1496 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1497 	__tcp_cleanup_rbuf(sk, copied);
1498 }
1499 
1500 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1501 {
1502 	__skb_unlink(skb, &sk->sk_receive_queue);
1503 	if (likely(skb->destructor == sock_rfree)) {
1504 		sock_rfree(skb);
1505 		skb->destructor = NULL;
1506 		skb->sk = NULL;
1507 		return skb_attempt_defer_free(skb);
1508 	}
1509 	__kfree_skb(skb);
1510 }
1511 
1512 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1513 {
1514 	struct sk_buff *skb;
1515 	u32 offset;
1516 
1517 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1518 		offset = seq - TCP_SKB_CB(skb)->seq;
1519 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1520 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1521 			offset--;
1522 		}
1523 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1524 			*off = offset;
1525 			return skb;
1526 		}
1527 		/* This looks weird, but this can happen if TCP collapsing
1528 		 * splitted a fat GRO packet, while we released socket lock
1529 		 * in skb_splice_bits()
1530 		 */
1531 		tcp_eat_recv_skb(sk, skb);
1532 	}
1533 	return NULL;
1534 }
1535 EXPORT_SYMBOL(tcp_recv_skb);
1536 
1537 /*
1538  * This routine provides an alternative to tcp_recvmsg() for routines
1539  * that would like to handle copying from skbuffs directly in 'sendfile'
1540  * fashion.
1541  * Note:
1542  *	- It is assumed that the socket was locked by the caller.
1543  *	- The routine does not block.
1544  *	- At present, there is no support for reading OOB data
1545  *	  or for 'peeking' the socket using this routine
1546  *	  (although both would be easy to implement).
1547  */
1548 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1549 		  sk_read_actor_t recv_actor)
1550 {
1551 	struct sk_buff *skb;
1552 	struct tcp_sock *tp = tcp_sk(sk);
1553 	u32 seq = tp->copied_seq;
1554 	u32 offset;
1555 	int copied = 0;
1556 
1557 	if (sk->sk_state == TCP_LISTEN)
1558 		return -ENOTCONN;
1559 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1560 		if (offset < skb->len) {
1561 			int used;
1562 			size_t len;
1563 
1564 			len = skb->len - offset;
1565 			/* Stop reading if we hit a patch of urgent data */
1566 			if (unlikely(tp->urg_data)) {
1567 				u32 urg_offset = tp->urg_seq - seq;
1568 				if (urg_offset < len)
1569 					len = urg_offset;
1570 				if (!len)
1571 					break;
1572 			}
1573 			used = recv_actor(desc, skb, offset, len);
1574 			if (used <= 0) {
1575 				if (!copied)
1576 					copied = used;
1577 				break;
1578 			}
1579 			if (WARN_ON_ONCE(used > len))
1580 				used = len;
1581 			seq += used;
1582 			copied += used;
1583 			offset += used;
1584 
1585 			/* If recv_actor drops the lock (e.g. TCP splice
1586 			 * receive) the skb pointer might be invalid when
1587 			 * getting here: tcp_collapse might have deleted it
1588 			 * while aggregating skbs from the socket queue.
1589 			 */
1590 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1591 			if (!skb)
1592 				break;
1593 			/* TCP coalescing might have appended data to the skb.
1594 			 * Try to splice more frags
1595 			 */
1596 			if (offset + 1 != skb->len)
1597 				continue;
1598 		}
1599 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1600 			tcp_eat_recv_skb(sk, skb);
1601 			++seq;
1602 			break;
1603 		}
1604 		tcp_eat_recv_skb(sk, skb);
1605 		if (!desc->count)
1606 			break;
1607 		WRITE_ONCE(tp->copied_seq, seq);
1608 	}
1609 	WRITE_ONCE(tp->copied_seq, seq);
1610 
1611 	tcp_rcv_space_adjust(sk);
1612 
1613 	/* Clean up data we have read: This will do ACK frames. */
1614 	if (copied > 0) {
1615 		tcp_recv_skb(sk, seq, &offset);
1616 		tcp_cleanup_rbuf(sk, copied);
1617 	}
1618 	return copied;
1619 }
1620 EXPORT_SYMBOL(tcp_read_sock);
1621 
1622 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1623 {
1624 	struct tcp_sock *tp = tcp_sk(sk);
1625 	u32 seq = tp->copied_seq;
1626 	struct sk_buff *skb;
1627 	int copied = 0;
1628 	u32 offset;
1629 
1630 	if (sk->sk_state == TCP_LISTEN)
1631 		return -ENOTCONN;
1632 
1633 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1634 		u8 tcp_flags;
1635 		int used;
1636 
1637 		__skb_unlink(skb, &sk->sk_receive_queue);
1638 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1639 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1640 		used = recv_actor(sk, skb);
1641 		if (used < 0) {
1642 			if (!copied)
1643 				copied = used;
1644 			break;
1645 		}
1646 		seq += used;
1647 		copied += used;
1648 
1649 		if (tcp_flags & TCPHDR_FIN) {
1650 			++seq;
1651 			break;
1652 		}
1653 	}
1654 	return copied;
1655 }
1656 EXPORT_SYMBOL(tcp_read_skb);
1657 
1658 void tcp_read_done(struct sock *sk, size_t len)
1659 {
1660 	struct tcp_sock *tp = tcp_sk(sk);
1661 	u32 seq = tp->copied_seq;
1662 	struct sk_buff *skb;
1663 	size_t left;
1664 	u32 offset;
1665 
1666 	if (sk->sk_state == TCP_LISTEN)
1667 		return;
1668 
1669 	left = len;
1670 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1671 		int used;
1672 
1673 		used = min_t(size_t, skb->len - offset, left);
1674 		seq += used;
1675 		left -= used;
1676 
1677 		if (skb->len > offset + used)
1678 			break;
1679 
1680 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681 			tcp_eat_recv_skb(sk, skb);
1682 			++seq;
1683 			break;
1684 		}
1685 		tcp_eat_recv_skb(sk, skb);
1686 	}
1687 	WRITE_ONCE(tp->copied_seq, seq);
1688 
1689 	tcp_rcv_space_adjust(sk);
1690 
1691 	/* Clean up data we have read: This will do ACK frames. */
1692 	if (left != len)
1693 		tcp_cleanup_rbuf(sk, len - left);
1694 }
1695 EXPORT_SYMBOL(tcp_read_done);
1696 
1697 int tcp_peek_len(struct socket *sock)
1698 {
1699 	return tcp_inq(sock->sk);
1700 }
1701 EXPORT_SYMBOL(tcp_peek_len);
1702 
1703 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1704 int tcp_set_rcvlowat(struct sock *sk, int val)
1705 {
1706 	int space, cap;
1707 
1708 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1709 		cap = sk->sk_rcvbuf >> 1;
1710 	else
1711 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1712 	val = min(val, cap);
1713 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1714 
1715 	/* Check if we need to signal EPOLLIN right now */
1716 	tcp_data_ready(sk);
1717 
1718 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 		return 0;
1720 
1721 	space = tcp_space_from_win(sk, val);
1722 	if (space > sk->sk_rcvbuf) {
1723 		WRITE_ONCE(sk->sk_rcvbuf, space);
1724 		tcp_sk(sk)->window_clamp = val;
1725 	}
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(tcp_set_rcvlowat);
1729 
1730 void tcp_update_recv_tstamps(struct sk_buff *skb,
1731 			     struct scm_timestamping_internal *tss)
1732 {
1733 	if (skb->tstamp)
1734 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1735 	else
1736 		tss->ts[0] = (struct timespec64) {0};
1737 
1738 	if (skb_hwtstamps(skb)->hwtstamp)
1739 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1740 	else
1741 		tss->ts[2] = (struct timespec64) {0};
1742 }
1743 
1744 #ifdef CONFIG_MMU
1745 static const struct vm_operations_struct tcp_vm_ops = {
1746 };
1747 
1748 int tcp_mmap(struct file *file, struct socket *sock,
1749 	     struct vm_area_struct *vma)
1750 {
1751 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1752 		return -EPERM;
1753 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1754 
1755 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1756 	vm_flags_set(vma, VM_MIXEDMAP);
1757 
1758 	vma->vm_ops = &tcp_vm_ops;
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL(tcp_mmap);
1762 
1763 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1764 				       u32 *offset_frag)
1765 {
1766 	skb_frag_t *frag;
1767 
1768 	if (unlikely(offset_skb >= skb->len))
1769 		return NULL;
1770 
1771 	offset_skb -= skb_headlen(skb);
1772 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1773 		return NULL;
1774 
1775 	frag = skb_shinfo(skb)->frags;
1776 	while (offset_skb) {
1777 		if (skb_frag_size(frag) > offset_skb) {
1778 			*offset_frag = offset_skb;
1779 			return frag;
1780 		}
1781 		offset_skb -= skb_frag_size(frag);
1782 		++frag;
1783 	}
1784 	*offset_frag = 0;
1785 	return frag;
1786 }
1787 
1788 static bool can_map_frag(const skb_frag_t *frag)
1789 {
1790 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1791 }
1792 
1793 static int find_next_mappable_frag(const skb_frag_t *frag,
1794 				   int remaining_in_skb)
1795 {
1796 	int offset = 0;
1797 
1798 	if (likely(can_map_frag(frag)))
1799 		return 0;
1800 
1801 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1802 		offset += skb_frag_size(frag);
1803 		++frag;
1804 	}
1805 	return offset;
1806 }
1807 
1808 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1809 					  struct tcp_zerocopy_receive *zc,
1810 					  struct sk_buff *skb, u32 offset)
1811 {
1812 	u32 frag_offset, partial_frag_remainder = 0;
1813 	int mappable_offset;
1814 	skb_frag_t *frag;
1815 
1816 	/* worst case: skip to next skb. try to improve on this case below */
1817 	zc->recv_skip_hint = skb->len - offset;
1818 
1819 	/* Find the frag containing this offset (and how far into that frag) */
1820 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1821 	if (!frag)
1822 		return;
1823 
1824 	if (frag_offset) {
1825 		struct skb_shared_info *info = skb_shinfo(skb);
1826 
1827 		/* We read part of the last frag, must recvmsg() rest of skb. */
1828 		if (frag == &info->frags[info->nr_frags - 1])
1829 			return;
1830 
1831 		/* Else, we must at least read the remainder in this frag. */
1832 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1833 		zc->recv_skip_hint -= partial_frag_remainder;
1834 		++frag;
1835 	}
1836 
1837 	/* partial_frag_remainder: If part way through a frag, must read rest.
1838 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1839 	 * in partial_frag_remainder.
1840 	 */
1841 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1842 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1843 }
1844 
1845 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1846 			      int flags, struct scm_timestamping_internal *tss,
1847 			      int *cmsg_flags);
1848 static int receive_fallback_to_copy(struct sock *sk,
1849 				    struct tcp_zerocopy_receive *zc, int inq,
1850 				    struct scm_timestamping_internal *tss)
1851 {
1852 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1853 	struct msghdr msg = {};
1854 	struct iovec iov;
1855 	int err;
1856 
1857 	zc->length = 0;
1858 	zc->recv_skip_hint = 0;
1859 
1860 	if (copy_address != zc->copybuf_address)
1861 		return -EINVAL;
1862 
1863 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1864 				  inq, &iov, &msg.msg_iter);
1865 	if (err)
1866 		return err;
1867 
1868 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1869 				 tss, &zc->msg_flags);
1870 	if (err < 0)
1871 		return err;
1872 
1873 	zc->copybuf_len = err;
1874 	if (likely(zc->copybuf_len)) {
1875 		struct sk_buff *skb;
1876 		u32 offset;
1877 
1878 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1879 		if (skb)
1880 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1881 	}
1882 	return 0;
1883 }
1884 
1885 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1886 				   struct sk_buff *skb, u32 copylen,
1887 				   u32 *offset, u32 *seq)
1888 {
1889 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1890 	struct msghdr msg = {};
1891 	struct iovec iov;
1892 	int err;
1893 
1894 	if (copy_address != zc->copybuf_address)
1895 		return -EINVAL;
1896 
1897 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1898 				  copylen, &iov, &msg.msg_iter);
1899 	if (err)
1900 		return err;
1901 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1902 	if (err)
1903 		return err;
1904 	zc->recv_skip_hint -= copylen;
1905 	*offset += copylen;
1906 	*seq += copylen;
1907 	return (__s32)copylen;
1908 }
1909 
1910 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1911 				  struct sock *sk,
1912 				  struct sk_buff *skb,
1913 				  u32 *seq,
1914 				  s32 copybuf_len,
1915 				  struct scm_timestamping_internal *tss)
1916 {
1917 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1918 
1919 	if (!copylen)
1920 		return 0;
1921 	/* skb is null if inq < PAGE_SIZE. */
1922 	if (skb) {
1923 		offset = *seq - TCP_SKB_CB(skb)->seq;
1924 	} else {
1925 		skb = tcp_recv_skb(sk, *seq, &offset);
1926 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1927 			tcp_update_recv_tstamps(skb, tss);
1928 			zc->msg_flags |= TCP_CMSG_TS;
1929 		}
1930 	}
1931 
1932 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1933 						  seq);
1934 	return zc->copybuf_len < 0 ? 0 : copylen;
1935 }
1936 
1937 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1938 					      struct page **pending_pages,
1939 					      unsigned long pages_remaining,
1940 					      unsigned long *address,
1941 					      u32 *length,
1942 					      u32 *seq,
1943 					      struct tcp_zerocopy_receive *zc,
1944 					      u32 total_bytes_to_map,
1945 					      int err)
1946 {
1947 	/* At least one page did not map. Try zapping if we skipped earlier. */
1948 	if (err == -EBUSY &&
1949 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1950 		u32 maybe_zap_len;
1951 
1952 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1953 				*length + /* Mapped or pending */
1954 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1955 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1956 		err = 0;
1957 	}
1958 
1959 	if (!err) {
1960 		unsigned long leftover_pages = pages_remaining;
1961 		int bytes_mapped;
1962 
1963 		/* We called zap_page_range_single, try to reinsert. */
1964 		err = vm_insert_pages(vma, *address,
1965 				      pending_pages,
1966 				      &pages_remaining);
1967 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1968 		*seq += bytes_mapped;
1969 		*address += bytes_mapped;
1970 	}
1971 	if (err) {
1972 		/* Either we were unable to zap, OR we zapped, retried an
1973 		 * insert, and still had an issue. Either ways, pages_remaining
1974 		 * is the number of pages we were unable to map, and we unroll
1975 		 * some state we speculatively touched before.
1976 		 */
1977 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1978 
1979 		*length -= bytes_not_mapped;
1980 		zc->recv_skip_hint += bytes_not_mapped;
1981 	}
1982 	return err;
1983 }
1984 
1985 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1986 					struct page **pages,
1987 					unsigned int pages_to_map,
1988 					unsigned long *address,
1989 					u32 *length,
1990 					u32 *seq,
1991 					struct tcp_zerocopy_receive *zc,
1992 					u32 total_bytes_to_map)
1993 {
1994 	unsigned long pages_remaining = pages_to_map;
1995 	unsigned int pages_mapped;
1996 	unsigned int bytes_mapped;
1997 	int err;
1998 
1999 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2000 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2001 	bytes_mapped = PAGE_SIZE * pages_mapped;
2002 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2003 	 * mapping (some but not all of the pages).
2004 	 */
2005 	*seq += bytes_mapped;
2006 	*address += bytes_mapped;
2007 
2008 	if (likely(!err))
2009 		return 0;
2010 
2011 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2012 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2013 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2014 		err);
2015 }
2016 
2017 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2018 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2019 				      struct tcp_zerocopy_receive *zc,
2020 				      struct scm_timestamping_internal *tss)
2021 {
2022 	unsigned long msg_control_addr;
2023 	struct msghdr cmsg_dummy;
2024 
2025 	msg_control_addr = (unsigned long)zc->msg_control;
2026 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2027 	cmsg_dummy.msg_controllen =
2028 		(__kernel_size_t)zc->msg_controllen;
2029 	cmsg_dummy.msg_flags = in_compat_syscall()
2030 		? MSG_CMSG_COMPAT : 0;
2031 	cmsg_dummy.msg_control_is_user = true;
2032 	zc->msg_flags = 0;
2033 	if (zc->msg_control == msg_control_addr &&
2034 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2035 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2036 		zc->msg_control = (__u64)
2037 			((uintptr_t)cmsg_dummy.msg_control_user);
2038 		zc->msg_controllen =
2039 			(__u64)cmsg_dummy.msg_controllen;
2040 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2041 	}
2042 }
2043 
2044 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2045 					   unsigned long address,
2046 					   bool *mmap_locked)
2047 {
2048 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2049 
2050 	if (vma) {
2051 		if (vma->vm_ops != &tcp_vm_ops) {
2052 			vma_end_read(vma);
2053 			return NULL;
2054 		}
2055 		*mmap_locked = false;
2056 		return vma;
2057 	}
2058 
2059 	mmap_read_lock(mm);
2060 	vma = vma_lookup(mm, address);
2061 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2062 		mmap_read_unlock(mm);
2063 		return NULL;
2064 	}
2065 	*mmap_locked = true;
2066 	return vma;
2067 }
2068 
2069 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2070 static int tcp_zerocopy_receive(struct sock *sk,
2071 				struct tcp_zerocopy_receive *zc,
2072 				struct scm_timestamping_internal *tss)
2073 {
2074 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2075 	unsigned long address = (unsigned long)zc->address;
2076 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2077 	s32 copybuf_len = zc->copybuf_len;
2078 	struct tcp_sock *tp = tcp_sk(sk);
2079 	const skb_frag_t *frags = NULL;
2080 	unsigned int pages_to_map = 0;
2081 	struct vm_area_struct *vma;
2082 	struct sk_buff *skb = NULL;
2083 	u32 seq = tp->copied_seq;
2084 	u32 total_bytes_to_map;
2085 	int inq = tcp_inq(sk);
2086 	bool mmap_locked;
2087 	int ret;
2088 
2089 	zc->copybuf_len = 0;
2090 	zc->msg_flags = 0;
2091 
2092 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2093 		return -EINVAL;
2094 
2095 	if (sk->sk_state == TCP_LISTEN)
2096 		return -ENOTCONN;
2097 
2098 	sock_rps_record_flow(sk);
2099 
2100 	if (inq && inq <= copybuf_len)
2101 		return receive_fallback_to_copy(sk, zc, inq, tss);
2102 
2103 	if (inq < PAGE_SIZE) {
2104 		zc->length = 0;
2105 		zc->recv_skip_hint = inq;
2106 		if (!inq && sock_flag(sk, SOCK_DONE))
2107 			return -EIO;
2108 		return 0;
2109 	}
2110 
2111 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2112 	if (!vma)
2113 		return -EINVAL;
2114 
2115 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2116 	avail_len = min_t(u32, vma_len, inq);
2117 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2118 	if (total_bytes_to_map) {
2119 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2120 			zap_page_range_single(vma, address, total_bytes_to_map,
2121 					      NULL);
2122 		zc->length = total_bytes_to_map;
2123 		zc->recv_skip_hint = 0;
2124 	} else {
2125 		zc->length = avail_len;
2126 		zc->recv_skip_hint = avail_len;
2127 	}
2128 	ret = 0;
2129 	while (length + PAGE_SIZE <= zc->length) {
2130 		int mappable_offset;
2131 		struct page *page;
2132 
2133 		if (zc->recv_skip_hint < PAGE_SIZE) {
2134 			u32 offset_frag;
2135 
2136 			if (skb) {
2137 				if (zc->recv_skip_hint > 0)
2138 					break;
2139 				skb = skb->next;
2140 				offset = seq - TCP_SKB_CB(skb)->seq;
2141 			} else {
2142 				skb = tcp_recv_skb(sk, seq, &offset);
2143 			}
2144 
2145 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2146 				tcp_update_recv_tstamps(skb, tss);
2147 				zc->msg_flags |= TCP_CMSG_TS;
2148 			}
2149 			zc->recv_skip_hint = skb->len - offset;
2150 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2151 			if (!frags || offset_frag)
2152 				break;
2153 		}
2154 
2155 		mappable_offset = find_next_mappable_frag(frags,
2156 							  zc->recv_skip_hint);
2157 		if (mappable_offset) {
2158 			zc->recv_skip_hint = mappable_offset;
2159 			break;
2160 		}
2161 		page = skb_frag_page(frags);
2162 		prefetchw(page);
2163 		pages[pages_to_map++] = page;
2164 		length += PAGE_SIZE;
2165 		zc->recv_skip_hint -= PAGE_SIZE;
2166 		frags++;
2167 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2168 		    zc->recv_skip_hint < PAGE_SIZE) {
2169 			/* Either full batch, or we're about to go to next skb
2170 			 * (and we cannot unroll failed ops across skbs).
2171 			 */
2172 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2173 							   pages_to_map,
2174 							   &address, &length,
2175 							   &seq, zc,
2176 							   total_bytes_to_map);
2177 			if (ret)
2178 				goto out;
2179 			pages_to_map = 0;
2180 		}
2181 	}
2182 	if (pages_to_map) {
2183 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2184 						   &address, &length, &seq,
2185 						   zc, total_bytes_to_map);
2186 	}
2187 out:
2188 	if (mmap_locked)
2189 		mmap_read_unlock(current->mm);
2190 	else
2191 		vma_end_read(vma);
2192 	/* Try to copy straggler data. */
2193 	if (!ret)
2194 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2195 
2196 	if (length + copylen) {
2197 		WRITE_ONCE(tp->copied_seq, seq);
2198 		tcp_rcv_space_adjust(sk);
2199 
2200 		/* Clean up data we have read: This will do ACK frames. */
2201 		tcp_recv_skb(sk, seq, &offset);
2202 		tcp_cleanup_rbuf(sk, length + copylen);
2203 		ret = 0;
2204 		if (length == zc->length)
2205 			zc->recv_skip_hint = 0;
2206 	} else {
2207 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2208 			ret = -EIO;
2209 	}
2210 	zc->length = length;
2211 	return ret;
2212 }
2213 #endif
2214 
2215 /* Similar to __sock_recv_timestamp, but does not require an skb */
2216 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2217 			struct scm_timestamping_internal *tss)
2218 {
2219 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2220 	bool has_timestamping = false;
2221 
2222 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2223 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2224 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2225 				if (new_tstamp) {
2226 					struct __kernel_timespec kts = {
2227 						.tv_sec = tss->ts[0].tv_sec,
2228 						.tv_nsec = tss->ts[0].tv_nsec,
2229 					};
2230 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2231 						 sizeof(kts), &kts);
2232 				} else {
2233 					struct __kernel_old_timespec ts_old = {
2234 						.tv_sec = tss->ts[0].tv_sec,
2235 						.tv_nsec = tss->ts[0].tv_nsec,
2236 					};
2237 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2238 						 sizeof(ts_old), &ts_old);
2239 				}
2240 			} else {
2241 				if (new_tstamp) {
2242 					struct __kernel_sock_timeval stv = {
2243 						.tv_sec = tss->ts[0].tv_sec,
2244 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2245 					};
2246 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2247 						 sizeof(stv), &stv);
2248 				} else {
2249 					struct __kernel_old_timeval tv = {
2250 						.tv_sec = tss->ts[0].tv_sec,
2251 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2252 					};
2253 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2254 						 sizeof(tv), &tv);
2255 				}
2256 			}
2257 		}
2258 
2259 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2260 			has_timestamping = true;
2261 		else
2262 			tss->ts[0] = (struct timespec64) {0};
2263 	}
2264 
2265 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2266 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2267 			has_timestamping = true;
2268 		else
2269 			tss->ts[2] = (struct timespec64) {0};
2270 	}
2271 
2272 	if (has_timestamping) {
2273 		tss->ts[1] = (struct timespec64) {0};
2274 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2275 			put_cmsg_scm_timestamping64(msg, tss);
2276 		else
2277 			put_cmsg_scm_timestamping(msg, tss);
2278 	}
2279 }
2280 
2281 static int tcp_inq_hint(struct sock *sk)
2282 {
2283 	const struct tcp_sock *tp = tcp_sk(sk);
2284 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2285 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2286 	int inq;
2287 
2288 	inq = rcv_nxt - copied_seq;
2289 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2290 		lock_sock(sk);
2291 		inq = tp->rcv_nxt - tp->copied_seq;
2292 		release_sock(sk);
2293 	}
2294 	/* After receiving a FIN, tell the user-space to continue reading
2295 	 * by returning a non-zero inq.
2296 	 */
2297 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2298 		inq = 1;
2299 	return inq;
2300 }
2301 
2302 /*
2303  *	This routine copies from a sock struct into the user buffer.
2304  *
2305  *	Technical note: in 2.3 we work on _locked_ socket, so that
2306  *	tricks with *seq access order and skb->users are not required.
2307  *	Probably, code can be easily improved even more.
2308  */
2309 
2310 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2311 			      int flags, struct scm_timestamping_internal *tss,
2312 			      int *cmsg_flags)
2313 {
2314 	struct tcp_sock *tp = tcp_sk(sk);
2315 	int copied = 0;
2316 	u32 peek_seq;
2317 	u32 *seq;
2318 	unsigned long used;
2319 	int err;
2320 	int target;		/* Read at least this many bytes */
2321 	long timeo;
2322 	struct sk_buff *skb, *last;
2323 	u32 urg_hole = 0;
2324 
2325 	err = -ENOTCONN;
2326 	if (sk->sk_state == TCP_LISTEN)
2327 		goto out;
2328 
2329 	if (tp->recvmsg_inq) {
2330 		*cmsg_flags = TCP_CMSG_INQ;
2331 		msg->msg_get_inq = 1;
2332 	}
2333 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2334 
2335 	/* Urgent data needs to be handled specially. */
2336 	if (flags & MSG_OOB)
2337 		goto recv_urg;
2338 
2339 	if (unlikely(tp->repair)) {
2340 		err = -EPERM;
2341 		if (!(flags & MSG_PEEK))
2342 			goto out;
2343 
2344 		if (tp->repair_queue == TCP_SEND_QUEUE)
2345 			goto recv_sndq;
2346 
2347 		err = -EINVAL;
2348 		if (tp->repair_queue == TCP_NO_QUEUE)
2349 			goto out;
2350 
2351 		/* 'common' recv queue MSG_PEEK-ing */
2352 	}
2353 
2354 	seq = &tp->copied_seq;
2355 	if (flags & MSG_PEEK) {
2356 		peek_seq = tp->copied_seq;
2357 		seq = &peek_seq;
2358 	}
2359 
2360 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2361 
2362 	do {
2363 		u32 offset;
2364 
2365 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2366 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2367 			if (copied)
2368 				break;
2369 			if (signal_pending(current)) {
2370 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2371 				break;
2372 			}
2373 		}
2374 
2375 		/* Next get a buffer. */
2376 
2377 		last = skb_peek_tail(&sk->sk_receive_queue);
2378 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2379 			last = skb;
2380 			/* Now that we have two receive queues this
2381 			 * shouldn't happen.
2382 			 */
2383 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2384 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2385 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2386 				 flags))
2387 				break;
2388 
2389 			offset = *seq - TCP_SKB_CB(skb)->seq;
2390 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2391 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2392 				offset--;
2393 			}
2394 			if (offset < skb->len)
2395 				goto found_ok_skb;
2396 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2397 				goto found_fin_ok;
2398 			WARN(!(flags & MSG_PEEK),
2399 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2400 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2401 		}
2402 
2403 		/* Well, if we have backlog, try to process it now yet. */
2404 
2405 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2406 			break;
2407 
2408 		if (copied) {
2409 			if (!timeo ||
2410 			    sk->sk_err ||
2411 			    sk->sk_state == TCP_CLOSE ||
2412 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2413 			    signal_pending(current))
2414 				break;
2415 		} else {
2416 			if (sock_flag(sk, SOCK_DONE))
2417 				break;
2418 
2419 			if (sk->sk_err) {
2420 				copied = sock_error(sk);
2421 				break;
2422 			}
2423 
2424 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2425 				break;
2426 
2427 			if (sk->sk_state == TCP_CLOSE) {
2428 				/* This occurs when user tries to read
2429 				 * from never connected socket.
2430 				 */
2431 				copied = -ENOTCONN;
2432 				break;
2433 			}
2434 
2435 			if (!timeo) {
2436 				copied = -EAGAIN;
2437 				break;
2438 			}
2439 
2440 			if (signal_pending(current)) {
2441 				copied = sock_intr_errno(timeo);
2442 				break;
2443 			}
2444 		}
2445 
2446 		if (copied >= target) {
2447 			/* Do not sleep, just process backlog. */
2448 			__sk_flush_backlog(sk);
2449 		} else {
2450 			tcp_cleanup_rbuf(sk, copied);
2451 			sk_wait_data(sk, &timeo, last);
2452 		}
2453 
2454 		if ((flags & MSG_PEEK) &&
2455 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2456 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2457 					    current->comm,
2458 					    task_pid_nr(current));
2459 			peek_seq = tp->copied_seq;
2460 		}
2461 		continue;
2462 
2463 found_ok_skb:
2464 		/* Ok so how much can we use? */
2465 		used = skb->len - offset;
2466 		if (len < used)
2467 			used = len;
2468 
2469 		/* Do we have urgent data here? */
2470 		if (unlikely(tp->urg_data)) {
2471 			u32 urg_offset = tp->urg_seq - *seq;
2472 			if (urg_offset < used) {
2473 				if (!urg_offset) {
2474 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2475 						WRITE_ONCE(*seq, *seq + 1);
2476 						urg_hole++;
2477 						offset++;
2478 						used--;
2479 						if (!used)
2480 							goto skip_copy;
2481 					}
2482 				} else
2483 					used = urg_offset;
2484 			}
2485 		}
2486 
2487 		if (!(flags & MSG_TRUNC)) {
2488 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2489 			if (err) {
2490 				/* Exception. Bailout! */
2491 				if (!copied)
2492 					copied = -EFAULT;
2493 				break;
2494 			}
2495 		}
2496 
2497 		WRITE_ONCE(*seq, *seq + used);
2498 		copied += used;
2499 		len -= used;
2500 
2501 		tcp_rcv_space_adjust(sk);
2502 
2503 skip_copy:
2504 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2505 			WRITE_ONCE(tp->urg_data, 0);
2506 			tcp_fast_path_check(sk);
2507 		}
2508 
2509 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2510 			tcp_update_recv_tstamps(skb, tss);
2511 			*cmsg_flags |= TCP_CMSG_TS;
2512 		}
2513 
2514 		if (used + offset < skb->len)
2515 			continue;
2516 
2517 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2518 			goto found_fin_ok;
2519 		if (!(flags & MSG_PEEK))
2520 			tcp_eat_recv_skb(sk, skb);
2521 		continue;
2522 
2523 found_fin_ok:
2524 		/* Process the FIN. */
2525 		WRITE_ONCE(*seq, *seq + 1);
2526 		if (!(flags & MSG_PEEK))
2527 			tcp_eat_recv_skb(sk, skb);
2528 		break;
2529 	} while (len > 0);
2530 
2531 	/* According to UNIX98, msg_name/msg_namelen are ignored
2532 	 * on connected socket. I was just happy when found this 8) --ANK
2533 	 */
2534 
2535 	/* Clean up data we have read: This will do ACK frames. */
2536 	tcp_cleanup_rbuf(sk, copied);
2537 	return copied;
2538 
2539 out:
2540 	return err;
2541 
2542 recv_urg:
2543 	err = tcp_recv_urg(sk, msg, len, flags);
2544 	goto out;
2545 
2546 recv_sndq:
2547 	err = tcp_peek_sndq(sk, msg, len);
2548 	goto out;
2549 }
2550 
2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2552 		int *addr_len)
2553 {
2554 	int cmsg_flags = 0, ret;
2555 	struct scm_timestamping_internal tss;
2556 
2557 	if (unlikely(flags & MSG_ERRQUEUE))
2558 		return inet_recv_error(sk, msg, len, addr_len);
2559 
2560 	if (sk_can_busy_loop(sk) &&
2561 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2562 	    sk->sk_state == TCP_ESTABLISHED)
2563 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2564 
2565 	lock_sock(sk);
2566 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2567 	release_sock(sk);
2568 
2569 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2570 		if (cmsg_flags & TCP_CMSG_TS)
2571 			tcp_recv_timestamp(msg, sk, &tss);
2572 		if (msg->msg_get_inq) {
2573 			msg->msg_inq = tcp_inq_hint(sk);
2574 			if (cmsg_flags & TCP_CMSG_INQ)
2575 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2576 					 sizeof(msg->msg_inq), &msg->msg_inq);
2577 		}
2578 	}
2579 	return ret;
2580 }
2581 EXPORT_SYMBOL(tcp_recvmsg);
2582 
2583 void tcp_set_state(struct sock *sk, int state)
2584 {
2585 	int oldstate = sk->sk_state;
2586 
2587 	/* We defined a new enum for TCP states that are exported in BPF
2588 	 * so as not force the internal TCP states to be frozen. The
2589 	 * following checks will detect if an internal state value ever
2590 	 * differs from the BPF value. If this ever happens, then we will
2591 	 * need to remap the internal value to the BPF value before calling
2592 	 * tcp_call_bpf_2arg.
2593 	 */
2594 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2595 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2596 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2597 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2598 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2599 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2600 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2601 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2602 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2603 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2604 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2605 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2606 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2607 
2608 	/* bpf uapi header bpf.h defines an anonymous enum with values
2609 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2610 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2611 	 * But clang built vmlinux does not have this enum in DWARF
2612 	 * since clang removes the above code before generating IR/debuginfo.
2613 	 * Let us explicitly emit the type debuginfo to ensure the
2614 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2615 	 * regardless of which compiler is used.
2616 	 */
2617 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2618 
2619 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2620 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2621 
2622 	switch (state) {
2623 	case TCP_ESTABLISHED:
2624 		if (oldstate != TCP_ESTABLISHED)
2625 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2626 		break;
2627 
2628 	case TCP_CLOSE:
2629 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2630 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2631 
2632 		sk->sk_prot->unhash(sk);
2633 		if (inet_csk(sk)->icsk_bind_hash &&
2634 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2635 			inet_put_port(sk);
2636 		fallthrough;
2637 	default:
2638 		if (oldstate == TCP_ESTABLISHED)
2639 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 	}
2641 
2642 	/* Change state AFTER socket is unhashed to avoid closed
2643 	 * socket sitting in hash tables.
2644 	 */
2645 	inet_sk_state_store(sk, state);
2646 }
2647 EXPORT_SYMBOL_GPL(tcp_set_state);
2648 
2649 /*
2650  *	State processing on a close. This implements the state shift for
2651  *	sending our FIN frame. Note that we only send a FIN for some
2652  *	states. A shutdown() may have already sent the FIN, or we may be
2653  *	closed.
2654  */
2655 
2656 static const unsigned char new_state[16] = {
2657   /* current state:        new state:      action:	*/
2658   [0 /* (Invalid) */]	= TCP_CLOSE,
2659   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2660   [TCP_SYN_SENT]	= TCP_CLOSE,
2661   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2663   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2664   [TCP_TIME_WAIT]	= TCP_CLOSE,
2665   [TCP_CLOSE]		= TCP_CLOSE,
2666   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2667   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2668   [TCP_LISTEN]		= TCP_CLOSE,
2669   [TCP_CLOSING]		= TCP_CLOSING,
2670   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2671 };
2672 
2673 static int tcp_close_state(struct sock *sk)
2674 {
2675 	int next = (int)new_state[sk->sk_state];
2676 	int ns = next & TCP_STATE_MASK;
2677 
2678 	tcp_set_state(sk, ns);
2679 
2680 	return next & TCP_ACTION_FIN;
2681 }
2682 
2683 /*
2684  *	Shutdown the sending side of a connection. Much like close except
2685  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2686  */
2687 
2688 void tcp_shutdown(struct sock *sk, int how)
2689 {
2690 	/*	We need to grab some memory, and put together a FIN,
2691 	 *	and then put it into the queue to be sent.
2692 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2693 	 */
2694 	if (!(how & SEND_SHUTDOWN))
2695 		return;
2696 
2697 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2698 	if ((1 << sk->sk_state) &
2699 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2700 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2701 		/* Clear out any half completed packets.  FIN if needed. */
2702 		if (tcp_close_state(sk))
2703 			tcp_send_fin(sk);
2704 	}
2705 }
2706 EXPORT_SYMBOL(tcp_shutdown);
2707 
2708 int tcp_orphan_count_sum(void)
2709 {
2710 	int i, total = 0;
2711 
2712 	for_each_possible_cpu(i)
2713 		total += per_cpu(tcp_orphan_count, i);
2714 
2715 	return max(total, 0);
2716 }
2717 
2718 static int tcp_orphan_cache;
2719 static struct timer_list tcp_orphan_timer;
2720 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2721 
2722 static void tcp_orphan_update(struct timer_list *unused)
2723 {
2724 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2725 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2726 }
2727 
2728 static bool tcp_too_many_orphans(int shift)
2729 {
2730 	return READ_ONCE(tcp_orphan_cache) << shift >
2731 		READ_ONCE(sysctl_tcp_max_orphans);
2732 }
2733 
2734 bool tcp_check_oom(struct sock *sk, int shift)
2735 {
2736 	bool too_many_orphans, out_of_socket_memory;
2737 
2738 	too_many_orphans = tcp_too_many_orphans(shift);
2739 	out_of_socket_memory = tcp_out_of_memory(sk);
2740 
2741 	if (too_many_orphans)
2742 		net_info_ratelimited("too many orphaned sockets\n");
2743 	if (out_of_socket_memory)
2744 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2745 	return too_many_orphans || out_of_socket_memory;
2746 }
2747 
2748 void __tcp_close(struct sock *sk, long timeout)
2749 {
2750 	struct sk_buff *skb;
2751 	int data_was_unread = 0;
2752 	int state;
2753 
2754 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2755 
2756 	if (sk->sk_state == TCP_LISTEN) {
2757 		tcp_set_state(sk, TCP_CLOSE);
2758 
2759 		/* Special case. */
2760 		inet_csk_listen_stop(sk);
2761 
2762 		goto adjudge_to_death;
2763 	}
2764 
2765 	/*  We need to flush the recv. buffs.  We do this only on the
2766 	 *  descriptor close, not protocol-sourced closes, because the
2767 	 *  reader process may not have drained the data yet!
2768 	 */
2769 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2770 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2771 
2772 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2773 			len--;
2774 		data_was_unread += len;
2775 		__kfree_skb(skb);
2776 	}
2777 
2778 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2779 	if (sk->sk_state == TCP_CLOSE)
2780 		goto adjudge_to_death;
2781 
2782 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2783 	 * data was lost. To witness the awful effects of the old behavior of
2784 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2785 	 * GET in an FTP client, suspend the process, wait for the client to
2786 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2787 	 * Note: timeout is always zero in such a case.
2788 	 */
2789 	if (unlikely(tcp_sk(sk)->repair)) {
2790 		sk->sk_prot->disconnect(sk, 0);
2791 	} else if (data_was_unread) {
2792 		/* Unread data was tossed, zap the connection. */
2793 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2794 		tcp_set_state(sk, TCP_CLOSE);
2795 		tcp_send_active_reset(sk, sk->sk_allocation);
2796 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2797 		/* Check zero linger _after_ checking for unread data. */
2798 		sk->sk_prot->disconnect(sk, 0);
2799 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2800 	} else if (tcp_close_state(sk)) {
2801 		/* We FIN if the application ate all the data before
2802 		 * zapping the connection.
2803 		 */
2804 
2805 		/* RED-PEN. Formally speaking, we have broken TCP state
2806 		 * machine. State transitions:
2807 		 *
2808 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2809 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2810 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2811 		 *
2812 		 * are legal only when FIN has been sent (i.e. in window),
2813 		 * rather than queued out of window. Purists blame.
2814 		 *
2815 		 * F.e. "RFC state" is ESTABLISHED,
2816 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2817 		 *
2818 		 * The visible declinations are that sometimes
2819 		 * we enter time-wait state, when it is not required really
2820 		 * (harmless), do not send active resets, when they are
2821 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2822 		 * they look as CLOSING or LAST_ACK for Linux)
2823 		 * Probably, I missed some more holelets.
2824 		 * 						--ANK
2825 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2826 		 * in a single packet! (May consider it later but will
2827 		 * probably need API support or TCP_CORK SYN-ACK until
2828 		 * data is written and socket is closed.)
2829 		 */
2830 		tcp_send_fin(sk);
2831 	}
2832 
2833 	sk_stream_wait_close(sk, timeout);
2834 
2835 adjudge_to_death:
2836 	state = sk->sk_state;
2837 	sock_hold(sk);
2838 	sock_orphan(sk);
2839 
2840 	local_bh_disable();
2841 	bh_lock_sock(sk);
2842 	/* remove backlog if any, without releasing ownership. */
2843 	__release_sock(sk);
2844 
2845 	this_cpu_inc(tcp_orphan_count);
2846 
2847 	/* Have we already been destroyed by a softirq or backlog? */
2848 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2849 		goto out;
2850 
2851 	/*	This is a (useful) BSD violating of the RFC. There is a
2852 	 *	problem with TCP as specified in that the other end could
2853 	 *	keep a socket open forever with no application left this end.
2854 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2855 	 *	our end. If they send after that then tough - BUT: long enough
2856 	 *	that we won't make the old 4*rto = almost no time - whoops
2857 	 *	reset mistake.
2858 	 *
2859 	 *	Nope, it was not mistake. It is really desired behaviour
2860 	 *	f.e. on http servers, when such sockets are useless, but
2861 	 *	consume significant resources. Let's do it with special
2862 	 *	linger2	option.					--ANK
2863 	 */
2864 
2865 	if (sk->sk_state == TCP_FIN_WAIT2) {
2866 		struct tcp_sock *tp = tcp_sk(sk);
2867 		if (READ_ONCE(tp->linger2) < 0) {
2868 			tcp_set_state(sk, TCP_CLOSE);
2869 			tcp_send_active_reset(sk, GFP_ATOMIC);
2870 			__NET_INC_STATS(sock_net(sk),
2871 					LINUX_MIB_TCPABORTONLINGER);
2872 		} else {
2873 			const int tmo = tcp_fin_time(sk);
2874 
2875 			if (tmo > TCP_TIMEWAIT_LEN) {
2876 				inet_csk_reset_keepalive_timer(sk,
2877 						tmo - TCP_TIMEWAIT_LEN);
2878 			} else {
2879 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2880 				goto out;
2881 			}
2882 		}
2883 	}
2884 	if (sk->sk_state != TCP_CLOSE) {
2885 		if (tcp_check_oom(sk, 0)) {
2886 			tcp_set_state(sk, TCP_CLOSE);
2887 			tcp_send_active_reset(sk, GFP_ATOMIC);
2888 			__NET_INC_STATS(sock_net(sk),
2889 					LINUX_MIB_TCPABORTONMEMORY);
2890 		} else if (!check_net(sock_net(sk))) {
2891 			/* Not possible to send reset; just close */
2892 			tcp_set_state(sk, TCP_CLOSE);
2893 		}
2894 	}
2895 
2896 	if (sk->sk_state == TCP_CLOSE) {
2897 		struct request_sock *req;
2898 
2899 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2900 						lockdep_sock_is_held(sk));
2901 		/* We could get here with a non-NULL req if the socket is
2902 		 * aborted (e.g., closed with unread data) before 3WHS
2903 		 * finishes.
2904 		 */
2905 		if (req)
2906 			reqsk_fastopen_remove(sk, req, false);
2907 		inet_csk_destroy_sock(sk);
2908 	}
2909 	/* Otherwise, socket is reprieved until protocol close. */
2910 
2911 out:
2912 	bh_unlock_sock(sk);
2913 	local_bh_enable();
2914 }
2915 
2916 void tcp_close(struct sock *sk, long timeout)
2917 {
2918 	lock_sock(sk);
2919 	__tcp_close(sk, timeout);
2920 	release_sock(sk);
2921 	sock_put(sk);
2922 }
2923 EXPORT_SYMBOL(tcp_close);
2924 
2925 /* These states need RST on ABORT according to RFC793 */
2926 
2927 static inline bool tcp_need_reset(int state)
2928 {
2929 	return (1 << state) &
2930 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2931 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2932 }
2933 
2934 static void tcp_rtx_queue_purge(struct sock *sk)
2935 {
2936 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2937 
2938 	tcp_sk(sk)->highest_sack = NULL;
2939 	while (p) {
2940 		struct sk_buff *skb = rb_to_skb(p);
2941 
2942 		p = rb_next(p);
2943 		/* Since we are deleting whole queue, no need to
2944 		 * list_del(&skb->tcp_tsorted_anchor)
2945 		 */
2946 		tcp_rtx_queue_unlink(skb, sk);
2947 		tcp_wmem_free_skb(sk, skb);
2948 	}
2949 }
2950 
2951 void tcp_write_queue_purge(struct sock *sk)
2952 {
2953 	struct sk_buff *skb;
2954 
2955 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2956 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2957 		tcp_skb_tsorted_anchor_cleanup(skb);
2958 		tcp_wmem_free_skb(sk, skb);
2959 	}
2960 	tcp_rtx_queue_purge(sk);
2961 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2962 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2963 	tcp_sk(sk)->packets_out = 0;
2964 	inet_csk(sk)->icsk_backoff = 0;
2965 }
2966 
2967 int tcp_disconnect(struct sock *sk, int flags)
2968 {
2969 	struct inet_sock *inet = inet_sk(sk);
2970 	struct inet_connection_sock *icsk = inet_csk(sk);
2971 	struct tcp_sock *tp = tcp_sk(sk);
2972 	int old_state = sk->sk_state;
2973 	u32 seq;
2974 
2975 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2976 	 * or inet_wait_for_connect().
2977 	 */
2978 	if (sk->sk_wait_pending)
2979 		return -EBUSY;
2980 
2981 	if (old_state != TCP_CLOSE)
2982 		tcp_set_state(sk, TCP_CLOSE);
2983 
2984 	/* ABORT function of RFC793 */
2985 	if (old_state == TCP_LISTEN) {
2986 		inet_csk_listen_stop(sk);
2987 	} else if (unlikely(tp->repair)) {
2988 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2989 	} else if (tcp_need_reset(old_state) ||
2990 		   (tp->snd_nxt != tp->write_seq &&
2991 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2992 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2993 		 * states
2994 		 */
2995 		tcp_send_active_reset(sk, gfp_any());
2996 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2997 	} else if (old_state == TCP_SYN_SENT)
2998 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2999 
3000 	tcp_clear_xmit_timers(sk);
3001 	__skb_queue_purge(&sk->sk_receive_queue);
3002 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3003 	WRITE_ONCE(tp->urg_data, 0);
3004 	tcp_write_queue_purge(sk);
3005 	tcp_fastopen_active_disable_ofo_check(sk);
3006 	skb_rbtree_purge(&tp->out_of_order_queue);
3007 
3008 	inet->inet_dport = 0;
3009 
3010 	inet_bhash2_reset_saddr(sk);
3011 
3012 	WRITE_ONCE(sk->sk_shutdown, 0);
3013 	sock_reset_flag(sk, SOCK_DONE);
3014 	tp->srtt_us = 0;
3015 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3016 	tp->rcv_rtt_last_tsecr = 0;
3017 
3018 	seq = tp->write_seq + tp->max_window + 2;
3019 	if (!seq)
3020 		seq = 1;
3021 	WRITE_ONCE(tp->write_seq, seq);
3022 
3023 	icsk->icsk_backoff = 0;
3024 	icsk->icsk_probes_out = 0;
3025 	icsk->icsk_probes_tstamp = 0;
3026 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3027 	icsk->icsk_rto_min = TCP_RTO_MIN;
3028 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3029 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3030 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3031 	tp->snd_cwnd_cnt = 0;
3032 	tp->is_cwnd_limited = 0;
3033 	tp->max_packets_out = 0;
3034 	tp->window_clamp = 0;
3035 	tp->delivered = 0;
3036 	tp->delivered_ce = 0;
3037 	if (icsk->icsk_ca_ops->release)
3038 		icsk->icsk_ca_ops->release(sk);
3039 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3040 	icsk->icsk_ca_initialized = 0;
3041 	tcp_set_ca_state(sk, TCP_CA_Open);
3042 	tp->is_sack_reneg = 0;
3043 	tcp_clear_retrans(tp);
3044 	tp->total_retrans = 0;
3045 	inet_csk_delack_init(sk);
3046 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3047 	 * issue in __tcp_select_window()
3048 	 */
3049 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3050 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3051 	__sk_dst_reset(sk);
3052 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3053 	tcp_saved_syn_free(tp);
3054 	tp->compressed_ack = 0;
3055 	tp->segs_in = 0;
3056 	tp->segs_out = 0;
3057 	tp->bytes_sent = 0;
3058 	tp->bytes_acked = 0;
3059 	tp->bytes_received = 0;
3060 	tp->bytes_retrans = 0;
3061 	tp->data_segs_in = 0;
3062 	tp->data_segs_out = 0;
3063 	tp->duplicate_sack[0].start_seq = 0;
3064 	tp->duplicate_sack[0].end_seq = 0;
3065 	tp->dsack_dups = 0;
3066 	tp->reord_seen = 0;
3067 	tp->retrans_out = 0;
3068 	tp->sacked_out = 0;
3069 	tp->tlp_high_seq = 0;
3070 	tp->last_oow_ack_time = 0;
3071 	tp->plb_rehash = 0;
3072 	/* There's a bubble in the pipe until at least the first ACK. */
3073 	tp->app_limited = ~0U;
3074 	tp->rate_app_limited = 1;
3075 	tp->rack.mstamp = 0;
3076 	tp->rack.advanced = 0;
3077 	tp->rack.reo_wnd_steps = 1;
3078 	tp->rack.last_delivered = 0;
3079 	tp->rack.reo_wnd_persist = 0;
3080 	tp->rack.dsack_seen = 0;
3081 	tp->syn_data_acked = 0;
3082 	tp->rx_opt.saw_tstamp = 0;
3083 	tp->rx_opt.dsack = 0;
3084 	tp->rx_opt.num_sacks = 0;
3085 	tp->rcv_ooopack = 0;
3086 
3087 
3088 	/* Clean up fastopen related fields */
3089 	tcp_free_fastopen_req(tp);
3090 	inet_clear_bit(DEFER_CONNECT, sk);
3091 	tp->fastopen_client_fail = 0;
3092 
3093 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3094 
3095 	if (sk->sk_frag.page) {
3096 		put_page(sk->sk_frag.page);
3097 		sk->sk_frag.page = NULL;
3098 		sk->sk_frag.offset = 0;
3099 	}
3100 	sk_error_report(sk);
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL(tcp_disconnect);
3104 
3105 static inline bool tcp_can_repair_sock(const struct sock *sk)
3106 {
3107 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3108 		(sk->sk_state != TCP_LISTEN);
3109 }
3110 
3111 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3112 {
3113 	struct tcp_repair_window opt;
3114 
3115 	if (!tp->repair)
3116 		return -EPERM;
3117 
3118 	if (len != sizeof(opt))
3119 		return -EINVAL;
3120 
3121 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3122 		return -EFAULT;
3123 
3124 	if (opt.max_window < opt.snd_wnd)
3125 		return -EINVAL;
3126 
3127 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3128 		return -EINVAL;
3129 
3130 	if (after(opt.rcv_wup, tp->rcv_nxt))
3131 		return -EINVAL;
3132 
3133 	tp->snd_wl1	= opt.snd_wl1;
3134 	tp->snd_wnd	= opt.snd_wnd;
3135 	tp->max_window	= opt.max_window;
3136 
3137 	tp->rcv_wnd	= opt.rcv_wnd;
3138 	tp->rcv_wup	= opt.rcv_wup;
3139 
3140 	return 0;
3141 }
3142 
3143 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3144 		unsigned int len)
3145 {
3146 	struct tcp_sock *tp = tcp_sk(sk);
3147 	struct tcp_repair_opt opt;
3148 	size_t offset = 0;
3149 
3150 	while (len >= sizeof(opt)) {
3151 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3152 			return -EFAULT;
3153 
3154 		offset += sizeof(opt);
3155 		len -= sizeof(opt);
3156 
3157 		switch (opt.opt_code) {
3158 		case TCPOPT_MSS:
3159 			tp->rx_opt.mss_clamp = opt.opt_val;
3160 			tcp_mtup_init(sk);
3161 			break;
3162 		case TCPOPT_WINDOW:
3163 			{
3164 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3165 				u16 rcv_wscale = opt.opt_val >> 16;
3166 
3167 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3168 					return -EFBIG;
3169 
3170 				tp->rx_opt.snd_wscale = snd_wscale;
3171 				tp->rx_opt.rcv_wscale = rcv_wscale;
3172 				tp->rx_opt.wscale_ok = 1;
3173 			}
3174 			break;
3175 		case TCPOPT_SACK_PERM:
3176 			if (opt.opt_val != 0)
3177 				return -EINVAL;
3178 
3179 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3180 			break;
3181 		case TCPOPT_TIMESTAMP:
3182 			if (opt.opt_val != 0)
3183 				return -EINVAL;
3184 
3185 			tp->rx_opt.tstamp_ok = 1;
3186 			break;
3187 		}
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3194 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3195 
3196 static void tcp_enable_tx_delay(void)
3197 {
3198 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3199 		static int __tcp_tx_delay_enabled = 0;
3200 
3201 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3202 			static_branch_enable(&tcp_tx_delay_enabled);
3203 			pr_info("TCP_TX_DELAY enabled\n");
3204 		}
3205 	}
3206 }
3207 
3208 /* When set indicates to always queue non-full frames.  Later the user clears
3209  * this option and we transmit any pending partial frames in the queue.  This is
3210  * meant to be used alongside sendfile() to get properly filled frames when the
3211  * user (for example) must write out headers with a write() call first and then
3212  * use sendfile to send out the data parts.
3213  *
3214  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3215  * TCP_NODELAY.
3216  */
3217 void __tcp_sock_set_cork(struct sock *sk, bool on)
3218 {
3219 	struct tcp_sock *tp = tcp_sk(sk);
3220 
3221 	if (on) {
3222 		tp->nonagle |= TCP_NAGLE_CORK;
3223 	} else {
3224 		tp->nonagle &= ~TCP_NAGLE_CORK;
3225 		if (tp->nonagle & TCP_NAGLE_OFF)
3226 			tp->nonagle |= TCP_NAGLE_PUSH;
3227 		tcp_push_pending_frames(sk);
3228 	}
3229 }
3230 
3231 void tcp_sock_set_cork(struct sock *sk, bool on)
3232 {
3233 	lock_sock(sk);
3234 	__tcp_sock_set_cork(sk, on);
3235 	release_sock(sk);
3236 }
3237 EXPORT_SYMBOL(tcp_sock_set_cork);
3238 
3239 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3240  * remembered, but it is not activated until cork is cleared.
3241  *
3242  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3243  * even TCP_CORK for currently queued segments.
3244  */
3245 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3246 {
3247 	if (on) {
3248 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3249 		tcp_push_pending_frames(sk);
3250 	} else {
3251 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3252 	}
3253 }
3254 
3255 void tcp_sock_set_nodelay(struct sock *sk)
3256 {
3257 	lock_sock(sk);
3258 	__tcp_sock_set_nodelay(sk, true);
3259 	release_sock(sk);
3260 }
3261 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3262 
3263 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3264 {
3265 	if (!val) {
3266 		inet_csk_enter_pingpong_mode(sk);
3267 		return;
3268 	}
3269 
3270 	inet_csk_exit_pingpong_mode(sk);
3271 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3272 	    inet_csk_ack_scheduled(sk)) {
3273 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3274 		tcp_cleanup_rbuf(sk, 1);
3275 		if (!(val & 1))
3276 			inet_csk_enter_pingpong_mode(sk);
3277 	}
3278 }
3279 
3280 void tcp_sock_set_quickack(struct sock *sk, int val)
3281 {
3282 	lock_sock(sk);
3283 	__tcp_sock_set_quickack(sk, val);
3284 	release_sock(sk);
3285 }
3286 EXPORT_SYMBOL(tcp_sock_set_quickack);
3287 
3288 int tcp_sock_set_syncnt(struct sock *sk, int val)
3289 {
3290 	if (val < 1 || val > MAX_TCP_SYNCNT)
3291 		return -EINVAL;
3292 
3293 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3294 	return 0;
3295 }
3296 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3297 
3298 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3299 {
3300 	/* Cap the max time in ms TCP will retry or probe the window
3301 	 * before giving up and aborting (ETIMEDOUT) a connection.
3302 	 */
3303 	if (val < 0)
3304 		return -EINVAL;
3305 
3306 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3307 	return 0;
3308 }
3309 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3310 
3311 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3312 {
3313 	struct tcp_sock *tp = tcp_sk(sk);
3314 
3315 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3316 		return -EINVAL;
3317 
3318 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3319 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3320 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3321 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3322 		u32 elapsed = keepalive_time_elapsed(tp);
3323 
3324 		if (tp->keepalive_time > elapsed)
3325 			elapsed = tp->keepalive_time - elapsed;
3326 		else
3327 			elapsed = 0;
3328 		inet_csk_reset_keepalive_timer(sk, elapsed);
3329 	}
3330 
3331 	return 0;
3332 }
3333 
3334 int tcp_sock_set_keepidle(struct sock *sk, int val)
3335 {
3336 	int err;
3337 
3338 	lock_sock(sk);
3339 	err = tcp_sock_set_keepidle_locked(sk, val);
3340 	release_sock(sk);
3341 	return err;
3342 }
3343 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3344 
3345 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3346 {
3347 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3348 		return -EINVAL;
3349 
3350 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3354 
3355 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3356 {
3357 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3358 		return -EINVAL;
3359 
3360 	/* Paired with READ_ONCE() in keepalive_probes() */
3361 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3362 	return 0;
3363 }
3364 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3365 
3366 int tcp_set_window_clamp(struct sock *sk, int val)
3367 {
3368 	struct tcp_sock *tp = tcp_sk(sk);
3369 
3370 	if (!val) {
3371 		if (sk->sk_state != TCP_CLOSE)
3372 			return -EINVAL;
3373 		tp->window_clamp = 0;
3374 	} else {
3375 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3376 			SOCK_MIN_RCVBUF / 2 : val;
3377 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3378 	}
3379 	return 0;
3380 }
3381 
3382 /*
3383  *	Socket option code for TCP.
3384  */
3385 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3386 		      sockptr_t optval, unsigned int optlen)
3387 {
3388 	struct tcp_sock *tp = tcp_sk(sk);
3389 	struct inet_connection_sock *icsk = inet_csk(sk);
3390 	struct net *net = sock_net(sk);
3391 	int val;
3392 	int err = 0;
3393 
3394 	/* These are data/string values, all the others are ints */
3395 	switch (optname) {
3396 	case TCP_CONGESTION: {
3397 		char name[TCP_CA_NAME_MAX];
3398 
3399 		if (optlen < 1)
3400 			return -EINVAL;
3401 
3402 		val = strncpy_from_sockptr(name, optval,
3403 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3404 		if (val < 0)
3405 			return -EFAULT;
3406 		name[val] = 0;
3407 
3408 		sockopt_lock_sock(sk);
3409 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3410 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3411 								    CAP_NET_ADMIN));
3412 		sockopt_release_sock(sk);
3413 		return err;
3414 	}
3415 	case TCP_ULP: {
3416 		char name[TCP_ULP_NAME_MAX];
3417 
3418 		if (optlen < 1)
3419 			return -EINVAL;
3420 
3421 		val = strncpy_from_sockptr(name, optval,
3422 					min_t(long, TCP_ULP_NAME_MAX - 1,
3423 					      optlen));
3424 		if (val < 0)
3425 			return -EFAULT;
3426 		name[val] = 0;
3427 
3428 		sockopt_lock_sock(sk);
3429 		err = tcp_set_ulp(sk, name);
3430 		sockopt_release_sock(sk);
3431 		return err;
3432 	}
3433 	case TCP_FASTOPEN_KEY: {
3434 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3435 		__u8 *backup_key = NULL;
3436 
3437 		/* Allow a backup key as well to facilitate key rotation
3438 		 * First key is the active one.
3439 		 */
3440 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3441 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3442 			return -EINVAL;
3443 
3444 		if (copy_from_sockptr(key, optval, optlen))
3445 			return -EFAULT;
3446 
3447 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3448 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3449 
3450 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3451 	}
3452 	default:
3453 		/* fallthru */
3454 		break;
3455 	}
3456 
3457 	if (optlen < sizeof(int))
3458 		return -EINVAL;
3459 
3460 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3461 		return -EFAULT;
3462 
3463 	/* Handle options that can be set without locking the socket. */
3464 	switch (optname) {
3465 	case TCP_SYNCNT:
3466 		return tcp_sock_set_syncnt(sk, val);
3467 	case TCP_USER_TIMEOUT:
3468 		return tcp_sock_set_user_timeout(sk, val);
3469 	case TCP_KEEPINTVL:
3470 		return tcp_sock_set_keepintvl(sk, val);
3471 	case TCP_KEEPCNT:
3472 		return tcp_sock_set_keepcnt(sk, val);
3473 	case TCP_LINGER2:
3474 		if (val < 0)
3475 			WRITE_ONCE(tp->linger2, -1);
3476 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3477 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3478 		else
3479 			WRITE_ONCE(tp->linger2, val * HZ);
3480 		return 0;
3481 	case TCP_DEFER_ACCEPT:
3482 		/* Translate value in seconds to number of retransmits */
3483 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3484 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3485 					   TCP_RTO_MAX / HZ));
3486 		return 0;
3487 	}
3488 
3489 	sockopt_lock_sock(sk);
3490 
3491 	switch (optname) {
3492 	case TCP_MAXSEG:
3493 		/* Values greater than interface MTU won't take effect. However
3494 		 * at the point when this call is done we typically don't yet
3495 		 * know which interface is going to be used
3496 		 */
3497 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3498 			err = -EINVAL;
3499 			break;
3500 		}
3501 		tp->rx_opt.user_mss = val;
3502 		break;
3503 
3504 	case TCP_NODELAY:
3505 		__tcp_sock_set_nodelay(sk, val);
3506 		break;
3507 
3508 	case TCP_THIN_LINEAR_TIMEOUTS:
3509 		if (val < 0 || val > 1)
3510 			err = -EINVAL;
3511 		else
3512 			tp->thin_lto = val;
3513 		break;
3514 
3515 	case TCP_THIN_DUPACK:
3516 		if (val < 0 || val > 1)
3517 			err = -EINVAL;
3518 		break;
3519 
3520 	case TCP_REPAIR:
3521 		if (!tcp_can_repair_sock(sk))
3522 			err = -EPERM;
3523 		else if (val == TCP_REPAIR_ON) {
3524 			tp->repair = 1;
3525 			sk->sk_reuse = SK_FORCE_REUSE;
3526 			tp->repair_queue = TCP_NO_QUEUE;
3527 		} else if (val == TCP_REPAIR_OFF) {
3528 			tp->repair = 0;
3529 			sk->sk_reuse = SK_NO_REUSE;
3530 			tcp_send_window_probe(sk);
3531 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3532 			tp->repair = 0;
3533 			sk->sk_reuse = SK_NO_REUSE;
3534 		} else
3535 			err = -EINVAL;
3536 
3537 		break;
3538 
3539 	case TCP_REPAIR_QUEUE:
3540 		if (!tp->repair)
3541 			err = -EPERM;
3542 		else if ((unsigned int)val < TCP_QUEUES_NR)
3543 			tp->repair_queue = val;
3544 		else
3545 			err = -EINVAL;
3546 		break;
3547 
3548 	case TCP_QUEUE_SEQ:
3549 		if (sk->sk_state != TCP_CLOSE) {
3550 			err = -EPERM;
3551 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3552 			if (!tcp_rtx_queue_empty(sk))
3553 				err = -EPERM;
3554 			else
3555 				WRITE_ONCE(tp->write_seq, val);
3556 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3557 			if (tp->rcv_nxt != tp->copied_seq) {
3558 				err = -EPERM;
3559 			} else {
3560 				WRITE_ONCE(tp->rcv_nxt, val);
3561 				WRITE_ONCE(tp->copied_seq, val);
3562 			}
3563 		} else {
3564 			err = -EINVAL;
3565 		}
3566 		break;
3567 
3568 	case TCP_REPAIR_OPTIONS:
3569 		if (!tp->repair)
3570 			err = -EINVAL;
3571 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3572 			err = tcp_repair_options_est(sk, optval, optlen);
3573 		else
3574 			err = -EPERM;
3575 		break;
3576 
3577 	case TCP_CORK:
3578 		__tcp_sock_set_cork(sk, val);
3579 		break;
3580 
3581 	case TCP_KEEPIDLE:
3582 		err = tcp_sock_set_keepidle_locked(sk, val);
3583 		break;
3584 	case TCP_SAVE_SYN:
3585 		/* 0: disable, 1: enable, 2: start from ether_header */
3586 		if (val < 0 || val > 2)
3587 			err = -EINVAL;
3588 		else
3589 			tp->save_syn = val;
3590 		break;
3591 
3592 	case TCP_WINDOW_CLAMP:
3593 		err = tcp_set_window_clamp(sk, val);
3594 		break;
3595 
3596 	case TCP_QUICKACK:
3597 		__tcp_sock_set_quickack(sk, val);
3598 		break;
3599 
3600 #ifdef CONFIG_TCP_MD5SIG
3601 	case TCP_MD5SIG:
3602 	case TCP_MD5SIG_EXT:
3603 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3604 		break;
3605 #endif
3606 	case TCP_FASTOPEN:
3607 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3608 		    TCPF_LISTEN))) {
3609 			tcp_fastopen_init_key_once(net);
3610 
3611 			fastopen_queue_tune(sk, val);
3612 		} else {
3613 			err = -EINVAL;
3614 		}
3615 		break;
3616 	case TCP_FASTOPEN_CONNECT:
3617 		if (val > 1 || val < 0) {
3618 			err = -EINVAL;
3619 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3620 			   TFO_CLIENT_ENABLE) {
3621 			if (sk->sk_state == TCP_CLOSE)
3622 				tp->fastopen_connect = val;
3623 			else
3624 				err = -EINVAL;
3625 		} else {
3626 			err = -EOPNOTSUPP;
3627 		}
3628 		break;
3629 	case TCP_FASTOPEN_NO_COOKIE:
3630 		if (val > 1 || val < 0)
3631 			err = -EINVAL;
3632 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3633 			err = -EINVAL;
3634 		else
3635 			tp->fastopen_no_cookie = val;
3636 		break;
3637 	case TCP_TIMESTAMP:
3638 		if (!tp->repair)
3639 			err = -EPERM;
3640 		else
3641 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3642 		break;
3643 	case TCP_REPAIR_WINDOW:
3644 		err = tcp_repair_set_window(tp, optval, optlen);
3645 		break;
3646 	case TCP_NOTSENT_LOWAT:
3647 		WRITE_ONCE(tp->notsent_lowat, val);
3648 		sk->sk_write_space(sk);
3649 		break;
3650 	case TCP_INQ:
3651 		if (val > 1 || val < 0)
3652 			err = -EINVAL;
3653 		else
3654 			tp->recvmsg_inq = val;
3655 		break;
3656 	case TCP_TX_DELAY:
3657 		if (val)
3658 			tcp_enable_tx_delay();
3659 		WRITE_ONCE(tp->tcp_tx_delay, val);
3660 		break;
3661 	default:
3662 		err = -ENOPROTOOPT;
3663 		break;
3664 	}
3665 
3666 	sockopt_release_sock(sk);
3667 	return err;
3668 }
3669 
3670 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3671 		   unsigned int optlen)
3672 {
3673 	const struct inet_connection_sock *icsk = inet_csk(sk);
3674 
3675 	if (level != SOL_TCP)
3676 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3677 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3678 								optval, optlen);
3679 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3680 }
3681 EXPORT_SYMBOL(tcp_setsockopt);
3682 
3683 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3684 				      struct tcp_info *info)
3685 {
3686 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3687 	enum tcp_chrono i;
3688 
3689 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3690 		stats[i] = tp->chrono_stat[i - 1];
3691 		if (i == tp->chrono_type)
3692 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3693 		stats[i] *= USEC_PER_SEC / HZ;
3694 		total += stats[i];
3695 	}
3696 
3697 	info->tcpi_busy_time = total;
3698 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3699 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3700 }
3701 
3702 /* Return information about state of tcp endpoint in API format. */
3703 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3704 {
3705 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3706 	const struct inet_connection_sock *icsk = inet_csk(sk);
3707 	unsigned long rate;
3708 	u32 now;
3709 	u64 rate64;
3710 	bool slow;
3711 
3712 	memset(info, 0, sizeof(*info));
3713 	if (sk->sk_type != SOCK_STREAM)
3714 		return;
3715 
3716 	info->tcpi_state = inet_sk_state_load(sk);
3717 
3718 	/* Report meaningful fields for all TCP states, including listeners */
3719 	rate = READ_ONCE(sk->sk_pacing_rate);
3720 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3721 	info->tcpi_pacing_rate = rate64;
3722 
3723 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3724 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3725 	info->tcpi_max_pacing_rate = rate64;
3726 
3727 	info->tcpi_reordering = tp->reordering;
3728 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3729 
3730 	if (info->tcpi_state == TCP_LISTEN) {
3731 		/* listeners aliased fields :
3732 		 * tcpi_unacked -> Number of children ready for accept()
3733 		 * tcpi_sacked  -> max backlog
3734 		 */
3735 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3736 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3737 		return;
3738 	}
3739 
3740 	slow = lock_sock_fast(sk);
3741 
3742 	info->tcpi_ca_state = icsk->icsk_ca_state;
3743 	info->tcpi_retransmits = icsk->icsk_retransmits;
3744 	info->tcpi_probes = icsk->icsk_probes_out;
3745 	info->tcpi_backoff = icsk->icsk_backoff;
3746 
3747 	if (tp->rx_opt.tstamp_ok)
3748 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3749 	if (tcp_is_sack(tp))
3750 		info->tcpi_options |= TCPI_OPT_SACK;
3751 	if (tp->rx_opt.wscale_ok) {
3752 		info->tcpi_options |= TCPI_OPT_WSCALE;
3753 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3754 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3755 	}
3756 
3757 	if (tp->ecn_flags & TCP_ECN_OK)
3758 		info->tcpi_options |= TCPI_OPT_ECN;
3759 	if (tp->ecn_flags & TCP_ECN_SEEN)
3760 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3761 	if (tp->syn_data_acked)
3762 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3763 
3764 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3765 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3766 	info->tcpi_snd_mss = tp->mss_cache;
3767 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3768 
3769 	info->tcpi_unacked = tp->packets_out;
3770 	info->tcpi_sacked = tp->sacked_out;
3771 
3772 	info->tcpi_lost = tp->lost_out;
3773 	info->tcpi_retrans = tp->retrans_out;
3774 
3775 	now = tcp_jiffies32;
3776 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3777 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3778 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3779 
3780 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3781 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3782 	info->tcpi_rtt = tp->srtt_us >> 3;
3783 	info->tcpi_rttvar = tp->mdev_us >> 2;
3784 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3785 	info->tcpi_advmss = tp->advmss;
3786 
3787 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3788 	info->tcpi_rcv_space = tp->rcvq_space.space;
3789 
3790 	info->tcpi_total_retrans = tp->total_retrans;
3791 
3792 	info->tcpi_bytes_acked = tp->bytes_acked;
3793 	info->tcpi_bytes_received = tp->bytes_received;
3794 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3795 	tcp_get_info_chrono_stats(tp, info);
3796 
3797 	info->tcpi_segs_out = tp->segs_out;
3798 
3799 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3800 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3801 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3802 
3803 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3804 	info->tcpi_data_segs_out = tp->data_segs_out;
3805 
3806 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3807 	rate64 = tcp_compute_delivery_rate(tp);
3808 	if (rate64)
3809 		info->tcpi_delivery_rate = rate64;
3810 	info->tcpi_delivered = tp->delivered;
3811 	info->tcpi_delivered_ce = tp->delivered_ce;
3812 	info->tcpi_bytes_sent = tp->bytes_sent;
3813 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3814 	info->tcpi_dsack_dups = tp->dsack_dups;
3815 	info->tcpi_reord_seen = tp->reord_seen;
3816 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3817 	info->tcpi_snd_wnd = tp->snd_wnd;
3818 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3819 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3820 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3821 	unlock_sock_fast(sk, slow);
3822 }
3823 EXPORT_SYMBOL_GPL(tcp_get_info);
3824 
3825 static size_t tcp_opt_stats_get_size(void)
3826 {
3827 	return
3828 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3829 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3830 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3831 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3832 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3833 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3834 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3835 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3836 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3837 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3838 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3839 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3840 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3841 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3842 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3843 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3844 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3845 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3846 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3847 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3848 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3849 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3850 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3851 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3852 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3853 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3854 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3855 		0;
3856 }
3857 
3858 /* Returns TTL or hop limit of an incoming packet from skb. */
3859 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3860 {
3861 	if (skb->protocol == htons(ETH_P_IP))
3862 		return ip_hdr(skb)->ttl;
3863 	else if (skb->protocol == htons(ETH_P_IPV6))
3864 		return ipv6_hdr(skb)->hop_limit;
3865 	else
3866 		return 0;
3867 }
3868 
3869 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3870 					       const struct sk_buff *orig_skb,
3871 					       const struct sk_buff *ack_skb)
3872 {
3873 	const struct tcp_sock *tp = tcp_sk(sk);
3874 	struct sk_buff *stats;
3875 	struct tcp_info info;
3876 	unsigned long rate;
3877 	u64 rate64;
3878 
3879 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3880 	if (!stats)
3881 		return NULL;
3882 
3883 	tcp_get_info_chrono_stats(tp, &info);
3884 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3885 			  info.tcpi_busy_time, TCP_NLA_PAD);
3886 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3887 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3888 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3889 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3890 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3891 			  tp->data_segs_out, TCP_NLA_PAD);
3892 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3893 			  tp->total_retrans, TCP_NLA_PAD);
3894 
3895 	rate = READ_ONCE(sk->sk_pacing_rate);
3896 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3897 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3898 
3899 	rate64 = tcp_compute_delivery_rate(tp);
3900 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3901 
3902 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3903 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3904 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3905 
3906 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3907 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3908 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3909 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3910 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3911 
3912 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3913 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3914 
3915 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3916 			  TCP_NLA_PAD);
3917 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3918 			  TCP_NLA_PAD);
3919 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3920 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3921 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3922 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3923 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3924 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3925 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3926 			  TCP_NLA_PAD);
3927 	if (ack_skb)
3928 		nla_put_u8(stats, TCP_NLA_TTL,
3929 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3930 
3931 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3932 	return stats;
3933 }
3934 
3935 int do_tcp_getsockopt(struct sock *sk, int level,
3936 		      int optname, sockptr_t optval, sockptr_t optlen)
3937 {
3938 	struct inet_connection_sock *icsk = inet_csk(sk);
3939 	struct tcp_sock *tp = tcp_sk(sk);
3940 	struct net *net = sock_net(sk);
3941 	int val, len;
3942 
3943 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3944 		return -EFAULT;
3945 
3946 	len = min_t(unsigned int, len, sizeof(int));
3947 
3948 	if (len < 0)
3949 		return -EINVAL;
3950 
3951 	switch (optname) {
3952 	case TCP_MAXSEG:
3953 		val = tp->mss_cache;
3954 		if (tp->rx_opt.user_mss &&
3955 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3956 			val = tp->rx_opt.user_mss;
3957 		if (tp->repair)
3958 			val = tp->rx_opt.mss_clamp;
3959 		break;
3960 	case TCP_NODELAY:
3961 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3962 		break;
3963 	case TCP_CORK:
3964 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3965 		break;
3966 	case TCP_KEEPIDLE:
3967 		val = keepalive_time_when(tp) / HZ;
3968 		break;
3969 	case TCP_KEEPINTVL:
3970 		val = keepalive_intvl_when(tp) / HZ;
3971 		break;
3972 	case TCP_KEEPCNT:
3973 		val = keepalive_probes(tp);
3974 		break;
3975 	case TCP_SYNCNT:
3976 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3977 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3978 		break;
3979 	case TCP_LINGER2:
3980 		val = READ_ONCE(tp->linger2);
3981 		if (val >= 0)
3982 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3983 		break;
3984 	case TCP_DEFER_ACCEPT:
3985 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3986 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3987 				      TCP_RTO_MAX / HZ);
3988 		break;
3989 	case TCP_WINDOW_CLAMP:
3990 		val = tp->window_clamp;
3991 		break;
3992 	case TCP_INFO: {
3993 		struct tcp_info info;
3994 
3995 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
3996 			return -EFAULT;
3997 
3998 		tcp_get_info(sk, &info);
3999 
4000 		len = min_t(unsigned int, len, sizeof(info));
4001 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4002 			return -EFAULT;
4003 		if (copy_to_sockptr(optval, &info, len))
4004 			return -EFAULT;
4005 		return 0;
4006 	}
4007 	case TCP_CC_INFO: {
4008 		const struct tcp_congestion_ops *ca_ops;
4009 		union tcp_cc_info info;
4010 		size_t sz = 0;
4011 		int attr;
4012 
4013 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4014 			return -EFAULT;
4015 
4016 		ca_ops = icsk->icsk_ca_ops;
4017 		if (ca_ops && ca_ops->get_info)
4018 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4019 
4020 		len = min_t(unsigned int, len, sz);
4021 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4022 			return -EFAULT;
4023 		if (copy_to_sockptr(optval, &info, len))
4024 			return -EFAULT;
4025 		return 0;
4026 	}
4027 	case TCP_QUICKACK:
4028 		val = !inet_csk_in_pingpong_mode(sk);
4029 		break;
4030 
4031 	case TCP_CONGESTION:
4032 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4033 			return -EFAULT;
4034 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4035 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4036 			return -EFAULT;
4037 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4038 			return -EFAULT;
4039 		return 0;
4040 
4041 	case TCP_ULP:
4042 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4043 			return -EFAULT;
4044 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4045 		if (!icsk->icsk_ulp_ops) {
4046 			len = 0;
4047 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4048 				return -EFAULT;
4049 			return 0;
4050 		}
4051 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4052 			return -EFAULT;
4053 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4054 			return -EFAULT;
4055 		return 0;
4056 
4057 	case TCP_FASTOPEN_KEY: {
4058 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4059 		unsigned int key_len;
4060 
4061 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4062 			return -EFAULT;
4063 
4064 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4065 				TCP_FASTOPEN_KEY_LENGTH;
4066 		len = min_t(unsigned int, len, key_len);
4067 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4068 			return -EFAULT;
4069 		if (copy_to_sockptr(optval, key, len))
4070 			return -EFAULT;
4071 		return 0;
4072 	}
4073 	case TCP_THIN_LINEAR_TIMEOUTS:
4074 		val = tp->thin_lto;
4075 		break;
4076 
4077 	case TCP_THIN_DUPACK:
4078 		val = 0;
4079 		break;
4080 
4081 	case TCP_REPAIR:
4082 		val = tp->repair;
4083 		break;
4084 
4085 	case TCP_REPAIR_QUEUE:
4086 		if (tp->repair)
4087 			val = tp->repair_queue;
4088 		else
4089 			return -EINVAL;
4090 		break;
4091 
4092 	case TCP_REPAIR_WINDOW: {
4093 		struct tcp_repair_window opt;
4094 
4095 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4096 			return -EFAULT;
4097 
4098 		if (len != sizeof(opt))
4099 			return -EINVAL;
4100 
4101 		if (!tp->repair)
4102 			return -EPERM;
4103 
4104 		opt.snd_wl1	= tp->snd_wl1;
4105 		opt.snd_wnd	= tp->snd_wnd;
4106 		opt.max_window	= tp->max_window;
4107 		opt.rcv_wnd	= tp->rcv_wnd;
4108 		opt.rcv_wup	= tp->rcv_wup;
4109 
4110 		if (copy_to_sockptr(optval, &opt, len))
4111 			return -EFAULT;
4112 		return 0;
4113 	}
4114 	case TCP_QUEUE_SEQ:
4115 		if (tp->repair_queue == TCP_SEND_QUEUE)
4116 			val = tp->write_seq;
4117 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4118 			val = tp->rcv_nxt;
4119 		else
4120 			return -EINVAL;
4121 		break;
4122 
4123 	case TCP_USER_TIMEOUT:
4124 		val = READ_ONCE(icsk->icsk_user_timeout);
4125 		break;
4126 
4127 	case TCP_FASTOPEN:
4128 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4129 		break;
4130 
4131 	case TCP_FASTOPEN_CONNECT:
4132 		val = tp->fastopen_connect;
4133 		break;
4134 
4135 	case TCP_FASTOPEN_NO_COOKIE:
4136 		val = tp->fastopen_no_cookie;
4137 		break;
4138 
4139 	case TCP_TX_DELAY:
4140 		val = READ_ONCE(tp->tcp_tx_delay);
4141 		break;
4142 
4143 	case TCP_TIMESTAMP:
4144 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4145 		break;
4146 	case TCP_NOTSENT_LOWAT:
4147 		val = READ_ONCE(tp->notsent_lowat);
4148 		break;
4149 	case TCP_INQ:
4150 		val = tp->recvmsg_inq;
4151 		break;
4152 	case TCP_SAVE_SYN:
4153 		val = tp->save_syn;
4154 		break;
4155 	case TCP_SAVED_SYN: {
4156 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157 			return -EFAULT;
4158 
4159 		sockopt_lock_sock(sk);
4160 		if (tp->saved_syn) {
4161 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4162 				len = tcp_saved_syn_len(tp->saved_syn);
4163 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4164 					sockopt_release_sock(sk);
4165 					return -EFAULT;
4166 				}
4167 				sockopt_release_sock(sk);
4168 				return -EINVAL;
4169 			}
4170 			len = tcp_saved_syn_len(tp->saved_syn);
4171 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4172 				sockopt_release_sock(sk);
4173 				return -EFAULT;
4174 			}
4175 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4176 				sockopt_release_sock(sk);
4177 				return -EFAULT;
4178 			}
4179 			tcp_saved_syn_free(tp);
4180 			sockopt_release_sock(sk);
4181 		} else {
4182 			sockopt_release_sock(sk);
4183 			len = 0;
4184 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4185 				return -EFAULT;
4186 		}
4187 		return 0;
4188 	}
4189 #ifdef CONFIG_MMU
4190 	case TCP_ZEROCOPY_RECEIVE: {
4191 		struct scm_timestamping_internal tss;
4192 		struct tcp_zerocopy_receive zc = {};
4193 		int err;
4194 
4195 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4196 			return -EFAULT;
4197 		if (len < 0 ||
4198 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4199 			return -EINVAL;
4200 		if (unlikely(len > sizeof(zc))) {
4201 			err = check_zeroed_sockptr(optval, sizeof(zc),
4202 						   len - sizeof(zc));
4203 			if (err < 1)
4204 				return err == 0 ? -EINVAL : err;
4205 			len = sizeof(zc);
4206 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4207 				return -EFAULT;
4208 		}
4209 		if (copy_from_sockptr(&zc, optval, len))
4210 			return -EFAULT;
4211 		if (zc.reserved)
4212 			return -EINVAL;
4213 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4214 			return -EINVAL;
4215 		sockopt_lock_sock(sk);
4216 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4217 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4218 							  &zc, &len, err);
4219 		sockopt_release_sock(sk);
4220 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4221 			goto zerocopy_rcv_cmsg;
4222 		switch (len) {
4223 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4224 			goto zerocopy_rcv_cmsg;
4225 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4226 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4227 		case offsetofend(struct tcp_zerocopy_receive, flags):
4228 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4229 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4230 		case offsetofend(struct tcp_zerocopy_receive, err):
4231 			goto zerocopy_rcv_sk_err;
4232 		case offsetofend(struct tcp_zerocopy_receive, inq):
4233 			goto zerocopy_rcv_inq;
4234 		case offsetofend(struct tcp_zerocopy_receive, length):
4235 		default:
4236 			goto zerocopy_rcv_out;
4237 		}
4238 zerocopy_rcv_cmsg:
4239 		if (zc.msg_flags & TCP_CMSG_TS)
4240 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4241 		else
4242 			zc.msg_flags = 0;
4243 zerocopy_rcv_sk_err:
4244 		if (!err)
4245 			zc.err = sock_error(sk);
4246 zerocopy_rcv_inq:
4247 		zc.inq = tcp_inq_hint(sk);
4248 zerocopy_rcv_out:
4249 		if (!err && copy_to_sockptr(optval, &zc, len))
4250 			err = -EFAULT;
4251 		return err;
4252 	}
4253 #endif
4254 	default:
4255 		return -ENOPROTOOPT;
4256 	}
4257 
4258 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4259 		return -EFAULT;
4260 	if (copy_to_sockptr(optval, &val, len))
4261 		return -EFAULT;
4262 	return 0;
4263 }
4264 
4265 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4266 {
4267 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4268 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4269 	 */
4270 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4271 		return true;
4272 
4273 	return false;
4274 }
4275 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4276 
4277 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4278 		   int __user *optlen)
4279 {
4280 	struct inet_connection_sock *icsk = inet_csk(sk);
4281 
4282 	if (level != SOL_TCP)
4283 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4284 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4285 								optval, optlen);
4286 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4287 				 USER_SOCKPTR(optlen));
4288 }
4289 EXPORT_SYMBOL(tcp_getsockopt);
4290 
4291 #ifdef CONFIG_TCP_MD5SIG
4292 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4293 static DEFINE_MUTEX(tcp_md5sig_mutex);
4294 static bool tcp_md5sig_pool_populated = false;
4295 
4296 static void __tcp_alloc_md5sig_pool(void)
4297 {
4298 	struct crypto_ahash *hash;
4299 	int cpu;
4300 
4301 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4302 	if (IS_ERR(hash))
4303 		return;
4304 
4305 	for_each_possible_cpu(cpu) {
4306 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4307 		struct ahash_request *req;
4308 
4309 		if (!scratch) {
4310 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4311 					       sizeof(struct tcphdr),
4312 					       GFP_KERNEL,
4313 					       cpu_to_node(cpu));
4314 			if (!scratch)
4315 				return;
4316 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4317 		}
4318 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4319 			continue;
4320 
4321 		req = ahash_request_alloc(hash, GFP_KERNEL);
4322 		if (!req)
4323 			return;
4324 
4325 		ahash_request_set_callback(req, 0, NULL, NULL);
4326 
4327 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4328 	}
4329 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4330 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4331 	 */
4332 	smp_wmb();
4333 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4334 	 * and tcp_get_md5sig_pool().
4335 	*/
4336 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4337 }
4338 
4339 bool tcp_alloc_md5sig_pool(void)
4340 {
4341 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4342 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4343 		mutex_lock(&tcp_md5sig_mutex);
4344 
4345 		if (!tcp_md5sig_pool_populated)
4346 			__tcp_alloc_md5sig_pool();
4347 
4348 		mutex_unlock(&tcp_md5sig_mutex);
4349 	}
4350 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4351 	return READ_ONCE(tcp_md5sig_pool_populated);
4352 }
4353 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4354 
4355 
4356 /**
4357  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4358  *
4359  *	We use percpu structure, so if we succeed, we exit with preemption
4360  *	and BH disabled, to make sure another thread or softirq handling
4361  *	wont try to get same context.
4362  */
4363 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4364 {
4365 	local_bh_disable();
4366 
4367 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4368 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4369 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4370 		smp_rmb();
4371 		return this_cpu_ptr(&tcp_md5sig_pool);
4372 	}
4373 	local_bh_enable();
4374 	return NULL;
4375 }
4376 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4377 
4378 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4379 			  const struct sk_buff *skb, unsigned int header_len)
4380 {
4381 	struct scatterlist sg;
4382 	const struct tcphdr *tp = tcp_hdr(skb);
4383 	struct ahash_request *req = hp->md5_req;
4384 	unsigned int i;
4385 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4386 					   skb_headlen(skb) - header_len : 0;
4387 	const struct skb_shared_info *shi = skb_shinfo(skb);
4388 	struct sk_buff *frag_iter;
4389 
4390 	sg_init_table(&sg, 1);
4391 
4392 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4393 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4394 	if (crypto_ahash_update(req))
4395 		return 1;
4396 
4397 	for (i = 0; i < shi->nr_frags; ++i) {
4398 		const skb_frag_t *f = &shi->frags[i];
4399 		unsigned int offset = skb_frag_off(f);
4400 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4401 
4402 		sg_set_page(&sg, page, skb_frag_size(f),
4403 			    offset_in_page(offset));
4404 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4405 		if (crypto_ahash_update(req))
4406 			return 1;
4407 	}
4408 
4409 	skb_walk_frags(skb, frag_iter)
4410 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4411 			return 1;
4412 
4413 	return 0;
4414 }
4415 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4416 
4417 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4418 {
4419 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4420 	struct scatterlist sg;
4421 
4422 	sg_init_one(&sg, key->key, keylen);
4423 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4424 
4425 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4426 	return data_race(crypto_ahash_update(hp->md5_req));
4427 }
4428 EXPORT_SYMBOL(tcp_md5_hash_key);
4429 
4430 /* Called with rcu_read_lock() */
4431 enum skb_drop_reason
4432 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4433 		     const void *saddr, const void *daddr,
4434 		     int family, int dif, int sdif)
4435 {
4436 	/*
4437 	 * This gets called for each TCP segment that arrives
4438 	 * so we want to be efficient.
4439 	 * We have 3 drop cases:
4440 	 * o No MD5 hash and one expected.
4441 	 * o MD5 hash and we're not expecting one.
4442 	 * o MD5 hash and its wrong.
4443 	 */
4444 	const __u8 *hash_location = NULL;
4445 	struct tcp_md5sig_key *hash_expected;
4446 	const struct tcphdr *th = tcp_hdr(skb);
4447 	const struct tcp_sock *tp = tcp_sk(sk);
4448 	int genhash, l3index;
4449 	u8 newhash[16];
4450 
4451 	/* sdif set, means packet ingressed via a device
4452 	 * in an L3 domain and dif is set to the l3mdev
4453 	 */
4454 	l3index = sdif ? dif : 0;
4455 
4456 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4457 	hash_location = tcp_parse_md5sig_option(th);
4458 
4459 	/* We've parsed the options - do we have a hash? */
4460 	if (!hash_expected && !hash_location)
4461 		return SKB_NOT_DROPPED_YET;
4462 
4463 	if (hash_expected && !hash_location) {
4464 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4465 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4466 	}
4467 
4468 	if (!hash_expected && hash_location) {
4469 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4470 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4471 	}
4472 
4473 	/* Check the signature.
4474 	 * To support dual stack listeners, we need to handle
4475 	 * IPv4-mapped case.
4476 	 */
4477 	if (family == AF_INET)
4478 		genhash = tcp_v4_md5_hash_skb(newhash,
4479 					      hash_expected,
4480 					      NULL, skb);
4481 	else
4482 		genhash = tp->af_specific->calc_md5_hash(newhash,
4483 							 hash_expected,
4484 							 NULL, skb);
4485 
4486 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4487 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4488 		if (family == AF_INET) {
4489 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4490 					saddr, ntohs(th->source),
4491 					daddr, ntohs(th->dest),
4492 					genhash ? " tcp_v4_calc_md5_hash failed"
4493 					: "", l3index);
4494 		} else {
4495 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4496 					genhash ? "failed" : "mismatch",
4497 					saddr, ntohs(th->source),
4498 					daddr, ntohs(th->dest), l3index);
4499 		}
4500 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4501 	}
4502 	return SKB_NOT_DROPPED_YET;
4503 }
4504 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4505 
4506 #endif
4507 
4508 void tcp_done(struct sock *sk)
4509 {
4510 	struct request_sock *req;
4511 
4512 	/* We might be called with a new socket, after
4513 	 * inet_csk_prepare_forced_close() has been called
4514 	 * so we can not use lockdep_sock_is_held(sk)
4515 	 */
4516 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4517 
4518 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4519 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4520 
4521 	tcp_set_state(sk, TCP_CLOSE);
4522 	tcp_clear_xmit_timers(sk);
4523 	if (req)
4524 		reqsk_fastopen_remove(sk, req, false);
4525 
4526 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4527 
4528 	if (!sock_flag(sk, SOCK_DEAD))
4529 		sk->sk_state_change(sk);
4530 	else
4531 		inet_csk_destroy_sock(sk);
4532 }
4533 EXPORT_SYMBOL_GPL(tcp_done);
4534 
4535 int tcp_abort(struct sock *sk, int err)
4536 {
4537 	int state = inet_sk_state_load(sk);
4538 
4539 	if (state == TCP_NEW_SYN_RECV) {
4540 		struct request_sock *req = inet_reqsk(sk);
4541 
4542 		local_bh_disable();
4543 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4544 		local_bh_enable();
4545 		return 0;
4546 	}
4547 	if (state == TCP_TIME_WAIT) {
4548 		struct inet_timewait_sock *tw = inet_twsk(sk);
4549 
4550 		refcount_inc(&tw->tw_refcnt);
4551 		local_bh_disable();
4552 		inet_twsk_deschedule_put(tw);
4553 		local_bh_enable();
4554 		return 0;
4555 	}
4556 
4557 	/* BPF context ensures sock locking. */
4558 	if (!has_current_bpf_ctx())
4559 		/* Don't race with userspace socket closes such as tcp_close. */
4560 		lock_sock(sk);
4561 
4562 	if (sk->sk_state == TCP_LISTEN) {
4563 		tcp_set_state(sk, TCP_CLOSE);
4564 		inet_csk_listen_stop(sk);
4565 	}
4566 
4567 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4568 	local_bh_disable();
4569 	bh_lock_sock(sk);
4570 
4571 	if (!sock_flag(sk, SOCK_DEAD)) {
4572 		WRITE_ONCE(sk->sk_err, err);
4573 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4574 		smp_wmb();
4575 		sk_error_report(sk);
4576 		if (tcp_need_reset(sk->sk_state))
4577 			tcp_send_active_reset(sk, GFP_ATOMIC);
4578 		tcp_done(sk);
4579 	}
4580 
4581 	bh_unlock_sock(sk);
4582 	local_bh_enable();
4583 	tcp_write_queue_purge(sk);
4584 	if (!has_current_bpf_ctx())
4585 		release_sock(sk);
4586 	return 0;
4587 }
4588 EXPORT_SYMBOL_GPL(tcp_abort);
4589 
4590 extern struct tcp_congestion_ops tcp_reno;
4591 
4592 static __initdata unsigned long thash_entries;
4593 static int __init set_thash_entries(char *str)
4594 {
4595 	ssize_t ret;
4596 
4597 	if (!str)
4598 		return 0;
4599 
4600 	ret = kstrtoul(str, 0, &thash_entries);
4601 	if (ret)
4602 		return 0;
4603 
4604 	return 1;
4605 }
4606 __setup("thash_entries=", set_thash_entries);
4607 
4608 static void __init tcp_init_mem(void)
4609 {
4610 	unsigned long limit = nr_free_buffer_pages() / 16;
4611 
4612 	limit = max(limit, 128UL);
4613 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4614 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4615 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4616 }
4617 
4618 void __init tcp_init(void)
4619 {
4620 	int max_rshare, max_wshare, cnt;
4621 	unsigned long limit;
4622 	unsigned int i;
4623 
4624 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4625 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4626 		     sizeof_field(struct sk_buff, cb));
4627 
4628 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4629 
4630 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4631 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4632 
4633 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4634 			    thash_entries, 21,  /* one slot per 2 MB*/
4635 			    0, 64 * 1024);
4636 	tcp_hashinfo.bind_bucket_cachep =
4637 		kmem_cache_create("tcp_bind_bucket",
4638 				  sizeof(struct inet_bind_bucket), 0,
4639 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4640 				  SLAB_ACCOUNT,
4641 				  NULL);
4642 	tcp_hashinfo.bind2_bucket_cachep =
4643 		kmem_cache_create("tcp_bind2_bucket",
4644 				  sizeof(struct inet_bind2_bucket), 0,
4645 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4646 				  SLAB_ACCOUNT,
4647 				  NULL);
4648 
4649 	/* Size and allocate the main established and bind bucket
4650 	 * hash tables.
4651 	 *
4652 	 * The methodology is similar to that of the buffer cache.
4653 	 */
4654 	tcp_hashinfo.ehash =
4655 		alloc_large_system_hash("TCP established",
4656 					sizeof(struct inet_ehash_bucket),
4657 					thash_entries,
4658 					17, /* one slot per 128 KB of memory */
4659 					0,
4660 					NULL,
4661 					&tcp_hashinfo.ehash_mask,
4662 					0,
4663 					thash_entries ? 0 : 512 * 1024);
4664 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4665 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4666 
4667 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4668 		panic("TCP: failed to alloc ehash_locks");
4669 	tcp_hashinfo.bhash =
4670 		alloc_large_system_hash("TCP bind",
4671 					2 * sizeof(struct inet_bind_hashbucket),
4672 					tcp_hashinfo.ehash_mask + 1,
4673 					17, /* one slot per 128 KB of memory */
4674 					0,
4675 					&tcp_hashinfo.bhash_size,
4676 					NULL,
4677 					0,
4678 					64 * 1024);
4679 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4680 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4681 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4682 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4683 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4684 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4685 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4686 	}
4687 
4688 	tcp_hashinfo.pernet = false;
4689 
4690 	cnt = tcp_hashinfo.ehash_mask + 1;
4691 	sysctl_tcp_max_orphans = cnt / 2;
4692 
4693 	tcp_init_mem();
4694 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4695 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4696 	max_wshare = min(4UL*1024*1024, limit);
4697 	max_rshare = min(6UL*1024*1024, limit);
4698 
4699 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4700 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4701 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4702 
4703 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4704 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4705 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4706 
4707 	pr_info("Hash tables configured (established %u bind %u)\n",
4708 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4709 
4710 	tcp_v4_init();
4711 	tcp_metrics_init();
4712 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4713 	tcp_tasklet_init();
4714 	mptcp_init();
4715 }
4716