1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 462 sk_sockets_allocated_inc(sk); 463 } 464 EXPORT_SYMBOL(tcp_init_sock); 465 466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 467 { 468 struct sk_buff *skb = tcp_write_queue_tail(sk); 469 470 if (tsflags && skb) { 471 struct skb_shared_info *shinfo = skb_shinfo(skb); 472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 473 474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 475 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 476 tcb->txstamp_ack = 1; 477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 479 } 480 } 481 482 static bool tcp_stream_is_readable(struct sock *sk, int target) 483 { 484 if (tcp_epollin_ready(sk, target)) 485 return true; 486 return sk_is_readable(sk); 487 } 488 489 /* 490 * Wait for a TCP event. 491 * 492 * Note that we don't need to lock the socket, as the upper poll layers 493 * take care of normal races (between the test and the event) and we don't 494 * go look at any of the socket buffers directly. 495 */ 496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 497 { 498 __poll_t mask; 499 struct sock *sk = sock->sk; 500 const struct tcp_sock *tp = tcp_sk(sk); 501 u8 shutdown; 502 int state; 503 504 sock_poll_wait(file, sock, wait); 505 506 state = inet_sk_state_load(sk); 507 if (state == TCP_LISTEN) 508 return inet_csk_listen_poll(sk); 509 510 /* Socket is not locked. We are protected from async events 511 * by poll logic and correct handling of state changes 512 * made by other threads is impossible in any case. 513 */ 514 515 mask = 0; 516 517 /* 518 * EPOLLHUP is certainly not done right. But poll() doesn't 519 * have a notion of HUP in just one direction, and for a 520 * socket the read side is more interesting. 521 * 522 * Some poll() documentation says that EPOLLHUP is incompatible 523 * with the EPOLLOUT/POLLWR flags, so somebody should check this 524 * all. But careful, it tends to be safer to return too many 525 * bits than too few, and you can easily break real applications 526 * if you don't tell them that something has hung up! 527 * 528 * Check-me. 529 * 530 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 531 * our fs/select.c). It means that after we received EOF, 532 * poll always returns immediately, making impossible poll() on write() 533 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 534 * if and only if shutdown has been made in both directions. 535 * Actually, it is interesting to look how Solaris and DUX 536 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 537 * then we could set it on SND_SHUTDOWN. BTW examples given 538 * in Stevens' books assume exactly this behaviour, it explains 539 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 540 * 541 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 542 * blocking on fresh not-connected or disconnected socket. --ANK 543 */ 544 shutdown = READ_ONCE(sk->sk_shutdown); 545 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 546 mask |= EPOLLHUP; 547 if (shutdown & RCV_SHUTDOWN) 548 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 549 550 /* Connected or passive Fast Open socket? */ 551 if (state != TCP_SYN_SENT && 552 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 553 int target = sock_rcvlowat(sk, 0, INT_MAX); 554 u16 urg_data = READ_ONCE(tp->urg_data); 555 556 if (unlikely(urg_data) && 557 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 558 !sock_flag(sk, SOCK_URGINLINE)) 559 target++; 560 561 if (tcp_stream_is_readable(sk, target)) 562 mask |= EPOLLIN | EPOLLRDNORM; 563 564 if (!(shutdown & SEND_SHUTDOWN)) { 565 if (__sk_stream_is_writeable(sk, 1)) { 566 mask |= EPOLLOUT | EPOLLWRNORM; 567 } else { /* send SIGIO later */ 568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 570 571 /* Race breaker. If space is freed after 572 * wspace test but before the flags are set, 573 * IO signal will be lost. Memory barrier 574 * pairs with the input side. 575 */ 576 smp_mb__after_atomic(); 577 if (__sk_stream_is_writeable(sk, 1)) 578 mask |= EPOLLOUT | EPOLLWRNORM; 579 } 580 } else 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 583 if (urg_data & TCP_URG_VALID) 584 mask |= EPOLLPRI; 585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 586 /* Active TCP fastopen socket with defer_connect 587 * Return EPOLLOUT so application can call write() 588 * in order for kernel to generate SYN+data 589 */ 590 mask |= EPOLLOUT | EPOLLWRNORM; 591 } 592 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 593 smp_rmb(); 594 if (READ_ONCE(sk->sk_err) || 595 !skb_queue_empty_lockless(&sk->sk_error_queue)) 596 mask |= EPOLLERR; 597 598 return mask; 599 } 600 EXPORT_SYMBOL(tcp_poll); 601 602 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 int answ; 606 bool slow; 607 608 switch (cmd) { 609 case SIOCINQ: 610 if (sk->sk_state == TCP_LISTEN) 611 return -EINVAL; 612 613 slow = lock_sock_fast(sk); 614 answ = tcp_inq(sk); 615 unlock_sock_fast(sk, slow); 616 break; 617 case SIOCATMARK: 618 answ = READ_ONCE(tp->urg_data) && 619 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 620 break; 621 case SIOCOUTQ: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 629 break; 630 case SIOCOUTQNSD: 631 if (sk->sk_state == TCP_LISTEN) 632 return -EINVAL; 633 634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 635 answ = 0; 636 else 637 answ = READ_ONCE(tp->write_seq) - 638 READ_ONCE(tp->snd_nxt); 639 break; 640 default: 641 return -ENOIOCTLCMD; 642 } 643 644 *karg = answ; 645 return 0; 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 tcb->seq = tcb->end_seq = tp->write_seq; 666 tcb->tcp_flags = TCPHDR_ACK; 667 __skb_header_release(skb); 668 tcp_add_write_queue_tail(sk, skb); 669 sk_wmem_queued_add(sk, skb->truesize); 670 sk_mem_charge(sk, skb->truesize); 671 if (tp->nonagle & TCP_NAGLE_PUSH) 672 tp->nonagle &= ~TCP_NAGLE_PUSH; 673 674 tcp_slow_start_after_idle_check(sk); 675 } 676 677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 678 { 679 if (flags & MSG_OOB) 680 tp->snd_up = tp->write_seq; 681 } 682 683 /* If a not yet filled skb is pushed, do not send it if 684 * we have data packets in Qdisc or NIC queues : 685 * Because TX completion will happen shortly, it gives a chance 686 * to coalesce future sendmsg() payload into this skb, without 687 * need for a timer, and with no latency trade off. 688 * As packets containing data payload have a bigger truesize 689 * than pure acks (dataless) packets, the last checks prevent 690 * autocorking if we only have an ACK in Qdisc/NIC queues, 691 * or if TX completion was delayed after we processed ACK packet. 692 */ 693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 694 int size_goal) 695 { 696 return skb->len < size_goal && 697 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 698 !tcp_rtx_queue_empty(sk) && 699 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 700 tcp_skb_can_collapse_to(skb); 701 } 702 703 void tcp_push(struct sock *sk, int flags, int mss_now, 704 int nonagle, int size_goal) 705 { 706 struct tcp_sock *tp = tcp_sk(sk); 707 struct sk_buff *skb; 708 709 skb = tcp_write_queue_tail(sk); 710 if (!skb) 711 return; 712 if (!(flags & MSG_MORE) || forced_push(tp)) 713 tcp_mark_push(tp, skb); 714 715 tcp_mark_urg(tp, flags); 716 717 if (tcp_should_autocork(sk, skb, size_goal)) { 718 719 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 720 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 722 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 723 } 724 /* It is possible TX completion already happened 725 * before we set TSQ_THROTTLED. 726 */ 727 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 728 return; 729 } 730 731 if (flags & MSG_MORE) 732 nonagle = TCP_NAGLE_CORK; 733 734 __tcp_push_pending_frames(sk, mss_now, nonagle); 735 } 736 737 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 738 unsigned int offset, size_t len) 739 { 740 struct tcp_splice_state *tss = rd_desc->arg.data; 741 int ret; 742 743 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 744 min(rd_desc->count, len), tss->flags); 745 if (ret > 0) 746 rd_desc->count -= ret; 747 return ret; 748 } 749 750 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 751 { 752 /* Store TCP splice context information in read_descriptor_t. */ 753 read_descriptor_t rd_desc = { 754 .arg.data = tss, 755 .count = tss->len, 756 }; 757 758 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 759 } 760 761 /** 762 * tcp_splice_read - splice data from TCP socket to a pipe 763 * @sock: socket to splice from 764 * @ppos: position (not valid) 765 * @pipe: pipe to splice to 766 * @len: number of bytes to splice 767 * @flags: splice modifier flags 768 * 769 * Description: 770 * Will read pages from given socket and fill them into a pipe. 771 * 772 **/ 773 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 774 struct pipe_inode_info *pipe, size_t len, 775 unsigned int flags) 776 { 777 struct sock *sk = sock->sk; 778 struct tcp_splice_state tss = { 779 .pipe = pipe, 780 .len = len, 781 .flags = flags, 782 }; 783 long timeo; 784 ssize_t spliced; 785 int ret; 786 787 sock_rps_record_flow(sk); 788 /* 789 * We can't seek on a socket input 790 */ 791 if (unlikely(*ppos)) 792 return -ESPIPE; 793 794 ret = spliced = 0; 795 796 lock_sock(sk); 797 798 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 799 while (tss.len) { 800 ret = __tcp_splice_read(sk, &tss); 801 if (ret < 0) 802 break; 803 else if (!ret) { 804 if (spliced) 805 break; 806 if (sock_flag(sk, SOCK_DONE)) 807 break; 808 if (sk->sk_err) { 809 ret = sock_error(sk); 810 break; 811 } 812 if (sk->sk_shutdown & RCV_SHUTDOWN) 813 break; 814 if (sk->sk_state == TCP_CLOSE) { 815 /* 816 * This occurs when user tries to read 817 * from never connected socket. 818 */ 819 ret = -ENOTCONN; 820 break; 821 } 822 if (!timeo) { 823 ret = -EAGAIN; 824 break; 825 } 826 /* if __tcp_splice_read() got nothing while we have 827 * an skb in receive queue, we do not want to loop. 828 * This might happen with URG data. 829 */ 830 if (!skb_queue_empty(&sk->sk_receive_queue)) 831 break; 832 sk_wait_data(sk, &timeo, NULL); 833 if (signal_pending(current)) { 834 ret = sock_intr_errno(timeo); 835 break; 836 } 837 continue; 838 } 839 tss.len -= ret; 840 spliced += ret; 841 842 if (!tss.len || !timeo) 843 break; 844 release_sock(sk); 845 lock_sock(sk); 846 847 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 848 (sk->sk_shutdown & RCV_SHUTDOWN) || 849 signal_pending(current)) 850 break; 851 } 852 853 release_sock(sk); 854 855 if (spliced) 856 return spliced; 857 858 return ret; 859 } 860 EXPORT_SYMBOL(tcp_splice_read); 861 862 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 863 bool force_schedule) 864 { 865 struct sk_buff *skb; 866 867 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 868 if (likely(skb)) { 869 bool mem_scheduled; 870 871 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 872 if (force_schedule) { 873 mem_scheduled = true; 874 sk_forced_mem_schedule(sk, skb->truesize); 875 } else { 876 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 877 } 878 if (likely(mem_scheduled)) { 879 skb_reserve(skb, MAX_TCP_HEADER); 880 skb->ip_summed = CHECKSUM_PARTIAL; 881 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 882 return skb; 883 } 884 __kfree_skb(skb); 885 } else { 886 sk->sk_prot->enter_memory_pressure(sk); 887 sk_stream_moderate_sndbuf(sk); 888 } 889 return NULL; 890 } 891 892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 893 int large_allowed) 894 { 895 struct tcp_sock *tp = tcp_sk(sk); 896 u32 new_size_goal, size_goal; 897 898 if (!large_allowed) 899 return mss_now; 900 901 /* Note : tcp_tso_autosize() will eventually split this later */ 902 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 903 904 /* We try hard to avoid divides here */ 905 size_goal = tp->gso_segs * mss_now; 906 if (unlikely(new_size_goal < size_goal || 907 new_size_goal >= size_goal + mss_now)) { 908 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 909 sk->sk_gso_max_segs); 910 size_goal = tp->gso_segs * mss_now; 911 } 912 913 return max(size_goal, mss_now); 914 } 915 916 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 917 { 918 int mss_now; 919 920 mss_now = tcp_current_mss(sk); 921 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 922 923 return mss_now; 924 } 925 926 /* In some cases, both sendmsg() could have added an skb to the write queue, 927 * but failed adding payload on it. We need to remove it to consume less 928 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 929 * epoll() users. 930 */ 931 void tcp_remove_empty_skb(struct sock *sk) 932 { 933 struct sk_buff *skb = tcp_write_queue_tail(sk); 934 935 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 936 tcp_unlink_write_queue(skb, sk); 937 if (tcp_write_queue_empty(sk)) 938 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 939 tcp_wmem_free_skb(sk, skb); 940 } 941 } 942 943 /* skb changing from pure zc to mixed, must charge zc */ 944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 945 { 946 if (unlikely(skb_zcopy_pure(skb))) { 947 u32 extra = skb->truesize - 948 SKB_TRUESIZE(skb_end_offset(skb)); 949 950 if (!sk_wmem_schedule(sk, extra)) 951 return -ENOMEM; 952 953 sk_mem_charge(sk, extra); 954 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 955 } 956 return 0; 957 } 958 959 960 int tcp_wmem_schedule(struct sock *sk, int copy) 961 { 962 int left; 963 964 if (likely(sk_wmem_schedule(sk, copy))) 965 return copy; 966 967 /* We could be in trouble if we have nothing queued. 968 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 969 * to guarantee some progress. 970 */ 971 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 972 if (left > 0) 973 sk_forced_mem_schedule(sk, min(left, copy)); 974 return min(copy, sk->sk_forward_alloc); 975 } 976 977 void tcp_free_fastopen_req(struct tcp_sock *tp) 978 { 979 if (tp->fastopen_req) { 980 kfree(tp->fastopen_req); 981 tp->fastopen_req = NULL; 982 } 983 } 984 985 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 986 size_t size, struct ubuf_info *uarg) 987 { 988 struct tcp_sock *tp = tcp_sk(sk); 989 struct inet_sock *inet = inet_sk(sk); 990 struct sockaddr *uaddr = msg->msg_name; 991 int err, flags; 992 993 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 994 TFO_CLIENT_ENABLE) || 995 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 996 uaddr->sa_family == AF_UNSPEC)) 997 return -EOPNOTSUPP; 998 if (tp->fastopen_req) 999 return -EALREADY; /* Another Fast Open is in progress */ 1000 1001 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1002 sk->sk_allocation); 1003 if (unlikely(!tp->fastopen_req)) 1004 return -ENOBUFS; 1005 tp->fastopen_req->data = msg; 1006 tp->fastopen_req->size = size; 1007 tp->fastopen_req->uarg = uarg; 1008 1009 if (inet->defer_connect) { 1010 err = tcp_connect(sk); 1011 /* Same failure procedure as in tcp_v4/6_connect */ 1012 if (err) { 1013 tcp_set_state(sk, TCP_CLOSE); 1014 inet->inet_dport = 0; 1015 sk->sk_route_caps = 0; 1016 } 1017 } 1018 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1019 err = __inet_stream_connect(sk->sk_socket, uaddr, 1020 msg->msg_namelen, flags, 1); 1021 /* fastopen_req could already be freed in __inet_stream_connect 1022 * if the connection times out or gets rst 1023 */ 1024 if (tp->fastopen_req) { 1025 *copied = tp->fastopen_req->copied; 1026 tcp_free_fastopen_req(tp); 1027 inet->defer_connect = 0; 1028 } 1029 return err; 1030 } 1031 1032 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1033 { 1034 struct tcp_sock *tp = tcp_sk(sk); 1035 struct ubuf_info *uarg = NULL; 1036 struct sk_buff *skb; 1037 struct sockcm_cookie sockc; 1038 int flags, err, copied = 0; 1039 int mss_now = 0, size_goal, copied_syn = 0; 1040 int process_backlog = 0; 1041 int zc = 0; 1042 long timeo; 1043 1044 flags = msg->msg_flags; 1045 1046 if ((flags & MSG_ZEROCOPY) && size) { 1047 if (msg->msg_ubuf) { 1048 uarg = msg->msg_ubuf; 1049 if (sk->sk_route_caps & NETIF_F_SG) 1050 zc = MSG_ZEROCOPY; 1051 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1052 skb = tcp_write_queue_tail(sk); 1053 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1054 if (!uarg) { 1055 err = -ENOBUFS; 1056 goto out_err; 1057 } 1058 if (sk->sk_route_caps & NETIF_F_SG) 1059 zc = MSG_ZEROCOPY; 1060 else 1061 uarg_to_msgzc(uarg)->zerocopy = 0; 1062 } 1063 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1064 if (sk->sk_route_caps & NETIF_F_SG) 1065 zc = MSG_SPLICE_PAGES; 1066 } 1067 1068 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1069 !tp->repair) { 1070 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1071 if (err == -EINPROGRESS && copied_syn > 0) 1072 goto out; 1073 else if (err) 1074 goto out_err; 1075 } 1076 1077 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1078 1079 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1080 1081 /* Wait for a connection to finish. One exception is TCP Fast Open 1082 * (passive side) where data is allowed to be sent before a connection 1083 * is fully established. 1084 */ 1085 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1086 !tcp_passive_fastopen(sk)) { 1087 err = sk_stream_wait_connect(sk, &timeo); 1088 if (err != 0) 1089 goto do_error; 1090 } 1091 1092 if (unlikely(tp->repair)) { 1093 if (tp->repair_queue == TCP_RECV_QUEUE) { 1094 copied = tcp_send_rcvq(sk, msg, size); 1095 goto out_nopush; 1096 } 1097 1098 err = -EINVAL; 1099 if (tp->repair_queue == TCP_NO_QUEUE) 1100 goto out_err; 1101 1102 /* 'common' sending to sendq */ 1103 } 1104 1105 sockcm_init(&sockc, sk); 1106 if (msg->msg_controllen) { 1107 err = sock_cmsg_send(sk, msg, &sockc); 1108 if (unlikely(err)) { 1109 err = -EINVAL; 1110 goto out_err; 1111 } 1112 } 1113 1114 /* This should be in poll */ 1115 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1116 1117 /* Ok commence sending. */ 1118 copied = 0; 1119 1120 restart: 1121 mss_now = tcp_send_mss(sk, &size_goal, flags); 1122 1123 err = -EPIPE; 1124 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1125 goto do_error; 1126 1127 while (msg_data_left(msg)) { 1128 ssize_t copy = 0; 1129 1130 skb = tcp_write_queue_tail(sk); 1131 if (skb) 1132 copy = size_goal - skb->len; 1133 1134 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1135 bool first_skb; 1136 1137 new_segment: 1138 if (!sk_stream_memory_free(sk)) 1139 goto wait_for_space; 1140 1141 if (unlikely(process_backlog >= 16)) { 1142 process_backlog = 0; 1143 if (sk_flush_backlog(sk)) 1144 goto restart; 1145 } 1146 first_skb = tcp_rtx_and_write_queues_empty(sk); 1147 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1148 first_skb); 1149 if (!skb) 1150 goto wait_for_space; 1151 1152 process_backlog++; 1153 1154 tcp_skb_entail(sk, skb); 1155 copy = size_goal; 1156 1157 /* All packets are restored as if they have 1158 * already been sent. skb_mstamp_ns isn't set to 1159 * avoid wrong rtt estimation. 1160 */ 1161 if (tp->repair) 1162 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1163 } 1164 1165 /* Try to append data to the end of skb. */ 1166 if (copy > msg_data_left(msg)) 1167 copy = msg_data_left(msg); 1168 1169 if (zc == 0) { 1170 bool merge = true; 1171 int i = skb_shinfo(skb)->nr_frags; 1172 struct page_frag *pfrag = sk_page_frag(sk); 1173 1174 if (!sk_page_frag_refill(sk, pfrag)) 1175 goto wait_for_space; 1176 1177 if (!skb_can_coalesce(skb, i, pfrag->page, 1178 pfrag->offset)) { 1179 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1180 tcp_mark_push(tp, skb); 1181 goto new_segment; 1182 } 1183 merge = false; 1184 } 1185 1186 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1187 1188 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1189 if (tcp_downgrade_zcopy_pure(sk, skb)) 1190 goto wait_for_space; 1191 skb_zcopy_downgrade_managed(skb); 1192 } 1193 1194 copy = tcp_wmem_schedule(sk, copy); 1195 if (!copy) 1196 goto wait_for_space; 1197 1198 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1199 pfrag->page, 1200 pfrag->offset, 1201 copy); 1202 if (err) 1203 goto do_error; 1204 1205 /* Update the skb. */ 1206 if (merge) { 1207 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1208 } else { 1209 skb_fill_page_desc(skb, i, pfrag->page, 1210 pfrag->offset, copy); 1211 page_ref_inc(pfrag->page); 1212 } 1213 pfrag->offset += copy; 1214 } else if (zc == MSG_ZEROCOPY) { 1215 /* First append to a fragless skb builds initial 1216 * pure zerocopy skb 1217 */ 1218 if (!skb->len) 1219 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1220 1221 if (!skb_zcopy_pure(skb)) { 1222 copy = tcp_wmem_schedule(sk, copy); 1223 if (!copy) 1224 goto wait_for_space; 1225 } 1226 1227 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1228 if (err == -EMSGSIZE || err == -EEXIST) { 1229 tcp_mark_push(tp, skb); 1230 goto new_segment; 1231 } 1232 if (err < 0) 1233 goto do_error; 1234 copy = err; 1235 } else if (zc == MSG_SPLICE_PAGES) { 1236 /* Splice in data if we can; copy if we can't. */ 1237 if (tcp_downgrade_zcopy_pure(sk, skb)) 1238 goto wait_for_space; 1239 copy = tcp_wmem_schedule(sk, copy); 1240 if (!copy) 1241 goto wait_for_space; 1242 1243 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1244 sk->sk_allocation); 1245 if (err < 0) { 1246 if (err == -EMSGSIZE) { 1247 tcp_mark_push(tp, skb); 1248 goto new_segment; 1249 } 1250 goto do_error; 1251 } 1252 copy = err; 1253 1254 if (!(flags & MSG_NO_SHARED_FRAGS)) 1255 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1256 1257 sk_wmem_queued_add(sk, copy); 1258 sk_mem_charge(sk, copy); 1259 } 1260 1261 if (!copied) 1262 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1263 1264 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1265 TCP_SKB_CB(skb)->end_seq += copy; 1266 tcp_skb_pcount_set(skb, 0); 1267 1268 copied += copy; 1269 if (!msg_data_left(msg)) { 1270 if (unlikely(flags & MSG_EOR)) 1271 TCP_SKB_CB(skb)->eor = 1; 1272 goto out; 1273 } 1274 1275 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1276 continue; 1277 1278 if (forced_push(tp)) { 1279 tcp_mark_push(tp, skb); 1280 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1281 } else if (skb == tcp_send_head(sk)) 1282 tcp_push_one(sk, mss_now); 1283 continue; 1284 1285 wait_for_space: 1286 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1287 if (copied) 1288 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1289 TCP_NAGLE_PUSH, size_goal); 1290 1291 err = sk_stream_wait_memory(sk, &timeo); 1292 if (err != 0) 1293 goto do_error; 1294 1295 mss_now = tcp_send_mss(sk, &size_goal, flags); 1296 } 1297 1298 out: 1299 if (copied) { 1300 tcp_tx_timestamp(sk, sockc.tsflags); 1301 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1302 } 1303 out_nopush: 1304 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1305 if (uarg && !msg->msg_ubuf) 1306 net_zcopy_put(uarg); 1307 return copied + copied_syn; 1308 1309 do_error: 1310 tcp_remove_empty_skb(sk); 1311 1312 if (copied + copied_syn) 1313 goto out; 1314 out_err: 1315 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1316 if (uarg && !msg->msg_ubuf) 1317 net_zcopy_put_abort(uarg, true); 1318 err = sk_stream_error(sk, flags, err); 1319 /* make sure we wake any epoll edge trigger waiter */ 1320 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1321 sk->sk_write_space(sk); 1322 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1323 } 1324 return err; 1325 } 1326 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1327 1328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1329 { 1330 int ret; 1331 1332 lock_sock(sk); 1333 ret = tcp_sendmsg_locked(sk, msg, size); 1334 release_sock(sk); 1335 1336 return ret; 1337 } 1338 EXPORT_SYMBOL(tcp_sendmsg); 1339 1340 void tcp_splice_eof(struct socket *sock) 1341 { 1342 struct sock *sk = sock->sk; 1343 struct tcp_sock *tp = tcp_sk(sk); 1344 int mss_now, size_goal; 1345 1346 if (!tcp_write_queue_tail(sk)) 1347 return; 1348 1349 lock_sock(sk); 1350 mss_now = tcp_send_mss(sk, &size_goal, 0); 1351 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1352 release_sock(sk); 1353 } 1354 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1355 1356 /* 1357 * Handle reading urgent data. BSD has very simple semantics for 1358 * this, no blocking and very strange errors 8) 1359 */ 1360 1361 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1362 { 1363 struct tcp_sock *tp = tcp_sk(sk); 1364 1365 /* No URG data to read. */ 1366 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1367 tp->urg_data == TCP_URG_READ) 1368 return -EINVAL; /* Yes this is right ! */ 1369 1370 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1371 return -ENOTCONN; 1372 1373 if (tp->urg_data & TCP_URG_VALID) { 1374 int err = 0; 1375 char c = tp->urg_data; 1376 1377 if (!(flags & MSG_PEEK)) 1378 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1379 1380 /* Read urgent data. */ 1381 msg->msg_flags |= MSG_OOB; 1382 1383 if (len > 0) { 1384 if (!(flags & MSG_TRUNC)) 1385 err = memcpy_to_msg(msg, &c, 1); 1386 len = 1; 1387 } else 1388 msg->msg_flags |= MSG_TRUNC; 1389 1390 return err ? -EFAULT : len; 1391 } 1392 1393 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1394 return 0; 1395 1396 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1397 * the available implementations agree in this case: 1398 * this call should never block, independent of the 1399 * blocking state of the socket. 1400 * Mike <pall@rz.uni-karlsruhe.de> 1401 */ 1402 return -EAGAIN; 1403 } 1404 1405 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1406 { 1407 struct sk_buff *skb; 1408 int copied = 0, err = 0; 1409 1410 /* XXX -- need to support SO_PEEK_OFF */ 1411 1412 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1413 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1414 if (err) 1415 return err; 1416 copied += skb->len; 1417 } 1418 1419 skb_queue_walk(&sk->sk_write_queue, skb) { 1420 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1421 if (err) 1422 break; 1423 1424 copied += skb->len; 1425 } 1426 1427 return err ?: copied; 1428 } 1429 1430 /* Clean up the receive buffer for full frames taken by the user, 1431 * then send an ACK if necessary. COPIED is the number of bytes 1432 * tcp_recvmsg has given to the user so far, it speeds up the 1433 * calculation of whether or not we must ACK for the sake of 1434 * a window update. 1435 */ 1436 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1437 { 1438 struct tcp_sock *tp = tcp_sk(sk); 1439 bool time_to_ack = false; 1440 1441 if (inet_csk_ack_scheduled(sk)) { 1442 const struct inet_connection_sock *icsk = inet_csk(sk); 1443 1444 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1445 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1446 /* 1447 * If this read emptied read buffer, we send ACK, if 1448 * connection is not bidirectional, user drained 1449 * receive buffer and there was a small segment 1450 * in queue. 1451 */ 1452 (copied > 0 && 1453 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1454 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1455 !inet_csk_in_pingpong_mode(sk))) && 1456 !atomic_read(&sk->sk_rmem_alloc))) 1457 time_to_ack = true; 1458 } 1459 1460 /* We send an ACK if we can now advertise a non-zero window 1461 * which has been raised "significantly". 1462 * 1463 * Even if window raised up to infinity, do not send window open ACK 1464 * in states, where we will not receive more. It is useless. 1465 */ 1466 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1467 __u32 rcv_window_now = tcp_receive_window(tp); 1468 1469 /* Optimize, __tcp_select_window() is not cheap. */ 1470 if (2*rcv_window_now <= tp->window_clamp) { 1471 __u32 new_window = __tcp_select_window(sk); 1472 1473 /* Send ACK now, if this read freed lots of space 1474 * in our buffer. Certainly, new_window is new window. 1475 * We can advertise it now, if it is not less than current one. 1476 * "Lots" means "at least twice" here. 1477 */ 1478 if (new_window && new_window >= 2 * rcv_window_now) 1479 time_to_ack = true; 1480 } 1481 } 1482 if (time_to_ack) 1483 tcp_send_ack(sk); 1484 } 1485 1486 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1487 { 1488 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1489 struct tcp_sock *tp = tcp_sk(sk); 1490 1491 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1492 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1493 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1494 __tcp_cleanup_rbuf(sk, copied); 1495 } 1496 1497 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1498 { 1499 __skb_unlink(skb, &sk->sk_receive_queue); 1500 if (likely(skb->destructor == sock_rfree)) { 1501 sock_rfree(skb); 1502 skb->destructor = NULL; 1503 skb->sk = NULL; 1504 return skb_attempt_defer_free(skb); 1505 } 1506 __kfree_skb(skb); 1507 } 1508 1509 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1510 { 1511 struct sk_buff *skb; 1512 u32 offset; 1513 1514 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1515 offset = seq - TCP_SKB_CB(skb)->seq; 1516 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1517 pr_err_once("%s: found a SYN, please report !\n", __func__); 1518 offset--; 1519 } 1520 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1521 *off = offset; 1522 return skb; 1523 } 1524 /* This looks weird, but this can happen if TCP collapsing 1525 * splitted a fat GRO packet, while we released socket lock 1526 * in skb_splice_bits() 1527 */ 1528 tcp_eat_recv_skb(sk, skb); 1529 } 1530 return NULL; 1531 } 1532 EXPORT_SYMBOL(tcp_recv_skb); 1533 1534 /* 1535 * This routine provides an alternative to tcp_recvmsg() for routines 1536 * that would like to handle copying from skbuffs directly in 'sendfile' 1537 * fashion. 1538 * Note: 1539 * - It is assumed that the socket was locked by the caller. 1540 * - The routine does not block. 1541 * - At present, there is no support for reading OOB data 1542 * or for 'peeking' the socket using this routine 1543 * (although both would be easy to implement). 1544 */ 1545 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1546 sk_read_actor_t recv_actor) 1547 { 1548 struct sk_buff *skb; 1549 struct tcp_sock *tp = tcp_sk(sk); 1550 u32 seq = tp->copied_seq; 1551 u32 offset; 1552 int copied = 0; 1553 1554 if (sk->sk_state == TCP_LISTEN) 1555 return -ENOTCONN; 1556 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1557 if (offset < skb->len) { 1558 int used; 1559 size_t len; 1560 1561 len = skb->len - offset; 1562 /* Stop reading if we hit a patch of urgent data */ 1563 if (unlikely(tp->urg_data)) { 1564 u32 urg_offset = tp->urg_seq - seq; 1565 if (urg_offset < len) 1566 len = urg_offset; 1567 if (!len) 1568 break; 1569 } 1570 used = recv_actor(desc, skb, offset, len); 1571 if (used <= 0) { 1572 if (!copied) 1573 copied = used; 1574 break; 1575 } 1576 if (WARN_ON_ONCE(used > len)) 1577 used = len; 1578 seq += used; 1579 copied += used; 1580 offset += used; 1581 1582 /* If recv_actor drops the lock (e.g. TCP splice 1583 * receive) the skb pointer might be invalid when 1584 * getting here: tcp_collapse might have deleted it 1585 * while aggregating skbs from the socket queue. 1586 */ 1587 skb = tcp_recv_skb(sk, seq - 1, &offset); 1588 if (!skb) 1589 break; 1590 /* TCP coalescing might have appended data to the skb. 1591 * Try to splice more frags 1592 */ 1593 if (offset + 1 != skb->len) 1594 continue; 1595 } 1596 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1597 tcp_eat_recv_skb(sk, skb); 1598 ++seq; 1599 break; 1600 } 1601 tcp_eat_recv_skb(sk, skb); 1602 if (!desc->count) 1603 break; 1604 WRITE_ONCE(tp->copied_seq, seq); 1605 } 1606 WRITE_ONCE(tp->copied_seq, seq); 1607 1608 tcp_rcv_space_adjust(sk); 1609 1610 /* Clean up data we have read: This will do ACK frames. */ 1611 if (copied > 0) { 1612 tcp_recv_skb(sk, seq, &offset); 1613 tcp_cleanup_rbuf(sk, copied); 1614 } 1615 return copied; 1616 } 1617 EXPORT_SYMBOL(tcp_read_sock); 1618 1619 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1620 { 1621 struct tcp_sock *tp = tcp_sk(sk); 1622 u32 seq = tp->copied_seq; 1623 struct sk_buff *skb; 1624 int copied = 0; 1625 u32 offset; 1626 1627 if (sk->sk_state == TCP_LISTEN) 1628 return -ENOTCONN; 1629 1630 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1631 u8 tcp_flags; 1632 int used; 1633 1634 __skb_unlink(skb, &sk->sk_receive_queue); 1635 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1636 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1637 used = recv_actor(sk, skb); 1638 if (used < 0) { 1639 if (!copied) 1640 copied = used; 1641 break; 1642 } 1643 seq += used; 1644 copied += used; 1645 1646 if (tcp_flags & TCPHDR_FIN) { 1647 ++seq; 1648 break; 1649 } 1650 } 1651 return copied; 1652 } 1653 EXPORT_SYMBOL(tcp_read_skb); 1654 1655 void tcp_read_done(struct sock *sk, size_t len) 1656 { 1657 struct tcp_sock *tp = tcp_sk(sk); 1658 u32 seq = tp->copied_seq; 1659 struct sk_buff *skb; 1660 size_t left; 1661 u32 offset; 1662 1663 if (sk->sk_state == TCP_LISTEN) 1664 return; 1665 1666 left = len; 1667 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1668 int used; 1669 1670 used = min_t(size_t, skb->len - offset, left); 1671 seq += used; 1672 left -= used; 1673 1674 if (skb->len > offset + used) 1675 break; 1676 1677 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1678 tcp_eat_recv_skb(sk, skb); 1679 ++seq; 1680 break; 1681 } 1682 tcp_eat_recv_skb(sk, skb); 1683 } 1684 WRITE_ONCE(tp->copied_seq, seq); 1685 1686 tcp_rcv_space_adjust(sk); 1687 1688 /* Clean up data we have read: This will do ACK frames. */ 1689 if (left != len) 1690 tcp_cleanup_rbuf(sk, len - left); 1691 } 1692 EXPORT_SYMBOL(tcp_read_done); 1693 1694 int tcp_peek_len(struct socket *sock) 1695 { 1696 return tcp_inq(sock->sk); 1697 } 1698 EXPORT_SYMBOL(tcp_peek_len); 1699 1700 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1701 int tcp_set_rcvlowat(struct sock *sk, int val) 1702 { 1703 int cap; 1704 1705 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1706 cap = sk->sk_rcvbuf >> 1; 1707 else 1708 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1709 val = min(val, cap); 1710 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1711 1712 /* Check if we need to signal EPOLLIN right now */ 1713 tcp_data_ready(sk); 1714 1715 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1716 return 0; 1717 1718 val <<= 1; 1719 if (val > sk->sk_rcvbuf) { 1720 WRITE_ONCE(sk->sk_rcvbuf, val); 1721 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1722 } 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(tcp_set_rcvlowat); 1726 1727 void tcp_update_recv_tstamps(struct sk_buff *skb, 1728 struct scm_timestamping_internal *tss) 1729 { 1730 if (skb->tstamp) 1731 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1732 else 1733 tss->ts[0] = (struct timespec64) {0}; 1734 1735 if (skb_hwtstamps(skb)->hwtstamp) 1736 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1737 else 1738 tss->ts[2] = (struct timespec64) {0}; 1739 } 1740 1741 #ifdef CONFIG_MMU 1742 const struct vm_operations_struct tcp_vm_ops = { 1743 }; 1744 1745 int tcp_mmap(struct file *file, struct socket *sock, 1746 struct vm_area_struct *vma) 1747 { 1748 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1749 return -EPERM; 1750 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1751 1752 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1753 vm_flags_set(vma, VM_MIXEDMAP); 1754 1755 vma->vm_ops = &tcp_vm_ops; 1756 return 0; 1757 } 1758 EXPORT_SYMBOL(tcp_mmap); 1759 1760 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1761 u32 *offset_frag) 1762 { 1763 skb_frag_t *frag; 1764 1765 if (unlikely(offset_skb >= skb->len)) 1766 return NULL; 1767 1768 offset_skb -= skb_headlen(skb); 1769 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1770 return NULL; 1771 1772 frag = skb_shinfo(skb)->frags; 1773 while (offset_skb) { 1774 if (skb_frag_size(frag) > offset_skb) { 1775 *offset_frag = offset_skb; 1776 return frag; 1777 } 1778 offset_skb -= skb_frag_size(frag); 1779 ++frag; 1780 } 1781 *offset_frag = 0; 1782 return frag; 1783 } 1784 1785 static bool can_map_frag(const skb_frag_t *frag) 1786 { 1787 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1788 } 1789 1790 static int find_next_mappable_frag(const skb_frag_t *frag, 1791 int remaining_in_skb) 1792 { 1793 int offset = 0; 1794 1795 if (likely(can_map_frag(frag))) 1796 return 0; 1797 1798 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1799 offset += skb_frag_size(frag); 1800 ++frag; 1801 } 1802 return offset; 1803 } 1804 1805 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1806 struct tcp_zerocopy_receive *zc, 1807 struct sk_buff *skb, u32 offset) 1808 { 1809 u32 frag_offset, partial_frag_remainder = 0; 1810 int mappable_offset; 1811 skb_frag_t *frag; 1812 1813 /* worst case: skip to next skb. try to improve on this case below */ 1814 zc->recv_skip_hint = skb->len - offset; 1815 1816 /* Find the frag containing this offset (and how far into that frag) */ 1817 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1818 if (!frag) 1819 return; 1820 1821 if (frag_offset) { 1822 struct skb_shared_info *info = skb_shinfo(skb); 1823 1824 /* We read part of the last frag, must recvmsg() rest of skb. */ 1825 if (frag == &info->frags[info->nr_frags - 1]) 1826 return; 1827 1828 /* Else, we must at least read the remainder in this frag. */ 1829 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1830 zc->recv_skip_hint -= partial_frag_remainder; 1831 ++frag; 1832 } 1833 1834 /* partial_frag_remainder: If part way through a frag, must read rest. 1835 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1836 * in partial_frag_remainder. 1837 */ 1838 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1839 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1840 } 1841 1842 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1843 int flags, struct scm_timestamping_internal *tss, 1844 int *cmsg_flags); 1845 static int receive_fallback_to_copy(struct sock *sk, 1846 struct tcp_zerocopy_receive *zc, int inq, 1847 struct scm_timestamping_internal *tss) 1848 { 1849 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1850 struct msghdr msg = {}; 1851 struct iovec iov; 1852 int err; 1853 1854 zc->length = 0; 1855 zc->recv_skip_hint = 0; 1856 1857 if (copy_address != zc->copybuf_address) 1858 return -EINVAL; 1859 1860 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1861 inq, &iov, &msg.msg_iter); 1862 if (err) 1863 return err; 1864 1865 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1866 tss, &zc->msg_flags); 1867 if (err < 0) 1868 return err; 1869 1870 zc->copybuf_len = err; 1871 if (likely(zc->copybuf_len)) { 1872 struct sk_buff *skb; 1873 u32 offset; 1874 1875 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1876 if (skb) 1877 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1878 } 1879 return 0; 1880 } 1881 1882 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1883 struct sk_buff *skb, u32 copylen, 1884 u32 *offset, u32 *seq) 1885 { 1886 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1887 struct msghdr msg = {}; 1888 struct iovec iov; 1889 int err; 1890 1891 if (copy_address != zc->copybuf_address) 1892 return -EINVAL; 1893 1894 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1895 copylen, &iov, &msg.msg_iter); 1896 if (err) 1897 return err; 1898 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1899 if (err) 1900 return err; 1901 zc->recv_skip_hint -= copylen; 1902 *offset += copylen; 1903 *seq += copylen; 1904 return (__s32)copylen; 1905 } 1906 1907 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1908 struct sock *sk, 1909 struct sk_buff *skb, 1910 u32 *seq, 1911 s32 copybuf_len, 1912 struct scm_timestamping_internal *tss) 1913 { 1914 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1915 1916 if (!copylen) 1917 return 0; 1918 /* skb is null if inq < PAGE_SIZE. */ 1919 if (skb) { 1920 offset = *seq - TCP_SKB_CB(skb)->seq; 1921 } else { 1922 skb = tcp_recv_skb(sk, *seq, &offset); 1923 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1924 tcp_update_recv_tstamps(skb, tss); 1925 zc->msg_flags |= TCP_CMSG_TS; 1926 } 1927 } 1928 1929 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1930 seq); 1931 return zc->copybuf_len < 0 ? 0 : copylen; 1932 } 1933 1934 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1935 struct page **pending_pages, 1936 unsigned long pages_remaining, 1937 unsigned long *address, 1938 u32 *length, 1939 u32 *seq, 1940 struct tcp_zerocopy_receive *zc, 1941 u32 total_bytes_to_map, 1942 int err) 1943 { 1944 /* At least one page did not map. Try zapping if we skipped earlier. */ 1945 if (err == -EBUSY && 1946 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1947 u32 maybe_zap_len; 1948 1949 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1950 *length + /* Mapped or pending */ 1951 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1952 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1953 err = 0; 1954 } 1955 1956 if (!err) { 1957 unsigned long leftover_pages = pages_remaining; 1958 int bytes_mapped; 1959 1960 /* We called zap_page_range_single, try to reinsert. */ 1961 err = vm_insert_pages(vma, *address, 1962 pending_pages, 1963 &pages_remaining); 1964 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1965 *seq += bytes_mapped; 1966 *address += bytes_mapped; 1967 } 1968 if (err) { 1969 /* Either we were unable to zap, OR we zapped, retried an 1970 * insert, and still had an issue. Either ways, pages_remaining 1971 * is the number of pages we were unable to map, and we unroll 1972 * some state we speculatively touched before. 1973 */ 1974 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1975 1976 *length -= bytes_not_mapped; 1977 zc->recv_skip_hint += bytes_not_mapped; 1978 } 1979 return err; 1980 } 1981 1982 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1983 struct page **pages, 1984 unsigned int pages_to_map, 1985 unsigned long *address, 1986 u32 *length, 1987 u32 *seq, 1988 struct tcp_zerocopy_receive *zc, 1989 u32 total_bytes_to_map) 1990 { 1991 unsigned long pages_remaining = pages_to_map; 1992 unsigned int pages_mapped; 1993 unsigned int bytes_mapped; 1994 int err; 1995 1996 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1997 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1998 bytes_mapped = PAGE_SIZE * pages_mapped; 1999 /* Even if vm_insert_pages fails, it may have partially succeeded in 2000 * mapping (some but not all of the pages). 2001 */ 2002 *seq += bytes_mapped; 2003 *address += bytes_mapped; 2004 2005 if (likely(!err)) 2006 return 0; 2007 2008 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2009 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2010 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2011 err); 2012 } 2013 2014 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2015 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2016 struct tcp_zerocopy_receive *zc, 2017 struct scm_timestamping_internal *tss) 2018 { 2019 unsigned long msg_control_addr; 2020 struct msghdr cmsg_dummy; 2021 2022 msg_control_addr = (unsigned long)zc->msg_control; 2023 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2024 cmsg_dummy.msg_controllen = 2025 (__kernel_size_t)zc->msg_controllen; 2026 cmsg_dummy.msg_flags = in_compat_syscall() 2027 ? MSG_CMSG_COMPAT : 0; 2028 cmsg_dummy.msg_control_is_user = true; 2029 zc->msg_flags = 0; 2030 if (zc->msg_control == msg_control_addr && 2031 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2032 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2033 zc->msg_control = (__u64) 2034 ((uintptr_t)cmsg_dummy.msg_control_user); 2035 zc->msg_controllen = 2036 (__u64)cmsg_dummy.msg_controllen; 2037 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2038 } 2039 } 2040 2041 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2042 unsigned long address, 2043 bool *mmap_locked) 2044 { 2045 struct vm_area_struct *vma = NULL; 2046 2047 #ifdef CONFIG_PER_VMA_LOCK 2048 vma = lock_vma_under_rcu(mm, address); 2049 #endif 2050 if (vma) { 2051 if (!vma_is_tcp(vma)) { 2052 vma_end_read(vma); 2053 return NULL; 2054 } 2055 *mmap_locked = false; 2056 return vma; 2057 } 2058 2059 mmap_read_lock(mm); 2060 vma = vma_lookup(mm, address); 2061 if (!vma || !vma_is_tcp(vma)) { 2062 mmap_read_unlock(mm); 2063 return NULL; 2064 } 2065 *mmap_locked = true; 2066 return vma; 2067 } 2068 2069 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2070 static int tcp_zerocopy_receive(struct sock *sk, 2071 struct tcp_zerocopy_receive *zc, 2072 struct scm_timestamping_internal *tss) 2073 { 2074 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2075 unsigned long address = (unsigned long)zc->address; 2076 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2077 s32 copybuf_len = zc->copybuf_len; 2078 struct tcp_sock *tp = tcp_sk(sk); 2079 const skb_frag_t *frags = NULL; 2080 unsigned int pages_to_map = 0; 2081 struct vm_area_struct *vma; 2082 struct sk_buff *skb = NULL; 2083 u32 seq = tp->copied_seq; 2084 u32 total_bytes_to_map; 2085 int inq = tcp_inq(sk); 2086 bool mmap_locked; 2087 int ret; 2088 2089 zc->copybuf_len = 0; 2090 zc->msg_flags = 0; 2091 2092 if (address & (PAGE_SIZE - 1) || address != zc->address) 2093 return -EINVAL; 2094 2095 if (sk->sk_state == TCP_LISTEN) 2096 return -ENOTCONN; 2097 2098 sock_rps_record_flow(sk); 2099 2100 if (inq && inq <= copybuf_len) 2101 return receive_fallback_to_copy(sk, zc, inq, tss); 2102 2103 if (inq < PAGE_SIZE) { 2104 zc->length = 0; 2105 zc->recv_skip_hint = inq; 2106 if (!inq && sock_flag(sk, SOCK_DONE)) 2107 return -EIO; 2108 return 0; 2109 } 2110 2111 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2112 if (!vma) 2113 return -EINVAL; 2114 2115 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2116 avail_len = min_t(u32, vma_len, inq); 2117 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2118 if (total_bytes_to_map) { 2119 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2120 zap_page_range_single(vma, address, total_bytes_to_map, 2121 NULL); 2122 zc->length = total_bytes_to_map; 2123 zc->recv_skip_hint = 0; 2124 } else { 2125 zc->length = avail_len; 2126 zc->recv_skip_hint = avail_len; 2127 } 2128 ret = 0; 2129 while (length + PAGE_SIZE <= zc->length) { 2130 int mappable_offset; 2131 struct page *page; 2132 2133 if (zc->recv_skip_hint < PAGE_SIZE) { 2134 u32 offset_frag; 2135 2136 if (skb) { 2137 if (zc->recv_skip_hint > 0) 2138 break; 2139 skb = skb->next; 2140 offset = seq - TCP_SKB_CB(skb)->seq; 2141 } else { 2142 skb = tcp_recv_skb(sk, seq, &offset); 2143 } 2144 2145 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2146 tcp_update_recv_tstamps(skb, tss); 2147 zc->msg_flags |= TCP_CMSG_TS; 2148 } 2149 zc->recv_skip_hint = skb->len - offset; 2150 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2151 if (!frags || offset_frag) 2152 break; 2153 } 2154 2155 mappable_offset = find_next_mappable_frag(frags, 2156 zc->recv_skip_hint); 2157 if (mappable_offset) { 2158 zc->recv_skip_hint = mappable_offset; 2159 break; 2160 } 2161 page = skb_frag_page(frags); 2162 prefetchw(page); 2163 pages[pages_to_map++] = page; 2164 length += PAGE_SIZE; 2165 zc->recv_skip_hint -= PAGE_SIZE; 2166 frags++; 2167 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2168 zc->recv_skip_hint < PAGE_SIZE) { 2169 /* Either full batch, or we're about to go to next skb 2170 * (and we cannot unroll failed ops across skbs). 2171 */ 2172 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2173 pages_to_map, 2174 &address, &length, 2175 &seq, zc, 2176 total_bytes_to_map); 2177 if (ret) 2178 goto out; 2179 pages_to_map = 0; 2180 } 2181 } 2182 if (pages_to_map) { 2183 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2184 &address, &length, &seq, 2185 zc, total_bytes_to_map); 2186 } 2187 out: 2188 if (mmap_locked) 2189 mmap_read_unlock(current->mm); 2190 else 2191 vma_end_read(vma); 2192 /* Try to copy straggler data. */ 2193 if (!ret) 2194 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2195 2196 if (length + copylen) { 2197 WRITE_ONCE(tp->copied_seq, seq); 2198 tcp_rcv_space_adjust(sk); 2199 2200 /* Clean up data we have read: This will do ACK frames. */ 2201 tcp_recv_skb(sk, seq, &offset); 2202 tcp_cleanup_rbuf(sk, length + copylen); 2203 ret = 0; 2204 if (length == zc->length) 2205 zc->recv_skip_hint = 0; 2206 } else { 2207 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2208 ret = -EIO; 2209 } 2210 zc->length = length; 2211 return ret; 2212 } 2213 #endif 2214 2215 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2216 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2217 struct scm_timestamping_internal *tss) 2218 { 2219 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2220 bool has_timestamping = false; 2221 2222 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2223 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2224 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2225 if (new_tstamp) { 2226 struct __kernel_timespec kts = { 2227 .tv_sec = tss->ts[0].tv_sec, 2228 .tv_nsec = tss->ts[0].tv_nsec, 2229 }; 2230 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2231 sizeof(kts), &kts); 2232 } else { 2233 struct __kernel_old_timespec ts_old = { 2234 .tv_sec = tss->ts[0].tv_sec, 2235 .tv_nsec = tss->ts[0].tv_nsec, 2236 }; 2237 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2238 sizeof(ts_old), &ts_old); 2239 } 2240 } else { 2241 if (new_tstamp) { 2242 struct __kernel_sock_timeval stv = { 2243 .tv_sec = tss->ts[0].tv_sec, 2244 .tv_usec = tss->ts[0].tv_nsec / 1000, 2245 }; 2246 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2247 sizeof(stv), &stv); 2248 } else { 2249 struct __kernel_old_timeval tv = { 2250 .tv_sec = tss->ts[0].tv_sec, 2251 .tv_usec = tss->ts[0].tv_nsec / 1000, 2252 }; 2253 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2254 sizeof(tv), &tv); 2255 } 2256 } 2257 } 2258 2259 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2260 has_timestamping = true; 2261 else 2262 tss->ts[0] = (struct timespec64) {0}; 2263 } 2264 2265 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2266 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2267 has_timestamping = true; 2268 else 2269 tss->ts[2] = (struct timespec64) {0}; 2270 } 2271 2272 if (has_timestamping) { 2273 tss->ts[1] = (struct timespec64) {0}; 2274 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2275 put_cmsg_scm_timestamping64(msg, tss); 2276 else 2277 put_cmsg_scm_timestamping(msg, tss); 2278 } 2279 } 2280 2281 static int tcp_inq_hint(struct sock *sk) 2282 { 2283 const struct tcp_sock *tp = tcp_sk(sk); 2284 u32 copied_seq = READ_ONCE(tp->copied_seq); 2285 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2286 int inq; 2287 2288 inq = rcv_nxt - copied_seq; 2289 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2290 lock_sock(sk); 2291 inq = tp->rcv_nxt - tp->copied_seq; 2292 release_sock(sk); 2293 } 2294 /* After receiving a FIN, tell the user-space to continue reading 2295 * by returning a non-zero inq. 2296 */ 2297 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2298 inq = 1; 2299 return inq; 2300 } 2301 2302 /* 2303 * This routine copies from a sock struct into the user buffer. 2304 * 2305 * Technical note: in 2.3 we work on _locked_ socket, so that 2306 * tricks with *seq access order and skb->users are not required. 2307 * Probably, code can be easily improved even more. 2308 */ 2309 2310 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2311 int flags, struct scm_timestamping_internal *tss, 2312 int *cmsg_flags) 2313 { 2314 struct tcp_sock *tp = tcp_sk(sk); 2315 int copied = 0; 2316 u32 peek_seq; 2317 u32 *seq; 2318 unsigned long used; 2319 int err; 2320 int target; /* Read at least this many bytes */ 2321 long timeo; 2322 struct sk_buff *skb, *last; 2323 u32 urg_hole = 0; 2324 2325 err = -ENOTCONN; 2326 if (sk->sk_state == TCP_LISTEN) 2327 goto out; 2328 2329 if (tp->recvmsg_inq) { 2330 *cmsg_flags = TCP_CMSG_INQ; 2331 msg->msg_get_inq = 1; 2332 } 2333 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2334 2335 /* Urgent data needs to be handled specially. */ 2336 if (flags & MSG_OOB) 2337 goto recv_urg; 2338 2339 if (unlikely(tp->repair)) { 2340 err = -EPERM; 2341 if (!(flags & MSG_PEEK)) 2342 goto out; 2343 2344 if (tp->repair_queue == TCP_SEND_QUEUE) 2345 goto recv_sndq; 2346 2347 err = -EINVAL; 2348 if (tp->repair_queue == TCP_NO_QUEUE) 2349 goto out; 2350 2351 /* 'common' recv queue MSG_PEEK-ing */ 2352 } 2353 2354 seq = &tp->copied_seq; 2355 if (flags & MSG_PEEK) { 2356 peek_seq = tp->copied_seq; 2357 seq = &peek_seq; 2358 } 2359 2360 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2361 2362 do { 2363 u32 offset; 2364 2365 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2366 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2367 if (copied) 2368 break; 2369 if (signal_pending(current)) { 2370 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2371 break; 2372 } 2373 } 2374 2375 /* Next get a buffer. */ 2376 2377 last = skb_peek_tail(&sk->sk_receive_queue); 2378 skb_queue_walk(&sk->sk_receive_queue, skb) { 2379 last = skb; 2380 /* Now that we have two receive queues this 2381 * shouldn't happen. 2382 */ 2383 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2384 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2385 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2386 flags)) 2387 break; 2388 2389 offset = *seq - TCP_SKB_CB(skb)->seq; 2390 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2391 pr_err_once("%s: found a SYN, please report !\n", __func__); 2392 offset--; 2393 } 2394 if (offset < skb->len) 2395 goto found_ok_skb; 2396 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2397 goto found_fin_ok; 2398 WARN(!(flags & MSG_PEEK), 2399 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2400 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2401 } 2402 2403 /* Well, if we have backlog, try to process it now yet. */ 2404 2405 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2406 break; 2407 2408 if (copied) { 2409 if (!timeo || 2410 sk->sk_err || 2411 sk->sk_state == TCP_CLOSE || 2412 (sk->sk_shutdown & RCV_SHUTDOWN) || 2413 signal_pending(current)) 2414 break; 2415 } else { 2416 if (sock_flag(sk, SOCK_DONE)) 2417 break; 2418 2419 if (sk->sk_err) { 2420 copied = sock_error(sk); 2421 break; 2422 } 2423 2424 if (sk->sk_shutdown & RCV_SHUTDOWN) 2425 break; 2426 2427 if (sk->sk_state == TCP_CLOSE) { 2428 /* This occurs when user tries to read 2429 * from never connected socket. 2430 */ 2431 copied = -ENOTCONN; 2432 break; 2433 } 2434 2435 if (!timeo) { 2436 copied = -EAGAIN; 2437 break; 2438 } 2439 2440 if (signal_pending(current)) { 2441 copied = sock_intr_errno(timeo); 2442 break; 2443 } 2444 } 2445 2446 if (copied >= target) { 2447 /* Do not sleep, just process backlog. */ 2448 __sk_flush_backlog(sk); 2449 } else { 2450 tcp_cleanup_rbuf(sk, copied); 2451 sk_wait_data(sk, &timeo, last); 2452 } 2453 2454 if ((flags & MSG_PEEK) && 2455 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2456 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2457 current->comm, 2458 task_pid_nr(current)); 2459 peek_seq = tp->copied_seq; 2460 } 2461 continue; 2462 2463 found_ok_skb: 2464 /* Ok so how much can we use? */ 2465 used = skb->len - offset; 2466 if (len < used) 2467 used = len; 2468 2469 /* Do we have urgent data here? */ 2470 if (unlikely(tp->urg_data)) { 2471 u32 urg_offset = tp->urg_seq - *seq; 2472 if (urg_offset < used) { 2473 if (!urg_offset) { 2474 if (!sock_flag(sk, SOCK_URGINLINE)) { 2475 WRITE_ONCE(*seq, *seq + 1); 2476 urg_hole++; 2477 offset++; 2478 used--; 2479 if (!used) 2480 goto skip_copy; 2481 } 2482 } else 2483 used = urg_offset; 2484 } 2485 } 2486 2487 if (!(flags & MSG_TRUNC)) { 2488 err = skb_copy_datagram_msg(skb, offset, msg, used); 2489 if (err) { 2490 /* Exception. Bailout! */ 2491 if (!copied) 2492 copied = -EFAULT; 2493 break; 2494 } 2495 } 2496 2497 WRITE_ONCE(*seq, *seq + used); 2498 copied += used; 2499 len -= used; 2500 2501 tcp_rcv_space_adjust(sk); 2502 2503 skip_copy: 2504 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2505 WRITE_ONCE(tp->urg_data, 0); 2506 tcp_fast_path_check(sk); 2507 } 2508 2509 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2510 tcp_update_recv_tstamps(skb, tss); 2511 *cmsg_flags |= TCP_CMSG_TS; 2512 } 2513 2514 if (used + offset < skb->len) 2515 continue; 2516 2517 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2518 goto found_fin_ok; 2519 if (!(flags & MSG_PEEK)) 2520 tcp_eat_recv_skb(sk, skb); 2521 continue; 2522 2523 found_fin_ok: 2524 /* Process the FIN. */ 2525 WRITE_ONCE(*seq, *seq + 1); 2526 if (!(flags & MSG_PEEK)) 2527 tcp_eat_recv_skb(sk, skb); 2528 break; 2529 } while (len > 0); 2530 2531 /* According to UNIX98, msg_name/msg_namelen are ignored 2532 * on connected socket. I was just happy when found this 8) --ANK 2533 */ 2534 2535 /* Clean up data we have read: This will do ACK frames. */ 2536 tcp_cleanup_rbuf(sk, copied); 2537 return copied; 2538 2539 out: 2540 return err; 2541 2542 recv_urg: 2543 err = tcp_recv_urg(sk, msg, len, flags); 2544 goto out; 2545 2546 recv_sndq: 2547 err = tcp_peek_sndq(sk, msg, len); 2548 goto out; 2549 } 2550 2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2552 int *addr_len) 2553 { 2554 int cmsg_flags = 0, ret; 2555 struct scm_timestamping_internal tss; 2556 2557 if (unlikely(flags & MSG_ERRQUEUE)) 2558 return inet_recv_error(sk, msg, len, addr_len); 2559 2560 if (sk_can_busy_loop(sk) && 2561 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2562 sk->sk_state == TCP_ESTABLISHED) 2563 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2564 2565 lock_sock(sk); 2566 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2567 release_sock(sk); 2568 2569 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2570 if (cmsg_flags & TCP_CMSG_TS) 2571 tcp_recv_timestamp(msg, sk, &tss); 2572 if (msg->msg_get_inq) { 2573 msg->msg_inq = tcp_inq_hint(sk); 2574 if (cmsg_flags & TCP_CMSG_INQ) 2575 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2576 sizeof(msg->msg_inq), &msg->msg_inq); 2577 } 2578 } 2579 return ret; 2580 } 2581 EXPORT_SYMBOL(tcp_recvmsg); 2582 2583 void tcp_set_state(struct sock *sk, int state) 2584 { 2585 int oldstate = sk->sk_state; 2586 2587 /* We defined a new enum for TCP states that are exported in BPF 2588 * so as not force the internal TCP states to be frozen. The 2589 * following checks will detect if an internal state value ever 2590 * differs from the BPF value. If this ever happens, then we will 2591 * need to remap the internal value to the BPF value before calling 2592 * tcp_call_bpf_2arg. 2593 */ 2594 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2595 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2596 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2597 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2598 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2599 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2600 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2601 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2602 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2603 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2604 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2605 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2606 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2607 2608 /* bpf uapi header bpf.h defines an anonymous enum with values 2609 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2610 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2611 * But clang built vmlinux does not have this enum in DWARF 2612 * since clang removes the above code before generating IR/debuginfo. 2613 * Let us explicitly emit the type debuginfo to ensure the 2614 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2615 * regardless of which compiler is used. 2616 */ 2617 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2618 2619 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2620 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2621 2622 switch (state) { 2623 case TCP_ESTABLISHED: 2624 if (oldstate != TCP_ESTABLISHED) 2625 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2626 break; 2627 2628 case TCP_CLOSE: 2629 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2630 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2631 2632 sk->sk_prot->unhash(sk); 2633 if (inet_csk(sk)->icsk_bind_hash && 2634 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2635 inet_put_port(sk); 2636 fallthrough; 2637 default: 2638 if (oldstate == TCP_ESTABLISHED) 2639 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2640 } 2641 2642 /* Change state AFTER socket is unhashed to avoid closed 2643 * socket sitting in hash tables. 2644 */ 2645 inet_sk_state_store(sk, state); 2646 } 2647 EXPORT_SYMBOL_GPL(tcp_set_state); 2648 2649 /* 2650 * State processing on a close. This implements the state shift for 2651 * sending our FIN frame. Note that we only send a FIN for some 2652 * states. A shutdown() may have already sent the FIN, or we may be 2653 * closed. 2654 */ 2655 2656 static const unsigned char new_state[16] = { 2657 /* current state: new state: action: */ 2658 [0 /* (Invalid) */] = TCP_CLOSE, 2659 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2660 [TCP_SYN_SENT] = TCP_CLOSE, 2661 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2662 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2663 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2664 [TCP_TIME_WAIT] = TCP_CLOSE, 2665 [TCP_CLOSE] = TCP_CLOSE, 2666 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2667 [TCP_LAST_ACK] = TCP_LAST_ACK, 2668 [TCP_LISTEN] = TCP_CLOSE, 2669 [TCP_CLOSING] = TCP_CLOSING, 2670 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2671 }; 2672 2673 static int tcp_close_state(struct sock *sk) 2674 { 2675 int next = (int)new_state[sk->sk_state]; 2676 int ns = next & TCP_STATE_MASK; 2677 2678 tcp_set_state(sk, ns); 2679 2680 return next & TCP_ACTION_FIN; 2681 } 2682 2683 /* 2684 * Shutdown the sending side of a connection. Much like close except 2685 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2686 */ 2687 2688 void tcp_shutdown(struct sock *sk, int how) 2689 { 2690 /* We need to grab some memory, and put together a FIN, 2691 * and then put it into the queue to be sent. 2692 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2693 */ 2694 if (!(how & SEND_SHUTDOWN)) 2695 return; 2696 2697 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2698 if ((1 << sk->sk_state) & 2699 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2700 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2701 /* Clear out any half completed packets. FIN if needed. */ 2702 if (tcp_close_state(sk)) 2703 tcp_send_fin(sk); 2704 } 2705 } 2706 EXPORT_SYMBOL(tcp_shutdown); 2707 2708 int tcp_orphan_count_sum(void) 2709 { 2710 int i, total = 0; 2711 2712 for_each_possible_cpu(i) 2713 total += per_cpu(tcp_orphan_count, i); 2714 2715 return max(total, 0); 2716 } 2717 2718 static int tcp_orphan_cache; 2719 static struct timer_list tcp_orphan_timer; 2720 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2721 2722 static void tcp_orphan_update(struct timer_list *unused) 2723 { 2724 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2725 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2726 } 2727 2728 static bool tcp_too_many_orphans(int shift) 2729 { 2730 return READ_ONCE(tcp_orphan_cache) << shift > 2731 READ_ONCE(sysctl_tcp_max_orphans); 2732 } 2733 2734 bool tcp_check_oom(struct sock *sk, int shift) 2735 { 2736 bool too_many_orphans, out_of_socket_memory; 2737 2738 too_many_orphans = tcp_too_many_orphans(shift); 2739 out_of_socket_memory = tcp_out_of_memory(sk); 2740 2741 if (too_many_orphans) 2742 net_info_ratelimited("too many orphaned sockets\n"); 2743 if (out_of_socket_memory) 2744 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2745 return too_many_orphans || out_of_socket_memory; 2746 } 2747 2748 void __tcp_close(struct sock *sk, long timeout) 2749 { 2750 struct sk_buff *skb; 2751 int data_was_unread = 0; 2752 int state; 2753 2754 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2755 2756 if (sk->sk_state == TCP_LISTEN) { 2757 tcp_set_state(sk, TCP_CLOSE); 2758 2759 /* Special case. */ 2760 inet_csk_listen_stop(sk); 2761 2762 goto adjudge_to_death; 2763 } 2764 2765 /* We need to flush the recv. buffs. We do this only on the 2766 * descriptor close, not protocol-sourced closes, because the 2767 * reader process may not have drained the data yet! 2768 */ 2769 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2770 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2771 2772 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2773 len--; 2774 data_was_unread += len; 2775 __kfree_skb(skb); 2776 } 2777 2778 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2779 if (sk->sk_state == TCP_CLOSE) 2780 goto adjudge_to_death; 2781 2782 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2783 * data was lost. To witness the awful effects of the old behavior of 2784 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2785 * GET in an FTP client, suspend the process, wait for the client to 2786 * advertise a zero window, then kill -9 the FTP client, wheee... 2787 * Note: timeout is always zero in such a case. 2788 */ 2789 if (unlikely(tcp_sk(sk)->repair)) { 2790 sk->sk_prot->disconnect(sk, 0); 2791 } else if (data_was_unread) { 2792 /* Unread data was tossed, zap the connection. */ 2793 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2794 tcp_set_state(sk, TCP_CLOSE); 2795 tcp_send_active_reset(sk, sk->sk_allocation); 2796 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2797 /* Check zero linger _after_ checking for unread data. */ 2798 sk->sk_prot->disconnect(sk, 0); 2799 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2800 } else if (tcp_close_state(sk)) { 2801 /* We FIN if the application ate all the data before 2802 * zapping the connection. 2803 */ 2804 2805 /* RED-PEN. Formally speaking, we have broken TCP state 2806 * machine. State transitions: 2807 * 2808 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2809 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2810 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2811 * 2812 * are legal only when FIN has been sent (i.e. in window), 2813 * rather than queued out of window. Purists blame. 2814 * 2815 * F.e. "RFC state" is ESTABLISHED, 2816 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2817 * 2818 * The visible declinations are that sometimes 2819 * we enter time-wait state, when it is not required really 2820 * (harmless), do not send active resets, when they are 2821 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2822 * they look as CLOSING or LAST_ACK for Linux) 2823 * Probably, I missed some more holelets. 2824 * --ANK 2825 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2826 * in a single packet! (May consider it later but will 2827 * probably need API support or TCP_CORK SYN-ACK until 2828 * data is written and socket is closed.) 2829 */ 2830 tcp_send_fin(sk); 2831 } 2832 2833 sk_stream_wait_close(sk, timeout); 2834 2835 adjudge_to_death: 2836 state = sk->sk_state; 2837 sock_hold(sk); 2838 sock_orphan(sk); 2839 2840 local_bh_disable(); 2841 bh_lock_sock(sk); 2842 /* remove backlog if any, without releasing ownership. */ 2843 __release_sock(sk); 2844 2845 this_cpu_inc(tcp_orphan_count); 2846 2847 /* Have we already been destroyed by a softirq or backlog? */ 2848 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2849 goto out; 2850 2851 /* This is a (useful) BSD violating of the RFC. There is a 2852 * problem with TCP as specified in that the other end could 2853 * keep a socket open forever with no application left this end. 2854 * We use a 1 minute timeout (about the same as BSD) then kill 2855 * our end. If they send after that then tough - BUT: long enough 2856 * that we won't make the old 4*rto = almost no time - whoops 2857 * reset mistake. 2858 * 2859 * Nope, it was not mistake. It is really desired behaviour 2860 * f.e. on http servers, when such sockets are useless, but 2861 * consume significant resources. Let's do it with special 2862 * linger2 option. --ANK 2863 */ 2864 2865 if (sk->sk_state == TCP_FIN_WAIT2) { 2866 struct tcp_sock *tp = tcp_sk(sk); 2867 if (tp->linger2 < 0) { 2868 tcp_set_state(sk, TCP_CLOSE); 2869 tcp_send_active_reset(sk, GFP_ATOMIC); 2870 __NET_INC_STATS(sock_net(sk), 2871 LINUX_MIB_TCPABORTONLINGER); 2872 } else { 2873 const int tmo = tcp_fin_time(sk); 2874 2875 if (tmo > TCP_TIMEWAIT_LEN) { 2876 inet_csk_reset_keepalive_timer(sk, 2877 tmo - TCP_TIMEWAIT_LEN); 2878 } else { 2879 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2880 goto out; 2881 } 2882 } 2883 } 2884 if (sk->sk_state != TCP_CLOSE) { 2885 if (tcp_check_oom(sk, 0)) { 2886 tcp_set_state(sk, TCP_CLOSE); 2887 tcp_send_active_reset(sk, GFP_ATOMIC); 2888 __NET_INC_STATS(sock_net(sk), 2889 LINUX_MIB_TCPABORTONMEMORY); 2890 } else if (!check_net(sock_net(sk))) { 2891 /* Not possible to send reset; just close */ 2892 tcp_set_state(sk, TCP_CLOSE); 2893 } 2894 } 2895 2896 if (sk->sk_state == TCP_CLOSE) { 2897 struct request_sock *req; 2898 2899 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2900 lockdep_sock_is_held(sk)); 2901 /* We could get here with a non-NULL req if the socket is 2902 * aborted (e.g., closed with unread data) before 3WHS 2903 * finishes. 2904 */ 2905 if (req) 2906 reqsk_fastopen_remove(sk, req, false); 2907 inet_csk_destroy_sock(sk); 2908 } 2909 /* Otherwise, socket is reprieved until protocol close. */ 2910 2911 out: 2912 bh_unlock_sock(sk); 2913 local_bh_enable(); 2914 } 2915 2916 void tcp_close(struct sock *sk, long timeout) 2917 { 2918 lock_sock(sk); 2919 __tcp_close(sk, timeout); 2920 release_sock(sk); 2921 sock_put(sk); 2922 } 2923 EXPORT_SYMBOL(tcp_close); 2924 2925 /* These states need RST on ABORT according to RFC793 */ 2926 2927 static inline bool tcp_need_reset(int state) 2928 { 2929 return (1 << state) & 2930 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2931 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2932 } 2933 2934 static void tcp_rtx_queue_purge(struct sock *sk) 2935 { 2936 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2937 2938 tcp_sk(sk)->highest_sack = NULL; 2939 while (p) { 2940 struct sk_buff *skb = rb_to_skb(p); 2941 2942 p = rb_next(p); 2943 /* Since we are deleting whole queue, no need to 2944 * list_del(&skb->tcp_tsorted_anchor) 2945 */ 2946 tcp_rtx_queue_unlink(skb, sk); 2947 tcp_wmem_free_skb(sk, skb); 2948 } 2949 } 2950 2951 void tcp_write_queue_purge(struct sock *sk) 2952 { 2953 struct sk_buff *skb; 2954 2955 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2956 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2957 tcp_skb_tsorted_anchor_cleanup(skb); 2958 tcp_wmem_free_skb(sk, skb); 2959 } 2960 tcp_rtx_queue_purge(sk); 2961 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2962 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2963 tcp_sk(sk)->packets_out = 0; 2964 inet_csk(sk)->icsk_backoff = 0; 2965 } 2966 2967 int tcp_disconnect(struct sock *sk, int flags) 2968 { 2969 struct inet_sock *inet = inet_sk(sk); 2970 struct inet_connection_sock *icsk = inet_csk(sk); 2971 struct tcp_sock *tp = tcp_sk(sk); 2972 int old_state = sk->sk_state; 2973 u32 seq; 2974 2975 /* Deny disconnect if other threads are blocked in sk_wait_event() 2976 * or inet_wait_for_connect(). 2977 */ 2978 if (sk->sk_wait_pending) 2979 return -EBUSY; 2980 2981 if (old_state != TCP_CLOSE) 2982 tcp_set_state(sk, TCP_CLOSE); 2983 2984 /* ABORT function of RFC793 */ 2985 if (old_state == TCP_LISTEN) { 2986 inet_csk_listen_stop(sk); 2987 } else if (unlikely(tp->repair)) { 2988 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2989 } else if (tcp_need_reset(old_state) || 2990 (tp->snd_nxt != tp->write_seq && 2991 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2992 /* The last check adjusts for discrepancy of Linux wrt. RFC 2993 * states 2994 */ 2995 tcp_send_active_reset(sk, gfp_any()); 2996 WRITE_ONCE(sk->sk_err, ECONNRESET); 2997 } else if (old_state == TCP_SYN_SENT) 2998 WRITE_ONCE(sk->sk_err, ECONNRESET); 2999 3000 tcp_clear_xmit_timers(sk); 3001 __skb_queue_purge(&sk->sk_receive_queue); 3002 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3003 WRITE_ONCE(tp->urg_data, 0); 3004 tcp_write_queue_purge(sk); 3005 tcp_fastopen_active_disable_ofo_check(sk); 3006 skb_rbtree_purge(&tp->out_of_order_queue); 3007 3008 inet->inet_dport = 0; 3009 3010 inet_bhash2_reset_saddr(sk); 3011 3012 WRITE_ONCE(sk->sk_shutdown, 0); 3013 sock_reset_flag(sk, SOCK_DONE); 3014 tp->srtt_us = 0; 3015 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3016 tp->rcv_rtt_last_tsecr = 0; 3017 3018 seq = tp->write_seq + tp->max_window + 2; 3019 if (!seq) 3020 seq = 1; 3021 WRITE_ONCE(tp->write_seq, seq); 3022 3023 icsk->icsk_backoff = 0; 3024 icsk->icsk_probes_out = 0; 3025 icsk->icsk_probes_tstamp = 0; 3026 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3027 icsk->icsk_rto_min = TCP_RTO_MIN; 3028 icsk->icsk_delack_max = TCP_DELACK_MAX; 3029 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3030 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3031 tp->snd_cwnd_cnt = 0; 3032 tp->is_cwnd_limited = 0; 3033 tp->max_packets_out = 0; 3034 tp->window_clamp = 0; 3035 tp->delivered = 0; 3036 tp->delivered_ce = 0; 3037 if (icsk->icsk_ca_ops->release) 3038 icsk->icsk_ca_ops->release(sk); 3039 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3040 icsk->icsk_ca_initialized = 0; 3041 tcp_set_ca_state(sk, TCP_CA_Open); 3042 tp->is_sack_reneg = 0; 3043 tcp_clear_retrans(tp); 3044 tp->total_retrans = 0; 3045 inet_csk_delack_init(sk); 3046 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3047 * issue in __tcp_select_window() 3048 */ 3049 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3050 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3051 __sk_dst_reset(sk); 3052 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3053 tcp_saved_syn_free(tp); 3054 tp->compressed_ack = 0; 3055 tp->segs_in = 0; 3056 tp->segs_out = 0; 3057 tp->bytes_sent = 0; 3058 tp->bytes_acked = 0; 3059 tp->bytes_received = 0; 3060 tp->bytes_retrans = 0; 3061 tp->data_segs_in = 0; 3062 tp->data_segs_out = 0; 3063 tp->duplicate_sack[0].start_seq = 0; 3064 tp->duplicate_sack[0].end_seq = 0; 3065 tp->dsack_dups = 0; 3066 tp->reord_seen = 0; 3067 tp->retrans_out = 0; 3068 tp->sacked_out = 0; 3069 tp->tlp_high_seq = 0; 3070 tp->last_oow_ack_time = 0; 3071 tp->plb_rehash = 0; 3072 /* There's a bubble in the pipe until at least the first ACK. */ 3073 tp->app_limited = ~0U; 3074 tp->rate_app_limited = 1; 3075 tp->rack.mstamp = 0; 3076 tp->rack.advanced = 0; 3077 tp->rack.reo_wnd_steps = 1; 3078 tp->rack.last_delivered = 0; 3079 tp->rack.reo_wnd_persist = 0; 3080 tp->rack.dsack_seen = 0; 3081 tp->syn_data_acked = 0; 3082 tp->rx_opt.saw_tstamp = 0; 3083 tp->rx_opt.dsack = 0; 3084 tp->rx_opt.num_sacks = 0; 3085 tp->rcv_ooopack = 0; 3086 3087 3088 /* Clean up fastopen related fields */ 3089 tcp_free_fastopen_req(tp); 3090 inet->defer_connect = 0; 3091 tp->fastopen_client_fail = 0; 3092 3093 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3094 3095 if (sk->sk_frag.page) { 3096 put_page(sk->sk_frag.page); 3097 sk->sk_frag.page = NULL; 3098 sk->sk_frag.offset = 0; 3099 } 3100 sk_error_report(sk); 3101 return 0; 3102 } 3103 EXPORT_SYMBOL(tcp_disconnect); 3104 3105 static inline bool tcp_can_repair_sock(const struct sock *sk) 3106 { 3107 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3108 (sk->sk_state != TCP_LISTEN); 3109 } 3110 3111 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3112 { 3113 struct tcp_repair_window opt; 3114 3115 if (!tp->repair) 3116 return -EPERM; 3117 3118 if (len != sizeof(opt)) 3119 return -EINVAL; 3120 3121 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3122 return -EFAULT; 3123 3124 if (opt.max_window < opt.snd_wnd) 3125 return -EINVAL; 3126 3127 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3128 return -EINVAL; 3129 3130 if (after(opt.rcv_wup, tp->rcv_nxt)) 3131 return -EINVAL; 3132 3133 tp->snd_wl1 = opt.snd_wl1; 3134 tp->snd_wnd = opt.snd_wnd; 3135 tp->max_window = opt.max_window; 3136 3137 tp->rcv_wnd = opt.rcv_wnd; 3138 tp->rcv_wup = opt.rcv_wup; 3139 3140 return 0; 3141 } 3142 3143 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3144 unsigned int len) 3145 { 3146 struct tcp_sock *tp = tcp_sk(sk); 3147 struct tcp_repair_opt opt; 3148 size_t offset = 0; 3149 3150 while (len >= sizeof(opt)) { 3151 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3152 return -EFAULT; 3153 3154 offset += sizeof(opt); 3155 len -= sizeof(opt); 3156 3157 switch (opt.opt_code) { 3158 case TCPOPT_MSS: 3159 tp->rx_opt.mss_clamp = opt.opt_val; 3160 tcp_mtup_init(sk); 3161 break; 3162 case TCPOPT_WINDOW: 3163 { 3164 u16 snd_wscale = opt.opt_val & 0xFFFF; 3165 u16 rcv_wscale = opt.opt_val >> 16; 3166 3167 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3168 return -EFBIG; 3169 3170 tp->rx_opt.snd_wscale = snd_wscale; 3171 tp->rx_opt.rcv_wscale = rcv_wscale; 3172 tp->rx_opt.wscale_ok = 1; 3173 } 3174 break; 3175 case TCPOPT_SACK_PERM: 3176 if (opt.opt_val != 0) 3177 return -EINVAL; 3178 3179 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3180 break; 3181 case TCPOPT_TIMESTAMP: 3182 if (opt.opt_val != 0) 3183 return -EINVAL; 3184 3185 tp->rx_opt.tstamp_ok = 1; 3186 break; 3187 } 3188 } 3189 3190 return 0; 3191 } 3192 3193 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3194 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3195 3196 static void tcp_enable_tx_delay(void) 3197 { 3198 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3199 static int __tcp_tx_delay_enabled = 0; 3200 3201 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3202 static_branch_enable(&tcp_tx_delay_enabled); 3203 pr_info("TCP_TX_DELAY enabled\n"); 3204 } 3205 } 3206 } 3207 3208 /* When set indicates to always queue non-full frames. Later the user clears 3209 * this option and we transmit any pending partial frames in the queue. This is 3210 * meant to be used alongside sendfile() to get properly filled frames when the 3211 * user (for example) must write out headers with a write() call first and then 3212 * use sendfile to send out the data parts. 3213 * 3214 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3215 * TCP_NODELAY. 3216 */ 3217 void __tcp_sock_set_cork(struct sock *sk, bool on) 3218 { 3219 struct tcp_sock *tp = tcp_sk(sk); 3220 3221 if (on) { 3222 tp->nonagle |= TCP_NAGLE_CORK; 3223 } else { 3224 tp->nonagle &= ~TCP_NAGLE_CORK; 3225 if (tp->nonagle & TCP_NAGLE_OFF) 3226 tp->nonagle |= TCP_NAGLE_PUSH; 3227 tcp_push_pending_frames(sk); 3228 } 3229 } 3230 3231 void tcp_sock_set_cork(struct sock *sk, bool on) 3232 { 3233 lock_sock(sk); 3234 __tcp_sock_set_cork(sk, on); 3235 release_sock(sk); 3236 } 3237 EXPORT_SYMBOL(tcp_sock_set_cork); 3238 3239 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3240 * remembered, but it is not activated until cork is cleared. 3241 * 3242 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3243 * even TCP_CORK for currently queued segments. 3244 */ 3245 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3246 { 3247 if (on) { 3248 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3249 tcp_push_pending_frames(sk); 3250 } else { 3251 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3252 } 3253 } 3254 3255 void tcp_sock_set_nodelay(struct sock *sk) 3256 { 3257 lock_sock(sk); 3258 __tcp_sock_set_nodelay(sk, true); 3259 release_sock(sk); 3260 } 3261 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3262 3263 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3264 { 3265 if (!val) { 3266 inet_csk_enter_pingpong_mode(sk); 3267 return; 3268 } 3269 3270 inet_csk_exit_pingpong_mode(sk); 3271 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3272 inet_csk_ack_scheduled(sk)) { 3273 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3274 tcp_cleanup_rbuf(sk, 1); 3275 if (!(val & 1)) 3276 inet_csk_enter_pingpong_mode(sk); 3277 } 3278 } 3279 3280 void tcp_sock_set_quickack(struct sock *sk, int val) 3281 { 3282 lock_sock(sk); 3283 __tcp_sock_set_quickack(sk, val); 3284 release_sock(sk); 3285 } 3286 EXPORT_SYMBOL(tcp_sock_set_quickack); 3287 3288 int tcp_sock_set_syncnt(struct sock *sk, int val) 3289 { 3290 if (val < 1 || val > MAX_TCP_SYNCNT) 3291 return -EINVAL; 3292 3293 lock_sock(sk); 3294 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3295 release_sock(sk); 3296 return 0; 3297 } 3298 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3299 3300 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3301 { 3302 lock_sock(sk); 3303 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3304 release_sock(sk); 3305 } 3306 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3307 3308 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3309 { 3310 struct tcp_sock *tp = tcp_sk(sk); 3311 3312 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3313 return -EINVAL; 3314 3315 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3316 WRITE_ONCE(tp->keepalive_time, val * HZ); 3317 if (sock_flag(sk, SOCK_KEEPOPEN) && 3318 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3319 u32 elapsed = keepalive_time_elapsed(tp); 3320 3321 if (tp->keepalive_time > elapsed) 3322 elapsed = tp->keepalive_time - elapsed; 3323 else 3324 elapsed = 0; 3325 inet_csk_reset_keepalive_timer(sk, elapsed); 3326 } 3327 3328 return 0; 3329 } 3330 3331 int tcp_sock_set_keepidle(struct sock *sk, int val) 3332 { 3333 int err; 3334 3335 lock_sock(sk); 3336 err = tcp_sock_set_keepidle_locked(sk, val); 3337 release_sock(sk); 3338 return err; 3339 } 3340 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3341 3342 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3343 { 3344 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3345 return -EINVAL; 3346 3347 lock_sock(sk); 3348 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3349 release_sock(sk); 3350 return 0; 3351 } 3352 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3353 3354 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3355 { 3356 if (val < 1 || val > MAX_TCP_KEEPCNT) 3357 return -EINVAL; 3358 3359 lock_sock(sk); 3360 /* Paired with READ_ONCE() in keepalive_probes() */ 3361 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3362 release_sock(sk); 3363 return 0; 3364 } 3365 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3366 3367 int tcp_set_window_clamp(struct sock *sk, int val) 3368 { 3369 struct tcp_sock *tp = tcp_sk(sk); 3370 3371 if (!val) { 3372 if (sk->sk_state != TCP_CLOSE) 3373 return -EINVAL; 3374 tp->window_clamp = 0; 3375 } else { 3376 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3377 SOCK_MIN_RCVBUF / 2 : val; 3378 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3379 } 3380 return 0; 3381 } 3382 3383 /* 3384 * Socket option code for TCP. 3385 */ 3386 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3387 sockptr_t optval, unsigned int optlen) 3388 { 3389 struct tcp_sock *tp = tcp_sk(sk); 3390 struct inet_connection_sock *icsk = inet_csk(sk); 3391 struct net *net = sock_net(sk); 3392 int val; 3393 int err = 0; 3394 3395 /* These are data/string values, all the others are ints */ 3396 switch (optname) { 3397 case TCP_CONGESTION: { 3398 char name[TCP_CA_NAME_MAX]; 3399 3400 if (optlen < 1) 3401 return -EINVAL; 3402 3403 val = strncpy_from_sockptr(name, optval, 3404 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3405 if (val < 0) 3406 return -EFAULT; 3407 name[val] = 0; 3408 3409 sockopt_lock_sock(sk); 3410 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3411 sockopt_ns_capable(sock_net(sk)->user_ns, 3412 CAP_NET_ADMIN)); 3413 sockopt_release_sock(sk); 3414 return err; 3415 } 3416 case TCP_ULP: { 3417 char name[TCP_ULP_NAME_MAX]; 3418 3419 if (optlen < 1) 3420 return -EINVAL; 3421 3422 val = strncpy_from_sockptr(name, optval, 3423 min_t(long, TCP_ULP_NAME_MAX - 1, 3424 optlen)); 3425 if (val < 0) 3426 return -EFAULT; 3427 name[val] = 0; 3428 3429 sockopt_lock_sock(sk); 3430 err = tcp_set_ulp(sk, name); 3431 sockopt_release_sock(sk); 3432 return err; 3433 } 3434 case TCP_FASTOPEN_KEY: { 3435 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3436 __u8 *backup_key = NULL; 3437 3438 /* Allow a backup key as well to facilitate key rotation 3439 * First key is the active one. 3440 */ 3441 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3442 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3443 return -EINVAL; 3444 3445 if (copy_from_sockptr(key, optval, optlen)) 3446 return -EFAULT; 3447 3448 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3449 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3450 3451 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3452 } 3453 default: 3454 /* fallthru */ 3455 break; 3456 } 3457 3458 if (optlen < sizeof(int)) 3459 return -EINVAL; 3460 3461 if (copy_from_sockptr(&val, optval, sizeof(val))) 3462 return -EFAULT; 3463 3464 sockopt_lock_sock(sk); 3465 3466 switch (optname) { 3467 case TCP_MAXSEG: 3468 /* Values greater than interface MTU won't take effect. However 3469 * at the point when this call is done we typically don't yet 3470 * know which interface is going to be used 3471 */ 3472 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3473 err = -EINVAL; 3474 break; 3475 } 3476 tp->rx_opt.user_mss = val; 3477 break; 3478 3479 case TCP_NODELAY: 3480 __tcp_sock_set_nodelay(sk, val); 3481 break; 3482 3483 case TCP_THIN_LINEAR_TIMEOUTS: 3484 if (val < 0 || val > 1) 3485 err = -EINVAL; 3486 else 3487 tp->thin_lto = val; 3488 break; 3489 3490 case TCP_THIN_DUPACK: 3491 if (val < 0 || val > 1) 3492 err = -EINVAL; 3493 break; 3494 3495 case TCP_REPAIR: 3496 if (!tcp_can_repair_sock(sk)) 3497 err = -EPERM; 3498 else if (val == TCP_REPAIR_ON) { 3499 tp->repair = 1; 3500 sk->sk_reuse = SK_FORCE_REUSE; 3501 tp->repair_queue = TCP_NO_QUEUE; 3502 } else if (val == TCP_REPAIR_OFF) { 3503 tp->repair = 0; 3504 sk->sk_reuse = SK_NO_REUSE; 3505 tcp_send_window_probe(sk); 3506 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3507 tp->repair = 0; 3508 sk->sk_reuse = SK_NO_REUSE; 3509 } else 3510 err = -EINVAL; 3511 3512 break; 3513 3514 case TCP_REPAIR_QUEUE: 3515 if (!tp->repair) 3516 err = -EPERM; 3517 else if ((unsigned int)val < TCP_QUEUES_NR) 3518 tp->repair_queue = val; 3519 else 3520 err = -EINVAL; 3521 break; 3522 3523 case TCP_QUEUE_SEQ: 3524 if (sk->sk_state != TCP_CLOSE) { 3525 err = -EPERM; 3526 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3527 if (!tcp_rtx_queue_empty(sk)) 3528 err = -EPERM; 3529 else 3530 WRITE_ONCE(tp->write_seq, val); 3531 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3532 if (tp->rcv_nxt != tp->copied_seq) { 3533 err = -EPERM; 3534 } else { 3535 WRITE_ONCE(tp->rcv_nxt, val); 3536 WRITE_ONCE(tp->copied_seq, val); 3537 } 3538 } else { 3539 err = -EINVAL; 3540 } 3541 break; 3542 3543 case TCP_REPAIR_OPTIONS: 3544 if (!tp->repair) 3545 err = -EINVAL; 3546 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3547 err = tcp_repair_options_est(sk, optval, optlen); 3548 else 3549 err = -EPERM; 3550 break; 3551 3552 case TCP_CORK: 3553 __tcp_sock_set_cork(sk, val); 3554 break; 3555 3556 case TCP_KEEPIDLE: 3557 err = tcp_sock_set_keepidle_locked(sk, val); 3558 break; 3559 case TCP_KEEPINTVL: 3560 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3561 err = -EINVAL; 3562 else 3563 WRITE_ONCE(tp->keepalive_intvl, val * HZ); 3564 break; 3565 case TCP_KEEPCNT: 3566 if (val < 1 || val > MAX_TCP_KEEPCNT) 3567 err = -EINVAL; 3568 else 3569 WRITE_ONCE(tp->keepalive_probes, val); 3570 break; 3571 case TCP_SYNCNT: 3572 if (val < 1 || val > MAX_TCP_SYNCNT) 3573 err = -EINVAL; 3574 else 3575 WRITE_ONCE(icsk->icsk_syn_retries, val); 3576 break; 3577 3578 case TCP_SAVE_SYN: 3579 /* 0: disable, 1: enable, 2: start from ether_header */ 3580 if (val < 0 || val > 2) 3581 err = -EINVAL; 3582 else 3583 tp->save_syn = val; 3584 break; 3585 3586 case TCP_LINGER2: 3587 if (val < 0) 3588 WRITE_ONCE(tp->linger2, -1); 3589 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3590 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3591 else 3592 WRITE_ONCE(tp->linger2, val * HZ); 3593 break; 3594 3595 case TCP_DEFER_ACCEPT: 3596 /* Translate value in seconds to number of retransmits */ 3597 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3598 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3599 TCP_RTO_MAX / HZ)); 3600 break; 3601 3602 case TCP_WINDOW_CLAMP: 3603 err = tcp_set_window_clamp(sk, val); 3604 break; 3605 3606 case TCP_QUICKACK: 3607 __tcp_sock_set_quickack(sk, val); 3608 break; 3609 3610 #ifdef CONFIG_TCP_MD5SIG 3611 case TCP_MD5SIG: 3612 case TCP_MD5SIG_EXT: 3613 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3614 break; 3615 #endif 3616 case TCP_USER_TIMEOUT: 3617 /* Cap the max time in ms TCP will retry or probe the window 3618 * before giving up and aborting (ETIMEDOUT) a connection. 3619 */ 3620 if (val < 0) 3621 err = -EINVAL; 3622 else 3623 WRITE_ONCE(icsk->icsk_user_timeout, val); 3624 break; 3625 3626 case TCP_FASTOPEN: 3627 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3628 TCPF_LISTEN))) { 3629 tcp_fastopen_init_key_once(net); 3630 3631 fastopen_queue_tune(sk, val); 3632 } else { 3633 err = -EINVAL; 3634 } 3635 break; 3636 case TCP_FASTOPEN_CONNECT: 3637 if (val > 1 || val < 0) { 3638 err = -EINVAL; 3639 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3640 TFO_CLIENT_ENABLE) { 3641 if (sk->sk_state == TCP_CLOSE) 3642 tp->fastopen_connect = val; 3643 else 3644 err = -EINVAL; 3645 } else { 3646 err = -EOPNOTSUPP; 3647 } 3648 break; 3649 case TCP_FASTOPEN_NO_COOKIE: 3650 if (val > 1 || val < 0) 3651 err = -EINVAL; 3652 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3653 err = -EINVAL; 3654 else 3655 tp->fastopen_no_cookie = val; 3656 break; 3657 case TCP_TIMESTAMP: 3658 if (!tp->repair) 3659 err = -EPERM; 3660 else 3661 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3662 break; 3663 case TCP_REPAIR_WINDOW: 3664 err = tcp_repair_set_window(tp, optval, optlen); 3665 break; 3666 case TCP_NOTSENT_LOWAT: 3667 WRITE_ONCE(tp->notsent_lowat, val); 3668 sk->sk_write_space(sk); 3669 break; 3670 case TCP_INQ: 3671 if (val > 1 || val < 0) 3672 err = -EINVAL; 3673 else 3674 tp->recvmsg_inq = val; 3675 break; 3676 case TCP_TX_DELAY: 3677 if (val) 3678 tcp_enable_tx_delay(); 3679 WRITE_ONCE(tp->tcp_tx_delay, val); 3680 break; 3681 default: 3682 err = -ENOPROTOOPT; 3683 break; 3684 } 3685 3686 sockopt_release_sock(sk); 3687 return err; 3688 } 3689 3690 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3691 unsigned int optlen) 3692 { 3693 const struct inet_connection_sock *icsk = inet_csk(sk); 3694 3695 if (level != SOL_TCP) 3696 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3697 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3698 optval, optlen); 3699 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3700 } 3701 EXPORT_SYMBOL(tcp_setsockopt); 3702 3703 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3704 struct tcp_info *info) 3705 { 3706 u64 stats[__TCP_CHRONO_MAX], total = 0; 3707 enum tcp_chrono i; 3708 3709 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3710 stats[i] = tp->chrono_stat[i - 1]; 3711 if (i == tp->chrono_type) 3712 stats[i] += tcp_jiffies32 - tp->chrono_start; 3713 stats[i] *= USEC_PER_SEC / HZ; 3714 total += stats[i]; 3715 } 3716 3717 info->tcpi_busy_time = total; 3718 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3719 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3720 } 3721 3722 /* Return information about state of tcp endpoint in API format. */ 3723 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3724 { 3725 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3726 const struct inet_connection_sock *icsk = inet_csk(sk); 3727 unsigned long rate; 3728 u32 now; 3729 u64 rate64; 3730 bool slow; 3731 3732 memset(info, 0, sizeof(*info)); 3733 if (sk->sk_type != SOCK_STREAM) 3734 return; 3735 3736 info->tcpi_state = inet_sk_state_load(sk); 3737 3738 /* Report meaningful fields for all TCP states, including listeners */ 3739 rate = READ_ONCE(sk->sk_pacing_rate); 3740 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3741 info->tcpi_pacing_rate = rate64; 3742 3743 rate = READ_ONCE(sk->sk_max_pacing_rate); 3744 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3745 info->tcpi_max_pacing_rate = rate64; 3746 3747 info->tcpi_reordering = tp->reordering; 3748 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3749 3750 if (info->tcpi_state == TCP_LISTEN) { 3751 /* listeners aliased fields : 3752 * tcpi_unacked -> Number of children ready for accept() 3753 * tcpi_sacked -> max backlog 3754 */ 3755 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3756 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3757 return; 3758 } 3759 3760 slow = lock_sock_fast(sk); 3761 3762 info->tcpi_ca_state = icsk->icsk_ca_state; 3763 info->tcpi_retransmits = icsk->icsk_retransmits; 3764 info->tcpi_probes = icsk->icsk_probes_out; 3765 info->tcpi_backoff = icsk->icsk_backoff; 3766 3767 if (tp->rx_opt.tstamp_ok) 3768 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3769 if (tcp_is_sack(tp)) 3770 info->tcpi_options |= TCPI_OPT_SACK; 3771 if (tp->rx_opt.wscale_ok) { 3772 info->tcpi_options |= TCPI_OPT_WSCALE; 3773 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3774 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3775 } 3776 3777 if (tp->ecn_flags & TCP_ECN_OK) 3778 info->tcpi_options |= TCPI_OPT_ECN; 3779 if (tp->ecn_flags & TCP_ECN_SEEN) 3780 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3781 if (tp->syn_data_acked) 3782 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3783 3784 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3785 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3786 info->tcpi_snd_mss = tp->mss_cache; 3787 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3788 3789 info->tcpi_unacked = tp->packets_out; 3790 info->tcpi_sacked = tp->sacked_out; 3791 3792 info->tcpi_lost = tp->lost_out; 3793 info->tcpi_retrans = tp->retrans_out; 3794 3795 now = tcp_jiffies32; 3796 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3797 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3798 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3799 3800 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3801 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3802 info->tcpi_rtt = tp->srtt_us >> 3; 3803 info->tcpi_rttvar = tp->mdev_us >> 2; 3804 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3805 info->tcpi_advmss = tp->advmss; 3806 3807 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3808 info->tcpi_rcv_space = tp->rcvq_space.space; 3809 3810 info->tcpi_total_retrans = tp->total_retrans; 3811 3812 info->tcpi_bytes_acked = tp->bytes_acked; 3813 info->tcpi_bytes_received = tp->bytes_received; 3814 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3815 tcp_get_info_chrono_stats(tp, info); 3816 3817 info->tcpi_segs_out = tp->segs_out; 3818 3819 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3820 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3821 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3822 3823 info->tcpi_min_rtt = tcp_min_rtt(tp); 3824 info->tcpi_data_segs_out = tp->data_segs_out; 3825 3826 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3827 rate64 = tcp_compute_delivery_rate(tp); 3828 if (rate64) 3829 info->tcpi_delivery_rate = rate64; 3830 info->tcpi_delivered = tp->delivered; 3831 info->tcpi_delivered_ce = tp->delivered_ce; 3832 info->tcpi_bytes_sent = tp->bytes_sent; 3833 info->tcpi_bytes_retrans = tp->bytes_retrans; 3834 info->tcpi_dsack_dups = tp->dsack_dups; 3835 info->tcpi_reord_seen = tp->reord_seen; 3836 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3837 info->tcpi_snd_wnd = tp->snd_wnd; 3838 info->tcpi_rcv_wnd = tp->rcv_wnd; 3839 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3840 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3841 unlock_sock_fast(sk, slow); 3842 } 3843 EXPORT_SYMBOL_GPL(tcp_get_info); 3844 3845 static size_t tcp_opt_stats_get_size(void) 3846 { 3847 return 3848 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3849 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3850 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3851 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3853 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3854 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3855 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3856 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3858 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3859 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3861 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3862 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3863 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3865 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3866 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3867 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3868 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3869 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3870 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3871 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3872 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3873 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3874 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3875 0; 3876 } 3877 3878 /* Returns TTL or hop limit of an incoming packet from skb. */ 3879 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3880 { 3881 if (skb->protocol == htons(ETH_P_IP)) 3882 return ip_hdr(skb)->ttl; 3883 else if (skb->protocol == htons(ETH_P_IPV6)) 3884 return ipv6_hdr(skb)->hop_limit; 3885 else 3886 return 0; 3887 } 3888 3889 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3890 const struct sk_buff *orig_skb, 3891 const struct sk_buff *ack_skb) 3892 { 3893 const struct tcp_sock *tp = tcp_sk(sk); 3894 struct sk_buff *stats; 3895 struct tcp_info info; 3896 unsigned long rate; 3897 u64 rate64; 3898 3899 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3900 if (!stats) 3901 return NULL; 3902 3903 tcp_get_info_chrono_stats(tp, &info); 3904 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3905 info.tcpi_busy_time, TCP_NLA_PAD); 3906 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3907 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3908 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3909 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3910 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3911 tp->data_segs_out, TCP_NLA_PAD); 3912 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3913 tp->total_retrans, TCP_NLA_PAD); 3914 3915 rate = READ_ONCE(sk->sk_pacing_rate); 3916 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3917 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3918 3919 rate64 = tcp_compute_delivery_rate(tp); 3920 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3921 3922 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3923 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3924 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3925 3926 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3927 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3928 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3929 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3930 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3931 3932 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3933 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3934 3935 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3936 TCP_NLA_PAD); 3937 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3938 TCP_NLA_PAD); 3939 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3940 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3941 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3942 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3943 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3944 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3945 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3946 TCP_NLA_PAD); 3947 if (ack_skb) 3948 nla_put_u8(stats, TCP_NLA_TTL, 3949 tcp_skb_ttl_or_hop_limit(ack_skb)); 3950 3951 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3952 return stats; 3953 } 3954 3955 int do_tcp_getsockopt(struct sock *sk, int level, 3956 int optname, sockptr_t optval, sockptr_t optlen) 3957 { 3958 struct inet_connection_sock *icsk = inet_csk(sk); 3959 struct tcp_sock *tp = tcp_sk(sk); 3960 struct net *net = sock_net(sk); 3961 int val, len; 3962 3963 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3964 return -EFAULT; 3965 3966 len = min_t(unsigned int, len, sizeof(int)); 3967 3968 if (len < 0) 3969 return -EINVAL; 3970 3971 switch (optname) { 3972 case TCP_MAXSEG: 3973 val = tp->mss_cache; 3974 if (tp->rx_opt.user_mss && 3975 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3976 val = tp->rx_opt.user_mss; 3977 if (tp->repair) 3978 val = tp->rx_opt.mss_clamp; 3979 break; 3980 case TCP_NODELAY: 3981 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3982 break; 3983 case TCP_CORK: 3984 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3985 break; 3986 case TCP_KEEPIDLE: 3987 val = keepalive_time_when(tp) / HZ; 3988 break; 3989 case TCP_KEEPINTVL: 3990 val = keepalive_intvl_when(tp) / HZ; 3991 break; 3992 case TCP_KEEPCNT: 3993 val = keepalive_probes(tp); 3994 break; 3995 case TCP_SYNCNT: 3996 val = READ_ONCE(icsk->icsk_syn_retries) ? : 3997 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3998 break; 3999 case TCP_LINGER2: 4000 val = READ_ONCE(tp->linger2); 4001 if (val >= 0) 4002 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4003 break; 4004 case TCP_DEFER_ACCEPT: 4005 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4006 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4007 TCP_RTO_MAX / HZ); 4008 break; 4009 case TCP_WINDOW_CLAMP: 4010 val = tp->window_clamp; 4011 break; 4012 case TCP_INFO: { 4013 struct tcp_info info; 4014 4015 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4016 return -EFAULT; 4017 4018 tcp_get_info(sk, &info); 4019 4020 len = min_t(unsigned int, len, sizeof(info)); 4021 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4022 return -EFAULT; 4023 if (copy_to_sockptr(optval, &info, len)) 4024 return -EFAULT; 4025 return 0; 4026 } 4027 case TCP_CC_INFO: { 4028 const struct tcp_congestion_ops *ca_ops; 4029 union tcp_cc_info info; 4030 size_t sz = 0; 4031 int attr; 4032 4033 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4034 return -EFAULT; 4035 4036 ca_ops = icsk->icsk_ca_ops; 4037 if (ca_ops && ca_ops->get_info) 4038 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4039 4040 len = min_t(unsigned int, len, sz); 4041 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4042 return -EFAULT; 4043 if (copy_to_sockptr(optval, &info, len)) 4044 return -EFAULT; 4045 return 0; 4046 } 4047 case TCP_QUICKACK: 4048 val = !inet_csk_in_pingpong_mode(sk); 4049 break; 4050 4051 case TCP_CONGESTION: 4052 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4053 return -EFAULT; 4054 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4055 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4056 return -EFAULT; 4057 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4058 return -EFAULT; 4059 return 0; 4060 4061 case TCP_ULP: 4062 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4063 return -EFAULT; 4064 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4065 if (!icsk->icsk_ulp_ops) { 4066 len = 0; 4067 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4068 return -EFAULT; 4069 return 0; 4070 } 4071 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4072 return -EFAULT; 4073 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4074 return -EFAULT; 4075 return 0; 4076 4077 case TCP_FASTOPEN_KEY: { 4078 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4079 unsigned int key_len; 4080 4081 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4082 return -EFAULT; 4083 4084 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4085 TCP_FASTOPEN_KEY_LENGTH; 4086 len = min_t(unsigned int, len, key_len); 4087 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4088 return -EFAULT; 4089 if (copy_to_sockptr(optval, key, len)) 4090 return -EFAULT; 4091 return 0; 4092 } 4093 case TCP_THIN_LINEAR_TIMEOUTS: 4094 val = tp->thin_lto; 4095 break; 4096 4097 case TCP_THIN_DUPACK: 4098 val = 0; 4099 break; 4100 4101 case TCP_REPAIR: 4102 val = tp->repair; 4103 break; 4104 4105 case TCP_REPAIR_QUEUE: 4106 if (tp->repair) 4107 val = tp->repair_queue; 4108 else 4109 return -EINVAL; 4110 break; 4111 4112 case TCP_REPAIR_WINDOW: { 4113 struct tcp_repair_window opt; 4114 4115 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4116 return -EFAULT; 4117 4118 if (len != sizeof(opt)) 4119 return -EINVAL; 4120 4121 if (!tp->repair) 4122 return -EPERM; 4123 4124 opt.snd_wl1 = tp->snd_wl1; 4125 opt.snd_wnd = tp->snd_wnd; 4126 opt.max_window = tp->max_window; 4127 opt.rcv_wnd = tp->rcv_wnd; 4128 opt.rcv_wup = tp->rcv_wup; 4129 4130 if (copy_to_sockptr(optval, &opt, len)) 4131 return -EFAULT; 4132 return 0; 4133 } 4134 case TCP_QUEUE_SEQ: 4135 if (tp->repair_queue == TCP_SEND_QUEUE) 4136 val = tp->write_seq; 4137 else if (tp->repair_queue == TCP_RECV_QUEUE) 4138 val = tp->rcv_nxt; 4139 else 4140 return -EINVAL; 4141 break; 4142 4143 case TCP_USER_TIMEOUT: 4144 val = READ_ONCE(icsk->icsk_user_timeout); 4145 break; 4146 4147 case TCP_FASTOPEN: 4148 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4149 break; 4150 4151 case TCP_FASTOPEN_CONNECT: 4152 val = tp->fastopen_connect; 4153 break; 4154 4155 case TCP_FASTOPEN_NO_COOKIE: 4156 val = tp->fastopen_no_cookie; 4157 break; 4158 4159 case TCP_TX_DELAY: 4160 val = READ_ONCE(tp->tcp_tx_delay); 4161 break; 4162 4163 case TCP_TIMESTAMP: 4164 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4165 break; 4166 case TCP_NOTSENT_LOWAT: 4167 val = READ_ONCE(tp->notsent_lowat); 4168 break; 4169 case TCP_INQ: 4170 val = tp->recvmsg_inq; 4171 break; 4172 case TCP_SAVE_SYN: 4173 val = tp->save_syn; 4174 break; 4175 case TCP_SAVED_SYN: { 4176 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4177 return -EFAULT; 4178 4179 sockopt_lock_sock(sk); 4180 if (tp->saved_syn) { 4181 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4182 len = tcp_saved_syn_len(tp->saved_syn); 4183 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4184 sockopt_release_sock(sk); 4185 return -EFAULT; 4186 } 4187 sockopt_release_sock(sk); 4188 return -EINVAL; 4189 } 4190 len = tcp_saved_syn_len(tp->saved_syn); 4191 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4192 sockopt_release_sock(sk); 4193 return -EFAULT; 4194 } 4195 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4196 sockopt_release_sock(sk); 4197 return -EFAULT; 4198 } 4199 tcp_saved_syn_free(tp); 4200 sockopt_release_sock(sk); 4201 } else { 4202 sockopt_release_sock(sk); 4203 len = 0; 4204 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4205 return -EFAULT; 4206 } 4207 return 0; 4208 } 4209 #ifdef CONFIG_MMU 4210 case TCP_ZEROCOPY_RECEIVE: { 4211 struct scm_timestamping_internal tss; 4212 struct tcp_zerocopy_receive zc = {}; 4213 int err; 4214 4215 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4216 return -EFAULT; 4217 if (len < 0 || 4218 len < offsetofend(struct tcp_zerocopy_receive, length)) 4219 return -EINVAL; 4220 if (unlikely(len > sizeof(zc))) { 4221 err = check_zeroed_sockptr(optval, sizeof(zc), 4222 len - sizeof(zc)); 4223 if (err < 1) 4224 return err == 0 ? -EINVAL : err; 4225 len = sizeof(zc); 4226 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4227 return -EFAULT; 4228 } 4229 if (copy_from_sockptr(&zc, optval, len)) 4230 return -EFAULT; 4231 if (zc.reserved) 4232 return -EINVAL; 4233 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4234 return -EINVAL; 4235 sockopt_lock_sock(sk); 4236 err = tcp_zerocopy_receive(sk, &zc, &tss); 4237 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4238 &zc, &len, err); 4239 sockopt_release_sock(sk); 4240 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4241 goto zerocopy_rcv_cmsg; 4242 switch (len) { 4243 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4244 goto zerocopy_rcv_cmsg; 4245 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4246 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4247 case offsetofend(struct tcp_zerocopy_receive, flags): 4248 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4249 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4250 case offsetofend(struct tcp_zerocopy_receive, err): 4251 goto zerocopy_rcv_sk_err; 4252 case offsetofend(struct tcp_zerocopy_receive, inq): 4253 goto zerocopy_rcv_inq; 4254 case offsetofend(struct tcp_zerocopy_receive, length): 4255 default: 4256 goto zerocopy_rcv_out; 4257 } 4258 zerocopy_rcv_cmsg: 4259 if (zc.msg_flags & TCP_CMSG_TS) 4260 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4261 else 4262 zc.msg_flags = 0; 4263 zerocopy_rcv_sk_err: 4264 if (!err) 4265 zc.err = sock_error(sk); 4266 zerocopy_rcv_inq: 4267 zc.inq = tcp_inq_hint(sk); 4268 zerocopy_rcv_out: 4269 if (!err && copy_to_sockptr(optval, &zc, len)) 4270 err = -EFAULT; 4271 return err; 4272 } 4273 #endif 4274 default: 4275 return -ENOPROTOOPT; 4276 } 4277 4278 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4279 return -EFAULT; 4280 if (copy_to_sockptr(optval, &val, len)) 4281 return -EFAULT; 4282 return 0; 4283 } 4284 4285 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4286 { 4287 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4288 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4289 */ 4290 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4291 return true; 4292 4293 return false; 4294 } 4295 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4296 4297 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4298 int __user *optlen) 4299 { 4300 struct inet_connection_sock *icsk = inet_csk(sk); 4301 4302 if (level != SOL_TCP) 4303 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4304 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4305 optval, optlen); 4306 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4307 USER_SOCKPTR(optlen)); 4308 } 4309 EXPORT_SYMBOL(tcp_getsockopt); 4310 4311 #ifdef CONFIG_TCP_MD5SIG 4312 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4313 static DEFINE_MUTEX(tcp_md5sig_mutex); 4314 static bool tcp_md5sig_pool_populated = false; 4315 4316 static void __tcp_alloc_md5sig_pool(void) 4317 { 4318 struct crypto_ahash *hash; 4319 int cpu; 4320 4321 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4322 if (IS_ERR(hash)) 4323 return; 4324 4325 for_each_possible_cpu(cpu) { 4326 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4327 struct ahash_request *req; 4328 4329 if (!scratch) { 4330 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4331 sizeof(struct tcphdr), 4332 GFP_KERNEL, 4333 cpu_to_node(cpu)); 4334 if (!scratch) 4335 return; 4336 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4337 } 4338 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4339 continue; 4340 4341 req = ahash_request_alloc(hash, GFP_KERNEL); 4342 if (!req) 4343 return; 4344 4345 ahash_request_set_callback(req, 0, NULL, NULL); 4346 4347 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4348 } 4349 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4350 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4351 */ 4352 smp_wmb(); 4353 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4354 * and tcp_get_md5sig_pool(). 4355 */ 4356 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4357 } 4358 4359 bool tcp_alloc_md5sig_pool(void) 4360 { 4361 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4362 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4363 mutex_lock(&tcp_md5sig_mutex); 4364 4365 if (!tcp_md5sig_pool_populated) 4366 __tcp_alloc_md5sig_pool(); 4367 4368 mutex_unlock(&tcp_md5sig_mutex); 4369 } 4370 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4371 return READ_ONCE(tcp_md5sig_pool_populated); 4372 } 4373 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4374 4375 4376 /** 4377 * tcp_get_md5sig_pool - get md5sig_pool for this user 4378 * 4379 * We use percpu structure, so if we succeed, we exit with preemption 4380 * and BH disabled, to make sure another thread or softirq handling 4381 * wont try to get same context. 4382 */ 4383 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4384 { 4385 local_bh_disable(); 4386 4387 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4388 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4389 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4390 smp_rmb(); 4391 return this_cpu_ptr(&tcp_md5sig_pool); 4392 } 4393 local_bh_enable(); 4394 return NULL; 4395 } 4396 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4397 4398 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4399 const struct sk_buff *skb, unsigned int header_len) 4400 { 4401 struct scatterlist sg; 4402 const struct tcphdr *tp = tcp_hdr(skb); 4403 struct ahash_request *req = hp->md5_req; 4404 unsigned int i; 4405 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4406 skb_headlen(skb) - header_len : 0; 4407 const struct skb_shared_info *shi = skb_shinfo(skb); 4408 struct sk_buff *frag_iter; 4409 4410 sg_init_table(&sg, 1); 4411 4412 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4413 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4414 if (crypto_ahash_update(req)) 4415 return 1; 4416 4417 for (i = 0; i < shi->nr_frags; ++i) { 4418 const skb_frag_t *f = &shi->frags[i]; 4419 unsigned int offset = skb_frag_off(f); 4420 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4421 4422 sg_set_page(&sg, page, skb_frag_size(f), 4423 offset_in_page(offset)); 4424 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4425 if (crypto_ahash_update(req)) 4426 return 1; 4427 } 4428 4429 skb_walk_frags(skb, frag_iter) 4430 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4431 return 1; 4432 4433 return 0; 4434 } 4435 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4436 4437 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4438 { 4439 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4440 struct scatterlist sg; 4441 4442 sg_init_one(&sg, key->key, keylen); 4443 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4444 4445 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4446 return data_race(crypto_ahash_update(hp->md5_req)); 4447 } 4448 EXPORT_SYMBOL(tcp_md5_hash_key); 4449 4450 /* Called with rcu_read_lock() */ 4451 enum skb_drop_reason 4452 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4453 const void *saddr, const void *daddr, 4454 int family, int dif, int sdif) 4455 { 4456 /* 4457 * This gets called for each TCP segment that arrives 4458 * so we want to be efficient. 4459 * We have 3 drop cases: 4460 * o No MD5 hash and one expected. 4461 * o MD5 hash and we're not expecting one. 4462 * o MD5 hash and its wrong. 4463 */ 4464 const __u8 *hash_location = NULL; 4465 struct tcp_md5sig_key *hash_expected; 4466 const struct tcphdr *th = tcp_hdr(skb); 4467 const struct tcp_sock *tp = tcp_sk(sk); 4468 int genhash, l3index; 4469 u8 newhash[16]; 4470 4471 /* sdif set, means packet ingressed via a device 4472 * in an L3 domain and dif is set to the l3mdev 4473 */ 4474 l3index = sdif ? dif : 0; 4475 4476 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4477 hash_location = tcp_parse_md5sig_option(th); 4478 4479 /* We've parsed the options - do we have a hash? */ 4480 if (!hash_expected && !hash_location) 4481 return SKB_NOT_DROPPED_YET; 4482 4483 if (hash_expected && !hash_location) { 4484 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4485 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4486 } 4487 4488 if (!hash_expected && hash_location) { 4489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4490 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4491 } 4492 4493 /* Check the signature. 4494 * To support dual stack listeners, we need to handle 4495 * IPv4-mapped case. 4496 */ 4497 if (family == AF_INET) 4498 genhash = tcp_v4_md5_hash_skb(newhash, 4499 hash_expected, 4500 NULL, skb); 4501 else 4502 genhash = tp->af_specific->calc_md5_hash(newhash, 4503 hash_expected, 4504 NULL, skb); 4505 4506 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4507 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4508 if (family == AF_INET) { 4509 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4510 saddr, ntohs(th->source), 4511 daddr, ntohs(th->dest), 4512 genhash ? " tcp_v4_calc_md5_hash failed" 4513 : "", l3index); 4514 } else { 4515 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4516 genhash ? "failed" : "mismatch", 4517 saddr, ntohs(th->source), 4518 daddr, ntohs(th->dest), l3index); 4519 } 4520 return SKB_DROP_REASON_TCP_MD5FAILURE; 4521 } 4522 return SKB_NOT_DROPPED_YET; 4523 } 4524 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4525 4526 #endif 4527 4528 void tcp_done(struct sock *sk) 4529 { 4530 struct request_sock *req; 4531 4532 /* We might be called with a new socket, after 4533 * inet_csk_prepare_forced_close() has been called 4534 * so we can not use lockdep_sock_is_held(sk) 4535 */ 4536 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4537 4538 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4539 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4540 4541 tcp_set_state(sk, TCP_CLOSE); 4542 tcp_clear_xmit_timers(sk); 4543 if (req) 4544 reqsk_fastopen_remove(sk, req, false); 4545 4546 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4547 4548 if (!sock_flag(sk, SOCK_DEAD)) 4549 sk->sk_state_change(sk); 4550 else 4551 inet_csk_destroy_sock(sk); 4552 } 4553 EXPORT_SYMBOL_GPL(tcp_done); 4554 4555 int tcp_abort(struct sock *sk, int err) 4556 { 4557 int state = inet_sk_state_load(sk); 4558 4559 if (state == TCP_NEW_SYN_RECV) { 4560 struct request_sock *req = inet_reqsk(sk); 4561 4562 local_bh_disable(); 4563 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4564 local_bh_enable(); 4565 return 0; 4566 } 4567 if (state == TCP_TIME_WAIT) { 4568 struct inet_timewait_sock *tw = inet_twsk(sk); 4569 4570 refcount_inc(&tw->tw_refcnt); 4571 local_bh_disable(); 4572 inet_twsk_deschedule_put(tw); 4573 local_bh_enable(); 4574 return 0; 4575 } 4576 4577 /* BPF context ensures sock locking. */ 4578 if (!has_current_bpf_ctx()) 4579 /* Don't race with userspace socket closes such as tcp_close. */ 4580 lock_sock(sk); 4581 4582 if (sk->sk_state == TCP_LISTEN) { 4583 tcp_set_state(sk, TCP_CLOSE); 4584 inet_csk_listen_stop(sk); 4585 } 4586 4587 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4588 local_bh_disable(); 4589 bh_lock_sock(sk); 4590 4591 if (!sock_flag(sk, SOCK_DEAD)) { 4592 WRITE_ONCE(sk->sk_err, err); 4593 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4594 smp_wmb(); 4595 sk_error_report(sk); 4596 if (tcp_need_reset(sk->sk_state)) 4597 tcp_send_active_reset(sk, GFP_ATOMIC); 4598 tcp_done(sk); 4599 } 4600 4601 bh_unlock_sock(sk); 4602 local_bh_enable(); 4603 tcp_write_queue_purge(sk); 4604 if (!has_current_bpf_ctx()) 4605 release_sock(sk); 4606 return 0; 4607 } 4608 EXPORT_SYMBOL_GPL(tcp_abort); 4609 4610 extern struct tcp_congestion_ops tcp_reno; 4611 4612 static __initdata unsigned long thash_entries; 4613 static int __init set_thash_entries(char *str) 4614 { 4615 ssize_t ret; 4616 4617 if (!str) 4618 return 0; 4619 4620 ret = kstrtoul(str, 0, &thash_entries); 4621 if (ret) 4622 return 0; 4623 4624 return 1; 4625 } 4626 __setup("thash_entries=", set_thash_entries); 4627 4628 static void __init tcp_init_mem(void) 4629 { 4630 unsigned long limit = nr_free_buffer_pages() / 16; 4631 4632 limit = max(limit, 128UL); 4633 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4634 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4635 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4636 } 4637 4638 void __init tcp_init(void) 4639 { 4640 int max_rshare, max_wshare, cnt; 4641 unsigned long limit; 4642 unsigned int i; 4643 4644 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4645 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4646 sizeof_field(struct sk_buff, cb)); 4647 4648 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4649 4650 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4651 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4652 4653 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4654 thash_entries, 21, /* one slot per 2 MB*/ 4655 0, 64 * 1024); 4656 tcp_hashinfo.bind_bucket_cachep = 4657 kmem_cache_create("tcp_bind_bucket", 4658 sizeof(struct inet_bind_bucket), 0, 4659 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4660 SLAB_ACCOUNT, 4661 NULL); 4662 tcp_hashinfo.bind2_bucket_cachep = 4663 kmem_cache_create("tcp_bind2_bucket", 4664 sizeof(struct inet_bind2_bucket), 0, 4665 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4666 SLAB_ACCOUNT, 4667 NULL); 4668 4669 /* Size and allocate the main established and bind bucket 4670 * hash tables. 4671 * 4672 * The methodology is similar to that of the buffer cache. 4673 */ 4674 tcp_hashinfo.ehash = 4675 alloc_large_system_hash("TCP established", 4676 sizeof(struct inet_ehash_bucket), 4677 thash_entries, 4678 17, /* one slot per 128 KB of memory */ 4679 0, 4680 NULL, 4681 &tcp_hashinfo.ehash_mask, 4682 0, 4683 thash_entries ? 0 : 512 * 1024); 4684 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4685 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4686 4687 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4688 panic("TCP: failed to alloc ehash_locks"); 4689 tcp_hashinfo.bhash = 4690 alloc_large_system_hash("TCP bind", 4691 2 * sizeof(struct inet_bind_hashbucket), 4692 tcp_hashinfo.ehash_mask + 1, 4693 17, /* one slot per 128 KB of memory */ 4694 0, 4695 &tcp_hashinfo.bhash_size, 4696 NULL, 4697 0, 4698 64 * 1024); 4699 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4700 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4701 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4702 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4703 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4704 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4705 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4706 } 4707 4708 tcp_hashinfo.pernet = false; 4709 4710 cnt = tcp_hashinfo.ehash_mask + 1; 4711 sysctl_tcp_max_orphans = cnt / 2; 4712 4713 tcp_init_mem(); 4714 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4715 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4716 max_wshare = min(4UL*1024*1024, limit); 4717 max_rshare = min(6UL*1024*1024, limit); 4718 4719 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4720 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4721 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4722 4723 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4724 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4725 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4726 4727 pr_info("Hash tables configured (established %u bind %u)\n", 4728 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4729 4730 tcp_v4_init(); 4731 tcp_metrics_init(); 4732 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4733 tcp_tasklet_init(); 4734 mptcp_init(); 4735 } 4736