1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_min_tso_segs __read_mostly = 2; 285 286 int sysctl_tcp_autocorking __read_mostly = 1; 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 long sysctl_tcp_mem[3] __read_mostly; 292 int sysctl_tcp_wmem[3] __read_mostly; 293 int sysctl_tcp_rmem[3] __read_mostly; 294 295 EXPORT_SYMBOL(sysctl_tcp_mem); 296 EXPORT_SYMBOL(sysctl_tcp_rmem); 297 EXPORT_SYMBOL(sysctl_tcp_wmem); 298 299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 300 EXPORT_SYMBOL(tcp_memory_allocated); 301 302 /* 303 * Current number of TCP sockets. 304 */ 305 struct percpu_counter tcp_sockets_allocated; 306 EXPORT_SYMBOL(tcp_sockets_allocated); 307 308 /* 309 * TCP splice context 310 */ 311 struct tcp_splice_state { 312 struct pipe_inode_info *pipe; 313 size_t len; 314 unsigned int flags; 315 }; 316 317 /* 318 * Pressure flag: try to collapse. 319 * Technical note: it is used by multiple contexts non atomically. 320 * All the __sk_mem_schedule() is of this nature: accounting 321 * is strict, actions are advisory and have some latency. 322 */ 323 int tcp_memory_pressure __read_mostly; 324 EXPORT_SYMBOL(tcp_memory_pressure); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 if (!tcp_memory_pressure) { 329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 330 tcp_memory_pressure = 1; 331 } 332 } 333 EXPORT_SYMBOL(tcp_enter_memory_pressure); 334 335 /* Convert seconds to retransmits based on initial and max timeout */ 336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 337 { 338 u8 res = 0; 339 340 if (seconds > 0) { 341 int period = timeout; 342 343 res = 1; 344 while (seconds > period && res < 255) { 345 res++; 346 timeout <<= 1; 347 if (timeout > rto_max) 348 timeout = rto_max; 349 period += timeout; 350 } 351 } 352 return res; 353 } 354 355 /* Convert retransmits to seconds based on initial and max timeout */ 356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 357 { 358 int period = 0; 359 360 if (retrans > 0) { 361 period = timeout; 362 while (--retrans) { 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return period; 370 } 371 372 /* Address-family independent initialization for a tcp_sock. 373 * 374 * NOTE: A lot of things set to zero explicitly by call to 375 * sk_alloc() so need not be done here. 376 */ 377 void tcp_init_sock(struct sock *sk) 378 { 379 struct inet_connection_sock *icsk = inet_csk(sk); 380 struct tcp_sock *tp = tcp_sk(sk); 381 382 tp->out_of_order_queue = RB_ROOT; 383 tcp_init_xmit_timers(sk); 384 tcp_prequeue_init(tp); 385 INIT_LIST_HEAD(&tp->tsq_node); 386 387 icsk->icsk_rto = TCP_TIMEOUT_INIT; 388 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 389 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U); 390 391 /* So many TCP implementations out there (incorrectly) count the 392 * initial SYN frame in their delayed-ACK and congestion control 393 * algorithms that we must have the following bandaid to talk 394 * efficiently to them. -DaveM 395 */ 396 tp->snd_cwnd = TCP_INIT_CWND; 397 398 /* There's a bubble in the pipe until at least the first ACK. */ 399 tp->app_limited = ~0U; 400 401 /* See draft-stevens-tcpca-spec-01 for discussion of the 402 * initialization of these values. 403 */ 404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 405 tp->snd_cwnd_clamp = ~0; 406 tp->mss_cache = TCP_MSS_DEFAULT; 407 408 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 409 tcp_enable_early_retrans(tp); 410 tcp_assign_congestion_control(sk); 411 412 tp->tsoffset = 0; 413 414 sk->sk_state = TCP_CLOSE; 415 416 sk->sk_write_space = sk_stream_write_space; 417 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 418 419 icsk->icsk_sync_mss = tcp_sync_mss; 420 421 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 422 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 423 424 local_bh_disable(); 425 sk_sockets_allocated_inc(sk); 426 local_bh_enable(); 427 } 428 EXPORT_SYMBOL(tcp_init_sock); 429 430 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb) 431 { 432 if (tsflags) { 433 struct skb_shared_info *shinfo = skb_shinfo(skb); 434 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 435 436 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 437 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 438 tcb->txstamp_ack = 1; 439 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 440 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 441 } 442 } 443 444 /* 445 * Wait for a TCP event. 446 * 447 * Note that we don't need to lock the socket, as the upper poll layers 448 * take care of normal races (between the test and the event) and we don't 449 * go look at any of the socket buffers directly. 450 */ 451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 452 { 453 unsigned int mask; 454 struct sock *sk = sock->sk; 455 const struct tcp_sock *tp = tcp_sk(sk); 456 int state; 457 458 sock_rps_record_flow(sk); 459 460 sock_poll_wait(file, sk_sleep(sk), wait); 461 462 state = sk_state_load(sk); 463 if (state == TCP_LISTEN) 464 return inet_csk_listen_poll(sk); 465 466 /* Socket is not locked. We are protected from async events 467 * by poll logic and correct handling of state changes 468 * made by other threads is impossible in any case. 469 */ 470 471 mask = 0; 472 473 /* 474 * POLLHUP is certainly not done right. But poll() doesn't 475 * have a notion of HUP in just one direction, and for a 476 * socket the read side is more interesting. 477 * 478 * Some poll() documentation says that POLLHUP is incompatible 479 * with the POLLOUT/POLLWR flags, so somebody should check this 480 * all. But careful, it tends to be safer to return too many 481 * bits than too few, and you can easily break real applications 482 * if you don't tell them that something has hung up! 483 * 484 * Check-me. 485 * 486 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 487 * our fs/select.c). It means that after we received EOF, 488 * poll always returns immediately, making impossible poll() on write() 489 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 490 * if and only if shutdown has been made in both directions. 491 * Actually, it is interesting to look how Solaris and DUX 492 * solve this dilemma. I would prefer, if POLLHUP were maskable, 493 * then we could set it on SND_SHUTDOWN. BTW examples given 494 * in Stevens' books assume exactly this behaviour, it explains 495 * why POLLHUP is incompatible with POLLOUT. --ANK 496 * 497 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 498 * blocking on fresh not-connected or disconnected socket. --ANK 499 */ 500 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 501 mask |= POLLHUP; 502 if (sk->sk_shutdown & RCV_SHUTDOWN) 503 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 504 505 /* Connected or passive Fast Open socket? */ 506 if (state != TCP_SYN_SENT && 507 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 508 int target = sock_rcvlowat(sk, 0, INT_MAX); 509 510 if (tp->urg_seq == tp->copied_seq && 511 !sock_flag(sk, SOCK_URGINLINE) && 512 tp->urg_data) 513 target++; 514 515 if (tp->rcv_nxt - tp->copied_seq >= target) 516 mask |= POLLIN | POLLRDNORM; 517 518 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 519 if (sk_stream_is_writeable(sk)) { 520 mask |= POLLOUT | POLLWRNORM; 521 } else { /* send SIGIO later */ 522 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 523 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 524 525 /* Race breaker. If space is freed after 526 * wspace test but before the flags are set, 527 * IO signal will be lost. Memory barrier 528 * pairs with the input side. 529 */ 530 smp_mb__after_atomic(); 531 if (sk_stream_is_writeable(sk)) 532 mask |= POLLOUT | POLLWRNORM; 533 } 534 } else 535 mask |= POLLOUT | POLLWRNORM; 536 537 if (tp->urg_data & TCP_URG_VALID) 538 mask |= POLLPRI; 539 } 540 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 541 smp_rmb(); 542 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 543 mask |= POLLERR; 544 545 return mask; 546 } 547 EXPORT_SYMBOL(tcp_poll); 548 549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 550 { 551 struct tcp_sock *tp = tcp_sk(sk); 552 int answ; 553 bool slow; 554 555 switch (cmd) { 556 case SIOCINQ: 557 if (sk->sk_state == TCP_LISTEN) 558 return -EINVAL; 559 560 slow = lock_sock_fast(sk); 561 answ = tcp_inq(sk); 562 unlock_sock_fast(sk, slow); 563 break; 564 case SIOCATMARK: 565 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 566 break; 567 case SIOCOUTQ: 568 if (sk->sk_state == TCP_LISTEN) 569 return -EINVAL; 570 571 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 572 answ = 0; 573 else 574 answ = tp->write_seq - tp->snd_una; 575 break; 576 case SIOCOUTQNSD: 577 if (sk->sk_state == TCP_LISTEN) 578 return -EINVAL; 579 580 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 581 answ = 0; 582 else 583 answ = tp->write_seq - tp->snd_nxt; 584 break; 585 default: 586 return -ENOIOCTLCMD; 587 } 588 589 return put_user(answ, (int __user *)arg); 590 } 591 EXPORT_SYMBOL(tcp_ioctl); 592 593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 594 { 595 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 596 tp->pushed_seq = tp->write_seq; 597 } 598 599 static inline bool forced_push(const struct tcp_sock *tp) 600 { 601 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 602 } 603 604 static void skb_entail(struct sock *sk, struct sk_buff *skb) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 608 609 skb->csum = 0; 610 tcb->seq = tcb->end_seq = tp->write_seq; 611 tcb->tcp_flags = TCPHDR_ACK; 612 tcb->sacked = 0; 613 __skb_header_release(skb); 614 tcp_add_write_queue_tail(sk, skb); 615 sk->sk_wmem_queued += skb->truesize; 616 sk_mem_charge(sk, skb->truesize); 617 if (tp->nonagle & TCP_NAGLE_PUSH) 618 tp->nonagle &= ~TCP_NAGLE_PUSH; 619 620 tcp_slow_start_after_idle_check(sk); 621 } 622 623 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 624 { 625 if (flags & MSG_OOB) 626 tp->snd_up = tp->write_seq; 627 } 628 629 /* If a not yet filled skb is pushed, do not send it if 630 * we have data packets in Qdisc or NIC queues : 631 * Because TX completion will happen shortly, it gives a chance 632 * to coalesce future sendmsg() payload into this skb, without 633 * need for a timer, and with no latency trade off. 634 * As packets containing data payload have a bigger truesize 635 * than pure acks (dataless) packets, the last checks prevent 636 * autocorking if we only have an ACK in Qdisc/NIC queues, 637 * or if TX completion was delayed after we processed ACK packet. 638 */ 639 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 640 int size_goal) 641 { 642 return skb->len < size_goal && 643 sysctl_tcp_autocorking && 644 skb != tcp_write_queue_head(sk) && 645 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 646 } 647 648 static void tcp_push(struct sock *sk, int flags, int mss_now, 649 int nonagle, int size_goal) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct sk_buff *skb; 653 654 if (!tcp_send_head(sk)) 655 return; 656 657 skb = tcp_write_queue_tail(sk); 658 if (!(flags & MSG_MORE) || forced_push(tp)) 659 tcp_mark_push(tp, skb); 660 661 tcp_mark_urg(tp, flags); 662 663 if (tcp_should_autocork(sk, skb, size_goal)) { 664 665 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 666 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 668 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 669 } 670 /* It is possible TX completion already happened 671 * before we set TSQ_THROTTLED. 672 */ 673 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 674 return; 675 } 676 677 if (flags & MSG_MORE) 678 nonagle = TCP_NAGLE_CORK; 679 680 __tcp_push_pending_frames(sk, mss_now, nonagle); 681 } 682 683 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 684 unsigned int offset, size_t len) 685 { 686 struct tcp_splice_state *tss = rd_desc->arg.data; 687 int ret; 688 689 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 690 min(rd_desc->count, len), tss->flags); 691 if (ret > 0) 692 rd_desc->count -= ret; 693 return ret; 694 } 695 696 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 697 { 698 /* Store TCP splice context information in read_descriptor_t. */ 699 read_descriptor_t rd_desc = { 700 .arg.data = tss, 701 .count = tss->len, 702 }; 703 704 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 705 } 706 707 /** 708 * tcp_splice_read - splice data from TCP socket to a pipe 709 * @sock: socket to splice from 710 * @ppos: position (not valid) 711 * @pipe: pipe to splice to 712 * @len: number of bytes to splice 713 * @flags: splice modifier flags 714 * 715 * Description: 716 * Will read pages from given socket and fill them into a pipe. 717 * 718 **/ 719 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 720 struct pipe_inode_info *pipe, size_t len, 721 unsigned int flags) 722 { 723 struct sock *sk = sock->sk; 724 struct tcp_splice_state tss = { 725 .pipe = pipe, 726 .len = len, 727 .flags = flags, 728 }; 729 long timeo; 730 ssize_t spliced; 731 int ret; 732 733 sock_rps_record_flow(sk); 734 /* 735 * We can't seek on a socket input 736 */ 737 if (unlikely(*ppos)) 738 return -ESPIPE; 739 740 ret = spliced = 0; 741 742 lock_sock(sk); 743 744 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 745 while (tss.len) { 746 ret = __tcp_splice_read(sk, &tss); 747 if (ret < 0) 748 break; 749 else if (!ret) { 750 if (spliced) 751 break; 752 if (sock_flag(sk, SOCK_DONE)) 753 break; 754 if (sk->sk_err) { 755 ret = sock_error(sk); 756 break; 757 } 758 if (sk->sk_shutdown & RCV_SHUTDOWN) 759 break; 760 if (sk->sk_state == TCP_CLOSE) { 761 /* 762 * This occurs when user tries to read 763 * from never connected socket. 764 */ 765 if (!sock_flag(sk, SOCK_DONE)) 766 ret = -ENOTCONN; 767 break; 768 } 769 if (!timeo) { 770 ret = -EAGAIN; 771 break; 772 } 773 sk_wait_data(sk, &timeo, NULL); 774 if (signal_pending(current)) { 775 ret = sock_intr_errno(timeo); 776 break; 777 } 778 continue; 779 } 780 tss.len -= ret; 781 spliced += ret; 782 783 if (!timeo) 784 break; 785 release_sock(sk); 786 lock_sock(sk); 787 788 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 789 (sk->sk_shutdown & RCV_SHUTDOWN) || 790 signal_pending(current)) 791 break; 792 } 793 794 release_sock(sk); 795 796 if (spliced) 797 return spliced; 798 799 return ret; 800 } 801 EXPORT_SYMBOL(tcp_splice_read); 802 803 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 804 bool force_schedule) 805 { 806 struct sk_buff *skb; 807 808 /* The TCP header must be at least 32-bit aligned. */ 809 size = ALIGN(size, 4); 810 811 if (unlikely(tcp_under_memory_pressure(sk))) 812 sk_mem_reclaim_partial(sk); 813 814 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 815 if (likely(skb)) { 816 bool mem_scheduled; 817 818 if (force_schedule) { 819 mem_scheduled = true; 820 sk_forced_mem_schedule(sk, skb->truesize); 821 } else { 822 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 823 } 824 if (likely(mem_scheduled)) { 825 skb_reserve(skb, sk->sk_prot->max_header); 826 /* 827 * Make sure that we have exactly size bytes 828 * available to the caller, no more, no less. 829 */ 830 skb->reserved_tailroom = skb->end - skb->tail - size; 831 return skb; 832 } 833 __kfree_skb(skb); 834 } else { 835 sk->sk_prot->enter_memory_pressure(sk); 836 sk_stream_moderate_sndbuf(sk); 837 } 838 return NULL; 839 } 840 841 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 842 int large_allowed) 843 { 844 struct tcp_sock *tp = tcp_sk(sk); 845 u32 new_size_goal, size_goal; 846 847 if (!large_allowed || !sk_can_gso(sk)) 848 return mss_now; 849 850 /* Note : tcp_tso_autosize() will eventually split this later */ 851 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 852 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 853 854 /* We try hard to avoid divides here */ 855 size_goal = tp->gso_segs * mss_now; 856 if (unlikely(new_size_goal < size_goal || 857 new_size_goal >= size_goal + mss_now)) { 858 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 859 sk->sk_gso_max_segs); 860 size_goal = tp->gso_segs * mss_now; 861 } 862 863 return max(size_goal, mss_now); 864 } 865 866 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 867 { 868 int mss_now; 869 870 mss_now = tcp_current_mss(sk); 871 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 872 873 return mss_now; 874 } 875 876 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 877 size_t size, int flags) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 int mss_now, size_goal; 881 int err; 882 ssize_t copied; 883 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 884 885 /* Wait for a connection to finish. One exception is TCP Fast Open 886 * (passive side) where data is allowed to be sent before a connection 887 * is fully established. 888 */ 889 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 890 !tcp_passive_fastopen(sk)) { 891 err = sk_stream_wait_connect(sk, &timeo); 892 if (err != 0) 893 goto out_err; 894 } 895 896 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 897 898 mss_now = tcp_send_mss(sk, &size_goal, flags); 899 copied = 0; 900 901 err = -EPIPE; 902 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 903 goto out_err; 904 905 while (size > 0) { 906 struct sk_buff *skb = tcp_write_queue_tail(sk); 907 int copy, i; 908 bool can_coalesce; 909 910 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 || 911 !tcp_skb_can_collapse_to(skb)) { 912 new_segment: 913 if (!sk_stream_memory_free(sk)) 914 goto wait_for_sndbuf; 915 916 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 917 skb_queue_empty(&sk->sk_write_queue)); 918 if (!skb) 919 goto wait_for_memory; 920 921 skb_entail(sk, skb); 922 copy = size_goal; 923 } 924 925 if (copy > size) 926 copy = size; 927 928 i = skb_shinfo(skb)->nr_frags; 929 can_coalesce = skb_can_coalesce(skb, i, page, offset); 930 if (!can_coalesce && i >= sysctl_max_skb_frags) { 931 tcp_mark_push(tp, skb); 932 goto new_segment; 933 } 934 if (!sk_wmem_schedule(sk, copy)) 935 goto wait_for_memory; 936 937 if (can_coalesce) { 938 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 939 } else { 940 get_page(page); 941 skb_fill_page_desc(skb, i, page, offset, copy); 942 } 943 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 944 945 skb->len += copy; 946 skb->data_len += copy; 947 skb->truesize += copy; 948 sk->sk_wmem_queued += copy; 949 sk_mem_charge(sk, copy); 950 skb->ip_summed = CHECKSUM_PARTIAL; 951 tp->write_seq += copy; 952 TCP_SKB_CB(skb)->end_seq += copy; 953 tcp_skb_pcount_set(skb, 0); 954 955 if (!copied) 956 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 957 958 copied += copy; 959 offset += copy; 960 size -= copy; 961 if (!size) { 962 tcp_tx_timestamp(sk, sk->sk_tsflags, skb); 963 goto out; 964 } 965 966 if (skb->len < size_goal || (flags & MSG_OOB)) 967 continue; 968 969 if (forced_push(tp)) { 970 tcp_mark_push(tp, skb); 971 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 972 } else if (skb == tcp_send_head(sk)) 973 tcp_push_one(sk, mss_now); 974 continue; 975 976 wait_for_sndbuf: 977 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 978 wait_for_memory: 979 tcp_push(sk, flags & ~MSG_MORE, mss_now, 980 TCP_NAGLE_PUSH, size_goal); 981 982 err = sk_stream_wait_memory(sk, &timeo); 983 if (err != 0) 984 goto do_error; 985 986 mss_now = tcp_send_mss(sk, &size_goal, flags); 987 } 988 989 out: 990 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 991 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 992 return copied; 993 994 do_error: 995 if (copied) 996 goto out; 997 out_err: 998 /* make sure we wake any epoll edge trigger waiter */ 999 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1000 err == -EAGAIN)) { 1001 sk->sk_write_space(sk); 1002 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1003 } 1004 return sk_stream_error(sk, flags, err); 1005 } 1006 1007 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1008 size_t size, int flags) 1009 { 1010 ssize_t res; 1011 1012 if (!(sk->sk_route_caps & NETIF_F_SG) || 1013 !sk_check_csum_caps(sk)) 1014 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1015 flags); 1016 1017 lock_sock(sk); 1018 1019 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1020 1021 res = do_tcp_sendpages(sk, page, offset, size, flags); 1022 release_sock(sk); 1023 return res; 1024 } 1025 EXPORT_SYMBOL(tcp_sendpage); 1026 1027 /* Do not bother using a page frag for very small frames. 1028 * But use this heuristic only for the first skb in write queue. 1029 * 1030 * Having no payload in skb->head allows better SACK shifting 1031 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1032 * write queue has less skbs. 1033 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1034 * This also speeds up tso_fragment(), since it wont fallback 1035 * to tcp_fragment(). 1036 */ 1037 static int linear_payload_sz(bool first_skb) 1038 { 1039 if (first_skb) 1040 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1041 return 0; 1042 } 1043 1044 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1045 { 1046 const struct tcp_sock *tp = tcp_sk(sk); 1047 int tmp = tp->mss_cache; 1048 1049 if (sg) { 1050 if (sk_can_gso(sk)) { 1051 tmp = linear_payload_sz(first_skb); 1052 } else { 1053 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1054 1055 if (tmp >= pgbreak && 1056 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1057 tmp = pgbreak; 1058 } 1059 } 1060 1061 return tmp; 1062 } 1063 1064 void tcp_free_fastopen_req(struct tcp_sock *tp) 1065 { 1066 if (tp->fastopen_req) { 1067 kfree(tp->fastopen_req); 1068 tp->fastopen_req = NULL; 1069 } 1070 } 1071 1072 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1073 int *copied, size_t size) 1074 { 1075 struct tcp_sock *tp = tcp_sk(sk); 1076 int err, flags; 1077 1078 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1079 return -EOPNOTSUPP; 1080 if (tp->fastopen_req) 1081 return -EALREADY; /* Another Fast Open is in progress */ 1082 1083 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1084 sk->sk_allocation); 1085 if (unlikely(!tp->fastopen_req)) 1086 return -ENOBUFS; 1087 tp->fastopen_req->data = msg; 1088 tp->fastopen_req->size = size; 1089 1090 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1091 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1092 msg->msg_namelen, flags); 1093 *copied = tp->fastopen_req->copied; 1094 tcp_free_fastopen_req(tp); 1095 return err; 1096 } 1097 1098 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1099 { 1100 struct tcp_sock *tp = tcp_sk(sk); 1101 struct sk_buff *skb; 1102 struct sockcm_cookie sockc; 1103 int flags, err, copied = 0; 1104 int mss_now = 0, size_goal, copied_syn = 0; 1105 bool process_backlog = false; 1106 bool sg; 1107 long timeo; 1108 1109 lock_sock(sk); 1110 1111 flags = msg->msg_flags; 1112 if (flags & MSG_FASTOPEN) { 1113 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1114 if (err == -EINPROGRESS && copied_syn > 0) 1115 goto out; 1116 else if (err) 1117 goto out_err; 1118 } 1119 1120 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1121 1122 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1123 1124 /* Wait for a connection to finish. One exception is TCP Fast Open 1125 * (passive side) where data is allowed to be sent before a connection 1126 * is fully established. 1127 */ 1128 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1129 !tcp_passive_fastopen(sk)) { 1130 err = sk_stream_wait_connect(sk, &timeo); 1131 if (err != 0) 1132 goto do_error; 1133 } 1134 1135 if (unlikely(tp->repair)) { 1136 if (tp->repair_queue == TCP_RECV_QUEUE) { 1137 copied = tcp_send_rcvq(sk, msg, size); 1138 goto out_nopush; 1139 } 1140 1141 err = -EINVAL; 1142 if (tp->repair_queue == TCP_NO_QUEUE) 1143 goto out_err; 1144 1145 /* 'common' sending to sendq */ 1146 } 1147 1148 sockc.tsflags = sk->sk_tsflags; 1149 if (msg->msg_controllen) { 1150 err = sock_cmsg_send(sk, msg, &sockc); 1151 if (unlikely(err)) { 1152 err = -EINVAL; 1153 goto out_err; 1154 } 1155 } 1156 1157 /* This should be in poll */ 1158 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1159 1160 /* Ok commence sending. */ 1161 copied = 0; 1162 1163 restart: 1164 mss_now = tcp_send_mss(sk, &size_goal, flags); 1165 1166 err = -EPIPE; 1167 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1168 goto do_error; 1169 1170 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1171 1172 while (msg_data_left(msg)) { 1173 int copy = 0; 1174 int max = size_goal; 1175 1176 skb = tcp_write_queue_tail(sk); 1177 if (tcp_send_head(sk)) { 1178 if (skb->ip_summed == CHECKSUM_NONE) 1179 max = mss_now; 1180 copy = max - skb->len; 1181 } 1182 1183 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1184 bool first_skb; 1185 1186 new_segment: 1187 /* Allocate new segment. If the interface is SG, 1188 * allocate skb fitting to single page. 1189 */ 1190 if (!sk_stream_memory_free(sk)) 1191 goto wait_for_sndbuf; 1192 1193 if (process_backlog && sk_flush_backlog(sk)) { 1194 process_backlog = false; 1195 goto restart; 1196 } 1197 first_skb = skb_queue_empty(&sk->sk_write_queue); 1198 skb = sk_stream_alloc_skb(sk, 1199 select_size(sk, sg, first_skb), 1200 sk->sk_allocation, 1201 first_skb); 1202 if (!skb) 1203 goto wait_for_memory; 1204 1205 process_backlog = true; 1206 /* 1207 * Check whether we can use HW checksum. 1208 */ 1209 if (sk_check_csum_caps(sk)) 1210 skb->ip_summed = CHECKSUM_PARTIAL; 1211 1212 skb_entail(sk, skb); 1213 copy = size_goal; 1214 max = size_goal; 1215 1216 /* All packets are restored as if they have 1217 * already been sent. skb_mstamp isn't set to 1218 * avoid wrong rtt estimation. 1219 */ 1220 if (tp->repair) 1221 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1222 } 1223 1224 /* Try to append data to the end of skb. */ 1225 if (copy > msg_data_left(msg)) 1226 copy = msg_data_left(msg); 1227 1228 /* Where to copy to? */ 1229 if (skb_availroom(skb) > 0) { 1230 /* We have some space in skb head. Superb! */ 1231 copy = min_t(int, copy, skb_availroom(skb)); 1232 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1233 if (err) 1234 goto do_fault; 1235 } else { 1236 bool merge = true; 1237 int i = skb_shinfo(skb)->nr_frags; 1238 struct page_frag *pfrag = sk_page_frag(sk); 1239 1240 if (!sk_page_frag_refill(sk, pfrag)) 1241 goto wait_for_memory; 1242 1243 if (!skb_can_coalesce(skb, i, pfrag->page, 1244 pfrag->offset)) { 1245 if (i >= sysctl_max_skb_frags || !sg) { 1246 tcp_mark_push(tp, skb); 1247 goto new_segment; 1248 } 1249 merge = false; 1250 } 1251 1252 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1253 1254 if (!sk_wmem_schedule(sk, copy)) 1255 goto wait_for_memory; 1256 1257 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1258 pfrag->page, 1259 pfrag->offset, 1260 copy); 1261 if (err) 1262 goto do_error; 1263 1264 /* Update the skb. */ 1265 if (merge) { 1266 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1267 } else { 1268 skb_fill_page_desc(skb, i, pfrag->page, 1269 pfrag->offset, copy); 1270 get_page(pfrag->page); 1271 } 1272 pfrag->offset += copy; 1273 } 1274 1275 if (!copied) 1276 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1277 1278 tp->write_seq += copy; 1279 TCP_SKB_CB(skb)->end_seq += copy; 1280 tcp_skb_pcount_set(skb, 0); 1281 1282 copied += copy; 1283 if (!msg_data_left(msg)) { 1284 tcp_tx_timestamp(sk, sockc.tsflags, skb); 1285 if (unlikely(flags & MSG_EOR)) 1286 TCP_SKB_CB(skb)->eor = 1; 1287 goto out; 1288 } 1289 1290 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1291 continue; 1292 1293 if (forced_push(tp)) { 1294 tcp_mark_push(tp, skb); 1295 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1296 } else if (skb == tcp_send_head(sk)) 1297 tcp_push_one(sk, mss_now); 1298 continue; 1299 1300 wait_for_sndbuf: 1301 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1302 wait_for_memory: 1303 if (copied) 1304 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1305 TCP_NAGLE_PUSH, size_goal); 1306 1307 err = sk_stream_wait_memory(sk, &timeo); 1308 if (err != 0) 1309 goto do_error; 1310 1311 mss_now = tcp_send_mss(sk, &size_goal, flags); 1312 } 1313 1314 out: 1315 if (copied) 1316 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1317 out_nopush: 1318 release_sock(sk); 1319 return copied + copied_syn; 1320 1321 do_fault: 1322 if (!skb->len) { 1323 tcp_unlink_write_queue(skb, sk); 1324 /* It is the one place in all of TCP, except connection 1325 * reset, where we can be unlinking the send_head. 1326 */ 1327 tcp_check_send_head(sk, skb); 1328 sk_wmem_free_skb(sk, skb); 1329 } 1330 1331 do_error: 1332 if (copied + copied_syn) 1333 goto out; 1334 out_err: 1335 err = sk_stream_error(sk, flags, err); 1336 /* make sure we wake any epoll edge trigger waiter */ 1337 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1338 err == -EAGAIN)) { 1339 sk->sk_write_space(sk); 1340 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1341 } 1342 release_sock(sk); 1343 return err; 1344 } 1345 EXPORT_SYMBOL(tcp_sendmsg); 1346 1347 /* 1348 * Handle reading urgent data. BSD has very simple semantics for 1349 * this, no blocking and very strange errors 8) 1350 */ 1351 1352 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1353 { 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 1356 /* No URG data to read. */ 1357 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1358 tp->urg_data == TCP_URG_READ) 1359 return -EINVAL; /* Yes this is right ! */ 1360 1361 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1362 return -ENOTCONN; 1363 1364 if (tp->urg_data & TCP_URG_VALID) { 1365 int err = 0; 1366 char c = tp->urg_data; 1367 1368 if (!(flags & MSG_PEEK)) 1369 tp->urg_data = TCP_URG_READ; 1370 1371 /* Read urgent data. */ 1372 msg->msg_flags |= MSG_OOB; 1373 1374 if (len > 0) { 1375 if (!(flags & MSG_TRUNC)) 1376 err = memcpy_to_msg(msg, &c, 1); 1377 len = 1; 1378 } else 1379 msg->msg_flags |= MSG_TRUNC; 1380 1381 return err ? -EFAULT : len; 1382 } 1383 1384 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1385 return 0; 1386 1387 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1388 * the available implementations agree in this case: 1389 * this call should never block, independent of the 1390 * blocking state of the socket. 1391 * Mike <pall@rz.uni-karlsruhe.de> 1392 */ 1393 return -EAGAIN; 1394 } 1395 1396 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1397 { 1398 struct sk_buff *skb; 1399 int copied = 0, err = 0; 1400 1401 /* XXX -- need to support SO_PEEK_OFF */ 1402 1403 skb_queue_walk(&sk->sk_write_queue, skb) { 1404 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1405 if (err) 1406 break; 1407 1408 copied += skb->len; 1409 } 1410 1411 return err ?: copied; 1412 } 1413 1414 /* Clean up the receive buffer for full frames taken by the user, 1415 * then send an ACK if necessary. COPIED is the number of bytes 1416 * tcp_recvmsg has given to the user so far, it speeds up the 1417 * calculation of whether or not we must ACK for the sake of 1418 * a window update. 1419 */ 1420 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1421 { 1422 struct tcp_sock *tp = tcp_sk(sk); 1423 bool time_to_ack = false; 1424 1425 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1426 1427 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1428 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1429 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1430 1431 if (inet_csk_ack_scheduled(sk)) { 1432 const struct inet_connection_sock *icsk = inet_csk(sk); 1433 /* Delayed ACKs frequently hit locked sockets during bulk 1434 * receive. */ 1435 if (icsk->icsk_ack.blocked || 1436 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1437 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1438 /* 1439 * If this read emptied read buffer, we send ACK, if 1440 * connection is not bidirectional, user drained 1441 * receive buffer and there was a small segment 1442 * in queue. 1443 */ 1444 (copied > 0 && 1445 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1446 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1447 !icsk->icsk_ack.pingpong)) && 1448 !atomic_read(&sk->sk_rmem_alloc))) 1449 time_to_ack = true; 1450 } 1451 1452 /* We send an ACK if we can now advertise a non-zero window 1453 * which has been raised "significantly". 1454 * 1455 * Even if window raised up to infinity, do not send window open ACK 1456 * in states, where we will not receive more. It is useless. 1457 */ 1458 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1459 __u32 rcv_window_now = tcp_receive_window(tp); 1460 1461 /* Optimize, __tcp_select_window() is not cheap. */ 1462 if (2*rcv_window_now <= tp->window_clamp) { 1463 __u32 new_window = __tcp_select_window(sk); 1464 1465 /* Send ACK now, if this read freed lots of space 1466 * in our buffer. Certainly, new_window is new window. 1467 * We can advertise it now, if it is not less than current one. 1468 * "Lots" means "at least twice" here. 1469 */ 1470 if (new_window && new_window >= 2 * rcv_window_now) 1471 time_to_ack = true; 1472 } 1473 } 1474 if (time_to_ack) 1475 tcp_send_ack(sk); 1476 } 1477 1478 static void tcp_prequeue_process(struct sock *sk) 1479 { 1480 struct sk_buff *skb; 1481 struct tcp_sock *tp = tcp_sk(sk); 1482 1483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1484 1485 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1486 sk_backlog_rcv(sk, skb); 1487 1488 /* Clear memory counter. */ 1489 tp->ucopy.memory = 0; 1490 } 1491 1492 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1493 { 1494 struct sk_buff *skb; 1495 u32 offset; 1496 1497 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1498 offset = seq - TCP_SKB_CB(skb)->seq; 1499 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1500 pr_err_once("%s: found a SYN, please report !\n", __func__); 1501 offset--; 1502 } 1503 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1504 *off = offset; 1505 return skb; 1506 } 1507 /* This looks weird, but this can happen if TCP collapsing 1508 * splitted a fat GRO packet, while we released socket lock 1509 * in skb_splice_bits() 1510 */ 1511 sk_eat_skb(sk, skb); 1512 } 1513 return NULL; 1514 } 1515 1516 /* 1517 * This routine provides an alternative to tcp_recvmsg() for routines 1518 * that would like to handle copying from skbuffs directly in 'sendfile' 1519 * fashion. 1520 * Note: 1521 * - It is assumed that the socket was locked by the caller. 1522 * - The routine does not block. 1523 * - At present, there is no support for reading OOB data 1524 * or for 'peeking' the socket using this routine 1525 * (although both would be easy to implement). 1526 */ 1527 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1528 sk_read_actor_t recv_actor) 1529 { 1530 struct sk_buff *skb; 1531 struct tcp_sock *tp = tcp_sk(sk); 1532 u32 seq = tp->copied_seq; 1533 u32 offset; 1534 int copied = 0; 1535 1536 if (sk->sk_state == TCP_LISTEN) 1537 return -ENOTCONN; 1538 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1539 if (offset < skb->len) { 1540 int used; 1541 size_t len; 1542 1543 len = skb->len - offset; 1544 /* Stop reading if we hit a patch of urgent data */ 1545 if (tp->urg_data) { 1546 u32 urg_offset = tp->urg_seq - seq; 1547 if (urg_offset < len) 1548 len = urg_offset; 1549 if (!len) 1550 break; 1551 } 1552 used = recv_actor(desc, skb, offset, len); 1553 if (used <= 0) { 1554 if (!copied) 1555 copied = used; 1556 break; 1557 } else if (used <= len) { 1558 seq += used; 1559 copied += used; 1560 offset += used; 1561 } 1562 /* If recv_actor drops the lock (e.g. TCP splice 1563 * receive) the skb pointer might be invalid when 1564 * getting here: tcp_collapse might have deleted it 1565 * while aggregating skbs from the socket queue. 1566 */ 1567 skb = tcp_recv_skb(sk, seq - 1, &offset); 1568 if (!skb) 1569 break; 1570 /* TCP coalescing might have appended data to the skb. 1571 * Try to splice more frags 1572 */ 1573 if (offset + 1 != skb->len) 1574 continue; 1575 } 1576 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1577 sk_eat_skb(sk, skb); 1578 ++seq; 1579 break; 1580 } 1581 sk_eat_skb(sk, skb); 1582 if (!desc->count) 1583 break; 1584 tp->copied_seq = seq; 1585 } 1586 tp->copied_seq = seq; 1587 1588 tcp_rcv_space_adjust(sk); 1589 1590 /* Clean up data we have read: This will do ACK frames. */ 1591 if (copied > 0) { 1592 tcp_recv_skb(sk, seq, &offset); 1593 tcp_cleanup_rbuf(sk, copied); 1594 } 1595 return copied; 1596 } 1597 EXPORT_SYMBOL(tcp_read_sock); 1598 1599 int tcp_peek_len(struct socket *sock) 1600 { 1601 return tcp_inq(sock->sk); 1602 } 1603 EXPORT_SYMBOL(tcp_peek_len); 1604 1605 /* 1606 * This routine copies from a sock struct into the user buffer. 1607 * 1608 * Technical note: in 2.3 we work on _locked_ socket, so that 1609 * tricks with *seq access order and skb->users are not required. 1610 * Probably, code can be easily improved even more. 1611 */ 1612 1613 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1614 int flags, int *addr_len) 1615 { 1616 struct tcp_sock *tp = tcp_sk(sk); 1617 int copied = 0; 1618 u32 peek_seq; 1619 u32 *seq; 1620 unsigned long used; 1621 int err; 1622 int target; /* Read at least this many bytes */ 1623 long timeo; 1624 struct task_struct *user_recv = NULL; 1625 struct sk_buff *skb, *last; 1626 u32 urg_hole = 0; 1627 1628 if (unlikely(flags & MSG_ERRQUEUE)) 1629 return inet_recv_error(sk, msg, len, addr_len); 1630 1631 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1632 (sk->sk_state == TCP_ESTABLISHED)) 1633 sk_busy_loop(sk, nonblock); 1634 1635 lock_sock(sk); 1636 1637 err = -ENOTCONN; 1638 if (sk->sk_state == TCP_LISTEN) 1639 goto out; 1640 1641 timeo = sock_rcvtimeo(sk, nonblock); 1642 1643 /* Urgent data needs to be handled specially. */ 1644 if (flags & MSG_OOB) 1645 goto recv_urg; 1646 1647 if (unlikely(tp->repair)) { 1648 err = -EPERM; 1649 if (!(flags & MSG_PEEK)) 1650 goto out; 1651 1652 if (tp->repair_queue == TCP_SEND_QUEUE) 1653 goto recv_sndq; 1654 1655 err = -EINVAL; 1656 if (tp->repair_queue == TCP_NO_QUEUE) 1657 goto out; 1658 1659 /* 'common' recv queue MSG_PEEK-ing */ 1660 } 1661 1662 seq = &tp->copied_seq; 1663 if (flags & MSG_PEEK) { 1664 peek_seq = tp->copied_seq; 1665 seq = &peek_seq; 1666 } 1667 1668 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1669 1670 do { 1671 u32 offset; 1672 1673 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1674 if (tp->urg_data && tp->urg_seq == *seq) { 1675 if (copied) 1676 break; 1677 if (signal_pending(current)) { 1678 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1679 break; 1680 } 1681 } 1682 1683 /* Next get a buffer. */ 1684 1685 last = skb_peek_tail(&sk->sk_receive_queue); 1686 skb_queue_walk(&sk->sk_receive_queue, skb) { 1687 last = skb; 1688 /* Now that we have two receive queues this 1689 * shouldn't happen. 1690 */ 1691 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1692 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1693 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1694 flags)) 1695 break; 1696 1697 offset = *seq - TCP_SKB_CB(skb)->seq; 1698 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1699 pr_err_once("%s: found a SYN, please report !\n", __func__); 1700 offset--; 1701 } 1702 if (offset < skb->len) 1703 goto found_ok_skb; 1704 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1705 goto found_fin_ok; 1706 WARN(!(flags & MSG_PEEK), 1707 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1708 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1709 } 1710 1711 /* Well, if we have backlog, try to process it now yet. */ 1712 1713 if (copied >= target && !sk->sk_backlog.tail) 1714 break; 1715 1716 if (copied) { 1717 if (sk->sk_err || 1718 sk->sk_state == TCP_CLOSE || 1719 (sk->sk_shutdown & RCV_SHUTDOWN) || 1720 !timeo || 1721 signal_pending(current)) 1722 break; 1723 } else { 1724 if (sock_flag(sk, SOCK_DONE)) 1725 break; 1726 1727 if (sk->sk_err) { 1728 copied = sock_error(sk); 1729 break; 1730 } 1731 1732 if (sk->sk_shutdown & RCV_SHUTDOWN) 1733 break; 1734 1735 if (sk->sk_state == TCP_CLOSE) { 1736 if (!sock_flag(sk, SOCK_DONE)) { 1737 /* This occurs when user tries to read 1738 * from never connected socket. 1739 */ 1740 copied = -ENOTCONN; 1741 break; 1742 } 1743 break; 1744 } 1745 1746 if (!timeo) { 1747 copied = -EAGAIN; 1748 break; 1749 } 1750 1751 if (signal_pending(current)) { 1752 copied = sock_intr_errno(timeo); 1753 break; 1754 } 1755 } 1756 1757 tcp_cleanup_rbuf(sk, copied); 1758 1759 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1760 /* Install new reader */ 1761 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1762 user_recv = current; 1763 tp->ucopy.task = user_recv; 1764 tp->ucopy.msg = msg; 1765 } 1766 1767 tp->ucopy.len = len; 1768 1769 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1770 !(flags & (MSG_PEEK | MSG_TRUNC))); 1771 1772 /* Ugly... If prequeue is not empty, we have to 1773 * process it before releasing socket, otherwise 1774 * order will be broken at second iteration. 1775 * More elegant solution is required!!! 1776 * 1777 * Look: we have the following (pseudo)queues: 1778 * 1779 * 1. packets in flight 1780 * 2. backlog 1781 * 3. prequeue 1782 * 4. receive_queue 1783 * 1784 * Each queue can be processed only if the next ones 1785 * are empty. At this point we have empty receive_queue. 1786 * But prequeue _can_ be not empty after 2nd iteration, 1787 * when we jumped to start of loop because backlog 1788 * processing added something to receive_queue. 1789 * We cannot release_sock(), because backlog contains 1790 * packets arrived _after_ prequeued ones. 1791 * 1792 * Shortly, algorithm is clear --- to process all 1793 * the queues in order. We could make it more directly, 1794 * requeueing packets from backlog to prequeue, if 1795 * is not empty. It is more elegant, but eats cycles, 1796 * unfortunately. 1797 */ 1798 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1799 goto do_prequeue; 1800 1801 /* __ Set realtime policy in scheduler __ */ 1802 } 1803 1804 if (copied >= target) { 1805 /* Do not sleep, just process backlog. */ 1806 release_sock(sk); 1807 lock_sock(sk); 1808 } else { 1809 sk_wait_data(sk, &timeo, last); 1810 } 1811 1812 if (user_recv) { 1813 int chunk; 1814 1815 /* __ Restore normal policy in scheduler __ */ 1816 1817 chunk = len - tp->ucopy.len; 1818 if (chunk != 0) { 1819 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1820 len -= chunk; 1821 copied += chunk; 1822 } 1823 1824 if (tp->rcv_nxt == tp->copied_seq && 1825 !skb_queue_empty(&tp->ucopy.prequeue)) { 1826 do_prequeue: 1827 tcp_prequeue_process(sk); 1828 1829 chunk = len - tp->ucopy.len; 1830 if (chunk != 0) { 1831 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1832 len -= chunk; 1833 copied += chunk; 1834 } 1835 } 1836 } 1837 if ((flags & MSG_PEEK) && 1838 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1839 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1840 current->comm, 1841 task_pid_nr(current)); 1842 peek_seq = tp->copied_seq; 1843 } 1844 continue; 1845 1846 found_ok_skb: 1847 /* Ok so how much can we use? */ 1848 used = skb->len - offset; 1849 if (len < used) 1850 used = len; 1851 1852 /* Do we have urgent data here? */ 1853 if (tp->urg_data) { 1854 u32 urg_offset = tp->urg_seq - *seq; 1855 if (urg_offset < used) { 1856 if (!urg_offset) { 1857 if (!sock_flag(sk, SOCK_URGINLINE)) { 1858 ++*seq; 1859 urg_hole++; 1860 offset++; 1861 used--; 1862 if (!used) 1863 goto skip_copy; 1864 } 1865 } else 1866 used = urg_offset; 1867 } 1868 } 1869 1870 if (!(flags & MSG_TRUNC)) { 1871 err = skb_copy_datagram_msg(skb, offset, msg, used); 1872 if (err) { 1873 /* Exception. Bailout! */ 1874 if (!copied) 1875 copied = -EFAULT; 1876 break; 1877 } 1878 } 1879 1880 *seq += used; 1881 copied += used; 1882 len -= used; 1883 1884 tcp_rcv_space_adjust(sk); 1885 1886 skip_copy: 1887 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1888 tp->urg_data = 0; 1889 tcp_fast_path_check(sk); 1890 } 1891 if (used + offset < skb->len) 1892 continue; 1893 1894 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1895 goto found_fin_ok; 1896 if (!(flags & MSG_PEEK)) 1897 sk_eat_skb(sk, skb); 1898 continue; 1899 1900 found_fin_ok: 1901 /* Process the FIN. */ 1902 ++*seq; 1903 if (!(flags & MSG_PEEK)) 1904 sk_eat_skb(sk, skb); 1905 break; 1906 } while (len > 0); 1907 1908 if (user_recv) { 1909 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1910 int chunk; 1911 1912 tp->ucopy.len = copied > 0 ? len : 0; 1913 1914 tcp_prequeue_process(sk); 1915 1916 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1917 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1918 len -= chunk; 1919 copied += chunk; 1920 } 1921 } 1922 1923 tp->ucopy.task = NULL; 1924 tp->ucopy.len = 0; 1925 } 1926 1927 /* According to UNIX98, msg_name/msg_namelen are ignored 1928 * on connected socket. I was just happy when found this 8) --ANK 1929 */ 1930 1931 /* Clean up data we have read: This will do ACK frames. */ 1932 tcp_cleanup_rbuf(sk, copied); 1933 1934 release_sock(sk); 1935 return copied; 1936 1937 out: 1938 release_sock(sk); 1939 return err; 1940 1941 recv_urg: 1942 err = tcp_recv_urg(sk, msg, len, flags); 1943 goto out; 1944 1945 recv_sndq: 1946 err = tcp_peek_sndq(sk, msg, len); 1947 goto out; 1948 } 1949 EXPORT_SYMBOL(tcp_recvmsg); 1950 1951 void tcp_set_state(struct sock *sk, int state) 1952 { 1953 int oldstate = sk->sk_state; 1954 1955 switch (state) { 1956 case TCP_ESTABLISHED: 1957 if (oldstate != TCP_ESTABLISHED) 1958 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1959 break; 1960 1961 case TCP_CLOSE: 1962 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1963 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1964 1965 sk->sk_prot->unhash(sk); 1966 if (inet_csk(sk)->icsk_bind_hash && 1967 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1968 inet_put_port(sk); 1969 /* fall through */ 1970 default: 1971 if (oldstate == TCP_ESTABLISHED) 1972 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1973 } 1974 1975 /* Change state AFTER socket is unhashed to avoid closed 1976 * socket sitting in hash tables. 1977 */ 1978 sk_state_store(sk, state); 1979 1980 #ifdef STATE_TRACE 1981 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1982 #endif 1983 } 1984 EXPORT_SYMBOL_GPL(tcp_set_state); 1985 1986 /* 1987 * State processing on a close. This implements the state shift for 1988 * sending our FIN frame. Note that we only send a FIN for some 1989 * states. A shutdown() may have already sent the FIN, or we may be 1990 * closed. 1991 */ 1992 1993 static const unsigned char new_state[16] = { 1994 /* current state: new state: action: */ 1995 [0 /* (Invalid) */] = TCP_CLOSE, 1996 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1997 [TCP_SYN_SENT] = TCP_CLOSE, 1998 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1999 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2000 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2001 [TCP_TIME_WAIT] = TCP_CLOSE, 2002 [TCP_CLOSE] = TCP_CLOSE, 2003 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2004 [TCP_LAST_ACK] = TCP_LAST_ACK, 2005 [TCP_LISTEN] = TCP_CLOSE, 2006 [TCP_CLOSING] = TCP_CLOSING, 2007 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2008 }; 2009 2010 static int tcp_close_state(struct sock *sk) 2011 { 2012 int next = (int)new_state[sk->sk_state]; 2013 int ns = next & TCP_STATE_MASK; 2014 2015 tcp_set_state(sk, ns); 2016 2017 return next & TCP_ACTION_FIN; 2018 } 2019 2020 /* 2021 * Shutdown the sending side of a connection. Much like close except 2022 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2023 */ 2024 2025 void tcp_shutdown(struct sock *sk, int how) 2026 { 2027 /* We need to grab some memory, and put together a FIN, 2028 * and then put it into the queue to be sent. 2029 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2030 */ 2031 if (!(how & SEND_SHUTDOWN)) 2032 return; 2033 2034 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2035 if ((1 << sk->sk_state) & 2036 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2037 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2038 /* Clear out any half completed packets. FIN if needed. */ 2039 if (tcp_close_state(sk)) 2040 tcp_send_fin(sk); 2041 } 2042 } 2043 EXPORT_SYMBOL(tcp_shutdown); 2044 2045 bool tcp_check_oom(struct sock *sk, int shift) 2046 { 2047 bool too_many_orphans, out_of_socket_memory; 2048 2049 too_many_orphans = tcp_too_many_orphans(sk, shift); 2050 out_of_socket_memory = tcp_out_of_memory(sk); 2051 2052 if (too_many_orphans) 2053 net_info_ratelimited("too many orphaned sockets\n"); 2054 if (out_of_socket_memory) 2055 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2056 return too_many_orphans || out_of_socket_memory; 2057 } 2058 2059 void tcp_close(struct sock *sk, long timeout) 2060 { 2061 struct sk_buff *skb; 2062 int data_was_unread = 0; 2063 int state; 2064 2065 lock_sock(sk); 2066 sk->sk_shutdown = SHUTDOWN_MASK; 2067 2068 if (sk->sk_state == TCP_LISTEN) { 2069 tcp_set_state(sk, TCP_CLOSE); 2070 2071 /* Special case. */ 2072 inet_csk_listen_stop(sk); 2073 2074 goto adjudge_to_death; 2075 } 2076 2077 /* We need to flush the recv. buffs. We do this only on the 2078 * descriptor close, not protocol-sourced closes, because the 2079 * reader process may not have drained the data yet! 2080 */ 2081 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2082 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2083 2084 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2085 len--; 2086 data_was_unread += len; 2087 __kfree_skb(skb); 2088 } 2089 2090 sk_mem_reclaim(sk); 2091 2092 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2093 if (sk->sk_state == TCP_CLOSE) 2094 goto adjudge_to_death; 2095 2096 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2097 * data was lost. To witness the awful effects of the old behavior of 2098 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2099 * GET in an FTP client, suspend the process, wait for the client to 2100 * advertise a zero window, then kill -9 the FTP client, wheee... 2101 * Note: timeout is always zero in such a case. 2102 */ 2103 if (unlikely(tcp_sk(sk)->repair)) { 2104 sk->sk_prot->disconnect(sk, 0); 2105 } else if (data_was_unread) { 2106 /* Unread data was tossed, zap the connection. */ 2107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2108 tcp_set_state(sk, TCP_CLOSE); 2109 tcp_send_active_reset(sk, sk->sk_allocation); 2110 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2111 /* Check zero linger _after_ checking for unread data. */ 2112 sk->sk_prot->disconnect(sk, 0); 2113 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2114 } else if (tcp_close_state(sk)) { 2115 /* We FIN if the application ate all the data before 2116 * zapping the connection. 2117 */ 2118 2119 /* RED-PEN. Formally speaking, we have broken TCP state 2120 * machine. State transitions: 2121 * 2122 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2123 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2124 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2125 * 2126 * are legal only when FIN has been sent (i.e. in window), 2127 * rather than queued out of window. Purists blame. 2128 * 2129 * F.e. "RFC state" is ESTABLISHED, 2130 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2131 * 2132 * The visible declinations are that sometimes 2133 * we enter time-wait state, when it is not required really 2134 * (harmless), do not send active resets, when they are 2135 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2136 * they look as CLOSING or LAST_ACK for Linux) 2137 * Probably, I missed some more holelets. 2138 * --ANK 2139 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2140 * in a single packet! (May consider it later but will 2141 * probably need API support or TCP_CORK SYN-ACK until 2142 * data is written and socket is closed.) 2143 */ 2144 tcp_send_fin(sk); 2145 } 2146 2147 sk_stream_wait_close(sk, timeout); 2148 2149 adjudge_to_death: 2150 state = sk->sk_state; 2151 sock_hold(sk); 2152 sock_orphan(sk); 2153 2154 /* It is the last release_sock in its life. It will remove backlog. */ 2155 release_sock(sk); 2156 2157 2158 /* Now socket is owned by kernel and we acquire BH lock 2159 to finish close. No need to check for user refs. 2160 */ 2161 local_bh_disable(); 2162 bh_lock_sock(sk); 2163 WARN_ON(sock_owned_by_user(sk)); 2164 2165 percpu_counter_inc(sk->sk_prot->orphan_count); 2166 2167 /* Have we already been destroyed by a softirq or backlog? */ 2168 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2169 goto out; 2170 2171 /* This is a (useful) BSD violating of the RFC. There is a 2172 * problem with TCP as specified in that the other end could 2173 * keep a socket open forever with no application left this end. 2174 * We use a 1 minute timeout (about the same as BSD) then kill 2175 * our end. If they send after that then tough - BUT: long enough 2176 * that we won't make the old 4*rto = almost no time - whoops 2177 * reset mistake. 2178 * 2179 * Nope, it was not mistake. It is really desired behaviour 2180 * f.e. on http servers, when such sockets are useless, but 2181 * consume significant resources. Let's do it with special 2182 * linger2 option. --ANK 2183 */ 2184 2185 if (sk->sk_state == TCP_FIN_WAIT2) { 2186 struct tcp_sock *tp = tcp_sk(sk); 2187 if (tp->linger2 < 0) { 2188 tcp_set_state(sk, TCP_CLOSE); 2189 tcp_send_active_reset(sk, GFP_ATOMIC); 2190 __NET_INC_STATS(sock_net(sk), 2191 LINUX_MIB_TCPABORTONLINGER); 2192 } else { 2193 const int tmo = tcp_fin_time(sk); 2194 2195 if (tmo > TCP_TIMEWAIT_LEN) { 2196 inet_csk_reset_keepalive_timer(sk, 2197 tmo - TCP_TIMEWAIT_LEN); 2198 } else { 2199 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2200 goto out; 2201 } 2202 } 2203 } 2204 if (sk->sk_state != TCP_CLOSE) { 2205 sk_mem_reclaim(sk); 2206 if (tcp_check_oom(sk, 0)) { 2207 tcp_set_state(sk, TCP_CLOSE); 2208 tcp_send_active_reset(sk, GFP_ATOMIC); 2209 __NET_INC_STATS(sock_net(sk), 2210 LINUX_MIB_TCPABORTONMEMORY); 2211 } 2212 } 2213 2214 if (sk->sk_state == TCP_CLOSE) { 2215 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2216 /* We could get here with a non-NULL req if the socket is 2217 * aborted (e.g., closed with unread data) before 3WHS 2218 * finishes. 2219 */ 2220 if (req) 2221 reqsk_fastopen_remove(sk, req, false); 2222 inet_csk_destroy_sock(sk); 2223 } 2224 /* Otherwise, socket is reprieved until protocol close. */ 2225 2226 out: 2227 bh_unlock_sock(sk); 2228 local_bh_enable(); 2229 sock_put(sk); 2230 } 2231 EXPORT_SYMBOL(tcp_close); 2232 2233 /* These states need RST on ABORT according to RFC793 */ 2234 2235 static inline bool tcp_need_reset(int state) 2236 { 2237 return (1 << state) & 2238 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2239 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2240 } 2241 2242 int tcp_disconnect(struct sock *sk, int flags) 2243 { 2244 struct inet_sock *inet = inet_sk(sk); 2245 struct inet_connection_sock *icsk = inet_csk(sk); 2246 struct tcp_sock *tp = tcp_sk(sk); 2247 int err = 0; 2248 int old_state = sk->sk_state; 2249 2250 if (old_state != TCP_CLOSE) 2251 tcp_set_state(sk, TCP_CLOSE); 2252 2253 /* ABORT function of RFC793 */ 2254 if (old_state == TCP_LISTEN) { 2255 inet_csk_listen_stop(sk); 2256 } else if (unlikely(tp->repair)) { 2257 sk->sk_err = ECONNABORTED; 2258 } else if (tcp_need_reset(old_state) || 2259 (tp->snd_nxt != tp->write_seq && 2260 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2261 /* The last check adjusts for discrepancy of Linux wrt. RFC 2262 * states 2263 */ 2264 tcp_send_active_reset(sk, gfp_any()); 2265 sk->sk_err = ECONNRESET; 2266 } else if (old_state == TCP_SYN_SENT) 2267 sk->sk_err = ECONNRESET; 2268 2269 tcp_clear_xmit_timers(sk); 2270 __skb_queue_purge(&sk->sk_receive_queue); 2271 tcp_write_queue_purge(sk); 2272 skb_rbtree_purge(&tp->out_of_order_queue); 2273 2274 inet->inet_dport = 0; 2275 2276 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2277 inet_reset_saddr(sk); 2278 2279 sk->sk_shutdown = 0; 2280 sock_reset_flag(sk, SOCK_DONE); 2281 tp->srtt_us = 0; 2282 tp->write_seq += tp->max_window + 2; 2283 if (tp->write_seq == 0) 2284 tp->write_seq = 1; 2285 icsk->icsk_backoff = 0; 2286 tp->snd_cwnd = 2; 2287 icsk->icsk_probes_out = 0; 2288 tp->packets_out = 0; 2289 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2290 tp->snd_cwnd_cnt = 0; 2291 tp->window_clamp = 0; 2292 tcp_set_ca_state(sk, TCP_CA_Open); 2293 tcp_clear_retrans(tp); 2294 inet_csk_delack_init(sk); 2295 tcp_init_send_head(sk); 2296 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2297 __sk_dst_reset(sk); 2298 2299 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2300 2301 sk->sk_error_report(sk); 2302 return err; 2303 } 2304 EXPORT_SYMBOL(tcp_disconnect); 2305 2306 static inline bool tcp_can_repair_sock(const struct sock *sk) 2307 { 2308 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2309 (sk->sk_state != TCP_LISTEN); 2310 } 2311 2312 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2313 { 2314 struct tcp_repair_window opt; 2315 2316 if (!tp->repair) 2317 return -EPERM; 2318 2319 if (len != sizeof(opt)) 2320 return -EINVAL; 2321 2322 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2323 return -EFAULT; 2324 2325 if (opt.max_window < opt.snd_wnd) 2326 return -EINVAL; 2327 2328 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2329 return -EINVAL; 2330 2331 if (after(opt.rcv_wup, tp->rcv_nxt)) 2332 return -EINVAL; 2333 2334 tp->snd_wl1 = opt.snd_wl1; 2335 tp->snd_wnd = opt.snd_wnd; 2336 tp->max_window = opt.max_window; 2337 2338 tp->rcv_wnd = opt.rcv_wnd; 2339 tp->rcv_wup = opt.rcv_wup; 2340 2341 return 0; 2342 } 2343 2344 static int tcp_repair_options_est(struct tcp_sock *tp, 2345 struct tcp_repair_opt __user *optbuf, unsigned int len) 2346 { 2347 struct tcp_repair_opt opt; 2348 2349 while (len >= sizeof(opt)) { 2350 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2351 return -EFAULT; 2352 2353 optbuf++; 2354 len -= sizeof(opt); 2355 2356 switch (opt.opt_code) { 2357 case TCPOPT_MSS: 2358 tp->rx_opt.mss_clamp = opt.opt_val; 2359 break; 2360 case TCPOPT_WINDOW: 2361 { 2362 u16 snd_wscale = opt.opt_val & 0xFFFF; 2363 u16 rcv_wscale = opt.opt_val >> 16; 2364 2365 if (snd_wscale > 14 || rcv_wscale > 14) 2366 return -EFBIG; 2367 2368 tp->rx_opt.snd_wscale = snd_wscale; 2369 tp->rx_opt.rcv_wscale = rcv_wscale; 2370 tp->rx_opt.wscale_ok = 1; 2371 } 2372 break; 2373 case TCPOPT_SACK_PERM: 2374 if (opt.opt_val != 0) 2375 return -EINVAL; 2376 2377 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2378 if (sysctl_tcp_fack) 2379 tcp_enable_fack(tp); 2380 break; 2381 case TCPOPT_TIMESTAMP: 2382 if (opt.opt_val != 0) 2383 return -EINVAL; 2384 2385 tp->rx_opt.tstamp_ok = 1; 2386 break; 2387 } 2388 } 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * Socket option code for TCP. 2395 */ 2396 static int do_tcp_setsockopt(struct sock *sk, int level, 2397 int optname, char __user *optval, unsigned int optlen) 2398 { 2399 struct tcp_sock *tp = tcp_sk(sk); 2400 struct inet_connection_sock *icsk = inet_csk(sk); 2401 struct net *net = sock_net(sk); 2402 int val; 2403 int err = 0; 2404 2405 /* These are data/string values, all the others are ints */ 2406 switch (optname) { 2407 case TCP_CONGESTION: { 2408 char name[TCP_CA_NAME_MAX]; 2409 2410 if (optlen < 1) 2411 return -EINVAL; 2412 2413 val = strncpy_from_user(name, optval, 2414 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2415 if (val < 0) 2416 return -EFAULT; 2417 name[val] = 0; 2418 2419 lock_sock(sk); 2420 err = tcp_set_congestion_control(sk, name); 2421 release_sock(sk); 2422 return err; 2423 } 2424 default: 2425 /* fallthru */ 2426 break; 2427 } 2428 2429 if (optlen < sizeof(int)) 2430 return -EINVAL; 2431 2432 if (get_user(val, (int __user *)optval)) 2433 return -EFAULT; 2434 2435 lock_sock(sk); 2436 2437 switch (optname) { 2438 case TCP_MAXSEG: 2439 /* Values greater than interface MTU won't take effect. However 2440 * at the point when this call is done we typically don't yet 2441 * know which interface is going to be used */ 2442 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2443 err = -EINVAL; 2444 break; 2445 } 2446 tp->rx_opt.user_mss = val; 2447 break; 2448 2449 case TCP_NODELAY: 2450 if (val) { 2451 /* TCP_NODELAY is weaker than TCP_CORK, so that 2452 * this option on corked socket is remembered, but 2453 * it is not activated until cork is cleared. 2454 * 2455 * However, when TCP_NODELAY is set we make 2456 * an explicit push, which overrides even TCP_CORK 2457 * for currently queued segments. 2458 */ 2459 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2460 tcp_push_pending_frames(sk); 2461 } else { 2462 tp->nonagle &= ~TCP_NAGLE_OFF; 2463 } 2464 break; 2465 2466 case TCP_THIN_LINEAR_TIMEOUTS: 2467 if (val < 0 || val > 1) 2468 err = -EINVAL; 2469 else 2470 tp->thin_lto = val; 2471 break; 2472 2473 case TCP_THIN_DUPACK: 2474 if (val < 0 || val > 1) 2475 err = -EINVAL; 2476 else { 2477 tp->thin_dupack = val; 2478 if (tp->thin_dupack) 2479 tcp_disable_early_retrans(tp); 2480 } 2481 break; 2482 2483 case TCP_REPAIR: 2484 if (!tcp_can_repair_sock(sk)) 2485 err = -EPERM; 2486 else if (val == 1) { 2487 tp->repair = 1; 2488 sk->sk_reuse = SK_FORCE_REUSE; 2489 tp->repair_queue = TCP_NO_QUEUE; 2490 } else if (val == 0) { 2491 tp->repair = 0; 2492 sk->sk_reuse = SK_NO_REUSE; 2493 tcp_send_window_probe(sk); 2494 } else 2495 err = -EINVAL; 2496 2497 break; 2498 2499 case TCP_REPAIR_QUEUE: 2500 if (!tp->repair) 2501 err = -EPERM; 2502 else if (val < TCP_QUEUES_NR) 2503 tp->repair_queue = val; 2504 else 2505 err = -EINVAL; 2506 break; 2507 2508 case TCP_QUEUE_SEQ: 2509 if (sk->sk_state != TCP_CLOSE) 2510 err = -EPERM; 2511 else if (tp->repair_queue == TCP_SEND_QUEUE) 2512 tp->write_seq = val; 2513 else if (tp->repair_queue == TCP_RECV_QUEUE) 2514 tp->rcv_nxt = val; 2515 else 2516 err = -EINVAL; 2517 break; 2518 2519 case TCP_REPAIR_OPTIONS: 2520 if (!tp->repair) 2521 err = -EINVAL; 2522 else if (sk->sk_state == TCP_ESTABLISHED) 2523 err = tcp_repair_options_est(tp, 2524 (struct tcp_repair_opt __user *)optval, 2525 optlen); 2526 else 2527 err = -EPERM; 2528 break; 2529 2530 case TCP_CORK: 2531 /* When set indicates to always queue non-full frames. 2532 * Later the user clears this option and we transmit 2533 * any pending partial frames in the queue. This is 2534 * meant to be used alongside sendfile() to get properly 2535 * filled frames when the user (for example) must write 2536 * out headers with a write() call first and then use 2537 * sendfile to send out the data parts. 2538 * 2539 * TCP_CORK can be set together with TCP_NODELAY and it is 2540 * stronger than TCP_NODELAY. 2541 */ 2542 if (val) { 2543 tp->nonagle |= TCP_NAGLE_CORK; 2544 } else { 2545 tp->nonagle &= ~TCP_NAGLE_CORK; 2546 if (tp->nonagle&TCP_NAGLE_OFF) 2547 tp->nonagle |= TCP_NAGLE_PUSH; 2548 tcp_push_pending_frames(sk); 2549 } 2550 break; 2551 2552 case TCP_KEEPIDLE: 2553 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2554 err = -EINVAL; 2555 else { 2556 tp->keepalive_time = val * HZ; 2557 if (sock_flag(sk, SOCK_KEEPOPEN) && 2558 !((1 << sk->sk_state) & 2559 (TCPF_CLOSE | TCPF_LISTEN))) { 2560 u32 elapsed = keepalive_time_elapsed(tp); 2561 if (tp->keepalive_time > elapsed) 2562 elapsed = tp->keepalive_time - elapsed; 2563 else 2564 elapsed = 0; 2565 inet_csk_reset_keepalive_timer(sk, elapsed); 2566 } 2567 } 2568 break; 2569 case TCP_KEEPINTVL: 2570 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2571 err = -EINVAL; 2572 else 2573 tp->keepalive_intvl = val * HZ; 2574 break; 2575 case TCP_KEEPCNT: 2576 if (val < 1 || val > MAX_TCP_KEEPCNT) 2577 err = -EINVAL; 2578 else 2579 tp->keepalive_probes = val; 2580 break; 2581 case TCP_SYNCNT: 2582 if (val < 1 || val > MAX_TCP_SYNCNT) 2583 err = -EINVAL; 2584 else 2585 icsk->icsk_syn_retries = val; 2586 break; 2587 2588 case TCP_SAVE_SYN: 2589 if (val < 0 || val > 1) 2590 err = -EINVAL; 2591 else 2592 tp->save_syn = val; 2593 break; 2594 2595 case TCP_LINGER2: 2596 if (val < 0) 2597 tp->linger2 = -1; 2598 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2599 tp->linger2 = 0; 2600 else 2601 tp->linger2 = val * HZ; 2602 break; 2603 2604 case TCP_DEFER_ACCEPT: 2605 /* Translate value in seconds to number of retransmits */ 2606 icsk->icsk_accept_queue.rskq_defer_accept = 2607 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2608 TCP_RTO_MAX / HZ); 2609 break; 2610 2611 case TCP_WINDOW_CLAMP: 2612 if (!val) { 2613 if (sk->sk_state != TCP_CLOSE) { 2614 err = -EINVAL; 2615 break; 2616 } 2617 tp->window_clamp = 0; 2618 } else 2619 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2620 SOCK_MIN_RCVBUF / 2 : val; 2621 break; 2622 2623 case TCP_QUICKACK: 2624 if (!val) { 2625 icsk->icsk_ack.pingpong = 1; 2626 } else { 2627 icsk->icsk_ack.pingpong = 0; 2628 if ((1 << sk->sk_state) & 2629 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2630 inet_csk_ack_scheduled(sk)) { 2631 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2632 tcp_cleanup_rbuf(sk, 1); 2633 if (!(val & 1)) 2634 icsk->icsk_ack.pingpong = 1; 2635 } 2636 } 2637 break; 2638 2639 #ifdef CONFIG_TCP_MD5SIG 2640 case TCP_MD5SIG: 2641 /* Read the IP->Key mappings from userspace */ 2642 err = tp->af_specific->md5_parse(sk, optval, optlen); 2643 break; 2644 #endif 2645 case TCP_USER_TIMEOUT: 2646 /* Cap the max time in ms TCP will retry or probe the window 2647 * before giving up and aborting (ETIMEDOUT) a connection. 2648 */ 2649 if (val < 0) 2650 err = -EINVAL; 2651 else 2652 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2653 break; 2654 2655 case TCP_FASTOPEN: 2656 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2657 TCPF_LISTEN))) { 2658 tcp_fastopen_init_key_once(true); 2659 2660 fastopen_queue_tune(sk, val); 2661 } else { 2662 err = -EINVAL; 2663 } 2664 break; 2665 case TCP_TIMESTAMP: 2666 if (!tp->repair) 2667 err = -EPERM; 2668 else 2669 tp->tsoffset = val - tcp_time_stamp; 2670 break; 2671 case TCP_REPAIR_WINDOW: 2672 err = tcp_repair_set_window(tp, optval, optlen); 2673 break; 2674 case TCP_NOTSENT_LOWAT: 2675 tp->notsent_lowat = val; 2676 sk->sk_write_space(sk); 2677 break; 2678 default: 2679 err = -ENOPROTOOPT; 2680 break; 2681 } 2682 2683 release_sock(sk); 2684 return err; 2685 } 2686 2687 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2688 unsigned int optlen) 2689 { 2690 const struct inet_connection_sock *icsk = inet_csk(sk); 2691 2692 if (level != SOL_TCP) 2693 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2694 optval, optlen); 2695 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2696 } 2697 EXPORT_SYMBOL(tcp_setsockopt); 2698 2699 #ifdef CONFIG_COMPAT 2700 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2701 char __user *optval, unsigned int optlen) 2702 { 2703 if (level != SOL_TCP) 2704 return inet_csk_compat_setsockopt(sk, level, optname, 2705 optval, optlen); 2706 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2707 } 2708 EXPORT_SYMBOL(compat_tcp_setsockopt); 2709 #endif 2710 2711 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2712 struct tcp_info *info) 2713 { 2714 u64 stats[__TCP_CHRONO_MAX], total = 0; 2715 enum tcp_chrono i; 2716 2717 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2718 stats[i] = tp->chrono_stat[i - 1]; 2719 if (i == tp->chrono_type) 2720 stats[i] += tcp_time_stamp - tp->chrono_start; 2721 stats[i] *= USEC_PER_SEC / HZ; 2722 total += stats[i]; 2723 } 2724 2725 info->tcpi_busy_time = total; 2726 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2727 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2728 } 2729 2730 /* Return information about state of tcp endpoint in API format. */ 2731 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2732 { 2733 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2734 const struct inet_connection_sock *icsk = inet_csk(sk); 2735 u32 now = tcp_time_stamp, intv; 2736 u64 rate64; 2737 bool slow; 2738 u32 rate; 2739 2740 memset(info, 0, sizeof(*info)); 2741 if (sk->sk_type != SOCK_STREAM) 2742 return; 2743 2744 info->tcpi_state = sk_state_load(sk); 2745 2746 /* Report meaningful fields for all TCP states, including listeners */ 2747 rate = READ_ONCE(sk->sk_pacing_rate); 2748 rate64 = rate != ~0U ? rate : ~0ULL; 2749 info->tcpi_pacing_rate = rate64; 2750 2751 rate = READ_ONCE(sk->sk_max_pacing_rate); 2752 rate64 = rate != ~0U ? rate : ~0ULL; 2753 info->tcpi_max_pacing_rate = rate64; 2754 2755 info->tcpi_reordering = tp->reordering; 2756 info->tcpi_snd_cwnd = tp->snd_cwnd; 2757 2758 if (info->tcpi_state == TCP_LISTEN) { 2759 /* listeners aliased fields : 2760 * tcpi_unacked -> Number of children ready for accept() 2761 * tcpi_sacked -> max backlog 2762 */ 2763 info->tcpi_unacked = sk->sk_ack_backlog; 2764 info->tcpi_sacked = sk->sk_max_ack_backlog; 2765 return; 2766 } 2767 info->tcpi_ca_state = icsk->icsk_ca_state; 2768 info->tcpi_retransmits = icsk->icsk_retransmits; 2769 info->tcpi_probes = icsk->icsk_probes_out; 2770 info->tcpi_backoff = icsk->icsk_backoff; 2771 2772 if (tp->rx_opt.tstamp_ok) 2773 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2774 if (tcp_is_sack(tp)) 2775 info->tcpi_options |= TCPI_OPT_SACK; 2776 if (tp->rx_opt.wscale_ok) { 2777 info->tcpi_options |= TCPI_OPT_WSCALE; 2778 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2779 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2780 } 2781 2782 if (tp->ecn_flags & TCP_ECN_OK) 2783 info->tcpi_options |= TCPI_OPT_ECN; 2784 if (tp->ecn_flags & TCP_ECN_SEEN) 2785 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2786 if (tp->syn_data_acked) 2787 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2788 2789 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2790 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2791 info->tcpi_snd_mss = tp->mss_cache; 2792 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2793 2794 info->tcpi_unacked = tp->packets_out; 2795 info->tcpi_sacked = tp->sacked_out; 2796 2797 info->tcpi_lost = tp->lost_out; 2798 info->tcpi_retrans = tp->retrans_out; 2799 info->tcpi_fackets = tp->fackets_out; 2800 2801 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2802 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2803 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2804 2805 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2806 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2807 info->tcpi_rtt = tp->srtt_us >> 3; 2808 info->tcpi_rttvar = tp->mdev_us >> 2; 2809 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2810 info->tcpi_advmss = tp->advmss; 2811 2812 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2813 info->tcpi_rcv_space = tp->rcvq_space.space; 2814 2815 info->tcpi_total_retrans = tp->total_retrans; 2816 2817 slow = lock_sock_fast(sk); 2818 2819 info->tcpi_bytes_acked = tp->bytes_acked; 2820 info->tcpi_bytes_received = tp->bytes_received; 2821 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 2822 tcp_get_info_chrono_stats(tp, info); 2823 2824 unlock_sock_fast(sk, slow); 2825 2826 info->tcpi_segs_out = tp->segs_out; 2827 info->tcpi_segs_in = tp->segs_in; 2828 2829 info->tcpi_min_rtt = tcp_min_rtt(tp); 2830 info->tcpi_data_segs_in = tp->data_segs_in; 2831 info->tcpi_data_segs_out = tp->data_segs_out; 2832 2833 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 2834 rate = READ_ONCE(tp->rate_delivered); 2835 intv = READ_ONCE(tp->rate_interval_us); 2836 if (rate && intv) { 2837 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 2838 do_div(rate64, intv); 2839 info->tcpi_delivery_rate = rate64; 2840 } 2841 } 2842 EXPORT_SYMBOL_GPL(tcp_get_info); 2843 2844 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 2845 { 2846 const struct tcp_sock *tp = tcp_sk(sk); 2847 struct sk_buff *stats; 2848 struct tcp_info info; 2849 2850 stats = alloc_skb(3 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC); 2851 if (!stats) 2852 return NULL; 2853 2854 tcp_get_info_chrono_stats(tp, &info); 2855 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 2856 info.tcpi_busy_time, TCP_NLA_PAD); 2857 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 2858 info.tcpi_rwnd_limited, TCP_NLA_PAD); 2859 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 2860 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 2861 return stats; 2862 } 2863 2864 static int do_tcp_getsockopt(struct sock *sk, int level, 2865 int optname, char __user *optval, int __user *optlen) 2866 { 2867 struct inet_connection_sock *icsk = inet_csk(sk); 2868 struct tcp_sock *tp = tcp_sk(sk); 2869 struct net *net = sock_net(sk); 2870 int val, len; 2871 2872 if (get_user(len, optlen)) 2873 return -EFAULT; 2874 2875 len = min_t(unsigned int, len, sizeof(int)); 2876 2877 if (len < 0) 2878 return -EINVAL; 2879 2880 switch (optname) { 2881 case TCP_MAXSEG: 2882 val = tp->mss_cache; 2883 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2884 val = tp->rx_opt.user_mss; 2885 if (tp->repair) 2886 val = tp->rx_opt.mss_clamp; 2887 break; 2888 case TCP_NODELAY: 2889 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2890 break; 2891 case TCP_CORK: 2892 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2893 break; 2894 case TCP_KEEPIDLE: 2895 val = keepalive_time_when(tp) / HZ; 2896 break; 2897 case TCP_KEEPINTVL: 2898 val = keepalive_intvl_when(tp) / HZ; 2899 break; 2900 case TCP_KEEPCNT: 2901 val = keepalive_probes(tp); 2902 break; 2903 case TCP_SYNCNT: 2904 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2905 break; 2906 case TCP_LINGER2: 2907 val = tp->linger2; 2908 if (val >= 0) 2909 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2910 break; 2911 case TCP_DEFER_ACCEPT: 2912 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2913 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2914 break; 2915 case TCP_WINDOW_CLAMP: 2916 val = tp->window_clamp; 2917 break; 2918 case TCP_INFO: { 2919 struct tcp_info info; 2920 2921 if (get_user(len, optlen)) 2922 return -EFAULT; 2923 2924 tcp_get_info(sk, &info); 2925 2926 len = min_t(unsigned int, len, sizeof(info)); 2927 if (put_user(len, optlen)) 2928 return -EFAULT; 2929 if (copy_to_user(optval, &info, len)) 2930 return -EFAULT; 2931 return 0; 2932 } 2933 case TCP_CC_INFO: { 2934 const struct tcp_congestion_ops *ca_ops; 2935 union tcp_cc_info info; 2936 size_t sz = 0; 2937 int attr; 2938 2939 if (get_user(len, optlen)) 2940 return -EFAULT; 2941 2942 ca_ops = icsk->icsk_ca_ops; 2943 if (ca_ops && ca_ops->get_info) 2944 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2945 2946 len = min_t(unsigned int, len, sz); 2947 if (put_user(len, optlen)) 2948 return -EFAULT; 2949 if (copy_to_user(optval, &info, len)) 2950 return -EFAULT; 2951 return 0; 2952 } 2953 case TCP_QUICKACK: 2954 val = !icsk->icsk_ack.pingpong; 2955 break; 2956 2957 case TCP_CONGESTION: 2958 if (get_user(len, optlen)) 2959 return -EFAULT; 2960 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2961 if (put_user(len, optlen)) 2962 return -EFAULT; 2963 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2964 return -EFAULT; 2965 return 0; 2966 2967 case TCP_THIN_LINEAR_TIMEOUTS: 2968 val = tp->thin_lto; 2969 break; 2970 case TCP_THIN_DUPACK: 2971 val = tp->thin_dupack; 2972 break; 2973 2974 case TCP_REPAIR: 2975 val = tp->repair; 2976 break; 2977 2978 case TCP_REPAIR_QUEUE: 2979 if (tp->repair) 2980 val = tp->repair_queue; 2981 else 2982 return -EINVAL; 2983 break; 2984 2985 case TCP_REPAIR_WINDOW: { 2986 struct tcp_repair_window opt; 2987 2988 if (get_user(len, optlen)) 2989 return -EFAULT; 2990 2991 if (len != sizeof(opt)) 2992 return -EINVAL; 2993 2994 if (!tp->repair) 2995 return -EPERM; 2996 2997 opt.snd_wl1 = tp->snd_wl1; 2998 opt.snd_wnd = tp->snd_wnd; 2999 opt.max_window = tp->max_window; 3000 opt.rcv_wnd = tp->rcv_wnd; 3001 opt.rcv_wup = tp->rcv_wup; 3002 3003 if (copy_to_user(optval, &opt, len)) 3004 return -EFAULT; 3005 return 0; 3006 } 3007 case TCP_QUEUE_SEQ: 3008 if (tp->repair_queue == TCP_SEND_QUEUE) 3009 val = tp->write_seq; 3010 else if (tp->repair_queue == TCP_RECV_QUEUE) 3011 val = tp->rcv_nxt; 3012 else 3013 return -EINVAL; 3014 break; 3015 3016 case TCP_USER_TIMEOUT: 3017 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3018 break; 3019 3020 case TCP_FASTOPEN: 3021 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3022 break; 3023 3024 case TCP_TIMESTAMP: 3025 val = tcp_time_stamp + tp->tsoffset; 3026 break; 3027 case TCP_NOTSENT_LOWAT: 3028 val = tp->notsent_lowat; 3029 break; 3030 case TCP_SAVE_SYN: 3031 val = tp->save_syn; 3032 break; 3033 case TCP_SAVED_SYN: { 3034 if (get_user(len, optlen)) 3035 return -EFAULT; 3036 3037 lock_sock(sk); 3038 if (tp->saved_syn) { 3039 if (len < tp->saved_syn[0]) { 3040 if (put_user(tp->saved_syn[0], optlen)) { 3041 release_sock(sk); 3042 return -EFAULT; 3043 } 3044 release_sock(sk); 3045 return -EINVAL; 3046 } 3047 len = tp->saved_syn[0]; 3048 if (put_user(len, optlen)) { 3049 release_sock(sk); 3050 return -EFAULT; 3051 } 3052 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3053 release_sock(sk); 3054 return -EFAULT; 3055 } 3056 tcp_saved_syn_free(tp); 3057 release_sock(sk); 3058 } else { 3059 release_sock(sk); 3060 len = 0; 3061 if (put_user(len, optlen)) 3062 return -EFAULT; 3063 } 3064 return 0; 3065 } 3066 default: 3067 return -ENOPROTOOPT; 3068 } 3069 3070 if (put_user(len, optlen)) 3071 return -EFAULT; 3072 if (copy_to_user(optval, &val, len)) 3073 return -EFAULT; 3074 return 0; 3075 } 3076 3077 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3078 int __user *optlen) 3079 { 3080 struct inet_connection_sock *icsk = inet_csk(sk); 3081 3082 if (level != SOL_TCP) 3083 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3084 optval, optlen); 3085 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3086 } 3087 EXPORT_SYMBOL(tcp_getsockopt); 3088 3089 #ifdef CONFIG_COMPAT 3090 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3091 char __user *optval, int __user *optlen) 3092 { 3093 if (level != SOL_TCP) 3094 return inet_csk_compat_getsockopt(sk, level, optname, 3095 optval, optlen); 3096 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3097 } 3098 EXPORT_SYMBOL(compat_tcp_getsockopt); 3099 #endif 3100 3101 #ifdef CONFIG_TCP_MD5SIG 3102 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3103 static DEFINE_MUTEX(tcp_md5sig_mutex); 3104 static bool tcp_md5sig_pool_populated = false; 3105 3106 static void __tcp_alloc_md5sig_pool(void) 3107 { 3108 struct crypto_ahash *hash; 3109 int cpu; 3110 3111 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3112 if (IS_ERR(hash)) 3113 return; 3114 3115 for_each_possible_cpu(cpu) { 3116 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3117 struct ahash_request *req; 3118 3119 if (!scratch) { 3120 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3121 sizeof(struct tcphdr), 3122 GFP_KERNEL, 3123 cpu_to_node(cpu)); 3124 if (!scratch) 3125 return; 3126 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3127 } 3128 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3129 continue; 3130 3131 req = ahash_request_alloc(hash, GFP_KERNEL); 3132 if (!req) 3133 return; 3134 3135 ahash_request_set_callback(req, 0, NULL, NULL); 3136 3137 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3138 } 3139 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3140 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3141 */ 3142 smp_wmb(); 3143 tcp_md5sig_pool_populated = true; 3144 } 3145 3146 bool tcp_alloc_md5sig_pool(void) 3147 { 3148 if (unlikely(!tcp_md5sig_pool_populated)) { 3149 mutex_lock(&tcp_md5sig_mutex); 3150 3151 if (!tcp_md5sig_pool_populated) 3152 __tcp_alloc_md5sig_pool(); 3153 3154 mutex_unlock(&tcp_md5sig_mutex); 3155 } 3156 return tcp_md5sig_pool_populated; 3157 } 3158 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3159 3160 3161 /** 3162 * tcp_get_md5sig_pool - get md5sig_pool for this user 3163 * 3164 * We use percpu structure, so if we succeed, we exit with preemption 3165 * and BH disabled, to make sure another thread or softirq handling 3166 * wont try to get same context. 3167 */ 3168 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3169 { 3170 local_bh_disable(); 3171 3172 if (tcp_md5sig_pool_populated) { 3173 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3174 smp_rmb(); 3175 return this_cpu_ptr(&tcp_md5sig_pool); 3176 } 3177 local_bh_enable(); 3178 return NULL; 3179 } 3180 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3181 3182 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3183 const struct sk_buff *skb, unsigned int header_len) 3184 { 3185 struct scatterlist sg; 3186 const struct tcphdr *tp = tcp_hdr(skb); 3187 struct ahash_request *req = hp->md5_req; 3188 unsigned int i; 3189 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3190 skb_headlen(skb) - header_len : 0; 3191 const struct skb_shared_info *shi = skb_shinfo(skb); 3192 struct sk_buff *frag_iter; 3193 3194 sg_init_table(&sg, 1); 3195 3196 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3197 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3198 if (crypto_ahash_update(req)) 3199 return 1; 3200 3201 for (i = 0; i < shi->nr_frags; ++i) { 3202 const struct skb_frag_struct *f = &shi->frags[i]; 3203 unsigned int offset = f->page_offset; 3204 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3205 3206 sg_set_page(&sg, page, skb_frag_size(f), 3207 offset_in_page(offset)); 3208 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3209 if (crypto_ahash_update(req)) 3210 return 1; 3211 } 3212 3213 skb_walk_frags(skb, frag_iter) 3214 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3215 return 1; 3216 3217 return 0; 3218 } 3219 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3220 3221 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3222 { 3223 struct scatterlist sg; 3224 3225 sg_init_one(&sg, key->key, key->keylen); 3226 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3227 return crypto_ahash_update(hp->md5_req); 3228 } 3229 EXPORT_SYMBOL(tcp_md5_hash_key); 3230 3231 #endif 3232 3233 void tcp_done(struct sock *sk) 3234 { 3235 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3236 3237 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3238 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3239 3240 tcp_set_state(sk, TCP_CLOSE); 3241 tcp_clear_xmit_timers(sk); 3242 if (req) 3243 reqsk_fastopen_remove(sk, req, false); 3244 3245 sk->sk_shutdown = SHUTDOWN_MASK; 3246 3247 if (!sock_flag(sk, SOCK_DEAD)) 3248 sk->sk_state_change(sk); 3249 else 3250 inet_csk_destroy_sock(sk); 3251 } 3252 EXPORT_SYMBOL_GPL(tcp_done); 3253 3254 int tcp_abort(struct sock *sk, int err) 3255 { 3256 if (!sk_fullsock(sk)) { 3257 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3258 struct request_sock *req = inet_reqsk(sk); 3259 3260 local_bh_disable(); 3261 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3262 req); 3263 local_bh_enable(); 3264 return 0; 3265 } 3266 return -EOPNOTSUPP; 3267 } 3268 3269 /* Don't race with userspace socket closes such as tcp_close. */ 3270 lock_sock(sk); 3271 3272 if (sk->sk_state == TCP_LISTEN) { 3273 tcp_set_state(sk, TCP_CLOSE); 3274 inet_csk_listen_stop(sk); 3275 } 3276 3277 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3278 local_bh_disable(); 3279 bh_lock_sock(sk); 3280 3281 if (!sock_flag(sk, SOCK_DEAD)) { 3282 sk->sk_err = err; 3283 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3284 smp_wmb(); 3285 sk->sk_error_report(sk); 3286 if (tcp_need_reset(sk->sk_state)) 3287 tcp_send_active_reset(sk, GFP_ATOMIC); 3288 tcp_done(sk); 3289 } 3290 3291 bh_unlock_sock(sk); 3292 local_bh_enable(); 3293 release_sock(sk); 3294 return 0; 3295 } 3296 EXPORT_SYMBOL_GPL(tcp_abort); 3297 3298 extern struct tcp_congestion_ops tcp_reno; 3299 3300 static __initdata unsigned long thash_entries; 3301 static int __init set_thash_entries(char *str) 3302 { 3303 ssize_t ret; 3304 3305 if (!str) 3306 return 0; 3307 3308 ret = kstrtoul(str, 0, &thash_entries); 3309 if (ret) 3310 return 0; 3311 3312 return 1; 3313 } 3314 __setup("thash_entries=", set_thash_entries); 3315 3316 static void __init tcp_init_mem(void) 3317 { 3318 unsigned long limit = nr_free_buffer_pages() / 16; 3319 3320 limit = max(limit, 128UL); 3321 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3322 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3323 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3324 } 3325 3326 void __init tcp_init(void) 3327 { 3328 int max_rshare, max_wshare, cnt; 3329 unsigned long limit; 3330 unsigned int i; 3331 3332 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3333 FIELD_SIZEOF(struct sk_buff, cb)); 3334 3335 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3336 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3337 tcp_hashinfo.bind_bucket_cachep = 3338 kmem_cache_create("tcp_bind_bucket", 3339 sizeof(struct inet_bind_bucket), 0, 3340 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3341 3342 /* Size and allocate the main established and bind bucket 3343 * hash tables. 3344 * 3345 * The methodology is similar to that of the buffer cache. 3346 */ 3347 tcp_hashinfo.ehash = 3348 alloc_large_system_hash("TCP established", 3349 sizeof(struct inet_ehash_bucket), 3350 thash_entries, 3351 17, /* one slot per 128 KB of memory */ 3352 0, 3353 NULL, 3354 &tcp_hashinfo.ehash_mask, 3355 0, 3356 thash_entries ? 0 : 512 * 1024); 3357 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3358 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3359 3360 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3361 panic("TCP: failed to alloc ehash_locks"); 3362 tcp_hashinfo.bhash = 3363 alloc_large_system_hash("TCP bind", 3364 sizeof(struct inet_bind_hashbucket), 3365 tcp_hashinfo.ehash_mask + 1, 3366 17, /* one slot per 128 KB of memory */ 3367 0, 3368 &tcp_hashinfo.bhash_size, 3369 NULL, 3370 0, 3371 64 * 1024); 3372 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3373 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3374 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3375 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3376 } 3377 3378 3379 cnt = tcp_hashinfo.ehash_mask + 1; 3380 3381 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3382 sysctl_tcp_max_orphans = cnt / 2; 3383 sysctl_max_syn_backlog = max(128, cnt / 256); 3384 3385 tcp_init_mem(); 3386 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3387 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3388 max_wshare = min(4UL*1024*1024, limit); 3389 max_rshare = min(6UL*1024*1024, limit); 3390 3391 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3392 sysctl_tcp_wmem[1] = 16*1024; 3393 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3394 3395 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3396 sysctl_tcp_rmem[1] = 87380; 3397 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3398 3399 pr_info("Hash tables configured (established %u bind %u)\n", 3400 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3401 3402 tcp_metrics_init(); 3403 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3404 tcp_tasklet_init(); 3405 } 3406