1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/sock.h> 277 278 #include <linux/uaccess.h> 279 #include <asm/ioctls.h> 280 #include <net/busy_poll.h> 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 EXPORT_SYMBOL(sysctl_tcp_mem); 287 288 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 289 EXPORT_SYMBOL(tcp_memory_allocated); 290 291 #if IS_ENABLED(CONFIG_SMC) 292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 293 EXPORT_SYMBOL(tcp_have_smc); 294 #endif 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 unsigned long tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 319 320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 321 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 322 323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 324 325 void tcp_enter_memory_pressure(struct sock *sk) 326 { 327 unsigned long val; 328 329 if (READ_ONCE(tcp_memory_pressure)) 330 return; 331 val = jiffies; 332 333 if (!val) 334 val--; 335 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 337 } 338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 339 340 void tcp_leave_memory_pressure(struct sock *sk) 341 { 342 unsigned long val; 343 344 if (!READ_ONCE(tcp_memory_pressure)) 345 return; 346 val = xchg(&tcp_memory_pressure, 0); 347 if (val) 348 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 349 jiffies_to_msecs(jiffies - val)); 350 } 351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 352 353 /* Convert seconds to retransmits based on initial and max timeout */ 354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 355 { 356 u8 res = 0; 357 358 if (seconds > 0) { 359 int period = timeout; 360 361 res = 1; 362 while (seconds > period && res < 255) { 363 res++; 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return res; 371 } 372 373 /* Convert retransmits to seconds based on initial and max timeout */ 374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 375 { 376 int period = 0; 377 378 if (retrans > 0) { 379 period = timeout; 380 while (--retrans) { 381 timeout <<= 1; 382 if (timeout > rto_max) 383 timeout = rto_max; 384 period += timeout; 385 } 386 } 387 return period; 388 } 389 390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 391 { 392 u32 rate = READ_ONCE(tp->rate_delivered); 393 u32 intv = READ_ONCE(tp->rate_interval_us); 394 u64 rate64 = 0; 395 396 if (rate && intv) { 397 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 398 do_div(rate64, intv); 399 } 400 return rate64; 401 } 402 403 /* Address-family independent initialization for a tcp_sock. 404 * 405 * NOTE: A lot of things set to zero explicitly by call to 406 * sk_alloc() so need not be done here. 407 */ 408 void tcp_init_sock(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 tp->out_of_order_queue = RB_ROOT; 414 sk->tcp_rtx_queue = RB_ROOT; 415 tcp_init_xmit_timers(sk); 416 INIT_LIST_HEAD(&tp->tsq_node); 417 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 418 419 icsk->icsk_rto = TCP_TIMEOUT_INIT; 420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 422 423 /* So many TCP implementations out there (incorrectly) count the 424 * initial SYN frame in their delayed-ACK and congestion control 425 * algorithms that we must have the following bandaid to talk 426 * efficiently to them. -DaveM 427 */ 428 tp->snd_cwnd = TCP_INIT_CWND; 429 430 /* There's a bubble in the pipe until at least the first ACK. */ 431 tp->app_limited = ~0U; 432 433 /* See draft-stevens-tcpca-spec-01 for discussion of the 434 * initialization of these values. 435 */ 436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 437 tp->snd_cwnd_clamp = ~0; 438 tp->mss_cache = TCP_MSS_DEFAULT; 439 440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 441 tcp_assign_congestion_control(sk); 442 443 tp->tsoffset = 0; 444 tp->rack.reo_wnd_steps = 1; 445 446 sk->sk_state = TCP_CLOSE; 447 448 sk->sk_write_space = sk_stream_write_space; 449 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 450 451 icsk->icsk_sync_mss = tcp_sync_mss; 452 453 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 454 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 455 456 sk_sockets_allocated_inc(sk); 457 sk->sk_route_forced_caps = NETIF_F_GSO; 458 } 459 EXPORT_SYMBOL(tcp_init_sock); 460 461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 462 { 463 struct sk_buff *skb = tcp_write_queue_tail(sk); 464 465 if (tsflags && skb) { 466 struct skb_shared_info *shinfo = skb_shinfo(skb); 467 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 468 469 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 470 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 471 tcb->txstamp_ack = 1; 472 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 473 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 474 } 475 } 476 477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 478 int target, struct sock *sk) 479 { 480 return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) || 481 (sk->sk_prot->stream_memory_read ? 482 sk->sk_prot->stream_memory_read(sk) : false); 483 } 484 485 /* 486 * Wait for a TCP event. 487 * 488 * Note that we don't need to lock the socket, as the upper poll layers 489 * take care of normal races (between the test and the event) and we don't 490 * go look at any of the socket buffers directly. 491 */ 492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 493 { 494 __poll_t mask; 495 struct sock *sk = sock->sk; 496 const struct tcp_sock *tp = tcp_sk(sk); 497 int state; 498 499 sock_poll_wait(file, sock, wait); 500 501 state = inet_sk_state_load(sk); 502 if (state == TCP_LISTEN) 503 return inet_csk_listen_poll(sk); 504 505 /* Socket is not locked. We are protected from async events 506 * by poll logic and correct handling of state changes 507 * made by other threads is impossible in any case. 508 */ 509 510 mask = 0; 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll); 593 594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && 611 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 612 break; 613 case SIOCOUTQ: 614 if (sk->sk_state == TCP_LISTEN) 615 return -EINVAL; 616 617 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 618 answ = 0; 619 else 620 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 621 break; 622 case SIOCOUTQNSD: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = READ_ONCE(tp->write_seq) - 630 READ_ONCE(tp->snd_nxt); 631 break; 632 default: 633 return -ENOIOCTLCMD; 634 } 635 636 return put_user(answ, (int __user *)arg); 637 } 638 EXPORT_SYMBOL(tcp_ioctl); 639 640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 641 { 642 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 643 tp->pushed_seq = tp->write_seq; 644 } 645 646 static inline bool forced_push(const struct tcp_sock *tp) 647 { 648 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 649 } 650 651 static void skb_entail(struct sock *sk, struct sk_buff *skb) 652 { 653 struct tcp_sock *tp = tcp_sk(sk); 654 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 655 656 skb->csum = 0; 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 tcb->sacked = 0; 660 __skb_header_release(skb); 661 tcp_add_write_queue_tail(sk, skb); 662 sk_wmem_queued_add(sk, skb->truesize); 663 sk_mem_charge(sk, skb->truesize); 664 if (tp->nonagle & TCP_NAGLE_PUSH) 665 tp->nonagle &= ~TCP_NAGLE_PUSH; 666 667 tcp_slow_start_after_idle_check(sk); 668 } 669 670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 671 { 672 if (flags & MSG_OOB) 673 tp->snd_up = tp->write_seq; 674 } 675 676 /* If a not yet filled skb is pushed, do not send it if 677 * we have data packets in Qdisc or NIC queues : 678 * Because TX completion will happen shortly, it gives a chance 679 * to coalesce future sendmsg() payload into this skb, without 680 * need for a timer, and with no latency trade off. 681 * As packets containing data payload have a bigger truesize 682 * than pure acks (dataless) packets, the last checks prevent 683 * autocorking if we only have an ACK in Qdisc/NIC queues, 684 * or if TX completion was delayed after we processed ACK packet. 685 */ 686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 687 int size_goal) 688 { 689 return skb->len < size_goal && 690 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 691 !tcp_rtx_queue_empty(sk) && 692 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 693 } 694 695 static void tcp_push(struct sock *sk, int flags, int mss_now, 696 int nonagle, int size_goal) 697 { 698 struct tcp_sock *tp = tcp_sk(sk); 699 struct sk_buff *skb; 700 701 skb = tcp_write_queue_tail(sk); 702 if (!skb) 703 return; 704 if (!(flags & MSG_MORE) || forced_push(tp)) 705 tcp_mark_push(tp, skb); 706 707 tcp_mark_urg(tp, flags); 708 709 if (tcp_should_autocork(sk, skb, size_goal)) { 710 711 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 712 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 713 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 714 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 715 } 716 /* It is possible TX completion already happened 717 * before we set TSQ_THROTTLED. 718 */ 719 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 720 return; 721 } 722 723 if (flags & MSG_MORE) 724 nonagle = TCP_NAGLE_CORK; 725 726 __tcp_push_pending_frames(sk, mss_now, nonagle); 727 } 728 729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 730 unsigned int offset, size_t len) 731 { 732 struct tcp_splice_state *tss = rd_desc->arg.data; 733 int ret; 734 735 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 736 min(rd_desc->count, len), tss->flags); 737 if (ret > 0) 738 rd_desc->count -= ret; 739 return ret; 740 } 741 742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 743 { 744 /* Store TCP splice context information in read_descriptor_t. */ 745 read_descriptor_t rd_desc = { 746 .arg.data = tss, 747 .count = tss->len, 748 }; 749 750 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 751 } 752 753 /** 754 * tcp_splice_read - splice data from TCP socket to a pipe 755 * @sock: socket to splice from 756 * @ppos: position (not valid) 757 * @pipe: pipe to splice to 758 * @len: number of bytes to splice 759 * @flags: splice modifier flags 760 * 761 * Description: 762 * Will read pages from given socket and fill them into a pipe. 763 * 764 **/ 765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 766 struct pipe_inode_info *pipe, size_t len, 767 unsigned int flags) 768 { 769 struct sock *sk = sock->sk; 770 struct tcp_splice_state tss = { 771 .pipe = pipe, 772 .len = len, 773 .flags = flags, 774 }; 775 long timeo; 776 ssize_t spliced; 777 int ret; 778 779 sock_rps_record_flow(sk); 780 /* 781 * We can't seek on a socket input 782 */ 783 if (unlikely(*ppos)) 784 return -ESPIPE; 785 786 ret = spliced = 0; 787 788 lock_sock(sk); 789 790 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 791 while (tss.len) { 792 ret = __tcp_splice_read(sk, &tss); 793 if (ret < 0) 794 break; 795 else if (!ret) { 796 if (spliced) 797 break; 798 if (sock_flag(sk, SOCK_DONE)) 799 break; 800 if (sk->sk_err) { 801 ret = sock_error(sk); 802 break; 803 } 804 if (sk->sk_shutdown & RCV_SHUTDOWN) 805 break; 806 if (sk->sk_state == TCP_CLOSE) { 807 /* 808 * This occurs when user tries to read 809 * from never connected socket. 810 */ 811 ret = -ENOTCONN; 812 break; 813 } 814 if (!timeo) { 815 ret = -EAGAIN; 816 break; 817 } 818 /* if __tcp_splice_read() got nothing while we have 819 * an skb in receive queue, we do not want to loop. 820 * This might happen with URG data. 821 */ 822 if (!skb_queue_empty(&sk->sk_receive_queue)) 823 break; 824 sk_wait_data(sk, &timeo, NULL); 825 if (signal_pending(current)) { 826 ret = sock_intr_errno(timeo); 827 break; 828 } 829 continue; 830 } 831 tss.len -= ret; 832 spliced += ret; 833 834 if (!timeo) 835 break; 836 release_sock(sk); 837 lock_sock(sk); 838 839 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 840 (sk->sk_shutdown & RCV_SHUTDOWN) || 841 signal_pending(current)) 842 break; 843 } 844 845 release_sock(sk); 846 847 if (spliced) 848 return spliced; 849 850 return ret; 851 } 852 EXPORT_SYMBOL(tcp_splice_read); 853 854 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 855 bool force_schedule) 856 { 857 struct sk_buff *skb; 858 859 if (likely(!size)) { 860 skb = sk->sk_tx_skb_cache; 861 if (skb) { 862 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 863 sk->sk_tx_skb_cache = NULL; 864 pskb_trim(skb, 0); 865 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 866 skb_shinfo(skb)->tx_flags = 0; 867 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 868 return skb; 869 } 870 } 871 /* The TCP header must be at least 32-bit aligned. */ 872 size = ALIGN(size, 4); 873 874 if (unlikely(tcp_under_memory_pressure(sk))) 875 sk_mem_reclaim_partial(sk); 876 877 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 878 if (likely(skb)) { 879 bool mem_scheduled; 880 881 if (force_schedule) { 882 mem_scheduled = true; 883 sk_forced_mem_schedule(sk, skb->truesize); 884 } else { 885 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 886 } 887 if (likely(mem_scheduled)) { 888 skb_reserve(skb, sk->sk_prot->max_header); 889 /* 890 * Make sure that we have exactly size bytes 891 * available to the caller, no more, no less. 892 */ 893 skb->reserved_tailroom = skb->end - skb->tail - size; 894 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 895 return skb; 896 } 897 __kfree_skb(skb); 898 } else { 899 sk->sk_prot->enter_memory_pressure(sk); 900 sk_stream_moderate_sndbuf(sk); 901 } 902 return NULL; 903 } 904 905 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 906 int large_allowed) 907 { 908 struct tcp_sock *tp = tcp_sk(sk); 909 u32 new_size_goal, size_goal; 910 911 if (!large_allowed) 912 return mss_now; 913 914 /* Note : tcp_tso_autosize() will eventually split this later */ 915 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 916 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 917 918 /* We try hard to avoid divides here */ 919 size_goal = tp->gso_segs * mss_now; 920 if (unlikely(new_size_goal < size_goal || 921 new_size_goal >= size_goal + mss_now)) { 922 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 923 sk->sk_gso_max_segs); 924 size_goal = tp->gso_segs * mss_now; 925 } 926 927 return max(size_goal, mss_now); 928 } 929 930 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 931 { 932 int mss_now; 933 934 mss_now = tcp_current_mss(sk); 935 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 936 937 return mss_now; 938 } 939 940 /* In some cases, both sendpage() and sendmsg() could have added 941 * an skb to the write queue, but failed adding payload on it. 942 * We need to remove it to consume less memory, but more 943 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 944 * users. 945 */ 946 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 947 { 948 if (skb && !skb->len) { 949 tcp_unlink_write_queue(skb, sk); 950 if (tcp_write_queue_empty(sk)) 951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 952 sk_wmem_free_skb(sk, skb); 953 } 954 } 955 956 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 957 size_t size, int flags) 958 { 959 struct tcp_sock *tp = tcp_sk(sk); 960 int mss_now, size_goal; 961 int err; 962 ssize_t copied; 963 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 964 965 if (IS_ENABLED(CONFIG_DEBUG_VM) && 966 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 967 return -EINVAL; 968 969 /* Wait for a connection to finish. One exception is TCP Fast Open 970 * (passive side) where data is allowed to be sent before a connection 971 * is fully established. 972 */ 973 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 974 !tcp_passive_fastopen(sk)) { 975 err = sk_stream_wait_connect(sk, &timeo); 976 if (err != 0) 977 goto out_err; 978 } 979 980 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 981 982 mss_now = tcp_send_mss(sk, &size_goal, flags); 983 copied = 0; 984 985 err = -EPIPE; 986 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 987 goto out_err; 988 989 while (size > 0) { 990 struct sk_buff *skb = tcp_write_queue_tail(sk); 991 int copy, i; 992 bool can_coalesce; 993 994 if (!skb || (copy = size_goal - skb->len) <= 0 || 995 !tcp_skb_can_collapse_to(skb)) { 996 new_segment: 997 if (!sk_stream_memory_free(sk)) 998 goto wait_for_sndbuf; 999 1000 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1001 tcp_rtx_and_write_queues_empty(sk)); 1002 if (!skb) 1003 goto wait_for_memory; 1004 1005 #ifdef CONFIG_TLS_DEVICE 1006 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1007 #endif 1008 skb_entail(sk, skb); 1009 copy = size_goal; 1010 } 1011 1012 if (copy > size) 1013 copy = size; 1014 1015 i = skb_shinfo(skb)->nr_frags; 1016 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1017 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1018 tcp_mark_push(tp, skb); 1019 goto new_segment; 1020 } 1021 if (!sk_wmem_schedule(sk, copy)) 1022 goto wait_for_memory; 1023 1024 if (can_coalesce) { 1025 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1026 } else { 1027 get_page(page); 1028 skb_fill_page_desc(skb, i, page, offset, copy); 1029 } 1030 1031 if (!(flags & MSG_NO_SHARED_FRAGS)) 1032 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1033 1034 skb->len += copy; 1035 skb->data_len += copy; 1036 skb->truesize += copy; 1037 sk_wmem_queued_add(sk, copy); 1038 sk_mem_charge(sk, copy); 1039 skb->ip_summed = CHECKSUM_PARTIAL; 1040 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1041 TCP_SKB_CB(skb)->end_seq += copy; 1042 tcp_skb_pcount_set(skb, 0); 1043 1044 if (!copied) 1045 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1046 1047 copied += copy; 1048 offset += copy; 1049 size -= copy; 1050 if (!size) 1051 goto out; 1052 1053 if (skb->len < size_goal || (flags & MSG_OOB)) 1054 continue; 1055 1056 if (forced_push(tp)) { 1057 tcp_mark_push(tp, skb); 1058 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1059 } else if (skb == tcp_send_head(sk)) 1060 tcp_push_one(sk, mss_now); 1061 continue; 1062 1063 wait_for_sndbuf: 1064 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1065 wait_for_memory: 1066 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1067 TCP_NAGLE_PUSH, size_goal); 1068 1069 err = sk_stream_wait_memory(sk, &timeo); 1070 if (err != 0) 1071 goto do_error; 1072 1073 mss_now = tcp_send_mss(sk, &size_goal, flags); 1074 } 1075 1076 out: 1077 if (copied) { 1078 tcp_tx_timestamp(sk, sk->sk_tsflags); 1079 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1080 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1081 } 1082 return copied; 1083 1084 do_error: 1085 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1086 if (copied) 1087 goto out; 1088 out_err: 1089 /* make sure we wake any epoll edge trigger waiter */ 1090 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1091 sk->sk_write_space(sk); 1092 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1093 } 1094 return sk_stream_error(sk, flags, err); 1095 } 1096 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1097 1098 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1099 size_t size, int flags) 1100 { 1101 if (!(sk->sk_route_caps & NETIF_F_SG)) 1102 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1103 1104 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1105 1106 return do_tcp_sendpages(sk, page, offset, size, flags); 1107 } 1108 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1109 1110 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1111 size_t size, int flags) 1112 { 1113 int ret; 1114 1115 lock_sock(sk); 1116 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1117 release_sock(sk); 1118 1119 return ret; 1120 } 1121 EXPORT_SYMBOL(tcp_sendpage); 1122 1123 void tcp_free_fastopen_req(struct tcp_sock *tp) 1124 { 1125 if (tp->fastopen_req) { 1126 kfree(tp->fastopen_req); 1127 tp->fastopen_req = NULL; 1128 } 1129 } 1130 1131 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1132 int *copied, size_t size, 1133 struct ubuf_info *uarg) 1134 { 1135 struct tcp_sock *tp = tcp_sk(sk); 1136 struct inet_sock *inet = inet_sk(sk); 1137 struct sockaddr *uaddr = msg->msg_name; 1138 int err, flags; 1139 1140 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1141 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1142 uaddr->sa_family == AF_UNSPEC)) 1143 return -EOPNOTSUPP; 1144 if (tp->fastopen_req) 1145 return -EALREADY; /* Another Fast Open is in progress */ 1146 1147 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1148 sk->sk_allocation); 1149 if (unlikely(!tp->fastopen_req)) 1150 return -ENOBUFS; 1151 tp->fastopen_req->data = msg; 1152 tp->fastopen_req->size = size; 1153 tp->fastopen_req->uarg = uarg; 1154 1155 if (inet->defer_connect) { 1156 err = tcp_connect(sk); 1157 /* Same failure procedure as in tcp_v4/6_connect */ 1158 if (err) { 1159 tcp_set_state(sk, TCP_CLOSE); 1160 inet->inet_dport = 0; 1161 sk->sk_route_caps = 0; 1162 } 1163 } 1164 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1165 err = __inet_stream_connect(sk->sk_socket, uaddr, 1166 msg->msg_namelen, flags, 1); 1167 /* fastopen_req could already be freed in __inet_stream_connect 1168 * if the connection times out or gets rst 1169 */ 1170 if (tp->fastopen_req) { 1171 *copied = tp->fastopen_req->copied; 1172 tcp_free_fastopen_req(tp); 1173 inet->defer_connect = 0; 1174 } 1175 return err; 1176 } 1177 1178 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1179 { 1180 struct tcp_sock *tp = tcp_sk(sk); 1181 struct ubuf_info *uarg = NULL; 1182 struct sk_buff *skb; 1183 struct sockcm_cookie sockc; 1184 int flags, err, copied = 0; 1185 int mss_now = 0, size_goal, copied_syn = 0; 1186 int process_backlog = 0; 1187 bool zc = false; 1188 long timeo; 1189 1190 flags = msg->msg_flags; 1191 1192 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1193 skb = tcp_write_queue_tail(sk); 1194 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1195 if (!uarg) { 1196 err = -ENOBUFS; 1197 goto out_err; 1198 } 1199 1200 zc = sk->sk_route_caps & NETIF_F_SG; 1201 if (!zc) 1202 uarg->zerocopy = 0; 1203 } 1204 1205 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1206 !tp->repair) { 1207 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1208 if (err == -EINPROGRESS && copied_syn > 0) 1209 goto out; 1210 else if (err) 1211 goto out_err; 1212 } 1213 1214 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1215 1216 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1217 1218 /* Wait for a connection to finish. One exception is TCP Fast Open 1219 * (passive side) where data is allowed to be sent before a connection 1220 * is fully established. 1221 */ 1222 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1223 !tcp_passive_fastopen(sk)) { 1224 err = sk_stream_wait_connect(sk, &timeo); 1225 if (err != 0) 1226 goto do_error; 1227 } 1228 1229 if (unlikely(tp->repair)) { 1230 if (tp->repair_queue == TCP_RECV_QUEUE) { 1231 copied = tcp_send_rcvq(sk, msg, size); 1232 goto out_nopush; 1233 } 1234 1235 err = -EINVAL; 1236 if (tp->repair_queue == TCP_NO_QUEUE) 1237 goto out_err; 1238 1239 /* 'common' sending to sendq */ 1240 } 1241 1242 sockcm_init(&sockc, sk); 1243 if (msg->msg_controllen) { 1244 err = sock_cmsg_send(sk, msg, &sockc); 1245 if (unlikely(err)) { 1246 err = -EINVAL; 1247 goto out_err; 1248 } 1249 } 1250 1251 /* This should be in poll */ 1252 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1253 1254 /* Ok commence sending. */ 1255 copied = 0; 1256 1257 restart: 1258 mss_now = tcp_send_mss(sk, &size_goal, flags); 1259 1260 err = -EPIPE; 1261 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1262 goto do_error; 1263 1264 while (msg_data_left(msg)) { 1265 int copy = 0; 1266 1267 skb = tcp_write_queue_tail(sk); 1268 if (skb) 1269 copy = size_goal - skb->len; 1270 1271 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1272 bool first_skb; 1273 1274 new_segment: 1275 if (!sk_stream_memory_free(sk)) 1276 goto wait_for_sndbuf; 1277 1278 if (unlikely(process_backlog >= 16)) { 1279 process_backlog = 0; 1280 if (sk_flush_backlog(sk)) 1281 goto restart; 1282 } 1283 first_skb = tcp_rtx_and_write_queues_empty(sk); 1284 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1285 first_skb); 1286 if (!skb) 1287 goto wait_for_memory; 1288 1289 process_backlog++; 1290 skb->ip_summed = CHECKSUM_PARTIAL; 1291 1292 skb_entail(sk, skb); 1293 copy = size_goal; 1294 1295 /* All packets are restored as if they have 1296 * already been sent. skb_mstamp_ns isn't set to 1297 * avoid wrong rtt estimation. 1298 */ 1299 if (tp->repair) 1300 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1301 } 1302 1303 /* Try to append data to the end of skb. */ 1304 if (copy > msg_data_left(msg)) 1305 copy = msg_data_left(msg); 1306 1307 /* Where to copy to? */ 1308 if (skb_availroom(skb) > 0 && !zc) { 1309 /* We have some space in skb head. Superb! */ 1310 copy = min_t(int, copy, skb_availroom(skb)); 1311 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1312 if (err) 1313 goto do_fault; 1314 } else if (!zc) { 1315 bool merge = true; 1316 int i = skb_shinfo(skb)->nr_frags; 1317 struct page_frag *pfrag = sk_page_frag(sk); 1318 1319 if (!sk_page_frag_refill(sk, pfrag)) 1320 goto wait_for_memory; 1321 1322 if (!skb_can_coalesce(skb, i, pfrag->page, 1323 pfrag->offset)) { 1324 if (i >= sysctl_max_skb_frags) { 1325 tcp_mark_push(tp, skb); 1326 goto new_segment; 1327 } 1328 merge = false; 1329 } 1330 1331 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1332 1333 if (!sk_wmem_schedule(sk, copy)) 1334 goto wait_for_memory; 1335 1336 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1337 pfrag->page, 1338 pfrag->offset, 1339 copy); 1340 if (err) 1341 goto do_error; 1342 1343 /* Update the skb. */ 1344 if (merge) { 1345 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1346 } else { 1347 skb_fill_page_desc(skb, i, pfrag->page, 1348 pfrag->offset, copy); 1349 page_ref_inc(pfrag->page); 1350 } 1351 pfrag->offset += copy; 1352 } else { 1353 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1354 if (err == -EMSGSIZE || err == -EEXIST) { 1355 tcp_mark_push(tp, skb); 1356 goto new_segment; 1357 } 1358 if (err < 0) 1359 goto do_error; 1360 copy = err; 1361 } 1362 1363 if (!copied) 1364 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1365 1366 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1367 TCP_SKB_CB(skb)->end_seq += copy; 1368 tcp_skb_pcount_set(skb, 0); 1369 1370 copied += copy; 1371 if (!msg_data_left(msg)) { 1372 if (unlikely(flags & MSG_EOR)) 1373 TCP_SKB_CB(skb)->eor = 1; 1374 goto out; 1375 } 1376 1377 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1378 continue; 1379 1380 if (forced_push(tp)) { 1381 tcp_mark_push(tp, skb); 1382 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1383 } else if (skb == tcp_send_head(sk)) 1384 tcp_push_one(sk, mss_now); 1385 continue; 1386 1387 wait_for_sndbuf: 1388 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1389 wait_for_memory: 1390 if (copied) 1391 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1392 TCP_NAGLE_PUSH, size_goal); 1393 1394 err = sk_stream_wait_memory(sk, &timeo); 1395 if (err != 0) 1396 goto do_error; 1397 1398 mss_now = tcp_send_mss(sk, &size_goal, flags); 1399 } 1400 1401 out: 1402 if (copied) { 1403 tcp_tx_timestamp(sk, sockc.tsflags); 1404 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1405 } 1406 out_nopush: 1407 sock_zerocopy_put(uarg); 1408 return copied + copied_syn; 1409 1410 do_error: 1411 skb = tcp_write_queue_tail(sk); 1412 do_fault: 1413 tcp_remove_empty_skb(sk, skb); 1414 1415 if (copied + copied_syn) 1416 goto out; 1417 out_err: 1418 sock_zerocopy_put_abort(uarg, true); 1419 err = sk_stream_error(sk, flags, err); 1420 /* make sure we wake any epoll edge trigger waiter */ 1421 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1422 sk->sk_write_space(sk); 1423 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1424 } 1425 return err; 1426 } 1427 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1428 1429 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1430 { 1431 int ret; 1432 1433 lock_sock(sk); 1434 ret = tcp_sendmsg_locked(sk, msg, size); 1435 release_sock(sk); 1436 1437 return ret; 1438 } 1439 EXPORT_SYMBOL(tcp_sendmsg); 1440 1441 /* 1442 * Handle reading urgent data. BSD has very simple semantics for 1443 * this, no blocking and very strange errors 8) 1444 */ 1445 1446 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1447 { 1448 struct tcp_sock *tp = tcp_sk(sk); 1449 1450 /* No URG data to read. */ 1451 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1452 tp->urg_data == TCP_URG_READ) 1453 return -EINVAL; /* Yes this is right ! */ 1454 1455 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1456 return -ENOTCONN; 1457 1458 if (tp->urg_data & TCP_URG_VALID) { 1459 int err = 0; 1460 char c = tp->urg_data; 1461 1462 if (!(flags & MSG_PEEK)) 1463 tp->urg_data = TCP_URG_READ; 1464 1465 /* Read urgent data. */ 1466 msg->msg_flags |= MSG_OOB; 1467 1468 if (len > 0) { 1469 if (!(flags & MSG_TRUNC)) 1470 err = memcpy_to_msg(msg, &c, 1); 1471 len = 1; 1472 } else 1473 msg->msg_flags |= MSG_TRUNC; 1474 1475 return err ? -EFAULT : len; 1476 } 1477 1478 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1479 return 0; 1480 1481 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1482 * the available implementations agree in this case: 1483 * this call should never block, independent of the 1484 * blocking state of the socket. 1485 * Mike <pall@rz.uni-karlsruhe.de> 1486 */ 1487 return -EAGAIN; 1488 } 1489 1490 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1491 { 1492 struct sk_buff *skb; 1493 int copied = 0, err = 0; 1494 1495 /* XXX -- need to support SO_PEEK_OFF */ 1496 1497 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1498 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1499 if (err) 1500 return err; 1501 copied += skb->len; 1502 } 1503 1504 skb_queue_walk(&sk->sk_write_queue, skb) { 1505 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1506 if (err) 1507 break; 1508 1509 copied += skb->len; 1510 } 1511 1512 return err ?: copied; 1513 } 1514 1515 /* Clean up the receive buffer for full frames taken by the user, 1516 * then send an ACK if necessary. COPIED is the number of bytes 1517 * tcp_recvmsg has given to the user so far, it speeds up the 1518 * calculation of whether or not we must ACK for the sake of 1519 * a window update. 1520 */ 1521 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1522 { 1523 struct tcp_sock *tp = tcp_sk(sk); 1524 bool time_to_ack = false; 1525 1526 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1527 1528 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1529 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1530 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1531 1532 if (inet_csk_ack_scheduled(sk)) { 1533 const struct inet_connection_sock *icsk = inet_csk(sk); 1534 /* Delayed ACKs frequently hit locked sockets during bulk 1535 * receive. */ 1536 if (icsk->icsk_ack.blocked || 1537 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1538 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1539 /* 1540 * If this read emptied read buffer, we send ACK, if 1541 * connection is not bidirectional, user drained 1542 * receive buffer and there was a small segment 1543 * in queue. 1544 */ 1545 (copied > 0 && 1546 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1547 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1548 !inet_csk_in_pingpong_mode(sk))) && 1549 !atomic_read(&sk->sk_rmem_alloc))) 1550 time_to_ack = true; 1551 } 1552 1553 /* We send an ACK if we can now advertise a non-zero window 1554 * which has been raised "significantly". 1555 * 1556 * Even if window raised up to infinity, do not send window open ACK 1557 * in states, where we will not receive more. It is useless. 1558 */ 1559 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1560 __u32 rcv_window_now = tcp_receive_window(tp); 1561 1562 /* Optimize, __tcp_select_window() is not cheap. */ 1563 if (2*rcv_window_now <= tp->window_clamp) { 1564 __u32 new_window = __tcp_select_window(sk); 1565 1566 /* Send ACK now, if this read freed lots of space 1567 * in our buffer. Certainly, new_window is new window. 1568 * We can advertise it now, if it is not less than current one. 1569 * "Lots" means "at least twice" here. 1570 */ 1571 if (new_window && new_window >= 2 * rcv_window_now) 1572 time_to_ack = true; 1573 } 1574 } 1575 if (time_to_ack) 1576 tcp_send_ack(sk); 1577 } 1578 1579 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1580 { 1581 struct sk_buff *skb; 1582 u32 offset; 1583 1584 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1585 offset = seq - TCP_SKB_CB(skb)->seq; 1586 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1587 pr_err_once("%s: found a SYN, please report !\n", __func__); 1588 offset--; 1589 } 1590 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1591 *off = offset; 1592 return skb; 1593 } 1594 /* This looks weird, but this can happen if TCP collapsing 1595 * splitted a fat GRO packet, while we released socket lock 1596 * in skb_splice_bits() 1597 */ 1598 sk_eat_skb(sk, skb); 1599 } 1600 return NULL; 1601 } 1602 1603 /* 1604 * This routine provides an alternative to tcp_recvmsg() for routines 1605 * that would like to handle copying from skbuffs directly in 'sendfile' 1606 * fashion. 1607 * Note: 1608 * - It is assumed that the socket was locked by the caller. 1609 * - The routine does not block. 1610 * - At present, there is no support for reading OOB data 1611 * or for 'peeking' the socket using this routine 1612 * (although both would be easy to implement). 1613 */ 1614 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1615 sk_read_actor_t recv_actor) 1616 { 1617 struct sk_buff *skb; 1618 struct tcp_sock *tp = tcp_sk(sk); 1619 u32 seq = tp->copied_seq; 1620 u32 offset; 1621 int copied = 0; 1622 1623 if (sk->sk_state == TCP_LISTEN) 1624 return -ENOTCONN; 1625 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1626 if (offset < skb->len) { 1627 int used; 1628 size_t len; 1629 1630 len = skb->len - offset; 1631 /* Stop reading if we hit a patch of urgent data */ 1632 if (tp->urg_data) { 1633 u32 urg_offset = tp->urg_seq - seq; 1634 if (urg_offset < len) 1635 len = urg_offset; 1636 if (!len) 1637 break; 1638 } 1639 used = recv_actor(desc, skb, offset, len); 1640 if (used <= 0) { 1641 if (!copied) 1642 copied = used; 1643 break; 1644 } else if (used <= len) { 1645 seq += used; 1646 copied += used; 1647 offset += used; 1648 } 1649 /* If recv_actor drops the lock (e.g. TCP splice 1650 * receive) the skb pointer might be invalid when 1651 * getting here: tcp_collapse might have deleted it 1652 * while aggregating skbs from the socket queue. 1653 */ 1654 skb = tcp_recv_skb(sk, seq - 1, &offset); 1655 if (!skb) 1656 break; 1657 /* TCP coalescing might have appended data to the skb. 1658 * Try to splice more frags 1659 */ 1660 if (offset + 1 != skb->len) 1661 continue; 1662 } 1663 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1664 sk_eat_skb(sk, skb); 1665 ++seq; 1666 break; 1667 } 1668 sk_eat_skb(sk, skb); 1669 if (!desc->count) 1670 break; 1671 WRITE_ONCE(tp->copied_seq, seq); 1672 } 1673 WRITE_ONCE(tp->copied_seq, seq); 1674 1675 tcp_rcv_space_adjust(sk); 1676 1677 /* Clean up data we have read: This will do ACK frames. */ 1678 if (copied > 0) { 1679 tcp_recv_skb(sk, seq, &offset); 1680 tcp_cleanup_rbuf(sk, copied); 1681 } 1682 return copied; 1683 } 1684 EXPORT_SYMBOL(tcp_read_sock); 1685 1686 int tcp_peek_len(struct socket *sock) 1687 { 1688 return tcp_inq(sock->sk); 1689 } 1690 EXPORT_SYMBOL(tcp_peek_len); 1691 1692 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1693 int tcp_set_rcvlowat(struct sock *sk, int val) 1694 { 1695 int cap; 1696 1697 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1698 cap = sk->sk_rcvbuf >> 1; 1699 else 1700 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1701 val = min(val, cap); 1702 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1703 1704 /* Check if we need to signal EPOLLIN right now */ 1705 tcp_data_ready(sk); 1706 1707 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1708 return 0; 1709 1710 val <<= 1; 1711 if (val > sk->sk_rcvbuf) { 1712 WRITE_ONCE(sk->sk_rcvbuf, val); 1713 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1714 } 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(tcp_set_rcvlowat); 1718 1719 #ifdef CONFIG_MMU 1720 static const struct vm_operations_struct tcp_vm_ops = { 1721 }; 1722 1723 int tcp_mmap(struct file *file, struct socket *sock, 1724 struct vm_area_struct *vma) 1725 { 1726 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1727 return -EPERM; 1728 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1729 1730 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1731 vma->vm_flags |= VM_MIXEDMAP; 1732 1733 vma->vm_ops = &tcp_vm_ops; 1734 return 0; 1735 } 1736 EXPORT_SYMBOL(tcp_mmap); 1737 1738 static int tcp_zerocopy_receive(struct sock *sk, 1739 struct tcp_zerocopy_receive *zc) 1740 { 1741 unsigned long address = (unsigned long)zc->address; 1742 u32 length = 0, seq, offset, zap_len; 1743 const skb_frag_t *frags = NULL; 1744 struct vm_area_struct *vma; 1745 struct sk_buff *skb = NULL; 1746 struct tcp_sock *tp; 1747 int inq; 1748 int ret; 1749 1750 if (address & (PAGE_SIZE - 1) || address != zc->address) 1751 return -EINVAL; 1752 1753 if (sk->sk_state == TCP_LISTEN) 1754 return -ENOTCONN; 1755 1756 sock_rps_record_flow(sk); 1757 1758 down_read(¤t->mm->mmap_sem); 1759 1760 ret = -EINVAL; 1761 vma = find_vma(current->mm, address); 1762 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1763 goto out; 1764 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1765 1766 tp = tcp_sk(sk); 1767 seq = tp->copied_seq; 1768 inq = tcp_inq(sk); 1769 zc->length = min_t(u32, zc->length, inq); 1770 zap_len = zc->length & ~(PAGE_SIZE - 1); 1771 if (zap_len) { 1772 zap_page_range(vma, address, zap_len); 1773 zc->recv_skip_hint = 0; 1774 } else { 1775 zc->recv_skip_hint = zc->length; 1776 } 1777 ret = 0; 1778 while (length + PAGE_SIZE <= zc->length) { 1779 if (zc->recv_skip_hint < PAGE_SIZE) { 1780 if (skb) { 1781 skb = skb->next; 1782 offset = seq - TCP_SKB_CB(skb)->seq; 1783 } else { 1784 skb = tcp_recv_skb(sk, seq, &offset); 1785 } 1786 1787 zc->recv_skip_hint = skb->len - offset; 1788 offset -= skb_headlen(skb); 1789 if ((int)offset < 0 || skb_has_frag_list(skb)) 1790 break; 1791 frags = skb_shinfo(skb)->frags; 1792 while (offset) { 1793 if (skb_frag_size(frags) > offset) 1794 goto out; 1795 offset -= skb_frag_size(frags); 1796 frags++; 1797 } 1798 } 1799 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { 1800 int remaining = zc->recv_skip_hint; 1801 1802 while (remaining && (skb_frag_size(frags) != PAGE_SIZE || 1803 skb_frag_off(frags))) { 1804 remaining -= skb_frag_size(frags); 1805 frags++; 1806 } 1807 zc->recv_skip_hint -= remaining; 1808 break; 1809 } 1810 ret = vm_insert_page(vma, address + length, 1811 skb_frag_page(frags)); 1812 if (ret) 1813 break; 1814 length += PAGE_SIZE; 1815 seq += PAGE_SIZE; 1816 zc->recv_skip_hint -= PAGE_SIZE; 1817 frags++; 1818 } 1819 out: 1820 up_read(¤t->mm->mmap_sem); 1821 if (length) { 1822 WRITE_ONCE(tp->copied_seq, seq); 1823 tcp_rcv_space_adjust(sk); 1824 1825 /* Clean up data we have read: This will do ACK frames. */ 1826 tcp_recv_skb(sk, seq, &offset); 1827 tcp_cleanup_rbuf(sk, length); 1828 ret = 0; 1829 if (length == zc->length) 1830 zc->recv_skip_hint = 0; 1831 } else { 1832 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1833 ret = -EIO; 1834 } 1835 zc->length = length; 1836 return ret; 1837 } 1838 #endif 1839 1840 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1841 struct scm_timestamping_internal *tss) 1842 { 1843 if (skb->tstamp) 1844 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1845 else 1846 tss->ts[0] = (struct timespec64) {0}; 1847 1848 if (skb_hwtstamps(skb)->hwtstamp) 1849 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1850 else 1851 tss->ts[2] = (struct timespec64) {0}; 1852 } 1853 1854 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1855 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1856 struct scm_timestamping_internal *tss) 1857 { 1858 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1859 bool has_timestamping = false; 1860 1861 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1862 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1863 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1864 if (new_tstamp) { 1865 struct __kernel_timespec kts = { 1866 .tv_sec = tss->ts[0].tv_sec, 1867 .tv_nsec = tss->ts[0].tv_nsec, 1868 }; 1869 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1870 sizeof(kts), &kts); 1871 } else { 1872 struct __kernel_old_timespec ts_old = { 1873 .tv_sec = tss->ts[0].tv_sec, 1874 .tv_nsec = tss->ts[0].tv_nsec, 1875 }; 1876 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1877 sizeof(ts_old), &ts_old); 1878 } 1879 } else { 1880 if (new_tstamp) { 1881 struct __kernel_sock_timeval stv = { 1882 .tv_sec = tss->ts[0].tv_sec, 1883 .tv_usec = tss->ts[0].tv_nsec / 1000, 1884 }; 1885 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1886 sizeof(stv), &stv); 1887 } else { 1888 struct __kernel_old_timeval tv = { 1889 .tv_sec = tss->ts[0].tv_sec, 1890 .tv_usec = tss->ts[0].tv_nsec / 1000, 1891 }; 1892 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1893 sizeof(tv), &tv); 1894 } 1895 } 1896 } 1897 1898 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1899 has_timestamping = true; 1900 else 1901 tss->ts[0] = (struct timespec64) {0}; 1902 } 1903 1904 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1905 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1906 has_timestamping = true; 1907 else 1908 tss->ts[2] = (struct timespec64) {0}; 1909 } 1910 1911 if (has_timestamping) { 1912 tss->ts[1] = (struct timespec64) {0}; 1913 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1914 put_cmsg_scm_timestamping64(msg, tss); 1915 else 1916 put_cmsg_scm_timestamping(msg, tss); 1917 } 1918 } 1919 1920 static int tcp_inq_hint(struct sock *sk) 1921 { 1922 const struct tcp_sock *tp = tcp_sk(sk); 1923 u32 copied_seq = READ_ONCE(tp->copied_seq); 1924 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1925 int inq; 1926 1927 inq = rcv_nxt - copied_seq; 1928 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1929 lock_sock(sk); 1930 inq = tp->rcv_nxt - tp->copied_seq; 1931 release_sock(sk); 1932 } 1933 /* After receiving a FIN, tell the user-space to continue reading 1934 * by returning a non-zero inq. 1935 */ 1936 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 1937 inq = 1; 1938 return inq; 1939 } 1940 1941 /* 1942 * This routine copies from a sock struct into the user buffer. 1943 * 1944 * Technical note: in 2.3 we work on _locked_ socket, so that 1945 * tricks with *seq access order and skb->users are not required. 1946 * Probably, code can be easily improved even more. 1947 */ 1948 1949 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1950 int flags, int *addr_len) 1951 { 1952 struct tcp_sock *tp = tcp_sk(sk); 1953 int copied = 0; 1954 u32 peek_seq; 1955 u32 *seq; 1956 unsigned long used; 1957 int err, inq; 1958 int target; /* Read at least this many bytes */ 1959 long timeo; 1960 struct sk_buff *skb, *last; 1961 u32 urg_hole = 0; 1962 struct scm_timestamping_internal tss; 1963 int cmsg_flags; 1964 1965 if (unlikely(flags & MSG_ERRQUEUE)) 1966 return inet_recv_error(sk, msg, len, addr_len); 1967 1968 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 1969 (sk->sk_state == TCP_ESTABLISHED)) 1970 sk_busy_loop(sk, nonblock); 1971 1972 lock_sock(sk); 1973 1974 err = -ENOTCONN; 1975 if (sk->sk_state == TCP_LISTEN) 1976 goto out; 1977 1978 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 1979 timeo = sock_rcvtimeo(sk, nonblock); 1980 1981 /* Urgent data needs to be handled specially. */ 1982 if (flags & MSG_OOB) 1983 goto recv_urg; 1984 1985 if (unlikely(tp->repair)) { 1986 err = -EPERM; 1987 if (!(flags & MSG_PEEK)) 1988 goto out; 1989 1990 if (tp->repair_queue == TCP_SEND_QUEUE) 1991 goto recv_sndq; 1992 1993 err = -EINVAL; 1994 if (tp->repair_queue == TCP_NO_QUEUE) 1995 goto out; 1996 1997 /* 'common' recv queue MSG_PEEK-ing */ 1998 } 1999 2000 seq = &tp->copied_seq; 2001 if (flags & MSG_PEEK) { 2002 peek_seq = tp->copied_seq; 2003 seq = &peek_seq; 2004 } 2005 2006 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2007 2008 do { 2009 u32 offset; 2010 2011 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2012 if (tp->urg_data && tp->urg_seq == *seq) { 2013 if (copied) 2014 break; 2015 if (signal_pending(current)) { 2016 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2017 break; 2018 } 2019 } 2020 2021 /* Next get a buffer. */ 2022 2023 last = skb_peek_tail(&sk->sk_receive_queue); 2024 skb_queue_walk(&sk->sk_receive_queue, skb) { 2025 last = skb; 2026 /* Now that we have two receive queues this 2027 * shouldn't happen. 2028 */ 2029 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2030 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2031 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2032 flags)) 2033 break; 2034 2035 offset = *seq - TCP_SKB_CB(skb)->seq; 2036 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2037 pr_err_once("%s: found a SYN, please report !\n", __func__); 2038 offset--; 2039 } 2040 if (offset < skb->len) 2041 goto found_ok_skb; 2042 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2043 goto found_fin_ok; 2044 WARN(!(flags & MSG_PEEK), 2045 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2046 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2047 } 2048 2049 /* Well, if we have backlog, try to process it now yet. */ 2050 2051 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2052 break; 2053 2054 if (copied) { 2055 if (sk->sk_err || 2056 sk->sk_state == TCP_CLOSE || 2057 (sk->sk_shutdown & RCV_SHUTDOWN) || 2058 !timeo || 2059 signal_pending(current)) 2060 break; 2061 } else { 2062 if (sock_flag(sk, SOCK_DONE)) 2063 break; 2064 2065 if (sk->sk_err) { 2066 copied = sock_error(sk); 2067 break; 2068 } 2069 2070 if (sk->sk_shutdown & RCV_SHUTDOWN) 2071 break; 2072 2073 if (sk->sk_state == TCP_CLOSE) { 2074 /* This occurs when user tries to read 2075 * from never connected socket. 2076 */ 2077 copied = -ENOTCONN; 2078 break; 2079 } 2080 2081 if (!timeo) { 2082 copied = -EAGAIN; 2083 break; 2084 } 2085 2086 if (signal_pending(current)) { 2087 copied = sock_intr_errno(timeo); 2088 break; 2089 } 2090 } 2091 2092 tcp_cleanup_rbuf(sk, copied); 2093 2094 if (copied >= target) { 2095 /* Do not sleep, just process backlog. */ 2096 release_sock(sk); 2097 lock_sock(sk); 2098 } else { 2099 sk_wait_data(sk, &timeo, last); 2100 } 2101 2102 if ((flags & MSG_PEEK) && 2103 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2104 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2105 current->comm, 2106 task_pid_nr(current)); 2107 peek_seq = tp->copied_seq; 2108 } 2109 continue; 2110 2111 found_ok_skb: 2112 /* Ok so how much can we use? */ 2113 used = skb->len - offset; 2114 if (len < used) 2115 used = len; 2116 2117 /* Do we have urgent data here? */ 2118 if (tp->urg_data) { 2119 u32 urg_offset = tp->urg_seq - *seq; 2120 if (urg_offset < used) { 2121 if (!urg_offset) { 2122 if (!sock_flag(sk, SOCK_URGINLINE)) { 2123 WRITE_ONCE(*seq, *seq + 1); 2124 urg_hole++; 2125 offset++; 2126 used--; 2127 if (!used) 2128 goto skip_copy; 2129 } 2130 } else 2131 used = urg_offset; 2132 } 2133 } 2134 2135 if (!(flags & MSG_TRUNC)) { 2136 err = skb_copy_datagram_msg(skb, offset, msg, used); 2137 if (err) { 2138 /* Exception. Bailout! */ 2139 if (!copied) 2140 copied = -EFAULT; 2141 break; 2142 } 2143 } 2144 2145 WRITE_ONCE(*seq, *seq + used); 2146 copied += used; 2147 len -= used; 2148 2149 tcp_rcv_space_adjust(sk); 2150 2151 skip_copy: 2152 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2153 tp->urg_data = 0; 2154 tcp_fast_path_check(sk); 2155 } 2156 if (used + offset < skb->len) 2157 continue; 2158 2159 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2160 tcp_update_recv_tstamps(skb, &tss); 2161 cmsg_flags |= 2; 2162 } 2163 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2164 goto found_fin_ok; 2165 if (!(flags & MSG_PEEK)) 2166 sk_eat_skb(sk, skb); 2167 continue; 2168 2169 found_fin_ok: 2170 /* Process the FIN. */ 2171 WRITE_ONCE(*seq, *seq + 1); 2172 if (!(flags & MSG_PEEK)) 2173 sk_eat_skb(sk, skb); 2174 break; 2175 } while (len > 0); 2176 2177 /* According to UNIX98, msg_name/msg_namelen are ignored 2178 * on connected socket. I was just happy when found this 8) --ANK 2179 */ 2180 2181 /* Clean up data we have read: This will do ACK frames. */ 2182 tcp_cleanup_rbuf(sk, copied); 2183 2184 release_sock(sk); 2185 2186 if (cmsg_flags) { 2187 if (cmsg_flags & 2) 2188 tcp_recv_timestamp(msg, sk, &tss); 2189 if (cmsg_flags & 1) { 2190 inq = tcp_inq_hint(sk); 2191 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2192 } 2193 } 2194 2195 return copied; 2196 2197 out: 2198 release_sock(sk); 2199 return err; 2200 2201 recv_urg: 2202 err = tcp_recv_urg(sk, msg, len, flags); 2203 goto out; 2204 2205 recv_sndq: 2206 err = tcp_peek_sndq(sk, msg, len); 2207 goto out; 2208 } 2209 EXPORT_SYMBOL(tcp_recvmsg); 2210 2211 void tcp_set_state(struct sock *sk, int state) 2212 { 2213 int oldstate = sk->sk_state; 2214 2215 /* We defined a new enum for TCP states that are exported in BPF 2216 * so as not force the internal TCP states to be frozen. The 2217 * following checks will detect if an internal state value ever 2218 * differs from the BPF value. If this ever happens, then we will 2219 * need to remap the internal value to the BPF value before calling 2220 * tcp_call_bpf_2arg. 2221 */ 2222 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2223 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2224 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2225 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2226 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2227 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2228 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2229 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2230 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2231 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2232 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2233 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2234 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2235 2236 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2237 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2238 2239 switch (state) { 2240 case TCP_ESTABLISHED: 2241 if (oldstate != TCP_ESTABLISHED) 2242 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2243 break; 2244 2245 case TCP_CLOSE: 2246 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2247 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2248 2249 sk->sk_prot->unhash(sk); 2250 if (inet_csk(sk)->icsk_bind_hash && 2251 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2252 inet_put_port(sk); 2253 /* fall through */ 2254 default: 2255 if (oldstate == TCP_ESTABLISHED) 2256 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2257 } 2258 2259 /* Change state AFTER socket is unhashed to avoid closed 2260 * socket sitting in hash tables. 2261 */ 2262 inet_sk_state_store(sk, state); 2263 } 2264 EXPORT_SYMBOL_GPL(tcp_set_state); 2265 2266 /* 2267 * State processing on a close. This implements the state shift for 2268 * sending our FIN frame. Note that we only send a FIN for some 2269 * states. A shutdown() may have already sent the FIN, or we may be 2270 * closed. 2271 */ 2272 2273 static const unsigned char new_state[16] = { 2274 /* current state: new state: action: */ 2275 [0 /* (Invalid) */] = TCP_CLOSE, 2276 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2277 [TCP_SYN_SENT] = TCP_CLOSE, 2278 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2279 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2280 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2281 [TCP_TIME_WAIT] = TCP_CLOSE, 2282 [TCP_CLOSE] = TCP_CLOSE, 2283 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2284 [TCP_LAST_ACK] = TCP_LAST_ACK, 2285 [TCP_LISTEN] = TCP_CLOSE, 2286 [TCP_CLOSING] = TCP_CLOSING, 2287 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2288 }; 2289 2290 static int tcp_close_state(struct sock *sk) 2291 { 2292 int next = (int)new_state[sk->sk_state]; 2293 int ns = next & TCP_STATE_MASK; 2294 2295 tcp_set_state(sk, ns); 2296 2297 return next & TCP_ACTION_FIN; 2298 } 2299 2300 /* 2301 * Shutdown the sending side of a connection. Much like close except 2302 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2303 */ 2304 2305 void tcp_shutdown(struct sock *sk, int how) 2306 { 2307 /* We need to grab some memory, and put together a FIN, 2308 * and then put it into the queue to be sent. 2309 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2310 */ 2311 if (!(how & SEND_SHUTDOWN)) 2312 return; 2313 2314 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2315 if ((1 << sk->sk_state) & 2316 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2317 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2318 /* Clear out any half completed packets. FIN if needed. */ 2319 if (tcp_close_state(sk)) 2320 tcp_send_fin(sk); 2321 } 2322 } 2323 EXPORT_SYMBOL(tcp_shutdown); 2324 2325 bool tcp_check_oom(struct sock *sk, int shift) 2326 { 2327 bool too_many_orphans, out_of_socket_memory; 2328 2329 too_many_orphans = tcp_too_many_orphans(sk, shift); 2330 out_of_socket_memory = tcp_out_of_memory(sk); 2331 2332 if (too_many_orphans) 2333 net_info_ratelimited("too many orphaned sockets\n"); 2334 if (out_of_socket_memory) 2335 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2336 return too_many_orphans || out_of_socket_memory; 2337 } 2338 2339 void tcp_close(struct sock *sk, long timeout) 2340 { 2341 struct sk_buff *skb; 2342 int data_was_unread = 0; 2343 int state; 2344 2345 lock_sock(sk); 2346 sk->sk_shutdown = SHUTDOWN_MASK; 2347 2348 if (sk->sk_state == TCP_LISTEN) { 2349 tcp_set_state(sk, TCP_CLOSE); 2350 2351 /* Special case. */ 2352 inet_csk_listen_stop(sk); 2353 2354 goto adjudge_to_death; 2355 } 2356 2357 /* We need to flush the recv. buffs. We do this only on the 2358 * descriptor close, not protocol-sourced closes, because the 2359 * reader process may not have drained the data yet! 2360 */ 2361 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2362 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2363 2364 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2365 len--; 2366 data_was_unread += len; 2367 __kfree_skb(skb); 2368 } 2369 2370 sk_mem_reclaim(sk); 2371 2372 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2373 if (sk->sk_state == TCP_CLOSE) 2374 goto adjudge_to_death; 2375 2376 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2377 * data was lost. To witness the awful effects of the old behavior of 2378 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2379 * GET in an FTP client, suspend the process, wait for the client to 2380 * advertise a zero window, then kill -9 the FTP client, wheee... 2381 * Note: timeout is always zero in such a case. 2382 */ 2383 if (unlikely(tcp_sk(sk)->repair)) { 2384 sk->sk_prot->disconnect(sk, 0); 2385 } else if (data_was_unread) { 2386 /* Unread data was tossed, zap the connection. */ 2387 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2388 tcp_set_state(sk, TCP_CLOSE); 2389 tcp_send_active_reset(sk, sk->sk_allocation); 2390 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2391 /* Check zero linger _after_ checking for unread data. */ 2392 sk->sk_prot->disconnect(sk, 0); 2393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2394 } else if (tcp_close_state(sk)) { 2395 /* We FIN if the application ate all the data before 2396 * zapping the connection. 2397 */ 2398 2399 /* RED-PEN. Formally speaking, we have broken TCP state 2400 * machine. State transitions: 2401 * 2402 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2403 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2404 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2405 * 2406 * are legal only when FIN has been sent (i.e. in window), 2407 * rather than queued out of window. Purists blame. 2408 * 2409 * F.e. "RFC state" is ESTABLISHED, 2410 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2411 * 2412 * The visible declinations are that sometimes 2413 * we enter time-wait state, when it is not required really 2414 * (harmless), do not send active resets, when they are 2415 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2416 * they look as CLOSING or LAST_ACK for Linux) 2417 * Probably, I missed some more holelets. 2418 * --ANK 2419 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2420 * in a single packet! (May consider it later but will 2421 * probably need API support or TCP_CORK SYN-ACK until 2422 * data is written and socket is closed.) 2423 */ 2424 tcp_send_fin(sk); 2425 } 2426 2427 sk_stream_wait_close(sk, timeout); 2428 2429 adjudge_to_death: 2430 state = sk->sk_state; 2431 sock_hold(sk); 2432 sock_orphan(sk); 2433 2434 local_bh_disable(); 2435 bh_lock_sock(sk); 2436 /* remove backlog if any, without releasing ownership. */ 2437 __release_sock(sk); 2438 2439 percpu_counter_inc(sk->sk_prot->orphan_count); 2440 2441 /* Have we already been destroyed by a softirq or backlog? */ 2442 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2443 goto out; 2444 2445 /* This is a (useful) BSD violating of the RFC. There is a 2446 * problem with TCP as specified in that the other end could 2447 * keep a socket open forever with no application left this end. 2448 * We use a 1 minute timeout (about the same as BSD) then kill 2449 * our end. If they send after that then tough - BUT: long enough 2450 * that we won't make the old 4*rto = almost no time - whoops 2451 * reset mistake. 2452 * 2453 * Nope, it was not mistake. It is really desired behaviour 2454 * f.e. on http servers, when such sockets are useless, but 2455 * consume significant resources. Let's do it with special 2456 * linger2 option. --ANK 2457 */ 2458 2459 if (sk->sk_state == TCP_FIN_WAIT2) { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 if (tp->linger2 < 0) { 2462 tcp_set_state(sk, TCP_CLOSE); 2463 tcp_send_active_reset(sk, GFP_ATOMIC); 2464 __NET_INC_STATS(sock_net(sk), 2465 LINUX_MIB_TCPABORTONLINGER); 2466 } else { 2467 const int tmo = tcp_fin_time(sk); 2468 2469 if (tmo > TCP_TIMEWAIT_LEN) { 2470 inet_csk_reset_keepalive_timer(sk, 2471 tmo - TCP_TIMEWAIT_LEN); 2472 } else { 2473 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2474 goto out; 2475 } 2476 } 2477 } 2478 if (sk->sk_state != TCP_CLOSE) { 2479 sk_mem_reclaim(sk); 2480 if (tcp_check_oom(sk, 0)) { 2481 tcp_set_state(sk, TCP_CLOSE); 2482 tcp_send_active_reset(sk, GFP_ATOMIC); 2483 __NET_INC_STATS(sock_net(sk), 2484 LINUX_MIB_TCPABORTONMEMORY); 2485 } else if (!check_net(sock_net(sk))) { 2486 /* Not possible to send reset; just close */ 2487 tcp_set_state(sk, TCP_CLOSE); 2488 } 2489 } 2490 2491 if (sk->sk_state == TCP_CLOSE) { 2492 struct request_sock *req; 2493 2494 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2495 lockdep_sock_is_held(sk)); 2496 /* We could get here with a non-NULL req if the socket is 2497 * aborted (e.g., closed with unread data) before 3WHS 2498 * finishes. 2499 */ 2500 if (req) 2501 reqsk_fastopen_remove(sk, req, false); 2502 inet_csk_destroy_sock(sk); 2503 } 2504 /* Otherwise, socket is reprieved until protocol close. */ 2505 2506 out: 2507 bh_unlock_sock(sk); 2508 local_bh_enable(); 2509 release_sock(sk); 2510 sock_put(sk); 2511 } 2512 EXPORT_SYMBOL(tcp_close); 2513 2514 /* These states need RST on ABORT according to RFC793 */ 2515 2516 static inline bool tcp_need_reset(int state) 2517 { 2518 return (1 << state) & 2519 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2520 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2521 } 2522 2523 static void tcp_rtx_queue_purge(struct sock *sk) 2524 { 2525 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2526 2527 while (p) { 2528 struct sk_buff *skb = rb_to_skb(p); 2529 2530 p = rb_next(p); 2531 /* Since we are deleting whole queue, no need to 2532 * list_del(&skb->tcp_tsorted_anchor) 2533 */ 2534 tcp_rtx_queue_unlink(skb, sk); 2535 sk_wmem_free_skb(sk, skb); 2536 } 2537 } 2538 2539 void tcp_write_queue_purge(struct sock *sk) 2540 { 2541 struct sk_buff *skb; 2542 2543 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2544 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2545 tcp_skb_tsorted_anchor_cleanup(skb); 2546 sk_wmem_free_skb(sk, skb); 2547 } 2548 tcp_rtx_queue_purge(sk); 2549 skb = sk->sk_tx_skb_cache; 2550 if (skb) { 2551 __kfree_skb(skb); 2552 sk->sk_tx_skb_cache = NULL; 2553 } 2554 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2555 sk_mem_reclaim(sk); 2556 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2557 tcp_sk(sk)->packets_out = 0; 2558 inet_csk(sk)->icsk_backoff = 0; 2559 } 2560 2561 int tcp_disconnect(struct sock *sk, int flags) 2562 { 2563 struct inet_sock *inet = inet_sk(sk); 2564 struct inet_connection_sock *icsk = inet_csk(sk); 2565 struct tcp_sock *tp = tcp_sk(sk); 2566 int old_state = sk->sk_state; 2567 u32 seq; 2568 2569 if (old_state != TCP_CLOSE) 2570 tcp_set_state(sk, TCP_CLOSE); 2571 2572 /* ABORT function of RFC793 */ 2573 if (old_state == TCP_LISTEN) { 2574 inet_csk_listen_stop(sk); 2575 } else if (unlikely(tp->repair)) { 2576 sk->sk_err = ECONNABORTED; 2577 } else if (tcp_need_reset(old_state) || 2578 (tp->snd_nxt != tp->write_seq && 2579 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2580 /* The last check adjusts for discrepancy of Linux wrt. RFC 2581 * states 2582 */ 2583 tcp_send_active_reset(sk, gfp_any()); 2584 sk->sk_err = ECONNRESET; 2585 } else if (old_state == TCP_SYN_SENT) 2586 sk->sk_err = ECONNRESET; 2587 2588 tcp_clear_xmit_timers(sk); 2589 __skb_queue_purge(&sk->sk_receive_queue); 2590 if (sk->sk_rx_skb_cache) { 2591 __kfree_skb(sk->sk_rx_skb_cache); 2592 sk->sk_rx_skb_cache = NULL; 2593 } 2594 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2595 tp->urg_data = 0; 2596 tcp_write_queue_purge(sk); 2597 tcp_fastopen_active_disable_ofo_check(sk); 2598 skb_rbtree_purge(&tp->out_of_order_queue); 2599 2600 inet->inet_dport = 0; 2601 2602 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2603 inet_reset_saddr(sk); 2604 2605 sk->sk_shutdown = 0; 2606 sock_reset_flag(sk, SOCK_DONE); 2607 tp->srtt_us = 0; 2608 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2609 tp->rcv_rtt_last_tsecr = 0; 2610 2611 seq = tp->write_seq + tp->max_window + 2; 2612 if (!seq) 2613 seq = 1; 2614 WRITE_ONCE(tp->write_seq, seq); 2615 2616 icsk->icsk_backoff = 0; 2617 tp->snd_cwnd = 2; 2618 icsk->icsk_probes_out = 0; 2619 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2620 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2621 tp->snd_cwnd = TCP_INIT_CWND; 2622 tp->snd_cwnd_cnt = 0; 2623 tp->window_clamp = 0; 2624 tp->delivered_ce = 0; 2625 tcp_set_ca_state(sk, TCP_CA_Open); 2626 tp->is_sack_reneg = 0; 2627 tcp_clear_retrans(tp); 2628 inet_csk_delack_init(sk); 2629 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2630 * issue in __tcp_select_window() 2631 */ 2632 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2633 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2634 __sk_dst_reset(sk); 2635 dst_release(sk->sk_rx_dst); 2636 sk->sk_rx_dst = NULL; 2637 tcp_saved_syn_free(tp); 2638 tp->compressed_ack = 0; 2639 tp->bytes_sent = 0; 2640 tp->bytes_acked = 0; 2641 tp->bytes_received = 0; 2642 tp->bytes_retrans = 0; 2643 tp->duplicate_sack[0].start_seq = 0; 2644 tp->duplicate_sack[0].end_seq = 0; 2645 tp->dsack_dups = 0; 2646 tp->reord_seen = 0; 2647 tp->retrans_out = 0; 2648 tp->sacked_out = 0; 2649 tp->tlp_high_seq = 0; 2650 tp->last_oow_ack_time = 0; 2651 /* There's a bubble in the pipe until at least the first ACK. */ 2652 tp->app_limited = ~0U; 2653 tp->rack.mstamp = 0; 2654 tp->rack.advanced = 0; 2655 tp->rack.reo_wnd_steps = 1; 2656 tp->rack.last_delivered = 0; 2657 tp->rack.reo_wnd_persist = 0; 2658 tp->rack.dsack_seen = 0; 2659 tp->syn_data_acked = 0; 2660 tp->rx_opt.saw_tstamp = 0; 2661 tp->rx_opt.dsack = 0; 2662 tp->rx_opt.num_sacks = 0; 2663 tp->rcv_ooopack = 0; 2664 2665 2666 /* Clean up fastopen related fields */ 2667 tcp_free_fastopen_req(tp); 2668 inet->defer_connect = 0; 2669 tp->fastopen_client_fail = 0; 2670 2671 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2672 2673 if (sk->sk_frag.page) { 2674 put_page(sk->sk_frag.page); 2675 sk->sk_frag.page = NULL; 2676 sk->sk_frag.offset = 0; 2677 } 2678 2679 sk->sk_error_report(sk); 2680 return 0; 2681 } 2682 EXPORT_SYMBOL(tcp_disconnect); 2683 2684 static inline bool tcp_can_repair_sock(const struct sock *sk) 2685 { 2686 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2687 (sk->sk_state != TCP_LISTEN); 2688 } 2689 2690 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2691 { 2692 struct tcp_repair_window opt; 2693 2694 if (!tp->repair) 2695 return -EPERM; 2696 2697 if (len != sizeof(opt)) 2698 return -EINVAL; 2699 2700 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2701 return -EFAULT; 2702 2703 if (opt.max_window < opt.snd_wnd) 2704 return -EINVAL; 2705 2706 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2707 return -EINVAL; 2708 2709 if (after(opt.rcv_wup, tp->rcv_nxt)) 2710 return -EINVAL; 2711 2712 tp->snd_wl1 = opt.snd_wl1; 2713 tp->snd_wnd = opt.snd_wnd; 2714 tp->max_window = opt.max_window; 2715 2716 tp->rcv_wnd = opt.rcv_wnd; 2717 tp->rcv_wup = opt.rcv_wup; 2718 2719 return 0; 2720 } 2721 2722 static int tcp_repair_options_est(struct sock *sk, 2723 struct tcp_repair_opt __user *optbuf, unsigned int len) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 struct tcp_repair_opt opt; 2727 2728 while (len >= sizeof(opt)) { 2729 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2730 return -EFAULT; 2731 2732 optbuf++; 2733 len -= sizeof(opt); 2734 2735 switch (opt.opt_code) { 2736 case TCPOPT_MSS: 2737 tp->rx_opt.mss_clamp = opt.opt_val; 2738 tcp_mtup_init(sk); 2739 break; 2740 case TCPOPT_WINDOW: 2741 { 2742 u16 snd_wscale = opt.opt_val & 0xFFFF; 2743 u16 rcv_wscale = opt.opt_val >> 16; 2744 2745 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2746 return -EFBIG; 2747 2748 tp->rx_opt.snd_wscale = snd_wscale; 2749 tp->rx_opt.rcv_wscale = rcv_wscale; 2750 tp->rx_opt.wscale_ok = 1; 2751 } 2752 break; 2753 case TCPOPT_SACK_PERM: 2754 if (opt.opt_val != 0) 2755 return -EINVAL; 2756 2757 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2758 break; 2759 case TCPOPT_TIMESTAMP: 2760 if (opt.opt_val != 0) 2761 return -EINVAL; 2762 2763 tp->rx_opt.tstamp_ok = 1; 2764 break; 2765 } 2766 } 2767 2768 return 0; 2769 } 2770 2771 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2772 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2773 2774 static void tcp_enable_tx_delay(void) 2775 { 2776 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2777 static int __tcp_tx_delay_enabled = 0; 2778 2779 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2780 static_branch_enable(&tcp_tx_delay_enabled); 2781 pr_info("TCP_TX_DELAY enabled\n"); 2782 } 2783 } 2784 } 2785 2786 /* 2787 * Socket option code for TCP. 2788 */ 2789 static int do_tcp_setsockopt(struct sock *sk, int level, 2790 int optname, char __user *optval, unsigned int optlen) 2791 { 2792 struct tcp_sock *tp = tcp_sk(sk); 2793 struct inet_connection_sock *icsk = inet_csk(sk); 2794 struct net *net = sock_net(sk); 2795 int val; 2796 int err = 0; 2797 2798 /* These are data/string values, all the others are ints */ 2799 switch (optname) { 2800 case TCP_CONGESTION: { 2801 char name[TCP_CA_NAME_MAX]; 2802 2803 if (optlen < 1) 2804 return -EINVAL; 2805 2806 val = strncpy_from_user(name, optval, 2807 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2808 if (val < 0) 2809 return -EFAULT; 2810 name[val] = 0; 2811 2812 lock_sock(sk); 2813 err = tcp_set_congestion_control(sk, name, true, true, 2814 ns_capable(sock_net(sk)->user_ns, 2815 CAP_NET_ADMIN)); 2816 release_sock(sk); 2817 return err; 2818 } 2819 case TCP_ULP: { 2820 char name[TCP_ULP_NAME_MAX]; 2821 2822 if (optlen < 1) 2823 return -EINVAL; 2824 2825 val = strncpy_from_user(name, optval, 2826 min_t(long, TCP_ULP_NAME_MAX - 1, 2827 optlen)); 2828 if (val < 0) 2829 return -EFAULT; 2830 name[val] = 0; 2831 2832 lock_sock(sk); 2833 err = tcp_set_ulp(sk, name); 2834 release_sock(sk); 2835 return err; 2836 } 2837 case TCP_FASTOPEN_KEY: { 2838 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 2839 __u8 *backup_key = NULL; 2840 2841 /* Allow a backup key as well to facilitate key rotation 2842 * First key is the active one. 2843 */ 2844 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 2845 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 2846 return -EINVAL; 2847 2848 if (copy_from_user(key, optval, optlen)) 2849 return -EFAULT; 2850 2851 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 2852 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 2853 2854 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 2855 } 2856 default: 2857 /* fallthru */ 2858 break; 2859 } 2860 2861 if (optlen < sizeof(int)) 2862 return -EINVAL; 2863 2864 if (get_user(val, (int __user *)optval)) 2865 return -EFAULT; 2866 2867 lock_sock(sk); 2868 2869 switch (optname) { 2870 case TCP_MAXSEG: 2871 /* Values greater than interface MTU won't take effect. However 2872 * at the point when this call is done we typically don't yet 2873 * know which interface is going to be used 2874 */ 2875 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2876 err = -EINVAL; 2877 break; 2878 } 2879 tp->rx_opt.user_mss = val; 2880 break; 2881 2882 case TCP_NODELAY: 2883 if (val) { 2884 /* TCP_NODELAY is weaker than TCP_CORK, so that 2885 * this option on corked socket is remembered, but 2886 * it is not activated until cork is cleared. 2887 * 2888 * However, when TCP_NODELAY is set we make 2889 * an explicit push, which overrides even TCP_CORK 2890 * for currently queued segments. 2891 */ 2892 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2893 tcp_push_pending_frames(sk); 2894 } else { 2895 tp->nonagle &= ~TCP_NAGLE_OFF; 2896 } 2897 break; 2898 2899 case TCP_THIN_LINEAR_TIMEOUTS: 2900 if (val < 0 || val > 1) 2901 err = -EINVAL; 2902 else 2903 tp->thin_lto = val; 2904 break; 2905 2906 case TCP_THIN_DUPACK: 2907 if (val < 0 || val > 1) 2908 err = -EINVAL; 2909 break; 2910 2911 case TCP_REPAIR: 2912 if (!tcp_can_repair_sock(sk)) 2913 err = -EPERM; 2914 else if (val == TCP_REPAIR_ON) { 2915 tp->repair = 1; 2916 sk->sk_reuse = SK_FORCE_REUSE; 2917 tp->repair_queue = TCP_NO_QUEUE; 2918 } else if (val == TCP_REPAIR_OFF) { 2919 tp->repair = 0; 2920 sk->sk_reuse = SK_NO_REUSE; 2921 tcp_send_window_probe(sk); 2922 } else if (val == TCP_REPAIR_OFF_NO_WP) { 2923 tp->repair = 0; 2924 sk->sk_reuse = SK_NO_REUSE; 2925 } else 2926 err = -EINVAL; 2927 2928 break; 2929 2930 case TCP_REPAIR_QUEUE: 2931 if (!tp->repair) 2932 err = -EPERM; 2933 else if ((unsigned int)val < TCP_QUEUES_NR) 2934 tp->repair_queue = val; 2935 else 2936 err = -EINVAL; 2937 break; 2938 2939 case TCP_QUEUE_SEQ: 2940 if (sk->sk_state != TCP_CLOSE) 2941 err = -EPERM; 2942 else if (tp->repair_queue == TCP_SEND_QUEUE) 2943 WRITE_ONCE(tp->write_seq, val); 2944 else if (tp->repair_queue == TCP_RECV_QUEUE) 2945 WRITE_ONCE(tp->rcv_nxt, val); 2946 else 2947 err = -EINVAL; 2948 break; 2949 2950 case TCP_REPAIR_OPTIONS: 2951 if (!tp->repair) 2952 err = -EINVAL; 2953 else if (sk->sk_state == TCP_ESTABLISHED) 2954 err = tcp_repair_options_est(sk, 2955 (struct tcp_repair_opt __user *)optval, 2956 optlen); 2957 else 2958 err = -EPERM; 2959 break; 2960 2961 case TCP_CORK: 2962 /* When set indicates to always queue non-full frames. 2963 * Later the user clears this option and we transmit 2964 * any pending partial frames in the queue. This is 2965 * meant to be used alongside sendfile() to get properly 2966 * filled frames when the user (for example) must write 2967 * out headers with a write() call first and then use 2968 * sendfile to send out the data parts. 2969 * 2970 * TCP_CORK can be set together with TCP_NODELAY and it is 2971 * stronger than TCP_NODELAY. 2972 */ 2973 if (val) { 2974 tp->nonagle |= TCP_NAGLE_CORK; 2975 } else { 2976 tp->nonagle &= ~TCP_NAGLE_CORK; 2977 if (tp->nonagle&TCP_NAGLE_OFF) 2978 tp->nonagle |= TCP_NAGLE_PUSH; 2979 tcp_push_pending_frames(sk); 2980 } 2981 break; 2982 2983 case TCP_KEEPIDLE: 2984 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2985 err = -EINVAL; 2986 else { 2987 tp->keepalive_time = val * HZ; 2988 if (sock_flag(sk, SOCK_KEEPOPEN) && 2989 !((1 << sk->sk_state) & 2990 (TCPF_CLOSE | TCPF_LISTEN))) { 2991 u32 elapsed = keepalive_time_elapsed(tp); 2992 if (tp->keepalive_time > elapsed) 2993 elapsed = tp->keepalive_time - elapsed; 2994 else 2995 elapsed = 0; 2996 inet_csk_reset_keepalive_timer(sk, elapsed); 2997 } 2998 } 2999 break; 3000 case TCP_KEEPINTVL: 3001 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3002 err = -EINVAL; 3003 else 3004 tp->keepalive_intvl = val * HZ; 3005 break; 3006 case TCP_KEEPCNT: 3007 if (val < 1 || val > MAX_TCP_KEEPCNT) 3008 err = -EINVAL; 3009 else 3010 tp->keepalive_probes = val; 3011 break; 3012 case TCP_SYNCNT: 3013 if (val < 1 || val > MAX_TCP_SYNCNT) 3014 err = -EINVAL; 3015 else 3016 icsk->icsk_syn_retries = val; 3017 break; 3018 3019 case TCP_SAVE_SYN: 3020 if (val < 0 || val > 1) 3021 err = -EINVAL; 3022 else 3023 tp->save_syn = val; 3024 break; 3025 3026 case TCP_LINGER2: 3027 if (val < 0) 3028 tp->linger2 = -1; 3029 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 3030 tp->linger2 = 0; 3031 else 3032 tp->linger2 = val * HZ; 3033 break; 3034 3035 case TCP_DEFER_ACCEPT: 3036 /* Translate value in seconds to number of retransmits */ 3037 icsk->icsk_accept_queue.rskq_defer_accept = 3038 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3039 TCP_RTO_MAX / HZ); 3040 break; 3041 3042 case TCP_WINDOW_CLAMP: 3043 if (!val) { 3044 if (sk->sk_state != TCP_CLOSE) { 3045 err = -EINVAL; 3046 break; 3047 } 3048 tp->window_clamp = 0; 3049 } else 3050 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3051 SOCK_MIN_RCVBUF / 2 : val; 3052 break; 3053 3054 case TCP_QUICKACK: 3055 if (!val) { 3056 inet_csk_enter_pingpong_mode(sk); 3057 } else { 3058 inet_csk_exit_pingpong_mode(sk); 3059 if ((1 << sk->sk_state) & 3060 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3061 inet_csk_ack_scheduled(sk)) { 3062 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 3063 tcp_cleanup_rbuf(sk, 1); 3064 if (!(val & 1)) 3065 inet_csk_enter_pingpong_mode(sk); 3066 } 3067 } 3068 break; 3069 3070 #ifdef CONFIG_TCP_MD5SIG 3071 case TCP_MD5SIG: 3072 case TCP_MD5SIG_EXT: 3073 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 3074 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3075 else 3076 err = -EINVAL; 3077 break; 3078 #endif 3079 case TCP_USER_TIMEOUT: 3080 /* Cap the max time in ms TCP will retry or probe the window 3081 * before giving up and aborting (ETIMEDOUT) a connection. 3082 */ 3083 if (val < 0) 3084 err = -EINVAL; 3085 else 3086 icsk->icsk_user_timeout = val; 3087 break; 3088 3089 case TCP_FASTOPEN: 3090 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3091 TCPF_LISTEN))) { 3092 tcp_fastopen_init_key_once(net); 3093 3094 fastopen_queue_tune(sk, val); 3095 } else { 3096 err = -EINVAL; 3097 } 3098 break; 3099 case TCP_FASTOPEN_CONNECT: 3100 if (val > 1 || val < 0) { 3101 err = -EINVAL; 3102 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3103 if (sk->sk_state == TCP_CLOSE) 3104 tp->fastopen_connect = val; 3105 else 3106 err = -EINVAL; 3107 } else { 3108 err = -EOPNOTSUPP; 3109 } 3110 break; 3111 case TCP_FASTOPEN_NO_COOKIE: 3112 if (val > 1 || val < 0) 3113 err = -EINVAL; 3114 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3115 err = -EINVAL; 3116 else 3117 tp->fastopen_no_cookie = val; 3118 break; 3119 case TCP_TIMESTAMP: 3120 if (!tp->repair) 3121 err = -EPERM; 3122 else 3123 tp->tsoffset = val - tcp_time_stamp_raw(); 3124 break; 3125 case TCP_REPAIR_WINDOW: 3126 err = tcp_repair_set_window(tp, optval, optlen); 3127 break; 3128 case TCP_NOTSENT_LOWAT: 3129 tp->notsent_lowat = val; 3130 sk->sk_write_space(sk); 3131 break; 3132 case TCP_INQ: 3133 if (val > 1 || val < 0) 3134 err = -EINVAL; 3135 else 3136 tp->recvmsg_inq = val; 3137 break; 3138 case TCP_TX_DELAY: 3139 if (val) 3140 tcp_enable_tx_delay(); 3141 tp->tcp_tx_delay = val; 3142 break; 3143 default: 3144 err = -ENOPROTOOPT; 3145 break; 3146 } 3147 3148 release_sock(sk); 3149 return err; 3150 } 3151 3152 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3153 unsigned int optlen) 3154 { 3155 const struct inet_connection_sock *icsk = inet_csk(sk); 3156 3157 if (level != SOL_TCP) 3158 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3159 optval, optlen); 3160 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3161 } 3162 EXPORT_SYMBOL(tcp_setsockopt); 3163 3164 #ifdef CONFIG_COMPAT 3165 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3166 char __user *optval, unsigned int optlen) 3167 { 3168 if (level != SOL_TCP) 3169 return inet_csk_compat_setsockopt(sk, level, optname, 3170 optval, optlen); 3171 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3172 } 3173 EXPORT_SYMBOL(compat_tcp_setsockopt); 3174 #endif 3175 3176 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3177 struct tcp_info *info) 3178 { 3179 u64 stats[__TCP_CHRONO_MAX], total = 0; 3180 enum tcp_chrono i; 3181 3182 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3183 stats[i] = tp->chrono_stat[i - 1]; 3184 if (i == tp->chrono_type) 3185 stats[i] += tcp_jiffies32 - tp->chrono_start; 3186 stats[i] *= USEC_PER_SEC / HZ; 3187 total += stats[i]; 3188 } 3189 3190 info->tcpi_busy_time = total; 3191 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3192 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3193 } 3194 3195 /* Return information about state of tcp endpoint in API format. */ 3196 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3197 { 3198 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3199 const struct inet_connection_sock *icsk = inet_csk(sk); 3200 unsigned long rate; 3201 u32 now; 3202 u64 rate64; 3203 bool slow; 3204 3205 memset(info, 0, sizeof(*info)); 3206 if (sk->sk_type != SOCK_STREAM) 3207 return; 3208 3209 info->tcpi_state = inet_sk_state_load(sk); 3210 3211 /* Report meaningful fields for all TCP states, including listeners */ 3212 rate = READ_ONCE(sk->sk_pacing_rate); 3213 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3214 info->tcpi_pacing_rate = rate64; 3215 3216 rate = READ_ONCE(sk->sk_max_pacing_rate); 3217 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3218 info->tcpi_max_pacing_rate = rate64; 3219 3220 info->tcpi_reordering = tp->reordering; 3221 info->tcpi_snd_cwnd = tp->snd_cwnd; 3222 3223 if (info->tcpi_state == TCP_LISTEN) { 3224 /* listeners aliased fields : 3225 * tcpi_unacked -> Number of children ready for accept() 3226 * tcpi_sacked -> max backlog 3227 */ 3228 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3229 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3230 return; 3231 } 3232 3233 slow = lock_sock_fast(sk); 3234 3235 info->tcpi_ca_state = icsk->icsk_ca_state; 3236 info->tcpi_retransmits = icsk->icsk_retransmits; 3237 info->tcpi_probes = icsk->icsk_probes_out; 3238 info->tcpi_backoff = icsk->icsk_backoff; 3239 3240 if (tp->rx_opt.tstamp_ok) 3241 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3242 if (tcp_is_sack(tp)) 3243 info->tcpi_options |= TCPI_OPT_SACK; 3244 if (tp->rx_opt.wscale_ok) { 3245 info->tcpi_options |= TCPI_OPT_WSCALE; 3246 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3247 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3248 } 3249 3250 if (tp->ecn_flags & TCP_ECN_OK) 3251 info->tcpi_options |= TCPI_OPT_ECN; 3252 if (tp->ecn_flags & TCP_ECN_SEEN) 3253 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3254 if (tp->syn_data_acked) 3255 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3256 3257 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3258 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3259 info->tcpi_snd_mss = tp->mss_cache; 3260 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3261 3262 info->tcpi_unacked = tp->packets_out; 3263 info->tcpi_sacked = tp->sacked_out; 3264 3265 info->tcpi_lost = tp->lost_out; 3266 info->tcpi_retrans = tp->retrans_out; 3267 3268 now = tcp_jiffies32; 3269 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3270 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3271 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3272 3273 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3274 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3275 info->tcpi_rtt = tp->srtt_us >> 3; 3276 info->tcpi_rttvar = tp->mdev_us >> 2; 3277 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3278 info->tcpi_advmss = tp->advmss; 3279 3280 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3281 info->tcpi_rcv_space = tp->rcvq_space.space; 3282 3283 info->tcpi_total_retrans = tp->total_retrans; 3284 3285 info->tcpi_bytes_acked = tp->bytes_acked; 3286 info->tcpi_bytes_received = tp->bytes_received; 3287 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3288 tcp_get_info_chrono_stats(tp, info); 3289 3290 info->tcpi_segs_out = tp->segs_out; 3291 info->tcpi_segs_in = tp->segs_in; 3292 3293 info->tcpi_min_rtt = tcp_min_rtt(tp); 3294 info->tcpi_data_segs_in = tp->data_segs_in; 3295 info->tcpi_data_segs_out = tp->data_segs_out; 3296 3297 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3298 rate64 = tcp_compute_delivery_rate(tp); 3299 if (rate64) 3300 info->tcpi_delivery_rate = rate64; 3301 info->tcpi_delivered = tp->delivered; 3302 info->tcpi_delivered_ce = tp->delivered_ce; 3303 info->tcpi_bytes_sent = tp->bytes_sent; 3304 info->tcpi_bytes_retrans = tp->bytes_retrans; 3305 info->tcpi_dsack_dups = tp->dsack_dups; 3306 info->tcpi_reord_seen = tp->reord_seen; 3307 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3308 info->tcpi_snd_wnd = tp->snd_wnd; 3309 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3310 unlock_sock_fast(sk, slow); 3311 } 3312 EXPORT_SYMBOL_GPL(tcp_get_info); 3313 3314 static size_t tcp_opt_stats_get_size(void) 3315 { 3316 return 3317 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3318 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3319 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3320 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3321 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3322 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3323 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3324 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3325 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3326 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3327 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3328 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3329 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3330 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3331 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3332 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3333 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3334 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3335 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3336 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3337 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3338 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3339 0; 3340 } 3341 3342 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3343 { 3344 const struct tcp_sock *tp = tcp_sk(sk); 3345 struct sk_buff *stats; 3346 struct tcp_info info; 3347 unsigned long rate; 3348 u64 rate64; 3349 3350 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3351 if (!stats) 3352 return NULL; 3353 3354 tcp_get_info_chrono_stats(tp, &info); 3355 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3356 info.tcpi_busy_time, TCP_NLA_PAD); 3357 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3358 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3359 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3360 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3361 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3362 tp->data_segs_out, TCP_NLA_PAD); 3363 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3364 tp->total_retrans, TCP_NLA_PAD); 3365 3366 rate = READ_ONCE(sk->sk_pacing_rate); 3367 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3368 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3369 3370 rate64 = tcp_compute_delivery_rate(tp); 3371 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3372 3373 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3374 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3375 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3376 3377 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3378 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3379 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3380 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3381 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3382 3383 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3384 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3385 3386 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3387 TCP_NLA_PAD); 3388 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3389 TCP_NLA_PAD); 3390 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3391 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3392 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3393 3394 return stats; 3395 } 3396 3397 static int do_tcp_getsockopt(struct sock *sk, int level, 3398 int optname, char __user *optval, int __user *optlen) 3399 { 3400 struct inet_connection_sock *icsk = inet_csk(sk); 3401 struct tcp_sock *tp = tcp_sk(sk); 3402 struct net *net = sock_net(sk); 3403 int val, len; 3404 3405 if (get_user(len, optlen)) 3406 return -EFAULT; 3407 3408 len = min_t(unsigned int, len, sizeof(int)); 3409 3410 if (len < 0) 3411 return -EINVAL; 3412 3413 switch (optname) { 3414 case TCP_MAXSEG: 3415 val = tp->mss_cache; 3416 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3417 val = tp->rx_opt.user_mss; 3418 if (tp->repair) 3419 val = tp->rx_opt.mss_clamp; 3420 break; 3421 case TCP_NODELAY: 3422 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3423 break; 3424 case TCP_CORK: 3425 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3426 break; 3427 case TCP_KEEPIDLE: 3428 val = keepalive_time_when(tp) / HZ; 3429 break; 3430 case TCP_KEEPINTVL: 3431 val = keepalive_intvl_when(tp) / HZ; 3432 break; 3433 case TCP_KEEPCNT: 3434 val = keepalive_probes(tp); 3435 break; 3436 case TCP_SYNCNT: 3437 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3438 break; 3439 case TCP_LINGER2: 3440 val = tp->linger2; 3441 if (val >= 0) 3442 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3443 break; 3444 case TCP_DEFER_ACCEPT: 3445 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3446 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3447 break; 3448 case TCP_WINDOW_CLAMP: 3449 val = tp->window_clamp; 3450 break; 3451 case TCP_INFO: { 3452 struct tcp_info info; 3453 3454 if (get_user(len, optlen)) 3455 return -EFAULT; 3456 3457 tcp_get_info(sk, &info); 3458 3459 len = min_t(unsigned int, len, sizeof(info)); 3460 if (put_user(len, optlen)) 3461 return -EFAULT; 3462 if (copy_to_user(optval, &info, len)) 3463 return -EFAULT; 3464 return 0; 3465 } 3466 case TCP_CC_INFO: { 3467 const struct tcp_congestion_ops *ca_ops; 3468 union tcp_cc_info info; 3469 size_t sz = 0; 3470 int attr; 3471 3472 if (get_user(len, optlen)) 3473 return -EFAULT; 3474 3475 ca_ops = icsk->icsk_ca_ops; 3476 if (ca_ops && ca_ops->get_info) 3477 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3478 3479 len = min_t(unsigned int, len, sz); 3480 if (put_user(len, optlen)) 3481 return -EFAULT; 3482 if (copy_to_user(optval, &info, len)) 3483 return -EFAULT; 3484 return 0; 3485 } 3486 case TCP_QUICKACK: 3487 val = !inet_csk_in_pingpong_mode(sk); 3488 break; 3489 3490 case TCP_CONGESTION: 3491 if (get_user(len, optlen)) 3492 return -EFAULT; 3493 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3494 if (put_user(len, optlen)) 3495 return -EFAULT; 3496 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3497 return -EFAULT; 3498 return 0; 3499 3500 case TCP_ULP: 3501 if (get_user(len, optlen)) 3502 return -EFAULT; 3503 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3504 if (!icsk->icsk_ulp_ops) { 3505 if (put_user(0, optlen)) 3506 return -EFAULT; 3507 return 0; 3508 } 3509 if (put_user(len, optlen)) 3510 return -EFAULT; 3511 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3512 return -EFAULT; 3513 return 0; 3514 3515 case TCP_FASTOPEN_KEY: { 3516 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3517 struct tcp_fastopen_context *ctx; 3518 unsigned int key_len = 0; 3519 3520 if (get_user(len, optlen)) 3521 return -EFAULT; 3522 3523 rcu_read_lock(); 3524 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3525 if (ctx) { 3526 key_len = tcp_fastopen_context_len(ctx) * 3527 TCP_FASTOPEN_KEY_LENGTH; 3528 memcpy(&key[0], &ctx->key[0], key_len); 3529 } 3530 rcu_read_unlock(); 3531 3532 len = min_t(unsigned int, len, key_len); 3533 if (put_user(len, optlen)) 3534 return -EFAULT; 3535 if (copy_to_user(optval, key, len)) 3536 return -EFAULT; 3537 return 0; 3538 } 3539 case TCP_THIN_LINEAR_TIMEOUTS: 3540 val = tp->thin_lto; 3541 break; 3542 3543 case TCP_THIN_DUPACK: 3544 val = 0; 3545 break; 3546 3547 case TCP_REPAIR: 3548 val = tp->repair; 3549 break; 3550 3551 case TCP_REPAIR_QUEUE: 3552 if (tp->repair) 3553 val = tp->repair_queue; 3554 else 3555 return -EINVAL; 3556 break; 3557 3558 case TCP_REPAIR_WINDOW: { 3559 struct tcp_repair_window opt; 3560 3561 if (get_user(len, optlen)) 3562 return -EFAULT; 3563 3564 if (len != sizeof(opt)) 3565 return -EINVAL; 3566 3567 if (!tp->repair) 3568 return -EPERM; 3569 3570 opt.snd_wl1 = tp->snd_wl1; 3571 opt.snd_wnd = tp->snd_wnd; 3572 opt.max_window = tp->max_window; 3573 opt.rcv_wnd = tp->rcv_wnd; 3574 opt.rcv_wup = tp->rcv_wup; 3575 3576 if (copy_to_user(optval, &opt, len)) 3577 return -EFAULT; 3578 return 0; 3579 } 3580 case TCP_QUEUE_SEQ: 3581 if (tp->repair_queue == TCP_SEND_QUEUE) 3582 val = tp->write_seq; 3583 else if (tp->repair_queue == TCP_RECV_QUEUE) 3584 val = tp->rcv_nxt; 3585 else 3586 return -EINVAL; 3587 break; 3588 3589 case TCP_USER_TIMEOUT: 3590 val = icsk->icsk_user_timeout; 3591 break; 3592 3593 case TCP_FASTOPEN: 3594 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3595 break; 3596 3597 case TCP_FASTOPEN_CONNECT: 3598 val = tp->fastopen_connect; 3599 break; 3600 3601 case TCP_FASTOPEN_NO_COOKIE: 3602 val = tp->fastopen_no_cookie; 3603 break; 3604 3605 case TCP_TX_DELAY: 3606 val = tp->tcp_tx_delay; 3607 break; 3608 3609 case TCP_TIMESTAMP: 3610 val = tcp_time_stamp_raw() + tp->tsoffset; 3611 break; 3612 case TCP_NOTSENT_LOWAT: 3613 val = tp->notsent_lowat; 3614 break; 3615 case TCP_INQ: 3616 val = tp->recvmsg_inq; 3617 break; 3618 case TCP_SAVE_SYN: 3619 val = tp->save_syn; 3620 break; 3621 case TCP_SAVED_SYN: { 3622 if (get_user(len, optlen)) 3623 return -EFAULT; 3624 3625 lock_sock(sk); 3626 if (tp->saved_syn) { 3627 if (len < tp->saved_syn[0]) { 3628 if (put_user(tp->saved_syn[0], optlen)) { 3629 release_sock(sk); 3630 return -EFAULT; 3631 } 3632 release_sock(sk); 3633 return -EINVAL; 3634 } 3635 len = tp->saved_syn[0]; 3636 if (put_user(len, optlen)) { 3637 release_sock(sk); 3638 return -EFAULT; 3639 } 3640 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3641 release_sock(sk); 3642 return -EFAULT; 3643 } 3644 tcp_saved_syn_free(tp); 3645 release_sock(sk); 3646 } else { 3647 release_sock(sk); 3648 len = 0; 3649 if (put_user(len, optlen)) 3650 return -EFAULT; 3651 } 3652 return 0; 3653 } 3654 #ifdef CONFIG_MMU 3655 case TCP_ZEROCOPY_RECEIVE: { 3656 struct tcp_zerocopy_receive zc; 3657 int err; 3658 3659 if (get_user(len, optlen)) 3660 return -EFAULT; 3661 if (len != sizeof(zc)) 3662 return -EINVAL; 3663 if (copy_from_user(&zc, optval, len)) 3664 return -EFAULT; 3665 lock_sock(sk); 3666 err = tcp_zerocopy_receive(sk, &zc); 3667 release_sock(sk); 3668 if (!err && copy_to_user(optval, &zc, len)) 3669 err = -EFAULT; 3670 return err; 3671 } 3672 #endif 3673 default: 3674 return -ENOPROTOOPT; 3675 } 3676 3677 if (put_user(len, optlen)) 3678 return -EFAULT; 3679 if (copy_to_user(optval, &val, len)) 3680 return -EFAULT; 3681 return 0; 3682 } 3683 3684 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3685 int __user *optlen) 3686 { 3687 struct inet_connection_sock *icsk = inet_csk(sk); 3688 3689 if (level != SOL_TCP) 3690 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3691 optval, optlen); 3692 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3693 } 3694 EXPORT_SYMBOL(tcp_getsockopt); 3695 3696 #ifdef CONFIG_COMPAT 3697 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3698 char __user *optval, int __user *optlen) 3699 { 3700 if (level != SOL_TCP) 3701 return inet_csk_compat_getsockopt(sk, level, optname, 3702 optval, optlen); 3703 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3704 } 3705 EXPORT_SYMBOL(compat_tcp_getsockopt); 3706 #endif 3707 3708 #ifdef CONFIG_TCP_MD5SIG 3709 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3710 static DEFINE_MUTEX(tcp_md5sig_mutex); 3711 static bool tcp_md5sig_pool_populated = false; 3712 3713 static void __tcp_alloc_md5sig_pool(void) 3714 { 3715 struct crypto_ahash *hash; 3716 int cpu; 3717 3718 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3719 if (IS_ERR(hash)) 3720 return; 3721 3722 for_each_possible_cpu(cpu) { 3723 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3724 struct ahash_request *req; 3725 3726 if (!scratch) { 3727 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3728 sizeof(struct tcphdr), 3729 GFP_KERNEL, 3730 cpu_to_node(cpu)); 3731 if (!scratch) 3732 return; 3733 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3734 } 3735 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3736 continue; 3737 3738 req = ahash_request_alloc(hash, GFP_KERNEL); 3739 if (!req) 3740 return; 3741 3742 ahash_request_set_callback(req, 0, NULL, NULL); 3743 3744 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3745 } 3746 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3747 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3748 */ 3749 smp_wmb(); 3750 tcp_md5sig_pool_populated = true; 3751 } 3752 3753 bool tcp_alloc_md5sig_pool(void) 3754 { 3755 if (unlikely(!tcp_md5sig_pool_populated)) { 3756 mutex_lock(&tcp_md5sig_mutex); 3757 3758 if (!tcp_md5sig_pool_populated) { 3759 __tcp_alloc_md5sig_pool(); 3760 if (tcp_md5sig_pool_populated) 3761 static_branch_inc(&tcp_md5_needed); 3762 } 3763 3764 mutex_unlock(&tcp_md5sig_mutex); 3765 } 3766 return tcp_md5sig_pool_populated; 3767 } 3768 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3769 3770 3771 /** 3772 * tcp_get_md5sig_pool - get md5sig_pool for this user 3773 * 3774 * We use percpu structure, so if we succeed, we exit with preemption 3775 * and BH disabled, to make sure another thread or softirq handling 3776 * wont try to get same context. 3777 */ 3778 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3779 { 3780 local_bh_disable(); 3781 3782 if (tcp_md5sig_pool_populated) { 3783 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3784 smp_rmb(); 3785 return this_cpu_ptr(&tcp_md5sig_pool); 3786 } 3787 local_bh_enable(); 3788 return NULL; 3789 } 3790 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3791 3792 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3793 const struct sk_buff *skb, unsigned int header_len) 3794 { 3795 struct scatterlist sg; 3796 const struct tcphdr *tp = tcp_hdr(skb); 3797 struct ahash_request *req = hp->md5_req; 3798 unsigned int i; 3799 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3800 skb_headlen(skb) - header_len : 0; 3801 const struct skb_shared_info *shi = skb_shinfo(skb); 3802 struct sk_buff *frag_iter; 3803 3804 sg_init_table(&sg, 1); 3805 3806 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3807 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3808 if (crypto_ahash_update(req)) 3809 return 1; 3810 3811 for (i = 0; i < shi->nr_frags; ++i) { 3812 const skb_frag_t *f = &shi->frags[i]; 3813 unsigned int offset = skb_frag_off(f); 3814 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3815 3816 sg_set_page(&sg, page, skb_frag_size(f), 3817 offset_in_page(offset)); 3818 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3819 if (crypto_ahash_update(req)) 3820 return 1; 3821 } 3822 3823 skb_walk_frags(skb, frag_iter) 3824 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3825 return 1; 3826 3827 return 0; 3828 } 3829 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3830 3831 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3832 { 3833 struct scatterlist sg; 3834 3835 sg_init_one(&sg, key->key, key->keylen); 3836 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3837 return crypto_ahash_update(hp->md5_req); 3838 } 3839 EXPORT_SYMBOL(tcp_md5_hash_key); 3840 3841 #endif 3842 3843 void tcp_done(struct sock *sk) 3844 { 3845 struct request_sock *req; 3846 3847 /* We might be called with a new socket, after 3848 * inet_csk_prepare_forced_close() has been called 3849 * so we can not use lockdep_sock_is_held(sk) 3850 */ 3851 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 3852 3853 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3854 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3855 3856 tcp_set_state(sk, TCP_CLOSE); 3857 tcp_clear_xmit_timers(sk); 3858 if (req) 3859 reqsk_fastopen_remove(sk, req, false); 3860 3861 sk->sk_shutdown = SHUTDOWN_MASK; 3862 3863 if (!sock_flag(sk, SOCK_DEAD)) 3864 sk->sk_state_change(sk); 3865 else 3866 inet_csk_destroy_sock(sk); 3867 } 3868 EXPORT_SYMBOL_GPL(tcp_done); 3869 3870 int tcp_abort(struct sock *sk, int err) 3871 { 3872 if (!sk_fullsock(sk)) { 3873 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3874 struct request_sock *req = inet_reqsk(sk); 3875 3876 local_bh_disable(); 3877 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 3878 local_bh_enable(); 3879 return 0; 3880 } 3881 return -EOPNOTSUPP; 3882 } 3883 3884 /* Don't race with userspace socket closes such as tcp_close. */ 3885 lock_sock(sk); 3886 3887 if (sk->sk_state == TCP_LISTEN) { 3888 tcp_set_state(sk, TCP_CLOSE); 3889 inet_csk_listen_stop(sk); 3890 } 3891 3892 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3893 local_bh_disable(); 3894 bh_lock_sock(sk); 3895 3896 if (!sock_flag(sk, SOCK_DEAD)) { 3897 sk->sk_err = err; 3898 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3899 smp_wmb(); 3900 sk->sk_error_report(sk); 3901 if (tcp_need_reset(sk->sk_state)) 3902 tcp_send_active_reset(sk, GFP_ATOMIC); 3903 tcp_done(sk); 3904 } 3905 3906 bh_unlock_sock(sk); 3907 local_bh_enable(); 3908 tcp_write_queue_purge(sk); 3909 release_sock(sk); 3910 return 0; 3911 } 3912 EXPORT_SYMBOL_GPL(tcp_abort); 3913 3914 extern struct tcp_congestion_ops tcp_reno; 3915 3916 static __initdata unsigned long thash_entries; 3917 static int __init set_thash_entries(char *str) 3918 { 3919 ssize_t ret; 3920 3921 if (!str) 3922 return 0; 3923 3924 ret = kstrtoul(str, 0, &thash_entries); 3925 if (ret) 3926 return 0; 3927 3928 return 1; 3929 } 3930 __setup("thash_entries=", set_thash_entries); 3931 3932 static void __init tcp_init_mem(void) 3933 { 3934 unsigned long limit = nr_free_buffer_pages() / 16; 3935 3936 limit = max(limit, 128UL); 3937 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3938 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3939 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3940 } 3941 3942 void __init tcp_init(void) 3943 { 3944 int max_rshare, max_wshare, cnt; 3945 unsigned long limit; 3946 unsigned int i; 3947 3948 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 3949 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3950 sizeof_field(struct sk_buff, cb)); 3951 3952 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3953 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3954 inet_hashinfo_init(&tcp_hashinfo); 3955 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3956 thash_entries, 21, /* one slot per 2 MB*/ 3957 0, 64 * 1024); 3958 tcp_hashinfo.bind_bucket_cachep = 3959 kmem_cache_create("tcp_bind_bucket", 3960 sizeof(struct inet_bind_bucket), 0, 3961 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3962 3963 /* Size and allocate the main established and bind bucket 3964 * hash tables. 3965 * 3966 * The methodology is similar to that of the buffer cache. 3967 */ 3968 tcp_hashinfo.ehash = 3969 alloc_large_system_hash("TCP established", 3970 sizeof(struct inet_ehash_bucket), 3971 thash_entries, 3972 17, /* one slot per 128 KB of memory */ 3973 0, 3974 NULL, 3975 &tcp_hashinfo.ehash_mask, 3976 0, 3977 thash_entries ? 0 : 512 * 1024); 3978 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3979 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3980 3981 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3982 panic("TCP: failed to alloc ehash_locks"); 3983 tcp_hashinfo.bhash = 3984 alloc_large_system_hash("TCP bind", 3985 sizeof(struct inet_bind_hashbucket), 3986 tcp_hashinfo.ehash_mask + 1, 3987 17, /* one slot per 128 KB of memory */ 3988 0, 3989 &tcp_hashinfo.bhash_size, 3990 NULL, 3991 0, 3992 64 * 1024); 3993 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3994 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3995 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3996 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3997 } 3998 3999 4000 cnt = tcp_hashinfo.ehash_mask + 1; 4001 sysctl_tcp_max_orphans = cnt / 2; 4002 4003 tcp_init_mem(); 4004 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4005 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4006 max_wshare = min(4UL*1024*1024, limit); 4007 max_rshare = min(6UL*1024*1024, limit); 4008 4009 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4010 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4011 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4012 4013 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4014 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4015 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4016 4017 pr_info("Hash tables configured (established %u bind %u)\n", 4018 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4019 4020 tcp_v4_init(); 4021 tcp_metrics_init(); 4022 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4023 tcp_tasklet_init(); 4024 } 4025