xref: /openbmc/linux/net/ipv4/tcp.c (revision 81de3bf3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/sock.h>
277 
278 #include <linux/uaccess.h>
279 #include <asm/ioctls.h>
280 #include <net/busy_poll.h>
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 long sysctl_tcp_mem[3] __read_mostly;
286 EXPORT_SYMBOL(sysctl_tcp_mem);
287 
288 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
289 EXPORT_SYMBOL(tcp_memory_allocated);
290 
291 #if IS_ENABLED(CONFIG_SMC)
292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
293 EXPORT_SYMBOL(tcp_have_smc);
294 #endif
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 unsigned long tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
319 
320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
321 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
322 
323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
324 
325 void tcp_enter_memory_pressure(struct sock *sk)
326 {
327 	unsigned long val;
328 
329 	if (READ_ONCE(tcp_memory_pressure))
330 		return;
331 	val = jiffies;
332 
333 	if (!val)
334 		val--;
335 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
336 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337 }
338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339 
340 void tcp_leave_memory_pressure(struct sock *sk)
341 {
342 	unsigned long val;
343 
344 	if (!READ_ONCE(tcp_memory_pressure))
345 		return;
346 	val = xchg(&tcp_memory_pressure, 0);
347 	if (val)
348 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
349 			      jiffies_to_msecs(jiffies - val));
350 }
351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352 
353 /* Convert seconds to retransmits based on initial and max timeout */
354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
355 {
356 	u8 res = 0;
357 
358 	if (seconds > 0) {
359 		int period = timeout;
360 
361 		res = 1;
362 		while (seconds > period && res < 255) {
363 			res++;
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return res;
371 }
372 
373 /* Convert retransmits to seconds based on initial and max timeout */
374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
375 {
376 	int period = 0;
377 
378 	if (retrans > 0) {
379 		period = timeout;
380 		while (--retrans) {
381 			timeout <<= 1;
382 			if (timeout > rto_max)
383 				timeout = rto_max;
384 			period += timeout;
385 		}
386 	}
387 	return period;
388 }
389 
390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391 {
392 	u32 rate = READ_ONCE(tp->rate_delivered);
393 	u32 intv = READ_ONCE(tp->rate_interval_us);
394 	u64 rate64 = 0;
395 
396 	if (rate && intv) {
397 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
398 		do_div(rate64, intv);
399 	}
400 	return rate64;
401 }
402 
403 /* Address-family independent initialization for a tcp_sock.
404  *
405  * NOTE: A lot of things set to zero explicitly by call to
406  *       sk_alloc() so need not be done here.
407  */
408 void tcp_init_sock(struct sock *sk)
409 {
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 	struct tcp_sock *tp = tcp_sk(sk);
412 
413 	tp->out_of_order_queue = RB_ROOT;
414 	sk->tcp_rtx_queue = RB_ROOT;
415 	tcp_init_xmit_timers(sk);
416 	INIT_LIST_HEAD(&tp->tsq_node);
417 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418 
419 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422 
423 	/* So many TCP implementations out there (incorrectly) count the
424 	 * initial SYN frame in their delayed-ACK and congestion control
425 	 * algorithms that we must have the following bandaid to talk
426 	 * efficiently to them.  -DaveM
427 	 */
428 	tp->snd_cwnd = TCP_INIT_CWND;
429 
430 	/* There's a bubble in the pipe until at least the first ACK. */
431 	tp->app_limited = ~0U;
432 
433 	/* See draft-stevens-tcpca-spec-01 for discussion of the
434 	 * initialization of these values.
435 	 */
436 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 	tp->snd_cwnd_clamp = ~0;
438 	tp->mss_cache = TCP_MSS_DEFAULT;
439 
440 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 	tcp_assign_congestion_control(sk);
442 
443 	tp->tsoffset = 0;
444 	tp->rack.reo_wnd_steps = 1;
445 
446 	sk->sk_state = TCP_CLOSE;
447 
448 	sk->sk_write_space = sk_stream_write_space;
449 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450 
451 	icsk->icsk_sync_mss = tcp_sync_mss;
452 
453 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
454 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
455 
456 	sk_sockets_allocated_inc(sk);
457 	sk->sk_route_forced_caps = NETIF_F_GSO;
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460 
461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
462 {
463 	struct sk_buff *skb = tcp_write_queue_tail(sk);
464 
465 	if (tsflags && skb) {
466 		struct skb_shared_info *shinfo = skb_shinfo(skb);
467 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
468 
469 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
470 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
471 			tcb->txstamp_ack = 1;
472 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
473 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
474 	}
475 }
476 
477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
478 					  int target, struct sock *sk)
479 {
480 	return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) ||
481 		(sk->sk_prot->stream_memory_read ?
482 		sk->sk_prot->stream_memory_read(sk) : false);
483 }
484 
485 /*
486  *	Wait for a TCP event.
487  *
488  *	Note that we don't need to lock the socket, as the upper poll layers
489  *	take care of normal races (between the test and the event) and we don't
490  *	go look at any of the socket buffers directly.
491  */
492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 	__poll_t mask;
495 	struct sock *sk = sock->sk;
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	int state;
498 
499 	sock_poll_wait(file, sock, wait);
500 
501 	state = inet_sk_state_load(sk);
502 	if (state == TCP_LISTEN)
503 		return inet_csk_listen_poll(sk);
504 
505 	/* Socket is not locked. We are protected from async events
506 	 * by poll logic and correct handling of state changes
507 	 * made by other threads is impossible in any case.
508 	 */
509 
510 	mask = 0;
511 
512 	/*
513 	 * EPOLLHUP is certainly not done right. But poll() doesn't
514 	 * have a notion of HUP in just one direction, and for a
515 	 * socket the read side is more interesting.
516 	 *
517 	 * Some poll() documentation says that EPOLLHUP is incompatible
518 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 	 * all. But careful, it tends to be safer to return too many
520 	 * bits than too few, and you can easily break real applications
521 	 * if you don't tell them that something has hung up!
522 	 *
523 	 * Check-me.
524 	 *
525 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 	 * our fs/select.c). It means that after we received EOF,
527 	 * poll always returns immediately, making impossible poll() on write()
528 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 	 * if and only if shutdown has been made in both directions.
530 	 * Actually, it is interesting to look how Solaris and DUX
531 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 	 * then we could set it on SND_SHUTDOWN. BTW examples given
533 	 * in Stevens' books assume exactly this behaviour, it explains
534 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
535 	 *
536 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 	 * blocking on fresh not-connected or disconnected socket. --ANK
538 	 */
539 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 		mask |= EPOLLHUP;
541 	if (sk->sk_shutdown & RCV_SHUTDOWN)
542 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543 
544 	/* Connected or passive Fast Open socket? */
545 	if (state != TCP_SYN_SENT &&
546 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 		int target = sock_rcvlowat(sk, 0, INT_MAX);
548 
549 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
550 		    !sock_flag(sk, SOCK_URGINLINE) &&
551 		    tp->urg_data)
552 			target++;
553 
554 		if (tcp_stream_is_readable(tp, target, sk))
555 			mask |= EPOLLIN | EPOLLRDNORM;
556 
557 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
558 			if (sk_stream_is_writeable(sk)) {
559 				mask |= EPOLLOUT | EPOLLWRNORM;
560 			} else {  /* send SIGIO later */
561 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
562 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
563 
564 				/* Race breaker. If space is freed after
565 				 * wspace test but before the flags are set,
566 				 * IO signal will be lost. Memory barrier
567 				 * pairs with the input side.
568 				 */
569 				smp_mb__after_atomic();
570 				if (sk_stream_is_writeable(sk))
571 					mask |= EPOLLOUT | EPOLLWRNORM;
572 			}
573 		} else
574 			mask |= EPOLLOUT | EPOLLWRNORM;
575 
576 		if (tp->urg_data & TCP_URG_VALID)
577 			mask |= EPOLLPRI;
578 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
579 		/* Active TCP fastopen socket with defer_connect
580 		 * Return EPOLLOUT so application can call write()
581 		 * in order for kernel to generate SYN+data
582 		 */
583 		mask |= EPOLLOUT | EPOLLWRNORM;
584 	}
585 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
586 	smp_rmb();
587 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
588 		mask |= EPOLLERR;
589 
590 	return mask;
591 }
592 EXPORT_SYMBOL(tcp_poll);
593 
594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
595 {
596 	struct tcp_sock *tp = tcp_sk(sk);
597 	int answ;
598 	bool slow;
599 
600 	switch (cmd) {
601 	case SIOCINQ:
602 		if (sk->sk_state == TCP_LISTEN)
603 			return -EINVAL;
604 
605 		slow = lock_sock_fast(sk);
606 		answ = tcp_inq(sk);
607 		unlock_sock_fast(sk, slow);
608 		break;
609 	case SIOCATMARK:
610 		answ = tp->urg_data &&
611 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
612 		break;
613 	case SIOCOUTQ:
614 		if (sk->sk_state == TCP_LISTEN)
615 			return -EINVAL;
616 
617 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
618 			answ = 0;
619 		else
620 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
621 		break;
622 	case SIOCOUTQNSD:
623 		if (sk->sk_state == TCP_LISTEN)
624 			return -EINVAL;
625 
626 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
627 			answ = 0;
628 		else
629 			answ = READ_ONCE(tp->write_seq) -
630 			       READ_ONCE(tp->snd_nxt);
631 		break;
632 	default:
633 		return -ENOIOCTLCMD;
634 	}
635 
636 	return put_user(answ, (int __user *)arg);
637 }
638 EXPORT_SYMBOL(tcp_ioctl);
639 
640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
641 {
642 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
643 	tp->pushed_seq = tp->write_seq;
644 }
645 
646 static inline bool forced_push(const struct tcp_sock *tp)
647 {
648 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
649 }
650 
651 static void skb_entail(struct sock *sk, struct sk_buff *skb)
652 {
653 	struct tcp_sock *tp = tcp_sk(sk);
654 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
655 
656 	skb->csum    = 0;
657 	tcb->seq     = tcb->end_seq = tp->write_seq;
658 	tcb->tcp_flags = TCPHDR_ACK;
659 	tcb->sacked  = 0;
660 	__skb_header_release(skb);
661 	tcp_add_write_queue_tail(sk, skb);
662 	sk_wmem_queued_add(sk, skb->truesize);
663 	sk_mem_charge(sk, skb->truesize);
664 	if (tp->nonagle & TCP_NAGLE_PUSH)
665 		tp->nonagle &= ~TCP_NAGLE_PUSH;
666 
667 	tcp_slow_start_after_idle_check(sk);
668 }
669 
670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671 {
672 	if (flags & MSG_OOB)
673 		tp->snd_up = tp->write_seq;
674 }
675 
676 /* If a not yet filled skb is pushed, do not send it if
677  * we have data packets in Qdisc or NIC queues :
678  * Because TX completion will happen shortly, it gives a chance
679  * to coalesce future sendmsg() payload into this skb, without
680  * need for a timer, and with no latency trade off.
681  * As packets containing data payload have a bigger truesize
682  * than pure acks (dataless) packets, the last checks prevent
683  * autocorking if we only have an ACK in Qdisc/NIC queues,
684  * or if TX completion was delayed after we processed ACK packet.
685  */
686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
687 				int size_goal)
688 {
689 	return skb->len < size_goal &&
690 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
691 	       !tcp_rtx_queue_empty(sk) &&
692 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
693 }
694 
695 static void tcp_push(struct sock *sk, int flags, int mss_now,
696 		     int nonagle, int size_goal)
697 {
698 	struct tcp_sock *tp = tcp_sk(sk);
699 	struct sk_buff *skb;
700 
701 	skb = tcp_write_queue_tail(sk);
702 	if (!skb)
703 		return;
704 	if (!(flags & MSG_MORE) || forced_push(tp))
705 		tcp_mark_push(tp, skb);
706 
707 	tcp_mark_urg(tp, flags);
708 
709 	if (tcp_should_autocork(sk, skb, size_goal)) {
710 
711 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
712 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 		}
716 		/* It is possible TX completion already happened
717 		 * before we set TSQ_THROTTLED.
718 		 */
719 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 			return;
721 	}
722 
723 	if (flags & MSG_MORE)
724 		nonagle = TCP_NAGLE_CORK;
725 
726 	__tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728 
729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 				unsigned int offset, size_t len)
731 {
732 	struct tcp_splice_state *tss = rd_desc->arg.data;
733 	int ret;
734 
735 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 			      min(rd_desc->count, len), tss->flags);
737 	if (ret > 0)
738 		rd_desc->count -= ret;
739 	return ret;
740 }
741 
742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 	/* Store TCP splice context information in read_descriptor_t. */
745 	read_descriptor_t rd_desc = {
746 		.arg.data = tss,
747 		.count	  = tss->len,
748 	};
749 
750 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752 
753 /**
754  *  tcp_splice_read - splice data from TCP socket to a pipe
755  * @sock:	socket to splice from
756  * @ppos:	position (not valid)
757  * @pipe:	pipe to splice to
758  * @len:	number of bytes to splice
759  * @flags:	splice modifier flags
760  *
761  * Description:
762  *    Will read pages from given socket and fill them into a pipe.
763  *
764  **/
765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 			struct pipe_inode_info *pipe, size_t len,
767 			unsigned int flags)
768 {
769 	struct sock *sk = sock->sk;
770 	struct tcp_splice_state tss = {
771 		.pipe = pipe,
772 		.len = len,
773 		.flags = flags,
774 	};
775 	long timeo;
776 	ssize_t spliced;
777 	int ret;
778 
779 	sock_rps_record_flow(sk);
780 	/*
781 	 * We can't seek on a socket input
782 	 */
783 	if (unlikely(*ppos))
784 		return -ESPIPE;
785 
786 	ret = spliced = 0;
787 
788 	lock_sock(sk);
789 
790 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 	while (tss.len) {
792 		ret = __tcp_splice_read(sk, &tss);
793 		if (ret < 0)
794 			break;
795 		else if (!ret) {
796 			if (spliced)
797 				break;
798 			if (sock_flag(sk, SOCK_DONE))
799 				break;
800 			if (sk->sk_err) {
801 				ret = sock_error(sk);
802 				break;
803 			}
804 			if (sk->sk_shutdown & RCV_SHUTDOWN)
805 				break;
806 			if (sk->sk_state == TCP_CLOSE) {
807 				/*
808 				 * This occurs when user tries to read
809 				 * from never connected socket.
810 				 */
811 				ret = -ENOTCONN;
812 				break;
813 			}
814 			if (!timeo) {
815 				ret = -EAGAIN;
816 				break;
817 			}
818 			/* if __tcp_splice_read() got nothing while we have
819 			 * an skb in receive queue, we do not want to loop.
820 			 * This might happen with URG data.
821 			 */
822 			if (!skb_queue_empty(&sk->sk_receive_queue))
823 				break;
824 			sk_wait_data(sk, &timeo, NULL);
825 			if (signal_pending(current)) {
826 				ret = sock_intr_errno(timeo);
827 				break;
828 			}
829 			continue;
830 		}
831 		tss.len -= ret;
832 		spliced += ret;
833 
834 		if (!timeo)
835 			break;
836 		release_sock(sk);
837 		lock_sock(sk);
838 
839 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
840 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
841 		    signal_pending(current))
842 			break;
843 	}
844 
845 	release_sock(sk);
846 
847 	if (spliced)
848 		return spliced;
849 
850 	return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853 
854 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 				    bool force_schedule)
856 {
857 	struct sk_buff *skb;
858 
859 	if (likely(!size)) {
860 		skb = sk->sk_tx_skb_cache;
861 		if (skb) {
862 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
863 			sk->sk_tx_skb_cache = NULL;
864 			pskb_trim(skb, 0);
865 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
866 			skb_shinfo(skb)->tx_flags = 0;
867 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
868 			return skb;
869 		}
870 	}
871 	/* The TCP header must be at least 32-bit aligned.  */
872 	size = ALIGN(size, 4);
873 
874 	if (unlikely(tcp_under_memory_pressure(sk)))
875 		sk_mem_reclaim_partial(sk);
876 
877 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
878 	if (likely(skb)) {
879 		bool mem_scheduled;
880 
881 		if (force_schedule) {
882 			mem_scheduled = true;
883 			sk_forced_mem_schedule(sk, skb->truesize);
884 		} else {
885 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
886 		}
887 		if (likely(mem_scheduled)) {
888 			skb_reserve(skb, sk->sk_prot->max_header);
889 			/*
890 			 * Make sure that we have exactly size bytes
891 			 * available to the caller, no more, no less.
892 			 */
893 			skb->reserved_tailroom = skb->end - skb->tail - size;
894 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
895 			return skb;
896 		}
897 		__kfree_skb(skb);
898 	} else {
899 		sk->sk_prot->enter_memory_pressure(sk);
900 		sk_stream_moderate_sndbuf(sk);
901 	}
902 	return NULL;
903 }
904 
905 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
906 				       int large_allowed)
907 {
908 	struct tcp_sock *tp = tcp_sk(sk);
909 	u32 new_size_goal, size_goal;
910 
911 	if (!large_allowed)
912 		return mss_now;
913 
914 	/* Note : tcp_tso_autosize() will eventually split this later */
915 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
916 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
917 
918 	/* We try hard to avoid divides here */
919 	size_goal = tp->gso_segs * mss_now;
920 	if (unlikely(new_size_goal < size_goal ||
921 		     new_size_goal >= size_goal + mss_now)) {
922 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
923 				     sk->sk_gso_max_segs);
924 		size_goal = tp->gso_segs * mss_now;
925 	}
926 
927 	return max(size_goal, mss_now);
928 }
929 
930 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
931 {
932 	int mss_now;
933 
934 	mss_now = tcp_current_mss(sk);
935 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
936 
937 	return mss_now;
938 }
939 
940 /* In some cases, both sendpage() and sendmsg() could have added
941  * an skb to the write queue, but failed adding payload on it.
942  * We need to remove it to consume less memory, but more
943  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
944  * users.
945  */
946 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
947 {
948 	if (skb && !skb->len) {
949 		tcp_unlink_write_queue(skb, sk);
950 		if (tcp_write_queue_empty(sk))
951 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
952 		sk_wmem_free_skb(sk, skb);
953 	}
954 }
955 
956 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
957 			 size_t size, int flags)
958 {
959 	struct tcp_sock *tp = tcp_sk(sk);
960 	int mss_now, size_goal;
961 	int err;
962 	ssize_t copied;
963 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
964 
965 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
966 	    WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
967 		return -EINVAL;
968 
969 	/* Wait for a connection to finish. One exception is TCP Fast Open
970 	 * (passive side) where data is allowed to be sent before a connection
971 	 * is fully established.
972 	 */
973 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
974 	    !tcp_passive_fastopen(sk)) {
975 		err = sk_stream_wait_connect(sk, &timeo);
976 		if (err != 0)
977 			goto out_err;
978 	}
979 
980 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
981 
982 	mss_now = tcp_send_mss(sk, &size_goal, flags);
983 	copied = 0;
984 
985 	err = -EPIPE;
986 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
987 		goto out_err;
988 
989 	while (size > 0) {
990 		struct sk_buff *skb = tcp_write_queue_tail(sk);
991 		int copy, i;
992 		bool can_coalesce;
993 
994 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
995 		    !tcp_skb_can_collapse_to(skb)) {
996 new_segment:
997 			if (!sk_stream_memory_free(sk))
998 				goto wait_for_sndbuf;
999 
1000 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1001 					tcp_rtx_and_write_queues_empty(sk));
1002 			if (!skb)
1003 				goto wait_for_memory;
1004 
1005 #ifdef CONFIG_TLS_DEVICE
1006 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1007 #endif
1008 			skb_entail(sk, skb);
1009 			copy = size_goal;
1010 		}
1011 
1012 		if (copy > size)
1013 			copy = size;
1014 
1015 		i = skb_shinfo(skb)->nr_frags;
1016 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1017 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1018 			tcp_mark_push(tp, skb);
1019 			goto new_segment;
1020 		}
1021 		if (!sk_wmem_schedule(sk, copy))
1022 			goto wait_for_memory;
1023 
1024 		if (can_coalesce) {
1025 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1026 		} else {
1027 			get_page(page);
1028 			skb_fill_page_desc(skb, i, page, offset, copy);
1029 		}
1030 
1031 		if (!(flags & MSG_NO_SHARED_FRAGS))
1032 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1033 
1034 		skb->len += copy;
1035 		skb->data_len += copy;
1036 		skb->truesize += copy;
1037 		sk_wmem_queued_add(sk, copy);
1038 		sk_mem_charge(sk, copy);
1039 		skb->ip_summed = CHECKSUM_PARTIAL;
1040 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1041 		TCP_SKB_CB(skb)->end_seq += copy;
1042 		tcp_skb_pcount_set(skb, 0);
1043 
1044 		if (!copied)
1045 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1046 
1047 		copied += copy;
1048 		offset += copy;
1049 		size -= copy;
1050 		if (!size)
1051 			goto out;
1052 
1053 		if (skb->len < size_goal || (flags & MSG_OOB))
1054 			continue;
1055 
1056 		if (forced_push(tp)) {
1057 			tcp_mark_push(tp, skb);
1058 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1059 		} else if (skb == tcp_send_head(sk))
1060 			tcp_push_one(sk, mss_now);
1061 		continue;
1062 
1063 wait_for_sndbuf:
1064 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1065 wait_for_memory:
1066 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1067 			 TCP_NAGLE_PUSH, size_goal);
1068 
1069 		err = sk_stream_wait_memory(sk, &timeo);
1070 		if (err != 0)
1071 			goto do_error;
1072 
1073 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1074 	}
1075 
1076 out:
1077 	if (copied) {
1078 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1079 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1080 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1081 	}
1082 	return copied;
1083 
1084 do_error:
1085 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1086 	if (copied)
1087 		goto out;
1088 out_err:
1089 	/* make sure we wake any epoll edge trigger waiter */
1090 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1091 		sk->sk_write_space(sk);
1092 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1093 	}
1094 	return sk_stream_error(sk, flags, err);
1095 }
1096 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1097 
1098 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1099 			size_t size, int flags)
1100 {
1101 	if (!(sk->sk_route_caps & NETIF_F_SG))
1102 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1103 
1104 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1105 
1106 	return do_tcp_sendpages(sk, page, offset, size, flags);
1107 }
1108 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1109 
1110 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1111 		 size_t size, int flags)
1112 {
1113 	int ret;
1114 
1115 	lock_sock(sk);
1116 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1117 	release_sock(sk);
1118 
1119 	return ret;
1120 }
1121 EXPORT_SYMBOL(tcp_sendpage);
1122 
1123 void tcp_free_fastopen_req(struct tcp_sock *tp)
1124 {
1125 	if (tp->fastopen_req) {
1126 		kfree(tp->fastopen_req);
1127 		tp->fastopen_req = NULL;
1128 	}
1129 }
1130 
1131 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1132 				int *copied, size_t size,
1133 				struct ubuf_info *uarg)
1134 {
1135 	struct tcp_sock *tp = tcp_sk(sk);
1136 	struct inet_sock *inet = inet_sk(sk);
1137 	struct sockaddr *uaddr = msg->msg_name;
1138 	int err, flags;
1139 
1140 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1141 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1142 	     uaddr->sa_family == AF_UNSPEC))
1143 		return -EOPNOTSUPP;
1144 	if (tp->fastopen_req)
1145 		return -EALREADY; /* Another Fast Open is in progress */
1146 
1147 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1148 				   sk->sk_allocation);
1149 	if (unlikely(!tp->fastopen_req))
1150 		return -ENOBUFS;
1151 	tp->fastopen_req->data = msg;
1152 	tp->fastopen_req->size = size;
1153 	tp->fastopen_req->uarg = uarg;
1154 
1155 	if (inet->defer_connect) {
1156 		err = tcp_connect(sk);
1157 		/* Same failure procedure as in tcp_v4/6_connect */
1158 		if (err) {
1159 			tcp_set_state(sk, TCP_CLOSE);
1160 			inet->inet_dport = 0;
1161 			sk->sk_route_caps = 0;
1162 		}
1163 	}
1164 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1165 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1166 				    msg->msg_namelen, flags, 1);
1167 	/* fastopen_req could already be freed in __inet_stream_connect
1168 	 * if the connection times out or gets rst
1169 	 */
1170 	if (tp->fastopen_req) {
1171 		*copied = tp->fastopen_req->copied;
1172 		tcp_free_fastopen_req(tp);
1173 		inet->defer_connect = 0;
1174 	}
1175 	return err;
1176 }
1177 
1178 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1179 {
1180 	struct tcp_sock *tp = tcp_sk(sk);
1181 	struct ubuf_info *uarg = NULL;
1182 	struct sk_buff *skb;
1183 	struct sockcm_cookie sockc;
1184 	int flags, err, copied = 0;
1185 	int mss_now = 0, size_goal, copied_syn = 0;
1186 	int process_backlog = 0;
1187 	bool zc = false;
1188 	long timeo;
1189 
1190 	flags = msg->msg_flags;
1191 
1192 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1193 		skb = tcp_write_queue_tail(sk);
1194 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1195 		if (!uarg) {
1196 			err = -ENOBUFS;
1197 			goto out_err;
1198 		}
1199 
1200 		zc = sk->sk_route_caps & NETIF_F_SG;
1201 		if (!zc)
1202 			uarg->zerocopy = 0;
1203 	}
1204 
1205 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1206 	    !tp->repair) {
1207 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1208 		if (err == -EINPROGRESS && copied_syn > 0)
1209 			goto out;
1210 		else if (err)
1211 			goto out_err;
1212 	}
1213 
1214 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1215 
1216 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1217 
1218 	/* Wait for a connection to finish. One exception is TCP Fast Open
1219 	 * (passive side) where data is allowed to be sent before a connection
1220 	 * is fully established.
1221 	 */
1222 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1223 	    !tcp_passive_fastopen(sk)) {
1224 		err = sk_stream_wait_connect(sk, &timeo);
1225 		if (err != 0)
1226 			goto do_error;
1227 	}
1228 
1229 	if (unlikely(tp->repair)) {
1230 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1231 			copied = tcp_send_rcvq(sk, msg, size);
1232 			goto out_nopush;
1233 		}
1234 
1235 		err = -EINVAL;
1236 		if (tp->repair_queue == TCP_NO_QUEUE)
1237 			goto out_err;
1238 
1239 		/* 'common' sending to sendq */
1240 	}
1241 
1242 	sockcm_init(&sockc, sk);
1243 	if (msg->msg_controllen) {
1244 		err = sock_cmsg_send(sk, msg, &sockc);
1245 		if (unlikely(err)) {
1246 			err = -EINVAL;
1247 			goto out_err;
1248 		}
1249 	}
1250 
1251 	/* This should be in poll */
1252 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1253 
1254 	/* Ok commence sending. */
1255 	copied = 0;
1256 
1257 restart:
1258 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1259 
1260 	err = -EPIPE;
1261 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1262 		goto do_error;
1263 
1264 	while (msg_data_left(msg)) {
1265 		int copy = 0;
1266 
1267 		skb = tcp_write_queue_tail(sk);
1268 		if (skb)
1269 			copy = size_goal - skb->len;
1270 
1271 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1272 			bool first_skb;
1273 
1274 new_segment:
1275 			if (!sk_stream_memory_free(sk))
1276 				goto wait_for_sndbuf;
1277 
1278 			if (unlikely(process_backlog >= 16)) {
1279 				process_backlog = 0;
1280 				if (sk_flush_backlog(sk))
1281 					goto restart;
1282 			}
1283 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1284 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1285 						  first_skb);
1286 			if (!skb)
1287 				goto wait_for_memory;
1288 
1289 			process_backlog++;
1290 			skb->ip_summed = CHECKSUM_PARTIAL;
1291 
1292 			skb_entail(sk, skb);
1293 			copy = size_goal;
1294 
1295 			/* All packets are restored as if they have
1296 			 * already been sent. skb_mstamp_ns isn't set to
1297 			 * avoid wrong rtt estimation.
1298 			 */
1299 			if (tp->repair)
1300 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1301 		}
1302 
1303 		/* Try to append data to the end of skb. */
1304 		if (copy > msg_data_left(msg))
1305 			copy = msg_data_left(msg);
1306 
1307 		/* Where to copy to? */
1308 		if (skb_availroom(skb) > 0 && !zc) {
1309 			/* We have some space in skb head. Superb! */
1310 			copy = min_t(int, copy, skb_availroom(skb));
1311 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1312 			if (err)
1313 				goto do_fault;
1314 		} else if (!zc) {
1315 			bool merge = true;
1316 			int i = skb_shinfo(skb)->nr_frags;
1317 			struct page_frag *pfrag = sk_page_frag(sk);
1318 
1319 			if (!sk_page_frag_refill(sk, pfrag))
1320 				goto wait_for_memory;
1321 
1322 			if (!skb_can_coalesce(skb, i, pfrag->page,
1323 					      pfrag->offset)) {
1324 				if (i >= sysctl_max_skb_frags) {
1325 					tcp_mark_push(tp, skb);
1326 					goto new_segment;
1327 				}
1328 				merge = false;
1329 			}
1330 
1331 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1332 
1333 			if (!sk_wmem_schedule(sk, copy))
1334 				goto wait_for_memory;
1335 
1336 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1337 						       pfrag->page,
1338 						       pfrag->offset,
1339 						       copy);
1340 			if (err)
1341 				goto do_error;
1342 
1343 			/* Update the skb. */
1344 			if (merge) {
1345 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1346 			} else {
1347 				skb_fill_page_desc(skb, i, pfrag->page,
1348 						   pfrag->offset, copy);
1349 				page_ref_inc(pfrag->page);
1350 			}
1351 			pfrag->offset += copy;
1352 		} else {
1353 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1354 			if (err == -EMSGSIZE || err == -EEXIST) {
1355 				tcp_mark_push(tp, skb);
1356 				goto new_segment;
1357 			}
1358 			if (err < 0)
1359 				goto do_error;
1360 			copy = err;
1361 		}
1362 
1363 		if (!copied)
1364 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1365 
1366 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1367 		TCP_SKB_CB(skb)->end_seq += copy;
1368 		tcp_skb_pcount_set(skb, 0);
1369 
1370 		copied += copy;
1371 		if (!msg_data_left(msg)) {
1372 			if (unlikely(flags & MSG_EOR))
1373 				TCP_SKB_CB(skb)->eor = 1;
1374 			goto out;
1375 		}
1376 
1377 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1378 			continue;
1379 
1380 		if (forced_push(tp)) {
1381 			tcp_mark_push(tp, skb);
1382 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1383 		} else if (skb == tcp_send_head(sk))
1384 			tcp_push_one(sk, mss_now);
1385 		continue;
1386 
1387 wait_for_sndbuf:
1388 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1389 wait_for_memory:
1390 		if (copied)
1391 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1392 				 TCP_NAGLE_PUSH, size_goal);
1393 
1394 		err = sk_stream_wait_memory(sk, &timeo);
1395 		if (err != 0)
1396 			goto do_error;
1397 
1398 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1399 	}
1400 
1401 out:
1402 	if (copied) {
1403 		tcp_tx_timestamp(sk, sockc.tsflags);
1404 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1405 	}
1406 out_nopush:
1407 	sock_zerocopy_put(uarg);
1408 	return copied + copied_syn;
1409 
1410 do_error:
1411 	skb = tcp_write_queue_tail(sk);
1412 do_fault:
1413 	tcp_remove_empty_skb(sk, skb);
1414 
1415 	if (copied + copied_syn)
1416 		goto out;
1417 out_err:
1418 	sock_zerocopy_put_abort(uarg, true);
1419 	err = sk_stream_error(sk, flags, err);
1420 	/* make sure we wake any epoll edge trigger waiter */
1421 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1422 		sk->sk_write_space(sk);
1423 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1424 	}
1425 	return err;
1426 }
1427 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1428 
1429 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1430 {
1431 	int ret;
1432 
1433 	lock_sock(sk);
1434 	ret = tcp_sendmsg_locked(sk, msg, size);
1435 	release_sock(sk);
1436 
1437 	return ret;
1438 }
1439 EXPORT_SYMBOL(tcp_sendmsg);
1440 
1441 /*
1442  *	Handle reading urgent data. BSD has very simple semantics for
1443  *	this, no blocking and very strange errors 8)
1444  */
1445 
1446 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1447 {
1448 	struct tcp_sock *tp = tcp_sk(sk);
1449 
1450 	/* No URG data to read. */
1451 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1452 	    tp->urg_data == TCP_URG_READ)
1453 		return -EINVAL;	/* Yes this is right ! */
1454 
1455 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1456 		return -ENOTCONN;
1457 
1458 	if (tp->urg_data & TCP_URG_VALID) {
1459 		int err = 0;
1460 		char c = tp->urg_data;
1461 
1462 		if (!(flags & MSG_PEEK))
1463 			tp->urg_data = TCP_URG_READ;
1464 
1465 		/* Read urgent data. */
1466 		msg->msg_flags |= MSG_OOB;
1467 
1468 		if (len > 0) {
1469 			if (!(flags & MSG_TRUNC))
1470 				err = memcpy_to_msg(msg, &c, 1);
1471 			len = 1;
1472 		} else
1473 			msg->msg_flags |= MSG_TRUNC;
1474 
1475 		return err ? -EFAULT : len;
1476 	}
1477 
1478 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1479 		return 0;
1480 
1481 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1482 	 * the available implementations agree in this case:
1483 	 * this call should never block, independent of the
1484 	 * blocking state of the socket.
1485 	 * Mike <pall@rz.uni-karlsruhe.de>
1486 	 */
1487 	return -EAGAIN;
1488 }
1489 
1490 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1491 {
1492 	struct sk_buff *skb;
1493 	int copied = 0, err = 0;
1494 
1495 	/* XXX -- need to support SO_PEEK_OFF */
1496 
1497 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1498 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1499 		if (err)
1500 			return err;
1501 		copied += skb->len;
1502 	}
1503 
1504 	skb_queue_walk(&sk->sk_write_queue, skb) {
1505 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1506 		if (err)
1507 			break;
1508 
1509 		copied += skb->len;
1510 	}
1511 
1512 	return err ?: copied;
1513 }
1514 
1515 /* Clean up the receive buffer for full frames taken by the user,
1516  * then send an ACK if necessary.  COPIED is the number of bytes
1517  * tcp_recvmsg has given to the user so far, it speeds up the
1518  * calculation of whether or not we must ACK for the sake of
1519  * a window update.
1520  */
1521 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1522 {
1523 	struct tcp_sock *tp = tcp_sk(sk);
1524 	bool time_to_ack = false;
1525 
1526 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1527 
1528 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1529 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1530 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1531 
1532 	if (inet_csk_ack_scheduled(sk)) {
1533 		const struct inet_connection_sock *icsk = inet_csk(sk);
1534 		   /* Delayed ACKs frequently hit locked sockets during bulk
1535 		    * receive. */
1536 		if (icsk->icsk_ack.blocked ||
1537 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1538 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1539 		    /*
1540 		     * If this read emptied read buffer, we send ACK, if
1541 		     * connection is not bidirectional, user drained
1542 		     * receive buffer and there was a small segment
1543 		     * in queue.
1544 		     */
1545 		    (copied > 0 &&
1546 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1547 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1548 		       !inet_csk_in_pingpong_mode(sk))) &&
1549 		      !atomic_read(&sk->sk_rmem_alloc)))
1550 			time_to_ack = true;
1551 	}
1552 
1553 	/* We send an ACK if we can now advertise a non-zero window
1554 	 * which has been raised "significantly".
1555 	 *
1556 	 * Even if window raised up to infinity, do not send window open ACK
1557 	 * in states, where we will not receive more. It is useless.
1558 	 */
1559 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1560 		__u32 rcv_window_now = tcp_receive_window(tp);
1561 
1562 		/* Optimize, __tcp_select_window() is not cheap. */
1563 		if (2*rcv_window_now <= tp->window_clamp) {
1564 			__u32 new_window = __tcp_select_window(sk);
1565 
1566 			/* Send ACK now, if this read freed lots of space
1567 			 * in our buffer. Certainly, new_window is new window.
1568 			 * We can advertise it now, if it is not less than current one.
1569 			 * "Lots" means "at least twice" here.
1570 			 */
1571 			if (new_window && new_window >= 2 * rcv_window_now)
1572 				time_to_ack = true;
1573 		}
1574 	}
1575 	if (time_to_ack)
1576 		tcp_send_ack(sk);
1577 }
1578 
1579 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1580 {
1581 	struct sk_buff *skb;
1582 	u32 offset;
1583 
1584 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1585 		offset = seq - TCP_SKB_CB(skb)->seq;
1586 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1587 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1588 			offset--;
1589 		}
1590 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1591 			*off = offset;
1592 			return skb;
1593 		}
1594 		/* This looks weird, but this can happen if TCP collapsing
1595 		 * splitted a fat GRO packet, while we released socket lock
1596 		 * in skb_splice_bits()
1597 		 */
1598 		sk_eat_skb(sk, skb);
1599 	}
1600 	return NULL;
1601 }
1602 
1603 /*
1604  * This routine provides an alternative to tcp_recvmsg() for routines
1605  * that would like to handle copying from skbuffs directly in 'sendfile'
1606  * fashion.
1607  * Note:
1608  *	- It is assumed that the socket was locked by the caller.
1609  *	- The routine does not block.
1610  *	- At present, there is no support for reading OOB data
1611  *	  or for 'peeking' the socket using this routine
1612  *	  (although both would be easy to implement).
1613  */
1614 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1615 		  sk_read_actor_t recv_actor)
1616 {
1617 	struct sk_buff *skb;
1618 	struct tcp_sock *tp = tcp_sk(sk);
1619 	u32 seq = tp->copied_seq;
1620 	u32 offset;
1621 	int copied = 0;
1622 
1623 	if (sk->sk_state == TCP_LISTEN)
1624 		return -ENOTCONN;
1625 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1626 		if (offset < skb->len) {
1627 			int used;
1628 			size_t len;
1629 
1630 			len = skb->len - offset;
1631 			/* Stop reading if we hit a patch of urgent data */
1632 			if (tp->urg_data) {
1633 				u32 urg_offset = tp->urg_seq - seq;
1634 				if (urg_offset < len)
1635 					len = urg_offset;
1636 				if (!len)
1637 					break;
1638 			}
1639 			used = recv_actor(desc, skb, offset, len);
1640 			if (used <= 0) {
1641 				if (!copied)
1642 					copied = used;
1643 				break;
1644 			} else if (used <= len) {
1645 				seq += used;
1646 				copied += used;
1647 				offset += used;
1648 			}
1649 			/* If recv_actor drops the lock (e.g. TCP splice
1650 			 * receive) the skb pointer might be invalid when
1651 			 * getting here: tcp_collapse might have deleted it
1652 			 * while aggregating skbs from the socket queue.
1653 			 */
1654 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1655 			if (!skb)
1656 				break;
1657 			/* TCP coalescing might have appended data to the skb.
1658 			 * Try to splice more frags
1659 			 */
1660 			if (offset + 1 != skb->len)
1661 				continue;
1662 		}
1663 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1664 			sk_eat_skb(sk, skb);
1665 			++seq;
1666 			break;
1667 		}
1668 		sk_eat_skb(sk, skb);
1669 		if (!desc->count)
1670 			break;
1671 		WRITE_ONCE(tp->copied_seq, seq);
1672 	}
1673 	WRITE_ONCE(tp->copied_seq, seq);
1674 
1675 	tcp_rcv_space_adjust(sk);
1676 
1677 	/* Clean up data we have read: This will do ACK frames. */
1678 	if (copied > 0) {
1679 		tcp_recv_skb(sk, seq, &offset);
1680 		tcp_cleanup_rbuf(sk, copied);
1681 	}
1682 	return copied;
1683 }
1684 EXPORT_SYMBOL(tcp_read_sock);
1685 
1686 int tcp_peek_len(struct socket *sock)
1687 {
1688 	return tcp_inq(sock->sk);
1689 }
1690 EXPORT_SYMBOL(tcp_peek_len);
1691 
1692 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1693 int tcp_set_rcvlowat(struct sock *sk, int val)
1694 {
1695 	int cap;
1696 
1697 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1698 		cap = sk->sk_rcvbuf >> 1;
1699 	else
1700 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1701 	val = min(val, cap);
1702 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1703 
1704 	/* Check if we need to signal EPOLLIN right now */
1705 	tcp_data_ready(sk);
1706 
1707 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1708 		return 0;
1709 
1710 	val <<= 1;
1711 	if (val > sk->sk_rcvbuf) {
1712 		WRITE_ONCE(sk->sk_rcvbuf, val);
1713 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1714 	}
1715 	return 0;
1716 }
1717 EXPORT_SYMBOL(tcp_set_rcvlowat);
1718 
1719 #ifdef CONFIG_MMU
1720 static const struct vm_operations_struct tcp_vm_ops = {
1721 };
1722 
1723 int tcp_mmap(struct file *file, struct socket *sock,
1724 	     struct vm_area_struct *vma)
1725 {
1726 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1727 		return -EPERM;
1728 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1729 
1730 	/* Instruct vm_insert_page() to not down_read(mmap_sem) */
1731 	vma->vm_flags |= VM_MIXEDMAP;
1732 
1733 	vma->vm_ops = &tcp_vm_ops;
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL(tcp_mmap);
1737 
1738 static int tcp_zerocopy_receive(struct sock *sk,
1739 				struct tcp_zerocopy_receive *zc)
1740 {
1741 	unsigned long address = (unsigned long)zc->address;
1742 	u32 length = 0, seq, offset, zap_len;
1743 	const skb_frag_t *frags = NULL;
1744 	struct vm_area_struct *vma;
1745 	struct sk_buff *skb = NULL;
1746 	struct tcp_sock *tp;
1747 	int inq;
1748 	int ret;
1749 
1750 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1751 		return -EINVAL;
1752 
1753 	if (sk->sk_state == TCP_LISTEN)
1754 		return -ENOTCONN;
1755 
1756 	sock_rps_record_flow(sk);
1757 
1758 	down_read(&current->mm->mmap_sem);
1759 
1760 	ret = -EINVAL;
1761 	vma = find_vma(current->mm, address);
1762 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1763 		goto out;
1764 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1765 
1766 	tp = tcp_sk(sk);
1767 	seq = tp->copied_seq;
1768 	inq = tcp_inq(sk);
1769 	zc->length = min_t(u32, zc->length, inq);
1770 	zap_len = zc->length & ~(PAGE_SIZE - 1);
1771 	if (zap_len) {
1772 		zap_page_range(vma, address, zap_len);
1773 		zc->recv_skip_hint = 0;
1774 	} else {
1775 		zc->recv_skip_hint = zc->length;
1776 	}
1777 	ret = 0;
1778 	while (length + PAGE_SIZE <= zc->length) {
1779 		if (zc->recv_skip_hint < PAGE_SIZE) {
1780 			if (skb) {
1781 				skb = skb->next;
1782 				offset = seq - TCP_SKB_CB(skb)->seq;
1783 			} else {
1784 				skb = tcp_recv_skb(sk, seq, &offset);
1785 			}
1786 
1787 			zc->recv_skip_hint = skb->len - offset;
1788 			offset -= skb_headlen(skb);
1789 			if ((int)offset < 0 || skb_has_frag_list(skb))
1790 				break;
1791 			frags = skb_shinfo(skb)->frags;
1792 			while (offset) {
1793 				if (skb_frag_size(frags) > offset)
1794 					goto out;
1795 				offset -= skb_frag_size(frags);
1796 				frags++;
1797 			}
1798 		}
1799 		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1800 			int remaining = zc->recv_skip_hint;
1801 
1802 			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1803 					     skb_frag_off(frags))) {
1804 				remaining -= skb_frag_size(frags);
1805 				frags++;
1806 			}
1807 			zc->recv_skip_hint -= remaining;
1808 			break;
1809 		}
1810 		ret = vm_insert_page(vma, address + length,
1811 				     skb_frag_page(frags));
1812 		if (ret)
1813 			break;
1814 		length += PAGE_SIZE;
1815 		seq += PAGE_SIZE;
1816 		zc->recv_skip_hint -= PAGE_SIZE;
1817 		frags++;
1818 	}
1819 out:
1820 	up_read(&current->mm->mmap_sem);
1821 	if (length) {
1822 		WRITE_ONCE(tp->copied_seq, seq);
1823 		tcp_rcv_space_adjust(sk);
1824 
1825 		/* Clean up data we have read: This will do ACK frames. */
1826 		tcp_recv_skb(sk, seq, &offset);
1827 		tcp_cleanup_rbuf(sk, length);
1828 		ret = 0;
1829 		if (length == zc->length)
1830 			zc->recv_skip_hint = 0;
1831 	} else {
1832 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1833 			ret = -EIO;
1834 	}
1835 	zc->length = length;
1836 	return ret;
1837 }
1838 #endif
1839 
1840 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1841 				    struct scm_timestamping_internal *tss)
1842 {
1843 	if (skb->tstamp)
1844 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1845 	else
1846 		tss->ts[0] = (struct timespec64) {0};
1847 
1848 	if (skb_hwtstamps(skb)->hwtstamp)
1849 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1850 	else
1851 		tss->ts[2] = (struct timespec64) {0};
1852 }
1853 
1854 /* Similar to __sock_recv_timestamp, but does not require an skb */
1855 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1856 			       struct scm_timestamping_internal *tss)
1857 {
1858 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1859 	bool has_timestamping = false;
1860 
1861 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1862 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1863 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1864 				if (new_tstamp) {
1865 					struct __kernel_timespec kts = {
1866 						.tv_sec = tss->ts[0].tv_sec,
1867 						.tv_nsec = tss->ts[0].tv_nsec,
1868 					};
1869 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1870 						 sizeof(kts), &kts);
1871 				} else {
1872 					struct __kernel_old_timespec ts_old = {
1873 						.tv_sec = tss->ts[0].tv_sec,
1874 						.tv_nsec = tss->ts[0].tv_nsec,
1875 					};
1876 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1877 						 sizeof(ts_old), &ts_old);
1878 				}
1879 			} else {
1880 				if (new_tstamp) {
1881 					struct __kernel_sock_timeval stv = {
1882 						.tv_sec = tss->ts[0].tv_sec,
1883 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1884 					};
1885 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1886 						 sizeof(stv), &stv);
1887 				} else {
1888 					struct __kernel_old_timeval tv = {
1889 						.tv_sec = tss->ts[0].tv_sec,
1890 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1891 					};
1892 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1893 						 sizeof(tv), &tv);
1894 				}
1895 			}
1896 		}
1897 
1898 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1899 			has_timestamping = true;
1900 		else
1901 			tss->ts[0] = (struct timespec64) {0};
1902 	}
1903 
1904 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1905 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1906 			has_timestamping = true;
1907 		else
1908 			tss->ts[2] = (struct timespec64) {0};
1909 	}
1910 
1911 	if (has_timestamping) {
1912 		tss->ts[1] = (struct timespec64) {0};
1913 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1914 			put_cmsg_scm_timestamping64(msg, tss);
1915 		else
1916 			put_cmsg_scm_timestamping(msg, tss);
1917 	}
1918 }
1919 
1920 static int tcp_inq_hint(struct sock *sk)
1921 {
1922 	const struct tcp_sock *tp = tcp_sk(sk);
1923 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1924 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1925 	int inq;
1926 
1927 	inq = rcv_nxt - copied_seq;
1928 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1929 		lock_sock(sk);
1930 		inq = tp->rcv_nxt - tp->copied_seq;
1931 		release_sock(sk);
1932 	}
1933 	/* After receiving a FIN, tell the user-space to continue reading
1934 	 * by returning a non-zero inq.
1935 	 */
1936 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
1937 		inq = 1;
1938 	return inq;
1939 }
1940 
1941 /*
1942  *	This routine copies from a sock struct into the user buffer.
1943  *
1944  *	Technical note: in 2.3 we work on _locked_ socket, so that
1945  *	tricks with *seq access order and skb->users are not required.
1946  *	Probably, code can be easily improved even more.
1947  */
1948 
1949 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1950 		int flags, int *addr_len)
1951 {
1952 	struct tcp_sock *tp = tcp_sk(sk);
1953 	int copied = 0;
1954 	u32 peek_seq;
1955 	u32 *seq;
1956 	unsigned long used;
1957 	int err, inq;
1958 	int target;		/* Read at least this many bytes */
1959 	long timeo;
1960 	struct sk_buff *skb, *last;
1961 	u32 urg_hole = 0;
1962 	struct scm_timestamping_internal tss;
1963 	int cmsg_flags;
1964 
1965 	if (unlikely(flags & MSG_ERRQUEUE))
1966 		return inet_recv_error(sk, msg, len, addr_len);
1967 
1968 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1969 	    (sk->sk_state == TCP_ESTABLISHED))
1970 		sk_busy_loop(sk, nonblock);
1971 
1972 	lock_sock(sk);
1973 
1974 	err = -ENOTCONN;
1975 	if (sk->sk_state == TCP_LISTEN)
1976 		goto out;
1977 
1978 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
1979 	timeo = sock_rcvtimeo(sk, nonblock);
1980 
1981 	/* Urgent data needs to be handled specially. */
1982 	if (flags & MSG_OOB)
1983 		goto recv_urg;
1984 
1985 	if (unlikely(tp->repair)) {
1986 		err = -EPERM;
1987 		if (!(flags & MSG_PEEK))
1988 			goto out;
1989 
1990 		if (tp->repair_queue == TCP_SEND_QUEUE)
1991 			goto recv_sndq;
1992 
1993 		err = -EINVAL;
1994 		if (tp->repair_queue == TCP_NO_QUEUE)
1995 			goto out;
1996 
1997 		/* 'common' recv queue MSG_PEEK-ing */
1998 	}
1999 
2000 	seq = &tp->copied_seq;
2001 	if (flags & MSG_PEEK) {
2002 		peek_seq = tp->copied_seq;
2003 		seq = &peek_seq;
2004 	}
2005 
2006 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2007 
2008 	do {
2009 		u32 offset;
2010 
2011 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2012 		if (tp->urg_data && tp->urg_seq == *seq) {
2013 			if (copied)
2014 				break;
2015 			if (signal_pending(current)) {
2016 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2017 				break;
2018 			}
2019 		}
2020 
2021 		/* Next get a buffer. */
2022 
2023 		last = skb_peek_tail(&sk->sk_receive_queue);
2024 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2025 			last = skb;
2026 			/* Now that we have two receive queues this
2027 			 * shouldn't happen.
2028 			 */
2029 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2030 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2031 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2032 				 flags))
2033 				break;
2034 
2035 			offset = *seq - TCP_SKB_CB(skb)->seq;
2036 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2037 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2038 				offset--;
2039 			}
2040 			if (offset < skb->len)
2041 				goto found_ok_skb;
2042 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2043 				goto found_fin_ok;
2044 			WARN(!(flags & MSG_PEEK),
2045 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2046 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2047 		}
2048 
2049 		/* Well, if we have backlog, try to process it now yet. */
2050 
2051 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2052 			break;
2053 
2054 		if (copied) {
2055 			if (sk->sk_err ||
2056 			    sk->sk_state == TCP_CLOSE ||
2057 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2058 			    !timeo ||
2059 			    signal_pending(current))
2060 				break;
2061 		} else {
2062 			if (sock_flag(sk, SOCK_DONE))
2063 				break;
2064 
2065 			if (sk->sk_err) {
2066 				copied = sock_error(sk);
2067 				break;
2068 			}
2069 
2070 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2071 				break;
2072 
2073 			if (sk->sk_state == TCP_CLOSE) {
2074 				/* This occurs when user tries to read
2075 				 * from never connected socket.
2076 				 */
2077 				copied = -ENOTCONN;
2078 				break;
2079 			}
2080 
2081 			if (!timeo) {
2082 				copied = -EAGAIN;
2083 				break;
2084 			}
2085 
2086 			if (signal_pending(current)) {
2087 				copied = sock_intr_errno(timeo);
2088 				break;
2089 			}
2090 		}
2091 
2092 		tcp_cleanup_rbuf(sk, copied);
2093 
2094 		if (copied >= target) {
2095 			/* Do not sleep, just process backlog. */
2096 			release_sock(sk);
2097 			lock_sock(sk);
2098 		} else {
2099 			sk_wait_data(sk, &timeo, last);
2100 		}
2101 
2102 		if ((flags & MSG_PEEK) &&
2103 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2104 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2105 					    current->comm,
2106 					    task_pid_nr(current));
2107 			peek_seq = tp->copied_seq;
2108 		}
2109 		continue;
2110 
2111 found_ok_skb:
2112 		/* Ok so how much can we use? */
2113 		used = skb->len - offset;
2114 		if (len < used)
2115 			used = len;
2116 
2117 		/* Do we have urgent data here? */
2118 		if (tp->urg_data) {
2119 			u32 urg_offset = tp->urg_seq - *seq;
2120 			if (urg_offset < used) {
2121 				if (!urg_offset) {
2122 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2123 						WRITE_ONCE(*seq, *seq + 1);
2124 						urg_hole++;
2125 						offset++;
2126 						used--;
2127 						if (!used)
2128 							goto skip_copy;
2129 					}
2130 				} else
2131 					used = urg_offset;
2132 			}
2133 		}
2134 
2135 		if (!(flags & MSG_TRUNC)) {
2136 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2137 			if (err) {
2138 				/* Exception. Bailout! */
2139 				if (!copied)
2140 					copied = -EFAULT;
2141 				break;
2142 			}
2143 		}
2144 
2145 		WRITE_ONCE(*seq, *seq + used);
2146 		copied += used;
2147 		len -= used;
2148 
2149 		tcp_rcv_space_adjust(sk);
2150 
2151 skip_copy:
2152 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2153 			tp->urg_data = 0;
2154 			tcp_fast_path_check(sk);
2155 		}
2156 		if (used + offset < skb->len)
2157 			continue;
2158 
2159 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2160 			tcp_update_recv_tstamps(skb, &tss);
2161 			cmsg_flags |= 2;
2162 		}
2163 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2164 			goto found_fin_ok;
2165 		if (!(flags & MSG_PEEK))
2166 			sk_eat_skb(sk, skb);
2167 		continue;
2168 
2169 found_fin_ok:
2170 		/* Process the FIN. */
2171 		WRITE_ONCE(*seq, *seq + 1);
2172 		if (!(flags & MSG_PEEK))
2173 			sk_eat_skb(sk, skb);
2174 		break;
2175 	} while (len > 0);
2176 
2177 	/* According to UNIX98, msg_name/msg_namelen are ignored
2178 	 * on connected socket. I was just happy when found this 8) --ANK
2179 	 */
2180 
2181 	/* Clean up data we have read: This will do ACK frames. */
2182 	tcp_cleanup_rbuf(sk, copied);
2183 
2184 	release_sock(sk);
2185 
2186 	if (cmsg_flags) {
2187 		if (cmsg_flags & 2)
2188 			tcp_recv_timestamp(msg, sk, &tss);
2189 		if (cmsg_flags & 1) {
2190 			inq = tcp_inq_hint(sk);
2191 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2192 		}
2193 	}
2194 
2195 	return copied;
2196 
2197 out:
2198 	release_sock(sk);
2199 	return err;
2200 
2201 recv_urg:
2202 	err = tcp_recv_urg(sk, msg, len, flags);
2203 	goto out;
2204 
2205 recv_sndq:
2206 	err = tcp_peek_sndq(sk, msg, len);
2207 	goto out;
2208 }
2209 EXPORT_SYMBOL(tcp_recvmsg);
2210 
2211 void tcp_set_state(struct sock *sk, int state)
2212 {
2213 	int oldstate = sk->sk_state;
2214 
2215 	/* We defined a new enum for TCP states that are exported in BPF
2216 	 * so as not force the internal TCP states to be frozen. The
2217 	 * following checks will detect if an internal state value ever
2218 	 * differs from the BPF value. If this ever happens, then we will
2219 	 * need to remap the internal value to the BPF value before calling
2220 	 * tcp_call_bpf_2arg.
2221 	 */
2222 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2223 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2224 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2225 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2226 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2227 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2228 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2229 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2230 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2231 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2232 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2233 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2234 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2235 
2236 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2237 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2238 
2239 	switch (state) {
2240 	case TCP_ESTABLISHED:
2241 		if (oldstate != TCP_ESTABLISHED)
2242 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2243 		break;
2244 
2245 	case TCP_CLOSE:
2246 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2247 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2248 
2249 		sk->sk_prot->unhash(sk);
2250 		if (inet_csk(sk)->icsk_bind_hash &&
2251 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2252 			inet_put_port(sk);
2253 		/* fall through */
2254 	default:
2255 		if (oldstate == TCP_ESTABLISHED)
2256 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2257 	}
2258 
2259 	/* Change state AFTER socket is unhashed to avoid closed
2260 	 * socket sitting in hash tables.
2261 	 */
2262 	inet_sk_state_store(sk, state);
2263 }
2264 EXPORT_SYMBOL_GPL(tcp_set_state);
2265 
2266 /*
2267  *	State processing on a close. This implements the state shift for
2268  *	sending our FIN frame. Note that we only send a FIN for some
2269  *	states. A shutdown() may have already sent the FIN, or we may be
2270  *	closed.
2271  */
2272 
2273 static const unsigned char new_state[16] = {
2274   /* current state:        new state:      action:	*/
2275   [0 /* (Invalid) */]	= TCP_CLOSE,
2276   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2277   [TCP_SYN_SENT]	= TCP_CLOSE,
2278   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2279   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2280   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2281   [TCP_TIME_WAIT]	= TCP_CLOSE,
2282   [TCP_CLOSE]		= TCP_CLOSE,
2283   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2284   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2285   [TCP_LISTEN]		= TCP_CLOSE,
2286   [TCP_CLOSING]		= TCP_CLOSING,
2287   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2288 };
2289 
2290 static int tcp_close_state(struct sock *sk)
2291 {
2292 	int next = (int)new_state[sk->sk_state];
2293 	int ns = next & TCP_STATE_MASK;
2294 
2295 	tcp_set_state(sk, ns);
2296 
2297 	return next & TCP_ACTION_FIN;
2298 }
2299 
2300 /*
2301  *	Shutdown the sending side of a connection. Much like close except
2302  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2303  */
2304 
2305 void tcp_shutdown(struct sock *sk, int how)
2306 {
2307 	/*	We need to grab some memory, and put together a FIN,
2308 	 *	and then put it into the queue to be sent.
2309 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2310 	 */
2311 	if (!(how & SEND_SHUTDOWN))
2312 		return;
2313 
2314 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2315 	if ((1 << sk->sk_state) &
2316 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2317 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2318 		/* Clear out any half completed packets.  FIN if needed. */
2319 		if (tcp_close_state(sk))
2320 			tcp_send_fin(sk);
2321 	}
2322 }
2323 EXPORT_SYMBOL(tcp_shutdown);
2324 
2325 bool tcp_check_oom(struct sock *sk, int shift)
2326 {
2327 	bool too_many_orphans, out_of_socket_memory;
2328 
2329 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2330 	out_of_socket_memory = tcp_out_of_memory(sk);
2331 
2332 	if (too_many_orphans)
2333 		net_info_ratelimited("too many orphaned sockets\n");
2334 	if (out_of_socket_memory)
2335 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2336 	return too_many_orphans || out_of_socket_memory;
2337 }
2338 
2339 void tcp_close(struct sock *sk, long timeout)
2340 {
2341 	struct sk_buff *skb;
2342 	int data_was_unread = 0;
2343 	int state;
2344 
2345 	lock_sock(sk);
2346 	sk->sk_shutdown = SHUTDOWN_MASK;
2347 
2348 	if (sk->sk_state == TCP_LISTEN) {
2349 		tcp_set_state(sk, TCP_CLOSE);
2350 
2351 		/* Special case. */
2352 		inet_csk_listen_stop(sk);
2353 
2354 		goto adjudge_to_death;
2355 	}
2356 
2357 	/*  We need to flush the recv. buffs.  We do this only on the
2358 	 *  descriptor close, not protocol-sourced closes, because the
2359 	 *  reader process may not have drained the data yet!
2360 	 */
2361 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2362 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2363 
2364 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2365 			len--;
2366 		data_was_unread += len;
2367 		__kfree_skb(skb);
2368 	}
2369 
2370 	sk_mem_reclaim(sk);
2371 
2372 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2373 	if (sk->sk_state == TCP_CLOSE)
2374 		goto adjudge_to_death;
2375 
2376 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2377 	 * data was lost. To witness the awful effects of the old behavior of
2378 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2379 	 * GET in an FTP client, suspend the process, wait for the client to
2380 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2381 	 * Note: timeout is always zero in such a case.
2382 	 */
2383 	if (unlikely(tcp_sk(sk)->repair)) {
2384 		sk->sk_prot->disconnect(sk, 0);
2385 	} else if (data_was_unread) {
2386 		/* Unread data was tossed, zap the connection. */
2387 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2388 		tcp_set_state(sk, TCP_CLOSE);
2389 		tcp_send_active_reset(sk, sk->sk_allocation);
2390 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2391 		/* Check zero linger _after_ checking for unread data. */
2392 		sk->sk_prot->disconnect(sk, 0);
2393 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2394 	} else if (tcp_close_state(sk)) {
2395 		/* We FIN if the application ate all the data before
2396 		 * zapping the connection.
2397 		 */
2398 
2399 		/* RED-PEN. Formally speaking, we have broken TCP state
2400 		 * machine. State transitions:
2401 		 *
2402 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2403 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2404 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2405 		 *
2406 		 * are legal only when FIN has been sent (i.e. in window),
2407 		 * rather than queued out of window. Purists blame.
2408 		 *
2409 		 * F.e. "RFC state" is ESTABLISHED,
2410 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2411 		 *
2412 		 * The visible declinations are that sometimes
2413 		 * we enter time-wait state, when it is not required really
2414 		 * (harmless), do not send active resets, when they are
2415 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2416 		 * they look as CLOSING or LAST_ACK for Linux)
2417 		 * Probably, I missed some more holelets.
2418 		 * 						--ANK
2419 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2420 		 * in a single packet! (May consider it later but will
2421 		 * probably need API support or TCP_CORK SYN-ACK until
2422 		 * data is written and socket is closed.)
2423 		 */
2424 		tcp_send_fin(sk);
2425 	}
2426 
2427 	sk_stream_wait_close(sk, timeout);
2428 
2429 adjudge_to_death:
2430 	state = sk->sk_state;
2431 	sock_hold(sk);
2432 	sock_orphan(sk);
2433 
2434 	local_bh_disable();
2435 	bh_lock_sock(sk);
2436 	/* remove backlog if any, without releasing ownership. */
2437 	__release_sock(sk);
2438 
2439 	percpu_counter_inc(sk->sk_prot->orphan_count);
2440 
2441 	/* Have we already been destroyed by a softirq or backlog? */
2442 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2443 		goto out;
2444 
2445 	/*	This is a (useful) BSD violating of the RFC. There is a
2446 	 *	problem with TCP as specified in that the other end could
2447 	 *	keep a socket open forever with no application left this end.
2448 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2449 	 *	our end. If they send after that then tough - BUT: long enough
2450 	 *	that we won't make the old 4*rto = almost no time - whoops
2451 	 *	reset mistake.
2452 	 *
2453 	 *	Nope, it was not mistake. It is really desired behaviour
2454 	 *	f.e. on http servers, when such sockets are useless, but
2455 	 *	consume significant resources. Let's do it with special
2456 	 *	linger2	option.					--ANK
2457 	 */
2458 
2459 	if (sk->sk_state == TCP_FIN_WAIT2) {
2460 		struct tcp_sock *tp = tcp_sk(sk);
2461 		if (tp->linger2 < 0) {
2462 			tcp_set_state(sk, TCP_CLOSE);
2463 			tcp_send_active_reset(sk, GFP_ATOMIC);
2464 			__NET_INC_STATS(sock_net(sk),
2465 					LINUX_MIB_TCPABORTONLINGER);
2466 		} else {
2467 			const int tmo = tcp_fin_time(sk);
2468 
2469 			if (tmo > TCP_TIMEWAIT_LEN) {
2470 				inet_csk_reset_keepalive_timer(sk,
2471 						tmo - TCP_TIMEWAIT_LEN);
2472 			} else {
2473 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2474 				goto out;
2475 			}
2476 		}
2477 	}
2478 	if (sk->sk_state != TCP_CLOSE) {
2479 		sk_mem_reclaim(sk);
2480 		if (tcp_check_oom(sk, 0)) {
2481 			tcp_set_state(sk, TCP_CLOSE);
2482 			tcp_send_active_reset(sk, GFP_ATOMIC);
2483 			__NET_INC_STATS(sock_net(sk),
2484 					LINUX_MIB_TCPABORTONMEMORY);
2485 		} else if (!check_net(sock_net(sk))) {
2486 			/* Not possible to send reset; just close */
2487 			tcp_set_state(sk, TCP_CLOSE);
2488 		}
2489 	}
2490 
2491 	if (sk->sk_state == TCP_CLOSE) {
2492 		struct request_sock *req;
2493 
2494 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2495 						lockdep_sock_is_held(sk));
2496 		/* We could get here with a non-NULL req if the socket is
2497 		 * aborted (e.g., closed with unread data) before 3WHS
2498 		 * finishes.
2499 		 */
2500 		if (req)
2501 			reqsk_fastopen_remove(sk, req, false);
2502 		inet_csk_destroy_sock(sk);
2503 	}
2504 	/* Otherwise, socket is reprieved until protocol close. */
2505 
2506 out:
2507 	bh_unlock_sock(sk);
2508 	local_bh_enable();
2509 	release_sock(sk);
2510 	sock_put(sk);
2511 }
2512 EXPORT_SYMBOL(tcp_close);
2513 
2514 /* These states need RST on ABORT according to RFC793 */
2515 
2516 static inline bool tcp_need_reset(int state)
2517 {
2518 	return (1 << state) &
2519 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2520 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2521 }
2522 
2523 static void tcp_rtx_queue_purge(struct sock *sk)
2524 {
2525 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2526 
2527 	while (p) {
2528 		struct sk_buff *skb = rb_to_skb(p);
2529 
2530 		p = rb_next(p);
2531 		/* Since we are deleting whole queue, no need to
2532 		 * list_del(&skb->tcp_tsorted_anchor)
2533 		 */
2534 		tcp_rtx_queue_unlink(skb, sk);
2535 		sk_wmem_free_skb(sk, skb);
2536 	}
2537 }
2538 
2539 void tcp_write_queue_purge(struct sock *sk)
2540 {
2541 	struct sk_buff *skb;
2542 
2543 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2544 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2545 		tcp_skb_tsorted_anchor_cleanup(skb);
2546 		sk_wmem_free_skb(sk, skb);
2547 	}
2548 	tcp_rtx_queue_purge(sk);
2549 	skb = sk->sk_tx_skb_cache;
2550 	if (skb) {
2551 		__kfree_skb(skb);
2552 		sk->sk_tx_skb_cache = NULL;
2553 	}
2554 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2555 	sk_mem_reclaim(sk);
2556 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2557 	tcp_sk(sk)->packets_out = 0;
2558 	inet_csk(sk)->icsk_backoff = 0;
2559 }
2560 
2561 int tcp_disconnect(struct sock *sk, int flags)
2562 {
2563 	struct inet_sock *inet = inet_sk(sk);
2564 	struct inet_connection_sock *icsk = inet_csk(sk);
2565 	struct tcp_sock *tp = tcp_sk(sk);
2566 	int old_state = sk->sk_state;
2567 	u32 seq;
2568 
2569 	if (old_state != TCP_CLOSE)
2570 		tcp_set_state(sk, TCP_CLOSE);
2571 
2572 	/* ABORT function of RFC793 */
2573 	if (old_state == TCP_LISTEN) {
2574 		inet_csk_listen_stop(sk);
2575 	} else if (unlikely(tp->repair)) {
2576 		sk->sk_err = ECONNABORTED;
2577 	} else if (tcp_need_reset(old_state) ||
2578 		   (tp->snd_nxt != tp->write_seq &&
2579 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2580 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2581 		 * states
2582 		 */
2583 		tcp_send_active_reset(sk, gfp_any());
2584 		sk->sk_err = ECONNRESET;
2585 	} else if (old_state == TCP_SYN_SENT)
2586 		sk->sk_err = ECONNRESET;
2587 
2588 	tcp_clear_xmit_timers(sk);
2589 	__skb_queue_purge(&sk->sk_receive_queue);
2590 	if (sk->sk_rx_skb_cache) {
2591 		__kfree_skb(sk->sk_rx_skb_cache);
2592 		sk->sk_rx_skb_cache = NULL;
2593 	}
2594 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2595 	tp->urg_data = 0;
2596 	tcp_write_queue_purge(sk);
2597 	tcp_fastopen_active_disable_ofo_check(sk);
2598 	skb_rbtree_purge(&tp->out_of_order_queue);
2599 
2600 	inet->inet_dport = 0;
2601 
2602 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2603 		inet_reset_saddr(sk);
2604 
2605 	sk->sk_shutdown = 0;
2606 	sock_reset_flag(sk, SOCK_DONE);
2607 	tp->srtt_us = 0;
2608 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2609 	tp->rcv_rtt_last_tsecr = 0;
2610 
2611 	seq = tp->write_seq + tp->max_window + 2;
2612 	if (!seq)
2613 		seq = 1;
2614 	WRITE_ONCE(tp->write_seq, seq);
2615 
2616 	icsk->icsk_backoff = 0;
2617 	tp->snd_cwnd = 2;
2618 	icsk->icsk_probes_out = 0;
2619 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2620 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2621 	tp->snd_cwnd = TCP_INIT_CWND;
2622 	tp->snd_cwnd_cnt = 0;
2623 	tp->window_clamp = 0;
2624 	tp->delivered_ce = 0;
2625 	tcp_set_ca_state(sk, TCP_CA_Open);
2626 	tp->is_sack_reneg = 0;
2627 	tcp_clear_retrans(tp);
2628 	inet_csk_delack_init(sk);
2629 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2630 	 * issue in __tcp_select_window()
2631 	 */
2632 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2633 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2634 	__sk_dst_reset(sk);
2635 	dst_release(sk->sk_rx_dst);
2636 	sk->sk_rx_dst = NULL;
2637 	tcp_saved_syn_free(tp);
2638 	tp->compressed_ack = 0;
2639 	tp->bytes_sent = 0;
2640 	tp->bytes_acked = 0;
2641 	tp->bytes_received = 0;
2642 	tp->bytes_retrans = 0;
2643 	tp->duplicate_sack[0].start_seq = 0;
2644 	tp->duplicate_sack[0].end_seq = 0;
2645 	tp->dsack_dups = 0;
2646 	tp->reord_seen = 0;
2647 	tp->retrans_out = 0;
2648 	tp->sacked_out = 0;
2649 	tp->tlp_high_seq = 0;
2650 	tp->last_oow_ack_time = 0;
2651 	/* There's a bubble in the pipe until at least the first ACK. */
2652 	tp->app_limited = ~0U;
2653 	tp->rack.mstamp = 0;
2654 	tp->rack.advanced = 0;
2655 	tp->rack.reo_wnd_steps = 1;
2656 	tp->rack.last_delivered = 0;
2657 	tp->rack.reo_wnd_persist = 0;
2658 	tp->rack.dsack_seen = 0;
2659 	tp->syn_data_acked = 0;
2660 	tp->rx_opt.saw_tstamp = 0;
2661 	tp->rx_opt.dsack = 0;
2662 	tp->rx_opt.num_sacks = 0;
2663 	tp->rcv_ooopack = 0;
2664 
2665 
2666 	/* Clean up fastopen related fields */
2667 	tcp_free_fastopen_req(tp);
2668 	inet->defer_connect = 0;
2669 	tp->fastopen_client_fail = 0;
2670 
2671 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2672 
2673 	if (sk->sk_frag.page) {
2674 		put_page(sk->sk_frag.page);
2675 		sk->sk_frag.page = NULL;
2676 		sk->sk_frag.offset = 0;
2677 	}
2678 
2679 	sk->sk_error_report(sk);
2680 	return 0;
2681 }
2682 EXPORT_SYMBOL(tcp_disconnect);
2683 
2684 static inline bool tcp_can_repair_sock(const struct sock *sk)
2685 {
2686 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2687 		(sk->sk_state != TCP_LISTEN);
2688 }
2689 
2690 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2691 {
2692 	struct tcp_repair_window opt;
2693 
2694 	if (!tp->repair)
2695 		return -EPERM;
2696 
2697 	if (len != sizeof(opt))
2698 		return -EINVAL;
2699 
2700 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2701 		return -EFAULT;
2702 
2703 	if (opt.max_window < opt.snd_wnd)
2704 		return -EINVAL;
2705 
2706 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2707 		return -EINVAL;
2708 
2709 	if (after(opt.rcv_wup, tp->rcv_nxt))
2710 		return -EINVAL;
2711 
2712 	tp->snd_wl1	= opt.snd_wl1;
2713 	tp->snd_wnd	= opt.snd_wnd;
2714 	tp->max_window	= opt.max_window;
2715 
2716 	tp->rcv_wnd	= opt.rcv_wnd;
2717 	tp->rcv_wup	= opt.rcv_wup;
2718 
2719 	return 0;
2720 }
2721 
2722 static int tcp_repair_options_est(struct sock *sk,
2723 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 	struct tcp_repair_opt opt;
2727 
2728 	while (len >= sizeof(opt)) {
2729 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2730 			return -EFAULT;
2731 
2732 		optbuf++;
2733 		len -= sizeof(opt);
2734 
2735 		switch (opt.opt_code) {
2736 		case TCPOPT_MSS:
2737 			tp->rx_opt.mss_clamp = opt.opt_val;
2738 			tcp_mtup_init(sk);
2739 			break;
2740 		case TCPOPT_WINDOW:
2741 			{
2742 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2743 				u16 rcv_wscale = opt.opt_val >> 16;
2744 
2745 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2746 					return -EFBIG;
2747 
2748 				tp->rx_opt.snd_wscale = snd_wscale;
2749 				tp->rx_opt.rcv_wscale = rcv_wscale;
2750 				tp->rx_opt.wscale_ok = 1;
2751 			}
2752 			break;
2753 		case TCPOPT_SACK_PERM:
2754 			if (opt.opt_val != 0)
2755 				return -EINVAL;
2756 
2757 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2758 			break;
2759 		case TCPOPT_TIMESTAMP:
2760 			if (opt.opt_val != 0)
2761 				return -EINVAL;
2762 
2763 			tp->rx_opt.tstamp_ok = 1;
2764 			break;
2765 		}
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2772 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2773 
2774 static void tcp_enable_tx_delay(void)
2775 {
2776 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2777 		static int __tcp_tx_delay_enabled = 0;
2778 
2779 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2780 			static_branch_enable(&tcp_tx_delay_enabled);
2781 			pr_info("TCP_TX_DELAY enabled\n");
2782 		}
2783 	}
2784 }
2785 
2786 /*
2787  *	Socket option code for TCP.
2788  */
2789 static int do_tcp_setsockopt(struct sock *sk, int level,
2790 		int optname, char __user *optval, unsigned int optlen)
2791 {
2792 	struct tcp_sock *tp = tcp_sk(sk);
2793 	struct inet_connection_sock *icsk = inet_csk(sk);
2794 	struct net *net = sock_net(sk);
2795 	int val;
2796 	int err = 0;
2797 
2798 	/* These are data/string values, all the others are ints */
2799 	switch (optname) {
2800 	case TCP_CONGESTION: {
2801 		char name[TCP_CA_NAME_MAX];
2802 
2803 		if (optlen < 1)
2804 			return -EINVAL;
2805 
2806 		val = strncpy_from_user(name, optval,
2807 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2808 		if (val < 0)
2809 			return -EFAULT;
2810 		name[val] = 0;
2811 
2812 		lock_sock(sk);
2813 		err = tcp_set_congestion_control(sk, name, true, true,
2814 						 ns_capable(sock_net(sk)->user_ns,
2815 							    CAP_NET_ADMIN));
2816 		release_sock(sk);
2817 		return err;
2818 	}
2819 	case TCP_ULP: {
2820 		char name[TCP_ULP_NAME_MAX];
2821 
2822 		if (optlen < 1)
2823 			return -EINVAL;
2824 
2825 		val = strncpy_from_user(name, optval,
2826 					min_t(long, TCP_ULP_NAME_MAX - 1,
2827 					      optlen));
2828 		if (val < 0)
2829 			return -EFAULT;
2830 		name[val] = 0;
2831 
2832 		lock_sock(sk);
2833 		err = tcp_set_ulp(sk, name);
2834 		release_sock(sk);
2835 		return err;
2836 	}
2837 	case TCP_FASTOPEN_KEY: {
2838 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
2839 		__u8 *backup_key = NULL;
2840 
2841 		/* Allow a backup key as well to facilitate key rotation
2842 		 * First key is the active one.
2843 		 */
2844 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
2845 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
2846 			return -EINVAL;
2847 
2848 		if (copy_from_user(key, optval, optlen))
2849 			return -EFAULT;
2850 
2851 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
2852 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
2853 
2854 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
2855 	}
2856 	default:
2857 		/* fallthru */
2858 		break;
2859 	}
2860 
2861 	if (optlen < sizeof(int))
2862 		return -EINVAL;
2863 
2864 	if (get_user(val, (int __user *)optval))
2865 		return -EFAULT;
2866 
2867 	lock_sock(sk);
2868 
2869 	switch (optname) {
2870 	case TCP_MAXSEG:
2871 		/* Values greater than interface MTU won't take effect. However
2872 		 * at the point when this call is done we typically don't yet
2873 		 * know which interface is going to be used
2874 		 */
2875 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2876 			err = -EINVAL;
2877 			break;
2878 		}
2879 		tp->rx_opt.user_mss = val;
2880 		break;
2881 
2882 	case TCP_NODELAY:
2883 		if (val) {
2884 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2885 			 * this option on corked socket is remembered, but
2886 			 * it is not activated until cork is cleared.
2887 			 *
2888 			 * However, when TCP_NODELAY is set we make
2889 			 * an explicit push, which overrides even TCP_CORK
2890 			 * for currently queued segments.
2891 			 */
2892 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2893 			tcp_push_pending_frames(sk);
2894 		} else {
2895 			tp->nonagle &= ~TCP_NAGLE_OFF;
2896 		}
2897 		break;
2898 
2899 	case TCP_THIN_LINEAR_TIMEOUTS:
2900 		if (val < 0 || val > 1)
2901 			err = -EINVAL;
2902 		else
2903 			tp->thin_lto = val;
2904 		break;
2905 
2906 	case TCP_THIN_DUPACK:
2907 		if (val < 0 || val > 1)
2908 			err = -EINVAL;
2909 		break;
2910 
2911 	case TCP_REPAIR:
2912 		if (!tcp_can_repair_sock(sk))
2913 			err = -EPERM;
2914 		else if (val == TCP_REPAIR_ON) {
2915 			tp->repair = 1;
2916 			sk->sk_reuse = SK_FORCE_REUSE;
2917 			tp->repair_queue = TCP_NO_QUEUE;
2918 		} else if (val == TCP_REPAIR_OFF) {
2919 			tp->repair = 0;
2920 			sk->sk_reuse = SK_NO_REUSE;
2921 			tcp_send_window_probe(sk);
2922 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
2923 			tp->repair = 0;
2924 			sk->sk_reuse = SK_NO_REUSE;
2925 		} else
2926 			err = -EINVAL;
2927 
2928 		break;
2929 
2930 	case TCP_REPAIR_QUEUE:
2931 		if (!tp->repair)
2932 			err = -EPERM;
2933 		else if ((unsigned int)val < TCP_QUEUES_NR)
2934 			tp->repair_queue = val;
2935 		else
2936 			err = -EINVAL;
2937 		break;
2938 
2939 	case TCP_QUEUE_SEQ:
2940 		if (sk->sk_state != TCP_CLOSE)
2941 			err = -EPERM;
2942 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2943 			WRITE_ONCE(tp->write_seq, val);
2944 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2945 			WRITE_ONCE(tp->rcv_nxt, val);
2946 		else
2947 			err = -EINVAL;
2948 		break;
2949 
2950 	case TCP_REPAIR_OPTIONS:
2951 		if (!tp->repair)
2952 			err = -EINVAL;
2953 		else if (sk->sk_state == TCP_ESTABLISHED)
2954 			err = tcp_repair_options_est(sk,
2955 					(struct tcp_repair_opt __user *)optval,
2956 					optlen);
2957 		else
2958 			err = -EPERM;
2959 		break;
2960 
2961 	case TCP_CORK:
2962 		/* When set indicates to always queue non-full frames.
2963 		 * Later the user clears this option and we transmit
2964 		 * any pending partial frames in the queue.  This is
2965 		 * meant to be used alongside sendfile() to get properly
2966 		 * filled frames when the user (for example) must write
2967 		 * out headers with a write() call first and then use
2968 		 * sendfile to send out the data parts.
2969 		 *
2970 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2971 		 * stronger than TCP_NODELAY.
2972 		 */
2973 		if (val) {
2974 			tp->nonagle |= TCP_NAGLE_CORK;
2975 		} else {
2976 			tp->nonagle &= ~TCP_NAGLE_CORK;
2977 			if (tp->nonagle&TCP_NAGLE_OFF)
2978 				tp->nonagle |= TCP_NAGLE_PUSH;
2979 			tcp_push_pending_frames(sk);
2980 		}
2981 		break;
2982 
2983 	case TCP_KEEPIDLE:
2984 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2985 			err = -EINVAL;
2986 		else {
2987 			tp->keepalive_time = val * HZ;
2988 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2989 			    !((1 << sk->sk_state) &
2990 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2991 				u32 elapsed = keepalive_time_elapsed(tp);
2992 				if (tp->keepalive_time > elapsed)
2993 					elapsed = tp->keepalive_time - elapsed;
2994 				else
2995 					elapsed = 0;
2996 				inet_csk_reset_keepalive_timer(sk, elapsed);
2997 			}
2998 		}
2999 		break;
3000 	case TCP_KEEPINTVL:
3001 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3002 			err = -EINVAL;
3003 		else
3004 			tp->keepalive_intvl = val * HZ;
3005 		break;
3006 	case TCP_KEEPCNT:
3007 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3008 			err = -EINVAL;
3009 		else
3010 			tp->keepalive_probes = val;
3011 		break;
3012 	case TCP_SYNCNT:
3013 		if (val < 1 || val > MAX_TCP_SYNCNT)
3014 			err = -EINVAL;
3015 		else
3016 			icsk->icsk_syn_retries = val;
3017 		break;
3018 
3019 	case TCP_SAVE_SYN:
3020 		if (val < 0 || val > 1)
3021 			err = -EINVAL;
3022 		else
3023 			tp->save_syn = val;
3024 		break;
3025 
3026 	case TCP_LINGER2:
3027 		if (val < 0)
3028 			tp->linger2 = -1;
3029 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
3030 			tp->linger2 = 0;
3031 		else
3032 			tp->linger2 = val * HZ;
3033 		break;
3034 
3035 	case TCP_DEFER_ACCEPT:
3036 		/* Translate value in seconds to number of retransmits */
3037 		icsk->icsk_accept_queue.rskq_defer_accept =
3038 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3039 					TCP_RTO_MAX / HZ);
3040 		break;
3041 
3042 	case TCP_WINDOW_CLAMP:
3043 		if (!val) {
3044 			if (sk->sk_state != TCP_CLOSE) {
3045 				err = -EINVAL;
3046 				break;
3047 			}
3048 			tp->window_clamp = 0;
3049 		} else
3050 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3051 						SOCK_MIN_RCVBUF / 2 : val;
3052 		break;
3053 
3054 	case TCP_QUICKACK:
3055 		if (!val) {
3056 			inet_csk_enter_pingpong_mode(sk);
3057 		} else {
3058 			inet_csk_exit_pingpong_mode(sk);
3059 			if ((1 << sk->sk_state) &
3060 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3061 			    inet_csk_ack_scheduled(sk)) {
3062 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3063 				tcp_cleanup_rbuf(sk, 1);
3064 				if (!(val & 1))
3065 					inet_csk_enter_pingpong_mode(sk);
3066 			}
3067 		}
3068 		break;
3069 
3070 #ifdef CONFIG_TCP_MD5SIG
3071 	case TCP_MD5SIG:
3072 	case TCP_MD5SIG_EXT:
3073 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3074 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3075 		else
3076 			err = -EINVAL;
3077 		break;
3078 #endif
3079 	case TCP_USER_TIMEOUT:
3080 		/* Cap the max time in ms TCP will retry or probe the window
3081 		 * before giving up and aborting (ETIMEDOUT) a connection.
3082 		 */
3083 		if (val < 0)
3084 			err = -EINVAL;
3085 		else
3086 			icsk->icsk_user_timeout = val;
3087 		break;
3088 
3089 	case TCP_FASTOPEN:
3090 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3091 		    TCPF_LISTEN))) {
3092 			tcp_fastopen_init_key_once(net);
3093 
3094 			fastopen_queue_tune(sk, val);
3095 		} else {
3096 			err = -EINVAL;
3097 		}
3098 		break;
3099 	case TCP_FASTOPEN_CONNECT:
3100 		if (val > 1 || val < 0) {
3101 			err = -EINVAL;
3102 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3103 			if (sk->sk_state == TCP_CLOSE)
3104 				tp->fastopen_connect = val;
3105 			else
3106 				err = -EINVAL;
3107 		} else {
3108 			err = -EOPNOTSUPP;
3109 		}
3110 		break;
3111 	case TCP_FASTOPEN_NO_COOKIE:
3112 		if (val > 1 || val < 0)
3113 			err = -EINVAL;
3114 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3115 			err = -EINVAL;
3116 		else
3117 			tp->fastopen_no_cookie = val;
3118 		break;
3119 	case TCP_TIMESTAMP:
3120 		if (!tp->repair)
3121 			err = -EPERM;
3122 		else
3123 			tp->tsoffset = val - tcp_time_stamp_raw();
3124 		break;
3125 	case TCP_REPAIR_WINDOW:
3126 		err = tcp_repair_set_window(tp, optval, optlen);
3127 		break;
3128 	case TCP_NOTSENT_LOWAT:
3129 		tp->notsent_lowat = val;
3130 		sk->sk_write_space(sk);
3131 		break;
3132 	case TCP_INQ:
3133 		if (val > 1 || val < 0)
3134 			err = -EINVAL;
3135 		else
3136 			tp->recvmsg_inq = val;
3137 		break;
3138 	case TCP_TX_DELAY:
3139 		if (val)
3140 			tcp_enable_tx_delay();
3141 		tp->tcp_tx_delay = val;
3142 		break;
3143 	default:
3144 		err = -ENOPROTOOPT;
3145 		break;
3146 	}
3147 
3148 	release_sock(sk);
3149 	return err;
3150 }
3151 
3152 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3153 		   unsigned int optlen)
3154 {
3155 	const struct inet_connection_sock *icsk = inet_csk(sk);
3156 
3157 	if (level != SOL_TCP)
3158 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3159 						     optval, optlen);
3160 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3161 }
3162 EXPORT_SYMBOL(tcp_setsockopt);
3163 
3164 #ifdef CONFIG_COMPAT
3165 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3166 			  char __user *optval, unsigned int optlen)
3167 {
3168 	if (level != SOL_TCP)
3169 		return inet_csk_compat_setsockopt(sk, level, optname,
3170 						  optval, optlen);
3171 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3172 }
3173 EXPORT_SYMBOL(compat_tcp_setsockopt);
3174 #endif
3175 
3176 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3177 				      struct tcp_info *info)
3178 {
3179 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3180 	enum tcp_chrono i;
3181 
3182 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3183 		stats[i] = tp->chrono_stat[i - 1];
3184 		if (i == tp->chrono_type)
3185 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3186 		stats[i] *= USEC_PER_SEC / HZ;
3187 		total += stats[i];
3188 	}
3189 
3190 	info->tcpi_busy_time = total;
3191 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3192 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3193 }
3194 
3195 /* Return information about state of tcp endpoint in API format. */
3196 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3197 {
3198 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3199 	const struct inet_connection_sock *icsk = inet_csk(sk);
3200 	unsigned long rate;
3201 	u32 now;
3202 	u64 rate64;
3203 	bool slow;
3204 
3205 	memset(info, 0, sizeof(*info));
3206 	if (sk->sk_type != SOCK_STREAM)
3207 		return;
3208 
3209 	info->tcpi_state = inet_sk_state_load(sk);
3210 
3211 	/* Report meaningful fields for all TCP states, including listeners */
3212 	rate = READ_ONCE(sk->sk_pacing_rate);
3213 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3214 	info->tcpi_pacing_rate = rate64;
3215 
3216 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3217 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3218 	info->tcpi_max_pacing_rate = rate64;
3219 
3220 	info->tcpi_reordering = tp->reordering;
3221 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3222 
3223 	if (info->tcpi_state == TCP_LISTEN) {
3224 		/* listeners aliased fields :
3225 		 * tcpi_unacked -> Number of children ready for accept()
3226 		 * tcpi_sacked  -> max backlog
3227 		 */
3228 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3229 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3230 		return;
3231 	}
3232 
3233 	slow = lock_sock_fast(sk);
3234 
3235 	info->tcpi_ca_state = icsk->icsk_ca_state;
3236 	info->tcpi_retransmits = icsk->icsk_retransmits;
3237 	info->tcpi_probes = icsk->icsk_probes_out;
3238 	info->tcpi_backoff = icsk->icsk_backoff;
3239 
3240 	if (tp->rx_opt.tstamp_ok)
3241 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3242 	if (tcp_is_sack(tp))
3243 		info->tcpi_options |= TCPI_OPT_SACK;
3244 	if (tp->rx_opt.wscale_ok) {
3245 		info->tcpi_options |= TCPI_OPT_WSCALE;
3246 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3247 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3248 	}
3249 
3250 	if (tp->ecn_flags & TCP_ECN_OK)
3251 		info->tcpi_options |= TCPI_OPT_ECN;
3252 	if (tp->ecn_flags & TCP_ECN_SEEN)
3253 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3254 	if (tp->syn_data_acked)
3255 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3256 
3257 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3258 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3259 	info->tcpi_snd_mss = tp->mss_cache;
3260 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3261 
3262 	info->tcpi_unacked = tp->packets_out;
3263 	info->tcpi_sacked = tp->sacked_out;
3264 
3265 	info->tcpi_lost = tp->lost_out;
3266 	info->tcpi_retrans = tp->retrans_out;
3267 
3268 	now = tcp_jiffies32;
3269 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3270 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3271 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3272 
3273 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3274 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3275 	info->tcpi_rtt = tp->srtt_us >> 3;
3276 	info->tcpi_rttvar = tp->mdev_us >> 2;
3277 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3278 	info->tcpi_advmss = tp->advmss;
3279 
3280 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3281 	info->tcpi_rcv_space = tp->rcvq_space.space;
3282 
3283 	info->tcpi_total_retrans = tp->total_retrans;
3284 
3285 	info->tcpi_bytes_acked = tp->bytes_acked;
3286 	info->tcpi_bytes_received = tp->bytes_received;
3287 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3288 	tcp_get_info_chrono_stats(tp, info);
3289 
3290 	info->tcpi_segs_out = tp->segs_out;
3291 	info->tcpi_segs_in = tp->segs_in;
3292 
3293 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3294 	info->tcpi_data_segs_in = tp->data_segs_in;
3295 	info->tcpi_data_segs_out = tp->data_segs_out;
3296 
3297 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3298 	rate64 = tcp_compute_delivery_rate(tp);
3299 	if (rate64)
3300 		info->tcpi_delivery_rate = rate64;
3301 	info->tcpi_delivered = tp->delivered;
3302 	info->tcpi_delivered_ce = tp->delivered_ce;
3303 	info->tcpi_bytes_sent = tp->bytes_sent;
3304 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3305 	info->tcpi_dsack_dups = tp->dsack_dups;
3306 	info->tcpi_reord_seen = tp->reord_seen;
3307 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3308 	info->tcpi_snd_wnd = tp->snd_wnd;
3309 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3310 	unlock_sock_fast(sk, slow);
3311 }
3312 EXPORT_SYMBOL_GPL(tcp_get_info);
3313 
3314 static size_t tcp_opt_stats_get_size(void)
3315 {
3316 	return
3317 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3318 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3319 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3320 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3321 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3322 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3323 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3324 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3325 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3326 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3327 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3328 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3329 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3330 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3331 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3332 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3333 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3334 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3335 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3336 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3337 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3338 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3339 		0;
3340 }
3341 
3342 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3343 {
3344 	const struct tcp_sock *tp = tcp_sk(sk);
3345 	struct sk_buff *stats;
3346 	struct tcp_info info;
3347 	unsigned long rate;
3348 	u64 rate64;
3349 
3350 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3351 	if (!stats)
3352 		return NULL;
3353 
3354 	tcp_get_info_chrono_stats(tp, &info);
3355 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3356 			  info.tcpi_busy_time, TCP_NLA_PAD);
3357 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3358 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3359 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3360 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3361 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3362 			  tp->data_segs_out, TCP_NLA_PAD);
3363 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3364 			  tp->total_retrans, TCP_NLA_PAD);
3365 
3366 	rate = READ_ONCE(sk->sk_pacing_rate);
3367 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3368 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3369 
3370 	rate64 = tcp_compute_delivery_rate(tp);
3371 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3372 
3373 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3374 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3375 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3376 
3377 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3378 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3379 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3380 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3381 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3382 
3383 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3384 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3385 
3386 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3387 			  TCP_NLA_PAD);
3388 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3389 			  TCP_NLA_PAD);
3390 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3391 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3392 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3393 
3394 	return stats;
3395 }
3396 
3397 static int do_tcp_getsockopt(struct sock *sk, int level,
3398 		int optname, char __user *optval, int __user *optlen)
3399 {
3400 	struct inet_connection_sock *icsk = inet_csk(sk);
3401 	struct tcp_sock *tp = tcp_sk(sk);
3402 	struct net *net = sock_net(sk);
3403 	int val, len;
3404 
3405 	if (get_user(len, optlen))
3406 		return -EFAULT;
3407 
3408 	len = min_t(unsigned int, len, sizeof(int));
3409 
3410 	if (len < 0)
3411 		return -EINVAL;
3412 
3413 	switch (optname) {
3414 	case TCP_MAXSEG:
3415 		val = tp->mss_cache;
3416 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3417 			val = tp->rx_opt.user_mss;
3418 		if (tp->repair)
3419 			val = tp->rx_opt.mss_clamp;
3420 		break;
3421 	case TCP_NODELAY:
3422 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3423 		break;
3424 	case TCP_CORK:
3425 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3426 		break;
3427 	case TCP_KEEPIDLE:
3428 		val = keepalive_time_when(tp) / HZ;
3429 		break;
3430 	case TCP_KEEPINTVL:
3431 		val = keepalive_intvl_when(tp) / HZ;
3432 		break;
3433 	case TCP_KEEPCNT:
3434 		val = keepalive_probes(tp);
3435 		break;
3436 	case TCP_SYNCNT:
3437 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3438 		break;
3439 	case TCP_LINGER2:
3440 		val = tp->linger2;
3441 		if (val >= 0)
3442 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3443 		break;
3444 	case TCP_DEFER_ACCEPT:
3445 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3446 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3447 		break;
3448 	case TCP_WINDOW_CLAMP:
3449 		val = tp->window_clamp;
3450 		break;
3451 	case TCP_INFO: {
3452 		struct tcp_info info;
3453 
3454 		if (get_user(len, optlen))
3455 			return -EFAULT;
3456 
3457 		tcp_get_info(sk, &info);
3458 
3459 		len = min_t(unsigned int, len, sizeof(info));
3460 		if (put_user(len, optlen))
3461 			return -EFAULT;
3462 		if (copy_to_user(optval, &info, len))
3463 			return -EFAULT;
3464 		return 0;
3465 	}
3466 	case TCP_CC_INFO: {
3467 		const struct tcp_congestion_ops *ca_ops;
3468 		union tcp_cc_info info;
3469 		size_t sz = 0;
3470 		int attr;
3471 
3472 		if (get_user(len, optlen))
3473 			return -EFAULT;
3474 
3475 		ca_ops = icsk->icsk_ca_ops;
3476 		if (ca_ops && ca_ops->get_info)
3477 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3478 
3479 		len = min_t(unsigned int, len, sz);
3480 		if (put_user(len, optlen))
3481 			return -EFAULT;
3482 		if (copy_to_user(optval, &info, len))
3483 			return -EFAULT;
3484 		return 0;
3485 	}
3486 	case TCP_QUICKACK:
3487 		val = !inet_csk_in_pingpong_mode(sk);
3488 		break;
3489 
3490 	case TCP_CONGESTION:
3491 		if (get_user(len, optlen))
3492 			return -EFAULT;
3493 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3494 		if (put_user(len, optlen))
3495 			return -EFAULT;
3496 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3497 			return -EFAULT;
3498 		return 0;
3499 
3500 	case TCP_ULP:
3501 		if (get_user(len, optlen))
3502 			return -EFAULT;
3503 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3504 		if (!icsk->icsk_ulp_ops) {
3505 			if (put_user(0, optlen))
3506 				return -EFAULT;
3507 			return 0;
3508 		}
3509 		if (put_user(len, optlen))
3510 			return -EFAULT;
3511 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3512 			return -EFAULT;
3513 		return 0;
3514 
3515 	case TCP_FASTOPEN_KEY: {
3516 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3517 		struct tcp_fastopen_context *ctx;
3518 		unsigned int key_len = 0;
3519 
3520 		if (get_user(len, optlen))
3521 			return -EFAULT;
3522 
3523 		rcu_read_lock();
3524 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3525 		if (ctx) {
3526 			key_len = tcp_fastopen_context_len(ctx) *
3527 					TCP_FASTOPEN_KEY_LENGTH;
3528 			memcpy(&key[0], &ctx->key[0], key_len);
3529 		}
3530 		rcu_read_unlock();
3531 
3532 		len = min_t(unsigned int, len, key_len);
3533 		if (put_user(len, optlen))
3534 			return -EFAULT;
3535 		if (copy_to_user(optval, key, len))
3536 			return -EFAULT;
3537 		return 0;
3538 	}
3539 	case TCP_THIN_LINEAR_TIMEOUTS:
3540 		val = tp->thin_lto;
3541 		break;
3542 
3543 	case TCP_THIN_DUPACK:
3544 		val = 0;
3545 		break;
3546 
3547 	case TCP_REPAIR:
3548 		val = tp->repair;
3549 		break;
3550 
3551 	case TCP_REPAIR_QUEUE:
3552 		if (tp->repair)
3553 			val = tp->repair_queue;
3554 		else
3555 			return -EINVAL;
3556 		break;
3557 
3558 	case TCP_REPAIR_WINDOW: {
3559 		struct tcp_repair_window opt;
3560 
3561 		if (get_user(len, optlen))
3562 			return -EFAULT;
3563 
3564 		if (len != sizeof(opt))
3565 			return -EINVAL;
3566 
3567 		if (!tp->repair)
3568 			return -EPERM;
3569 
3570 		opt.snd_wl1	= tp->snd_wl1;
3571 		opt.snd_wnd	= tp->snd_wnd;
3572 		opt.max_window	= tp->max_window;
3573 		opt.rcv_wnd	= tp->rcv_wnd;
3574 		opt.rcv_wup	= tp->rcv_wup;
3575 
3576 		if (copy_to_user(optval, &opt, len))
3577 			return -EFAULT;
3578 		return 0;
3579 	}
3580 	case TCP_QUEUE_SEQ:
3581 		if (tp->repair_queue == TCP_SEND_QUEUE)
3582 			val = tp->write_seq;
3583 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3584 			val = tp->rcv_nxt;
3585 		else
3586 			return -EINVAL;
3587 		break;
3588 
3589 	case TCP_USER_TIMEOUT:
3590 		val = icsk->icsk_user_timeout;
3591 		break;
3592 
3593 	case TCP_FASTOPEN:
3594 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3595 		break;
3596 
3597 	case TCP_FASTOPEN_CONNECT:
3598 		val = tp->fastopen_connect;
3599 		break;
3600 
3601 	case TCP_FASTOPEN_NO_COOKIE:
3602 		val = tp->fastopen_no_cookie;
3603 		break;
3604 
3605 	case TCP_TX_DELAY:
3606 		val = tp->tcp_tx_delay;
3607 		break;
3608 
3609 	case TCP_TIMESTAMP:
3610 		val = tcp_time_stamp_raw() + tp->tsoffset;
3611 		break;
3612 	case TCP_NOTSENT_LOWAT:
3613 		val = tp->notsent_lowat;
3614 		break;
3615 	case TCP_INQ:
3616 		val = tp->recvmsg_inq;
3617 		break;
3618 	case TCP_SAVE_SYN:
3619 		val = tp->save_syn;
3620 		break;
3621 	case TCP_SAVED_SYN: {
3622 		if (get_user(len, optlen))
3623 			return -EFAULT;
3624 
3625 		lock_sock(sk);
3626 		if (tp->saved_syn) {
3627 			if (len < tp->saved_syn[0]) {
3628 				if (put_user(tp->saved_syn[0], optlen)) {
3629 					release_sock(sk);
3630 					return -EFAULT;
3631 				}
3632 				release_sock(sk);
3633 				return -EINVAL;
3634 			}
3635 			len = tp->saved_syn[0];
3636 			if (put_user(len, optlen)) {
3637 				release_sock(sk);
3638 				return -EFAULT;
3639 			}
3640 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3641 				release_sock(sk);
3642 				return -EFAULT;
3643 			}
3644 			tcp_saved_syn_free(tp);
3645 			release_sock(sk);
3646 		} else {
3647 			release_sock(sk);
3648 			len = 0;
3649 			if (put_user(len, optlen))
3650 				return -EFAULT;
3651 		}
3652 		return 0;
3653 	}
3654 #ifdef CONFIG_MMU
3655 	case TCP_ZEROCOPY_RECEIVE: {
3656 		struct tcp_zerocopy_receive zc;
3657 		int err;
3658 
3659 		if (get_user(len, optlen))
3660 			return -EFAULT;
3661 		if (len != sizeof(zc))
3662 			return -EINVAL;
3663 		if (copy_from_user(&zc, optval, len))
3664 			return -EFAULT;
3665 		lock_sock(sk);
3666 		err = tcp_zerocopy_receive(sk, &zc);
3667 		release_sock(sk);
3668 		if (!err && copy_to_user(optval, &zc, len))
3669 			err = -EFAULT;
3670 		return err;
3671 	}
3672 #endif
3673 	default:
3674 		return -ENOPROTOOPT;
3675 	}
3676 
3677 	if (put_user(len, optlen))
3678 		return -EFAULT;
3679 	if (copy_to_user(optval, &val, len))
3680 		return -EFAULT;
3681 	return 0;
3682 }
3683 
3684 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3685 		   int __user *optlen)
3686 {
3687 	struct inet_connection_sock *icsk = inet_csk(sk);
3688 
3689 	if (level != SOL_TCP)
3690 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3691 						     optval, optlen);
3692 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3693 }
3694 EXPORT_SYMBOL(tcp_getsockopt);
3695 
3696 #ifdef CONFIG_COMPAT
3697 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3698 			  char __user *optval, int __user *optlen)
3699 {
3700 	if (level != SOL_TCP)
3701 		return inet_csk_compat_getsockopt(sk, level, optname,
3702 						  optval, optlen);
3703 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3704 }
3705 EXPORT_SYMBOL(compat_tcp_getsockopt);
3706 #endif
3707 
3708 #ifdef CONFIG_TCP_MD5SIG
3709 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3710 static DEFINE_MUTEX(tcp_md5sig_mutex);
3711 static bool tcp_md5sig_pool_populated = false;
3712 
3713 static void __tcp_alloc_md5sig_pool(void)
3714 {
3715 	struct crypto_ahash *hash;
3716 	int cpu;
3717 
3718 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3719 	if (IS_ERR(hash))
3720 		return;
3721 
3722 	for_each_possible_cpu(cpu) {
3723 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3724 		struct ahash_request *req;
3725 
3726 		if (!scratch) {
3727 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3728 					       sizeof(struct tcphdr),
3729 					       GFP_KERNEL,
3730 					       cpu_to_node(cpu));
3731 			if (!scratch)
3732 				return;
3733 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3734 		}
3735 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3736 			continue;
3737 
3738 		req = ahash_request_alloc(hash, GFP_KERNEL);
3739 		if (!req)
3740 			return;
3741 
3742 		ahash_request_set_callback(req, 0, NULL, NULL);
3743 
3744 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3745 	}
3746 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3747 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3748 	 */
3749 	smp_wmb();
3750 	tcp_md5sig_pool_populated = true;
3751 }
3752 
3753 bool tcp_alloc_md5sig_pool(void)
3754 {
3755 	if (unlikely(!tcp_md5sig_pool_populated)) {
3756 		mutex_lock(&tcp_md5sig_mutex);
3757 
3758 		if (!tcp_md5sig_pool_populated) {
3759 			__tcp_alloc_md5sig_pool();
3760 			if (tcp_md5sig_pool_populated)
3761 				static_branch_inc(&tcp_md5_needed);
3762 		}
3763 
3764 		mutex_unlock(&tcp_md5sig_mutex);
3765 	}
3766 	return tcp_md5sig_pool_populated;
3767 }
3768 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3769 
3770 
3771 /**
3772  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3773  *
3774  *	We use percpu structure, so if we succeed, we exit with preemption
3775  *	and BH disabled, to make sure another thread or softirq handling
3776  *	wont try to get same context.
3777  */
3778 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3779 {
3780 	local_bh_disable();
3781 
3782 	if (tcp_md5sig_pool_populated) {
3783 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3784 		smp_rmb();
3785 		return this_cpu_ptr(&tcp_md5sig_pool);
3786 	}
3787 	local_bh_enable();
3788 	return NULL;
3789 }
3790 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3791 
3792 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3793 			  const struct sk_buff *skb, unsigned int header_len)
3794 {
3795 	struct scatterlist sg;
3796 	const struct tcphdr *tp = tcp_hdr(skb);
3797 	struct ahash_request *req = hp->md5_req;
3798 	unsigned int i;
3799 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3800 					   skb_headlen(skb) - header_len : 0;
3801 	const struct skb_shared_info *shi = skb_shinfo(skb);
3802 	struct sk_buff *frag_iter;
3803 
3804 	sg_init_table(&sg, 1);
3805 
3806 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3807 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3808 	if (crypto_ahash_update(req))
3809 		return 1;
3810 
3811 	for (i = 0; i < shi->nr_frags; ++i) {
3812 		const skb_frag_t *f = &shi->frags[i];
3813 		unsigned int offset = skb_frag_off(f);
3814 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3815 
3816 		sg_set_page(&sg, page, skb_frag_size(f),
3817 			    offset_in_page(offset));
3818 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3819 		if (crypto_ahash_update(req))
3820 			return 1;
3821 	}
3822 
3823 	skb_walk_frags(skb, frag_iter)
3824 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3825 			return 1;
3826 
3827 	return 0;
3828 }
3829 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3830 
3831 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3832 {
3833 	struct scatterlist sg;
3834 
3835 	sg_init_one(&sg, key->key, key->keylen);
3836 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3837 	return crypto_ahash_update(hp->md5_req);
3838 }
3839 EXPORT_SYMBOL(tcp_md5_hash_key);
3840 
3841 #endif
3842 
3843 void tcp_done(struct sock *sk)
3844 {
3845 	struct request_sock *req;
3846 
3847 	/* We might be called with a new socket, after
3848 	 * inet_csk_prepare_forced_close() has been called
3849 	 * so we can not use lockdep_sock_is_held(sk)
3850 	 */
3851 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
3852 
3853 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3854 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3855 
3856 	tcp_set_state(sk, TCP_CLOSE);
3857 	tcp_clear_xmit_timers(sk);
3858 	if (req)
3859 		reqsk_fastopen_remove(sk, req, false);
3860 
3861 	sk->sk_shutdown = SHUTDOWN_MASK;
3862 
3863 	if (!sock_flag(sk, SOCK_DEAD))
3864 		sk->sk_state_change(sk);
3865 	else
3866 		inet_csk_destroy_sock(sk);
3867 }
3868 EXPORT_SYMBOL_GPL(tcp_done);
3869 
3870 int tcp_abort(struct sock *sk, int err)
3871 {
3872 	if (!sk_fullsock(sk)) {
3873 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3874 			struct request_sock *req = inet_reqsk(sk);
3875 
3876 			local_bh_disable();
3877 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3878 			local_bh_enable();
3879 			return 0;
3880 		}
3881 		return -EOPNOTSUPP;
3882 	}
3883 
3884 	/* Don't race with userspace socket closes such as tcp_close. */
3885 	lock_sock(sk);
3886 
3887 	if (sk->sk_state == TCP_LISTEN) {
3888 		tcp_set_state(sk, TCP_CLOSE);
3889 		inet_csk_listen_stop(sk);
3890 	}
3891 
3892 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3893 	local_bh_disable();
3894 	bh_lock_sock(sk);
3895 
3896 	if (!sock_flag(sk, SOCK_DEAD)) {
3897 		sk->sk_err = err;
3898 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3899 		smp_wmb();
3900 		sk->sk_error_report(sk);
3901 		if (tcp_need_reset(sk->sk_state))
3902 			tcp_send_active_reset(sk, GFP_ATOMIC);
3903 		tcp_done(sk);
3904 	}
3905 
3906 	bh_unlock_sock(sk);
3907 	local_bh_enable();
3908 	tcp_write_queue_purge(sk);
3909 	release_sock(sk);
3910 	return 0;
3911 }
3912 EXPORT_SYMBOL_GPL(tcp_abort);
3913 
3914 extern struct tcp_congestion_ops tcp_reno;
3915 
3916 static __initdata unsigned long thash_entries;
3917 static int __init set_thash_entries(char *str)
3918 {
3919 	ssize_t ret;
3920 
3921 	if (!str)
3922 		return 0;
3923 
3924 	ret = kstrtoul(str, 0, &thash_entries);
3925 	if (ret)
3926 		return 0;
3927 
3928 	return 1;
3929 }
3930 __setup("thash_entries=", set_thash_entries);
3931 
3932 static void __init tcp_init_mem(void)
3933 {
3934 	unsigned long limit = nr_free_buffer_pages() / 16;
3935 
3936 	limit = max(limit, 128UL);
3937 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3938 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3939 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3940 }
3941 
3942 void __init tcp_init(void)
3943 {
3944 	int max_rshare, max_wshare, cnt;
3945 	unsigned long limit;
3946 	unsigned int i;
3947 
3948 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3949 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3950 		     sizeof_field(struct sk_buff, cb));
3951 
3952 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3953 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3954 	inet_hashinfo_init(&tcp_hashinfo);
3955 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3956 			    thash_entries, 21,  /* one slot per 2 MB*/
3957 			    0, 64 * 1024);
3958 	tcp_hashinfo.bind_bucket_cachep =
3959 		kmem_cache_create("tcp_bind_bucket",
3960 				  sizeof(struct inet_bind_bucket), 0,
3961 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3962 
3963 	/* Size and allocate the main established and bind bucket
3964 	 * hash tables.
3965 	 *
3966 	 * The methodology is similar to that of the buffer cache.
3967 	 */
3968 	tcp_hashinfo.ehash =
3969 		alloc_large_system_hash("TCP established",
3970 					sizeof(struct inet_ehash_bucket),
3971 					thash_entries,
3972 					17, /* one slot per 128 KB of memory */
3973 					0,
3974 					NULL,
3975 					&tcp_hashinfo.ehash_mask,
3976 					0,
3977 					thash_entries ? 0 : 512 * 1024);
3978 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3979 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3980 
3981 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3982 		panic("TCP: failed to alloc ehash_locks");
3983 	tcp_hashinfo.bhash =
3984 		alloc_large_system_hash("TCP bind",
3985 					sizeof(struct inet_bind_hashbucket),
3986 					tcp_hashinfo.ehash_mask + 1,
3987 					17, /* one slot per 128 KB of memory */
3988 					0,
3989 					&tcp_hashinfo.bhash_size,
3990 					NULL,
3991 					0,
3992 					64 * 1024);
3993 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3994 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3995 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3996 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3997 	}
3998 
3999 
4000 	cnt = tcp_hashinfo.ehash_mask + 1;
4001 	sysctl_tcp_max_orphans = cnt / 2;
4002 
4003 	tcp_init_mem();
4004 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4005 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4006 	max_wshare = min(4UL*1024*1024, limit);
4007 	max_rshare = min(6UL*1024*1024, limit);
4008 
4009 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4010 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4011 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4012 
4013 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4014 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4015 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4016 
4017 	pr_info("Hash tables configured (established %u bind %u)\n",
4018 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4019 
4020 	tcp_v4_init();
4021 	tcp_metrics_init();
4022 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4023 	tcp_tasklet_init();
4024 }
4025