1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 458 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1166 int *copied, size_t size, 1167 struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1175 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1176 uaddr->sa_family == AF_UNSPEC)) 1177 return -EOPNOTSUPP; 1178 if (tp->fastopen_req) 1179 return -EALREADY; /* Another Fast Open is in progress */ 1180 1181 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1182 sk->sk_allocation); 1183 if (unlikely(!tp->fastopen_req)) 1184 return -ENOBUFS; 1185 tp->fastopen_req->data = msg; 1186 tp->fastopen_req->size = size; 1187 tp->fastopen_req->uarg = uarg; 1188 1189 if (inet->defer_connect) { 1190 err = tcp_connect(sk); 1191 /* Same failure procedure as in tcp_v4/6_connect */ 1192 if (err) { 1193 tcp_set_state(sk, TCP_CLOSE); 1194 inet->inet_dport = 0; 1195 sk->sk_route_caps = 0; 1196 } 1197 } 1198 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1199 err = __inet_stream_connect(sk->sk_socket, uaddr, 1200 msg->msg_namelen, flags, 1); 1201 /* fastopen_req could already be freed in __inet_stream_connect 1202 * if the connection times out or gets rst 1203 */ 1204 if (tp->fastopen_req) { 1205 *copied = tp->fastopen_req->copied; 1206 tcp_free_fastopen_req(tp); 1207 inet->defer_connect = 0; 1208 } 1209 return err; 1210 } 1211 1212 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1213 { 1214 struct tcp_sock *tp = tcp_sk(sk); 1215 struct ubuf_info *uarg = NULL; 1216 struct sk_buff *skb; 1217 struct sockcm_cookie sockc; 1218 int flags, err, copied = 0; 1219 int mss_now = 0, size_goal, copied_syn = 0; 1220 int process_backlog = 0; 1221 bool zc = false; 1222 long timeo; 1223 1224 flags = msg->msg_flags; 1225 1226 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1227 skb = tcp_write_queue_tail(sk); 1228 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1229 if (!uarg) { 1230 err = -ENOBUFS; 1231 goto out_err; 1232 } 1233 1234 zc = sk->sk_route_caps & NETIF_F_SG; 1235 if (!zc) 1236 uarg->zerocopy = 0; 1237 } 1238 1239 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1240 !tp->repair) { 1241 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1242 if (err == -EINPROGRESS && copied_syn > 0) 1243 goto out; 1244 else if (err) 1245 goto out_err; 1246 } 1247 1248 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1249 1250 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1251 1252 /* Wait for a connection to finish. One exception is TCP Fast Open 1253 * (passive side) where data is allowed to be sent before a connection 1254 * is fully established. 1255 */ 1256 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1257 !tcp_passive_fastopen(sk)) { 1258 err = sk_stream_wait_connect(sk, &timeo); 1259 if (err != 0) 1260 goto do_error; 1261 } 1262 1263 if (unlikely(tp->repair)) { 1264 if (tp->repair_queue == TCP_RECV_QUEUE) { 1265 copied = tcp_send_rcvq(sk, msg, size); 1266 goto out_nopush; 1267 } 1268 1269 err = -EINVAL; 1270 if (tp->repair_queue == TCP_NO_QUEUE) 1271 goto out_err; 1272 1273 /* 'common' sending to sendq */ 1274 } 1275 1276 sockcm_init(&sockc, sk); 1277 if (msg->msg_controllen) { 1278 err = sock_cmsg_send(sk, msg, &sockc); 1279 if (unlikely(err)) { 1280 err = -EINVAL; 1281 goto out_err; 1282 } 1283 } 1284 1285 /* This should be in poll */ 1286 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1287 1288 /* Ok commence sending. */ 1289 copied = 0; 1290 1291 restart: 1292 mss_now = tcp_send_mss(sk, &size_goal, flags); 1293 1294 err = -EPIPE; 1295 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1296 goto do_error; 1297 1298 while (msg_data_left(msg)) { 1299 int copy = 0; 1300 1301 skb = tcp_write_queue_tail(sk); 1302 if (skb) 1303 copy = size_goal - skb->len; 1304 1305 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1306 bool first_skb; 1307 1308 new_segment: 1309 if (!sk_stream_memory_free(sk)) 1310 goto wait_for_space; 1311 1312 if (unlikely(process_backlog >= 16)) { 1313 process_backlog = 0; 1314 if (sk_flush_backlog(sk)) 1315 goto restart; 1316 } 1317 first_skb = tcp_rtx_and_write_queues_empty(sk); 1318 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1319 first_skb); 1320 if (!skb) 1321 goto wait_for_space; 1322 1323 process_backlog++; 1324 1325 tcp_skb_entail(sk, skb); 1326 copy = size_goal; 1327 1328 /* All packets are restored as if they have 1329 * already been sent. skb_mstamp_ns isn't set to 1330 * avoid wrong rtt estimation. 1331 */ 1332 if (tp->repair) 1333 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1334 } 1335 1336 /* Try to append data to the end of skb. */ 1337 if (copy > msg_data_left(msg)) 1338 copy = msg_data_left(msg); 1339 1340 if (!zc) { 1341 bool merge = true; 1342 int i = skb_shinfo(skb)->nr_frags; 1343 struct page_frag *pfrag = sk_page_frag(sk); 1344 1345 if (!sk_page_frag_refill(sk, pfrag)) 1346 goto wait_for_space; 1347 1348 if (!skb_can_coalesce(skb, i, pfrag->page, 1349 pfrag->offset)) { 1350 if (i >= sysctl_max_skb_frags) { 1351 tcp_mark_push(tp, skb); 1352 goto new_segment; 1353 } 1354 merge = false; 1355 } 1356 1357 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1358 1359 if (tcp_downgrade_zcopy_pure(sk, skb)) 1360 goto wait_for_space; 1361 1362 copy = tcp_wmem_schedule(sk, copy); 1363 if (!copy) 1364 goto wait_for_space; 1365 1366 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1367 pfrag->page, 1368 pfrag->offset, 1369 copy); 1370 if (err) 1371 goto do_error; 1372 1373 /* Update the skb. */ 1374 if (merge) { 1375 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1376 } else { 1377 skb_fill_page_desc(skb, i, pfrag->page, 1378 pfrag->offset, copy); 1379 page_ref_inc(pfrag->page); 1380 } 1381 pfrag->offset += copy; 1382 } else { 1383 /* First append to a fragless skb builds initial 1384 * pure zerocopy skb 1385 */ 1386 if (!skb->len) 1387 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1388 1389 if (!skb_zcopy_pure(skb)) { 1390 copy = tcp_wmem_schedule(sk, copy); 1391 if (!copy) 1392 goto wait_for_space; 1393 } 1394 1395 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1396 if (err == -EMSGSIZE || err == -EEXIST) { 1397 tcp_mark_push(tp, skb); 1398 goto new_segment; 1399 } 1400 if (err < 0) 1401 goto do_error; 1402 copy = err; 1403 } 1404 1405 if (!copied) 1406 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1407 1408 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1409 TCP_SKB_CB(skb)->end_seq += copy; 1410 tcp_skb_pcount_set(skb, 0); 1411 1412 copied += copy; 1413 if (!msg_data_left(msg)) { 1414 if (unlikely(flags & MSG_EOR)) 1415 TCP_SKB_CB(skb)->eor = 1; 1416 goto out; 1417 } 1418 1419 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1420 continue; 1421 1422 if (forced_push(tp)) { 1423 tcp_mark_push(tp, skb); 1424 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1425 } else if (skb == tcp_send_head(sk)) 1426 tcp_push_one(sk, mss_now); 1427 continue; 1428 1429 wait_for_space: 1430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1431 if (copied) 1432 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1433 TCP_NAGLE_PUSH, size_goal); 1434 1435 err = sk_stream_wait_memory(sk, &timeo); 1436 if (err != 0) 1437 goto do_error; 1438 1439 mss_now = tcp_send_mss(sk, &size_goal, flags); 1440 } 1441 1442 out: 1443 if (copied) { 1444 tcp_tx_timestamp(sk, sockc.tsflags); 1445 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1446 } 1447 out_nopush: 1448 net_zcopy_put(uarg); 1449 return copied + copied_syn; 1450 1451 do_error: 1452 tcp_remove_empty_skb(sk); 1453 1454 if (copied + copied_syn) 1455 goto out; 1456 out_err: 1457 net_zcopy_put_abort(uarg, true); 1458 err = sk_stream_error(sk, flags, err); 1459 /* make sure we wake any epoll edge trigger waiter */ 1460 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1461 sk->sk_write_space(sk); 1462 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1463 } 1464 return err; 1465 } 1466 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1467 1468 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1469 { 1470 int ret; 1471 1472 lock_sock(sk); 1473 ret = tcp_sendmsg_locked(sk, msg, size); 1474 release_sock(sk); 1475 1476 return ret; 1477 } 1478 EXPORT_SYMBOL(tcp_sendmsg); 1479 1480 /* 1481 * Handle reading urgent data. BSD has very simple semantics for 1482 * this, no blocking and very strange errors 8) 1483 */ 1484 1485 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1486 { 1487 struct tcp_sock *tp = tcp_sk(sk); 1488 1489 /* No URG data to read. */ 1490 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1491 tp->urg_data == TCP_URG_READ) 1492 return -EINVAL; /* Yes this is right ! */ 1493 1494 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1495 return -ENOTCONN; 1496 1497 if (tp->urg_data & TCP_URG_VALID) { 1498 int err = 0; 1499 char c = tp->urg_data; 1500 1501 if (!(flags & MSG_PEEK)) 1502 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1503 1504 /* Read urgent data. */ 1505 msg->msg_flags |= MSG_OOB; 1506 1507 if (len > 0) { 1508 if (!(flags & MSG_TRUNC)) 1509 err = memcpy_to_msg(msg, &c, 1); 1510 len = 1; 1511 } else 1512 msg->msg_flags |= MSG_TRUNC; 1513 1514 return err ? -EFAULT : len; 1515 } 1516 1517 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1518 return 0; 1519 1520 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1521 * the available implementations agree in this case: 1522 * this call should never block, independent of the 1523 * blocking state of the socket. 1524 * Mike <pall@rz.uni-karlsruhe.de> 1525 */ 1526 return -EAGAIN; 1527 } 1528 1529 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1530 { 1531 struct sk_buff *skb; 1532 int copied = 0, err = 0; 1533 1534 /* XXX -- need to support SO_PEEK_OFF */ 1535 1536 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1537 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1538 if (err) 1539 return err; 1540 copied += skb->len; 1541 } 1542 1543 skb_queue_walk(&sk->sk_write_queue, skb) { 1544 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1545 if (err) 1546 break; 1547 1548 copied += skb->len; 1549 } 1550 1551 return err ?: copied; 1552 } 1553 1554 /* Clean up the receive buffer for full frames taken by the user, 1555 * then send an ACK if necessary. COPIED is the number of bytes 1556 * tcp_recvmsg has given to the user so far, it speeds up the 1557 * calculation of whether or not we must ACK for the sake of 1558 * a window update. 1559 */ 1560 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1561 { 1562 struct tcp_sock *tp = tcp_sk(sk); 1563 bool time_to_ack = false; 1564 1565 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1566 1567 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1568 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1569 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1570 1571 if (inet_csk_ack_scheduled(sk)) { 1572 const struct inet_connection_sock *icsk = inet_csk(sk); 1573 1574 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1575 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1576 /* 1577 * If this read emptied read buffer, we send ACK, if 1578 * connection is not bidirectional, user drained 1579 * receive buffer and there was a small segment 1580 * in queue. 1581 */ 1582 (copied > 0 && 1583 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1584 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1585 !inet_csk_in_pingpong_mode(sk))) && 1586 !atomic_read(&sk->sk_rmem_alloc))) 1587 time_to_ack = true; 1588 } 1589 1590 /* We send an ACK if we can now advertise a non-zero window 1591 * which has been raised "significantly". 1592 * 1593 * Even if window raised up to infinity, do not send window open ACK 1594 * in states, where we will not receive more. It is useless. 1595 */ 1596 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1597 __u32 rcv_window_now = tcp_receive_window(tp); 1598 1599 /* Optimize, __tcp_select_window() is not cheap. */ 1600 if (2*rcv_window_now <= tp->window_clamp) { 1601 __u32 new_window = __tcp_select_window(sk); 1602 1603 /* Send ACK now, if this read freed lots of space 1604 * in our buffer. Certainly, new_window is new window. 1605 * We can advertise it now, if it is not less than current one. 1606 * "Lots" means "at least twice" here. 1607 */ 1608 if (new_window && new_window >= 2 * rcv_window_now) 1609 time_to_ack = true; 1610 } 1611 } 1612 if (time_to_ack) 1613 tcp_send_ack(sk); 1614 } 1615 1616 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1617 { 1618 __skb_unlink(skb, &sk->sk_receive_queue); 1619 if (likely(skb->destructor == sock_rfree)) { 1620 sock_rfree(skb); 1621 skb->destructor = NULL; 1622 skb->sk = NULL; 1623 return skb_attempt_defer_free(skb); 1624 } 1625 __kfree_skb(skb); 1626 } 1627 1628 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1629 { 1630 struct sk_buff *skb; 1631 u32 offset; 1632 1633 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1634 offset = seq - TCP_SKB_CB(skb)->seq; 1635 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1636 pr_err_once("%s: found a SYN, please report !\n", __func__); 1637 offset--; 1638 } 1639 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1640 *off = offset; 1641 return skb; 1642 } 1643 /* This looks weird, but this can happen if TCP collapsing 1644 * splitted a fat GRO packet, while we released socket lock 1645 * in skb_splice_bits() 1646 */ 1647 tcp_eat_recv_skb(sk, skb); 1648 } 1649 return NULL; 1650 } 1651 1652 /* 1653 * This routine provides an alternative to tcp_recvmsg() for routines 1654 * that would like to handle copying from skbuffs directly in 'sendfile' 1655 * fashion. 1656 * Note: 1657 * - It is assumed that the socket was locked by the caller. 1658 * - The routine does not block. 1659 * - At present, there is no support for reading OOB data 1660 * or for 'peeking' the socket using this routine 1661 * (although both would be easy to implement). 1662 */ 1663 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1664 sk_read_actor_t recv_actor) 1665 { 1666 struct sk_buff *skb; 1667 struct tcp_sock *tp = tcp_sk(sk); 1668 u32 seq = tp->copied_seq; 1669 u32 offset; 1670 int copied = 0; 1671 1672 if (sk->sk_state == TCP_LISTEN) 1673 return -ENOTCONN; 1674 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1675 if (offset < skb->len) { 1676 int used; 1677 size_t len; 1678 1679 len = skb->len - offset; 1680 /* Stop reading if we hit a patch of urgent data */ 1681 if (unlikely(tp->urg_data)) { 1682 u32 urg_offset = tp->urg_seq - seq; 1683 if (urg_offset < len) 1684 len = urg_offset; 1685 if (!len) 1686 break; 1687 } 1688 used = recv_actor(desc, skb, offset, len); 1689 if (used <= 0) { 1690 if (!copied) 1691 copied = used; 1692 break; 1693 } 1694 if (WARN_ON_ONCE(used > len)) 1695 used = len; 1696 seq += used; 1697 copied += used; 1698 offset += used; 1699 1700 /* If recv_actor drops the lock (e.g. TCP splice 1701 * receive) the skb pointer might be invalid when 1702 * getting here: tcp_collapse might have deleted it 1703 * while aggregating skbs from the socket queue. 1704 */ 1705 skb = tcp_recv_skb(sk, seq - 1, &offset); 1706 if (!skb) 1707 break; 1708 /* TCP coalescing might have appended data to the skb. 1709 * Try to splice more frags 1710 */ 1711 if (offset + 1 != skb->len) 1712 continue; 1713 } 1714 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1715 tcp_eat_recv_skb(sk, skb); 1716 ++seq; 1717 break; 1718 } 1719 tcp_eat_recv_skb(sk, skb); 1720 if (!desc->count) 1721 break; 1722 WRITE_ONCE(tp->copied_seq, seq); 1723 } 1724 WRITE_ONCE(tp->copied_seq, seq); 1725 1726 tcp_rcv_space_adjust(sk); 1727 1728 /* Clean up data we have read: This will do ACK frames. */ 1729 if (copied > 0) { 1730 tcp_recv_skb(sk, seq, &offset); 1731 tcp_cleanup_rbuf(sk, copied); 1732 } 1733 return copied; 1734 } 1735 EXPORT_SYMBOL(tcp_read_sock); 1736 1737 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1738 { 1739 struct tcp_sock *tp = tcp_sk(sk); 1740 u32 seq = tp->copied_seq; 1741 struct sk_buff *skb; 1742 int copied = 0; 1743 u32 offset; 1744 1745 if (sk->sk_state == TCP_LISTEN) 1746 return -ENOTCONN; 1747 1748 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1749 int used; 1750 1751 __skb_unlink(skb, &sk->sk_receive_queue); 1752 used = recv_actor(sk, skb); 1753 if (used <= 0) { 1754 if (!copied) 1755 copied = used; 1756 break; 1757 } 1758 seq += used; 1759 copied += used; 1760 1761 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1762 consume_skb(skb); 1763 ++seq; 1764 break; 1765 } 1766 consume_skb(skb); 1767 break; 1768 } 1769 WRITE_ONCE(tp->copied_seq, seq); 1770 1771 tcp_rcv_space_adjust(sk); 1772 1773 /* Clean up data we have read: This will do ACK frames. */ 1774 if (copied > 0) 1775 tcp_cleanup_rbuf(sk, copied); 1776 1777 return copied; 1778 } 1779 EXPORT_SYMBOL(tcp_read_skb); 1780 1781 int tcp_peek_len(struct socket *sock) 1782 { 1783 return tcp_inq(sock->sk); 1784 } 1785 EXPORT_SYMBOL(tcp_peek_len); 1786 1787 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1788 int tcp_set_rcvlowat(struct sock *sk, int val) 1789 { 1790 int cap; 1791 1792 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1793 cap = sk->sk_rcvbuf >> 1; 1794 else 1795 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1796 val = min(val, cap); 1797 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1798 1799 /* Check if we need to signal EPOLLIN right now */ 1800 tcp_data_ready(sk); 1801 1802 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1803 return 0; 1804 1805 val <<= 1; 1806 if (val > sk->sk_rcvbuf) { 1807 WRITE_ONCE(sk->sk_rcvbuf, val); 1808 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1809 } 1810 return 0; 1811 } 1812 EXPORT_SYMBOL(tcp_set_rcvlowat); 1813 1814 void tcp_update_recv_tstamps(struct sk_buff *skb, 1815 struct scm_timestamping_internal *tss) 1816 { 1817 if (skb->tstamp) 1818 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1819 else 1820 tss->ts[0] = (struct timespec64) {0}; 1821 1822 if (skb_hwtstamps(skb)->hwtstamp) 1823 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1824 else 1825 tss->ts[2] = (struct timespec64) {0}; 1826 } 1827 1828 #ifdef CONFIG_MMU 1829 static const struct vm_operations_struct tcp_vm_ops = { 1830 }; 1831 1832 int tcp_mmap(struct file *file, struct socket *sock, 1833 struct vm_area_struct *vma) 1834 { 1835 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1836 return -EPERM; 1837 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1838 1839 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1840 vma->vm_flags |= VM_MIXEDMAP; 1841 1842 vma->vm_ops = &tcp_vm_ops; 1843 return 0; 1844 } 1845 EXPORT_SYMBOL(tcp_mmap); 1846 1847 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1848 u32 *offset_frag) 1849 { 1850 skb_frag_t *frag; 1851 1852 if (unlikely(offset_skb >= skb->len)) 1853 return NULL; 1854 1855 offset_skb -= skb_headlen(skb); 1856 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1857 return NULL; 1858 1859 frag = skb_shinfo(skb)->frags; 1860 while (offset_skb) { 1861 if (skb_frag_size(frag) > offset_skb) { 1862 *offset_frag = offset_skb; 1863 return frag; 1864 } 1865 offset_skb -= skb_frag_size(frag); 1866 ++frag; 1867 } 1868 *offset_frag = 0; 1869 return frag; 1870 } 1871 1872 static bool can_map_frag(const skb_frag_t *frag) 1873 { 1874 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1875 } 1876 1877 static int find_next_mappable_frag(const skb_frag_t *frag, 1878 int remaining_in_skb) 1879 { 1880 int offset = 0; 1881 1882 if (likely(can_map_frag(frag))) 1883 return 0; 1884 1885 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1886 offset += skb_frag_size(frag); 1887 ++frag; 1888 } 1889 return offset; 1890 } 1891 1892 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1893 struct tcp_zerocopy_receive *zc, 1894 struct sk_buff *skb, u32 offset) 1895 { 1896 u32 frag_offset, partial_frag_remainder = 0; 1897 int mappable_offset; 1898 skb_frag_t *frag; 1899 1900 /* worst case: skip to next skb. try to improve on this case below */ 1901 zc->recv_skip_hint = skb->len - offset; 1902 1903 /* Find the frag containing this offset (and how far into that frag) */ 1904 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1905 if (!frag) 1906 return; 1907 1908 if (frag_offset) { 1909 struct skb_shared_info *info = skb_shinfo(skb); 1910 1911 /* We read part of the last frag, must recvmsg() rest of skb. */ 1912 if (frag == &info->frags[info->nr_frags - 1]) 1913 return; 1914 1915 /* Else, we must at least read the remainder in this frag. */ 1916 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1917 zc->recv_skip_hint -= partial_frag_remainder; 1918 ++frag; 1919 } 1920 1921 /* partial_frag_remainder: If part way through a frag, must read rest. 1922 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1923 * in partial_frag_remainder. 1924 */ 1925 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1926 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1927 } 1928 1929 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1930 int flags, struct scm_timestamping_internal *tss, 1931 int *cmsg_flags); 1932 static int receive_fallback_to_copy(struct sock *sk, 1933 struct tcp_zerocopy_receive *zc, int inq, 1934 struct scm_timestamping_internal *tss) 1935 { 1936 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1937 struct msghdr msg = {}; 1938 struct iovec iov; 1939 int err; 1940 1941 zc->length = 0; 1942 zc->recv_skip_hint = 0; 1943 1944 if (copy_address != zc->copybuf_address) 1945 return -EINVAL; 1946 1947 err = import_single_range(READ, (void __user *)copy_address, 1948 inq, &iov, &msg.msg_iter); 1949 if (err) 1950 return err; 1951 1952 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1953 tss, &zc->msg_flags); 1954 if (err < 0) 1955 return err; 1956 1957 zc->copybuf_len = err; 1958 if (likely(zc->copybuf_len)) { 1959 struct sk_buff *skb; 1960 u32 offset; 1961 1962 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1963 if (skb) 1964 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1965 } 1966 return 0; 1967 } 1968 1969 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1970 struct sk_buff *skb, u32 copylen, 1971 u32 *offset, u32 *seq) 1972 { 1973 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1974 struct msghdr msg = {}; 1975 struct iovec iov; 1976 int err; 1977 1978 if (copy_address != zc->copybuf_address) 1979 return -EINVAL; 1980 1981 err = import_single_range(READ, (void __user *)copy_address, 1982 copylen, &iov, &msg.msg_iter); 1983 if (err) 1984 return err; 1985 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1986 if (err) 1987 return err; 1988 zc->recv_skip_hint -= copylen; 1989 *offset += copylen; 1990 *seq += copylen; 1991 return (__s32)copylen; 1992 } 1993 1994 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1995 struct sock *sk, 1996 struct sk_buff *skb, 1997 u32 *seq, 1998 s32 copybuf_len, 1999 struct scm_timestamping_internal *tss) 2000 { 2001 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2002 2003 if (!copylen) 2004 return 0; 2005 /* skb is null if inq < PAGE_SIZE. */ 2006 if (skb) { 2007 offset = *seq - TCP_SKB_CB(skb)->seq; 2008 } else { 2009 skb = tcp_recv_skb(sk, *seq, &offset); 2010 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2011 tcp_update_recv_tstamps(skb, tss); 2012 zc->msg_flags |= TCP_CMSG_TS; 2013 } 2014 } 2015 2016 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2017 seq); 2018 return zc->copybuf_len < 0 ? 0 : copylen; 2019 } 2020 2021 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2022 struct page **pending_pages, 2023 unsigned long pages_remaining, 2024 unsigned long *address, 2025 u32 *length, 2026 u32 *seq, 2027 struct tcp_zerocopy_receive *zc, 2028 u32 total_bytes_to_map, 2029 int err) 2030 { 2031 /* At least one page did not map. Try zapping if we skipped earlier. */ 2032 if (err == -EBUSY && 2033 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2034 u32 maybe_zap_len; 2035 2036 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2037 *length + /* Mapped or pending */ 2038 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2039 zap_page_range(vma, *address, maybe_zap_len); 2040 err = 0; 2041 } 2042 2043 if (!err) { 2044 unsigned long leftover_pages = pages_remaining; 2045 int bytes_mapped; 2046 2047 /* We called zap_page_range, try to reinsert. */ 2048 err = vm_insert_pages(vma, *address, 2049 pending_pages, 2050 &pages_remaining); 2051 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2052 *seq += bytes_mapped; 2053 *address += bytes_mapped; 2054 } 2055 if (err) { 2056 /* Either we were unable to zap, OR we zapped, retried an 2057 * insert, and still had an issue. Either ways, pages_remaining 2058 * is the number of pages we were unable to map, and we unroll 2059 * some state we speculatively touched before. 2060 */ 2061 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2062 2063 *length -= bytes_not_mapped; 2064 zc->recv_skip_hint += bytes_not_mapped; 2065 } 2066 return err; 2067 } 2068 2069 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2070 struct page **pages, 2071 unsigned int pages_to_map, 2072 unsigned long *address, 2073 u32 *length, 2074 u32 *seq, 2075 struct tcp_zerocopy_receive *zc, 2076 u32 total_bytes_to_map) 2077 { 2078 unsigned long pages_remaining = pages_to_map; 2079 unsigned int pages_mapped; 2080 unsigned int bytes_mapped; 2081 int err; 2082 2083 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2084 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2085 bytes_mapped = PAGE_SIZE * pages_mapped; 2086 /* Even if vm_insert_pages fails, it may have partially succeeded in 2087 * mapping (some but not all of the pages). 2088 */ 2089 *seq += bytes_mapped; 2090 *address += bytes_mapped; 2091 2092 if (likely(!err)) 2093 return 0; 2094 2095 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2096 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2097 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2098 err); 2099 } 2100 2101 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2102 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2103 struct tcp_zerocopy_receive *zc, 2104 struct scm_timestamping_internal *tss) 2105 { 2106 unsigned long msg_control_addr; 2107 struct msghdr cmsg_dummy; 2108 2109 msg_control_addr = (unsigned long)zc->msg_control; 2110 cmsg_dummy.msg_control = (void *)msg_control_addr; 2111 cmsg_dummy.msg_controllen = 2112 (__kernel_size_t)zc->msg_controllen; 2113 cmsg_dummy.msg_flags = in_compat_syscall() 2114 ? MSG_CMSG_COMPAT : 0; 2115 cmsg_dummy.msg_control_is_user = true; 2116 zc->msg_flags = 0; 2117 if (zc->msg_control == msg_control_addr && 2118 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2119 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2120 zc->msg_control = (__u64) 2121 ((uintptr_t)cmsg_dummy.msg_control); 2122 zc->msg_controllen = 2123 (__u64)cmsg_dummy.msg_controllen; 2124 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2125 } 2126 } 2127 2128 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2129 static int tcp_zerocopy_receive(struct sock *sk, 2130 struct tcp_zerocopy_receive *zc, 2131 struct scm_timestamping_internal *tss) 2132 { 2133 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2134 unsigned long address = (unsigned long)zc->address; 2135 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2136 s32 copybuf_len = zc->copybuf_len; 2137 struct tcp_sock *tp = tcp_sk(sk); 2138 const skb_frag_t *frags = NULL; 2139 unsigned int pages_to_map = 0; 2140 struct vm_area_struct *vma; 2141 struct sk_buff *skb = NULL; 2142 u32 seq = tp->copied_seq; 2143 u32 total_bytes_to_map; 2144 int inq = tcp_inq(sk); 2145 int ret; 2146 2147 zc->copybuf_len = 0; 2148 zc->msg_flags = 0; 2149 2150 if (address & (PAGE_SIZE - 1) || address != zc->address) 2151 return -EINVAL; 2152 2153 if (sk->sk_state == TCP_LISTEN) 2154 return -ENOTCONN; 2155 2156 sock_rps_record_flow(sk); 2157 2158 if (inq && inq <= copybuf_len) 2159 return receive_fallback_to_copy(sk, zc, inq, tss); 2160 2161 if (inq < PAGE_SIZE) { 2162 zc->length = 0; 2163 zc->recv_skip_hint = inq; 2164 if (!inq && sock_flag(sk, SOCK_DONE)) 2165 return -EIO; 2166 return 0; 2167 } 2168 2169 mmap_read_lock(current->mm); 2170 2171 vma = vma_lookup(current->mm, address); 2172 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2173 mmap_read_unlock(current->mm); 2174 return -EINVAL; 2175 } 2176 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2177 avail_len = min_t(u32, vma_len, inq); 2178 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2179 if (total_bytes_to_map) { 2180 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2181 zap_page_range(vma, address, total_bytes_to_map); 2182 zc->length = total_bytes_to_map; 2183 zc->recv_skip_hint = 0; 2184 } else { 2185 zc->length = avail_len; 2186 zc->recv_skip_hint = avail_len; 2187 } 2188 ret = 0; 2189 while (length + PAGE_SIZE <= zc->length) { 2190 int mappable_offset; 2191 struct page *page; 2192 2193 if (zc->recv_skip_hint < PAGE_SIZE) { 2194 u32 offset_frag; 2195 2196 if (skb) { 2197 if (zc->recv_skip_hint > 0) 2198 break; 2199 skb = skb->next; 2200 offset = seq - TCP_SKB_CB(skb)->seq; 2201 } else { 2202 skb = tcp_recv_skb(sk, seq, &offset); 2203 } 2204 2205 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2206 tcp_update_recv_tstamps(skb, tss); 2207 zc->msg_flags |= TCP_CMSG_TS; 2208 } 2209 zc->recv_skip_hint = skb->len - offset; 2210 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2211 if (!frags || offset_frag) 2212 break; 2213 } 2214 2215 mappable_offset = find_next_mappable_frag(frags, 2216 zc->recv_skip_hint); 2217 if (mappable_offset) { 2218 zc->recv_skip_hint = mappable_offset; 2219 break; 2220 } 2221 page = skb_frag_page(frags); 2222 prefetchw(page); 2223 pages[pages_to_map++] = page; 2224 length += PAGE_SIZE; 2225 zc->recv_skip_hint -= PAGE_SIZE; 2226 frags++; 2227 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2228 zc->recv_skip_hint < PAGE_SIZE) { 2229 /* Either full batch, or we're about to go to next skb 2230 * (and we cannot unroll failed ops across skbs). 2231 */ 2232 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2233 pages_to_map, 2234 &address, &length, 2235 &seq, zc, 2236 total_bytes_to_map); 2237 if (ret) 2238 goto out; 2239 pages_to_map = 0; 2240 } 2241 } 2242 if (pages_to_map) { 2243 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2244 &address, &length, &seq, 2245 zc, total_bytes_to_map); 2246 } 2247 out: 2248 mmap_read_unlock(current->mm); 2249 /* Try to copy straggler data. */ 2250 if (!ret) 2251 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2252 2253 if (length + copylen) { 2254 WRITE_ONCE(tp->copied_seq, seq); 2255 tcp_rcv_space_adjust(sk); 2256 2257 /* Clean up data we have read: This will do ACK frames. */ 2258 tcp_recv_skb(sk, seq, &offset); 2259 tcp_cleanup_rbuf(sk, length + copylen); 2260 ret = 0; 2261 if (length == zc->length) 2262 zc->recv_skip_hint = 0; 2263 } else { 2264 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2265 ret = -EIO; 2266 } 2267 zc->length = length; 2268 return ret; 2269 } 2270 #endif 2271 2272 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2273 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2274 struct scm_timestamping_internal *tss) 2275 { 2276 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2277 bool has_timestamping = false; 2278 2279 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2280 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2281 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2282 if (new_tstamp) { 2283 struct __kernel_timespec kts = { 2284 .tv_sec = tss->ts[0].tv_sec, 2285 .tv_nsec = tss->ts[0].tv_nsec, 2286 }; 2287 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2288 sizeof(kts), &kts); 2289 } else { 2290 struct __kernel_old_timespec ts_old = { 2291 .tv_sec = tss->ts[0].tv_sec, 2292 .tv_nsec = tss->ts[0].tv_nsec, 2293 }; 2294 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2295 sizeof(ts_old), &ts_old); 2296 } 2297 } else { 2298 if (new_tstamp) { 2299 struct __kernel_sock_timeval stv = { 2300 .tv_sec = tss->ts[0].tv_sec, 2301 .tv_usec = tss->ts[0].tv_nsec / 1000, 2302 }; 2303 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2304 sizeof(stv), &stv); 2305 } else { 2306 struct __kernel_old_timeval tv = { 2307 .tv_sec = tss->ts[0].tv_sec, 2308 .tv_usec = tss->ts[0].tv_nsec / 1000, 2309 }; 2310 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2311 sizeof(tv), &tv); 2312 } 2313 } 2314 } 2315 2316 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2317 has_timestamping = true; 2318 else 2319 tss->ts[0] = (struct timespec64) {0}; 2320 } 2321 2322 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2323 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2324 has_timestamping = true; 2325 else 2326 tss->ts[2] = (struct timespec64) {0}; 2327 } 2328 2329 if (has_timestamping) { 2330 tss->ts[1] = (struct timespec64) {0}; 2331 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2332 put_cmsg_scm_timestamping64(msg, tss); 2333 else 2334 put_cmsg_scm_timestamping(msg, tss); 2335 } 2336 } 2337 2338 static int tcp_inq_hint(struct sock *sk) 2339 { 2340 const struct tcp_sock *tp = tcp_sk(sk); 2341 u32 copied_seq = READ_ONCE(tp->copied_seq); 2342 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2343 int inq; 2344 2345 inq = rcv_nxt - copied_seq; 2346 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2347 lock_sock(sk); 2348 inq = tp->rcv_nxt - tp->copied_seq; 2349 release_sock(sk); 2350 } 2351 /* After receiving a FIN, tell the user-space to continue reading 2352 * by returning a non-zero inq. 2353 */ 2354 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2355 inq = 1; 2356 return inq; 2357 } 2358 2359 /* 2360 * This routine copies from a sock struct into the user buffer. 2361 * 2362 * Technical note: in 2.3 we work on _locked_ socket, so that 2363 * tricks with *seq access order and skb->users are not required. 2364 * Probably, code can be easily improved even more. 2365 */ 2366 2367 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2368 int flags, struct scm_timestamping_internal *tss, 2369 int *cmsg_flags) 2370 { 2371 struct tcp_sock *tp = tcp_sk(sk); 2372 int copied = 0; 2373 u32 peek_seq; 2374 u32 *seq; 2375 unsigned long used; 2376 int err; 2377 int target; /* Read at least this many bytes */ 2378 long timeo; 2379 struct sk_buff *skb, *last; 2380 u32 urg_hole = 0; 2381 2382 err = -ENOTCONN; 2383 if (sk->sk_state == TCP_LISTEN) 2384 goto out; 2385 2386 if (tp->recvmsg_inq) { 2387 *cmsg_flags = TCP_CMSG_INQ; 2388 msg->msg_get_inq = 1; 2389 } 2390 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2391 2392 /* Urgent data needs to be handled specially. */ 2393 if (flags & MSG_OOB) 2394 goto recv_urg; 2395 2396 if (unlikely(tp->repair)) { 2397 err = -EPERM; 2398 if (!(flags & MSG_PEEK)) 2399 goto out; 2400 2401 if (tp->repair_queue == TCP_SEND_QUEUE) 2402 goto recv_sndq; 2403 2404 err = -EINVAL; 2405 if (tp->repair_queue == TCP_NO_QUEUE) 2406 goto out; 2407 2408 /* 'common' recv queue MSG_PEEK-ing */ 2409 } 2410 2411 seq = &tp->copied_seq; 2412 if (flags & MSG_PEEK) { 2413 peek_seq = tp->copied_seq; 2414 seq = &peek_seq; 2415 } 2416 2417 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2418 2419 do { 2420 u32 offset; 2421 2422 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2423 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2424 if (copied) 2425 break; 2426 if (signal_pending(current)) { 2427 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2428 break; 2429 } 2430 } 2431 2432 /* Next get a buffer. */ 2433 2434 last = skb_peek_tail(&sk->sk_receive_queue); 2435 skb_queue_walk(&sk->sk_receive_queue, skb) { 2436 last = skb; 2437 /* Now that we have two receive queues this 2438 * shouldn't happen. 2439 */ 2440 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2441 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2442 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2443 flags)) 2444 break; 2445 2446 offset = *seq - TCP_SKB_CB(skb)->seq; 2447 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2448 pr_err_once("%s: found a SYN, please report !\n", __func__); 2449 offset--; 2450 } 2451 if (offset < skb->len) 2452 goto found_ok_skb; 2453 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2454 goto found_fin_ok; 2455 WARN(!(flags & MSG_PEEK), 2456 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2457 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2458 } 2459 2460 /* Well, if we have backlog, try to process it now yet. */ 2461 2462 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2463 break; 2464 2465 if (copied) { 2466 if (!timeo || 2467 sk->sk_err || 2468 sk->sk_state == TCP_CLOSE || 2469 (sk->sk_shutdown & RCV_SHUTDOWN) || 2470 signal_pending(current)) 2471 break; 2472 } else { 2473 if (sock_flag(sk, SOCK_DONE)) 2474 break; 2475 2476 if (sk->sk_err) { 2477 copied = sock_error(sk); 2478 break; 2479 } 2480 2481 if (sk->sk_shutdown & RCV_SHUTDOWN) 2482 break; 2483 2484 if (sk->sk_state == TCP_CLOSE) { 2485 /* This occurs when user tries to read 2486 * from never connected socket. 2487 */ 2488 copied = -ENOTCONN; 2489 break; 2490 } 2491 2492 if (!timeo) { 2493 copied = -EAGAIN; 2494 break; 2495 } 2496 2497 if (signal_pending(current)) { 2498 copied = sock_intr_errno(timeo); 2499 break; 2500 } 2501 } 2502 2503 if (copied >= target) { 2504 /* Do not sleep, just process backlog. */ 2505 __sk_flush_backlog(sk); 2506 } else { 2507 tcp_cleanup_rbuf(sk, copied); 2508 sk_wait_data(sk, &timeo, last); 2509 } 2510 2511 if ((flags & MSG_PEEK) && 2512 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2513 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2514 current->comm, 2515 task_pid_nr(current)); 2516 peek_seq = tp->copied_seq; 2517 } 2518 continue; 2519 2520 found_ok_skb: 2521 /* Ok so how much can we use? */ 2522 used = skb->len - offset; 2523 if (len < used) 2524 used = len; 2525 2526 /* Do we have urgent data here? */ 2527 if (unlikely(tp->urg_data)) { 2528 u32 urg_offset = tp->urg_seq - *seq; 2529 if (urg_offset < used) { 2530 if (!urg_offset) { 2531 if (!sock_flag(sk, SOCK_URGINLINE)) { 2532 WRITE_ONCE(*seq, *seq + 1); 2533 urg_hole++; 2534 offset++; 2535 used--; 2536 if (!used) 2537 goto skip_copy; 2538 } 2539 } else 2540 used = urg_offset; 2541 } 2542 } 2543 2544 if (!(flags & MSG_TRUNC)) { 2545 err = skb_copy_datagram_msg(skb, offset, msg, used); 2546 if (err) { 2547 /* Exception. Bailout! */ 2548 if (!copied) 2549 copied = -EFAULT; 2550 break; 2551 } 2552 } 2553 2554 WRITE_ONCE(*seq, *seq + used); 2555 copied += used; 2556 len -= used; 2557 2558 tcp_rcv_space_adjust(sk); 2559 2560 skip_copy: 2561 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2562 WRITE_ONCE(tp->urg_data, 0); 2563 tcp_fast_path_check(sk); 2564 } 2565 2566 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2567 tcp_update_recv_tstamps(skb, tss); 2568 *cmsg_flags |= TCP_CMSG_TS; 2569 } 2570 2571 if (used + offset < skb->len) 2572 continue; 2573 2574 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2575 goto found_fin_ok; 2576 if (!(flags & MSG_PEEK)) 2577 tcp_eat_recv_skb(sk, skb); 2578 continue; 2579 2580 found_fin_ok: 2581 /* Process the FIN. */ 2582 WRITE_ONCE(*seq, *seq + 1); 2583 if (!(flags & MSG_PEEK)) 2584 tcp_eat_recv_skb(sk, skb); 2585 break; 2586 } while (len > 0); 2587 2588 /* According to UNIX98, msg_name/msg_namelen are ignored 2589 * on connected socket. I was just happy when found this 8) --ANK 2590 */ 2591 2592 /* Clean up data we have read: This will do ACK frames. */ 2593 tcp_cleanup_rbuf(sk, copied); 2594 return copied; 2595 2596 out: 2597 return err; 2598 2599 recv_urg: 2600 err = tcp_recv_urg(sk, msg, len, flags); 2601 goto out; 2602 2603 recv_sndq: 2604 err = tcp_peek_sndq(sk, msg, len); 2605 goto out; 2606 } 2607 2608 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2609 int *addr_len) 2610 { 2611 int cmsg_flags = 0, ret; 2612 struct scm_timestamping_internal tss; 2613 2614 if (unlikely(flags & MSG_ERRQUEUE)) 2615 return inet_recv_error(sk, msg, len, addr_len); 2616 2617 if (sk_can_busy_loop(sk) && 2618 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2619 sk->sk_state == TCP_ESTABLISHED) 2620 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2621 2622 lock_sock(sk); 2623 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2624 release_sock(sk); 2625 2626 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2627 if (cmsg_flags & TCP_CMSG_TS) 2628 tcp_recv_timestamp(msg, sk, &tss); 2629 if (msg->msg_get_inq) { 2630 msg->msg_inq = tcp_inq_hint(sk); 2631 if (cmsg_flags & TCP_CMSG_INQ) 2632 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2633 sizeof(msg->msg_inq), &msg->msg_inq); 2634 } 2635 } 2636 return ret; 2637 } 2638 EXPORT_SYMBOL(tcp_recvmsg); 2639 2640 void tcp_set_state(struct sock *sk, int state) 2641 { 2642 int oldstate = sk->sk_state; 2643 2644 /* We defined a new enum for TCP states that are exported in BPF 2645 * so as not force the internal TCP states to be frozen. The 2646 * following checks will detect if an internal state value ever 2647 * differs from the BPF value. If this ever happens, then we will 2648 * need to remap the internal value to the BPF value before calling 2649 * tcp_call_bpf_2arg. 2650 */ 2651 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2652 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2653 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2654 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2655 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2656 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2657 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2658 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2659 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2660 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2661 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2662 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2663 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2664 2665 /* bpf uapi header bpf.h defines an anonymous enum with values 2666 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2667 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2668 * But clang built vmlinux does not have this enum in DWARF 2669 * since clang removes the above code before generating IR/debuginfo. 2670 * Let us explicitly emit the type debuginfo to ensure the 2671 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2672 * regardless of which compiler is used. 2673 */ 2674 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2675 2676 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2677 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2678 2679 switch (state) { 2680 case TCP_ESTABLISHED: 2681 if (oldstate != TCP_ESTABLISHED) 2682 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2683 break; 2684 2685 case TCP_CLOSE: 2686 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2687 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2688 2689 sk->sk_prot->unhash(sk); 2690 if (inet_csk(sk)->icsk_bind_hash && 2691 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2692 inet_put_port(sk); 2693 fallthrough; 2694 default: 2695 if (oldstate == TCP_ESTABLISHED) 2696 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2697 } 2698 2699 /* Change state AFTER socket is unhashed to avoid closed 2700 * socket sitting in hash tables. 2701 */ 2702 inet_sk_state_store(sk, state); 2703 } 2704 EXPORT_SYMBOL_GPL(tcp_set_state); 2705 2706 /* 2707 * State processing on a close. This implements the state shift for 2708 * sending our FIN frame. Note that we only send a FIN for some 2709 * states. A shutdown() may have already sent the FIN, or we may be 2710 * closed. 2711 */ 2712 2713 static const unsigned char new_state[16] = { 2714 /* current state: new state: action: */ 2715 [0 /* (Invalid) */] = TCP_CLOSE, 2716 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2717 [TCP_SYN_SENT] = TCP_CLOSE, 2718 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2719 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2720 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2721 [TCP_TIME_WAIT] = TCP_CLOSE, 2722 [TCP_CLOSE] = TCP_CLOSE, 2723 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2724 [TCP_LAST_ACK] = TCP_LAST_ACK, 2725 [TCP_LISTEN] = TCP_CLOSE, 2726 [TCP_CLOSING] = TCP_CLOSING, 2727 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2728 }; 2729 2730 static int tcp_close_state(struct sock *sk) 2731 { 2732 int next = (int)new_state[sk->sk_state]; 2733 int ns = next & TCP_STATE_MASK; 2734 2735 tcp_set_state(sk, ns); 2736 2737 return next & TCP_ACTION_FIN; 2738 } 2739 2740 /* 2741 * Shutdown the sending side of a connection. Much like close except 2742 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2743 */ 2744 2745 void tcp_shutdown(struct sock *sk, int how) 2746 { 2747 /* We need to grab some memory, and put together a FIN, 2748 * and then put it into the queue to be sent. 2749 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2750 */ 2751 if (!(how & SEND_SHUTDOWN)) 2752 return; 2753 2754 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2755 if ((1 << sk->sk_state) & 2756 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2757 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2758 /* Clear out any half completed packets. FIN if needed. */ 2759 if (tcp_close_state(sk)) 2760 tcp_send_fin(sk); 2761 } 2762 } 2763 EXPORT_SYMBOL(tcp_shutdown); 2764 2765 int tcp_orphan_count_sum(void) 2766 { 2767 int i, total = 0; 2768 2769 for_each_possible_cpu(i) 2770 total += per_cpu(tcp_orphan_count, i); 2771 2772 return max(total, 0); 2773 } 2774 2775 static int tcp_orphan_cache; 2776 static struct timer_list tcp_orphan_timer; 2777 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2778 2779 static void tcp_orphan_update(struct timer_list *unused) 2780 { 2781 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2782 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2783 } 2784 2785 static bool tcp_too_many_orphans(int shift) 2786 { 2787 return READ_ONCE(tcp_orphan_cache) << shift > 2788 READ_ONCE(sysctl_tcp_max_orphans); 2789 } 2790 2791 bool tcp_check_oom(struct sock *sk, int shift) 2792 { 2793 bool too_many_orphans, out_of_socket_memory; 2794 2795 too_many_orphans = tcp_too_many_orphans(shift); 2796 out_of_socket_memory = tcp_out_of_memory(sk); 2797 2798 if (too_many_orphans) 2799 net_info_ratelimited("too many orphaned sockets\n"); 2800 if (out_of_socket_memory) 2801 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2802 return too_many_orphans || out_of_socket_memory; 2803 } 2804 2805 void __tcp_close(struct sock *sk, long timeout) 2806 { 2807 struct sk_buff *skb; 2808 int data_was_unread = 0; 2809 int state; 2810 2811 sk->sk_shutdown = SHUTDOWN_MASK; 2812 2813 if (sk->sk_state == TCP_LISTEN) { 2814 tcp_set_state(sk, TCP_CLOSE); 2815 2816 /* Special case. */ 2817 inet_csk_listen_stop(sk); 2818 2819 goto adjudge_to_death; 2820 } 2821 2822 /* We need to flush the recv. buffs. We do this only on the 2823 * descriptor close, not protocol-sourced closes, because the 2824 * reader process may not have drained the data yet! 2825 */ 2826 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2827 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2828 2829 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2830 len--; 2831 data_was_unread += len; 2832 __kfree_skb(skb); 2833 } 2834 2835 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2836 if (sk->sk_state == TCP_CLOSE) 2837 goto adjudge_to_death; 2838 2839 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2840 * data was lost. To witness the awful effects of the old behavior of 2841 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2842 * GET in an FTP client, suspend the process, wait for the client to 2843 * advertise a zero window, then kill -9 the FTP client, wheee... 2844 * Note: timeout is always zero in such a case. 2845 */ 2846 if (unlikely(tcp_sk(sk)->repair)) { 2847 sk->sk_prot->disconnect(sk, 0); 2848 } else if (data_was_unread) { 2849 /* Unread data was tossed, zap the connection. */ 2850 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2851 tcp_set_state(sk, TCP_CLOSE); 2852 tcp_send_active_reset(sk, sk->sk_allocation); 2853 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2854 /* Check zero linger _after_ checking for unread data. */ 2855 sk->sk_prot->disconnect(sk, 0); 2856 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2857 } else if (tcp_close_state(sk)) { 2858 /* We FIN if the application ate all the data before 2859 * zapping the connection. 2860 */ 2861 2862 /* RED-PEN. Formally speaking, we have broken TCP state 2863 * machine. State transitions: 2864 * 2865 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2866 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2867 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2868 * 2869 * are legal only when FIN has been sent (i.e. in window), 2870 * rather than queued out of window. Purists blame. 2871 * 2872 * F.e. "RFC state" is ESTABLISHED, 2873 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2874 * 2875 * The visible declinations are that sometimes 2876 * we enter time-wait state, when it is not required really 2877 * (harmless), do not send active resets, when they are 2878 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2879 * they look as CLOSING or LAST_ACK for Linux) 2880 * Probably, I missed some more holelets. 2881 * --ANK 2882 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2883 * in a single packet! (May consider it later but will 2884 * probably need API support or TCP_CORK SYN-ACK until 2885 * data is written and socket is closed.) 2886 */ 2887 tcp_send_fin(sk); 2888 } 2889 2890 sk_stream_wait_close(sk, timeout); 2891 2892 adjudge_to_death: 2893 state = sk->sk_state; 2894 sock_hold(sk); 2895 sock_orphan(sk); 2896 2897 local_bh_disable(); 2898 bh_lock_sock(sk); 2899 /* remove backlog if any, without releasing ownership. */ 2900 __release_sock(sk); 2901 2902 this_cpu_inc(tcp_orphan_count); 2903 2904 /* Have we already been destroyed by a softirq or backlog? */ 2905 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2906 goto out; 2907 2908 /* This is a (useful) BSD violating of the RFC. There is a 2909 * problem with TCP as specified in that the other end could 2910 * keep a socket open forever with no application left this end. 2911 * We use a 1 minute timeout (about the same as BSD) then kill 2912 * our end. If they send after that then tough - BUT: long enough 2913 * that we won't make the old 4*rto = almost no time - whoops 2914 * reset mistake. 2915 * 2916 * Nope, it was not mistake. It is really desired behaviour 2917 * f.e. on http servers, when such sockets are useless, but 2918 * consume significant resources. Let's do it with special 2919 * linger2 option. --ANK 2920 */ 2921 2922 if (sk->sk_state == TCP_FIN_WAIT2) { 2923 struct tcp_sock *tp = tcp_sk(sk); 2924 if (tp->linger2 < 0) { 2925 tcp_set_state(sk, TCP_CLOSE); 2926 tcp_send_active_reset(sk, GFP_ATOMIC); 2927 __NET_INC_STATS(sock_net(sk), 2928 LINUX_MIB_TCPABORTONLINGER); 2929 } else { 2930 const int tmo = tcp_fin_time(sk); 2931 2932 if (tmo > TCP_TIMEWAIT_LEN) { 2933 inet_csk_reset_keepalive_timer(sk, 2934 tmo - TCP_TIMEWAIT_LEN); 2935 } else { 2936 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2937 goto out; 2938 } 2939 } 2940 } 2941 if (sk->sk_state != TCP_CLOSE) { 2942 if (tcp_check_oom(sk, 0)) { 2943 tcp_set_state(sk, TCP_CLOSE); 2944 tcp_send_active_reset(sk, GFP_ATOMIC); 2945 __NET_INC_STATS(sock_net(sk), 2946 LINUX_MIB_TCPABORTONMEMORY); 2947 } else if (!check_net(sock_net(sk))) { 2948 /* Not possible to send reset; just close */ 2949 tcp_set_state(sk, TCP_CLOSE); 2950 } 2951 } 2952 2953 if (sk->sk_state == TCP_CLOSE) { 2954 struct request_sock *req; 2955 2956 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2957 lockdep_sock_is_held(sk)); 2958 /* We could get here with a non-NULL req if the socket is 2959 * aborted (e.g., closed with unread data) before 3WHS 2960 * finishes. 2961 */ 2962 if (req) 2963 reqsk_fastopen_remove(sk, req, false); 2964 inet_csk_destroy_sock(sk); 2965 } 2966 /* Otherwise, socket is reprieved until protocol close. */ 2967 2968 out: 2969 bh_unlock_sock(sk); 2970 local_bh_enable(); 2971 } 2972 2973 void tcp_close(struct sock *sk, long timeout) 2974 { 2975 lock_sock(sk); 2976 __tcp_close(sk, timeout); 2977 release_sock(sk); 2978 sock_put(sk); 2979 } 2980 EXPORT_SYMBOL(tcp_close); 2981 2982 /* These states need RST on ABORT according to RFC793 */ 2983 2984 static inline bool tcp_need_reset(int state) 2985 { 2986 return (1 << state) & 2987 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2988 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2989 } 2990 2991 static void tcp_rtx_queue_purge(struct sock *sk) 2992 { 2993 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2994 2995 tcp_sk(sk)->highest_sack = NULL; 2996 while (p) { 2997 struct sk_buff *skb = rb_to_skb(p); 2998 2999 p = rb_next(p); 3000 /* Since we are deleting whole queue, no need to 3001 * list_del(&skb->tcp_tsorted_anchor) 3002 */ 3003 tcp_rtx_queue_unlink(skb, sk); 3004 tcp_wmem_free_skb(sk, skb); 3005 } 3006 } 3007 3008 void tcp_write_queue_purge(struct sock *sk) 3009 { 3010 struct sk_buff *skb; 3011 3012 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3013 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3014 tcp_skb_tsorted_anchor_cleanup(skb); 3015 tcp_wmem_free_skb(sk, skb); 3016 } 3017 tcp_rtx_queue_purge(sk); 3018 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3019 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3020 tcp_sk(sk)->packets_out = 0; 3021 inet_csk(sk)->icsk_backoff = 0; 3022 } 3023 3024 int tcp_disconnect(struct sock *sk, int flags) 3025 { 3026 struct inet_sock *inet = inet_sk(sk); 3027 struct inet_connection_sock *icsk = inet_csk(sk); 3028 struct tcp_sock *tp = tcp_sk(sk); 3029 int old_state = sk->sk_state; 3030 u32 seq; 3031 3032 if (old_state != TCP_CLOSE) 3033 tcp_set_state(sk, TCP_CLOSE); 3034 3035 /* ABORT function of RFC793 */ 3036 if (old_state == TCP_LISTEN) { 3037 inet_csk_listen_stop(sk); 3038 } else if (unlikely(tp->repair)) { 3039 sk->sk_err = ECONNABORTED; 3040 } else if (tcp_need_reset(old_state) || 3041 (tp->snd_nxt != tp->write_seq && 3042 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3043 /* The last check adjusts for discrepancy of Linux wrt. RFC 3044 * states 3045 */ 3046 tcp_send_active_reset(sk, gfp_any()); 3047 sk->sk_err = ECONNRESET; 3048 } else if (old_state == TCP_SYN_SENT) 3049 sk->sk_err = ECONNRESET; 3050 3051 tcp_clear_xmit_timers(sk); 3052 __skb_queue_purge(&sk->sk_receive_queue); 3053 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3054 WRITE_ONCE(tp->urg_data, 0); 3055 tcp_write_queue_purge(sk); 3056 tcp_fastopen_active_disable_ofo_check(sk); 3057 skb_rbtree_purge(&tp->out_of_order_queue); 3058 3059 inet->inet_dport = 0; 3060 3061 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3062 inet_reset_saddr(sk); 3063 3064 sk->sk_shutdown = 0; 3065 sock_reset_flag(sk, SOCK_DONE); 3066 tp->srtt_us = 0; 3067 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3068 tp->rcv_rtt_last_tsecr = 0; 3069 3070 seq = tp->write_seq + tp->max_window + 2; 3071 if (!seq) 3072 seq = 1; 3073 WRITE_ONCE(tp->write_seq, seq); 3074 3075 icsk->icsk_backoff = 0; 3076 icsk->icsk_probes_out = 0; 3077 icsk->icsk_probes_tstamp = 0; 3078 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3079 icsk->icsk_rto_min = TCP_RTO_MIN; 3080 icsk->icsk_delack_max = TCP_DELACK_MAX; 3081 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3082 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3083 tp->snd_cwnd_cnt = 0; 3084 tp->window_clamp = 0; 3085 tp->delivered = 0; 3086 tp->delivered_ce = 0; 3087 if (icsk->icsk_ca_ops->release) 3088 icsk->icsk_ca_ops->release(sk); 3089 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3090 icsk->icsk_ca_initialized = 0; 3091 tcp_set_ca_state(sk, TCP_CA_Open); 3092 tp->is_sack_reneg = 0; 3093 tcp_clear_retrans(tp); 3094 tp->total_retrans = 0; 3095 inet_csk_delack_init(sk); 3096 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3097 * issue in __tcp_select_window() 3098 */ 3099 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3100 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3101 __sk_dst_reset(sk); 3102 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3103 tcp_saved_syn_free(tp); 3104 tp->compressed_ack = 0; 3105 tp->segs_in = 0; 3106 tp->segs_out = 0; 3107 tp->bytes_sent = 0; 3108 tp->bytes_acked = 0; 3109 tp->bytes_received = 0; 3110 tp->bytes_retrans = 0; 3111 tp->data_segs_in = 0; 3112 tp->data_segs_out = 0; 3113 tp->duplicate_sack[0].start_seq = 0; 3114 tp->duplicate_sack[0].end_seq = 0; 3115 tp->dsack_dups = 0; 3116 tp->reord_seen = 0; 3117 tp->retrans_out = 0; 3118 tp->sacked_out = 0; 3119 tp->tlp_high_seq = 0; 3120 tp->last_oow_ack_time = 0; 3121 /* There's a bubble in the pipe until at least the first ACK. */ 3122 tp->app_limited = ~0U; 3123 tp->rack.mstamp = 0; 3124 tp->rack.advanced = 0; 3125 tp->rack.reo_wnd_steps = 1; 3126 tp->rack.last_delivered = 0; 3127 tp->rack.reo_wnd_persist = 0; 3128 tp->rack.dsack_seen = 0; 3129 tp->syn_data_acked = 0; 3130 tp->rx_opt.saw_tstamp = 0; 3131 tp->rx_opt.dsack = 0; 3132 tp->rx_opt.num_sacks = 0; 3133 tp->rcv_ooopack = 0; 3134 3135 3136 /* Clean up fastopen related fields */ 3137 tcp_free_fastopen_req(tp); 3138 inet->defer_connect = 0; 3139 tp->fastopen_client_fail = 0; 3140 3141 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3142 3143 if (sk->sk_frag.page) { 3144 put_page(sk->sk_frag.page); 3145 sk->sk_frag.page = NULL; 3146 sk->sk_frag.offset = 0; 3147 } 3148 sk_error_report(sk); 3149 return 0; 3150 } 3151 EXPORT_SYMBOL(tcp_disconnect); 3152 3153 static inline bool tcp_can_repair_sock(const struct sock *sk) 3154 { 3155 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3156 (sk->sk_state != TCP_LISTEN); 3157 } 3158 3159 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3160 { 3161 struct tcp_repair_window opt; 3162 3163 if (!tp->repair) 3164 return -EPERM; 3165 3166 if (len != sizeof(opt)) 3167 return -EINVAL; 3168 3169 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3170 return -EFAULT; 3171 3172 if (opt.max_window < opt.snd_wnd) 3173 return -EINVAL; 3174 3175 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3176 return -EINVAL; 3177 3178 if (after(opt.rcv_wup, tp->rcv_nxt)) 3179 return -EINVAL; 3180 3181 tp->snd_wl1 = opt.snd_wl1; 3182 tp->snd_wnd = opt.snd_wnd; 3183 tp->max_window = opt.max_window; 3184 3185 tp->rcv_wnd = opt.rcv_wnd; 3186 tp->rcv_wup = opt.rcv_wup; 3187 3188 return 0; 3189 } 3190 3191 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3192 unsigned int len) 3193 { 3194 struct tcp_sock *tp = tcp_sk(sk); 3195 struct tcp_repair_opt opt; 3196 size_t offset = 0; 3197 3198 while (len >= sizeof(opt)) { 3199 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3200 return -EFAULT; 3201 3202 offset += sizeof(opt); 3203 len -= sizeof(opt); 3204 3205 switch (opt.opt_code) { 3206 case TCPOPT_MSS: 3207 tp->rx_opt.mss_clamp = opt.opt_val; 3208 tcp_mtup_init(sk); 3209 break; 3210 case TCPOPT_WINDOW: 3211 { 3212 u16 snd_wscale = opt.opt_val & 0xFFFF; 3213 u16 rcv_wscale = opt.opt_val >> 16; 3214 3215 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3216 return -EFBIG; 3217 3218 tp->rx_opt.snd_wscale = snd_wscale; 3219 tp->rx_opt.rcv_wscale = rcv_wscale; 3220 tp->rx_opt.wscale_ok = 1; 3221 } 3222 break; 3223 case TCPOPT_SACK_PERM: 3224 if (opt.opt_val != 0) 3225 return -EINVAL; 3226 3227 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3228 break; 3229 case TCPOPT_TIMESTAMP: 3230 if (opt.opt_val != 0) 3231 return -EINVAL; 3232 3233 tp->rx_opt.tstamp_ok = 1; 3234 break; 3235 } 3236 } 3237 3238 return 0; 3239 } 3240 3241 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3242 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3243 3244 static void tcp_enable_tx_delay(void) 3245 { 3246 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3247 static int __tcp_tx_delay_enabled = 0; 3248 3249 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3250 static_branch_enable(&tcp_tx_delay_enabled); 3251 pr_info("TCP_TX_DELAY enabled\n"); 3252 } 3253 } 3254 } 3255 3256 /* When set indicates to always queue non-full frames. Later the user clears 3257 * this option and we transmit any pending partial frames in the queue. This is 3258 * meant to be used alongside sendfile() to get properly filled frames when the 3259 * user (for example) must write out headers with a write() call first and then 3260 * use sendfile to send out the data parts. 3261 * 3262 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3263 * TCP_NODELAY. 3264 */ 3265 void __tcp_sock_set_cork(struct sock *sk, bool on) 3266 { 3267 struct tcp_sock *tp = tcp_sk(sk); 3268 3269 if (on) { 3270 tp->nonagle |= TCP_NAGLE_CORK; 3271 } else { 3272 tp->nonagle &= ~TCP_NAGLE_CORK; 3273 if (tp->nonagle & TCP_NAGLE_OFF) 3274 tp->nonagle |= TCP_NAGLE_PUSH; 3275 tcp_push_pending_frames(sk); 3276 } 3277 } 3278 3279 void tcp_sock_set_cork(struct sock *sk, bool on) 3280 { 3281 lock_sock(sk); 3282 __tcp_sock_set_cork(sk, on); 3283 release_sock(sk); 3284 } 3285 EXPORT_SYMBOL(tcp_sock_set_cork); 3286 3287 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3288 * remembered, but it is not activated until cork is cleared. 3289 * 3290 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3291 * even TCP_CORK for currently queued segments. 3292 */ 3293 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3294 { 3295 if (on) { 3296 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3297 tcp_push_pending_frames(sk); 3298 } else { 3299 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3300 } 3301 } 3302 3303 void tcp_sock_set_nodelay(struct sock *sk) 3304 { 3305 lock_sock(sk); 3306 __tcp_sock_set_nodelay(sk, true); 3307 release_sock(sk); 3308 } 3309 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3310 3311 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3312 { 3313 if (!val) { 3314 inet_csk_enter_pingpong_mode(sk); 3315 return; 3316 } 3317 3318 inet_csk_exit_pingpong_mode(sk); 3319 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3320 inet_csk_ack_scheduled(sk)) { 3321 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3322 tcp_cleanup_rbuf(sk, 1); 3323 if (!(val & 1)) 3324 inet_csk_enter_pingpong_mode(sk); 3325 } 3326 } 3327 3328 void tcp_sock_set_quickack(struct sock *sk, int val) 3329 { 3330 lock_sock(sk); 3331 __tcp_sock_set_quickack(sk, val); 3332 release_sock(sk); 3333 } 3334 EXPORT_SYMBOL(tcp_sock_set_quickack); 3335 3336 int tcp_sock_set_syncnt(struct sock *sk, int val) 3337 { 3338 if (val < 1 || val > MAX_TCP_SYNCNT) 3339 return -EINVAL; 3340 3341 lock_sock(sk); 3342 inet_csk(sk)->icsk_syn_retries = val; 3343 release_sock(sk); 3344 return 0; 3345 } 3346 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3347 3348 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3349 { 3350 lock_sock(sk); 3351 inet_csk(sk)->icsk_user_timeout = val; 3352 release_sock(sk); 3353 } 3354 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3355 3356 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3357 { 3358 struct tcp_sock *tp = tcp_sk(sk); 3359 3360 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3361 return -EINVAL; 3362 3363 tp->keepalive_time = val * HZ; 3364 if (sock_flag(sk, SOCK_KEEPOPEN) && 3365 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3366 u32 elapsed = keepalive_time_elapsed(tp); 3367 3368 if (tp->keepalive_time > elapsed) 3369 elapsed = tp->keepalive_time - elapsed; 3370 else 3371 elapsed = 0; 3372 inet_csk_reset_keepalive_timer(sk, elapsed); 3373 } 3374 3375 return 0; 3376 } 3377 3378 int tcp_sock_set_keepidle(struct sock *sk, int val) 3379 { 3380 int err; 3381 3382 lock_sock(sk); 3383 err = tcp_sock_set_keepidle_locked(sk, val); 3384 release_sock(sk); 3385 return err; 3386 } 3387 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3388 3389 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3390 { 3391 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3392 return -EINVAL; 3393 3394 lock_sock(sk); 3395 tcp_sk(sk)->keepalive_intvl = val * HZ; 3396 release_sock(sk); 3397 return 0; 3398 } 3399 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3400 3401 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3402 { 3403 if (val < 1 || val > MAX_TCP_KEEPCNT) 3404 return -EINVAL; 3405 3406 lock_sock(sk); 3407 tcp_sk(sk)->keepalive_probes = val; 3408 release_sock(sk); 3409 return 0; 3410 } 3411 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3412 3413 int tcp_set_window_clamp(struct sock *sk, int val) 3414 { 3415 struct tcp_sock *tp = tcp_sk(sk); 3416 3417 if (!val) { 3418 if (sk->sk_state != TCP_CLOSE) 3419 return -EINVAL; 3420 tp->window_clamp = 0; 3421 } else { 3422 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3423 SOCK_MIN_RCVBUF / 2 : val; 3424 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3425 } 3426 return 0; 3427 } 3428 3429 /* 3430 * Socket option code for TCP. 3431 */ 3432 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3433 sockptr_t optval, unsigned int optlen) 3434 { 3435 struct tcp_sock *tp = tcp_sk(sk); 3436 struct inet_connection_sock *icsk = inet_csk(sk); 3437 struct net *net = sock_net(sk); 3438 int val; 3439 int err = 0; 3440 3441 /* These are data/string values, all the others are ints */ 3442 switch (optname) { 3443 case TCP_CONGESTION: { 3444 char name[TCP_CA_NAME_MAX]; 3445 3446 if (optlen < 1) 3447 return -EINVAL; 3448 3449 val = strncpy_from_sockptr(name, optval, 3450 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3451 if (val < 0) 3452 return -EFAULT; 3453 name[val] = 0; 3454 3455 lock_sock(sk); 3456 err = tcp_set_congestion_control(sk, name, true, 3457 ns_capable(sock_net(sk)->user_ns, 3458 CAP_NET_ADMIN)); 3459 release_sock(sk); 3460 return err; 3461 } 3462 case TCP_ULP: { 3463 char name[TCP_ULP_NAME_MAX]; 3464 3465 if (optlen < 1) 3466 return -EINVAL; 3467 3468 val = strncpy_from_sockptr(name, optval, 3469 min_t(long, TCP_ULP_NAME_MAX - 1, 3470 optlen)); 3471 if (val < 0) 3472 return -EFAULT; 3473 name[val] = 0; 3474 3475 lock_sock(sk); 3476 err = tcp_set_ulp(sk, name); 3477 release_sock(sk); 3478 return err; 3479 } 3480 case TCP_FASTOPEN_KEY: { 3481 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3482 __u8 *backup_key = NULL; 3483 3484 /* Allow a backup key as well to facilitate key rotation 3485 * First key is the active one. 3486 */ 3487 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3488 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3489 return -EINVAL; 3490 3491 if (copy_from_sockptr(key, optval, optlen)) 3492 return -EFAULT; 3493 3494 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3495 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3496 3497 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3498 } 3499 default: 3500 /* fallthru */ 3501 break; 3502 } 3503 3504 if (optlen < sizeof(int)) 3505 return -EINVAL; 3506 3507 if (copy_from_sockptr(&val, optval, sizeof(val))) 3508 return -EFAULT; 3509 3510 lock_sock(sk); 3511 3512 switch (optname) { 3513 case TCP_MAXSEG: 3514 /* Values greater than interface MTU won't take effect. However 3515 * at the point when this call is done we typically don't yet 3516 * know which interface is going to be used 3517 */ 3518 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3519 err = -EINVAL; 3520 break; 3521 } 3522 tp->rx_opt.user_mss = val; 3523 break; 3524 3525 case TCP_NODELAY: 3526 __tcp_sock_set_nodelay(sk, val); 3527 break; 3528 3529 case TCP_THIN_LINEAR_TIMEOUTS: 3530 if (val < 0 || val > 1) 3531 err = -EINVAL; 3532 else 3533 tp->thin_lto = val; 3534 break; 3535 3536 case TCP_THIN_DUPACK: 3537 if (val < 0 || val > 1) 3538 err = -EINVAL; 3539 break; 3540 3541 case TCP_REPAIR: 3542 if (!tcp_can_repair_sock(sk)) 3543 err = -EPERM; 3544 else if (val == TCP_REPAIR_ON) { 3545 tp->repair = 1; 3546 sk->sk_reuse = SK_FORCE_REUSE; 3547 tp->repair_queue = TCP_NO_QUEUE; 3548 } else if (val == TCP_REPAIR_OFF) { 3549 tp->repair = 0; 3550 sk->sk_reuse = SK_NO_REUSE; 3551 tcp_send_window_probe(sk); 3552 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3553 tp->repair = 0; 3554 sk->sk_reuse = SK_NO_REUSE; 3555 } else 3556 err = -EINVAL; 3557 3558 break; 3559 3560 case TCP_REPAIR_QUEUE: 3561 if (!tp->repair) 3562 err = -EPERM; 3563 else if ((unsigned int)val < TCP_QUEUES_NR) 3564 tp->repair_queue = val; 3565 else 3566 err = -EINVAL; 3567 break; 3568 3569 case TCP_QUEUE_SEQ: 3570 if (sk->sk_state != TCP_CLOSE) { 3571 err = -EPERM; 3572 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3573 if (!tcp_rtx_queue_empty(sk)) 3574 err = -EPERM; 3575 else 3576 WRITE_ONCE(tp->write_seq, val); 3577 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3578 if (tp->rcv_nxt != tp->copied_seq) { 3579 err = -EPERM; 3580 } else { 3581 WRITE_ONCE(tp->rcv_nxt, val); 3582 WRITE_ONCE(tp->copied_seq, val); 3583 } 3584 } else { 3585 err = -EINVAL; 3586 } 3587 break; 3588 3589 case TCP_REPAIR_OPTIONS: 3590 if (!tp->repair) 3591 err = -EINVAL; 3592 else if (sk->sk_state == TCP_ESTABLISHED) 3593 err = tcp_repair_options_est(sk, optval, optlen); 3594 else 3595 err = -EPERM; 3596 break; 3597 3598 case TCP_CORK: 3599 __tcp_sock_set_cork(sk, val); 3600 break; 3601 3602 case TCP_KEEPIDLE: 3603 err = tcp_sock_set_keepidle_locked(sk, val); 3604 break; 3605 case TCP_KEEPINTVL: 3606 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3607 err = -EINVAL; 3608 else 3609 tp->keepalive_intvl = val * HZ; 3610 break; 3611 case TCP_KEEPCNT: 3612 if (val < 1 || val > MAX_TCP_KEEPCNT) 3613 err = -EINVAL; 3614 else 3615 tp->keepalive_probes = val; 3616 break; 3617 case TCP_SYNCNT: 3618 if (val < 1 || val > MAX_TCP_SYNCNT) 3619 err = -EINVAL; 3620 else 3621 icsk->icsk_syn_retries = val; 3622 break; 3623 3624 case TCP_SAVE_SYN: 3625 /* 0: disable, 1: enable, 2: start from ether_header */ 3626 if (val < 0 || val > 2) 3627 err = -EINVAL; 3628 else 3629 tp->save_syn = val; 3630 break; 3631 3632 case TCP_LINGER2: 3633 if (val < 0) 3634 tp->linger2 = -1; 3635 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3636 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3637 else 3638 tp->linger2 = val * HZ; 3639 break; 3640 3641 case TCP_DEFER_ACCEPT: 3642 /* Translate value in seconds to number of retransmits */ 3643 icsk->icsk_accept_queue.rskq_defer_accept = 3644 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3645 TCP_RTO_MAX / HZ); 3646 break; 3647 3648 case TCP_WINDOW_CLAMP: 3649 err = tcp_set_window_clamp(sk, val); 3650 break; 3651 3652 case TCP_QUICKACK: 3653 __tcp_sock_set_quickack(sk, val); 3654 break; 3655 3656 #ifdef CONFIG_TCP_MD5SIG 3657 case TCP_MD5SIG: 3658 case TCP_MD5SIG_EXT: 3659 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3660 break; 3661 #endif 3662 case TCP_USER_TIMEOUT: 3663 /* Cap the max time in ms TCP will retry or probe the window 3664 * before giving up and aborting (ETIMEDOUT) a connection. 3665 */ 3666 if (val < 0) 3667 err = -EINVAL; 3668 else 3669 icsk->icsk_user_timeout = val; 3670 break; 3671 3672 case TCP_FASTOPEN: 3673 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3674 TCPF_LISTEN))) { 3675 tcp_fastopen_init_key_once(net); 3676 3677 fastopen_queue_tune(sk, val); 3678 } else { 3679 err = -EINVAL; 3680 } 3681 break; 3682 case TCP_FASTOPEN_CONNECT: 3683 if (val > 1 || val < 0) { 3684 err = -EINVAL; 3685 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3686 if (sk->sk_state == TCP_CLOSE) 3687 tp->fastopen_connect = val; 3688 else 3689 err = -EINVAL; 3690 } else { 3691 err = -EOPNOTSUPP; 3692 } 3693 break; 3694 case TCP_FASTOPEN_NO_COOKIE: 3695 if (val > 1 || val < 0) 3696 err = -EINVAL; 3697 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3698 err = -EINVAL; 3699 else 3700 tp->fastopen_no_cookie = val; 3701 break; 3702 case TCP_TIMESTAMP: 3703 if (!tp->repair) 3704 err = -EPERM; 3705 else 3706 tp->tsoffset = val - tcp_time_stamp_raw(); 3707 break; 3708 case TCP_REPAIR_WINDOW: 3709 err = tcp_repair_set_window(tp, optval, optlen); 3710 break; 3711 case TCP_NOTSENT_LOWAT: 3712 tp->notsent_lowat = val; 3713 sk->sk_write_space(sk); 3714 break; 3715 case TCP_INQ: 3716 if (val > 1 || val < 0) 3717 err = -EINVAL; 3718 else 3719 tp->recvmsg_inq = val; 3720 break; 3721 case TCP_TX_DELAY: 3722 if (val) 3723 tcp_enable_tx_delay(); 3724 tp->tcp_tx_delay = val; 3725 break; 3726 default: 3727 err = -ENOPROTOOPT; 3728 break; 3729 } 3730 3731 release_sock(sk); 3732 return err; 3733 } 3734 3735 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3736 unsigned int optlen) 3737 { 3738 const struct inet_connection_sock *icsk = inet_csk(sk); 3739 3740 if (level != SOL_TCP) 3741 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3742 optval, optlen); 3743 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3744 } 3745 EXPORT_SYMBOL(tcp_setsockopt); 3746 3747 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3748 struct tcp_info *info) 3749 { 3750 u64 stats[__TCP_CHRONO_MAX], total = 0; 3751 enum tcp_chrono i; 3752 3753 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3754 stats[i] = tp->chrono_stat[i - 1]; 3755 if (i == tp->chrono_type) 3756 stats[i] += tcp_jiffies32 - tp->chrono_start; 3757 stats[i] *= USEC_PER_SEC / HZ; 3758 total += stats[i]; 3759 } 3760 3761 info->tcpi_busy_time = total; 3762 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3763 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3764 } 3765 3766 /* Return information about state of tcp endpoint in API format. */ 3767 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3768 { 3769 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3770 const struct inet_connection_sock *icsk = inet_csk(sk); 3771 unsigned long rate; 3772 u32 now; 3773 u64 rate64; 3774 bool slow; 3775 3776 memset(info, 0, sizeof(*info)); 3777 if (sk->sk_type != SOCK_STREAM) 3778 return; 3779 3780 info->tcpi_state = inet_sk_state_load(sk); 3781 3782 /* Report meaningful fields for all TCP states, including listeners */ 3783 rate = READ_ONCE(sk->sk_pacing_rate); 3784 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3785 info->tcpi_pacing_rate = rate64; 3786 3787 rate = READ_ONCE(sk->sk_max_pacing_rate); 3788 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3789 info->tcpi_max_pacing_rate = rate64; 3790 3791 info->tcpi_reordering = tp->reordering; 3792 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3793 3794 if (info->tcpi_state == TCP_LISTEN) { 3795 /* listeners aliased fields : 3796 * tcpi_unacked -> Number of children ready for accept() 3797 * tcpi_sacked -> max backlog 3798 */ 3799 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3800 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3801 return; 3802 } 3803 3804 slow = lock_sock_fast(sk); 3805 3806 info->tcpi_ca_state = icsk->icsk_ca_state; 3807 info->tcpi_retransmits = icsk->icsk_retransmits; 3808 info->tcpi_probes = icsk->icsk_probes_out; 3809 info->tcpi_backoff = icsk->icsk_backoff; 3810 3811 if (tp->rx_opt.tstamp_ok) 3812 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3813 if (tcp_is_sack(tp)) 3814 info->tcpi_options |= TCPI_OPT_SACK; 3815 if (tp->rx_opt.wscale_ok) { 3816 info->tcpi_options |= TCPI_OPT_WSCALE; 3817 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3818 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3819 } 3820 3821 if (tp->ecn_flags & TCP_ECN_OK) 3822 info->tcpi_options |= TCPI_OPT_ECN; 3823 if (tp->ecn_flags & TCP_ECN_SEEN) 3824 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3825 if (tp->syn_data_acked) 3826 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3827 3828 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3829 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3830 info->tcpi_snd_mss = tp->mss_cache; 3831 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3832 3833 info->tcpi_unacked = tp->packets_out; 3834 info->tcpi_sacked = tp->sacked_out; 3835 3836 info->tcpi_lost = tp->lost_out; 3837 info->tcpi_retrans = tp->retrans_out; 3838 3839 now = tcp_jiffies32; 3840 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3841 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3842 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3843 3844 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3845 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3846 info->tcpi_rtt = tp->srtt_us >> 3; 3847 info->tcpi_rttvar = tp->mdev_us >> 2; 3848 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3849 info->tcpi_advmss = tp->advmss; 3850 3851 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3852 info->tcpi_rcv_space = tp->rcvq_space.space; 3853 3854 info->tcpi_total_retrans = tp->total_retrans; 3855 3856 info->tcpi_bytes_acked = tp->bytes_acked; 3857 info->tcpi_bytes_received = tp->bytes_received; 3858 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3859 tcp_get_info_chrono_stats(tp, info); 3860 3861 info->tcpi_segs_out = tp->segs_out; 3862 3863 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3864 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3865 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3866 3867 info->tcpi_min_rtt = tcp_min_rtt(tp); 3868 info->tcpi_data_segs_out = tp->data_segs_out; 3869 3870 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3871 rate64 = tcp_compute_delivery_rate(tp); 3872 if (rate64) 3873 info->tcpi_delivery_rate = rate64; 3874 info->tcpi_delivered = tp->delivered; 3875 info->tcpi_delivered_ce = tp->delivered_ce; 3876 info->tcpi_bytes_sent = tp->bytes_sent; 3877 info->tcpi_bytes_retrans = tp->bytes_retrans; 3878 info->tcpi_dsack_dups = tp->dsack_dups; 3879 info->tcpi_reord_seen = tp->reord_seen; 3880 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3881 info->tcpi_snd_wnd = tp->snd_wnd; 3882 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3883 unlock_sock_fast(sk, slow); 3884 } 3885 EXPORT_SYMBOL_GPL(tcp_get_info); 3886 3887 static size_t tcp_opt_stats_get_size(void) 3888 { 3889 return 3890 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3891 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3892 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3893 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3894 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3895 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3896 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3897 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3898 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3899 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3900 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3901 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3902 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3903 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3904 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3906 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3907 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3908 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3909 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3910 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3911 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3912 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3913 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3914 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3915 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3916 0; 3917 } 3918 3919 /* Returns TTL or hop limit of an incoming packet from skb. */ 3920 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3921 { 3922 if (skb->protocol == htons(ETH_P_IP)) 3923 return ip_hdr(skb)->ttl; 3924 else if (skb->protocol == htons(ETH_P_IPV6)) 3925 return ipv6_hdr(skb)->hop_limit; 3926 else 3927 return 0; 3928 } 3929 3930 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3931 const struct sk_buff *orig_skb, 3932 const struct sk_buff *ack_skb) 3933 { 3934 const struct tcp_sock *tp = tcp_sk(sk); 3935 struct sk_buff *stats; 3936 struct tcp_info info; 3937 unsigned long rate; 3938 u64 rate64; 3939 3940 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3941 if (!stats) 3942 return NULL; 3943 3944 tcp_get_info_chrono_stats(tp, &info); 3945 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3946 info.tcpi_busy_time, TCP_NLA_PAD); 3947 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3948 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3949 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3950 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3951 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3952 tp->data_segs_out, TCP_NLA_PAD); 3953 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3954 tp->total_retrans, TCP_NLA_PAD); 3955 3956 rate = READ_ONCE(sk->sk_pacing_rate); 3957 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3958 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3959 3960 rate64 = tcp_compute_delivery_rate(tp); 3961 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3962 3963 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3964 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3965 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3966 3967 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3968 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3969 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3970 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3971 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3972 3973 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3974 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3975 3976 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3977 TCP_NLA_PAD); 3978 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3979 TCP_NLA_PAD); 3980 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3981 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3982 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3983 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3984 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3985 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3986 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3987 TCP_NLA_PAD); 3988 if (ack_skb) 3989 nla_put_u8(stats, TCP_NLA_TTL, 3990 tcp_skb_ttl_or_hop_limit(ack_skb)); 3991 3992 return stats; 3993 } 3994 3995 static int do_tcp_getsockopt(struct sock *sk, int level, 3996 int optname, char __user *optval, int __user *optlen) 3997 { 3998 struct inet_connection_sock *icsk = inet_csk(sk); 3999 struct tcp_sock *tp = tcp_sk(sk); 4000 struct net *net = sock_net(sk); 4001 int val, len; 4002 4003 if (get_user(len, optlen)) 4004 return -EFAULT; 4005 4006 len = min_t(unsigned int, len, sizeof(int)); 4007 4008 if (len < 0) 4009 return -EINVAL; 4010 4011 switch (optname) { 4012 case TCP_MAXSEG: 4013 val = tp->mss_cache; 4014 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4015 val = tp->rx_opt.user_mss; 4016 if (tp->repair) 4017 val = tp->rx_opt.mss_clamp; 4018 break; 4019 case TCP_NODELAY: 4020 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4021 break; 4022 case TCP_CORK: 4023 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4024 break; 4025 case TCP_KEEPIDLE: 4026 val = keepalive_time_when(tp) / HZ; 4027 break; 4028 case TCP_KEEPINTVL: 4029 val = keepalive_intvl_when(tp) / HZ; 4030 break; 4031 case TCP_KEEPCNT: 4032 val = keepalive_probes(tp); 4033 break; 4034 case TCP_SYNCNT: 4035 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 4036 break; 4037 case TCP_LINGER2: 4038 val = tp->linger2; 4039 if (val >= 0) 4040 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 4041 break; 4042 case TCP_DEFER_ACCEPT: 4043 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4044 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4045 break; 4046 case TCP_WINDOW_CLAMP: 4047 val = tp->window_clamp; 4048 break; 4049 case TCP_INFO: { 4050 struct tcp_info info; 4051 4052 if (get_user(len, optlen)) 4053 return -EFAULT; 4054 4055 tcp_get_info(sk, &info); 4056 4057 len = min_t(unsigned int, len, sizeof(info)); 4058 if (put_user(len, optlen)) 4059 return -EFAULT; 4060 if (copy_to_user(optval, &info, len)) 4061 return -EFAULT; 4062 return 0; 4063 } 4064 case TCP_CC_INFO: { 4065 const struct tcp_congestion_ops *ca_ops; 4066 union tcp_cc_info info; 4067 size_t sz = 0; 4068 int attr; 4069 4070 if (get_user(len, optlen)) 4071 return -EFAULT; 4072 4073 ca_ops = icsk->icsk_ca_ops; 4074 if (ca_ops && ca_ops->get_info) 4075 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4076 4077 len = min_t(unsigned int, len, sz); 4078 if (put_user(len, optlen)) 4079 return -EFAULT; 4080 if (copy_to_user(optval, &info, len)) 4081 return -EFAULT; 4082 return 0; 4083 } 4084 case TCP_QUICKACK: 4085 val = !inet_csk_in_pingpong_mode(sk); 4086 break; 4087 4088 case TCP_CONGESTION: 4089 if (get_user(len, optlen)) 4090 return -EFAULT; 4091 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4092 if (put_user(len, optlen)) 4093 return -EFAULT; 4094 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4095 return -EFAULT; 4096 return 0; 4097 4098 case TCP_ULP: 4099 if (get_user(len, optlen)) 4100 return -EFAULT; 4101 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4102 if (!icsk->icsk_ulp_ops) { 4103 if (put_user(0, optlen)) 4104 return -EFAULT; 4105 return 0; 4106 } 4107 if (put_user(len, optlen)) 4108 return -EFAULT; 4109 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4110 return -EFAULT; 4111 return 0; 4112 4113 case TCP_FASTOPEN_KEY: { 4114 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4115 unsigned int key_len; 4116 4117 if (get_user(len, optlen)) 4118 return -EFAULT; 4119 4120 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4121 TCP_FASTOPEN_KEY_LENGTH; 4122 len = min_t(unsigned int, len, key_len); 4123 if (put_user(len, optlen)) 4124 return -EFAULT; 4125 if (copy_to_user(optval, key, len)) 4126 return -EFAULT; 4127 return 0; 4128 } 4129 case TCP_THIN_LINEAR_TIMEOUTS: 4130 val = tp->thin_lto; 4131 break; 4132 4133 case TCP_THIN_DUPACK: 4134 val = 0; 4135 break; 4136 4137 case TCP_REPAIR: 4138 val = tp->repair; 4139 break; 4140 4141 case TCP_REPAIR_QUEUE: 4142 if (tp->repair) 4143 val = tp->repair_queue; 4144 else 4145 return -EINVAL; 4146 break; 4147 4148 case TCP_REPAIR_WINDOW: { 4149 struct tcp_repair_window opt; 4150 4151 if (get_user(len, optlen)) 4152 return -EFAULT; 4153 4154 if (len != sizeof(opt)) 4155 return -EINVAL; 4156 4157 if (!tp->repair) 4158 return -EPERM; 4159 4160 opt.snd_wl1 = tp->snd_wl1; 4161 opt.snd_wnd = tp->snd_wnd; 4162 opt.max_window = tp->max_window; 4163 opt.rcv_wnd = tp->rcv_wnd; 4164 opt.rcv_wup = tp->rcv_wup; 4165 4166 if (copy_to_user(optval, &opt, len)) 4167 return -EFAULT; 4168 return 0; 4169 } 4170 case TCP_QUEUE_SEQ: 4171 if (tp->repair_queue == TCP_SEND_QUEUE) 4172 val = tp->write_seq; 4173 else if (tp->repair_queue == TCP_RECV_QUEUE) 4174 val = tp->rcv_nxt; 4175 else 4176 return -EINVAL; 4177 break; 4178 4179 case TCP_USER_TIMEOUT: 4180 val = icsk->icsk_user_timeout; 4181 break; 4182 4183 case TCP_FASTOPEN: 4184 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4185 break; 4186 4187 case TCP_FASTOPEN_CONNECT: 4188 val = tp->fastopen_connect; 4189 break; 4190 4191 case TCP_FASTOPEN_NO_COOKIE: 4192 val = tp->fastopen_no_cookie; 4193 break; 4194 4195 case TCP_TX_DELAY: 4196 val = tp->tcp_tx_delay; 4197 break; 4198 4199 case TCP_TIMESTAMP: 4200 val = tcp_time_stamp_raw() + tp->tsoffset; 4201 break; 4202 case TCP_NOTSENT_LOWAT: 4203 val = tp->notsent_lowat; 4204 break; 4205 case TCP_INQ: 4206 val = tp->recvmsg_inq; 4207 break; 4208 case TCP_SAVE_SYN: 4209 val = tp->save_syn; 4210 break; 4211 case TCP_SAVED_SYN: { 4212 if (get_user(len, optlen)) 4213 return -EFAULT; 4214 4215 lock_sock(sk); 4216 if (tp->saved_syn) { 4217 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4218 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4219 optlen)) { 4220 release_sock(sk); 4221 return -EFAULT; 4222 } 4223 release_sock(sk); 4224 return -EINVAL; 4225 } 4226 len = tcp_saved_syn_len(tp->saved_syn); 4227 if (put_user(len, optlen)) { 4228 release_sock(sk); 4229 return -EFAULT; 4230 } 4231 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4232 release_sock(sk); 4233 return -EFAULT; 4234 } 4235 tcp_saved_syn_free(tp); 4236 release_sock(sk); 4237 } else { 4238 release_sock(sk); 4239 len = 0; 4240 if (put_user(len, optlen)) 4241 return -EFAULT; 4242 } 4243 return 0; 4244 } 4245 #ifdef CONFIG_MMU 4246 case TCP_ZEROCOPY_RECEIVE: { 4247 struct scm_timestamping_internal tss; 4248 struct tcp_zerocopy_receive zc = {}; 4249 int err; 4250 4251 if (get_user(len, optlen)) 4252 return -EFAULT; 4253 if (len < 0 || 4254 len < offsetofend(struct tcp_zerocopy_receive, length)) 4255 return -EINVAL; 4256 if (unlikely(len > sizeof(zc))) { 4257 err = check_zeroed_user(optval + sizeof(zc), 4258 len - sizeof(zc)); 4259 if (err < 1) 4260 return err == 0 ? -EINVAL : err; 4261 len = sizeof(zc); 4262 if (put_user(len, optlen)) 4263 return -EFAULT; 4264 } 4265 if (copy_from_user(&zc, optval, len)) 4266 return -EFAULT; 4267 if (zc.reserved) 4268 return -EINVAL; 4269 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4270 return -EINVAL; 4271 lock_sock(sk); 4272 err = tcp_zerocopy_receive(sk, &zc, &tss); 4273 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4274 &zc, &len, err); 4275 release_sock(sk); 4276 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4277 goto zerocopy_rcv_cmsg; 4278 switch (len) { 4279 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4280 goto zerocopy_rcv_cmsg; 4281 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4282 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4283 case offsetofend(struct tcp_zerocopy_receive, flags): 4284 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4285 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4286 case offsetofend(struct tcp_zerocopy_receive, err): 4287 goto zerocopy_rcv_sk_err; 4288 case offsetofend(struct tcp_zerocopy_receive, inq): 4289 goto zerocopy_rcv_inq; 4290 case offsetofend(struct tcp_zerocopy_receive, length): 4291 default: 4292 goto zerocopy_rcv_out; 4293 } 4294 zerocopy_rcv_cmsg: 4295 if (zc.msg_flags & TCP_CMSG_TS) 4296 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4297 else 4298 zc.msg_flags = 0; 4299 zerocopy_rcv_sk_err: 4300 if (!err) 4301 zc.err = sock_error(sk); 4302 zerocopy_rcv_inq: 4303 zc.inq = tcp_inq_hint(sk); 4304 zerocopy_rcv_out: 4305 if (!err && copy_to_user(optval, &zc, len)) 4306 err = -EFAULT; 4307 return err; 4308 } 4309 #endif 4310 default: 4311 return -ENOPROTOOPT; 4312 } 4313 4314 if (put_user(len, optlen)) 4315 return -EFAULT; 4316 if (copy_to_user(optval, &val, len)) 4317 return -EFAULT; 4318 return 0; 4319 } 4320 4321 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4322 { 4323 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4324 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4325 */ 4326 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4327 return true; 4328 4329 return false; 4330 } 4331 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4332 4333 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4334 int __user *optlen) 4335 { 4336 struct inet_connection_sock *icsk = inet_csk(sk); 4337 4338 if (level != SOL_TCP) 4339 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4340 optval, optlen); 4341 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4342 } 4343 EXPORT_SYMBOL(tcp_getsockopt); 4344 4345 #ifdef CONFIG_TCP_MD5SIG 4346 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4347 static DEFINE_MUTEX(tcp_md5sig_mutex); 4348 static bool tcp_md5sig_pool_populated = false; 4349 4350 static void __tcp_alloc_md5sig_pool(void) 4351 { 4352 struct crypto_ahash *hash; 4353 int cpu; 4354 4355 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4356 if (IS_ERR(hash)) 4357 return; 4358 4359 for_each_possible_cpu(cpu) { 4360 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4361 struct ahash_request *req; 4362 4363 if (!scratch) { 4364 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4365 sizeof(struct tcphdr), 4366 GFP_KERNEL, 4367 cpu_to_node(cpu)); 4368 if (!scratch) 4369 return; 4370 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4371 } 4372 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4373 continue; 4374 4375 req = ahash_request_alloc(hash, GFP_KERNEL); 4376 if (!req) 4377 return; 4378 4379 ahash_request_set_callback(req, 0, NULL, NULL); 4380 4381 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4382 } 4383 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4384 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4385 */ 4386 smp_wmb(); 4387 tcp_md5sig_pool_populated = true; 4388 } 4389 4390 bool tcp_alloc_md5sig_pool(void) 4391 { 4392 if (unlikely(!tcp_md5sig_pool_populated)) { 4393 mutex_lock(&tcp_md5sig_mutex); 4394 4395 if (!tcp_md5sig_pool_populated) { 4396 __tcp_alloc_md5sig_pool(); 4397 if (tcp_md5sig_pool_populated) 4398 static_branch_inc(&tcp_md5_needed); 4399 } 4400 4401 mutex_unlock(&tcp_md5sig_mutex); 4402 } 4403 return tcp_md5sig_pool_populated; 4404 } 4405 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4406 4407 4408 /** 4409 * tcp_get_md5sig_pool - get md5sig_pool for this user 4410 * 4411 * We use percpu structure, so if we succeed, we exit with preemption 4412 * and BH disabled, to make sure another thread or softirq handling 4413 * wont try to get same context. 4414 */ 4415 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4416 { 4417 local_bh_disable(); 4418 4419 if (tcp_md5sig_pool_populated) { 4420 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4421 smp_rmb(); 4422 return this_cpu_ptr(&tcp_md5sig_pool); 4423 } 4424 local_bh_enable(); 4425 return NULL; 4426 } 4427 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4428 4429 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4430 const struct sk_buff *skb, unsigned int header_len) 4431 { 4432 struct scatterlist sg; 4433 const struct tcphdr *tp = tcp_hdr(skb); 4434 struct ahash_request *req = hp->md5_req; 4435 unsigned int i; 4436 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4437 skb_headlen(skb) - header_len : 0; 4438 const struct skb_shared_info *shi = skb_shinfo(skb); 4439 struct sk_buff *frag_iter; 4440 4441 sg_init_table(&sg, 1); 4442 4443 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4444 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4445 if (crypto_ahash_update(req)) 4446 return 1; 4447 4448 for (i = 0; i < shi->nr_frags; ++i) { 4449 const skb_frag_t *f = &shi->frags[i]; 4450 unsigned int offset = skb_frag_off(f); 4451 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4452 4453 sg_set_page(&sg, page, skb_frag_size(f), 4454 offset_in_page(offset)); 4455 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4456 if (crypto_ahash_update(req)) 4457 return 1; 4458 } 4459 4460 skb_walk_frags(skb, frag_iter) 4461 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4462 return 1; 4463 4464 return 0; 4465 } 4466 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4467 4468 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4469 { 4470 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4471 struct scatterlist sg; 4472 4473 sg_init_one(&sg, key->key, keylen); 4474 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4475 4476 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4477 return data_race(crypto_ahash_update(hp->md5_req)); 4478 } 4479 EXPORT_SYMBOL(tcp_md5_hash_key); 4480 4481 /* Called with rcu_read_lock() */ 4482 enum skb_drop_reason 4483 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4484 const void *saddr, const void *daddr, 4485 int family, int dif, int sdif) 4486 { 4487 /* 4488 * This gets called for each TCP segment that arrives 4489 * so we want to be efficient. 4490 * We have 3 drop cases: 4491 * o No MD5 hash and one expected. 4492 * o MD5 hash and we're not expecting one. 4493 * o MD5 hash and its wrong. 4494 */ 4495 const __u8 *hash_location = NULL; 4496 struct tcp_md5sig_key *hash_expected; 4497 const struct tcphdr *th = tcp_hdr(skb); 4498 struct tcp_sock *tp = tcp_sk(sk); 4499 int genhash, l3index; 4500 u8 newhash[16]; 4501 4502 /* sdif set, means packet ingressed via a device 4503 * in an L3 domain and dif is set to the l3mdev 4504 */ 4505 l3index = sdif ? dif : 0; 4506 4507 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4508 hash_location = tcp_parse_md5sig_option(th); 4509 4510 /* We've parsed the options - do we have a hash? */ 4511 if (!hash_expected && !hash_location) 4512 return SKB_NOT_DROPPED_YET; 4513 4514 if (hash_expected && !hash_location) { 4515 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4516 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4517 } 4518 4519 if (!hash_expected && hash_location) { 4520 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4521 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4522 } 4523 4524 /* check the signature */ 4525 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4526 NULL, skb); 4527 4528 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4530 if (family == AF_INET) { 4531 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4532 saddr, ntohs(th->source), 4533 daddr, ntohs(th->dest), 4534 genhash ? " tcp_v4_calc_md5_hash failed" 4535 : "", l3index); 4536 } else { 4537 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4538 genhash ? "failed" : "mismatch", 4539 saddr, ntohs(th->source), 4540 daddr, ntohs(th->dest), l3index); 4541 } 4542 return SKB_DROP_REASON_TCP_MD5FAILURE; 4543 } 4544 return SKB_NOT_DROPPED_YET; 4545 } 4546 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4547 4548 #endif 4549 4550 void tcp_done(struct sock *sk) 4551 { 4552 struct request_sock *req; 4553 4554 /* We might be called with a new socket, after 4555 * inet_csk_prepare_forced_close() has been called 4556 * so we can not use lockdep_sock_is_held(sk) 4557 */ 4558 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4559 4560 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4561 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4562 4563 tcp_set_state(sk, TCP_CLOSE); 4564 tcp_clear_xmit_timers(sk); 4565 if (req) 4566 reqsk_fastopen_remove(sk, req, false); 4567 4568 sk->sk_shutdown = SHUTDOWN_MASK; 4569 4570 if (!sock_flag(sk, SOCK_DEAD)) 4571 sk->sk_state_change(sk); 4572 else 4573 inet_csk_destroy_sock(sk); 4574 } 4575 EXPORT_SYMBOL_GPL(tcp_done); 4576 4577 int tcp_abort(struct sock *sk, int err) 4578 { 4579 int state = inet_sk_state_load(sk); 4580 4581 if (state == TCP_NEW_SYN_RECV) { 4582 struct request_sock *req = inet_reqsk(sk); 4583 4584 local_bh_disable(); 4585 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4586 local_bh_enable(); 4587 return 0; 4588 } 4589 if (state == TCP_TIME_WAIT) { 4590 struct inet_timewait_sock *tw = inet_twsk(sk); 4591 4592 refcount_inc(&tw->tw_refcnt); 4593 local_bh_disable(); 4594 inet_twsk_deschedule_put(tw); 4595 local_bh_enable(); 4596 return 0; 4597 } 4598 4599 /* Don't race with userspace socket closes such as tcp_close. */ 4600 lock_sock(sk); 4601 4602 if (sk->sk_state == TCP_LISTEN) { 4603 tcp_set_state(sk, TCP_CLOSE); 4604 inet_csk_listen_stop(sk); 4605 } 4606 4607 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4608 local_bh_disable(); 4609 bh_lock_sock(sk); 4610 4611 if (!sock_flag(sk, SOCK_DEAD)) { 4612 sk->sk_err = err; 4613 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4614 smp_wmb(); 4615 sk_error_report(sk); 4616 if (tcp_need_reset(sk->sk_state)) 4617 tcp_send_active_reset(sk, GFP_ATOMIC); 4618 tcp_done(sk); 4619 } 4620 4621 bh_unlock_sock(sk); 4622 local_bh_enable(); 4623 tcp_write_queue_purge(sk); 4624 release_sock(sk); 4625 return 0; 4626 } 4627 EXPORT_SYMBOL_GPL(tcp_abort); 4628 4629 extern struct tcp_congestion_ops tcp_reno; 4630 4631 static __initdata unsigned long thash_entries; 4632 static int __init set_thash_entries(char *str) 4633 { 4634 ssize_t ret; 4635 4636 if (!str) 4637 return 0; 4638 4639 ret = kstrtoul(str, 0, &thash_entries); 4640 if (ret) 4641 return 0; 4642 4643 return 1; 4644 } 4645 __setup("thash_entries=", set_thash_entries); 4646 4647 static void __init tcp_init_mem(void) 4648 { 4649 unsigned long limit = nr_free_buffer_pages() / 16; 4650 4651 limit = max(limit, 128UL); 4652 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4653 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4654 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4655 } 4656 4657 void __init tcp_init(void) 4658 { 4659 int max_rshare, max_wshare, cnt; 4660 unsigned long limit; 4661 unsigned int i; 4662 4663 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4664 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4665 sizeof_field(struct sk_buff, cb)); 4666 4667 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4668 4669 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4670 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4671 4672 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4673 thash_entries, 21, /* one slot per 2 MB*/ 4674 0, 64 * 1024); 4675 tcp_hashinfo.bind_bucket_cachep = 4676 kmem_cache_create("tcp_bind_bucket", 4677 sizeof(struct inet_bind_bucket), 0, 4678 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4679 SLAB_ACCOUNT, 4680 NULL); 4681 4682 /* Size and allocate the main established and bind bucket 4683 * hash tables. 4684 * 4685 * The methodology is similar to that of the buffer cache. 4686 */ 4687 tcp_hashinfo.ehash = 4688 alloc_large_system_hash("TCP established", 4689 sizeof(struct inet_ehash_bucket), 4690 thash_entries, 4691 17, /* one slot per 128 KB of memory */ 4692 0, 4693 NULL, 4694 &tcp_hashinfo.ehash_mask, 4695 0, 4696 thash_entries ? 0 : 512 * 1024); 4697 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4698 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4699 4700 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4701 panic("TCP: failed to alloc ehash_locks"); 4702 tcp_hashinfo.bhash = 4703 alloc_large_system_hash("TCP bind", 4704 sizeof(struct inet_bind_hashbucket), 4705 tcp_hashinfo.ehash_mask + 1, 4706 17, /* one slot per 128 KB of memory */ 4707 0, 4708 &tcp_hashinfo.bhash_size, 4709 NULL, 4710 0, 4711 64 * 1024); 4712 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4713 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4714 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4715 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4716 } 4717 4718 4719 cnt = tcp_hashinfo.ehash_mask + 1; 4720 sysctl_tcp_max_orphans = cnt / 2; 4721 4722 tcp_init_mem(); 4723 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4724 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4725 max_wshare = min(4UL*1024*1024, limit); 4726 max_rshare = min(6UL*1024*1024, limit); 4727 4728 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4729 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4730 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4731 4732 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4733 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4734 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4735 4736 pr_info("Hash tables configured (established %u bind %u)\n", 4737 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4738 4739 tcp_v4_init(); 4740 tcp_metrics_init(); 4741 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4742 tcp_tasklet_init(); 4743 mptcp_init(); 4744 } 4745