1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/netdma.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 int sysctl_tcp_wmem[3] __read_mostly; 290 int sysctl_tcp_rmem[3] __read_mostly; 291 292 EXPORT_SYMBOL(sysctl_tcp_rmem); 293 EXPORT_SYMBOL(sysctl_tcp_wmem); 294 295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 /* 299 * Current number of TCP sockets. 300 */ 301 struct percpu_counter tcp_sockets_allocated; 302 EXPORT_SYMBOL(tcp_sockets_allocated); 303 304 /* 305 * TCP splice context 306 */ 307 struct tcp_splice_state { 308 struct pipe_inode_info *pipe; 309 size_t len; 310 unsigned int flags; 311 }; 312 313 /* 314 * Pressure flag: try to collapse. 315 * Technical note: it is used by multiple contexts non atomically. 316 * All the __sk_mem_schedule() is of this nature: accounting 317 * is strict, actions are advisory and have some latency. 318 */ 319 int tcp_memory_pressure __read_mostly; 320 EXPORT_SYMBOL(tcp_memory_pressure); 321 322 void tcp_enter_memory_pressure(struct sock *sk) 323 { 324 if (!tcp_memory_pressure) { 325 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 326 tcp_memory_pressure = 1; 327 } 328 } 329 EXPORT_SYMBOL(tcp_enter_memory_pressure); 330 331 /* Convert seconds to retransmits based on initial and max timeout */ 332 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 333 { 334 u8 res = 0; 335 336 if (seconds > 0) { 337 int period = timeout; 338 339 res = 1; 340 while (seconds > period && res < 255) { 341 res++; 342 timeout <<= 1; 343 if (timeout > rto_max) 344 timeout = rto_max; 345 period += timeout; 346 } 347 } 348 return res; 349 } 350 351 /* Convert retransmits to seconds based on initial and max timeout */ 352 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 353 { 354 int period = 0; 355 356 if (retrans > 0) { 357 period = timeout; 358 while (--retrans) { 359 timeout <<= 1; 360 if (timeout > rto_max) 361 timeout = rto_max; 362 period += timeout; 363 } 364 } 365 return period; 366 } 367 368 /* Address-family independent initialization for a tcp_sock. 369 * 370 * NOTE: A lot of things set to zero explicitly by call to 371 * sk_alloc() so need not be done here. 372 */ 373 void tcp_init_sock(struct sock *sk) 374 { 375 struct inet_connection_sock *icsk = inet_csk(sk); 376 struct tcp_sock *tp = tcp_sk(sk); 377 378 skb_queue_head_init(&tp->out_of_order_queue); 379 tcp_init_xmit_timers(sk); 380 tcp_prequeue_init(tp); 381 INIT_LIST_HEAD(&tp->tsq_node); 382 383 icsk->icsk_rto = TCP_TIMEOUT_INIT; 384 tp->mdev = TCP_TIMEOUT_INIT; 385 386 /* So many TCP implementations out there (incorrectly) count the 387 * initial SYN frame in their delayed-ACK and congestion control 388 * algorithms that we must have the following bandaid to talk 389 * efficiently to them. -DaveM 390 */ 391 tp->snd_cwnd = TCP_INIT_CWND; 392 393 /* See draft-stevens-tcpca-spec-01 for discussion of the 394 * initialization of these values. 395 */ 396 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 397 tp->snd_cwnd_clamp = ~0; 398 tp->mss_cache = TCP_MSS_DEFAULT; 399 400 tp->reordering = sysctl_tcp_reordering; 401 tcp_enable_early_retrans(tp); 402 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 403 404 tp->tsoffset = 0; 405 406 sk->sk_state = TCP_CLOSE; 407 408 sk->sk_write_space = sk_stream_write_space; 409 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 410 411 icsk->icsk_sync_mss = tcp_sync_mss; 412 413 /* Presumed zeroed, in order of appearance: 414 * cookie_in_always, cookie_out_never, 415 * s_data_constant, s_data_in, s_data_out 416 */ 417 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 418 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 419 420 local_bh_disable(); 421 sock_update_memcg(sk); 422 sk_sockets_allocated_inc(sk); 423 local_bh_enable(); 424 } 425 EXPORT_SYMBOL(tcp_init_sock); 426 427 /* 428 * Wait for a TCP event. 429 * 430 * Note that we don't need to lock the socket, as the upper poll layers 431 * take care of normal races (between the test and the event) and we don't 432 * go look at any of the socket buffers directly. 433 */ 434 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 435 { 436 unsigned int mask; 437 struct sock *sk = sock->sk; 438 const struct tcp_sock *tp = tcp_sk(sk); 439 440 sock_rps_record_flow(sk); 441 442 sock_poll_wait(file, sk_sleep(sk), wait); 443 if (sk->sk_state == TCP_LISTEN) 444 return inet_csk_listen_poll(sk); 445 446 /* Socket is not locked. We are protected from async events 447 * by poll logic and correct handling of state changes 448 * made by other threads is impossible in any case. 449 */ 450 451 mask = 0; 452 453 /* 454 * POLLHUP is certainly not done right. But poll() doesn't 455 * have a notion of HUP in just one direction, and for a 456 * socket the read side is more interesting. 457 * 458 * Some poll() documentation says that POLLHUP is incompatible 459 * with the POLLOUT/POLLWR flags, so somebody should check this 460 * all. But careful, it tends to be safer to return too many 461 * bits than too few, and you can easily break real applications 462 * if you don't tell them that something has hung up! 463 * 464 * Check-me. 465 * 466 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 467 * our fs/select.c). It means that after we received EOF, 468 * poll always returns immediately, making impossible poll() on write() 469 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 470 * if and only if shutdown has been made in both directions. 471 * Actually, it is interesting to look how Solaris and DUX 472 * solve this dilemma. I would prefer, if POLLHUP were maskable, 473 * then we could set it on SND_SHUTDOWN. BTW examples given 474 * in Stevens' books assume exactly this behaviour, it explains 475 * why POLLHUP is incompatible with POLLOUT. --ANK 476 * 477 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 478 * blocking on fresh not-connected or disconnected socket. --ANK 479 */ 480 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 481 mask |= POLLHUP; 482 if (sk->sk_shutdown & RCV_SHUTDOWN) 483 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 484 485 /* Connected or passive Fast Open socket? */ 486 if (sk->sk_state != TCP_SYN_SENT && 487 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 488 int target = sock_rcvlowat(sk, 0, INT_MAX); 489 490 if (tp->urg_seq == tp->copied_seq && 491 !sock_flag(sk, SOCK_URGINLINE) && 492 tp->urg_data) 493 target++; 494 495 /* Potential race condition. If read of tp below will 496 * escape above sk->sk_state, we can be illegally awaken 497 * in SYN_* states. */ 498 if (tp->rcv_nxt - tp->copied_seq >= target) 499 mask |= POLLIN | POLLRDNORM; 500 501 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 502 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 503 mask |= POLLOUT | POLLWRNORM; 504 } else { /* send SIGIO later */ 505 set_bit(SOCK_ASYNC_NOSPACE, 506 &sk->sk_socket->flags); 507 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 508 509 /* Race breaker. If space is freed after 510 * wspace test but before the flags are set, 511 * IO signal will be lost. 512 */ 513 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 514 mask |= POLLOUT | POLLWRNORM; 515 } 516 } else 517 mask |= POLLOUT | POLLWRNORM; 518 519 if (tp->urg_data & TCP_URG_VALID) 520 mask |= POLLPRI; 521 } 522 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 523 smp_rmb(); 524 if (sk->sk_err) 525 mask |= POLLERR; 526 527 return mask; 528 } 529 EXPORT_SYMBOL(tcp_poll); 530 531 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 532 { 533 struct tcp_sock *tp = tcp_sk(sk); 534 int answ; 535 bool slow; 536 537 switch (cmd) { 538 case SIOCINQ: 539 if (sk->sk_state == TCP_LISTEN) 540 return -EINVAL; 541 542 slow = lock_sock_fast(sk); 543 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 544 answ = 0; 545 else if (sock_flag(sk, SOCK_URGINLINE) || 546 !tp->urg_data || 547 before(tp->urg_seq, tp->copied_seq) || 548 !before(tp->urg_seq, tp->rcv_nxt)) { 549 550 answ = tp->rcv_nxt - tp->copied_seq; 551 552 /* Subtract 1, if FIN was received */ 553 if (answ && sock_flag(sk, SOCK_DONE)) 554 answ--; 555 } else 556 answ = tp->urg_seq - tp->copied_seq; 557 unlock_sock_fast(sk, slow); 558 break; 559 case SIOCATMARK: 560 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 561 break; 562 case SIOCOUTQ: 563 if (sk->sk_state == TCP_LISTEN) 564 return -EINVAL; 565 566 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 567 answ = 0; 568 else 569 answ = tp->write_seq - tp->snd_una; 570 break; 571 case SIOCOUTQNSD: 572 if (sk->sk_state == TCP_LISTEN) 573 return -EINVAL; 574 575 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 576 answ = 0; 577 else 578 answ = tp->write_seq - tp->snd_nxt; 579 break; 580 default: 581 return -ENOIOCTLCMD; 582 } 583 584 return put_user(answ, (int __user *)arg); 585 } 586 EXPORT_SYMBOL(tcp_ioctl); 587 588 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 589 { 590 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 591 tp->pushed_seq = tp->write_seq; 592 } 593 594 static inline bool forced_push(const struct tcp_sock *tp) 595 { 596 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 597 } 598 599 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 600 { 601 struct tcp_sock *tp = tcp_sk(sk); 602 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 603 604 skb->csum = 0; 605 tcb->seq = tcb->end_seq = tp->write_seq; 606 tcb->tcp_flags = TCPHDR_ACK; 607 tcb->sacked = 0; 608 skb_header_release(skb); 609 tcp_add_write_queue_tail(sk, skb); 610 sk->sk_wmem_queued += skb->truesize; 611 sk_mem_charge(sk, skb->truesize); 612 if (tp->nonagle & TCP_NAGLE_PUSH) 613 tp->nonagle &= ~TCP_NAGLE_PUSH; 614 } 615 616 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 617 { 618 if (flags & MSG_OOB) 619 tp->snd_up = tp->write_seq; 620 } 621 622 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 623 int nonagle) 624 { 625 if (tcp_send_head(sk)) { 626 struct tcp_sock *tp = tcp_sk(sk); 627 628 if (!(flags & MSG_MORE) || forced_push(tp)) 629 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 630 631 tcp_mark_urg(tp, flags); 632 __tcp_push_pending_frames(sk, mss_now, 633 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 634 } 635 } 636 637 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 638 unsigned int offset, size_t len) 639 { 640 struct tcp_splice_state *tss = rd_desc->arg.data; 641 int ret; 642 643 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 644 tss->flags); 645 if (ret > 0) 646 rd_desc->count -= ret; 647 return ret; 648 } 649 650 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 651 { 652 /* Store TCP splice context information in read_descriptor_t. */ 653 read_descriptor_t rd_desc = { 654 .arg.data = tss, 655 .count = tss->len, 656 }; 657 658 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 659 } 660 661 /** 662 * tcp_splice_read - splice data from TCP socket to a pipe 663 * @sock: socket to splice from 664 * @ppos: position (not valid) 665 * @pipe: pipe to splice to 666 * @len: number of bytes to splice 667 * @flags: splice modifier flags 668 * 669 * Description: 670 * Will read pages from given socket and fill them into a pipe. 671 * 672 **/ 673 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 674 struct pipe_inode_info *pipe, size_t len, 675 unsigned int flags) 676 { 677 struct sock *sk = sock->sk; 678 struct tcp_splice_state tss = { 679 .pipe = pipe, 680 .len = len, 681 .flags = flags, 682 }; 683 long timeo; 684 ssize_t spliced; 685 int ret; 686 687 sock_rps_record_flow(sk); 688 /* 689 * We can't seek on a socket input 690 */ 691 if (unlikely(*ppos)) 692 return -ESPIPE; 693 694 ret = spliced = 0; 695 696 lock_sock(sk); 697 698 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 699 while (tss.len) { 700 ret = __tcp_splice_read(sk, &tss); 701 if (ret < 0) 702 break; 703 else if (!ret) { 704 if (spliced) 705 break; 706 if (sock_flag(sk, SOCK_DONE)) 707 break; 708 if (sk->sk_err) { 709 ret = sock_error(sk); 710 break; 711 } 712 if (sk->sk_shutdown & RCV_SHUTDOWN) 713 break; 714 if (sk->sk_state == TCP_CLOSE) { 715 /* 716 * This occurs when user tries to read 717 * from never connected socket. 718 */ 719 if (!sock_flag(sk, SOCK_DONE)) 720 ret = -ENOTCONN; 721 break; 722 } 723 if (!timeo) { 724 ret = -EAGAIN; 725 break; 726 } 727 sk_wait_data(sk, &timeo); 728 if (signal_pending(current)) { 729 ret = sock_intr_errno(timeo); 730 break; 731 } 732 continue; 733 } 734 tss.len -= ret; 735 spliced += ret; 736 737 if (!timeo) 738 break; 739 release_sock(sk); 740 lock_sock(sk); 741 742 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 743 (sk->sk_shutdown & RCV_SHUTDOWN) || 744 signal_pending(current)) 745 break; 746 } 747 748 release_sock(sk); 749 750 if (spliced) 751 return spliced; 752 753 return ret; 754 } 755 EXPORT_SYMBOL(tcp_splice_read); 756 757 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 758 { 759 struct sk_buff *skb; 760 761 /* The TCP header must be at least 32-bit aligned. */ 762 size = ALIGN(size, 4); 763 764 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 765 if (skb) { 766 if (sk_wmem_schedule(sk, skb->truesize)) { 767 skb_reserve(skb, sk->sk_prot->max_header); 768 /* 769 * Make sure that we have exactly size bytes 770 * available to the caller, no more, no less. 771 */ 772 skb->reserved_tailroom = skb->end - skb->tail - size; 773 return skb; 774 } 775 __kfree_skb(skb); 776 } else { 777 sk->sk_prot->enter_memory_pressure(sk); 778 sk_stream_moderate_sndbuf(sk); 779 } 780 return NULL; 781 } 782 783 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 784 int large_allowed) 785 { 786 struct tcp_sock *tp = tcp_sk(sk); 787 u32 xmit_size_goal, old_size_goal; 788 789 xmit_size_goal = mss_now; 790 791 if (large_allowed && sk_can_gso(sk)) { 792 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 793 inet_csk(sk)->icsk_af_ops->net_header_len - 794 inet_csk(sk)->icsk_ext_hdr_len - 795 tp->tcp_header_len); 796 797 /* TSQ : try to have two TSO segments in flight */ 798 xmit_size_goal = min_t(u32, xmit_size_goal, 799 sysctl_tcp_limit_output_bytes >> 1); 800 801 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 802 803 /* We try hard to avoid divides here */ 804 old_size_goal = tp->xmit_size_goal_segs * mss_now; 805 806 if (likely(old_size_goal <= xmit_size_goal && 807 old_size_goal + mss_now > xmit_size_goal)) { 808 xmit_size_goal = old_size_goal; 809 } else { 810 tp->xmit_size_goal_segs = 811 min_t(u16, xmit_size_goal / mss_now, 812 sk->sk_gso_max_segs); 813 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 814 } 815 } 816 817 return max(xmit_size_goal, mss_now); 818 } 819 820 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 821 { 822 int mss_now; 823 824 mss_now = tcp_current_mss(sk); 825 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 826 827 return mss_now; 828 } 829 830 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 831 size_t size, int flags) 832 { 833 struct tcp_sock *tp = tcp_sk(sk); 834 int mss_now, size_goal; 835 int err; 836 ssize_t copied; 837 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 838 839 /* Wait for a connection to finish. One exception is TCP Fast Open 840 * (passive side) where data is allowed to be sent before a connection 841 * is fully established. 842 */ 843 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 844 !tcp_passive_fastopen(sk)) { 845 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 846 goto out_err; 847 } 848 849 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 850 851 mss_now = tcp_send_mss(sk, &size_goal, flags); 852 copied = 0; 853 854 err = -EPIPE; 855 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 856 goto out_err; 857 858 while (size > 0) { 859 struct sk_buff *skb = tcp_write_queue_tail(sk); 860 int copy, i; 861 bool can_coalesce; 862 863 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 864 new_segment: 865 if (!sk_stream_memory_free(sk)) 866 goto wait_for_sndbuf; 867 868 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 869 if (!skb) 870 goto wait_for_memory; 871 872 skb_entail(sk, skb); 873 copy = size_goal; 874 } 875 876 if (copy > size) 877 copy = size; 878 879 i = skb_shinfo(skb)->nr_frags; 880 can_coalesce = skb_can_coalesce(skb, i, page, offset); 881 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 882 tcp_mark_push(tp, skb); 883 goto new_segment; 884 } 885 if (!sk_wmem_schedule(sk, copy)) 886 goto wait_for_memory; 887 888 if (can_coalesce) { 889 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 890 } else { 891 get_page(page); 892 skb_fill_page_desc(skb, i, page, offset, copy); 893 } 894 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 895 896 skb->len += copy; 897 skb->data_len += copy; 898 skb->truesize += copy; 899 sk->sk_wmem_queued += copy; 900 sk_mem_charge(sk, copy); 901 skb->ip_summed = CHECKSUM_PARTIAL; 902 tp->write_seq += copy; 903 TCP_SKB_CB(skb)->end_seq += copy; 904 skb_shinfo(skb)->gso_segs = 0; 905 906 if (!copied) 907 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 908 909 copied += copy; 910 offset += copy; 911 if (!(size -= copy)) 912 goto out; 913 914 if (skb->len < size_goal || (flags & MSG_OOB)) 915 continue; 916 917 if (forced_push(tp)) { 918 tcp_mark_push(tp, skb); 919 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 920 } else if (skb == tcp_send_head(sk)) 921 tcp_push_one(sk, mss_now); 922 continue; 923 924 wait_for_sndbuf: 925 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 926 wait_for_memory: 927 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 928 929 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 930 goto do_error; 931 932 mss_now = tcp_send_mss(sk, &size_goal, flags); 933 } 934 935 out: 936 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 937 tcp_push(sk, flags, mss_now, tp->nonagle); 938 return copied; 939 940 do_error: 941 if (copied) 942 goto out; 943 out_err: 944 return sk_stream_error(sk, flags, err); 945 } 946 947 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 948 size_t size, int flags) 949 { 950 ssize_t res; 951 952 if (!(sk->sk_route_caps & NETIF_F_SG) || 953 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 954 return sock_no_sendpage(sk->sk_socket, page, offset, size, 955 flags); 956 957 lock_sock(sk); 958 res = do_tcp_sendpages(sk, page, offset, size, flags); 959 release_sock(sk); 960 return res; 961 } 962 EXPORT_SYMBOL(tcp_sendpage); 963 964 static inline int select_size(const struct sock *sk, bool sg) 965 { 966 const struct tcp_sock *tp = tcp_sk(sk); 967 int tmp = tp->mss_cache; 968 969 if (sg) { 970 if (sk_can_gso(sk)) { 971 /* Small frames wont use a full page: 972 * Payload will immediately follow tcp header. 973 */ 974 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 975 } else { 976 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 977 978 if (tmp >= pgbreak && 979 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 980 tmp = pgbreak; 981 } 982 } 983 984 return tmp; 985 } 986 987 void tcp_free_fastopen_req(struct tcp_sock *tp) 988 { 989 if (tp->fastopen_req != NULL) { 990 kfree(tp->fastopen_req); 991 tp->fastopen_req = NULL; 992 } 993 } 994 995 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size) 996 { 997 struct tcp_sock *tp = tcp_sk(sk); 998 int err, flags; 999 1000 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1001 return -EOPNOTSUPP; 1002 if (tp->fastopen_req != NULL) 1003 return -EALREADY; /* Another Fast Open is in progress */ 1004 1005 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1006 sk->sk_allocation); 1007 if (unlikely(tp->fastopen_req == NULL)) 1008 return -ENOBUFS; 1009 tp->fastopen_req->data = msg; 1010 1011 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1012 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1013 msg->msg_namelen, flags); 1014 *size = tp->fastopen_req->copied; 1015 tcp_free_fastopen_req(tp); 1016 return err; 1017 } 1018 1019 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1020 size_t size) 1021 { 1022 struct iovec *iov; 1023 struct tcp_sock *tp = tcp_sk(sk); 1024 struct sk_buff *skb; 1025 int iovlen, flags, err, copied = 0; 1026 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1027 bool sg; 1028 long timeo; 1029 1030 lock_sock(sk); 1031 1032 flags = msg->msg_flags; 1033 if (flags & MSG_FASTOPEN) { 1034 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn); 1035 if (err == -EINPROGRESS && copied_syn > 0) 1036 goto out; 1037 else if (err) 1038 goto out_err; 1039 offset = copied_syn; 1040 } 1041 1042 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1043 1044 /* Wait for a connection to finish. One exception is TCP Fast Open 1045 * (passive side) where data is allowed to be sent before a connection 1046 * is fully established. 1047 */ 1048 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1049 !tcp_passive_fastopen(sk)) { 1050 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1051 goto do_error; 1052 } 1053 1054 if (unlikely(tp->repair)) { 1055 if (tp->repair_queue == TCP_RECV_QUEUE) { 1056 copied = tcp_send_rcvq(sk, msg, size); 1057 goto out; 1058 } 1059 1060 err = -EINVAL; 1061 if (tp->repair_queue == TCP_NO_QUEUE) 1062 goto out_err; 1063 1064 /* 'common' sending to sendq */ 1065 } 1066 1067 /* This should be in poll */ 1068 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1069 1070 mss_now = tcp_send_mss(sk, &size_goal, flags); 1071 1072 /* Ok commence sending. */ 1073 iovlen = msg->msg_iovlen; 1074 iov = msg->msg_iov; 1075 copied = 0; 1076 1077 err = -EPIPE; 1078 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1079 goto out_err; 1080 1081 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1082 1083 while (--iovlen >= 0) { 1084 size_t seglen = iov->iov_len; 1085 unsigned char __user *from = iov->iov_base; 1086 1087 iov++; 1088 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1089 if (offset >= seglen) { 1090 offset -= seglen; 1091 continue; 1092 } 1093 seglen -= offset; 1094 from += offset; 1095 offset = 0; 1096 } 1097 1098 while (seglen > 0) { 1099 int copy = 0; 1100 int max = size_goal; 1101 1102 skb = tcp_write_queue_tail(sk); 1103 if (tcp_send_head(sk)) { 1104 if (skb->ip_summed == CHECKSUM_NONE) 1105 max = mss_now; 1106 copy = max - skb->len; 1107 } 1108 1109 if (copy <= 0) { 1110 new_segment: 1111 /* Allocate new segment. If the interface is SG, 1112 * allocate skb fitting to single page. 1113 */ 1114 if (!sk_stream_memory_free(sk)) 1115 goto wait_for_sndbuf; 1116 1117 skb = sk_stream_alloc_skb(sk, 1118 select_size(sk, sg), 1119 sk->sk_allocation); 1120 if (!skb) 1121 goto wait_for_memory; 1122 1123 /* 1124 * All packets are restored as if they have 1125 * already been sent. 1126 */ 1127 if (tp->repair) 1128 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1129 1130 /* 1131 * Check whether we can use HW checksum. 1132 */ 1133 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1134 skb->ip_summed = CHECKSUM_PARTIAL; 1135 1136 skb_entail(sk, skb); 1137 copy = size_goal; 1138 max = size_goal; 1139 } 1140 1141 /* Try to append data to the end of skb. */ 1142 if (copy > seglen) 1143 copy = seglen; 1144 1145 /* Where to copy to? */ 1146 if (skb_availroom(skb) > 0) { 1147 /* We have some space in skb head. Superb! */ 1148 copy = min_t(int, copy, skb_availroom(skb)); 1149 err = skb_add_data_nocache(sk, skb, from, copy); 1150 if (err) 1151 goto do_fault; 1152 } else { 1153 bool merge = true; 1154 int i = skb_shinfo(skb)->nr_frags; 1155 struct page_frag *pfrag = sk_page_frag(sk); 1156 1157 if (!sk_page_frag_refill(sk, pfrag)) 1158 goto wait_for_memory; 1159 1160 if (!skb_can_coalesce(skb, i, pfrag->page, 1161 pfrag->offset)) { 1162 if (i == MAX_SKB_FRAGS || !sg) { 1163 tcp_mark_push(tp, skb); 1164 goto new_segment; 1165 } 1166 merge = false; 1167 } 1168 1169 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1170 1171 if (!sk_wmem_schedule(sk, copy)) 1172 goto wait_for_memory; 1173 1174 err = skb_copy_to_page_nocache(sk, from, skb, 1175 pfrag->page, 1176 pfrag->offset, 1177 copy); 1178 if (err) 1179 goto do_error; 1180 1181 /* Update the skb. */ 1182 if (merge) { 1183 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1184 } else { 1185 skb_fill_page_desc(skb, i, pfrag->page, 1186 pfrag->offset, copy); 1187 get_page(pfrag->page); 1188 } 1189 pfrag->offset += copy; 1190 } 1191 1192 if (!copied) 1193 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1194 1195 tp->write_seq += copy; 1196 TCP_SKB_CB(skb)->end_seq += copy; 1197 skb_shinfo(skb)->gso_segs = 0; 1198 1199 from += copy; 1200 copied += copy; 1201 if ((seglen -= copy) == 0 && iovlen == 0) 1202 goto out; 1203 1204 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1205 continue; 1206 1207 if (forced_push(tp)) { 1208 tcp_mark_push(tp, skb); 1209 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1210 } else if (skb == tcp_send_head(sk)) 1211 tcp_push_one(sk, mss_now); 1212 continue; 1213 1214 wait_for_sndbuf: 1215 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1216 wait_for_memory: 1217 if (copied) 1218 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1219 1220 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1221 goto do_error; 1222 1223 mss_now = tcp_send_mss(sk, &size_goal, flags); 1224 } 1225 } 1226 1227 out: 1228 if (copied) 1229 tcp_push(sk, flags, mss_now, tp->nonagle); 1230 release_sock(sk); 1231 return copied + copied_syn; 1232 1233 do_fault: 1234 if (!skb->len) { 1235 tcp_unlink_write_queue(skb, sk); 1236 /* It is the one place in all of TCP, except connection 1237 * reset, where we can be unlinking the send_head. 1238 */ 1239 tcp_check_send_head(sk, skb); 1240 sk_wmem_free_skb(sk, skb); 1241 } 1242 1243 do_error: 1244 if (copied + copied_syn) 1245 goto out; 1246 out_err: 1247 err = sk_stream_error(sk, flags, err); 1248 release_sock(sk); 1249 return err; 1250 } 1251 EXPORT_SYMBOL(tcp_sendmsg); 1252 1253 /* 1254 * Handle reading urgent data. BSD has very simple semantics for 1255 * this, no blocking and very strange errors 8) 1256 */ 1257 1258 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1259 { 1260 struct tcp_sock *tp = tcp_sk(sk); 1261 1262 /* No URG data to read. */ 1263 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1264 tp->urg_data == TCP_URG_READ) 1265 return -EINVAL; /* Yes this is right ! */ 1266 1267 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1268 return -ENOTCONN; 1269 1270 if (tp->urg_data & TCP_URG_VALID) { 1271 int err = 0; 1272 char c = tp->urg_data; 1273 1274 if (!(flags & MSG_PEEK)) 1275 tp->urg_data = TCP_URG_READ; 1276 1277 /* Read urgent data. */ 1278 msg->msg_flags |= MSG_OOB; 1279 1280 if (len > 0) { 1281 if (!(flags & MSG_TRUNC)) 1282 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1283 len = 1; 1284 } else 1285 msg->msg_flags |= MSG_TRUNC; 1286 1287 return err ? -EFAULT : len; 1288 } 1289 1290 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1291 return 0; 1292 1293 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1294 * the available implementations agree in this case: 1295 * this call should never block, independent of the 1296 * blocking state of the socket. 1297 * Mike <pall@rz.uni-karlsruhe.de> 1298 */ 1299 return -EAGAIN; 1300 } 1301 1302 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1303 { 1304 struct sk_buff *skb; 1305 int copied = 0, err = 0; 1306 1307 /* XXX -- need to support SO_PEEK_OFF */ 1308 1309 skb_queue_walk(&sk->sk_write_queue, skb) { 1310 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1311 if (err) 1312 break; 1313 1314 copied += skb->len; 1315 } 1316 1317 return err ?: copied; 1318 } 1319 1320 /* Clean up the receive buffer for full frames taken by the user, 1321 * then send an ACK if necessary. COPIED is the number of bytes 1322 * tcp_recvmsg has given to the user so far, it speeds up the 1323 * calculation of whether or not we must ACK for the sake of 1324 * a window update. 1325 */ 1326 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1327 { 1328 struct tcp_sock *tp = tcp_sk(sk); 1329 bool time_to_ack = false; 1330 1331 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1332 1333 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1334 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1335 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1336 1337 if (inet_csk_ack_scheduled(sk)) { 1338 const struct inet_connection_sock *icsk = inet_csk(sk); 1339 /* Delayed ACKs frequently hit locked sockets during bulk 1340 * receive. */ 1341 if (icsk->icsk_ack.blocked || 1342 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1343 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1344 /* 1345 * If this read emptied read buffer, we send ACK, if 1346 * connection is not bidirectional, user drained 1347 * receive buffer and there was a small segment 1348 * in queue. 1349 */ 1350 (copied > 0 && 1351 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1352 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1353 !icsk->icsk_ack.pingpong)) && 1354 !atomic_read(&sk->sk_rmem_alloc))) 1355 time_to_ack = true; 1356 } 1357 1358 /* We send an ACK if we can now advertise a non-zero window 1359 * which has been raised "significantly". 1360 * 1361 * Even if window raised up to infinity, do not send window open ACK 1362 * in states, where we will not receive more. It is useless. 1363 */ 1364 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1365 __u32 rcv_window_now = tcp_receive_window(tp); 1366 1367 /* Optimize, __tcp_select_window() is not cheap. */ 1368 if (2*rcv_window_now <= tp->window_clamp) { 1369 __u32 new_window = __tcp_select_window(sk); 1370 1371 /* Send ACK now, if this read freed lots of space 1372 * in our buffer. Certainly, new_window is new window. 1373 * We can advertise it now, if it is not less than current one. 1374 * "Lots" means "at least twice" here. 1375 */ 1376 if (new_window && new_window >= 2 * rcv_window_now) 1377 time_to_ack = true; 1378 } 1379 } 1380 if (time_to_ack) 1381 tcp_send_ack(sk); 1382 } 1383 1384 static void tcp_prequeue_process(struct sock *sk) 1385 { 1386 struct sk_buff *skb; 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 1389 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1390 1391 /* RX process wants to run with disabled BHs, though it is not 1392 * necessary */ 1393 local_bh_disable(); 1394 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1395 sk_backlog_rcv(sk, skb); 1396 local_bh_enable(); 1397 1398 /* Clear memory counter. */ 1399 tp->ucopy.memory = 0; 1400 } 1401 1402 #ifdef CONFIG_NET_DMA 1403 static void tcp_service_net_dma(struct sock *sk, bool wait) 1404 { 1405 dma_cookie_t done, used; 1406 dma_cookie_t last_issued; 1407 struct tcp_sock *tp = tcp_sk(sk); 1408 1409 if (!tp->ucopy.dma_chan) 1410 return; 1411 1412 last_issued = tp->ucopy.dma_cookie; 1413 dma_async_issue_pending(tp->ucopy.dma_chan); 1414 1415 do { 1416 if (dma_async_is_tx_complete(tp->ucopy.dma_chan, 1417 last_issued, &done, 1418 &used) == DMA_SUCCESS) { 1419 /* Safe to free early-copied skbs now */ 1420 __skb_queue_purge(&sk->sk_async_wait_queue); 1421 break; 1422 } else { 1423 struct sk_buff *skb; 1424 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1425 (dma_async_is_complete(skb->dma_cookie, done, 1426 used) == DMA_SUCCESS)) { 1427 __skb_dequeue(&sk->sk_async_wait_queue); 1428 kfree_skb(skb); 1429 } 1430 } 1431 } while (wait); 1432 } 1433 #endif 1434 1435 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1436 { 1437 struct sk_buff *skb; 1438 u32 offset; 1439 1440 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1441 offset = seq - TCP_SKB_CB(skb)->seq; 1442 if (tcp_hdr(skb)->syn) 1443 offset--; 1444 if (offset < skb->len || tcp_hdr(skb)->fin) { 1445 *off = offset; 1446 return skb; 1447 } 1448 /* This looks weird, but this can happen if TCP collapsing 1449 * splitted a fat GRO packet, while we released socket lock 1450 * in skb_splice_bits() 1451 */ 1452 sk_eat_skb(sk, skb, false); 1453 } 1454 return NULL; 1455 } 1456 1457 /* 1458 * This routine provides an alternative to tcp_recvmsg() for routines 1459 * that would like to handle copying from skbuffs directly in 'sendfile' 1460 * fashion. 1461 * Note: 1462 * - It is assumed that the socket was locked by the caller. 1463 * - The routine does not block. 1464 * - At present, there is no support for reading OOB data 1465 * or for 'peeking' the socket using this routine 1466 * (although both would be easy to implement). 1467 */ 1468 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1469 sk_read_actor_t recv_actor) 1470 { 1471 struct sk_buff *skb; 1472 struct tcp_sock *tp = tcp_sk(sk); 1473 u32 seq = tp->copied_seq; 1474 u32 offset; 1475 int copied = 0; 1476 1477 if (sk->sk_state == TCP_LISTEN) 1478 return -ENOTCONN; 1479 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1480 if (offset < skb->len) { 1481 int used; 1482 size_t len; 1483 1484 len = skb->len - offset; 1485 /* Stop reading if we hit a patch of urgent data */ 1486 if (tp->urg_data) { 1487 u32 urg_offset = tp->urg_seq - seq; 1488 if (urg_offset < len) 1489 len = urg_offset; 1490 if (!len) 1491 break; 1492 } 1493 used = recv_actor(desc, skb, offset, len); 1494 if (used <= 0) { 1495 if (!copied) 1496 copied = used; 1497 break; 1498 } else if (used <= len) { 1499 seq += used; 1500 copied += used; 1501 offset += used; 1502 } 1503 /* If recv_actor drops the lock (e.g. TCP splice 1504 * receive) the skb pointer might be invalid when 1505 * getting here: tcp_collapse might have deleted it 1506 * while aggregating skbs from the socket queue. 1507 */ 1508 skb = tcp_recv_skb(sk, seq - 1, &offset); 1509 if (!skb) 1510 break; 1511 /* TCP coalescing might have appended data to the skb. 1512 * Try to splice more frags 1513 */ 1514 if (offset + 1 != skb->len) 1515 continue; 1516 } 1517 if (tcp_hdr(skb)->fin) { 1518 sk_eat_skb(sk, skb, false); 1519 ++seq; 1520 break; 1521 } 1522 sk_eat_skb(sk, skb, false); 1523 if (!desc->count) 1524 break; 1525 tp->copied_seq = seq; 1526 } 1527 tp->copied_seq = seq; 1528 1529 tcp_rcv_space_adjust(sk); 1530 1531 /* Clean up data we have read: This will do ACK frames. */ 1532 if (copied > 0) { 1533 tcp_recv_skb(sk, seq, &offset); 1534 tcp_cleanup_rbuf(sk, copied); 1535 } 1536 return copied; 1537 } 1538 EXPORT_SYMBOL(tcp_read_sock); 1539 1540 /* 1541 * This routine copies from a sock struct into the user buffer. 1542 * 1543 * Technical note: in 2.3 we work on _locked_ socket, so that 1544 * tricks with *seq access order and skb->users are not required. 1545 * Probably, code can be easily improved even more. 1546 */ 1547 1548 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1549 size_t len, int nonblock, int flags, int *addr_len) 1550 { 1551 struct tcp_sock *tp = tcp_sk(sk); 1552 int copied = 0; 1553 u32 peek_seq; 1554 u32 *seq; 1555 unsigned long used; 1556 int err; 1557 int target; /* Read at least this many bytes */ 1558 long timeo; 1559 struct task_struct *user_recv = NULL; 1560 bool copied_early = false; 1561 struct sk_buff *skb; 1562 u32 urg_hole = 0; 1563 1564 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1565 (sk->sk_state == TCP_ESTABLISHED)) 1566 sk_busy_loop(sk, nonblock); 1567 1568 lock_sock(sk); 1569 1570 err = -ENOTCONN; 1571 if (sk->sk_state == TCP_LISTEN) 1572 goto out; 1573 1574 timeo = sock_rcvtimeo(sk, nonblock); 1575 1576 /* Urgent data needs to be handled specially. */ 1577 if (flags & MSG_OOB) 1578 goto recv_urg; 1579 1580 if (unlikely(tp->repair)) { 1581 err = -EPERM; 1582 if (!(flags & MSG_PEEK)) 1583 goto out; 1584 1585 if (tp->repair_queue == TCP_SEND_QUEUE) 1586 goto recv_sndq; 1587 1588 err = -EINVAL; 1589 if (tp->repair_queue == TCP_NO_QUEUE) 1590 goto out; 1591 1592 /* 'common' recv queue MSG_PEEK-ing */ 1593 } 1594 1595 seq = &tp->copied_seq; 1596 if (flags & MSG_PEEK) { 1597 peek_seq = tp->copied_seq; 1598 seq = &peek_seq; 1599 } 1600 1601 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1602 1603 #ifdef CONFIG_NET_DMA 1604 tp->ucopy.dma_chan = NULL; 1605 preempt_disable(); 1606 skb = skb_peek_tail(&sk->sk_receive_queue); 1607 { 1608 int available = 0; 1609 1610 if (skb) 1611 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1612 if ((available < target) && 1613 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1614 !sysctl_tcp_low_latency && 1615 net_dma_find_channel()) { 1616 preempt_enable_no_resched(); 1617 tp->ucopy.pinned_list = 1618 dma_pin_iovec_pages(msg->msg_iov, len); 1619 } else { 1620 preempt_enable_no_resched(); 1621 } 1622 } 1623 #endif 1624 1625 do { 1626 u32 offset; 1627 1628 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1629 if (tp->urg_data && tp->urg_seq == *seq) { 1630 if (copied) 1631 break; 1632 if (signal_pending(current)) { 1633 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1634 break; 1635 } 1636 } 1637 1638 /* Next get a buffer. */ 1639 1640 skb_queue_walk(&sk->sk_receive_queue, skb) { 1641 /* Now that we have two receive queues this 1642 * shouldn't happen. 1643 */ 1644 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1645 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1646 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1647 flags)) 1648 break; 1649 1650 offset = *seq - TCP_SKB_CB(skb)->seq; 1651 if (tcp_hdr(skb)->syn) 1652 offset--; 1653 if (offset < skb->len) 1654 goto found_ok_skb; 1655 if (tcp_hdr(skb)->fin) 1656 goto found_fin_ok; 1657 WARN(!(flags & MSG_PEEK), 1658 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1659 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1660 } 1661 1662 /* Well, if we have backlog, try to process it now yet. */ 1663 1664 if (copied >= target && !sk->sk_backlog.tail) 1665 break; 1666 1667 if (copied) { 1668 if (sk->sk_err || 1669 sk->sk_state == TCP_CLOSE || 1670 (sk->sk_shutdown & RCV_SHUTDOWN) || 1671 !timeo || 1672 signal_pending(current)) 1673 break; 1674 } else { 1675 if (sock_flag(sk, SOCK_DONE)) 1676 break; 1677 1678 if (sk->sk_err) { 1679 copied = sock_error(sk); 1680 break; 1681 } 1682 1683 if (sk->sk_shutdown & RCV_SHUTDOWN) 1684 break; 1685 1686 if (sk->sk_state == TCP_CLOSE) { 1687 if (!sock_flag(sk, SOCK_DONE)) { 1688 /* This occurs when user tries to read 1689 * from never connected socket. 1690 */ 1691 copied = -ENOTCONN; 1692 break; 1693 } 1694 break; 1695 } 1696 1697 if (!timeo) { 1698 copied = -EAGAIN; 1699 break; 1700 } 1701 1702 if (signal_pending(current)) { 1703 copied = sock_intr_errno(timeo); 1704 break; 1705 } 1706 } 1707 1708 tcp_cleanup_rbuf(sk, copied); 1709 1710 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1711 /* Install new reader */ 1712 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1713 user_recv = current; 1714 tp->ucopy.task = user_recv; 1715 tp->ucopy.iov = msg->msg_iov; 1716 } 1717 1718 tp->ucopy.len = len; 1719 1720 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1721 !(flags & (MSG_PEEK | MSG_TRUNC))); 1722 1723 /* Ugly... If prequeue is not empty, we have to 1724 * process it before releasing socket, otherwise 1725 * order will be broken at second iteration. 1726 * More elegant solution is required!!! 1727 * 1728 * Look: we have the following (pseudo)queues: 1729 * 1730 * 1. packets in flight 1731 * 2. backlog 1732 * 3. prequeue 1733 * 4. receive_queue 1734 * 1735 * Each queue can be processed only if the next ones 1736 * are empty. At this point we have empty receive_queue. 1737 * But prequeue _can_ be not empty after 2nd iteration, 1738 * when we jumped to start of loop because backlog 1739 * processing added something to receive_queue. 1740 * We cannot release_sock(), because backlog contains 1741 * packets arrived _after_ prequeued ones. 1742 * 1743 * Shortly, algorithm is clear --- to process all 1744 * the queues in order. We could make it more directly, 1745 * requeueing packets from backlog to prequeue, if 1746 * is not empty. It is more elegant, but eats cycles, 1747 * unfortunately. 1748 */ 1749 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1750 goto do_prequeue; 1751 1752 /* __ Set realtime policy in scheduler __ */ 1753 } 1754 1755 #ifdef CONFIG_NET_DMA 1756 if (tp->ucopy.dma_chan) { 1757 if (tp->rcv_wnd == 0 && 1758 !skb_queue_empty(&sk->sk_async_wait_queue)) { 1759 tcp_service_net_dma(sk, true); 1760 tcp_cleanup_rbuf(sk, copied); 1761 } else 1762 dma_async_issue_pending(tp->ucopy.dma_chan); 1763 } 1764 #endif 1765 if (copied >= target) { 1766 /* Do not sleep, just process backlog. */ 1767 release_sock(sk); 1768 lock_sock(sk); 1769 } else 1770 sk_wait_data(sk, &timeo); 1771 1772 #ifdef CONFIG_NET_DMA 1773 tcp_service_net_dma(sk, false); /* Don't block */ 1774 tp->ucopy.wakeup = 0; 1775 #endif 1776 1777 if (user_recv) { 1778 int chunk; 1779 1780 /* __ Restore normal policy in scheduler __ */ 1781 1782 if ((chunk = len - tp->ucopy.len) != 0) { 1783 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1784 len -= chunk; 1785 copied += chunk; 1786 } 1787 1788 if (tp->rcv_nxt == tp->copied_seq && 1789 !skb_queue_empty(&tp->ucopy.prequeue)) { 1790 do_prequeue: 1791 tcp_prequeue_process(sk); 1792 1793 if ((chunk = len - tp->ucopy.len) != 0) { 1794 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1795 len -= chunk; 1796 copied += chunk; 1797 } 1798 } 1799 } 1800 if ((flags & MSG_PEEK) && 1801 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1802 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1803 current->comm, 1804 task_pid_nr(current)); 1805 peek_seq = tp->copied_seq; 1806 } 1807 continue; 1808 1809 found_ok_skb: 1810 /* Ok so how much can we use? */ 1811 used = skb->len - offset; 1812 if (len < used) 1813 used = len; 1814 1815 /* Do we have urgent data here? */ 1816 if (tp->urg_data) { 1817 u32 urg_offset = tp->urg_seq - *seq; 1818 if (urg_offset < used) { 1819 if (!urg_offset) { 1820 if (!sock_flag(sk, SOCK_URGINLINE)) { 1821 ++*seq; 1822 urg_hole++; 1823 offset++; 1824 used--; 1825 if (!used) 1826 goto skip_copy; 1827 } 1828 } else 1829 used = urg_offset; 1830 } 1831 } 1832 1833 if (!(flags & MSG_TRUNC)) { 1834 #ifdef CONFIG_NET_DMA 1835 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1836 tp->ucopy.dma_chan = net_dma_find_channel(); 1837 1838 if (tp->ucopy.dma_chan) { 1839 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1840 tp->ucopy.dma_chan, skb, offset, 1841 msg->msg_iov, used, 1842 tp->ucopy.pinned_list); 1843 1844 if (tp->ucopy.dma_cookie < 0) { 1845 1846 pr_alert("%s: dma_cookie < 0\n", 1847 __func__); 1848 1849 /* Exception. Bailout! */ 1850 if (!copied) 1851 copied = -EFAULT; 1852 break; 1853 } 1854 1855 dma_async_issue_pending(tp->ucopy.dma_chan); 1856 1857 if ((offset + used) == skb->len) 1858 copied_early = true; 1859 1860 } else 1861 #endif 1862 { 1863 err = skb_copy_datagram_iovec(skb, offset, 1864 msg->msg_iov, used); 1865 if (err) { 1866 /* Exception. Bailout! */ 1867 if (!copied) 1868 copied = -EFAULT; 1869 break; 1870 } 1871 } 1872 } 1873 1874 *seq += used; 1875 copied += used; 1876 len -= used; 1877 1878 tcp_rcv_space_adjust(sk); 1879 1880 skip_copy: 1881 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1882 tp->urg_data = 0; 1883 tcp_fast_path_check(sk); 1884 } 1885 if (used + offset < skb->len) 1886 continue; 1887 1888 if (tcp_hdr(skb)->fin) 1889 goto found_fin_ok; 1890 if (!(flags & MSG_PEEK)) { 1891 sk_eat_skb(sk, skb, copied_early); 1892 copied_early = false; 1893 } 1894 continue; 1895 1896 found_fin_ok: 1897 /* Process the FIN. */ 1898 ++*seq; 1899 if (!(flags & MSG_PEEK)) { 1900 sk_eat_skb(sk, skb, copied_early); 1901 copied_early = false; 1902 } 1903 break; 1904 } while (len > 0); 1905 1906 if (user_recv) { 1907 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1908 int chunk; 1909 1910 tp->ucopy.len = copied > 0 ? len : 0; 1911 1912 tcp_prequeue_process(sk); 1913 1914 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1915 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1916 len -= chunk; 1917 copied += chunk; 1918 } 1919 } 1920 1921 tp->ucopy.task = NULL; 1922 tp->ucopy.len = 0; 1923 } 1924 1925 #ifdef CONFIG_NET_DMA 1926 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1927 tp->ucopy.dma_chan = NULL; 1928 1929 if (tp->ucopy.pinned_list) { 1930 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1931 tp->ucopy.pinned_list = NULL; 1932 } 1933 #endif 1934 1935 /* According to UNIX98, msg_name/msg_namelen are ignored 1936 * on connected socket. I was just happy when found this 8) --ANK 1937 */ 1938 1939 /* Clean up data we have read: This will do ACK frames. */ 1940 tcp_cleanup_rbuf(sk, copied); 1941 1942 release_sock(sk); 1943 return copied; 1944 1945 out: 1946 release_sock(sk); 1947 return err; 1948 1949 recv_urg: 1950 err = tcp_recv_urg(sk, msg, len, flags); 1951 goto out; 1952 1953 recv_sndq: 1954 err = tcp_peek_sndq(sk, msg, len); 1955 goto out; 1956 } 1957 EXPORT_SYMBOL(tcp_recvmsg); 1958 1959 void tcp_set_state(struct sock *sk, int state) 1960 { 1961 int oldstate = sk->sk_state; 1962 1963 switch (state) { 1964 case TCP_ESTABLISHED: 1965 if (oldstate != TCP_ESTABLISHED) 1966 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1967 break; 1968 1969 case TCP_CLOSE: 1970 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1971 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1972 1973 sk->sk_prot->unhash(sk); 1974 if (inet_csk(sk)->icsk_bind_hash && 1975 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1976 inet_put_port(sk); 1977 /* fall through */ 1978 default: 1979 if (oldstate == TCP_ESTABLISHED) 1980 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1981 } 1982 1983 /* Change state AFTER socket is unhashed to avoid closed 1984 * socket sitting in hash tables. 1985 */ 1986 sk->sk_state = state; 1987 1988 #ifdef STATE_TRACE 1989 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1990 #endif 1991 } 1992 EXPORT_SYMBOL_GPL(tcp_set_state); 1993 1994 /* 1995 * State processing on a close. This implements the state shift for 1996 * sending our FIN frame. Note that we only send a FIN for some 1997 * states. A shutdown() may have already sent the FIN, or we may be 1998 * closed. 1999 */ 2000 2001 static const unsigned char new_state[16] = { 2002 /* current state: new state: action: */ 2003 /* (Invalid) */ TCP_CLOSE, 2004 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2005 /* TCP_SYN_SENT */ TCP_CLOSE, 2006 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2007 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 2008 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 2009 /* TCP_TIME_WAIT */ TCP_CLOSE, 2010 /* TCP_CLOSE */ TCP_CLOSE, 2011 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 2012 /* TCP_LAST_ACK */ TCP_LAST_ACK, 2013 /* TCP_LISTEN */ TCP_CLOSE, 2014 /* TCP_CLOSING */ TCP_CLOSING, 2015 }; 2016 2017 static int tcp_close_state(struct sock *sk) 2018 { 2019 int next = (int)new_state[sk->sk_state]; 2020 int ns = next & TCP_STATE_MASK; 2021 2022 tcp_set_state(sk, ns); 2023 2024 return next & TCP_ACTION_FIN; 2025 } 2026 2027 /* 2028 * Shutdown the sending side of a connection. Much like close except 2029 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2030 */ 2031 2032 void tcp_shutdown(struct sock *sk, int how) 2033 { 2034 /* We need to grab some memory, and put together a FIN, 2035 * and then put it into the queue to be sent. 2036 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2037 */ 2038 if (!(how & SEND_SHUTDOWN)) 2039 return; 2040 2041 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2042 if ((1 << sk->sk_state) & 2043 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2044 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2045 /* Clear out any half completed packets. FIN if needed. */ 2046 if (tcp_close_state(sk)) 2047 tcp_send_fin(sk); 2048 } 2049 } 2050 EXPORT_SYMBOL(tcp_shutdown); 2051 2052 bool tcp_check_oom(struct sock *sk, int shift) 2053 { 2054 bool too_many_orphans, out_of_socket_memory; 2055 2056 too_many_orphans = tcp_too_many_orphans(sk, shift); 2057 out_of_socket_memory = tcp_out_of_memory(sk); 2058 2059 if (too_many_orphans) 2060 net_info_ratelimited("too many orphaned sockets\n"); 2061 if (out_of_socket_memory) 2062 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2063 return too_many_orphans || out_of_socket_memory; 2064 } 2065 2066 void tcp_close(struct sock *sk, long timeout) 2067 { 2068 struct sk_buff *skb; 2069 int data_was_unread = 0; 2070 int state; 2071 2072 lock_sock(sk); 2073 sk->sk_shutdown = SHUTDOWN_MASK; 2074 2075 if (sk->sk_state == TCP_LISTEN) { 2076 tcp_set_state(sk, TCP_CLOSE); 2077 2078 /* Special case. */ 2079 inet_csk_listen_stop(sk); 2080 2081 goto adjudge_to_death; 2082 } 2083 2084 /* We need to flush the recv. buffs. We do this only on the 2085 * descriptor close, not protocol-sourced closes, because the 2086 * reader process may not have drained the data yet! 2087 */ 2088 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2089 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2090 tcp_hdr(skb)->fin; 2091 data_was_unread += len; 2092 __kfree_skb(skb); 2093 } 2094 2095 sk_mem_reclaim(sk); 2096 2097 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2098 if (sk->sk_state == TCP_CLOSE) 2099 goto adjudge_to_death; 2100 2101 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2102 * data was lost. To witness the awful effects of the old behavior of 2103 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2104 * GET in an FTP client, suspend the process, wait for the client to 2105 * advertise a zero window, then kill -9 the FTP client, wheee... 2106 * Note: timeout is always zero in such a case. 2107 */ 2108 if (unlikely(tcp_sk(sk)->repair)) { 2109 sk->sk_prot->disconnect(sk, 0); 2110 } else if (data_was_unread) { 2111 /* Unread data was tossed, zap the connection. */ 2112 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2113 tcp_set_state(sk, TCP_CLOSE); 2114 tcp_send_active_reset(sk, sk->sk_allocation); 2115 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2116 /* Check zero linger _after_ checking for unread data. */ 2117 sk->sk_prot->disconnect(sk, 0); 2118 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2119 } else if (tcp_close_state(sk)) { 2120 /* We FIN if the application ate all the data before 2121 * zapping the connection. 2122 */ 2123 2124 /* RED-PEN. Formally speaking, we have broken TCP state 2125 * machine. State transitions: 2126 * 2127 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2128 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2129 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2130 * 2131 * are legal only when FIN has been sent (i.e. in window), 2132 * rather than queued out of window. Purists blame. 2133 * 2134 * F.e. "RFC state" is ESTABLISHED, 2135 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2136 * 2137 * The visible declinations are that sometimes 2138 * we enter time-wait state, when it is not required really 2139 * (harmless), do not send active resets, when they are 2140 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2141 * they look as CLOSING or LAST_ACK for Linux) 2142 * Probably, I missed some more holelets. 2143 * --ANK 2144 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2145 * in a single packet! (May consider it later but will 2146 * probably need API support or TCP_CORK SYN-ACK until 2147 * data is written and socket is closed.) 2148 */ 2149 tcp_send_fin(sk); 2150 } 2151 2152 sk_stream_wait_close(sk, timeout); 2153 2154 adjudge_to_death: 2155 state = sk->sk_state; 2156 sock_hold(sk); 2157 sock_orphan(sk); 2158 2159 /* It is the last release_sock in its life. It will remove backlog. */ 2160 release_sock(sk); 2161 2162 2163 /* Now socket is owned by kernel and we acquire BH lock 2164 to finish close. No need to check for user refs. 2165 */ 2166 local_bh_disable(); 2167 bh_lock_sock(sk); 2168 WARN_ON(sock_owned_by_user(sk)); 2169 2170 percpu_counter_inc(sk->sk_prot->orphan_count); 2171 2172 /* Have we already been destroyed by a softirq or backlog? */ 2173 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2174 goto out; 2175 2176 /* This is a (useful) BSD violating of the RFC. There is a 2177 * problem with TCP as specified in that the other end could 2178 * keep a socket open forever with no application left this end. 2179 * We use a 3 minute timeout (about the same as BSD) then kill 2180 * our end. If they send after that then tough - BUT: long enough 2181 * that we won't make the old 4*rto = almost no time - whoops 2182 * reset mistake. 2183 * 2184 * Nope, it was not mistake. It is really desired behaviour 2185 * f.e. on http servers, when such sockets are useless, but 2186 * consume significant resources. Let's do it with special 2187 * linger2 option. --ANK 2188 */ 2189 2190 if (sk->sk_state == TCP_FIN_WAIT2) { 2191 struct tcp_sock *tp = tcp_sk(sk); 2192 if (tp->linger2 < 0) { 2193 tcp_set_state(sk, TCP_CLOSE); 2194 tcp_send_active_reset(sk, GFP_ATOMIC); 2195 NET_INC_STATS_BH(sock_net(sk), 2196 LINUX_MIB_TCPABORTONLINGER); 2197 } else { 2198 const int tmo = tcp_fin_time(sk); 2199 2200 if (tmo > TCP_TIMEWAIT_LEN) { 2201 inet_csk_reset_keepalive_timer(sk, 2202 tmo - TCP_TIMEWAIT_LEN); 2203 } else { 2204 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2205 goto out; 2206 } 2207 } 2208 } 2209 if (sk->sk_state != TCP_CLOSE) { 2210 sk_mem_reclaim(sk); 2211 if (tcp_check_oom(sk, 0)) { 2212 tcp_set_state(sk, TCP_CLOSE); 2213 tcp_send_active_reset(sk, GFP_ATOMIC); 2214 NET_INC_STATS_BH(sock_net(sk), 2215 LINUX_MIB_TCPABORTONMEMORY); 2216 } 2217 } 2218 2219 if (sk->sk_state == TCP_CLOSE) { 2220 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2221 /* We could get here with a non-NULL req if the socket is 2222 * aborted (e.g., closed with unread data) before 3WHS 2223 * finishes. 2224 */ 2225 if (req != NULL) 2226 reqsk_fastopen_remove(sk, req, false); 2227 inet_csk_destroy_sock(sk); 2228 } 2229 /* Otherwise, socket is reprieved until protocol close. */ 2230 2231 out: 2232 bh_unlock_sock(sk); 2233 local_bh_enable(); 2234 sock_put(sk); 2235 } 2236 EXPORT_SYMBOL(tcp_close); 2237 2238 /* These states need RST on ABORT according to RFC793 */ 2239 2240 static inline bool tcp_need_reset(int state) 2241 { 2242 return (1 << state) & 2243 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2244 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2245 } 2246 2247 int tcp_disconnect(struct sock *sk, int flags) 2248 { 2249 struct inet_sock *inet = inet_sk(sk); 2250 struct inet_connection_sock *icsk = inet_csk(sk); 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 int err = 0; 2253 int old_state = sk->sk_state; 2254 2255 if (old_state != TCP_CLOSE) 2256 tcp_set_state(sk, TCP_CLOSE); 2257 2258 /* ABORT function of RFC793 */ 2259 if (old_state == TCP_LISTEN) { 2260 inet_csk_listen_stop(sk); 2261 } else if (unlikely(tp->repair)) { 2262 sk->sk_err = ECONNABORTED; 2263 } else if (tcp_need_reset(old_state) || 2264 (tp->snd_nxt != tp->write_seq && 2265 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2266 /* The last check adjusts for discrepancy of Linux wrt. RFC 2267 * states 2268 */ 2269 tcp_send_active_reset(sk, gfp_any()); 2270 sk->sk_err = ECONNRESET; 2271 } else if (old_state == TCP_SYN_SENT) 2272 sk->sk_err = ECONNRESET; 2273 2274 tcp_clear_xmit_timers(sk); 2275 __skb_queue_purge(&sk->sk_receive_queue); 2276 tcp_write_queue_purge(sk); 2277 __skb_queue_purge(&tp->out_of_order_queue); 2278 #ifdef CONFIG_NET_DMA 2279 __skb_queue_purge(&sk->sk_async_wait_queue); 2280 #endif 2281 2282 inet->inet_dport = 0; 2283 2284 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2285 inet_reset_saddr(sk); 2286 2287 sk->sk_shutdown = 0; 2288 sock_reset_flag(sk, SOCK_DONE); 2289 tp->srtt = 0; 2290 if ((tp->write_seq += tp->max_window + 2) == 0) 2291 tp->write_seq = 1; 2292 icsk->icsk_backoff = 0; 2293 tp->snd_cwnd = 2; 2294 icsk->icsk_probes_out = 0; 2295 tp->packets_out = 0; 2296 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2297 tp->snd_cwnd_cnt = 0; 2298 tp->window_clamp = 0; 2299 tcp_set_ca_state(sk, TCP_CA_Open); 2300 tcp_clear_retrans(tp); 2301 inet_csk_delack_init(sk); 2302 tcp_init_send_head(sk); 2303 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2304 __sk_dst_reset(sk); 2305 2306 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2307 2308 sk->sk_error_report(sk); 2309 return err; 2310 } 2311 EXPORT_SYMBOL(tcp_disconnect); 2312 2313 void tcp_sock_destruct(struct sock *sk) 2314 { 2315 inet_sock_destruct(sk); 2316 2317 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2318 } 2319 2320 static inline bool tcp_can_repair_sock(const struct sock *sk) 2321 { 2322 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2323 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2324 } 2325 2326 static int tcp_repair_options_est(struct tcp_sock *tp, 2327 struct tcp_repair_opt __user *optbuf, unsigned int len) 2328 { 2329 struct tcp_repair_opt opt; 2330 2331 while (len >= sizeof(opt)) { 2332 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2333 return -EFAULT; 2334 2335 optbuf++; 2336 len -= sizeof(opt); 2337 2338 switch (opt.opt_code) { 2339 case TCPOPT_MSS: 2340 tp->rx_opt.mss_clamp = opt.opt_val; 2341 break; 2342 case TCPOPT_WINDOW: 2343 { 2344 u16 snd_wscale = opt.opt_val & 0xFFFF; 2345 u16 rcv_wscale = opt.opt_val >> 16; 2346 2347 if (snd_wscale > 14 || rcv_wscale > 14) 2348 return -EFBIG; 2349 2350 tp->rx_opt.snd_wscale = snd_wscale; 2351 tp->rx_opt.rcv_wscale = rcv_wscale; 2352 tp->rx_opt.wscale_ok = 1; 2353 } 2354 break; 2355 case TCPOPT_SACK_PERM: 2356 if (opt.opt_val != 0) 2357 return -EINVAL; 2358 2359 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2360 if (sysctl_tcp_fack) 2361 tcp_enable_fack(tp); 2362 break; 2363 case TCPOPT_TIMESTAMP: 2364 if (opt.opt_val != 0) 2365 return -EINVAL; 2366 2367 tp->rx_opt.tstamp_ok = 1; 2368 break; 2369 } 2370 } 2371 2372 return 0; 2373 } 2374 2375 /* 2376 * Socket option code for TCP. 2377 */ 2378 static int do_tcp_setsockopt(struct sock *sk, int level, 2379 int optname, char __user *optval, unsigned int optlen) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 struct inet_connection_sock *icsk = inet_csk(sk); 2383 int val; 2384 int err = 0; 2385 2386 /* These are data/string values, all the others are ints */ 2387 switch (optname) { 2388 case TCP_CONGESTION: { 2389 char name[TCP_CA_NAME_MAX]; 2390 2391 if (optlen < 1) 2392 return -EINVAL; 2393 2394 val = strncpy_from_user(name, optval, 2395 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2396 if (val < 0) 2397 return -EFAULT; 2398 name[val] = 0; 2399 2400 lock_sock(sk); 2401 err = tcp_set_congestion_control(sk, name); 2402 release_sock(sk); 2403 return err; 2404 } 2405 default: 2406 /* fallthru */ 2407 break; 2408 } 2409 2410 if (optlen < sizeof(int)) 2411 return -EINVAL; 2412 2413 if (get_user(val, (int __user *)optval)) 2414 return -EFAULT; 2415 2416 lock_sock(sk); 2417 2418 switch (optname) { 2419 case TCP_MAXSEG: 2420 /* Values greater than interface MTU won't take effect. However 2421 * at the point when this call is done we typically don't yet 2422 * know which interface is going to be used */ 2423 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2424 err = -EINVAL; 2425 break; 2426 } 2427 tp->rx_opt.user_mss = val; 2428 break; 2429 2430 case TCP_NODELAY: 2431 if (val) { 2432 /* TCP_NODELAY is weaker than TCP_CORK, so that 2433 * this option on corked socket is remembered, but 2434 * it is not activated until cork is cleared. 2435 * 2436 * However, when TCP_NODELAY is set we make 2437 * an explicit push, which overrides even TCP_CORK 2438 * for currently queued segments. 2439 */ 2440 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2441 tcp_push_pending_frames(sk); 2442 } else { 2443 tp->nonagle &= ~TCP_NAGLE_OFF; 2444 } 2445 break; 2446 2447 case TCP_THIN_LINEAR_TIMEOUTS: 2448 if (val < 0 || val > 1) 2449 err = -EINVAL; 2450 else 2451 tp->thin_lto = val; 2452 break; 2453 2454 case TCP_THIN_DUPACK: 2455 if (val < 0 || val > 1) 2456 err = -EINVAL; 2457 else 2458 tp->thin_dupack = val; 2459 if (tp->thin_dupack) 2460 tcp_disable_early_retrans(tp); 2461 break; 2462 2463 case TCP_REPAIR: 2464 if (!tcp_can_repair_sock(sk)) 2465 err = -EPERM; 2466 else if (val == 1) { 2467 tp->repair = 1; 2468 sk->sk_reuse = SK_FORCE_REUSE; 2469 tp->repair_queue = TCP_NO_QUEUE; 2470 } else if (val == 0) { 2471 tp->repair = 0; 2472 sk->sk_reuse = SK_NO_REUSE; 2473 tcp_send_window_probe(sk); 2474 } else 2475 err = -EINVAL; 2476 2477 break; 2478 2479 case TCP_REPAIR_QUEUE: 2480 if (!tp->repair) 2481 err = -EPERM; 2482 else if (val < TCP_QUEUES_NR) 2483 tp->repair_queue = val; 2484 else 2485 err = -EINVAL; 2486 break; 2487 2488 case TCP_QUEUE_SEQ: 2489 if (sk->sk_state != TCP_CLOSE) 2490 err = -EPERM; 2491 else if (tp->repair_queue == TCP_SEND_QUEUE) 2492 tp->write_seq = val; 2493 else if (tp->repair_queue == TCP_RECV_QUEUE) 2494 tp->rcv_nxt = val; 2495 else 2496 err = -EINVAL; 2497 break; 2498 2499 case TCP_REPAIR_OPTIONS: 2500 if (!tp->repair) 2501 err = -EINVAL; 2502 else if (sk->sk_state == TCP_ESTABLISHED) 2503 err = tcp_repair_options_est(tp, 2504 (struct tcp_repair_opt __user *)optval, 2505 optlen); 2506 else 2507 err = -EPERM; 2508 break; 2509 2510 case TCP_CORK: 2511 /* When set indicates to always queue non-full frames. 2512 * Later the user clears this option and we transmit 2513 * any pending partial frames in the queue. This is 2514 * meant to be used alongside sendfile() to get properly 2515 * filled frames when the user (for example) must write 2516 * out headers with a write() call first and then use 2517 * sendfile to send out the data parts. 2518 * 2519 * TCP_CORK can be set together with TCP_NODELAY and it is 2520 * stronger than TCP_NODELAY. 2521 */ 2522 if (val) { 2523 tp->nonagle |= TCP_NAGLE_CORK; 2524 } else { 2525 tp->nonagle &= ~TCP_NAGLE_CORK; 2526 if (tp->nonagle&TCP_NAGLE_OFF) 2527 tp->nonagle |= TCP_NAGLE_PUSH; 2528 tcp_push_pending_frames(sk); 2529 } 2530 break; 2531 2532 case TCP_KEEPIDLE: 2533 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2534 err = -EINVAL; 2535 else { 2536 tp->keepalive_time = val * HZ; 2537 if (sock_flag(sk, SOCK_KEEPOPEN) && 2538 !((1 << sk->sk_state) & 2539 (TCPF_CLOSE | TCPF_LISTEN))) { 2540 u32 elapsed = keepalive_time_elapsed(tp); 2541 if (tp->keepalive_time > elapsed) 2542 elapsed = tp->keepalive_time - elapsed; 2543 else 2544 elapsed = 0; 2545 inet_csk_reset_keepalive_timer(sk, elapsed); 2546 } 2547 } 2548 break; 2549 case TCP_KEEPINTVL: 2550 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2551 err = -EINVAL; 2552 else 2553 tp->keepalive_intvl = val * HZ; 2554 break; 2555 case TCP_KEEPCNT: 2556 if (val < 1 || val > MAX_TCP_KEEPCNT) 2557 err = -EINVAL; 2558 else 2559 tp->keepalive_probes = val; 2560 break; 2561 case TCP_SYNCNT: 2562 if (val < 1 || val > MAX_TCP_SYNCNT) 2563 err = -EINVAL; 2564 else 2565 icsk->icsk_syn_retries = val; 2566 break; 2567 2568 case TCP_LINGER2: 2569 if (val < 0) 2570 tp->linger2 = -1; 2571 else if (val > sysctl_tcp_fin_timeout / HZ) 2572 tp->linger2 = 0; 2573 else 2574 tp->linger2 = val * HZ; 2575 break; 2576 2577 case TCP_DEFER_ACCEPT: 2578 /* Translate value in seconds to number of retransmits */ 2579 icsk->icsk_accept_queue.rskq_defer_accept = 2580 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2581 TCP_RTO_MAX / HZ); 2582 break; 2583 2584 case TCP_WINDOW_CLAMP: 2585 if (!val) { 2586 if (sk->sk_state != TCP_CLOSE) { 2587 err = -EINVAL; 2588 break; 2589 } 2590 tp->window_clamp = 0; 2591 } else 2592 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2593 SOCK_MIN_RCVBUF / 2 : val; 2594 break; 2595 2596 case TCP_QUICKACK: 2597 if (!val) { 2598 icsk->icsk_ack.pingpong = 1; 2599 } else { 2600 icsk->icsk_ack.pingpong = 0; 2601 if ((1 << sk->sk_state) & 2602 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2603 inet_csk_ack_scheduled(sk)) { 2604 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2605 tcp_cleanup_rbuf(sk, 1); 2606 if (!(val & 1)) 2607 icsk->icsk_ack.pingpong = 1; 2608 } 2609 } 2610 break; 2611 2612 #ifdef CONFIG_TCP_MD5SIG 2613 case TCP_MD5SIG: 2614 /* Read the IP->Key mappings from userspace */ 2615 err = tp->af_specific->md5_parse(sk, optval, optlen); 2616 break; 2617 #endif 2618 case TCP_USER_TIMEOUT: 2619 /* Cap the max timeout in ms TCP will retry/retrans 2620 * before giving up and aborting (ETIMEDOUT) a connection. 2621 */ 2622 if (val < 0) 2623 err = -EINVAL; 2624 else 2625 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2626 break; 2627 2628 case TCP_FASTOPEN: 2629 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2630 TCPF_LISTEN))) 2631 err = fastopen_init_queue(sk, val); 2632 else 2633 err = -EINVAL; 2634 break; 2635 case TCP_TIMESTAMP: 2636 if (!tp->repair) 2637 err = -EPERM; 2638 else 2639 tp->tsoffset = val - tcp_time_stamp; 2640 break; 2641 default: 2642 err = -ENOPROTOOPT; 2643 break; 2644 } 2645 2646 release_sock(sk); 2647 return err; 2648 } 2649 2650 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2651 unsigned int optlen) 2652 { 2653 const struct inet_connection_sock *icsk = inet_csk(sk); 2654 2655 if (level != SOL_TCP) 2656 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2657 optval, optlen); 2658 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2659 } 2660 EXPORT_SYMBOL(tcp_setsockopt); 2661 2662 #ifdef CONFIG_COMPAT 2663 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2664 char __user *optval, unsigned int optlen) 2665 { 2666 if (level != SOL_TCP) 2667 return inet_csk_compat_setsockopt(sk, level, optname, 2668 optval, optlen); 2669 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2670 } 2671 EXPORT_SYMBOL(compat_tcp_setsockopt); 2672 #endif 2673 2674 /* Return information about state of tcp endpoint in API format. */ 2675 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2676 { 2677 const struct tcp_sock *tp = tcp_sk(sk); 2678 const struct inet_connection_sock *icsk = inet_csk(sk); 2679 u32 now = tcp_time_stamp; 2680 2681 memset(info, 0, sizeof(*info)); 2682 2683 info->tcpi_state = sk->sk_state; 2684 info->tcpi_ca_state = icsk->icsk_ca_state; 2685 info->tcpi_retransmits = icsk->icsk_retransmits; 2686 info->tcpi_probes = icsk->icsk_probes_out; 2687 info->tcpi_backoff = icsk->icsk_backoff; 2688 2689 if (tp->rx_opt.tstamp_ok) 2690 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2691 if (tcp_is_sack(tp)) 2692 info->tcpi_options |= TCPI_OPT_SACK; 2693 if (tp->rx_opt.wscale_ok) { 2694 info->tcpi_options |= TCPI_OPT_WSCALE; 2695 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2696 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2697 } 2698 2699 if (tp->ecn_flags & TCP_ECN_OK) 2700 info->tcpi_options |= TCPI_OPT_ECN; 2701 if (tp->ecn_flags & TCP_ECN_SEEN) 2702 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2703 if (tp->syn_data_acked) 2704 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2705 2706 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2707 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2708 info->tcpi_snd_mss = tp->mss_cache; 2709 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2710 2711 if (sk->sk_state == TCP_LISTEN) { 2712 info->tcpi_unacked = sk->sk_ack_backlog; 2713 info->tcpi_sacked = sk->sk_max_ack_backlog; 2714 } else { 2715 info->tcpi_unacked = tp->packets_out; 2716 info->tcpi_sacked = tp->sacked_out; 2717 } 2718 info->tcpi_lost = tp->lost_out; 2719 info->tcpi_retrans = tp->retrans_out; 2720 info->tcpi_fackets = tp->fackets_out; 2721 2722 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2723 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2724 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2725 2726 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2727 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2728 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2729 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2730 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2731 info->tcpi_snd_cwnd = tp->snd_cwnd; 2732 info->tcpi_advmss = tp->advmss; 2733 info->tcpi_reordering = tp->reordering; 2734 2735 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2736 info->tcpi_rcv_space = tp->rcvq_space.space; 2737 2738 info->tcpi_total_retrans = tp->total_retrans; 2739 } 2740 EXPORT_SYMBOL_GPL(tcp_get_info); 2741 2742 static int do_tcp_getsockopt(struct sock *sk, int level, 2743 int optname, char __user *optval, int __user *optlen) 2744 { 2745 struct inet_connection_sock *icsk = inet_csk(sk); 2746 struct tcp_sock *tp = tcp_sk(sk); 2747 int val, len; 2748 2749 if (get_user(len, optlen)) 2750 return -EFAULT; 2751 2752 len = min_t(unsigned int, len, sizeof(int)); 2753 2754 if (len < 0) 2755 return -EINVAL; 2756 2757 switch (optname) { 2758 case TCP_MAXSEG: 2759 val = tp->mss_cache; 2760 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2761 val = tp->rx_opt.user_mss; 2762 if (tp->repair) 2763 val = tp->rx_opt.mss_clamp; 2764 break; 2765 case TCP_NODELAY: 2766 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2767 break; 2768 case TCP_CORK: 2769 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2770 break; 2771 case TCP_KEEPIDLE: 2772 val = keepalive_time_when(tp) / HZ; 2773 break; 2774 case TCP_KEEPINTVL: 2775 val = keepalive_intvl_when(tp) / HZ; 2776 break; 2777 case TCP_KEEPCNT: 2778 val = keepalive_probes(tp); 2779 break; 2780 case TCP_SYNCNT: 2781 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2782 break; 2783 case TCP_LINGER2: 2784 val = tp->linger2; 2785 if (val >= 0) 2786 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2787 break; 2788 case TCP_DEFER_ACCEPT: 2789 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2790 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2791 break; 2792 case TCP_WINDOW_CLAMP: 2793 val = tp->window_clamp; 2794 break; 2795 case TCP_INFO: { 2796 struct tcp_info info; 2797 2798 if (get_user(len, optlen)) 2799 return -EFAULT; 2800 2801 tcp_get_info(sk, &info); 2802 2803 len = min_t(unsigned int, len, sizeof(info)); 2804 if (put_user(len, optlen)) 2805 return -EFAULT; 2806 if (copy_to_user(optval, &info, len)) 2807 return -EFAULT; 2808 return 0; 2809 } 2810 case TCP_QUICKACK: 2811 val = !icsk->icsk_ack.pingpong; 2812 break; 2813 2814 case TCP_CONGESTION: 2815 if (get_user(len, optlen)) 2816 return -EFAULT; 2817 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2818 if (put_user(len, optlen)) 2819 return -EFAULT; 2820 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2821 return -EFAULT; 2822 return 0; 2823 2824 case TCP_THIN_LINEAR_TIMEOUTS: 2825 val = tp->thin_lto; 2826 break; 2827 case TCP_THIN_DUPACK: 2828 val = tp->thin_dupack; 2829 break; 2830 2831 case TCP_REPAIR: 2832 val = tp->repair; 2833 break; 2834 2835 case TCP_REPAIR_QUEUE: 2836 if (tp->repair) 2837 val = tp->repair_queue; 2838 else 2839 return -EINVAL; 2840 break; 2841 2842 case TCP_QUEUE_SEQ: 2843 if (tp->repair_queue == TCP_SEND_QUEUE) 2844 val = tp->write_seq; 2845 else if (tp->repair_queue == TCP_RECV_QUEUE) 2846 val = tp->rcv_nxt; 2847 else 2848 return -EINVAL; 2849 break; 2850 2851 case TCP_USER_TIMEOUT: 2852 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2853 break; 2854 case TCP_TIMESTAMP: 2855 val = tcp_time_stamp + tp->tsoffset; 2856 break; 2857 default: 2858 return -ENOPROTOOPT; 2859 } 2860 2861 if (put_user(len, optlen)) 2862 return -EFAULT; 2863 if (copy_to_user(optval, &val, len)) 2864 return -EFAULT; 2865 return 0; 2866 } 2867 2868 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2869 int __user *optlen) 2870 { 2871 struct inet_connection_sock *icsk = inet_csk(sk); 2872 2873 if (level != SOL_TCP) 2874 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2875 optval, optlen); 2876 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2877 } 2878 EXPORT_SYMBOL(tcp_getsockopt); 2879 2880 #ifdef CONFIG_COMPAT 2881 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2882 char __user *optval, int __user *optlen) 2883 { 2884 if (level != SOL_TCP) 2885 return inet_csk_compat_getsockopt(sk, level, optname, 2886 optval, optlen); 2887 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2888 } 2889 EXPORT_SYMBOL(compat_tcp_getsockopt); 2890 #endif 2891 2892 #ifdef CONFIG_TCP_MD5SIG 2893 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly; 2894 static DEFINE_MUTEX(tcp_md5sig_mutex); 2895 2896 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2897 { 2898 int cpu; 2899 2900 for_each_possible_cpu(cpu) { 2901 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2902 2903 if (p->md5_desc.tfm) 2904 crypto_free_hash(p->md5_desc.tfm); 2905 } 2906 free_percpu(pool); 2907 } 2908 2909 static void __tcp_alloc_md5sig_pool(void) 2910 { 2911 int cpu; 2912 struct tcp_md5sig_pool __percpu *pool; 2913 2914 pool = alloc_percpu(struct tcp_md5sig_pool); 2915 if (!pool) 2916 return; 2917 2918 for_each_possible_cpu(cpu) { 2919 struct crypto_hash *hash; 2920 2921 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2922 if (IS_ERR_OR_NULL(hash)) 2923 goto out_free; 2924 2925 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 2926 } 2927 /* before setting tcp_md5sig_pool, we must commit all writes 2928 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool() 2929 */ 2930 smp_wmb(); 2931 tcp_md5sig_pool = pool; 2932 return; 2933 out_free: 2934 __tcp_free_md5sig_pool(pool); 2935 } 2936 2937 bool tcp_alloc_md5sig_pool(void) 2938 { 2939 if (unlikely(!tcp_md5sig_pool)) { 2940 mutex_lock(&tcp_md5sig_mutex); 2941 2942 if (!tcp_md5sig_pool) 2943 __tcp_alloc_md5sig_pool(); 2944 2945 mutex_unlock(&tcp_md5sig_mutex); 2946 } 2947 return tcp_md5sig_pool != NULL; 2948 } 2949 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2950 2951 2952 /** 2953 * tcp_get_md5sig_pool - get md5sig_pool for this user 2954 * 2955 * We use percpu structure, so if we succeed, we exit with preemption 2956 * and BH disabled, to make sure another thread or softirq handling 2957 * wont try to get same context. 2958 */ 2959 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2960 { 2961 struct tcp_md5sig_pool __percpu *p; 2962 2963 local_bh_disable(); 2964 p = ACCESS_ONCE(tcp_md5sig_pool); 2965 if (p) 2966 return __this_cpu_ptr(p); 2967 2968 local_bh_enable(); 2969 return NULL; 2970 } 2971 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2972 2973 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2974 const struct tcphdr *th) 2975 { 2976 struct scatterlist sg; 2977 struct tcphdr hdr; 2978 int err; 2979 2980 /* We are not allowed to change tcphdr, make a local copy */ 2981 memcpy(&hdr, th, sizeof(hdr)); 2982 hdr.check = 0; 2983 2984 /* options aren't included in the hash */ 2985 sg_init_one(&sg, &hdr, sizeof(hdr)); 2986 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 2987 return err; 2988 } 2989 EXPORT_SYMBOL(tcp_md5_hash_header); 2990 2991 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2992 const struct sk_buff *skb, unsigned int header_len) 2993 { 2994 struct scatterlist sg; 2995 const struct tcphdr *tp = tcp_hdr(skb); 2996 struct hash_desc *desc = &hp->md5_desc; 2997 unsigned int i; 2998 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 2999 skb_headlen(skb) - header_len : 0; 3000 const struct skb_shared_info *shi = skb_shinfo(skb); 3001 struct sk_buff *frag_iter; 3002 3003 sg_init_table(&sg, 1); 3004 3005 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3006 if (crypto_hash_update(desc, &sg, head_data_len)) 3007 return 1; 3008 3009 for (i = 0; i < shi->nr_frags; ++i) { 3010 const struct skb_frag_struct *f = &shi->frags[i]; 3011 unsigned int offset = f->page_offset; 3012 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3013 3014 sg_set_page(&sg, page, skb_frag_size(f), 3015 offset_in_page(offset)); 3016 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3017 return 1; 3018 } 3019 3020 skb_walk_frags(skb, frag_iter) 3021 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3022 return 1; 3023 3024 return 0; 3025 } 3026 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3027 3028 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3029 { 3030 struct scatterlist sg; 3031 3032 sg_init_one(&sg, key->key, key->keylen); 3033 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3034 } 3035 EXPORT_SYMBOL(tcp_md5_hash_key); 3036 3037 #endif 3038 3039 void tcp_done(struct sock *sk) 3040 { 3041 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3042 3043 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3044 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3045 3046 tcp_set_state(sk, TCP_CLOSE); 3047 tcp_clear_xmit_timers(sk); 3048 if (req != NULL) 3049 reqsk_fastopen_remove(sk, req, false); 3050 3051 sk->sk_shutdown = SHUTDOWN_MASK; 3052 3053 if (!sock_flag(sk, SOCK_DEAD)) 3054 sk->sk_state_change(sk); 3055 else 3056 inet_csk_destroy_sock(sk); 3057 } 3058 EXPORT_SYMBOL_GPL(tcp_done); 3059 3060 extern struct tcp_congestion_ops tcp_reno; 3061 3062 static __initdata unsigned long thash_entries; 3063 static int __init set_thash_entries(char *str) 3064 { 3065 ssize_t ret; 3066 3067 if (!str) 3068 return 0; 3069 3070 ret = kstrtoul(str, 0, &thash_entries); 3071 if (ret) 3072 return 0; 3073 3074 return 1; 3075 } 3076 __setup("thash_entries=", set_thash_entries); 3077 3078 void tcp_init_mem(struct net *net) 3079 { 3080 unsigned long limit = nr_free_buffer_pages() / 8; 3081 limit = max(limit, 128UL); 3082 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3083 net->ipv4.sysctl_tcp_mem[1] = limit; 3084 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3085 } 3086 3087 void __init tcp_init(void) 3088 { 3089 struct sk_buff *skb = NULL; 3090 unsigned long limit; 3091 int max_rshare, max_wshare, cnt; 3092 unsigned int i; 3093 3094 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3095 3096 percpu_counter_init(&tcp_sockets_allocated, 0); 3097 percpu_counter_init(&tcp_orphan_count, 0); 3098 tcp_hashinfo.bind_bucket_cachep = 3099 kmem_cache_create("tcp_bind_bucket", 3100 sizeof(struct inet_bind_bucket), 0, 3101 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3102 3103 /* Size and allocate the main established and bind bucket 3104 * hash tables. 3105 * 3106 * The methodology is similar to that of the buffer cache. 3107 */ 3108 tcp_hashinfo.ehash = 3109 alloc_large_system_hash("TCP established", 3110 sizeof(struct inet_ehash_bucket), 3111 thash_entries, 3112 17, /* one slot per 128 KB of memory */ 3113 0, 3114 NULL, 3115 &tcp_hashinfo.ehash_mask, 3116 0, 3117 thash_entries ? 0 : 512 * 1024); 3118 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3119 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3120 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3121 } 3122 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3123 panic("TCP: failed to alloc ehash_locks"); 3124 tcp_hashinfo.bhash = 3125 alloc_large_system_hash("TCP bind", 3126 sizeof(struct inet_bind_hashbucket), 3127 tcp_hashinfo.ehash_mask + 1, 3128 17, /* one slot per 128 KB of memory */ 3129 0, 3130 &tcp_hashinfo.bhash_size, 3131 NULL, 3132 0, 3133 64 * 1024); 3134 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3135 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3136 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3137 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3138 } 3139 3140 3141 cnt = tcp_hashinfo.ehash_mask + 1; 3142 3143 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3144 sysctl_tcp_max_orphans = cnt / 2; 3145 sysctl_max_syn_backlog = max(128, cnt / 256); 3146 3147 tcp_init_mem(&init_net); 3148 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3149 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3150 max_wshare = min(4UL*1024*1024, limit); 3151 max_rshare = min(6UL*1024*1024, limit); 3152 3153 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3154 sysctl_tcp_wmem[1] = 16*1024; 3155 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3156 3157 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3158 sysctl_tcp_rmem[1] = 87380; 3159 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3160 3161 pr_info("Hash tables configured (established %u bind %u)\n", 3162 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3163 3164 tcp_metrics_init(); 3165 3166 tcp_register_congestion_control(&tcp_reno); 3167 3168 tcp_tasklet_init(); 3169 } 3170