xref: /openbmc/linux/net/ipv4/tcp.c (revision 803f6914)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
278 
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281 
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283 
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286 
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
289 
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /*
367  *	Wait for a TCP event.
368  *
369  *	Note that we don't need to lock the socket, as the upper poll layers
370  *	take care of normal races (between the test and the event) and we don't
371  *	go look at any of the socket buffers directly.
372  */
373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374 {
375 	unsigned int mask;
376 	struct sock *sk = sock->sk;
377 	const struct tcp_sock *tp = tcp_sk(sk);
378 
379 	sock_poll_wait(file, sk_sleep(sk), wait);
380 	if (sk->sk_state == TCP_LISTEN)
381 		return inet_csk_listen_poll(sk);
382 
383 	/* Socket is not locked. We are protected from async events
384 	 * by poll logic and correct handling of state changes
385 	 * made by other threads is impossible in any case.
386 	 */
387 
388 	mask = 0;
389 
390 	/*
391 	 * POLLHUP is certainly not done right. But poll() doesn't
392 	 * have a notion of HUP in just one direction, and for a
393 	 * socket the read side is more interesting.
394 	 *
395 	 * Some poll() documentation says that POLLHUP is incompatible
396 	 * with the POLLOUT/POLLWR flags, so somebody should check this
397 	 * all. But careful, it tends to be safer to return too many
398 	 * bits than too few, and you can easily break real applications
399 	 * if you don't tell them that something has hung up!
400 	 *
401 	 * Check-me.
402 	 *
403 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
404 	 * our fs/select.c). It means that after we received EOF,
405 	 * poll always returns immediately, making impossible poll() on write()
406 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
407 	 * if and only if shutdown has been made in both directions.
408 	 * Actually, it is interesting to look how Solaris and DUX
409 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
410 	 * then we could set it on SND_SHUTDOWN. BTW examples given
411 	 * in Stevens' books assume exactly this behaviour, it explains
412 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
413 	 *
414 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
415 	 * blocking on fresh not-connected or disconnected socket. --ANK
416 	 */
417 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
418 		mask |= POLLHUP;
419 	if (sk->sk_shutdown & RCV_SHUTDOWN)
420 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
421 
422 	/* Connected? */
423 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
424 		int target = sock_rcvlowat(sk, 0, INT_MAX);
425 
426 		if (tp->urg_seq == tp->copied_seq &&
427 		    !sock_flag(sk, SOCK_URGINLINE) &&
428 		    tp->urg_data)
429 			target++;
430 
431 		/* Potential race condition. If read of tp below will
432 		 * escape above sk->sk_state, we can be illegally awaken
433 		 * in SYN_* states. */
434 		if (tp->rcv_nxt - tp->copied_seq >= target)
435 			mask |= POLLIN | POLLRDNORM;
436 
437 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
438 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
439 				mask |= POLLOUT | POLLWRNORM;
440 			} else {  /* send SIGIO later */
441 				set_bit(SOCK_ASYNC_NOSPACE,
442 					&sk->sk_socket->flags);
443 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
444 
445 				/* Race breaker. If space is freed after
446 				 * wspace test but before the flags are set,
447 				 * IO signal will be lost.
448 				 */
449 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
450 					mask |= POLLOUT | POLLWRNORM;
451 			}
452 		} else
453 			mask |= POLLOUT | POLLWRNORM;
454 
455 		if (tp->urg_data & TCP_URG_VALID)
456 			mask |= POLLPRI;
457 	}
458 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
459 	smp_rmb();
460 	if (sk->sk_err)
461 		mask |= POLLERR;
462 
463 	return mask;
464 }
465 EXPORT_SYMBOL(tcp_poll);
466 
467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
468 {
469 	struct tcp_sock *tp = tcp_sk(sk);
470 	int answ;
471 
472 	switch (cmd) {
473 	case SIOCINQ:
474 		if (sk->sk_state == TCP_LISTEN)
475 			return -EINVAL;
476 
477 		lock_sock(sk);
478 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
479 			answ = 0;
480 		else if (sock_flag(sk, SOCK_URGINLINE) ||
481 			 !tp->urg_data ||
482 			 before(tp->urg_seq, tp->copied_seq) ||
483 			 !before(tp->urg_seq, tp->rcv_nxt)) {
484 			struct sk_buff *skb;
485 
486 			answ = tp->rcv_nxt - tp->copied_seq;
487 
488 			/* Subtract 1, if FIN is in queue. */
489 			skb = skb_peek_tail(&sk->sk_receive_queue);
490 			if (answ && skb)
491 				answ -= tcp_hdr(skb)->fin;
492 		} else
493 			answ = tp->urg_seq - tp->copied_seq;
494 		release_sock(sk);
495 		break;
496 	case SIOCATMARK:
497 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
498 		break;
499 	case SIOCOUTQ:
500 		if (sk->sk_state == TCP_LISTEN)
501 			return -EINVAL;
502 
503 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
504 			answ = 0;
505 		else
506 			answ = tp->write_seq - tp->snd_una;
507 		break;
508 	case SIOCOUTQNSD:
509 		if (sk->sk_state == TCP_LISTEN)
510 			return -EINVAL;
511 
512 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
513 			answ = 0;
514 		else
515 			answ = tp->write_seq - tp->snd_nxt;
516 		break;
517 	default:
518 		return -ENOIOCTLCMD;
519 	}
520 
521 	return put_user(answ, (int __user *)arg);
522 }
523 EXPORT_SYMBOL(tcp_ioctl);
524 
525 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
526 {
527 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
528 	tp->pushed_seq = tp->write_seq;
529 }
530 
531 static inline int forced_push(const struct tcp_sock *tp)
532 {
533 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
534 }
535 
536 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
537 {
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
540 
541 	skb->csum    = 0;
542 	tcb->seq     = tcb->end_seq = tp->write_seq;
543 	tcb->tcp_flags = TCPHDR_ACK;
544 	tcb->sacked  = 0;
545 	skb_header_release(skb);
546 	tcp_add_write_queue_tail(sk, skb);
547 	sk->sk_wmem_queued += skb->truesize;
548 	sk_mem_charge(sk, skb->truesize);
549 	if (tp->nonagle & TCP_NAGLE_PUSH)
550 		tp->nonagle &= ~TCP_NAGLE_PUSH;
551 }
552 
553 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
554 {
555 	if (flags & MSG_OOB)
556 		tp->snd_up = tp->write_seq;
557 }
558 
559 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
560 			    int nonagle)
561 {
562 	if (tcp_send_head(sk)) {
563 		struct tcp_sock *tp = tcp_sk(sk);
564 
565 		if (!(flags & MSG_MORE) || forced_push(tp))
566 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
567 
568 		tcp_mark_urg(tp, flags);
569 		__tcp_push_pending_frames(sk, mss_now,
570 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
571 	}
572 }
573 
574 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
575 				unsigned int offset, size_t len)
576 {
577 	struct tcp_splice_state *tss = rd_desc->arg.data;
578 	int ret;
579 
580 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
581 			      tss->flags);
582 	if (ret > 0)
583 		rd_desc->count -= ret;
584 	return ret;
585 }
586 
587 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
588 {
589 	/* Store TCP splice context information in read_descriptor_t. */
590 	read_descriptor_t rd_desc = {
591 		.arg.data = tss,
592 		.count	  = tss->len,
593 	};
594 
595 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
596 }
597 
598 /**
599  *  tcp_splice_read - splice data from TCP socket to a pipe
600  * @sock:	socket to splice from
601  * @ppos:	position (not valid)
602  * @pipe:	pipe to splice to
603  * @len:	number of bytes to splice
604  * @flags:	splice modifier flags
605  *
606  * Description:
607  *    Will read pages from given socket and fill them into a pipe.
608  *
609  **/
610 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
611 			struct pipe_inode_info *pipe, size_t len,
612 			unsigned int flags)
613 {
614 	struct sock *sk = sock->sk;
615 	struct tcp_splice_state tss = {
616 		.pipe = pipe,
617 		.len = len,
618 		.flags = flags,
619 	};
620 	long timeo;
621 	ssize_t spliced;
622 	int ret;
623 
624 	sock_rps_record_flow(sk);
625 	/*
626 	 * We can't seek on a socket input
627 	 */
628 	if (unlikely(*ppos))
629 		return -ESPIPE;
630 
631 	ret = spliced = 0;
632 
633 	lock_sock(sk);
634 
635 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
636 	while (tss.len) {
637 		ret = __tcp_splice_read(sk, &tss);
638 		if (ret < 0)
639 			break;
640 		else if (!ret) {
641 			if (spliced)
642 				break;
643 			if (sock_flag(sk, SOCK_DONE))
644 				break;
645 			if (sk->sk_err) {
646 				ret = sock_error(sk);
647 				break;
648 			}
649 			if (sk->sk_shutdown & RCV_SHUTDOWN)
650 				break;
651 			if (sk->sk_state == TCP_CLOSE) {
652 				/*
653 				 * This occurs when user tries to read
654 				 * from never connected socket.
655 				 */
656 				if (!sock_flag(sk, SOCK_DONE))
657 					ret = -ENOTCONN;
658 				break;
659 			}
660 			if (!timeo) {
661 				ret = -EAGAIN;
662 				break;
663 			}
664 			sk_wait_data(sk, &timeo);
665 			if (signal_pending(current)) {
666 				ret = sock_intr_errno(timeo);
667 				break;
668 			}
669 			continue;
670 		}
671 		tss.len -= ret;
672 		spliced += ret;
673 
674 		if (!timeo)
675 			break;
676 		release_sock(sk);
677 		lock_sock(sk);
678 
679 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
680 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
681 		    signal_pending(current))
682 			break;
683 	}
684 
685 	release_sock(sk);
686 
687 	if (spliced)
688 		return spliced;
689 
690 	return ret;
691 }
692 EXPORT_SYMBOL(tcp_splice_read);
693 
694 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
695 {
696 	struct sk_buff *skb;
697 
698 	/* The TCP header must be at least 32-bit aligned.  */
699 	size = ALIGN(size, 4);
700 
701 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
702 	if (skb) {
703 		if (sk_wmem_schedule(sk, skb->truesize)) {
704 			/*
705 			 * Make sure that we have exactly size bytes
706 			 * available to the caller, no more, no less.
707 			 */
708 			skb_reserve(skb, skb_tailroom(skb) - size);
709 			return skb;
710 		}
711 		__kfree_skb(skb);
712 	} else {
713 		sk->sk_prot->enter_memory_pressure(sk);
714 		sk_stream_moderate_sndbuf(sk);
715 	}
716 	return NULL;
717 }
718 
719 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
720 				       int large_allowed)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	u32 xmit_size_goal, old_size_goal;
724 
725 	xmit_size_goal = mss_now;
726 
727 	if (large_allowed && sk_can_gso(sk)) {
728 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
729 				  inet_csk(sk)->icsk_af_ops->net_header_len -
730 				  inet_csk(sk)->icsk_ext_hdr_len -
731 				  tp->tcp_header_len);
732 
733 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
734 
735 		/* We try hard to avoid divides here */
736 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
737 
738 		if (likely(old_size_goal <= xmit_size_goal &&
739 			   old_size_goal + mss_now > xmit_size_goal)) {
740 			xmit_size_goal = old_size_goal;
741 		} else {
742 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
743 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
744 		}
745 	}
746 
747 	return max(xmit_size_goal, mss_now);
748 }
749 
750 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
751 {
752 	int mss_now;
753 
754 	mss_now = tcp_current_mss(sk);
755 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
756 
757 	return mss_now;
758 }
759 
760 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
761 			 size_t psize, int flags)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	int mss_now, size_goal;
765 	int err;
766 	ssize_t copied;
767 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
768 
769 	/* Wait for a connection to finish. */
770 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
771 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
772 			goto out_err;
773 
774 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
775 
776 	mss_now = tcp_send_mss(sk, &size_goal, flags);
777 	copied = 0;
778 
779 	err = -EPIPE;
780 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
781 		goto out_err;
782 
783 	while (psize > 0) {
784 		struct sk_buff *skb = tcp_write_queue_tail(sk);
785 		struct page *page = pages[poffset / PAGE_SIZE];
786 		int copy, i, can_coalesce;
787 		int offset = poffset % PAGE_SIZE;
788 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
789 
790 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
791 new_segment:
792 			if (!sk_stream_memory_free(sk))
793 				goto wait_for_sndbuf;
794 
795 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
796 			if (!skb)
797 				goto wait_for_memory;
798 
799 			skb_entail(sk, skb);
800 			copy = size_goal;
801 		}
802 
803 		if (copy > size)
804 			copy = size;
805 
806 		i = skb_shinfo(skb)->nr_frags;
807 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
808 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
809 			tcp_mark_push(tp, skb);
810 			goto new_segment;
811 		}
812 		if (!sk_wmem_schedule(sk, copy))
813 			goto wait_for_memory;
814 
815 		if (can_coalesce) {
816 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
817 		} else {
818 			get_page(page);
819 			skb_fill_page_desc(skb, i, page, offset, copy);
820 		}
821 
822 		skb->len += copy;
823 		skb->data_len += copy;
824 		skb->truesize += copy;
825 		sk->sk_wmem_queued += copy;
826 		sk_mem_charge(sk, copy);
827 		skb->ip_summed = CHECKSUM_PARTIAL;
828 		tp->write_seq += copy;
829 		TCP_SKB_CB(skb)->end_seq += copy;
830 		skb_shinfo(skb)->gso_segs = 0;
831 
832 		if (!copied)
833 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
834 
835 		copied += copy;
836 		poffset += copy;
837 		if (!(psize -= copy))
838 			goto out;
839 
840 		if (skb->len < size_goal || (flags & MSG_OOB))
841 			continue;
842 
843 		if (forced_push(tp)) {
844 			tcp_mark_push(tp, skb);
845 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
846 		} else if (skb == tcp_send_head(sk))
847 			tcp_push_one(sk, mss_now);
848 		continue;
849 
850 wait_for_sndbuf:
851 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
852 wait_for_memory:
853 		if (copied)
854 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
855 
856 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
857 			goto do_error;
858 
859 		mss_now = tcp_send_mss(sk, &size_goal, flags);
860 	}
861 
862 out:
863 	if (copied)
864 		tcp_push(sk, flags, mss_now, tp->nonagle);
865 	return copied;
866 
867 do_error:
868 	if (copied)
869 		goto out;
870 out_err:
871 	return sk_stream_error(sk, flags, err);
872 }
873 
874 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
875 		 size_t size, int flags)
876 {
877 	ssize_t res;
878 
879 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
880 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
881 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
882 					flags);
883 
884 	lock_sock(sk);
885 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
886 	release_sock(sk);
887 	return res;
888 }
889 EXPORT_SYMBOL(tcp_sendpage);
890 
891 static inline int select_size(const struct sock *sk, bool sg)
892 {
893 	const struct tcp_sock *tp = tcp_sk(sk);
894 	int tmp = tp->mss_cache;
895 
896 	if (sg) {
897 		if (sk_can_gso(sk)) {
898 			/* Small frames wont use a full page:
899 			 * Payload will immediately follow tcp header.
900 			 */
901 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
902 		} else {
903 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
904 
905 			if (tmp >= pgbreak &&
906 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
907 				tmp = pgbreak;
908 		}
909 	}
910 
911 	return tmp;
912 }
913 
914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
915 		size_t size)
916 {
917 	struct iovec *iov;
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	struct sk_buff *skb;
920 	int iovlen, flags, err, copied;
921 	int mss_now, size_goal;
922 	bool sg;
923 	long timeo;
924 
925 	lock_sock(sk);
926 
927 	flags = msg->msg_flags;
928 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
929 
930 	/* Wait for a connection to finish. */
931 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
932 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
933 			goto out_err;
934 
935 	/* This should be in poll */
936 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
937 
938 	mss_now = tcp_send_mss(sk, &size_goal, flags);
939 
940 	/* Ok commence sending. */
941 	iovlen = msg->msg_iovlen;
942 	iov = msg->msg_iov;
943 	copied = 0;
944 
945 	err = -EPIPE;
946 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
947 		goto out_err;
948 
949 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
950 
951 	while (--iovlen >= 0) {
952 		size_t seglen = iov->iov_len;
953 		unsigned char __user *from = iov->iov_base;
954 
955 		iov++;
956 
957 		while (seglen > 0) {
958 			int copy = 0;
959 			int max = size_goal;
960 
961 			skb = tcp_write_queue_tail(sk);
962 			if (tcp_send_head(sk)) {
963 				if (skb->ip_summed == CHECKSUM_NONE)
964 					max = mss_now;
965 				copy = max - skb->len;
966 			}
967 
968 			if (copy <= 0) {
969 new_segment:
970 				/* Allocate new segment. If the interface is SG,
971 				 * allocate skb fitting to single page.
972 				 */
973 				if (!sk_stream_memory_free(sk))
974 					goto wait_for_sndbuf;
975 
976 				skb = sk_stream_alloc_skb(sk,
977 							  select_size(sk, sg),
978 							  sk->sk_allocation);
979 				if (!skb)
980 					goto wait_for_memory;
981 
982 				/*
983 				 * Check whether we can use HW checksum.
984 				 */
985 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
986 					skb->ip_summed = CHECKSUM_PARTIAL;
987 
988 				skb_entail(sk, skb);
989 				copy = size_goal;
990 				max = size_goal;
991 			}
992 
993 			/* Try to append data to the end of skb. */
994 			if (copy > seglen)
995 				copy = seglen;
996 
997 			/* Where to copy to? */
998 			if (skb_tailroom(skb) > 0) {
999 				/* We have some space in skb head. Superb! */
1000 				if (copy > skb_tailroom(skb))
1001 					copy = skb_tailroom(skb);
1002 				err = skb_add_data_nocache(sk, skb, from, copy);
1003 				if (err)
1004 					goto do_fault;
1005 			} else {
1006 				int merge = 0;
1007 				int i = skb_shinfo(skb)->nr_frags;
1008 				struct page *page = sk->sk_sndmsg_page;
1009 				int off;
1010 
1011 				if (page && page_count(page) == 1)
1012 					sk->sk_sndmsg_off = 0;
1013 
1014 				off = sk->sk_sndmsg_off;
1015 
1016 				if (skb_can_coalesce(skb, i, page, off) &&
1017 				    off != PAGE_SIZE) {
1018 					/* We can extend the last page
1019 					 * fragment. */
1020 					merge = 1;
1021 				} else if (i == MAX_SKB_FRAGS || !sg) {
1022 					/* Need to add new fragment and cannot
1023 					 * do this because interface is non-SG,
1024 					 * or because all the page slots are
1025 					 * busy. */
1026 					tcp_mark_push(tp, skb);
1027 					goto new_segment;
1028 				} else if (page) {
1029 					if (off == PAGE_SIZE) {
1030 						put_page(page);
1031 						sk->sk_sndmsg_page = page = NULL;
1032 						off = 0;
1033 					}
1034 				} else
1035 					off = 0;
1036 
1037 				if (copy > PAGE_SIZE - off)
1038 					copy = PAGE_SIZE - off;
1039 
1040 				if (!sk_wmem_schedule(sk, copy))
1041 					goto wait_for_memory;
1042 
1043 				if (!page) {
1044 					/* Allocate new cache page. */
1045 					if (!(page = sk_stream_alloc_page(sk)))
1046 						goto wait_for_memory;
1047 				}
1048 
1049 				/* Time to copy data. We are close to
1050 				 * the end! */
1051 				err = skb_copy_to_page_nocache(sk, from, skb,
1052 							       page, off, copy);
1053 				if (err) {
1054 					/* If this page was new, give it to the
1055 					 * socket so it does not get leaked.
1056 					 */
1057 					if (!sk->sk_sndmsg_page) {
1058 						sk->sk_sndmsg_page = page;
1059 						sk->sk_sndmsg_off = 0;
1060 					}
1061 					goto do_error;
1062 				}
1063 
1064 				/* Update the skb. */
1065 				if (merge) {
1066 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1067 				} else {
1068 					skb_fill_page_desc(skb, i, page, off, copy);
1069 					if (sk->sk_sndmsg_page) {
1070 						get_page(page);
1071 					} else if (off + copy < PAGE_SIZE) {
1072 						get_page(page);
1073 						sk->sk_sndmsg_page = page;
1074 					}
1075 				}
1076 
1077 				sk->sk_sndmsg_off = off + copy;
1078 			}
1079 
1080 			if (!copied)
1081 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1082 
1083 			tp->write_seq += copy;
1084 			TCP_SKB_CB(skb)->end_seq += copy;
1085 			skb_shinfo(skb)->gso_segs = 0;
1086 
1087 			from += copy;
1088 			copied += copy;
1089 			if ((seglen -= copy) == 0 && iovlen == 0)
1090 				goto out;
1091 
1092 			if (skb->len < max || (flags & MSG_OOB))
1093 				continue;
1094 
1095 			if (forced_push(tp)) {
1096 				tcp_mark_push(tp, skb);
1097 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1098 			} else if (skb == tcp_send_head(sk))
1099 				tcp_push_one(sk, mss_now);
1100 			continue;
1101 
1102 wait_for_sndbuf:
1103 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1104 wait_for_memory:
1105 			if (copied)
1106 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1107 
1108 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1109 				goto do_error;
1110 
1111 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1112 		}
1113 	}
1114 
1115 out:
1116 	if (copied)
1117 		tcp_push(sk, flags, mss_now, tp->nonagle);
1118 	release_sock(sk);
1119 	return copied;
1120 
1121 do_fault:
1122 	if (!skb->len) {
1123 		tcp_unlink_write_queue(skb, sk);
1124 		/* It is the one place in all of TCP, except connection
1125 		 * reset, where we can be unlinking the send_head.
1126 		 */
1127 		tcp_check_send_head(sk, skb);
1128 		sk_wmem_free_skb(sk, skb);
1129 	}
1130 
1131 do_error:
1132 	if (copied)
1133 		goto out;
1134 out_err:
1135 	err = sk_stream_error(sk, flags, err);
1136 	release_sock(sk);
1137 	return err;
1138 }
1139 EXPORT_SYMBOL(tcp_sendmsg);
1140 
1141 /*
1142  *	Handle reading urgent data. BSD has very simple semantics for
1143  *	this, no blocking and very strange errors 8)
1144  */
1145 
1146 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1147 {
1148 	struct tcp_sock *tp = tcp_sk(sk);
1149 
1150 	/* No URG data to read. */
1151 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1152 	    tp->urg_data == TCP_URG_READ)
1153 		return -EINVAL;	/* Yes this is right ! */
1154 
1155 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1156 		return -ENOTCONN;
1157 
1158 	if (tp->urg_data & TCP_URG_VALID) {
1159 		int err = 0;
1160 		char c = tp->urg_data;
1161 
1162 		if (!(flags & MSG_PEEK))
1163 			tp->urg_data = TCP_URG_READ;
1164 
1165 		/* Read urgent data. */
1166 		msg->msg_flags |= MSG_OOB;
1167 
1168 		if (len > 0) {
1169 			if (!(flags & MSG_TRUNC))
1170 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1171 			len = 1;
1172 		} else
1173 			msg->msg_flags |= MSG_TRUNC;
1174 
1175 		return err ? -EFAULT : len;
1176 	}
1177 
1178 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1179 		return 0;
1180 
1181 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1182 	 * the available implementations agree in this case:
1183 	 * this call should never block, independent of the
1184 	 * blocking state of the socket.
1185 	 * Mike <pall@rz.uni-karlsruhe.de>
1186 	 */
1187 	return -EAGAIN;
1188 }
1189 
1190 /* Clean up the receive buffer for full frames taken by the user,
1191  * then send an ACK if necessary.  COPIED is the number of bytes
1192  * tcp_recvmsg has given to the user so far, it speeds up the
1193  * calculation of whether or not we must ACK for the sake of
1194  * a window update.
1195  */
1196 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1197 {
1198 	struct tcp_sock *tp = tcp_sk(sk);
1199 	int time_to_ack = 0;
1200 
1201 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1202 
1203 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1204 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1205 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1206 
1207 	if (inet_csk_ack_scheduled(sk)) {
1208 		const struct inet_connection_sock *icsk = inet_csk(sk);
1209 		   /* Delayed ACKs frequently hit locked sockets during bulk
1210 		    * receive. */
1211 		if (icsk->icsk_ack.blocked ||
1212 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1213 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1214 		    /*
1215 		     * If this read emptied read buffer, we send ACK, if
1216 		     * connection is not bidirectional, user drained
1217 		     * receive buffer and there was a small segment
1218 		     * in queue.
1219 		     */
1220 		    (copied > 0 &&
1221 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1222 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1223 		       !icsk->icsk_ack.pingpong)) &&
1224 		      !atomic_read(&sk->sk_rmem_alloc)))
1225 			time_to_ack = 1;
1226 	}
1227 
1228 	/* We send an ACK if we can now advertise a non-zero window
1229 	 * which has been raised "significantly".
1230 	 *
1231 	 * Even if window raised up to infinity, do not send window open ACK
1232 	 * in states, where we will not receive more. It is useless.
1233 	 */
1234 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1235 		__u32 rcv_window_now = tcp_receive_window(tp);
1236 
1237 		/* Optimize, __tcp_select_window() is not cheap. */
1238 		if (2*rcv_window_now <= tp->window_clamp) {
1239 			__u32 new_window = __tcp_select_window(sk);
1240 
1241 			/* Send ACK now, if this read freed lots of space
1242 			 * in our buffer. Certainly, new_window is new window.
1243 			 * We can advertise it now, if it is not less than current one.
1244 			 * "Lots" means "at least twice" here.
1245 			 */
1246 			if (new_window && new_window >= 2 * rcv_window_now)
1247 				time_to_ack = 1;
1248 		}
1249 	}
1250 	if (time_to_ack)
1251 		tcp_send_ack(sk);
1252 }
1253 
1254 static void tcp_prequeue_process(struct sock *sk)
1255 {
1256 	struct sk_buff *skb;
1257 	struct tcp_sock *tp = tcp_sk(sk);
1258 
1259 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1260 
1261 	/* RX process wants to run with disabled BHs, though it is not
1262 	 * necessary */
1263 	local_bh_disable();
1264 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1265 		sk_backlog_rcv(sk, skb);
1266 	local_bh_enable();
1267 
1268 	/* Clear memory counter. */
1269 	tp->ucopy.memory = 0;
1270 }
1271 
1272 #ifdef CONFIG_NET_DMA
1273 static void tcp_service_net_dma(struct sock *sk, bool wait)
1274 {
1275 	dma_cookie_t done, used;
1276 	dma_cookie_t last_issued;
1277 	struct tcp_sock *tp = tcp_sk(sk);
1278 
1279 	if (!tp->ucopy.dma_chan)
1280 		return;
1281 
1282 	last_issued = tp->ucopy.dma_cookie;
1283 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1284 
1285 	do {
1286 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1287 					      last_issued, &done,
1288 					      &used) == DMA_SUCCESS) {
1289 			/* Safe to free early-copied skbs now */
1290 			__skb_queue_purge(&sk->sk_async_wait_queue);
1291 			break;
1292 		} else {
1293 			struct sk_buff *skb;
1294 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1295 			       (dma_async_is_complete(skb->dma_cookie, done,
1296 						      used) == DMA_SUCCESS)) {
1297 				__skb_dequeue(&sk->sk_async_wait_queue);
1298 				kfree_skb(skb);
1299 			}
1300 		}
1301 	} while (wait);
1302 }
1303 #endif
1304 
1305 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1306 {
1307 	struct sk_buff *skb;
1308 	u32 offset;
1309 
1310 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1311 		offset = seq - TCP_SKB_CB(skb)->seq;
1312 		if (tcp_hdr(skb)->syn)
1313 			offset--;
1314 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1315 			*off = offset;
1316 			return skb;
1317 		}
1318 	}
1319 	return NULL;
1320 }
1321 
1322 /*
1323  * This routine provides an alternative to tcp_recvmsg() for routines
1324  * that would like to handle copying from skbuffs directly in 'sendfile'
1325  * fashion.
1326  * Note:
1327  *	- It is assumed that the socket was locked by the caller.
1328  *	- The routine does not block.
1329  *	- At present, there is no support for reading OOB data
1330  *	  or for 'peeking' the socket using this routine
1331  *	  (although both would be easy to implement).
1332  */
1333 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1334 		  sk_read_actor_t recv_actor)
1335 {
1336 	struct sk_buff *skb;
1337 	struct tcp_sock *tp = tcp_sk(sk);
1338 	u32 seq = tp->copied_seq;
1339 	u32 offset;
1340 	int copied = 0;
1341 
1342 	if (sk->sk_state == TCP_LISTEN)
1343 		return -ENOTCONN;
1344 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1345 		if (offset < skb->len) {
1346 			int used;
1347 			size_t len;
1348 
1349 			len = skb->len - offset;
1350 			/* Stop reading if we hit a patch of urgent data */
1351 			if (tp->urg_data) {
1352 				u32 urg_offset = tp->urg_seq - seq;
1353 				if (urg_offset < len)
1354 					len = urg_offset;
1355 				if (!len)
1356 					break;
1357 			}
1358 			used = recv_actor(desc, skb, offset, len);
1359 			if (used < 0) {
1360 				if (!copied)
1361 					copied = used;
1362 				break;
1363 			} else if (used <= len) {
1364 				seq += used;
1365 				copied += used;
1366 				offset += used;
1367 			}
1368 			/*
1369 			 * If recv_actor drops the lock (e.g. TCP splice
1370 			 * receive) the skb pointer might be invalid when
1371 			 * getting here: tcp_collapse might have deleted it
1372 			 * while aggregating skbs from the socket queue.
1373 			 */
1374 			skb = tcp_recv_skb(sk, seq-1, &offset);
1375 			if (!skb || (offset+1 != skb->len))
1376 				break;
1377 		}
1378 		if (tcp_hdr(skb)->fin) {
1379 			sk_eat_skb(sk, skb, 0);
1380 			++seq;
1381 			break;
1382 		}
1383 		sk_eat_skb(sk, skb, 0);
1384 		if (!desc->count)
1385 			break;
1386 		tp->copied_seq = seq;
1387 	}
1388 	tp->copied_seq = seq;
1389 
1390 	tcp_rcv_space_adjust(sk);
1391 
1392 	/* Clean up data we have read: This will do ACK frames. */
1393 	if (copied > 0)
1394 		tcp_cleanup_rbuf(sk, copied);
1395 	return copied;
1396 }
1397 EXPORT_SYMBOL(tcp_read_sock);
1398 
1399 /*
1400  *	This routine copies from a sock struct into the user buffer.
1401  *
1402  *	Technical note: in 2.3 we work on _locked_ socket, so that
1403  *	tricks with *seq access order and skb->users are not required.
1404  *	Probably, code can be easily improved even more.
1405  */
1406 
1407 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1408 		size_t len, int nonblock, int flags, int *addr_len)
1409 {
1410 	struct tcp_sock *tp = tcp_sk(sk);
1411 	int copied = 0;
1412 	u32 peek_seq;
1413 	u32 *seq;
1414 	unsigned long used;
1415 	int err;
1416 	int target;		/* Read at least this many bytes */
1417 	long timeo;
1418 	struct task_struct *user_recv = NULL;
1419 	int copied_early = 0;
1420 	struct sk_buff *skb;
1421 	u32 urg_hole = 0;
1422 
1423 	lock_sock(sk);
1424 
1425 	err = -ENOTCONN;
1426 	if (sk->sk_state == TCP_LISTEN)
1427 		goto out;
1428 
1429 	timeo = sock_rcvtimeo(sk, nonblock);
1430 
1431 	/* Urgent data needs to be handled specially. */
1432 	if (flags & MSG_OOB)
1433 		goto recv_urg;
1434 
1435 	seq = &tp->copied_seq;
1436 	if (flags & MSG_PEEK) {
1437 		peek_seq = tp->copied_seq;
1438 		seq = &peek_seq;
1439 	}
1440 
1441 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1442 
1443 #ifdef CONFIG_NET_DMA
1444 	tp->ucopy.dma_chan = NULL;
1445 	preempt_disable();
1446 	skb = skb_peek_tail(&sk->sk_receive_queue);
1447 	{
1448 		int available = 0;
1449 
1450 		if (skb)
1451 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1452 		if ((available < target) &&
1453 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1454 		    !sysctl_tcp_low_latency &&
1455 		    dma_find_channel(DMA_MEMCPY)) {
1456 			preempt_enable_no_resched();
1457 			tp->ucopy.pinned_list =
1458 					dma_pin_iovec_pages(msg->msg_iov, len);
1459 		} else {
1460 			preempt_enable_no_resched();
1461 		}
1462 	}
1463 #endif
1464 
1465 	do {
1466 		u32 offset;
1467 
1468 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1469 		if (tp->urg_data && tp->urg_seq == *seq) {
1470 			if (copied)
1471 				break;
1472 			if (signal_pending(current)) {
1473 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1474 				break;
1475 			}
1476 		}
1477 
1478 		/* Next get a buffer. */
1479 
1480 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1481 			/* Now that we have two receive queues this
1482 			 * shouldn't happen.
1483 			 */
1484 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1485 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1486 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1487 				 flags))
1488 				break;
1489 
1490 			offset = *seq - TCP_SKB_CB(skb)->seq;
1491 			if (tcp_hdr(skb)->syn)
1492 				offset--;
1493 			if (offset < skb->len)
1494 				goto found_ok_skb;
1495 			if (tcp_hdr(skb)->fin)
1496 				goto found_fin_ok;
1497 			WARN(!(flags & MSG_PEEK),
1498 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1499 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1500 		}
1501 
1502 		/* Well, if we have backlog, try to process it now yet. */
1503 
1504 		if (copied >= target && !sk->sk_backlog.tail)
1505 			break;
1506 
1507 		if (copied) {
1508 			if (sk->sk_err ||
1509 			    sk->sk_state == TCP_CLOSE ||
1510 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1511 			    !timeo ||
1512 			    signal_pending(current))
1513 				break;
1514 		} else {
1515 			if (sock_flag(sk, SOCK_DONE))
1516 				break;
1517 
1518 			if (sk->sk_err) {
1519 				copied = sock_error(sk);
1520 				break;
1521 			}
1522 
1523 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1524 				break;
1525 
1526 			if (sk->sk_state == TCP_CLOSE) {
1527 				if (!sock_flag(sk, SOCK_DONE)) {
1528 					/* This occurs when user tries to read
1529 					 * from never connected socket.
1530 					 */
1531 					copied = -ENOTCONN;
1532 					break;
1533 				}
1534 				break;
1535 			}
1536 
1537 			if (!timeo) {
1538 				copied = -EAGAIN;
1539 				break;
1540 			}
1541 
1542 			if (signal_pending(current)) {
1543 				copied = sock_intr_errno(timeo);
1544 				break;
1545 			}
1546 		}
1547 
1548 		tcp_cleanup_rbuf(sk, copied);
1549 
1550 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1551 			/* Install new reader */
1552 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1553 				user_recv = current;
1554 				tp->ucopy.task = user_recv;
1555 				tp->ucopy.iov = msg->msg_iov;
1556 			}
1557 
1558 			tp->ucopy.len = len;
1559 
1560 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1561 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1562 
1563 			/* Ugly... If prequeue is not empty, we have to
1564 			 * process it before releasing socket, otherwise
1565 			 * order will be broken at second iteration.
1566 			 * More elegant solution is required!!!
1567 			 *
1568 			 * Look: we have the following (pseudo)queues:
1569 			 *
1570 			 * 1. packets in flight
1571 			 * 2. backlog
1572 			 * 3. prequeue
1573 			 * 4. receive_queue
1574 			 *
1575 			 * Each queue can be processed only if the next ones
1576 			 * are empty. At this point we have empty receive_queue.
1577 			 * But prequeue _can_ be not empty after 2nd iteration,
1578 			 * when we jumped to start of loop because backlog
1579 			 * processing added something to receive_queue.
1580 			 * We cannot release_sock(), because backlog contains
1581 			 * packets arrived _after_ prequeued ones.
1582 			 *
1583 			 * Shortly, algorithm is clear --- to process all
1584 			 * the queues in order. We could make it more directly,
1585 			 * requeueing packets from backlog to prequeue, if
1586 			 * is not empty. It is more elegant, but eats cycles,
1587 			 * unfortunately.
1588 			 */
1589 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1590 				goto do_prequeue;
1591 
1592 			/* __ Set realtime policy in scheduler __ */
1593 		}
1594 
1595 #ifdef CONFIG_NET_DMA
1596 		if (tp->ucopy.dma_chan)
1597 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1598 #endif
1599 		if (copied >= target) {
1600 			/* Do not sleep, just process backlog. */
1601 			release_sock(sk);
1602 			lock_sock(sk);
1603 		} else
1604 			sk_wait_data(sk, &timeo);
1605 
1606 #ifdef CONFIG_NET_DMA
1607 		tcp_service_net_dma(sk, false);  /* Don't block */
1608 		tp->ucopy.wakeup = 0;
1609 #endif
1610 
1611 		if (user_recv) {
1612 			int chunk;
1613 
1614 			/* __ Restore normal policy in scheduler __ */
1615 
1616 			if ((chunk = len - tp->ucopy.len) != 0) {
1617 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1618 				len -= chunk;
1619 				copied += chunk;
1620 			}
1621 
1622 			if (tp->rcv_nxt == tp->copied_seq &&
1623 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1624 do_prequeue:
1625 				tcp_prequeue_process(sk);
1626 
1627 				if ((chunk = len - tp->ucopy.len) != 0) {
1628 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1629 					len -= chunk;
1630 					copied += chunk;
1631 				}
1632 			}
1633 		}
1634 		if ((flags & MSG_PEEK) &&
1635 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1636 			if (net_ratelimit())
1637 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1638 				       current->comm, task_pid_nr(current));
1639 			peek_seq = tp->copied_seq;
1640 		}
1641 		continue;
1642 
1643 	found_ok_skb:
1644 		/* Ok so how much can we use? */
1645 		used = skb->len - offset;
1646 		if (len < used)
1647 			used = len;
1648 
1649 		/* Do we have urgent data here? */
1650 		if (tp->urg_data) {
1651 			u32 urg_offset = tp->urg_seq - *seq;
1652 			if (urg_offset < used) {
1653 				if (!urg_offset) {
1654 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1655 						++*seq;
1656 						urg_hole++;
1657 						offset++;
1658 						used--;
1659 						if (!used)
1660 							goto skip_copy;
1661 					}
1662 				} else
1663 					used = urg_offset;
1664 			}
1665 		}
1666 
1667 		if (!(flags & MSG_TRUNC)) {
1668 #ifdef CONFIG_NET_DMA
1669 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1670 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1671 
1672 			if (tp->ucopy.dma_chan) {
1673 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1674 					tp->ucopy.dma_chan, skb, offset,
1675 					msg->msg_iov, used,
1676 					tp->ucopy.pinned_list);
1677 
1678 				if (tp->ucopy.dma_cookie < 0) {
1679 
1680 					pr_alert("%s: dma_cookie < 0\n",
1681 						 __func__);
1682 
1683 					/* Exception. Bailout! */
1684 					if (!copied)
1685 						copied = -EFAULT;
1686 					break;
1687 				}
1688 
1689 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1690 
1691 				if ((offset + used) == skb->len)
1692 					copied_early = 1;
1693 
1694 			} else
1695 #endif
1696 			{
1697 				err = skb_copy_datagram_iovec(skb, offset,
1698 						msg->msg_iov, used);
1699 				if (err) {
1700 					/* Exception. Bailout! */
1701 					if (!copied)
1702 						copied = -EFAULT;
1703 					break;
1704 				}
1705 			}
1706 		}
1707 
1708 		*seq += used;
1709 		copied += used;
1710 		len -= used;
1711 
1712 		tcp_rcv_space_adjust(sk);
1713 
1714 skip_copy:
1715 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1716 			tp->urg_data = 0;
1717 			tcp_fast_path_check(sk);
1718 		}
1719 		if (used + offset < skb->len)
1720 			continue;
1721 
1722 		if (tcp_hdr(skb)->fin)
1723 			goto found_fin_ok;
1724 		if (!(flags & MSG_PEEK)) {
1725 			sk_eat_skb(sk, skb, copied_early);
1726 			copied_early = 0;
1727 		}
1728 		continue;
1729 
1730 	found_fin_ok:
1731 		/* Process the FIN. */
1732 		++*seq;
1733 		if (!(flags & MSG_PEEK)) {
1734 			sk_eat_skb(sk, skb, copied_early);
1735 			copied_early = 0;
1736 		}
1737 		break;
1738 	} while (len > 0);
1739 
1740 	if (user_recv) {
1741 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1742 			int chunk;
1743 
1744 			tp->ucopy.len = copied > 0 ? len : 0;
1745 
1746 			tcp_prequeue_process(sk);
1747 
1748 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1749 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1750 				len -= chunk;
1751 				copied += chunk;
1752 			}
1753 		}
1754 
1755 		tp->ucopy.task = NULL;
1756 		tp->ucopy.len = 0;
1757 	}
1758 
1759 #ifdef CONFIG_NET_DMA
1760 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1761 	tp->ucopy.dma_chan = NULL;
1762 
1763 	if (tp->ucopy.pinned_list) {
1764 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1765 		tp->ucopy.pinned_list = NULL;
1766 	}
1767 #endif
1768 
1769 	/* According to UNIX98, msg_name/msg_namelen are ignored
1770 	 * on connected socket. I was just happy when found this 8) --ANK
1771 	 */
1772 
1773 	/* Clean up data we have read: This will do ACK frames. */
1774 	tcp_cleanup_rbuf(sk, copied);
1775 
1776 	release_sock(sk);
1777 	return copied;
1778 
1779 out:
1780 	release_sock(sk);
1781 	return err;
1782 
1783 recv_urg:
1784 	err = tcp_recv_urg(sk, msg, len, flags);
1785 	goto out;
1786 }
1787 EXPORT_SYMBOL(tcp_recvmsg);
1788 
1789 void tcp_set_state(struct sock *sk, int state)
1790 {
1791 	int oldstate = sk->sk_state;
1792 
1793 	switch (state) {
1794 	case TCP_ESTABLISHED:
1795 		if (oldstate != TCP_ESTABLISHED)
1796 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1797 		break;
1798 
1799 	case TCP_CLOSE:
1800 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1801 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1802 
1803 		sk->sk_prot->unhash(sk);
1804 		if (inet_csk(sk)->icsk_bind_hash &&
1805 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1806 			inet_put_port(sk);
1807 		/* fall through */
1808 	default:
1809 		if (oldstate == TCP_ESTABLISHED)
1810 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1811 	}
1812 
1813 	/* Change state AFTER socket is unhashed to avoid closed
1814 	 * socket sitting in hash tables.
1815 	 */
1816 	sk->sk_state = state;
1817 
1818 #ifdef STATE_TRACE
1819 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1820 #endif
1821 }
1822 EXPORT_SYMBOL_GPL(tcp_set_state);
1823 
1824 /*
1825  *	State processing on a close. This implements the state shift for
1826  *	sending our FIN frame. Note that we only send a FIN for some
1827  *	states. A shutdown() may have already sent the FIN, or we may be
1828  *	closed.
1829  */
1830 
1831 static const unsigned char new_state[16] = {
1832   /* current state:        new state:      action:	*/
1833   /* (Invalid)		*/ TCP_CLOSE,
1834   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1835   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1836   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1837   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1838   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1839   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1840   /* TCP_CLOSE		*/ TCP_CLOSE,
1841   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1842   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1843   /* TCP_LISTEN		*/ TCP_CLOSE,
1844   /* TCP_CLOSING	*/ TCP_CLOSING,
1845 };
1846 
1847 static int tcp_close_state(struct sock *sk)
1848 {
1849 	int next = (int)new_state[sk->sk_state];
1850 	int ns = next & TCP_STATE_MASK;
1851 
1852 	tcp_set_state(sk, ns);
1853 
1854 	return next & TCP_ACTION_FIN;
1855 }
1856 
1857 /*
1858  *	Shutdown the sending side of a connection. Much like close except
1859  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1860  */
1861 
1862 void tcp_shutdown(struct sock *sk, int how)
1863 {
1864 	/*	We need to grab some memory, and put together a FIN,
1865 	 *	and then put it into the queue to be sent.
1866 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1867 	 */
1868 	if (!(how & SEND_SHUTDOWN))
1869 		return;
1870 
1871 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1872 	if ((1 << sk->sk_state) &
1873 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1874 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1875 		/* Clear out any half completed packets.  FIN if needed. */
1876 		if (tcp_close_state(sk))
1877 			tcp_send_fin(sk);
1878 	}
1879 }
1880 EXPORT_SYMBOL(tcp_shutdown);
1881 
1882 bool tcp_check_oom(struct sock *sk, int shift)
1883 {
1884 	bool too_many_orphans, out_of_socket_memory;
1885 
1886 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1887 	out_of_socket_memory = tcp_out_of_memory(sk);
1888 
1889 	if (too_many_orphans && net_ratelimit())
1890 		pr_info("too many orphaned sockets\n");
1891 	if (out_of_socket_memory && net_ratelimit())
1892 		pr_info("out of memory -- consider tuning tcp_mem\n");
1893 	return too_many_orphans || out_of_socket_memory;
1894 }
1895 
1896 void tcp_close(struct sock *sk, long timeout)
1897 {
1898 	struct sk_buff *skb;
1899 	int data_was_unread = 0;
1900 	int state;
1901 
1902 	lock_sock(sk);
1903 	sk->sk_shutdown = SHUTDOWN_MASK;
1904 
1905 	if (sk->sk_state == TCP_LISTEN) {
1906 		tcp_set_state(sk, TCP_CLOSE);
1907 
1908 		/* Special case. */
1909 		inet_csk_listen_stop(sk);
1910 
1911 		goto adjudge_to_death;
1912 	}
1913 
1914 	/*  We need to flush the recv. buffs.  We do this only on the
1915 	 *  descriptor close, not protocol-sourced closes, because the
1916 	 *  reader process may not have drained the data yet!
1917 	 */
1918 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1919 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1920 			  tcp_hdr(skb)->fin;
1921 		data_was_unread += len;
1922 		__kfree_skb(skb);
1923 	}
1924 
1925 	sk_mem_reclaim(sk);
1926 
1927 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1928 	if (sk->sk_state == TCP_CLOSE)
1929 		goto adjudge_to_death;
1930 
1931 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1932 	 * data was lost. To witness the awful effects of the old behavior of
1933 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1934 	 * GET in an FTP client, suspend the process, wait for the client to
1935 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1936 	 * Note: timeout is always zero in such a case.
1937 	 */
1938 	if (data_was_unread) {
1939 		/* Unread data was tossed, zap the connection. */
1940 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1941 		tcp_set_state(sk, TCP_CLOSE);
1942 		tcp_send_active_reset(sk, sk->sk_allocation);
1943 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1944 		/* Check zero linger _after_ checking for unread data. */
1945 		sk->sk_prot->disconnect(sk, 0);
1946 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1947 	} else if (tcp_close_state(sk)) {
1948 		/* We FIN if the application ate all the data before
1949 		 * zapping the connection.
1950 		 */
1951 
1952 		/* RED-PEN. Formally speaking, we have broken TCP state
1953 		 * machine. State transitions:
1954 		 *
1955 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1956 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1957 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1958 		 *
1959 		 * are legal only when FIN has been sent (i.e. in window),
1960 		 * rather than queued out of window. Purists blame.
1961 		 *
1962 		 * F.e. "RFC state" is ESTABLISHED,
1963 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1964 		 *
1965 		 * The visible declinations are that sometimes
1966 		 * we enter time-wait state, when it is not required really
1967 		 * (harmless), do not send active resets, when they are
1968 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1969 		 * they look as CLOSING or LAST_ACK for Linux)
1970 		 * Probably, I missed some more holelets.
1971 		 * 						--ANK
1972 		 */
1973 		tcp_send_fin(sk);
1974 	}
1975 
1976 	sk_stream_wait_close(sk, timeout);
1977 
1978 adjudge_to_death:
1979 	state = sk->sk_state;
1980 	sock_hold(sk);
1981 	sock_orphan(sk);
1982 
1983 	/* It is the last release_sock in its life. It will remove backlog. */
1984 	release_sock(sk);
1985 
1986 
1987 	/* Now socket is owned by kernel and we acquire BH lock
1988 	   to finish close. No need to check for user refs.
1989 	 */
1990 	local_bh_disable();
1991 	bh_lock_sock(sk);
1992 	WARN_ON(sock_owned_by_user(sk));
1993 
1994 	percpu_counter_inc(sk->sk_prot->orphan_count);
1995 
1996 	/* Have we already been destroyed by a softirq or backlog? */
1997 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1998 		goto out;
1999 
2000 	/*	This is a (useful) BSD violating of the RFC. There is a
2001 	 *	problem with TCP as specified in that the other end could
2002 	 *	keep a socket open forever with no application left this end.
2003 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2004 	 *	our end. If they send after that then tough - BUT: long enough
2005 	 *	that we won't make the old 4*rto = almost no time - whoops
2006 	 *	reset mistake.
2007 	 *
2008 	 *	Nope, it was not mistake. It is really desired behaviour
2009 	 *	f.e. on http servers, when such sockets are useless, but
2010 	 *	consume significant resources. Let's do it with special
2011 	 *	linger2	option.					--ANK
2012 	 */
2013 
2014 	if (sk->sk_state == TCP_FIN_WAIT2) {
2015 		struct tcp_sock *tp = tcp_sk(sk);
2016 		if (tp->linger2 < 0) {
2017 			tcp_set_state(sk, TCP_CLOSE);
2018 			tcp_send_active_reset(sk, GFP_ATOMIC);
2019 			NET_INC_STATS_BH(sock_net(sk),
2020 					LINUX_MIB_TCPABORTONLINGER);
2021 		} else {
2022 			const int tmo = tcp_fin_time(sk);
2023 
2024 			if (tmo > TCP_TIMEWAIT_LEN) {
2025 				inet_csk_reset_keepalive_timer(sk,
2026 						tmo - TCP_TIMEWAIT_LEN);
2027 			} else {
2028 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2029 				goto out;
2030 			}
2031 		}
2032 	}
2033 	if (sk->sk_state != TCP_CLOSE) {
2034 		sk_mem_reclaim(sk);
2035 		if (tcp_check_oom(sk, 0)) {
2036 			tcp_set_state(sk, TCP_CLOSE);
2037 			tcp_send_active_reset(sk, GFP_ATOMIC);
2038 			NET_INC_STATS_BH(sock_net(sk),
2039 					LINUX_MIB_TCPABORTONMEMORY);
2040 		}
2041 	}
2042 
2043 	if (sk->sk_state == TCP_CLOSE)
2044 		inet_csk_destroy_sock(sk);
2045 	/* Otherwise, socket is reprieved until protocol close. */
2046 
2047 out:
2048 	bh_unlock_sock(sk);
2049 	local_bh_enable();
2050 	sock_put(sk);
2051 }
2052 EXPORT_SYMBOL(tcp_close);
2053 
2054 /* These states need RST on ABORT according to RFC793 */
2055 
2056 static inline int tcp_need_reset(int state)
2057 {
2058 	return (1 << state) &
2059 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2060 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2061 }
2062 
2063 int tcp_disconnect(struct sock *sk, int flags)
2064 {
2065 	struct inet_sock *inet = inet_sk(sk);
2066 	struct inet_connection_sock *icsk = inet_csk(sk);
2067 	struct tcp_sock *tp = tcp_sk(sk);
2068 	int err = 0;
2069 	int old_state = sk->sk_state;
2070 
2071 	if (old_state != TCP_CLOSE)
2072 		tcp_set_state(sk, TCP_CLOSE);
2073 
2074 	/* ABORT function of RFC793 */
2075 	if (old_state == TCP_LISTEN) {
2076 		inet_csk_listen_stop(sk);
2077 	} else if (tcp_need_reset(old_state) ||
2078 		   (tp->snd_nxt != tp->write_seq &&
2079 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2080 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2081 		 * states
2082 		 */
2083 		tcp_send_active_reset(sk, gfp_any());
2084 		sk->sk_err = ECONNRESET;
2085 	} else if (old_state == TCP_SYN_SENT)
2086 		sk->sk_err = ECONNRESET;
2087 
2088 	tcp_clear_xmit_timers(sk);
2089 	__skb_queue_purge(&sk->sk_receive_queue);
2090 	tcp_write_queue_purge(sk);
2091 	__skb_queue_purge(&tp->out_of_order_queue);
2092 #ifdef CONFIG_NET_DMA
2093 	__skb_queue_purge(&sk->sk_async_wait_queue);
2094 #endif
2095 
2096 	inet->inet_dport = 0;
2097 
2098 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2099 		inet_reset_saddr(sk);
2100 
2101 	sk->sk_shutdown = 0;
2102 	sock_reset_flag(sk, SOCK_DONE);
2103 	tp->srtt = 0;
2104 	if ((tp->write_seq += tp->max_window + 2) == 0)
2105 		tp->write_seq = 1;
2106 	icsk->icsk_backoff = 0;
2107 	tp->snd_cwnd = 2;
2108 	icsk->icsk_probes_out = 0;
2109 	tp->packets_out = 0;
2110 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2111 	tp->snd_cwnd_cnt = 0;
2112 	tp->bytes_acked = 0;
2113 	tp->window_clamp = 0;
2114 	tcp_set_ca_state(sk, TCP_CA_Open);
2115 	tcp_clear_retrans(tp);
2116 	inet_csk_delack_init(sk);
2117 	tcp_init_send_head(sk);
2118 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2119 	__sk_dst_reset(sk);
2120 
2121 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2122 
2123 	sk->sk_error_report(sk);
2124 	return err;
2125 }
2126 EXPORT_SYMBOL(tcp_disconnect);
2127 
2128 /*
2129  *	Socket option code for TCP.
2130  */
2131 static int do_tcp_setsockopt(struct sock *sk, int level,
2132 		int optname, char __user *optval, unsigned int optlen)
2133 {
2134 	struct tcp_sock *tp = tcp_sk(sk);
2135 	struct inet_connection_sock *icsk = inet_csk(sk);
2136 	int val;
2137 	int err = 0;
2138 
2139 	/* These are data/string values, all the others are ints */
2140 	switch (optname) {
2141 	case TCP_CONGESTION: {
2142 		char name[TCP_CA_NAME_MAX];
2143 
2144 		if (optlen < 1)
2145 			return -EINVAL;
2146 
2147 		val = strncpy_from_user(name, optval,
2148 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2149 		if (val < 0)
2150 			return -EFAULT;
2151 		name[val] = 0;
2152 
2153 		lock_sock(sk);
2154 		err = tcp_set_congestion_control(sk, name);
2155 		release_sock(sk);
2156 		return err;
2157 	}
2158 	case TCP_COOKIE_TRANSACTIONS: {
2159 		struct tcp_cookie_transactions ctd;
2160 		struct tcp_cookie_values *cvp = NULL;
2161 
2162 		if (sizeof(ctd) > optlen)
2163 			return -EINVAL;
2164 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2165 			return -EFAULT;
2166 
2167 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2168 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2169 			return -EINVAL;
2170 
2171 		if (ctd.tcpct_cookie_desired == 0) {
2172 			/* default to global value */
2173 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2174 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2175 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2176 			return -EINVAL;
2177 		}
2178 
2179 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2180 			/* Supercedes all other values */
2181 			lock_sock(sk);
2182 			if (tp->cookie_values != NULL) {
2183 				kref_put(&tp->cookie_values->kref,
2184 					 tcp_cookie_values_release);
2185 				tp->cookie_values = NULL;
2186 			}
2187 			tp->rx_opt.cookie_in_always = 0; /* false */
2188 			tp->rx_opt.cookie_out_never = 1; /* true */
2189 			release_sock(sk);
2190 			return err;
2191 		}
2192 
2193 		/* Allocate ancillary memory before locking.
2194 		 */
2195 		if (ctd.tcpct_used > 0 ||
2196 		    (tp->cookie_values == NULL &&
2197 		     (sysctl_tcp_cookie_size > 0 ||
2198 		      ctd.tcpct_cookie_desired > 0 ||
2199 		      ctd.tcpct_s_data_desired > 0))) {
2200 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2201 				      GFP_KERNEL);
2202 			if (cvp == NULL)
2203 				return -ENOMEM;
2204 
2205 			kref_init(&cvp->kref);
2206 		}
2207 		lock_sock(sk);
2208 		tp->rx_opt.cookie_in_always =
2209 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2210 		tp->rx_opt.cookie_out_never = 0; /* false */
2211 
2212 		if (tp->cookie_values != NULL) {
2213 			if (cvp != NULL) {
2214 				/* Changed values are recorded by a changed
2215 				 * pointer, ensuring the cookie will differ,
2216 				 * without separately hashing each value later.
2217 				 */
2218 				kref_put(&tp->cookie_values->kref,
2219 					 tcp_cookie_values_release);
2220 			} else {
2221 				cvp = tp->cookie_values;
2222 			}
2223 		}
2224 
2225 		if (cvp != NULL) {
2226 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2227 
2228 			if (ctd.tcpct_used > 0) {
2229 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2230 				       ctd.tcpct_used);
2231 				cvp->s_data_desired = ctd.tcpct_used;
2232 				cvp->s_data_constant = 1; /* true */
2233 			} else {
2234 				/* No constant payload data. */
2235 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2236 				cvp->s_data_constant = 0; /* false */
2237 			}
2238 
2239 			tp->cookie_values = cvp;
2240 		}
2241 		release_sock(sk);
2242 		return err;
2243 	}
2244 	default:
2245 		/* fallthru */
2246 		break;
2247 	}
2248 
2249 	if (optlen < sizeof(int))
2250 		return -EINVAL;
2251 
2252 	if (get_user(val, (int __user *)optval))
2253 		return -EFAULT;
2254 
2255 	lock_sock(sk);
2256 
2257 	switch (optname) {
2258 	case TCP_MAXSEG:
2259 		/* Values greater than interface MTU won't take effect. However
2260 		 * at the point when this call is done we typically don't yet
2261 		 * know which interface is going to be used */
2262 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2263 			err = -EINVAL;
2264 			break;
2265 		}
2266 		tp->rx_opt.user_mss = val;
2267 		break;
2268 
2269 	case TCP_NODELAY:
2270 		if (val) {
2271 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2272 			 * this option on corked socket is remembered, but
2273 			 * it is not activated until cork is cleared.
2274 			 *
2275 			 * However, when TCP_NODELAY is set we make
2276 			 * an explicit push, which overrides even TCP_CORK
2277 			 * for currently queued segments.
2278 			 */
2279 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2280 			tcp_push_pending_frames(sk);
2281 		} else {
2282 			tp->nonagle &= ~TCP_NAGLE_OFF;
2283 		}
2284 		break;
2285 
2286 	case TCP_THIN_LINEAR_TIMEOUTS:
2287 		if (val < 0 || val > 1)
2288 			err = -EINVAL;
2289 		else
2290 			tp->thin_lto = val;
2291 		break;
2292 
2293 	case TCP_THIN_DUPACK:
2294 		if (val < 0 || val > 1)
2295 			err = -EINVAL;
2296 		else
2297 			tp->thin_dupack = val;
2298 		break;
2299 
2300 	case TCP_CORK:
2301 		/* When set indicates to always queue non-full frames.
2302 		 * Later the user clears this option and we transmit
2303 		 * any pending partial frames in the queue.  This is
2304 		 * meant to be used alongside sendfile() to get properly
2305 		 * filled frames when the user (for example) must write
2306 		 * out headers with a write() call first and then use
2307 		 * sendfile to send out the data parts.
2308 		 *
2309 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2310 		 * stronger than TCP_NODELAY.
2311 		 */
2312 		if (val) {
2313 			tp->nonagle |= TCP_NAGLE_CORK;
2314 		} else {
2315 			tp->nonagle &= ~TCP_NAGLE_CORK;
2316 			if (tp->nonagle&TCP_NAGLE_OFF)
2317 				tp->nonagle |= TCP_NAGLE_PUSH;
2318 			tcp_push_pending_frames(sk);
2319 		}
2320 		break;
2321 
2322 	case TCP_KEEPIDLE:
2323 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2324 			err = -EINVAL;
2325 		else {
2326 			tp->keepalive_time = val * HZ;
2327 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2328 			    !((1 << sk->sk_state) &
2329 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2330 				u32 elapsed = keepalive_time_elapsed(tp);
2331 				if (tp->keepalive_time > elapsed)
2332 					elapsed = tp->keepalive_time - elapsed;
2333 				else
2334 					elapsed = 0;
2335 				inet_csk_reset_keepalive_timer(sk, elapsed);
2336 			}
2337 		}
2338 		break;
2339 	case TCP_KEEPINTVL:
2340 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2341 			err = -EINVAL;
2342 		else
2343 			tp->keepalive_intvl = val * HZ;
2344 		break;
2345 	case TCP_KEEPCNT:
2346 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2347 			err = -EINVAL;
2348 		else
2349 			tp->keepalive_probes = val;
2350 		break;
2351 	case TCP_SYNCNT:
2352 		if (val < 1 || val > MAX_TCP_SYNCNT)
2353 			err = -EINVAL;
2354 		else
2355 			icsk->icsk_syn_retries = val;
2356 		break;
2357 
2358 	case TCP_LINGER2:
2359 		if (val < 0)
2360 			tp->linger2 = -1;
2361 		else if (val > sysctl_tcp_fin_timeout / HZ)
2362 			tp->linger2 = 0;
2363 		else
2364 			tp->linger2 = val * HZ;
2365 		break;
2366 
2367 	case TCP_DEFER_ACCEPT:
2368 		/* Translate value in seconds to number of retransmits */
2369 		icsk->icsk_accept_queue.rskq_defer_accept =
2370 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2371 					TCP_RTO_MAX / HZ);
2372 		break;
2373 
2374 	case TCP_WINDOW_CLAMP:
2375 		if (!val) {
2376 			if (sk->sk_state != TCP_CLOSE) {
2377 				err = -EINVAL;
2378 				break;
2379 			}
2380 			tp->window_clamp = 0;
2381 		} else
2382 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2383 						SOCK_MIN_RCVBUF / 2 : val;
2384 		break;
2385 
2386 	case TCP_QUICKACK:
2387 		if (!val) {
2388 			icsk->icsk_ack.pingpong = 1;
2389 		} else {
2390 			icsk->icsk_ack.pingpong = 0;
2391 			if ((1 << sk->sk_state) &
2392 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2393 			    inet_csk_ack_scheduled(sk)) {
2394 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2395 				tcp_cleanup_rbuf(sk, 1);
2396 				if (!(val & 1))
2397 					icsk->icsk_ack.pingpong = 1;
2398 			}
2399 		}
2400 		break;
2401 
2402 #ifdef CONFIG_TCP_MD5SIG
2403 	case TCP_MD5SIG:
2404 		/* Read the IP->Key mappings from userspace */
2405 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2406 		break;
2407 #endif
2408 	case TCP_USER_TIMEOUT:
2409 		/* Cap the max timeout in ms TCP will retry/retrans
2410 		 * before giving up and aborting (ETIMEDOUT) a connection.
2411 		 */
2412 		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2413 		break;
2414 	default:
2415 		err = -ENOPROTOOPT;
2416 		break;
2417 	}
2418 
2419 	release_sock(sk);
2420 	return err;
2421 }
2422 
2423 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2424 		   unsigned int optlen)
2425 {
2426 	const struct inet_connection_sock *icsk = inet_csk(sk);
2427 
2428 	if (level != SOL_TCP)
2429 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2430 						     optval, optlen);
2431 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2432 }
2433 EXPORT_SYMBOL(tcp_setsockopt);
2434 
2435 #ifdef CONFIG_COMPAT
2436 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2437 			  char __user *optval, unsigned int optlen)
2438 {
2439 	if (level != SOL_TCP)
2440 		return inet_csk_compat_setsockopt(sk, level, optname,
2441 						  optval, optlen);
2442 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2443 }
2444 EXPORT_SYMBOL(compat_tcp_setsockopt);
2445 #endif
2446 
2447 /* Return information about state of tcp endpoint in API format. */
2448 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2449 {
2450 	const struct tcp_sock *tp = tcp_sk(sk);
2451 	const struct inet_connection_sock *icsk = inet_csk(sk);
2452 	u32 now = tcp_time_stamp;
2453 
2454 	memset(info, 0, sizeof(*info));
2455 
2456 	info->tcpi_state = sk->sk_state;
2457 	info->tcpi_ca_state = icsk->icsk_ca_state;
2458 	info->tcpi_retransmits = icsk->icsk_retransmits;
2459 	info->tcpi_probes = icsk->icsk_probes_out;
2460 	info->tcpi_backoff = icsk->icsk_backoff;
2461 
2462 	if (tp->rx_opt.tstamp_ok)
2463 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2464 	if (tcp_is_sack(tp))
2465 		info->tcpi_options |= TCPI_OPT_SACK;
2466 	if (tp->rx_opt.wscale_ok) {
2467 		info->tcpi_options |= TCPI_OPT_WSCALE;
2468 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2469 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2470 	}
2471 
2472 	if (tp->ecn_flags & TCP_ECN_OK)
2473 		info->tcpi_options |= TCPI_OPT_ECN;
2474 	if (tp->ecn_flags & TCP_ECN_SEEN)
2475 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2476 
2477 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2478 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2479 	info->tcpi_snd_mss = tp->mss_cache;
2480 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2481 
2482 	if (sk->sk_state == TCP_LISTEN) {
2483 		info->tcpi_unacked = sk->sk_ack_backlog;
2484 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2485 	} else {
2486 		info->tcpi_unacked = tp->packets_out;
2487 		info->tcpi_sacked = tp->sacked_out;
2488 	}
2489 	info->tcpi_lost = tp->lost_out;
2490 	info->tcpi_retrans = tp->retrans_out;
2491 	info->tcpi_fackets = tp->fackets_out;
2492 
2493 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2494 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2495 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2496 
2497 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2498 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2499 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2500 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2501 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2502 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2503 	info->tcpi_advmss = tp->advmss;
2504 	info->tcpi_reordering = tp->reordering;
2505 
2506 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2507 	info->tcpi_rcv_space = tp->rcvq_space.space;
2508 
2509 	info->tcpi_total_retrans = tp->total_retrans;
2510 }
2511 EXPORT_SYMBOL_GPL(tcp_get_info);
2512 
2513 static int do_tcp_getsockopt(struct sock *sk, int level,
2514 		int optname, char __user *optval, int __user *optlen)
2515 {
2516 	struct inet_connection_sock *icsk = inet_csk(sk);
2517 	struct tcp_sock *tp = tcp_sk(sk);
2518 	int val, len;
2519 
2520 	if (get_user(len, optlen))
2521 		return -EFAULT;
2522 
2523 	len = min_t(unsigned int, len, sizeof(int));
2524 
2525 	if (len < 0)
2526 		return -EINVAL;
2527 
2528 	switch (optname) {
2529 	case TCP_MAXSEG:
2530 		val = tp->mss_cache;
2531 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2532 			val = tp->rx_opt.user_mss;
2533 		break;
2534 	case TCP_NODELAY:
2535 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2536 		break;
2537 	case TCP_CORK:
2538 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2539 		break;
2540 	case TCP_KEEPIDLE:
2541 		val = keepalive_time_when(tp) / HZ;
2542 		break;
2543 	case TCP_KEEPINTVL:
2544 		val = keepalive_intvl_when(tp) / HZ;
2545 		break;
2546 	case TCP_KEEPCNT:
2547 		val = keepalive_probes(tp);
2548 		break;
2549 	case TCP_SYNCNT:
2550 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2551 		break;
2552 	case TCP_LINGER2:
2553 		val = tp->linger2;
2554 		if (val >= 0)
2555 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2556 		break;
2557 	case TCP_DEFER_ACCEPT:
2558 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2559 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2560 		break;
2561 	case TCP_WINDOW_CLAMP:
2562 		val = tp->window_clamp;
2563 		break;
2564 	case TCP_INFO: {
2565 		struct tcp_info info;
2566 
2567 		if (get_user(len, optlen))
2568 			return -EFAULT;
2569 
2570 		tcp_get_info(sk, &info);
2571 
2572 		len = min_t(unsigned int, len, sizeof(info));
2573 		if (put_user(len, optlen))
2574 			return -EFAULT;
2575 		if (copy_to_user(optval, &info, len))
2576 			return -EFAULT;
2577 		return 0;
2578 	}
2579 	case TCP_QUICKACK:
2580 		val = !icsk->icsk_ack.pingpong;
2581 		break;
2582 
2583 	case TCP_CONGESTION:
2584 		if (get_user(len, optlen))
2585 			return -EFAULT;
2586 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2587 		if (put_user(len, optlen))
2588 			return -EFAULT;
2589 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2590 			return -EFAULT;
2591 		return 0;
2592 
2593 	case TCP_COOKIE_TRANSACTIONS: {
2594 		struct tcp_cookie_transactions ctd;
2595 		struct tcp_cookie_values *cvp = tp->cookie_values;
2596 
2597 		if (get_user(len, optlen))
2598 			return -EFAULT;
2599 		if (len < sizeof(ctd))
2600 			return -EINVAL;
2601 
2602 		memset(&ctd, 0, sizeof(ctd));
2603 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2604 				   TCP_COOKIE_IN_ALWAYS : 0)
2605 				| (tp->rx_opt.cookie_out_never ?
2606 				   TCP_COOKIE_OUT_NEVER : 0);
2607 
2608 		if (cvp != NULL) {
2609 			ctd.tcpct_flags |= (cvp->s_data_in ?
2610 					    TCP_S_DATA_IN : 0)
2611 					 | (cvp->s_data_out ?
2612 					    TCP_S_DATA_OUT : 0);
2613 
2614 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2615 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2616 
2617 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2618 			       cvp->cookie_pair_size);
2619 			ctd.tcpct_used = cvp->cookie_pair_size;
2620 		}
2621 
2622 		if (put_user(sizeof(ctd), optlen))
2623 			return -EFAULT;
2624 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2625 			return -EFAULT;
2626 		return 0;
2627 	}
2628 	case TCP_THIN_LINEAR_TIMEOUTS:
2629 		val = tp->thin_lto;
2630 		break;
2631 	case TCP_THIN_DUPACK:
2632 		val = tp->thin_dupack;
2633 		break;
2634 
2635 	case TCP_USER_TIMEOUT:
2636 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2637 		break;
2638 	default:
2639 		return -ENOPROTOOPT;
2640 	}
2641 
2642 	if (put_user(len, optlen))
2643 		return -EFAULT;
2644 	if (copy_to_user(optval, &val, len))
2645 		return -EFAULT;
2646 	return 0;
2647 }
2648 
2649 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2650 		   int __user *optlen)
2651 {
2652 	struct inet_connection_sock *icsk = inet_csk(sk);
2653 
2654 	if (level != SOL_TCP)
2655 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2656 						     optval, optlen);
2657 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2658 }
2659 EXPORT_SYMBOL(tcp_getsockopt);
2660 
2661 #ifdef CONFIG_COMPAT
2662 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2663 			  char __user *optval, int __user *optlen)
2664 {
2665 	if (level != SOL_TCP)
2666 		return inet_csk_compat_getsockopt(sk, level, optname,
2667 						  optval, optlen);
2668 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2669 }
2670 EXPORT_SYMBOL(compat_tcp_getsockopt);
2671 #endif
2672 
2673 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2674 	netdev_features_t features)
2675 {
2676 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2677 	struct tcphdr *th;
2678 	unsigned thlen;
2679 	unsigned int seq;
2680 	__be32 delta;
2681 	unsigned int oldlen;
2682 	unsigned int mss;
2683 
2684 	if (!pskb_may_pull(skb, sizeof(*th)))
2685 		goto out;
2686 
2687 	th = tcp_hdr(skb);
2688 	thlen = th->doff * 4;
2689 	if (thlen < sizeof(*th))
2690 		goto out;
2691 
2692 	if (!pskb_may_pull(skb, thlen))
2693 		goto out;
2694 
2695 	oldlen = (u16)~skb->len;
2696 	__skb_pull(skb, thlen);
2697 
2698 	mss = skb_shinfo(skb)->gso_size;
2699 	if (unlikely(skb->len <= mss))
2700 		goto out;
2701 
2702 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2703 		/* Packet is from an untrusted source, reset gso_segs. */
2704 		int type = skb_shinfo(skb)->gso_type;
2705 
2706 		if (unlikely(type &
2707 			     ~(SKB_GSO_TCPV4 |
2708 			       SKB_GSO_DODGY |
2709 			       SKB_GSO_TCP_ECN |
2710 			       SKB_GSO_TCPV6 |
2711 			       0) ||
2712 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2713 			goto out;
2714 
2715 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2716 
2717 		segs = NULL;
2718 		goto out;
2719 	}
2720 
2721 	segs = skb_segment(skb, features);
2722 	if (IS_ERR(segs))
2723 		goto out;
2724 
2725 	delta = htonl(oldlen + (thlen + mss));
2726 
2727 	skb = segs;
2728 	th = tcp_hdr(skb);
2729 	seq = ntohl(th->seq);
2730 
2731 	do {
2732 		th->fin = th->psh = 0;
2733 
2734 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2735 				       (__force u32)delta));
2736 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2737 			th->check =
2738 			     csum_fold(csum_partial(skb_transport_header(skb),
2739 						    thlen, skb->csum));
2740 
2741 		seq += mss;
2742 		skb = skb->next;
2743 		th = tcp_hdr(skb);
2744 
2745 		th->seq = htonl(seq);
2746 		th->cwr = 0;
2747 	} while (skb->next);
2748 
2749 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2750 		      skb->data_len);
2751 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2752 				(__force u32)delta));
2753 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2754 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2755 						   thlen, skb->csum));
2756 
2757 out:
2758 	return segs;
2759 }
2760 EXPORT_SYMBOL(tcp_tso_segment);
2761 
2762 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2763 {
2764 	struct sk_buff **pp = NULL;
2765 	struct sk_buff *p;
2766 	struct tcphdr *th;
2767 	struct tcphdr *th2;
2768 	unsigned int len;
2769 	unsigned int thlen;
2770 	__be32 flags;
2771 	unsigned int mss = 1;
2772 	unsigned int hlen;
2773 	unsigned int off;
2774 	int flush = 1;
2775 	int i;
2776 
2777 	off = skb_gro_offset(skb);
2778 	hlen = off + sizeof(*th);
2779 	th = skb_gro_header_fast(skb, off);
2780 	if (skb_gro_header_hard(skb, hlen)) {
2781 		th = skb_gro_header_slow(skb, hlen, off);
2782 		if (unlikely(!th))
2783 			goto out;
2784 	}
2785 
2786 	thlen = th->doff * 4;
2787 	if (thlen < sizeof(*th))
2788 		goto out;
2789 
2790 	hlen = off + thlen;
2791 	if (skb_gro_header_hard(skb, hlen)) {
2792 		th = skb_gro_header_slow(skb, hlen, off);
2793 		if (unlikely(!th))
2794 			goto out;
2795 	}
2796 
2797 	skb_gro_pull(skb, thlen);
2798 
2799 	len = skb_gro_len(skb);
2800 	flags = tcp_flag_word(th);
2801 
2802 	for (; (p = *head); head = &p->next) {
2803 		if (!NAPI_GRO_CB(p)->same_flow)
2804 			continue;
2805 
2806 		th2 = tcp_hdr(p);
2807 
2808 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2809 			NAPI_GRO_CB(p)->same_flow = 0;
2810 			continue;
2811 		}
2812 
2813 		goto found;
2814 	}
2815 
2816 	goto out_check_final;
2817 
2818 found:
2819 	flush = NAPI_GRO_CB(p)->flush;
2820 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2821 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2822 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2823 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2824 	for (i = sizeof(*th); i < thlen; i += 4)
2825 		flush |= *(u32 *)((u8 *)th + i) ^
2826 			 *(u32 *)((u8 *)th2 + i);
2827 
2828 	mss = skb_shinfo(p)->gso_size;
2829 
2830 	flush |= (len - 1) >= mss;
2831 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2832 
2833 	if (flush || skb_gro_receive(head, skb)) {
2834 		mss = 1;
2835 		goto out_check_final;
2836 	}
2837 
2838 	p = *head;
2839 	th2 = tcp_hdr(p);
2840 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2841 
2842 out_check_final:
2843 	flush = len < mss;
2844 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2845 					TCP_FLAG_RST | TCP_FLAG_SYN |
2846 					TCP_FLAG_FIN));
2847 
2848 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2849 		pp = head;
2850 
2851 out:
2852 	NAPI_GRO_CB(skb)->flush |= flush;
2853 
2854 	return pp;
2855 }
2856 EXPORT_SYMBOL(tcp_gro_receive);
2857 
2858 int tcp_gro_complete(struct sk_buff *skb)
2859 {
2860 	struct tcphdr *th = tcp_hdr(skb);
2861 
2862 	skb->csum_start = skb_transport_header(skb) - skb->head;
2863 	skb->csum_offset = offsetof(struct tcphdr, check);
2864 	skb->ip_summed = CHECKSUM_PARTIAL;
2865 
2866 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2867 
2868 	if (th->cwr)
2869 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(tcp_gro_complete);
2874 
2875 #ifdef CONFIG_TCP_MD5SIG
2876 static unsigned long tcp_md5sig_users;
2877 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
2878 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2879 
2880 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
2881 {
2882 	int cpu;
2883 
2884 	for_each_possible_cpu(cpu) {
2885 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
2886 
2887 		if (p->md5_desc.tfm)
2888 			crypto_free_hash(p->md5_desc.tfm);
2889 	}
2890 	free_percpu(pool);
2891 }
2892 
2893 void tcp_free_md5sig_pool(void)
2894 {
2895 	struct tcp_md5sig_pool __percpu *pool = NULL;
2896 
2897 	spin_lock_bh(&tcp_md5sig_pool_lock);
2898 	if (--tcp_md5sig_users == 0) {
2899 		pool = tcp_md5sig_pool;
2900 		tcp_md5sig_pool = NULL;
2901 	}
2902 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2903 	if (pool)
2904 		__tcp_free_md5sig_pool(pool);
2905 }
2906 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2907 
2908 static struct tcp_md5sig_pool __percpu *
2909 __tcp_alloc_md5sig_pool(struct sock *sk)
2910 {
2911 	int cpu;
2912 	struct tcp_md5sig_pool __percpu *pool;
2913 
2914 	pool = alloc_percpu(struct tcp_md5sig_pool);
2915 	if (!pool)
2916 		return NULL;
2917 
2918 	for_each_possible_cpu(cpu) {
2919 		struct crypto_hash *hash;
2920 
2921 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2922 		if (!hash || IS_ERR(hash))
2923 			goto out_free;
2924 
2925 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
2926 	}
2927 	return pool;
2928 out_free:
2929 	__tcp_free_md5sig_pool(pool);
2930 	return NULL;
2931 }
2932 
2933 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2934 {
2935 	struct tcp_md5sig_pool __percpu *pool;
2936 	int alloc = 0;
2937 
2938 retry:
2939 	spin_lock_bh(&tcp_md5sig_pool_lock);
2940 	pool = tcp_md5sig_pool;
2941 	if (tcp_md5sig_users++ == 0) {
2942 		alloc = 1;
2943 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2944 	} else if (!pool) {
2945 		tcp_md5sig_users--;
2946 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2947 		cpu_relax();
2948 		goto retry;
2949 	} else
2950 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2951 
2952 	if (alloc) {
2953 		/* we cannot hold spinlock here because this may sleep. */
2954 		struct tcp_md5sig_pool __percpu *p;
2955 
2956 		p = __tcp_alloc_md5sig_pool(sk);
2957 		spin_lock_bh(&tcp_md5sig_pool_lock);
2958 		if (!p) {
2959 			tcp_md5sig_users--;
2960 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2961 			return NULL;
2962 		}
2963 		pool = tcp_md5sig_pool;
2964 		if (pool) {
2965 			/* oops, it has already been assigned. */
2966 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2967 			__tcp_free_md5sig_pool(p);
2968 		} else {
2969 			tcp_md5sig_pool = pool = p;
2970 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2971 		}
2972 	}
2973 	return pool;
2974 }
2975 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2976 
2977 
2978 /**
2979  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2980  *
2981  *	We use percpu structure, so if we succeed, we exit with preemption
2982  *	and BH disabled, to make sure another thread or softirq handling
2983  *	wont try to get same context.
2984  */
2985 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2986 {
2987 	struct tcp_md5sig_pool __percpu *p;
2988 
2989 	local_bh_disable();
2990 
2991 	spin_lock(&tcp_md5sig_pool_lock);
2992 	p = tcp_md5sig_pool;
2993 	if (p)
2994 		tcp_md5sig_users++;
2995 	spin_unlock(&tcp_md5sig_pool_lock);
2996 
2997 	if (p)
2998 		return this_cpu_ptr(p);
2999 
3000 	local_bh_enable();
3001 	return NULL;
3002 }
3003 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3004 
3005 void tcp_put_md5sig_pool(void)
3006 {
3007 	local_bh_enable();
3008 	tcp_free_md5sig_pool();
3009 }
3010 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3011 
3012 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3013 			const struct tcphdr *th)
3014 {
3015 	struct scatterlist sg;
3016 	struct tcphdr hdr;
3017 	int err;
3018 
3019 	/* We are not allowed to change tcphdr, make a local copy */
3020 	memcpy(&hdr, th, sizeof(hdr));
3021 	hdr.check = 0;
3022 
3023 	/* options aren't included in the hash */
3024 	sg_init_one(&sg, &hdr, sizeof(hdr));
3025 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3026 	return err;
3027 }
3028 EXPORT_SYMBOL(tcp_md5_hash_header);
3029 
3030 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3031 			  const struct sk_buff *skb, unsigned int header_len)
3032 {
3033 	struct scatterlist sg;
3034 	const struct tcphdr *tp = tcp_hdr(skb);
3035 	struct hash_desc *desc = &hp->md5_desc;
3036 	unsigned i;
3037 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3038 				       skb_headlen(skb) - header_len : 0;
3039 	const struct skb_shared_info *shi = skb_shinfo(skb);
3040 	struct sk_buff *frag_iter;
3041 
3042 	sg_init_table(&sg, 1);
3043 
3044 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3045 	if (crypto_hash_update(desc, &sg, head_data_len))
3046 		return 1;
3047 
3048 	for (i = 0; i < shi->nr_frags; ++i) {
3049 		const struct skb_frag_struct *f = &shi->frags[i];
3050 		struct page *page = skb_frag_page(f);
3051 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3052 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3053 			return 1;
3054 	}
3055 
3056 	skb_walk_frags(skb, frag_iter)
3057 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3058 			return 1;
3059 
3060 	return 0;
3061 }
3062 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3063 
3064 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3065 {
3066 	struct scatterlist sg;
3067 
3068 	sg_init_one(&sg, key->key, key->keylen);
3069 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3070 }
3071 EXPORT_SYMBOL(tcp_md5_hash_key);
3072 
3073 #endif
3074 
3075 /**
3076  * Each Responder maintains up to two secret values concurrently for
3077  * efficient secret rollover.  Each secret value has 4 states:
3078  *
3079  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3080  *    Generates new Responder-Cookies, but not yet used for primary
3081  *    verification.  This is a short-term state, typically lasting only
3082  *    one round trip time (RTT).
3083  *
3084  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3085  *    Used both for generation and primary verification.
3086  *
3087  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3088  *    Used for verification, until the first failure that can be
3089  *    verified by the newer Generating secret.  At that time, this
3090  *    cookie's state is changed to Secondary, and the Generating
3091  *    cookie's state is changed to Primary.  This is a short-term state,
3092  *    typically lasting only one round trip time (RTT).
3093  *
3094  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3095  *    Used for secondary verification, after primary verification
3096  *    failures.  This state lasts no more than twice the Maximum Segment
3097  *    Lifetime (2MSL).  Then, the secret is discarded.
3098  */
3099 struct tcp_cookie_secret {
3100 	/* The secret is divided into two parts.  The digest part is the
3101 	 * equivalent of previously hashing a secret and saving the state,
3102 	 * and serves as an initialization vector (IV).  The message part
3103 	 * serves as the trailing secret.
3104 	 */
3105 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3106 	unsigned long			expires;
3107 };
3108 
3109 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3110 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3111 #define TCP_SECRET_LIFE (HZ * 600)
3112 
3113 static struct tcp_cookie_secret tcp_secret_one;
3114 static struct tcp_cookie_secret tcp_secret_two;
3115 
3116 /* Essentially a circular list, without dynamic allocation. */
3117 static struct tcp_cookie_secret *tcp_secret_generating;
3118 static struct tcp_cookie_secret *tcp_secret_primary;
3119 static struct tcp_cookie_secret *tcp_secret_retiring;
3120 static struct tcp_cookie_secret *tcp_secret_secondary;
3121 
3122 static DEFINE_SPINLOCK(tcp_secret_locker);
3123 
3124 /* Select a pseudo-random word in the cookie workspace.
3125  */
3126 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3127 {
3128 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3129 }
3130 
3131 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3132  * Called in softirq context.
3133  * Returns: 0 for success.
3134  */
3135 int tcp_cookie_generator(u32 *bakery)
3136 {
3137 	unsigned long jiffy = jiffies;
3138 
3139 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3140 		spin_lock_bh(&tcp_secret_locker);
3141 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3142 			/* refreshed by another */
3143 			memcpy(bakery,
3144 			       &tcp_secret_generating->secrets[0],
3145 			       COOKIE_WORKSPACE_WORDS);
3146 		} else {
3147 			/* still needs refreshing */
3148 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3149 
3150 			/* The first time, paranoia assumes that the
3151 			 * randomization function isn't as strong.  But,
3152 			 * this secret initialization is delayed until
3153 			 * the last possible moment (packet arrival).
3154 			 * Although that time is observable, it is
3155 			 * unpredictably variable.  Mash in the most
3156 			 * volatile clock bits available, and expire the
3157 			 * secret extra quickly.
3158 			 */
3159 			if (unlikely(tcp_secret_primary->expires ==
3160 				     tcp_secret_secondary->expires)) {
3161 				struct timespec tv;
3162 
3163 				getnstimeofday(&tv);
3164 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3165 					(u32)tv.tv_nsec;
3166 
3167 				tcp_secret_secondary->expires = jiffy
3168 					+ TCP_SECRET_1MSL
3169 					+ (0x0f & tcp_cookie_work(bakery, 0));
3170 			} else {
3171 				tcp_secret_secondary->expires = jiffy
3172 					+ TCP_SECRET_LIFE
3173 					+ (0xff & tcp_cookie_work(bakery, 1));
3174 				tcp_secret_primary->expires = jiffy
3175 					+ TCP_SECRET_2MSL
3176 					+ (0x1f & tcp_cookie_work(bakery, 2));
3177 			}
3178 			memcpy(&tcp_secret_secondary->secrets[0],
3179 			       bakery, COOKIE_WORKSPACE_WORDS);
3180 
3181 			rcu_assign_pointer(tcp_secret_generating,
3182 					   tcp_secret_secondary);
3183 			rcu_assign_pointer(tcp_secret_retiring,
3184 					   tcp_secret_primary);
3185 			/*
3186 			 * Neither call_rcu() nor synchronize_rcu() needed.
3187 			 * Retiring data is not freed.  It is replaced after
3188 			 * further (locked) pointer updates, and a quiet time
3189 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3190 			 */
3191 		}
3192 		spin_unlock_bh(&tcp_secret_locker);
3193 	} else {
3194 		rcu_read_lock_bh();
3195 		memcpy(bakery,
3196 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3197 		       COOKIE_WORKSPACE_WORDS);
3198 		rcu_read_unlock_bh();
3199 	}
3200 	return 0;
3201 }
3202 EXPORT_SYMBOL(tcp_cookie_generator);
3203 
3204 void tcp_done(struct sock *sk)
3205 {
3206 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3207 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3208 
3209 	tcp_set_state(sk, TCP_CLOSE);
3210 	tcp_clear_xmit_timers(sk);
3211 
3212 	sk->sk_shutdown = SHUTDOWN_MASK;
3213 
3214 	if (!sock_flag(sk, SOCK_DEAD))
3215 		sk->sk_state_change(sk);
3216 	else
3217 		inet_csk_destroy_sock(sk);
3218 }
3219 EXPORT_SYMBOL_GPL(tcp_done);
3220 
3221 extern struct tcp_congestion_ops tcp_reno;
3222 
3223 static __initdata unsigned long thash_entries;
3224 static int __init set_thash_entries(char *str)
3225 {
3226 	if (!str)
3227 		return 0;
3228 	thash_entries = simple_strtoul(str, &str, 0);
3229 	return 1;
3230 }
3231 __setup("thash_entries=", set_thash_entries);
3232 
3233 void tcp_init_mem(struct net *net)
3234 {
3235 	unsigned long limit = nr_free_buffer_pages() / 8;
3236 	limit = max(limit, 128UL);
3237 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3238 	net->ipv4.sysctl_tcp_mem[1] = limit;
3239 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3240 }
3241 
3242 void __init tcp_init(void)
3243 {
3244 	struct sk_buff *skb = NULL;
3245 	unsigned long limit;
3246 	int max_share, cnt;
3247 	unsigned int i;
3248 	unsigned long jiffy = jiffies;
3249 
3250 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3251 
3252 	percpu_counter_init(&tcp_sockets_allocated, 0);
3253 	percpu_counter_init(&tcp_orphan_count, 0);
3254 	tcp_hashinfo.bind_bucket_cachep =
3255 		kmem_cache_create("tcp_bind_bucket",
3256 				  sizeof(struct inet_bind_bucket), 0,
3257 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3258 
3259 	/* Size and allocate the main established and bind bucket
3260 	 * hash tables.
3261 	 *
3262 	 * The methodology is similar to that of the buffer cache.
3263 	 */
3264 	tcp_hashinfo.ehash =
3265 		alloc_large_system_hash("TCP established",
3266 					sizeof(struct inet_ehash_bucket),
3267 					thash_entries,
3268 					(totalram_pages >= 128 * 1024) ?
3269 					13 : 15,
3270 					0,
3271 					NULL,
3272 					&tcp_hashinfo.ehash_mask,
3273 					thash_entries ? 0 : 512 * 1024);
3274 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3275 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3276 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3277 	}
3278 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3279 		panic("TCP: failed to alloc ehash_locks");
3280 	tcp_hashinfo.bhash =
3281 		alloc_large_system_hash("TCP bind",
3282 					sizeof(struct inet_bind_hashbucket),
3283 					tcp_hashinfo.ehash_mask + 1,
3284 					(totalram_pages >= 128 * 1024) ?
3285 					13 : 15,
3286 					0,
3287 					&tcp_hashinfo.bhash_size,
3288 					NULL,
3289 					64 * 1024);
3290 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3291 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3292 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3293 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3294 	}
3295 
3296 
3297 	cnt = tcp_hashinfo.ehash_mask + 1;
3298 
3299 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3300 	sysctl_tcp_max_orphans = cnt / 2;
3301 	sysctl_max_syn_backlog = max(128, cnt / 256);
3302 
3303 	tcp_init_mem(&init_net);
3304 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3305 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 10);
3306 	limit = max(limit, 128UL);
3307 	max_share = min(4UL*1024*1024, limit);
3308 
3309 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3310 	sysctl_tcp_wmem[1] = 16*1024;
3311 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3312 
3313 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3314 	sysctl_tcp_rmem[1] = 87380;
3315 	sysctl_tcp_rmem[2] = max(87380, max_share);
3316 
3317 	pr_info("Hash tables configured (established %u bind %u)\n",
3318 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3319 
3320 	tcp_register_congestion_control(&tcp_reno);
3321 
3322 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3323 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3324 	tcp_secret_one.expires = jiffy; /* past due */
3325 	tcp_secret_two.expires = jiffy; /* past due */
3326 	tcp_secret_generating = &tcp_secret_one;
3327 	tcp_secret_primary = &tcp_secret_one;
3328 	tcp_secret_retiring = &tcp_secret_two;
3329 	tcp_secret_secondary = &tcp_secret_two;
3330 }
3331