1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 328 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 329 330 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 331 332 void tcp_enter_memory_pressure(struct sock *sk) 333 { 334 unsigned long val; 335 336 if (READ_ONCE(tcp_memory_pressure)) 337 return; 338 val = jiffies; 339 340 if (!val) 341 val--; 342 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 343 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 344 } 345 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 346 347 void tcp_leave_memory_pressure(struct sock *sk) 348 { 349 unsigned long val; 350 351 if (!READ_ONCE(tcp_memory_pressure)) 352 return; 353 val = xchg(&tcp_memory_pressure, 0); 354 if (val) 355 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 356 jiffies_to_msecs(jiffies - val)); 357 } 358 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 359 360 /* Convert seconds to retransmits based on initial and max timeout */ 361 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 362 { 363 u8 res = 0; 364 365 if (seconds > 0) { 366 int period = timeout; 367 368 res = 1; 369 while (seconds > period && res < 255) { 370 res++; 371 timeout <<= 1; 372 if (timeout > rto_max) 373 timeout = rto_max; 374 period += timeout; 375 } 376 } 377 return res; 378 } 379 380 /* Convert retransmits to seconds based on initial and max timeout */ 381 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 382 { 383 int period = 0; 384 385 if (retrans > 0) { 386 period = timeout; 387 while (--retrans) { 388 timeout <<= 1; 389 if (timeout > rto_max) 390 timeout = rto_max; 391 period += timeout; 392 } 393 } 394 return period; 395 } 396 397 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 398 { 399 u32 rate = READ_ONCE(tp->rate_delivered); 400 u32 intv = READ_ONCE(tp->rate_interval_us); 401 u64 rate64 = 0; 402 403 if (rate && intv) { 404 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 405 do_div(rate64, intv); 406 } 407 return rate64; 408 } 409 410 /* Address-family independent initialization for a tcp_sock. 411 * 412 * NOTE: A lot of things set to zero explicitly by call to 413 * sk_alloc() so need not be done here. 414 */ 415 void tcp_init_sock(struct sock *sk) 416 { 417 struct inet_connection_sock *icsk = inet_csk(sk); 418 struct tcp_sock *tp = tcp_sk(sk); 419 420 tp->out_of_order_queue = RB_ROOT; 421 sk->tcp_rtx_queue = RB_ROOT; 422 tcp_init_xmit_timers(sk); 423 INIT_LIST_HEAD(&tp->tsq_node); 424 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 425 426 icsk->icsk_rto = TCP_TIMEOUT_INIT; 427 icsk->icsk_rto_min = TCP_RTO_MIN; 428 icsk->icsk_delack_max = TCP_DELACK_MAX; 429 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 430 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 431 432 /* So many TCP implementations out there (incorrectly) count the 433 * initial SYN frame in their delayed-ACK and congestion control 434 * algorithms that we must have the following bandaid to talk 435 * efficiently to them. -DaveM 436 */ 437 tp->snd_cwnd = TCP_INIT_CWND; 438 439 /* There's a bubble in the pipe until at least the first ACK. */ 440 tp->app_limited = ~0U; 441 442 /* See draft-stevens-tcpca-spec-01 for discussion of the 443 * initialization of these values. 444 */ 445 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 446 tp->snd_cwnd_clamp = ~0; 447 tp->mss_cache = TCP_MSS_DEFAULT; 448 449 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 450 tcp_assign_congestion_control(sk); 451 452 tp->tsoffset = 0; 453 tp->rack.reo_wnd_steps = 1; 454 455 sk->sk_write_space = sk_stream_write_space; 456 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 457 458 icsk->icsk_sync_mss = tcp_sync_mss; 459 460 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 461 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 462 463 sk_sockets_allocated_inc(sk); 464 sk->sk_route_forced_caps = NETIF_F_GSO; 465 } 466 EXPORT_SYMBOL(tcp_init_sock); 467 468 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 469 { 470 struct sk_buff *skb = tcp_write_queue_tail(sk); 471 472 if (tsflags && skb) { 473 struct skb_shared_info *shinfo = skb_shinfo(skb); 474 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 475 476 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 477 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 478 tcb->txstamp_ack = 1; 479 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 480 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 481 } 482 } 483 484 static bool tcp_stream_is_readable(struct sock *sk, int target) 485 { 486 if (tcp_epollin_ready(sk, target)) 487 return true; 488 489 if (sk->sk_prot->stream_memory_read) 490 return sk->sk_prot->stream_memory_read(sk); 491 return false; 492 } 493 494 /* 495 * Wait for a TCP event. 496 * 497 * Note that we don't need to lock the socket, as the upper poll layers 498 * take care of normal races (between the test and the event) and we don't 499 * go look at any of the socket buffers directly. 500 */ 501 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 502 { 503 __poll_t mask; 504 struct sock *sk = sock->sk; 505 const struct tcp_sock *tp = tcp_sk(sk); 506 int state; 507 508 sock_poll_wait(file, sock, wait); 509 510 state = inet_sk_state_load(sk); 511 if (state == TCP_LISTEN) 512 return inet_csk_listen_poll(sk); 513 514 /* Socket is not locked. We are protected from async events 515 * by poll logic and correct handling of state changes 516 * made by other threads is impossible in any case. 517 */ 518 519 mask = 0; 520 521 /* 522 * EPOLLHUP is certainly not done right. But poll() doesn't 523 * have a notion of HUP in just one direction, and for a 524 * socket the read side is more interesting. 525 * 526 * Some poll() documentation says that EPOLLHUP is incompatible 527 * with the EPOLLOUT/POLLWR flags, so somebody should check this 528 * all. But careful, it tends to be safer to return too many 529 * bits than too few, and you can easily break real applications 530 * if you don't tell them that something has hung up! 531 * 532 * Check-me. 533 * 534 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 535 * our fs/select.c). It means that after we received EOF, 536 * poll always returns immediately, making impossible poll() on write() 537 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 538 * if and only if shutdown has been made in both directions. 539 * Actually, it is interesting to look how Solaris and DUX 540 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 541 * then we could set it on SND_SHUTDOWN. BTW examples given 542 * in Stevens' books assume exactly this behaviour, it explains 543 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 544 * 545 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 546 * blocking on fresh not-connected or disconnected socket. --ANK 547 */ 548 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 549 mask |= EPOLLHUP; 550 if (sk->sk_shutdown & RCV_SHUTDOWN) 551 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 552 553 /* Connected or passive Fast Open socket? */ 554 if (state != TCP_SYN_SENT && 555 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 556 int target = sock_rcvlowat(sk, 0, INT_MAX); 557 558 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE) && 560 tp->urg_data) 561 target++; 562 563 if (tcp_stream_is_readable(sk, target)) 564 mask |= EPOLLIN | EPOLLRDNORM; 565 566 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 567 if (__sk_stream_is_writeable(sk, 1)) { 568 mask |= EPOLLOUT | EPOLLWRNORM; 569 } else { /* send SIGIO later */ 570 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 571 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 572 573 /* Race breaker. If space is freed after 574 * wspace test but before the flags are set, 575 * IO signal will be lost. Memory barrier 576 * pairs with the input side. 577 */ 578 smp_mb__after_atomic(); 579 if (__sk_stream_is_writeable(sk, 1)) 580 mask |= EPOLLOUT | EPOLLWRNORM; 581 } 582 } else 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 585 if (tp->urg_data & TCP_URG_VALID) 586 mask |= EPOLLPRI; 587 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 597 mask |= EPOLLERR; 598 599 return mask; 600 } 601 EXPORT_SYMBOL(tcp_poll); 602 603 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 int answ; 607 bool slow; 608 609 switch (cmd) { 610 case SIOCINQ: 611 if (sk->sk_state == TCP_LISTEN) 612 return -EINVAL; 613 614 slow = lock_sock_fast(sk); 615 answ = tcp_inq(sk); 616 unlock_sock_fast(sk, slow); 617 break; 618 case SIOCATMARK: 619 answ = tp->urg_data && 620 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 621 break; 622 case SIOCOUTQ: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 630 break; 631 case SIOCOUTQNSD: 632 if (sk->sk_state == TCP_LISTEN) 633 return -EINVAL; 634 635 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 636 answ = 0; 637 else 638 answ = READ_ONCE(tp->write_seq) - 639 READ_ONCE(tp->snd_nxt); 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 if (likely(!size)) { 869 skb = sk->sk_tx_skb_cache; 870 if (skb) { 871 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 872 sk->sk_tx_skb_cache = NULL; 873 pskb_trim(skb, 0); 874 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 875 skb_shinfo(skb)->tx_flags = 0; 876 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 877 return skb; 878 } 879 } 880 /* The TCP header must be at least 32-bit aligned. */ 881 size = ALIGN(size, 4); 882 883 if (unlikely(tcp_under_memory_pressure(sk))) 884 sk_mem_reclaim_partial(sk); 885 886 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 887 if (likely(skb)) { 888 bool mem_scheduled; 889 890 if (force_schedule) { 891 mem_scheduled = true; 892 sk_forced_mem_schedule(sk, skb->truesize); 893 } else { 894 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 895 } 896 if (likely(mem_scheduled)) { 897 skb_reserve(skb, sk->sk_prot->max_header); 898 /* 899 * Make sure that we have exactly size bytes 900 * available to the caller, no more, no less. 901 */ 902 skb->reserved_tailroom = skb->end - skb->tail - size; 903 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 904 return skb; 905 } 906 __kfree_skb(skb); 907 } else { 908 sk->sk_prot->enter_memory_pressure(sk); 909 sk_stream_moderate_sndbuf(sk); 910 } 911 return NULL; 912 } 913 914 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 915 int large_allowed) 916 { 917 struct tcp_sock *tp = tcp_sk(sk); 918 u32 new_size_goal, size_goal; 919 920 if (!large_allowed) 921 return mss_now; 922 923 /* Note : tcp_tso_autosize() will eventually split this later */ 924 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 925 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 926 927 /* We try hard to avoid divides here */ 928 size_goal = tp->gso_segs * mss_now; 929 if (unlikely(new_size_goal < size_goal || 930 new_size_goal >= size_goal + mss_now)) { 931 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 932 sk->sk_gso_max_segs); 933 size_goal = tp->gso_segs * mss_now; 934 } 935 936 return max(size_goal, mss_now); 937 } 938 939 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 940 { 941 int mss_now; 942 943 mss_now = tcp_current_mss(sk); 944 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 945 946 return mss_now; 947 } 948 949 /* In some cases, both sendpage() and sendmsg() could have added 950 * an skb to the write queue, but failed adding payload on it. 951 * We need to remove it to consume less memory, but more 952 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 953 * users. 954 */ 955 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 956 { 957 if (skb && !skb->len) { 958 tcp_unlink_write_queue(skb, sk); 959 if (tcp_write_queue_empty(sk)) 960 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 961 sk_wmem_free_skb(sk, skb); 962 } 963 } 964 965 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 966 struct page *page, int offset, size_t *size) 967 { 968 struct sk_buff *skb = tcp_write_queue_tail(sk); 969 struct tcp_sock *tp = tcp_sk(sk); 970 bool can_coalesce; 971 int copy, i; 972 973 if (!skb || (copy = size_goal - skb->len) <= 0 || 974 !tcp_skb_can_collapse_to(skb)) { 975 new_segment: 976 if (!sk_stream_memory_free(sk)) 977 return NULL; 978 979 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 980 tcp_rtx_and_write_queues_empty(sk)); 981 if (!skb) 982 return NULL; 983 984 #ifdef CONFIG_TLS_DEVICE 985 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 986 #endif 987 skb_entail(sk, skb); 988 copy = size_goal; 989 } 990 991 if (copy > *size) 992 copy = *size; 993 994 i = skb_shinfo(skb)->nr_frags; 995 can_coalesce = skb_can_coalesce(skb, i, page, offset); 996 if (!can_coalesce && i >= sysctl_max_skb_frags) { 997 tcp_mark_push(tp, skb); 998 goto new_segment; 999 } 1000 if (!sk_wmem_schedule(sk, copy)) 1001 return NULL; 1002 1003 if (can_coalesce) { 1004 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1005 } else { 1006 get_page(page); 1007 skb_fill_page_desc(skb, i, page, offset, copy); 1008 } 1009 1010 if (!(flags & MSG_NO_SHARED_FRAGS)) 1011 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1012 1013 skb->len += copy; 1014 skb->data_len += copy; 1015 skb->truesize += copy; 1016 sk_wmem_queued_add(sk, copy); 1017 sk_mem_charge(sk, copy); 1018 skb->ip_summed = CHECKSUM_PARTIAL; 1019 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1020 TCP_SKB_CB(skb)->end_seq += copy; 1021 tcp_skb_pcount_set(skb, 0); 1022 1023 *size = copy; 1024 return skb; 1025 } 1026 1027 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1028 size_t size, int flags) 1029 { 1030 struct tcp_sock *tp = tcp_sk(sk); 1031 int mss_now, size_goal; 1032 int err; 1033 ssize_t copied; 1034 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1035 1036 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1037 WARN_ONCE(!sendpage_ok(page), 1038 "page must not be a Slab one and have page_count > 0")) 1039 return -EINVAL; 1040 1041 /* Wait for a connection to finish. One exception is TCP Fast Open 1042 * (passive side) where data is allowed to be sent before a connection 1043 * is fully established. 1044 */ 1045 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1046 !tcp_passive_fastopen(sk)) { 1047 err = sk_stream_wait_connect(sk, &timeo); 1048 if (err != 0) 1049 goto out_err; 1050 } 1051 1052 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1053 1054 mss_now = tcp_send_mss(sk, &size_goal, flags); 1055 copied = 0; 1056 1057 err = -EPIPE; 1058 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1059 goto out_err; 1060 1061 while (size > 0) { 1062 struct sk_buff *skb; 1063 size_t copy = size; 1064 1065 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1066 if (!skb) 1067 goto wait_for_space; 1068 1069 if (!copied) 1070 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1071 1072 copied += copy; 1073 offset += copy; 1074 size -= copy; 1075 if (!size) 1076 goto out; 1077 1078 if (skb->len < size_goal || (flags & MSG_OOB)) 1079 continue; 1080 1081 if (forced_push(tp)) { 1082 tcp_mark_push(tp, skb); 1083 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1084 } else if (skb == tcp_send_head(sk)) 1085 tcp_push_one(sk, mss_now); 1086 continue; 1087 1088 wait_for_space: 1089 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1090 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1091 TCP_NAGLE_PUSH, size_goal); 1092 1093 err = sk_stream_wait_memory(sk, &timeo); 1094 if (err != 0) 1095 goto do_error; 1096 1097 mss_now = tcp_send_mss(sk, &size_goal, flags); 1098 } 1099 1100 out: 1101 if (copied) { 1102 tcp_tx_timestamp(sk, sk->sk_tsflags); 1103 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1104 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1105 } 1106 return copied; 1107 1108 do_error: 1109 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1110 if (copied) 1111 goto out; 1112 out_err: 1113 /* make sure we wake any epoll edge trigger waiter */ 1114 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1115 sk->sk_write_space(sk); 1116 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1117 } 1118 return sk_stream_error(sk, flags, err); 1119 } 1120 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1121 1122 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1123 size_t size, int flags) 1124 { 1125 if (!(sk->sk_route_caps & NETIF_F_SG)) 1126 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1127 1128 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1129 1130 return do_tcp_sendpages(sk, page, offset, size, flags); 1131 } 1132 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1133 1134 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1135 size_t size, int flags) 1136 { 1137 int ret; 1138 1139 lock_sock(sk); 1140 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1141 release_sock(sk); 1142 1143 return ret; 1144 } 1145 EXPORT_SYMBOL(tcp_sendpage); 1146 1147 void tcp_free_fastopen_req(struct tcp_sock *tp) 1148 { 1149 if (tp->fastopen_req) { 1150 kfree(tp->fastopen_req); 1151 tp->fastopen_req = NULL; 1152 } 1153 } 1154 1155 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1156 int *copied, size_t size, 1157 struct ubuf_info *uarg) 1158 { 1159 struct tcp_sock *tp = tcp_sk(sk); 1160 struct inet_sock *inet = inet_sk(sk); 1161 struct sockaddr *uaddr = msg->msg_name; 1162 int err, flags; 1163 1164 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1165 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1166 uaddr->sa_family == AF_UNSPEC)) 1167 return -EOPNOTSUPP; 1168 if (tp->fastopen_req) 1169 return -EALREADY; /* Another Fast Open is in progress */ 1170 1171 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1172 sk->sk_allocation); 1173 if (unlikely(!tp->fastopen_req)) 1174 return -ENOBUFS; 1175 tp->fastopen_req->data = msg; 1176 tp->fastopen_req->size = size; 1177 tp->fastopen_req->uarg = uarg; 1178 1179 if (inet->defer_connect) { 1180 err = tcp_connect(sk); 1181 /* Same failure procedure as in tcp_v4/6_connect */ 1182 if (err) { 1183 tcp_set_state(sk, TCP_CLOSE); 1184 inet->inet_dport = 0; 1185 sk->sk_route_caps = 0; 1186 } 1187 } 1188 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1189 err = __inet_stream_connect(sk->sk_socket, uaddr, 1190 msg->msg_namelen, flags, 1); 1191 /* fastopen_req could already be freed in __inet_stream_connect 1192 * if the connection times out or gets rst 1193 */ 1194 if (tp->fastopen_req) { 1195 *copied = tp->fastopen_req->copied; 1196 tcp_free_fastopen_req(tp); 1197 inet->defer_connect = 0; 1198 } 1199 return err; 1200 } 1201 1202 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1203 { 1204 struct tcp_sock *tp = tcp_sk(sk); 1205 struct ubuf_info *uarg = NULL; 1206 struct sk_buff *skb; 1207 struct sockcm_cookie sockc; 1208 int flags, err, copied = 0; 1209 int mss_now = 0, size_goal, copied_syn = 0; 1210 int process_backlog = 0; 1211 bool zc = false; 1212 long timeo; 1213 1214 flags = msg->msg_flags; 1215 1216 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1217 skb = tcp_write_queue_tail(sk); 1218 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1219 if (!uarg) { 1220 err = -ENOBUFS; 1221 goto out_err; 1222 } 1223 1224 zc = sk->sk_route_caps & NETIF_F_SG; 1225 if (!zc) 1226 uarg->zerocopy = 0; 1227 } 1228 1229 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1230 !tp->repair) { 1231 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1232 if (err == -EINPROGRESS && copied_syn > 0) 1233 goto out; 1234 else if (err) 1235 goto out_err; 1236 } 1237 1238 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1239 1240 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1241 1242 /* Wait for a connection to finish. One exception is TCP Fast Open 1243 * (passive side) where data is allowed to be sent before a connection 1244 * is fully established. 1245 */ 1246 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1247 !tcp_passive_fastopen(sk)) { 1248 err = sk_stream_wait_connect(sk, &timeo); 1249 if (err != 0) 1250 goto do_error; 1251 } 1252 1253 if (unlikely(tp->repair)) { 1254 if (tp->repair_queue == TCP_RECV_QUEUE) { 1255 copied = tcp_send_rcvq(sk, msg, size); 1256 goto out_nopush; 1257 } 1258 1259 err = -EINVAL; 1260 if (tp->repair_queue == TCP_NO_QUEUE) 1261 goto out_err; 1262 1263 /* 'common' sending to sendq */ 1264 } 1265 1266 sockcm_init(&sockc, sk); 1267 if (msg->msg_controllen) { 1268 err = sock_cmsg_send(sk, msg, &sockc); 1269 if (unlikely(err)) { 1270 err = -EINVAL; 1271 goto out_err; 1272 } 1273 } 1274 1275 /* This should be in poll */ 1276 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1277 1278 /* Ok commence sending. */ 1279 copied = 0; 1280 1281 restart: 1282 mss_now = tcp_send_mss(sk, &size_goal, flags); 1283 1284 err = -EPIPE; 1285 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1286 goto do_error; 1287 1288 while (msg_data_left(msg)) { 1289 int copy = 0; 1290 1291 skb = tcp_write_queue_tail(sk); 1292 if (skb) 1293 copy = size_goal - skb->len; 1294 1295 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1296 bool first_skb; 1297 1298 new_segment: 1299 if (!sk_stream_memory_free(sk)) 1300 goto wait_for_space; 1301 1302 if (unlikely(process_backlog >= 16)) { 1303 process_backlog = 0; 1304 if (sk_flush_backlog(sk)) 1305 goto restart; 1306 } 1307 first_skb = tcp_rtx_and_write_queues_empty(sk); 1308 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1309 first_skb); 1310 if (!skb) 1311 goto wait_for_space; 1312 1313 process_backlog++; 1314 skb->ip_summed = CHECKSUM_PARTIAL; 1315 1316 skb_entail(sk, skb); 1317 copy = size_goal; 1318 1319 /* All packets are restored as if they have 1320 * already been sent. skb_mstamp_ns isn't set to 1321 * avoid wrong rtt estimation. 1322 */ 1323 if (tp->repair) 1324 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1325 } 1326 1327 /* Try to append data to the end of skb. */ 1328 if (copy > msg_data_left(msg)) 1329 copy = msg_data_left(msg); 1330 1331 /* Where to copy to? */ 1332 if (skb_availroom(skb) > 0 && !zc) { 1333 /* We have some space in skb head. Superb! */ 1334 copy = min_t(int, copy, skb_availroom(skb)); 1335 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1336 if (err) 1337 goto do_fault; 1338 } else if (!zc) { 1339 bool merge = true; 1340 int i = skb_shinfo(skb)->nr_frags; 1341 struct page_frag *pfrag = sk_page_frag(sk); 1342 1343 if (!sk_page_frag_refill(sk, pfrag)) 1344 goto wait_for_space; 1345 1346 if (!skb_can_coalesce(skb, i, pfrag->page, 1347 pfrag->offset)) { 1348 if (i >= sysctl_max_skb_frags) { 1349 tcp_mark_push(tp, skb); 1350 goto new_segment; 1351 } 1352 merge = false; 1353 } 1354 1355 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1356 1357 if (!sk_wmem_schedule(sk, copy)) 1358 goto wait_for_space; 1359 1360 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1361 pfrag->page, 1362 pfrag->offset, 1363 copy); 1364 if (err) 1365 goto do_error; 1366 1367 /* Update the skb. */ 1368 if (merge) { 1369 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1370 } else { 1371 skb_fill_page_desc(skb, i, pfrag->page, 1372 pfrag->offset, copy); 1373 page_ref_inc(pfrag->page); 1374 } 1375 pfrag->offset += copy; 1376 } else { 1377 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1378 if (err == -EMSGSIZE || err == -EEXIST) { 1379 tcp_mark_push(tp, skb); 1380 goto new_segment; 1381 } 1382 if (err < 0) 1383 goto do_error; 1384 copy = err; 1385 } 1386 1387 if (!copied) 1388 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1389 1390 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1391 TCP_SKB_CB(skb)->end_seq += copy; 1392 tcp_skb_pcount_set(skb, 0); 1393 1394 copied += copy; 1395 if (!msg_data_left(msg)) { 1396 if (unlikely(flags & MSG_EOR)) 1397 TCP_SKB_CB(skb)->eor = 1; 1398 goto out; 1399 } 1400 1401 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1402 continue; 1403 1404 if (forced_push(tp)) { 1405 tcp_mark_push(tp, skb); 1406 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1407 } else if (skb == tcp_send_head(sk)) 1408 tcp_push_one(sk, mss_now); 1409 continue; 1410 1411 wait_for_space: 1412 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1413 if (copied) 1414 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1415 TCP_NAGLE_PUSH, size_goal); 1416 1417 err = sk_stream_wait_memory(sk, &timeo); 1418 if (err != 0) 1419 goto do_error; 1420 1421 mss_now = tcp_send_mss(sk, &size_goal, flags); 1422 } 1423 1424 out: 1425 if (copied) { 1426 tcp_tx_timestamp(sk, sockc.tsflags); 1427 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1428 } 1429 out_nopush: 1430 net_zcopy_put(uarg); 1431 return copied + copied_syn; 1432 1433 do_error: 1434 skb = tcp_write_queue_tail(sk); 1435 do_fault: 1436 tcp_remove_empty_skb(sk, skb); 1437 1438 if (copied + copied_syn) 1439 goto out; 1440 out_err: 1441 net_zcopy_put_abort(uarg, true); 1442 err = sk_stream_error(sk, flags, err); 1443 /* make sure we wake any epoll edge trigger waiter */ 1444 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1445 sk->sk_write_space(sk); 1446 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1447 } 1448 return err; 1449 } 1450 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1451 1452 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1453 { 1454 int ret; 1455 1456 lock_sock(sk); 1457 ret = tcp_sendmsg_locked(sk, msg, size); 1458 release_sock(sk); 1459 1460 return ret; 1461 } 1462 EXPORT_SYMBOL(tcp_sendmsg); 1463 1464 /* 1465 * Handle reading urgent data. BSD has very simple semantics for 1466 * this, no blocking and very strange errors 8) 1467 */ 1468 1469 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1470 { 1471 struct tcp_sock *tp = tcp_sk(sk); 1472 1473 /* No URG data to read. */ 1474 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1475 tp->urg_data == TCP_URG_READ) 1476 return -EINVAL; /* Yes this is right ! */ 1477 1478 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1479 return -ENOTCONN; 1480 1481 if (tp->urg_data & TCP_URG_VALID) { 1482 int err = 0; 1483 char c = tp->urg_data; 1484 1485 if (!(flags & MSG_PEEK)) 1486 tp->urg_data = TCP_URG_READ; 1487 1488 /* Read urgent data. */ 1489 msg->msg_flags |= MSG_OOB; 1490 1491 if (len > 0) { 1492 if (!(flags & MSG_TRUNC)) 1493 err = memcpy_to_msg(msg, &c, 1); 1494 len = 1; 1495 } else 1496 msg->msg_flags |= MSG_TRUNC; 1497 1498 return err ? -EFAULT : len; 1499 } 1500 1501 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1502 return 0; 1503 1504 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1505 * the available implementations agree in this case: 1506 * this call should never block, independent of the 1507 * blocking state of the socket. 1508 * Mike <pall@rz.uni-karlsruhe.de> 1509 */ 1510 return -EAGAIN; 1511 } 1512 1513 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1514 { 1515 struct sk_buff *skb; 1516 int copied = 0, err = 0; 1517 1518 /* XXX -- need to support SO_PEEK_OFF */ 1519 1520 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1521 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1522 if (err) 1523 return err; 1524 copied += skb->len; 1525 } 1526 1527 skb_queue_walk(&sk->sk_write_queue, skb) { 1528 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1529 if (err) 1530 break; 1531 1532 copied += skb->len; 1533 } 1534 1535 return err ?: copied; 1536 } 1537 1538 /* Clean up the receive buffer for full frames taken by the user, 1539 * then send an ACK if necessary. COPIED is the number of bytes 1540 * tcp_recvmsg has given to the user so far, it speeds up the 1541 * calculation of whether or not we must ACK for the sake of 1542 * a window update. 1543 */ 1544 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1545 { 1546 struct tcp_sock *tp = tcp_sk(sk); 1547 bool time_to_ack = false; 1548 1549 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1550 1551 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1552 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1553 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1554 1555 if (inet_csk_ack_scheduled(sk)) { 1556 const struct inet_connection_sock *icsk = inet_csk(sk); 1557 1558 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1559 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1560 /* 1561 * If this read emptied read buffer, we send ACK, if 1562 * connection is not bidirectional, user drained 1563 * receive buffer and there was a small segment 1564 * in queue. 1565 */ 1566 (copied > 0 && 1567 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1568 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1569 !inet_csk_in_pingpong_mode(sk))) && 1570 !atomic_read(&sk->sk_rmem_alloc))) 1571 time_to_ack = true; 1572 } 1573 1574 /* We send an ACK if we can now advertise a non-zero window 1575 * which has been raised "significantly". 1576 * 1577 * Even if window raised up to infinity, do not send window open ACK 1578 * in states, where we will not receive more. It is useless. 1579 */ 1580 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1581 __u32 rcv_window_now = tcp_receive_window(tp); 1582 1583 /* Optimize, __tcp_select_window() is not cheap. */ 1584 if (2*rcv_window_now <= tp->window_clamp) { 1585 __u32 new_window = __tcp_select_window(sk); 1586 1587 /* Send ACK now, if this read freed lots of space 1588 * in our buffer. Certainly, new_window is new window. 1589 * We can advertise it now, if it is not less than current one. 1590 * "Lots" means "at least twice" here. 1591 */ 1592 if (new_window && new_window >= 2 * rcv_window_now) 1593 time_to_ack = true; 1594 } 1595 } 1596 if (time_to_ack) 1597 tcp_send_ack(sk); 1598 } 1599 1600 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1601 { 1602 struct sk_buff *skb; 1603 u32 offset; 1604 1605 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1606 offset = seq - TCP_SKB_CB(skb)->seq; 1607 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1608 pr_err_once("%s: found a SYN, please report !\n", __func__); 1609 offset--; 1610 } 1611 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1612 *off = offset; 1613 return skb; 1614 } 1615 /* This looks weird, but this can happen if TCP collapsing 1616 * splitted a fat GRO packet, while we released socket lock 1617 * in skb_splice_bits() 1618 */ 1619 sk_eat_skb(sk, skb); 1620 } 1621 return NULL; 1622 } 1623 1624 /* 1625 * This routine provides an alternative to tcp_recvmsg() for routines 1626 * that would like to handle copying from skbuffs directly in 'sendfile' 1627 * fashion. 1628 * Note: 1629 * - It is assumed that the socket was locked by the caller. 1630 * - The routine does not block. 1631 * - At present, there is no support for reading OOB data 1632 * or for 'peeking' the socket using this routine 1633 * (although both would be easy to implement). 1634 */ 1635 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1636 sk_read_actor_t recv_actor) 1637 { 1638 struct sk_buff *skb; 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 u32 seq = tp->copied_seq; 1641 u32 offset; 1642 int copied = 0; 1643 1644 if (sk->sk_state == TCP_LISTEN) 1645 return -ENOTCONN; 1646 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1647 if (offset < skb->len) { 1648 int used; 1649 size_t len; 1650 1651 len = skb->len - offset; 1652 /* Stop reading if we hit a patch of urgent data */ 1653 if (tp->urg_data) { 1654 u32 urg_offset = tp->urg_seq - seq; 1655 if (urg_offset < len) 1656 len = urg_offset; 1657 if (!len) 1658 break; 1659 } 1660 used = recv_actor(desc, skb, offset, len); 1661 if (used <= 0) { 1662 if (!copied) 1663 copied = used; 1664 break; 1665 } else if (used <= len) { 1666 seq += used; 1667 copied += used; 1668 offset += used; 1669 } 1670 /* If recv_actor drops the lock (e.g. TCP splice 1671 * receive) the skb pointer might be invalid when 1672 * getting here: tcp_collapse might have deleted it 1673 * while aggregating skbs from the socket queue. 1674 */ 1675 skb = tcp_recv_skb(sk, seq - 1, &offset); 1676 if (!skb) 1677 break; 1678 /* TCP coalescing might have appended data to the skb. 1679 * Try to splice more frags 1680 */ 1681 if (offset + 1 != skb->len) 1682 continue; 1683 } 1684 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1685 sk_eat_skb(sk, skb); 1686 ++seq; 1687 break; 1688 } 1689 sk_eat_skb(sk, skb); 1690 if (!desc->count) 1691 break; 1692 WRITE_ONCE(tp->copied_seq, seq); 1693 } 1694 WRITE_ONCE(tp->copied_seq, seq); 1695 1696 tcp_rcv_space_adjust(sk); 1697 1698 /* Clean up data we have read: This will do ACK frames. */ 1699 if (copied > 0) { 1700 tcp_recv_skb(sk, seq, &offset); 1701 tcp_cleanup_rbuf(sk, copied); 1702 } 1703 return copied; 1704 } 1705 EXPORT_SYMBOL(tcp_read_sock); 1706 1707 int tcp_peek_len(struct socket *sock) 1708 { 1709 return tcp_inq(sock->sk); 1710 } 1711 EXPORT_SYMBOL(tcp_peek_len); 1712 1713 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1714 int tcp_set_rcvlowat(struct sock *sk, int val) 1715 { 1716 int cap; 1717 1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1719 cap = sk->sk_rcvbuf >> 1; 1720 else 1721 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1722 val = min(val, cap); 1723 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1724 1725 /* Check if we need to signal EPOLLIN right now */ 1726 tcp_data_ready(sk); 1727 1728 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1729 return 0; 1730 1731 val <<= 1; 1732 if (val > sk->sk_rcvbuf) { 1733 WRITE_ONCE(sk->sk_rcvbuf, val); 1734 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1735 } 1736 return 0; 1737 } 1738 EXPORT_SYMBOL(tcp_set_rcvlowat); 1739 1740 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1741 struct scm_timestamping_internal *tss) 1742 { 1743 if (skb->tstamp) 1744 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1745 else 1746 tss->ts[0] = (struct timespec64) {0}; 1747 1748 if (skb_hwtstamps(skb)->hwtstamp) 1749 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1750 else 1751 tss->ts[2] = (struct timespec64) {0}; 1752 } 1753 1754 #ifdef CONFIG_MMU 1755 static const struct vm_operations_struct tcp_vm_ops = { 1756 }; 1757 1758 int tcp_mmap(struct file *file, struct socket *sock, 1759 struct vm_area_struct *vma) 1760 { 1761 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1762 return -EPERM; 1763 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1764 1765 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1766 vma->vm_flags |= VM_MIXEDMAP; 1767 1768 vma->vm_ops = &tcp_vm_ops; 1769 return 0; 1770 } 1771 EXPORT_SYMBOL(tcp_mmap); 1772 1773 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1774 u32 *offset_frag) 1775 { 1776 skb_frag_t *frag; 1777 1778 offset_skb -= skb_headlen(skb); 1779 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1780 return NULL; 1781 1782 frag = skb_shinfo(skb)->frags; 1783 while (offset_skb) { 1784 if (skb_frag_size(frag) > offset_skb) { 1785 *offset_frag = offset_skb; 1786 return frag; 1787 } 1788 offset_skb -= skb_frag_size(frag); 1789 ++frag; 1790 } 1791 *offset_frag = 0; 1792 return frag; 1793 } 1794 1795 static bool can_map_frag(const skb_frag_t *frag) 1796 { 1797 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1798 } 1799 1800 static int find_next_mappable_frag(const skb_frag_t *frag, 1801 int remaining_in_skb) 1802 { 1803 int offset = 0; 1804 1805 if (likely(can_map_frag(frag))) 1806 return 0; 1807 1808 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1809 offset += skb_frag_size(frag); 1810 ++frag; 1811 } 1812 return offset; 1813 } 1814 1815 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1816 struct tcp_zerocopy_receive *zc, 1817 struct sk_buff *skb, u32 offset) 1818 { 1819 u32 frag_offset, partial_frag_remainder = 0; 1820 int mappable_offset; 1821 skb_frag_t *frag; 1822 1823 /* worst case: skip to next skb. try to improve on this case below */ 1824 zc->recv_skip_hint = skb->len - offset; 1825 1826 /* Find the frag containing this offset (and how far into that frag) */ 1827 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1828 if (!frag) 1829 return; 1830 1831 if (frag_offset) { 1832 struct skb_shared_info *info = skb_shinfo(skb); 1833 1834 /* We read part of the last frag, must recvmsg() rest of skb. */ 1835 if (frag == &info->frags[info->nr_frags - 1]) 1836 return; 1837 1838 /* Else, we must at least read the remainder in this frag. */ 1839 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1840 zc->recv_skip_hint -= partial_frag_remainder; 1841 ++frag; 1842 } 1843 1844 /* partial_frag_remainder: If part way through a frag, must read rest. 1845 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1846 * in partial_frag_remainder. 1847 */ 1848 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1849 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1850 } 1851 1852 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1853 int nonblock, int flags, 1854 struct scm_timestamping_internal *tss, 1855 int *cmsg_flags); 1856 static int receive_fallback_to_copy(struct sock *sk, 1857 struct tcp_zerocopy_receive *zc, int inq, 1858 struct scm_timestamping_internal *tss) 1859 { 1860 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1861 struct msghdr msg = {}; 1862 struct iovec iov; 1863 int err; 1864 1865 zc->length = 0; 1866 zc->recv_skip_hint = 0; 1867 1868 if (copy_address != zc->copybuf_address) 1869 return -EINVAL; 1870 1871 err = import_single_range(READ, (void __user *)copy_address, 1872 inq, &iov, &msg.msg_iter); 1873 if (err) 1874 return err; 1875 1876 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1877 tss, &zc->msg_flags); 1878 if (err < 0) 1879 return err; 1880 1881 zc->copybuf_len = err; 1882 if (likely(zc->copybuf_len)) { 1883 struct sk_buff *skb; 1884 u32 offset; 1885 1886 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1887 if (skb) 1888 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1889 } 1890 return 0; 1891 } 1892 1893 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1894 struct sk_buff *skb, u32 copylen, 1895 u32 *offset, u32 *seq) 1896 { 1897 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1898 struct msghdr msg = {}; 1899 struct iovec iov; 1900 int err; 1901 1902 if (copy_address != zc->copybuf_address) 1903 return -EINVAL; 1904 1905 err = import_single_range(READ, (void __user *)copy_address, 1906 copylen, &iov, &msg.msg_iter); 1907 if (err) 1908 return err; 1909 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1910 if (err) 1911 return err; 1912 zc->recv_skip_hint -= copylen; 1913 *offset += copylen; 1914 *seq += copylen; 1915 return (__s32)copylen; 1916 } 1917 1918 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1919 struct sock *sk, 1920 struct sk_buff *skb, 1921 u32 *seq, 1922 s32 copybuf_len, 1923 struct scm_timestamping_internal *tss) 1924 { 1925 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1926 1927 if (!copylen) 1928 return 0; 1929 /* skb is null if inq < PAGE_SIZE. */ 1930 if (skb) { 1931 offset = *seq - TCP_SKB_CB(skb)->seq; 1932 } else { 1933 skb = tcp_recv_skb(sk, *seq, &offset); 1934 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1935 tcp_update_recv_tstamps(skb, tss); 1936 zc->msg_flags |= TCP_CMSG_TS; 1937 } 1938 } 1939 1940 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1941 seq); 1942 return zc->copybuf_len < 0 ? 0 : copylen; 1943 } 1944 1945 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1946 struct page **pending_pages, 1947 unsigned long pages_remaining, 1948 unsigned long *address, 1949 u32 *length, 1950 u32 *seq, 1951 struct tcp_zerocopy_receive *zc, 1952 u32 total_bytes_to_map, 1953 int err) 1954 { 1955 /* At least one page did not map. Try zapping if we skipped earlier. */ 1956 if (err == -EBUSY && 1957 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1958 u32 maybe_zap_len; 1959 1960 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1961 *length + /* Mapped or pending */ 1962 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1963 zap_page_range(vma, *address, maybe_zap_len); 1964 err = 0; 1965 } 1966 1967 if (!err) { 1968 unsigned long leftover_pages = pages_remaining; 1969 int bytes_mapped; 1970 1971 /* We called zap_page_range, try to reinsert. */ 1972 err = vm_insert_pages(vma, *address, 1973 pending_pages, 1974 &pages_remaining); 1975 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1976 *seq += bytes_mapped; 1977 *address += bytes_mapped; 1978 } 1979 if (err) { 1980 /* Either we were unable to zap, OR we zapped, retried an 1981 * insert, and still had an issue. Either ways, pages_remaining 1982 * is the number of pages we were unable to map, and we unroll 1983 * some state we speculatively touched before. 1984 */ 1985 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1986 1987 *length -= bytes_not_mapped; 1988 zc->recv_skip_hint += bytes_not_mapped; 1989 } 1990 return err; 1991 } 1992 1993 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1994 struct page **pages, 1995 unsigned int pages_to_map, 1996 unsigned long *address, 1997 u32 *length, 1998 u32 *seq, 1999 struct tcp_zerocopy_receive *zc, 2000 u32 total_bytes_to_map) 2001 { 2002 unsigned long pages_remaining = pages_to_map; 2003 unsigned int pages_mapped; 2004 unsigned int bytes_mapped; 2005 int err; 2006 2007 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2008 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2009 bytes_mapped = PAGE_SIZE * pages_mapped; 2010 /* Even if vm_insert_pages fails, it may have partially succeeded in 2011 * mapping (some but not all of the pages). 2012 */ 2013 *seq += bytes_mapped; 2014 *address += bytes_mapped; 2015 2016 if (likely(!err)) 2017 return 0; 2018 2019 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2020 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2021 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2022 err); 2023 } 2024 2025 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2026 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2027 struct scm_timestamping_internal *tss); 2028 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2029 struct tcp_zerocopy_receive *zc, 2030 struct scm_timestamping_internal *tss) 2031 { 2032 unsigned long msg_control_addr; 2033 struct msghdr cmsg_dummy; 2034 2035 msg_control_addr = (unsigned long)zc->msg_control; 2036 cmsg_dummy.msg_control = (void *)msg_control_addr; 2037 cmsg_dummy.msg_controllen = 2038 (__kernel_size_t)zc->msg_controllen; 2039 cmsg_dummy.msg_flags = in_compat_syscall() 2040 ? MSG_CMSG_COMPAT : 0; 2041 zc->msg_flags = 0; 2042 if (zc->msg_control == msg_control_addr && 2043 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2044 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2045 zc->msg_control = (__u64) 2046 ((uintptr_t)cmsg_dummy.msg_control); 2047 zc->msg_controllen = 2048 (__u64)cmsg_dummy.msg_controllen; 2049 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2050 } 2051 } 2052 2053 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2054 static int tcp_zerocopy_receive(struct sock *sk, 2055 struct tcp_zerocopy_receive *zc, 2056 struct scm_timestamping_internal *tss) 2057 { 2058 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2059 unsigned long address = (unsigned long)zc->address; 2060 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2061 s32 copybuf_len = zc->copybuf_len; 2062 struct tcp_sock *tp = tcp_sk(sk); 2063 const skb_frag_t *frags = NULL; 2064 unsigned int pages_to_map = 0; 2065 struct vm_area_struct *vma; 2066 struct sk_buff *skb = NULL; 2067 u32 seq = tp->copied_seq; 2068 u32 total_bytes_to_map; 2069 int inq = tcp_inq(sk); 2070 int ret; 2071 2072 zc->copybuf_len = 0; 2073 zc->msg_flags = 0; 2074 2075 if (address & (PAGE_SIZE - 1) || address != zc->address) 2076 return -EINVAL; 2077 2078 if (sk->sk_state == TCP_LISTEN) 2079 return -ENOTCONN; 2080 2081 sock_rps_record_flow(sk); 2082 2083 if (inq && inq <= copybuf_len) 2084 return receive_fallback_to_copy(sk, zc, inq, tss); 2085 2086 if (inq < PAGE_SIZE) { 2087 zc->length = 0; 2088 zc->recv_skip_hint = inq; 2089 if (!inq && sock_flag(sk, SOCK_DONE)) 2090 return -EIO; 2091 return 0; 2092 } 2093 2094 mmap_read_lock(current->mm); 2095 2096 vma = find_vma(current->mm, address); 2097 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 2098 mmap_read_unlock(current->mm); 2099 return -EINVAL; 2100 } 2101 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2102 avail_len = min_t(u32, vma_len, inq); 2103 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2104 if (total_bytes_to_map) { 2105 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2106 zap_page_range(vma, address, total_bytes_to_map); 2107 zc->length = total_bytes_to_map; 2108 zc->recv_skip_hint = 0; 2109 } else { 2110 zc->length = avail_len; 2111 zc->recv_skip_hint = avail_len; 2112 } 2113 ret = 0; 2114 while (length + PAGE_SIZE <= zc->length) { 2115 int mappable_offset; 2116 struct page *page; 2117 2118 if (zc->recv_skip_hint < PAGE_SIZE) { 2119 u32 offset_frag; 2120 2121 if (skb) { 2122 if (zc->recv_skip_hint > 0) 2123 break; 2124 skb = skb->next; 2125 offset = seq - TCP_SKB_CB(skb)->seq; 2126 } else { 2127 skb = tcp_recv_skb(sk, seq, &offset); 2128 } 2129 2130 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2131 tcp_update_recv_tstamps(skb, tss); 2132 zc->msg_flags |= TCP_CMSG_TS; 2133 } 2134 zc->recv_skip_hint = skb->len - offset; 2135 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2136 if (!frags || offset_frag) 2137 break; 2138 } 2139 2140 mappable_offset = find_next_mappable_frag(frags, 2141 zc->recv_skip_hint); 2142 if (mappable_offset) { 2143 zc->recv_skip_hint = mappable_offset; 2144 break; 2145 } 2146 page = skb_frag_page(frags); 2147 prefetchw(page); 2148 pages[pages_to_map++] = page; 2149 length += PAGE_SIZE; 2150 zc->recv_skip_hint -= PAGE_SIZE; 2151 frags++; 2152 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2153 zc->recv_skip_hint < PAGE_SIZE) { 2154 /* Either full batch, or we're about to go to next skb 2155 * (and we cannot unroll failed ops across skbs). 2156 */ 2157 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2158 pages_to_map, 2159 &address, &length, 2160 &seq, zc, 2161 total_bytes_to_map); 2162 if (ret) 2163 goto out; 2164 pages_to_map = 0; 2165 } 2166 } 2167 if (pages_to_map) { 2168 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2169 &address, &length, &seq, 2170 zc, total_bytes_to_map); 2171 } 2172 out: 2173 mmap_read_unlock(current->mm); 2174 /* Try to copy straggler data. */ 2175 if (!ret) 2176 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2177 2178 if (length + copylen) { 2179 WRITE_ONCE(tp->copied_seq, seq); 2180 tcp_rcv_space_adjust(sk); 2181 2182 /* Clean up data we have read: This will do ACK frames. */ 2183 tcp_recv_skb(sk, seq, &offset); 2184 tcp_cleanup_rbuf(sk, length + copylen); 2185 ret = 0; 2186 if (length == zc->length) 2187 zc->recv_skip_hint = 0; 2188 } else { 2189 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2190 ret = -EIO; 2191 } 2192 zc->length = length; 2193 return ret; 2194 } 2195 #endif 2196 2197 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2198 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2199 struct scm_timestamping_internal *tss) 2200 { 2201 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2202 bool has_timestamping = false; 2203 2204 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2205 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2206 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2207 if (new_tstamp) { 2208 struct __kernel_timespec kts = { 2209 .tv_sec = tss->ts[0].tv_sec, 2210 .tv_nsec = tss->ts[0].tv_nsec, 2211 }; 2212 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2213 sizeof(kts), &kts); 2214 } else { 2215 struct __kernel_old_timespec ts_old = { 2216 .tv_sec = tss->ts[0].tv_sec, 2217 .tv_nsec = tss->ts[0].tv_nsec, 2218 }; 2219 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2220 sizeof(ts_old), &ts_old); 2221 } 2222 } else { 2223 if (new_tstamp) { 2224 struct __kernel_sock_timeval stv = { 2225 .tv_sec = tss->ts[0].tv_sec, 2226 .tv_usec = tss->ts[0].tv_nsec / 1000, 2227 }; 2228 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2229 sizeof(stv), &stv); 2230 } else { 2231 struct __kernel_old_timeval tv = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_usec = tss->ts[0].tv_nsec / 1000, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2236 sizeof(tv), &tv); 2237 } 2238 } 2239 } 2240 2241 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2242 has_timestamping = true; 2243 else 2244 tss->ts[0] = (struct timespec64) {0}; 2245 } 2246 2247 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2248 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2249 has_timestamping = true; 2250 else 2251 tss->ts[2] = (struct timespec64) {0}; 2252 } 2253 2254 if (has_timestamping) { 2255 tss->ts[1] = (struct timespec64) {0}; 2256 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2257 put_cmsg_scm_timestamping64(msg, tss); 2258 else 2259 put_cmsg_scm_timestamping(msg, tss); 2260 } 2261 } 2262 2263 static int tcp_inq_hint(struct sock *sk) 2264 { 2265 const struct tcp_sock *tp = tcp_sk(sk); 2266 u32 copied_seq = READ_ONCE(tp->copied_seq); 2267 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2268 int inq; 2269 2270 inq = rcv_nxt - copied_seq; 2271 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2272 lock_sock(sk); 2273 inq = tp->rcv_nxt - tp->copied_seq; 2274 release_sock(sk); 2275 } 2276 /* After receiving a FIN, tell the user-space to continue reading 2277 * by returning a non-zero inq. 2278 */ 2279 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2280 inq = 1; 2281 return inq; 2282 } 2283 2284 /* 2285 * This routine copies from a sock struct into the user buffer. 2286 * 2287 * Technical note: in 2.3 we work on _locked_ socket, so that 2288 * tricks with *seq access order and skb->users are not required. 2289 * Probably, code can be easily improved even more. 2290 */ 2291 2292 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2293 int nonblock, int flags, 2294 struct scm_timestamping_internal *tss, 2295 int *cmsg_flags) 2296 { 2297 struct tcp_sock *tp = tcp_sk(sk); 2298 int copied = 0; 2299 u32 peek_seq; 2300 u32 *seq; 2301 unsigned long used; 2302 int err; 2303 int target; /* Read at least this many bytes */ 2304 long timeo; 2305 struct sk_buff *skb, *last; 2306 u32 urg_hole = 0; 2307 2308 err = -ENOTCONN; 2309 if (sk->sk_state == TCP_LISTEN) 2310 goto out; 2311 2312 if (tp->recvmsg_inq) 2313 *cmsg_flags = TCP_CMSG_INQ; 2314 timeo = sock_rcvtimeo(sk, nonblock); 2315 2316 /* Urgent data needs to be handled specially. */ 2317 if (flags & MSG_OOB) 2318 goto recv_urg; 2319 2320 if (unlikely(tp->repair)) { 2321 err = -EPERM; 2322 if (!(flags & MSG_PEEK)) 2323 goto out; 2324 2325 if (tp->repair_queue == TCP_SEND_QUEUE) 2326 goto recv_sndq; 2327 2328 err = -EINVAL; 2329 if (tp->repair_queue == TCP_NO_QUEUE) 2330 goto out; 2331 2332 /* 'common' recv queue MSG_PEEK-ing */ 2333 } 2334 2335 seq = &tp->copied_seq; 2336 if (flags & MSG_PEEK) { 2337 peek_seq = tp->copied_seq; 2338 seq = &peek_seq; 2339 } 2340 2341 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2342 2343 do { 2344 u32 offset; 2345 2346 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2347 if (tp->urg_data && tp->urg_seq == *seq) { 2348 if (copied) 2349 break; 2350 if (signal_pending(current)) { 2351 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2352 break; 2353 } 2354 } 2355 2356 /* Next get a buffer. */ 2357 2358 last = skb_peek_tail(&sk->sk_receive_queue); 2359 skb_queue_walk(&sk->sk_receive_queue, skb) { 2360 last = skb; 2361 /* Now that we have two receive queues this 2362 * shouldn't happen. 2363 */ 2364 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2365 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2366 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2367 flags)) 2368 break; 2369 2370 offset = *seq - TCP_SKB_CB(skb)->seq; 2371 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2372 pr_err_once("%s: found a SYN, please report !\n", __func__); 2373 offset--; 2374 } 2375 if (offset < skb->len) 2376 goto found_ok_skb; 2377 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2378 goto found_fin_ok; 2379 WARN(!(flags & MSG_PEEK), 2380 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2381 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2382 } 2383 2384 /* Well, if we have backlog, try to process it now yet. */ 2385 2386 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2387 break; 2388 2389 if (copied) { 2390 if (sk->sk_err || 2391 sk->sk_state == TCP_CLOSE || 2392 (sk->sk_shutdown & RCV_SHUTDOWN) || 2393 !timeo || 2394 signal_pending(current)) 2395 break; 2396 } else { 2397 if (sock_flag(sk, SOCK_DONE)) 2398 break; 2399 2400 if (sk->sk_err) { 2401 copied = sock_error(sk); 2402 break; 2403 } 2404 2405 if (sk->sk_shutdown & RCV_SHUTDOWN) 2406 break; 2407 2408 if (sk->sk_state == TCP_CLOSE) { 2409 /* This occurs when user tries to read 2410 * from never connected socket. 2411 */ 2412 copied = -ENOTCONN; 2413 break; 2414 } 2415 2416 if (!timeo) { 2417 copied = -EAGAIN; 2418 break; 2419 } 2420 2421 if (signal_pending(current)) { 2422 copied = sock_intr_errno(timeo); 2423 break; 2424 } 2425 } 2426 2427 tcp_cleanup_rbuf(sk, copied); 2428 2429 if (copied >= target) { 2430 /* Do not sleep, just process backlog. */ 2431 release_sock(sk); 2432 lock_sock(sk); 2433 } else { 2434 sk_wait_data(sk, &timeo, last); 2435 } 2436 2437 if ((flags & MSG_PEEK) && 2438 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2439 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2440 current->comm, 2441 task_pid_nr(current)); 2442 peek_seq = tp->copied_seq; 2443 } 2444 continue; 2445 2446 found_ok_skb: 2447 /* Ok so how much can we use? */ 2448 used = skb->len - offset; 2449 if (len < used) 2450 used = len; 2451 2452 /* Do we have urgent data here? */ 2453 if (tp->urg_data) { 2454 u32 urg_offset = tp->urg_seq - *seq; 2455 if (urg_offset < used) { 2456 if (!urg_offset) { 2457 if (!sock_flag(sk, SOCK_URGINLINE)) { 2458 WRITE_ONCE(*seq, *seq + 1); 2459 urg_hole++; 2460 offset++; 2461 used--; 2462 if (!used) 2463 goto skip_copy; 2464 } 2465 } else 2466 used = urg_offset; 2467 } 2468 } 2469 2470 if (!(flags & MSG_TRUNC)) { 2471 err = skb_copy_datagram_msg(skb, offset, msg, used); 2472 if (err) { 2473 /* Exception. Bailout! */ 2474 if (!copied) 2475 copied = -EFAULT; 2476 break; 2477 } 2478 } 2479 2480 WRITE_ONCE(*seq, *seq + used); 2481 copied += used; 2482 len -= used; 2483 2484 tcp_rcv_space_adjust(sk); 2485 2486 skip_copy: 2487 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2488 tp->urg_data = 0; 2489 tcp_fast_path_check(sk); 2490 } 2491 2492 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2493 tcp_update_recv_tstamps(skb, tss); 2494 *cmsg_flags |= TCP_CMSG_TS; 2495 } 2496 2497 if (used + offset < skb->len) 2498 continue; 2499 2500 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2501 goto found_fin_ok; 2502 if (!(flags & MSG_PEEK)) 2503 sk_eat_skb(sk, skb); 2504 continue; 2505 2506 found_fin_ok: 2507 /* Process the FIN. */ 2508 WRITE_ONCE(*seq, *seq + 1); 2509 if (!(flags & MSG_PEEK)) 2510 sk_eat_skb(sk, skb); 2511 break; 2512 } while (len > 0); 2513 2514 /* According to UNIX98, msg_name/msg_namelen are ignored 2515 * on connected socket. I was just happy when found this 8) --ANK 2516 */ 2517 2518 /* Clean up data we have read: This will do ACK frames. */ 2519 tcp_cleanup_rbuf(sk, copied); 2520 return copied; 2521 2522 out: 2523 return err; 2524 2525 recv_urg: 2526 err = tcp_recv_urg(sk, msg, len, flags); 2527 goto out; 2528 2529 recv_sndq: 2530 err = tcp_peek_sndq(sk, msg, len); 2531 goto out; 2532 } 2533 2534 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2535 int flags, int *addr_len) 2536 { 2537 int cmsg_flags = 0, ret, inq; 2538 struct scm_timestamping_internal tss; 2539 2540 if (unlikely(flags & MSG_ERRQUEUE)) 2541 return inet_recv_error(sk, msg, len, addr_len); 2542 2543 if (sk_can_busy_loop(sk) && 2544 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2545 sk->sk_state == TCP_ESTABLISHED) 2546 sk_busy_loop(sk, nonblock); 2547 2548 lock_sock(sk); 2549 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2550 &cmsg_flags); 2551 release_sock(sk); 2552 2553 if (cmsg_flags && ret >= 0) { 2554 if (cmsg_flags & TCP_CMSG_TS) 2555 tcp_recv_timestamp(msg, sk, &tss); 2556 if (cmsg_flags & TCP_CMSG_INQ) { 2557 inq = tcp_inq_hint(sk); 2558 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2559 } 2560 } 2561 return ret; 2562 } 2563 EXPORT_SYMBOL(tcp_recvmsg); 2564 2565 void tcp_set_state(struct sock *sk, int state) 2566 { 2567 int oldstate = sk->sk_state; 2568 2569 /* We defined a new enum for TCP states that are exported in BPF 2570 * so as not force the internal TCP states to be frozen. The 2571 * following checks will detect if an internal state value ever 2572 * differs from the BPF value. If this ever happens, then we will 2573 * need to remap the internal value to the BPF value before calling 2574 * tcp_call_bpf_2arg. 2575 */ 2576 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2577 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2578 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2579 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2580 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2581 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2582 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2583 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2584 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2585 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2586 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2587 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2588 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2589 2590 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2591 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2592 2593 switch (state) { 2594 case TCP_ESTABLISHED: 2595 if (oldstate != TCP_ESTABLISHED) 2596 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2597 break; 2598 2599 case TCP_CLOSE: 2600 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2601 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2602 2603 sk->sk_prot->unhash(sk); 2604 if (inet_csk(sk)->icsk_bind_hash && 2605 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2606 inet_put_port(sk); 2607 fallthrough; 2608 default: 2609 if (oldstate == TCP_ESTABLISHED) 2610 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2611 } 2612 2613 /* Change state AFTER socket is unhashed to avoid closed 2614 * socket sitting in hash tables. 2615 */ 2616 inet_sk_state_store(sk, state); 2617 } 2618 EXPORT_SYMBOL_GPL(tcp_set_state); 2619 2620 /* 2621 * State processing on a close. This implements the state shift for 2622 * sending our FIN frame. Note that we only send a FIN for some 2623 * states. A shutdown() may have already sent the FIN, or we may be 2624 * closed. 2625 */ 2626 2627 static const unsigned char new_state[16] = { 2628 /* current state: new state: action: */ 2629 [0 /* (Invalid) */] = TCP_CLOSE, 2630 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2631 [TCP_SYN_SENT] = TCP_CLOSE, 2632 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2633 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2634 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2635 [TCP_TIME_WAIT] = TCP_CLOSE, 2636 [TCP_CLOSE] = TCP_CLOSE, 2637 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2638 [TCP_LAST_ACK] = TCP_LAST_ACK, 2639 [TCP_LISTEN] = TCP_CLOSE, 2640 [TCP_CLOSING] = TCP_CLOSING, 2641 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2642 }; 2643 2644 static int tcp_close_state(struct sock *sk) 2645 { 2646 int next = (int)new_state[sk->sk_state]; 2647 int ns = next & TCP_STATE_MASK; 2648 2649 tcp_set_state(sk, ns); 2650 2651 return next & TCP_ACTION_FIN; 2652 } 2653 2654 /* 2655 * Shutdown the sending side of a connection. Much like close except 2656 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2657 */ 2658 2659 void tcp_shutdown(struct sock *sk, int how) 2660 { 2661 /* We need to grab some memory, and put together a FIN, 2662 * and then put it into the queue to be sent. 2663 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2664 */ 2665 if (!(how & SEND_SHUTDOWN)) 2666 return; 2667 2668 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2669 if ((1 << sk->sk_state) & 2670 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2671 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2672 /* Clear out any half completed packets. FIN if needed. */ 2673 if (tcp_close_state(sk)) 2674 tcp_send_fin(sk); 2675 } 2676 } 2677 EXPORT_SYMBOL(tcp_shutdown); 2678 2679 bool tcp_check_oom(struct sock *sk, int shift) 2680 { 2681 bool too_many_orphans, out_of_socket_memory; 2682 2683 too_many_orphans = tcp_too_many_orphans(sk, shift); 2684 out_of_socket_memory = tcp_out_of_memory(sk); 2685 2686 if (too_many_orphans) 2687 net_info_ratelimited("too many orphaned sockets\n"); 2688 if (out_of_socket_memory) 2689 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2690 return too_many_orphans || out_of_socket_memory; 2691 } 2692 2693 void __tcp_close(struct sock *sk, long timeout) 2694 { 2695 struct sk_buff *skb; 2696 int data_was_unread = 0; 2697 int state; 2698 2699 sk->sk_shutdown = SHUTDOWN_MASK; 2700 2701 if (sk->sk_state == TCP_LISTEN) { 2702 tcp_set_state(sk, TCP_CLOSE); 2703 2704 /* Special case. */ 2705 inet_csk_listen_stop(sk); 2706 2707 goto adjudge_to_death; 2708 } 2709 2710 /* We need to flush the recv. buffs. We do this only on the 2711 * descriptor close, not protocol-sourced closes, because the 2712 * reader process may not have drained the data yet! 2713 */ 2714 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2715 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2716 2717 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2718 len--; 2719 data_was_unread += len; 2720 __kfree_skb(skb); 2721 } 2722 2723 sk_mem_reclaim(sk); 2724 2725 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2726 if (sk->sk_state == TCP_CLOSE) 2727 goto adjudge_to_death; 2728 2729 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2730 * data was lost. To witness the awful effects of the old behavior of 2731 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2732 * GET in an FTP client, suspend the process, wait for the client to 2733 * advertise a zero window, then kill -9 the FTP client, wheee... 2734 * Note: timeout is always zero in such a case. 2735 */ 2736 if (unlikely(tcp_sk(sk)->repair)) { 2737 sk->sk_prot->disconnect(sk, 0); 2738 } else if (data_was_unread) { 2739 /* Unread data was tossed, zap the connection. */ 2740 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2741 tcp_set_state(sk, TCP_CLOSE); 2742 tcp_send_active_reset(sk, sk->sk_allocation); 2743 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2744 /* Check zero linger _after_ checking for unread data. */ 2745 sk->sk_prot->disconnect(sk, 0); 2746 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2747 } else if (tcp_close_state(sk)) { 2748 /* We FIN if the application ate all the data before 2749 * zapping the connection. 2750 */ 2751 2752 /* RED-PEN. Formally speaking, we have broken TCP state 2753 * machine. State transitions: 2754 * 2755 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2756 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2757 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2758 * 2759 * are legal only when FIN has been sent (i.e. in window), 2760 * rather than queued out of window. Purists blame. 2761 * 2762 * F.e. "RFC state" is ESTABLISHED, 2763 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2764 * 2765 * The visible declinations are that sometimes 2766 * we enter time-wait state, when it is not required really 2767 * (harmless), do not send active resets, when they are 2768 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2769 * they look as CLOSING or LAST_ACK for Linux) 2770 * Probably, I missed some more holelets. 2771 * --ANK 2772 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2773 * in a single packet! (May consider it later but will 2774 * probably need API support or TCP_CORK SYN-ACK until 2775 * data is written and socket is closed.) 2776 */ 2777 tcp_send_fin(sk); 2778 } 2779 2780 sk_stream_wait_close(sk, timeout); 2781 2782 adjudge_to_death: 2783 state = sk->sk_state; 2784 sock_hold(sk); 2785 sock_orphan(sk); 2786 2787 local_bh_disable(); 2788 bh_lock_sock(sk); 2789 /* remove backlog if any, without releasing ownership. */ 2790 __release_sock(sk); 2791 2792 percpu_counter_inc(sk->sk_prot->orphan_count); 2793 2794 /* Have we already been destroyed by a softirq or backlog? */ 2795 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2796 goto out; 2797 2798 /* This is a (useful) BSD violating of the RFC. There is a 2799 * problem with TCP as specified in that the other end could 2800 * keep a socket open forever with no application left this end. 2801 * We use a 1 minute timeout (about the same as BSD) then kill 2802 * our end. If they send after that then tough - BUT: long enough 2803 * that we won't make the old 4*rto = almost no time - whoops 2804 * reset mistake. 2805 * 2806 * Nope, it was not mistake. It is really desired behaviour 2807 * f.e. on http servers, when such sockets are useless, but 2808 * consume significant resources. Let's do it with special 2809 * linger2 option. --ANK 2810 */ 2811 2812 if (sk->sk_state == TCP_FIN_WAIT2) { 2813 struct tcp_sock *tp = tcp_sk(sk); 2814 if (tp->linger2 < 0) { 2815 tcp_set_state(sk, TCP_CLOSE); 2816 tcp_send_active_reset(sk, GFP_ATOMIC); 2817 __NET_INC_STATS(sock_net(sk), 2818 LINUX_MIB_TCPABORTONLINGER); 2819 } else { 2820 const int tmo = tcp_fin_time(sk); 2821 2822 if (tmo > TCP_TIMEWAIT_LEN) { 2823 inet_csk_reset_keepalive_timer(sk, 2824 tmo - TCP_TIMEWAIT_LEN); 2825 } else { 2826 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2827 goto out; 2828 } 2829 } 2830 } 2831 if (sk->sk_state != TCP_CLOSE) { 2832 sk_mem_reclaim(sk); 2833 if (tcp_check_oom(sk, 0)) { 2834 tcp_set_state(sk, TCP_CLOSE); 2835 tcp_send_active_reset(sk, GFP_ATOMIC); 2836 __NET_INC_STATS(sock_net(sk), 2837 LINUX_MIB_TCPABORTONMEMORY); 2838 } else if (!check_net(sock_net(sk))) { 2839 /* Not possible to send reset; just close */ 2840 tcp_set_state(sk, TCP_CLOSE); 2841 } 2842 } 2843 2844 if (sk->sk_state == TCP_CLOSE) { 2845 struct request_sock *req; 2846 2847 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2848 lockdep_sock_is_held(sk)); 2849 /* We could get here with a non-NULL req if the socket is 2850 * aborted (e.g., closed with unread data) before 3WHS 2851 * finishes. 2852 */ 2853 if (req) 2854 reqsk_fastopen_remove(sk, req, false); 2855 inet_csk_destroy_sock(sk); 2856 } 2857 /* Otherwise, socket is reprieved until protocol close. */ 2858 2859 out: 2860 bh_unlock_sock(sk); 2861 local_bh_enable(); 2862 } 2863 2864 void tcp_close(struct sock *sk, long timeout) 2865 { 2866 lock_sock(sk); 2867 __tcp_close(sk, timeout); 2868 release_sock(sk); 2869 sock_put(sk); 2870 } 2871 EXPORT_SYMBOL(tcp_close); 2872 2873 /* These states need RST on ABORT according to RFC793 */ 2874 2875 static inline bool tcp_need_reset(int state) 2876 { 2877 return (1 << state) & 2878 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2879 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2880 } 2881 2882 static void tcp_rtx_queue_purge(struct sock *sk) 2883 { 2884 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2885 2886 tcp_sk(sk)->highest_sack = NULL; 2887 while (p) { 2888 struct sk_buff *skb = rb_to_skb(p); 2889 2890 p = rb_next(p); 2891 /* Since we are deleting whole queue, no need to 2892 * list_del(&skb->tcp_tsorted_anchor) 2893 */ 2894 tcp_rtx_queue_unlink(skb, sk); 2895 sk_wmem_free_skb(sk, skb); 2896 } 2897 } 2898 2899 void tcp_write_queue_purge(struct sock *sk) 2900 { 2901 struct sk_buff *skb; 2902 2903 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2904 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2905 tcp_skb_tsorted_anchor_cleanup(skb); 2906 sk_wmem_free_skb(sk, skb); 2907 } 2908 tcp_rtx_queue_purge(sk); 2909 skb = sk->sk_tx_skb_cache; 2910 if (skb) { 2911 __kfree_skb(skb); 2912 sk->sk_tx_skb_cache = NULL; 2913 } 2914 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2915 sk_mem_reclaim(sk); 2916 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2917 tcp_sk(sk)->packets_out = 0; 2918 inet_csk(sk)->icsk_backoff = 0; 2919 } 2920 2921 int tcp_disconnect(struct sock *sk, int flags) 2922 { 2923 struct inet_sock *inet = inet_sk(sk); 2924 struct inet_connection_sock *icsk = inet_csk(sk); 2925 struct tcp_sock *tp = tcp_sk(sk); 2926 int old_state = sk->sk_state; 2927 u32 seq; 2928 2929 if (old_state != TCP_CLOSE) 2930 tcp_set_state(sk, TCP_CLOSE); 2931 2932 /* ABORT function of RFC793 */ 2933 if (old_state == TCP_LISTEN) { 2934 inet_csk_listen_stop(sk); 2935 } else if (unlikely(tp->repair)) { 2936 sk->sk_err = ECONNABORTED; 2937 } else if (tcp_need_reset(old_state) || 2938 (tp->snd_nxt != tp->write_seq && 2939 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2940 /* The last check adjusts for discrepancy of Linux wrt. RFC 2941 * states 2942 */ 2943 tcp_send_active_reset(sk, gfp_any()); 2944 sk->sk_err = ECONNRESET; 2945 } else if (old_state == TCP_SYN_SENT) 2946 sk->sk_err = ECONNRESET; 2947 2948 tcp_clear_xmit_timers(sk); 2949 __skb_queue_purge(&sk->sk_receive_queue); 2950 if (sk->sk_rx_skb_cache) { 2951 __kfree_skb(sk->sk_rx_skb_cache); 2952 sk->sk_rx_skb_cache = NULL; 2953 } 2954 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2955 tp->urg_data = 0; 2956 tcp_write_queue_purge(sk); 2957 tcp_fastopen_active_disable_ofo_check(sk); 2958 skb_rbtree_purge(&tp->out_of_order_queue); 2959 2960 inet->inet_dport = 0; 2961 2962 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2963 inet_reset_saddr(sk); 2964 2965 sk->sk_shutdown = 0; 2966 sock_reset_flag(sk, SOCK_DONE); 2967 tp->srtt_us = 0; 2968 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2969 tp->rcv_rtt_last_tsecr = 0; 2970 2971 seq = tp->write_seq + tp->max_window + 2; 2972 if (!seq) 2973 seq = 1; 2974 WRITE_ONCE(tp->write_seq, seq); 2975 2976 icsk->icsk_backoff = 0; 2977 icsk->icsk_probes_out = 0; 2978 icsk->icsk_probes_tstamp = 0; 2979 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2980 icsk->icsk_rto_min = TCP_RTO_MIN; 2981 icsk->icsk_delack_max = TCP_DELACK_MAX; 2982 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2983 tp->snd_cwnd = TCP_INIT_CWND; 2984 tp->snd_cwnd_cnt = 0; 2985 tp->window_clamp = 0; 2986 tp->delivered = 0; 2987 tp->delivered_ce = 0; 2988 if (icsk->icsk_ca_ops->release) 2989 icsk->icsk_ca_ops->release(sk); 2990 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2991 icsk->icsk_ca_initialized = 0; 2992 tcp_set_ca_state(sk, TCP_CA_Open); 2993 tp->is_sack_reneg = 0; 2994 tcp_clear_retrans(tp); 2995 tp->total_retrans = 0; 2996 inet_csk_delack_init(sk); 2997 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2998 * issue in __tcp_select_window() 2999 */ 3000 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3001 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3002 __sk_dst_reset(sk); 3003 dst_release(sk->sk_rx_dst); 3004 sk->sk_rx_dst = NULL; 3005 tcp_saved_syn_free(tp); 3006 tp->compressed_ack = 0; 3007 tp->segs_in = 0; 3008 tp->segs_out = 0; 3009 tp->bytes_sent = 0; 3010 tp->bytes_acked = 0; 3011 tp->bytes_received = 0; 3012 tp->bytes_retrans = 0; 3013 tp->data_segs_in = 0; 3014 tp->data_segs_out = 0; 3015 tp->duplicate_sack[0].start_seq = 0; 3016 tp->duplicate_sack[0].end_seq = 0; 3017 tp->dsack_dups = 0; 3018 tp->reord_seen = 0; 3019 tp->retrans_out = 0; 3020 tp->sacked_out = 0; 3021 tp->tlp_high_seq = 0; 3022 tp->last_oow_ack_time = 0; 3023 /* There's a bubble in the pipe until at least the first ACK. */ 3024 tp->app_limited = ~0U; 3025 tp->rack.mstamp = 0; 3026 tp->rack.advanced = 0; 3027 tp->rack.reo_wnd_steps = 1; 3028 tp->rack.last_delivered = 0; 3029 tp->rack.reo_wnd_persist = 0; 3030 tp->rack.dsack_seen = 0; 3031 tp->syn_data_acked = 0; 3032 tp->rx_opt.saw_tstamp = 0; 3033 tp->rx_opt.dsack = 0; 3034 tp->rx_opt.num_sacks = 0; 3035 tp->rcv_ooopack = 0; 3036 3037 3038 /* Clean up fastopen related fields */ 3039 tcp_free_fastopen_req(tp); 3040 inet->defer_connect = 0; 3041 tp->fastopen_client_fail = 0; 3042 3043 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3044 3045 if (sk->sk_frag.page) { 3046 put_page(sk->sk_frag.page); 3047 sk->sk_frag.page = NULL; 3048 sk->sk_frag.offset = 0; 3049 } 3050 3051 sk->sk_error_report(sk); 3052 return 0; 3053 } 3054 EXPORT_SYMBOL(tcp_disconnect); 3055 3056 static inline bool tcp_can_repair_sock(const struct sock *sk) 3057 { 3058 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3059 (sk->sk_state != TCP_LISTEN); 3060 } 3061 3062 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3063 { 3064 struct tcp_repair_window opt; 3065 3066 if (!tp->repair) 3067 return -EPERM; 3068 3069 if (len != sizeof(opt)) 3070 return -EINVAL; 3071 3072 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3073 return -EFAULT; 3074 3075 if (opt.max_window < opt.snd_wnd) 3076 return -EINVAL; 3077 3078 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3079 return -EINVAL; 3080 3081 if (after(opt.rcv_wup, tp->rcv_nxt)) 3082 return -EINVAL; 3083 3084 tp->snd_wl1 = opt.snd_wl1; 3085 tp->snd_wnd = opt.snd_wnd; 3086 tp->max_window = opt.max_window; 3087 3088 tp->rcv_wnd = opt.rcv_wnd; 3089 tp->rcv_wup = opt.rcv_wup; 3090 3091 return 0; 3092 } 3093 3094 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3095 unsigned int len) 3096 { 3097 struct tcp_sock *tp = tcp_sk(sk); 3098 struct tcp_repair_opt opt; 3099 size_t offset = 0; 3100 3101 while (len >= sizeof(opt)) { 3102 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3103 return -EFAULT; 3104 3105 offset += sizeof(opt); 3106 len -= sizeof(opt); 3107 3108 switch (opt.opt_code) { 3109 case TCPOPT_MSS: 3110 tp->rx_opt.mss_clamp = opt.opt_val; 3111 tcp_mtup_init(sk); 3112 break; 3113 case TCPOPT_WINDOW: 3114 { 3115 u16 snd_wscale = opt.opt_val & 0xFFFF; 3116 u16 rcv_wscale = opt.opt_val >> 16; 3117 3118 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3119 return -EFBIG; 3120 3121 tp->rx_opt.snd_wscale = snd_wscale; 3122 tp->rx_opt.rcv_wscale = rcv_wscale; 3123 tp->rx_opt.wscale_ok = 1; 3124 } 3125 break; 3126 case TCPOPT_SACK_PERM: 3127 if (opt.opt_val != 0) 3128 return -EINVAL; 3129 3130 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3131 break; 3132 case TCPOPT_TIMESTAMP: 3133 if (opt.opt_val != 0) 3134 return -EINVAL; 3135 3136 tp->rx_opt.tstamp_ok = 1; 3137 break; 3138 } 3139 } 3140 3141 return 0; 3142 } 3143 3144 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3145 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3146 3147 static void tcp_enable_tx_delay(void) 3148 { 3149 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3150 static int __tcp_tx_delay_enabled = 0; 3151 3152 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3153 static_branch_enable(&tcp_tx_delay_enabled); 3154 pr_info("TCP_TX_DELAY enabled\n"); 3155 } 3156 } 3157 } 3158 3159 /* When set indicates to always queue non-full frames. Later the user clears 3160 * this option and we transmit any pending partial frames in the queue. This is 3161 * meant to be used alongside sendfile() to get properly filled frames when the 3162 * user (for example) must write out headers with a write() call first and then 3163 * use sendfile to send out the data parts. 3164 * 3165 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3166 * TCP_NODELAY. 3167 */ 3168 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3169 { 3170 struct tcp_sock *tp = tcp_sk(sk); 3171 3172 if (on) { 3173 tp->nonagle |= TCP_NAGLE_CORK; 3174 } else { 3175 tp->nonagle &= ~TCP_NAGLE_CORK; 3176 if (tp->nonagle & TCP_NAGLE_OFF) 3177 tp->nonagle |= TCP_NAGLE_PUSH; 3178 tcp_push_pending_frames(sk); 3179 } 3180 } 3181 3182 void tcp_sock_set_cork(struct sock *sk, bool on) 3183 { 3184 lock_sock(sk); 3185 __tcp_sock_set_cork(sk, on); 3186 release_sock(sk); 3187 } 3188 EXPORT_SYMBOL(tcp_sock_set_cork); 3189 3190 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3191 * remembered, but it is not activated until cork is cleared. 3192 * 3193 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3194 * even TCP_CORK for currently queued segments. 3195 */ 3196 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3197 { 3198 if (on) { 3199 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3200 tcp_push_pending_frames(sk); 3201 } else { 3202 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3203 } 3204 } 3205 3206 void tcp_sock_set_nodelay(struct sock *sk) 3207 { 3208 lock_sock(sk); 3209 __tcp_sock_set_nodelay(sk, true); 3210 release_sock(sk); 3211 } 3212 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3213 3214 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3215 { 3216 if (!val) { 3217 inet_csk_enter_pingpong_mode(sk); 3218 return; 3219 } 3220 3221 inet_csk_exit_pingpong_mode(sk); 3222 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3223 inet_csk_ack_scheduled(sk)) { 3224 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3225 tcp_cleanup_rbuf(sk, 1); 3226 if (!(val & 1)) 3227 inet_csk_enter_pingpong_mode(sk); 3228 } 3229 } 3230 3231 void tcp_sock_set_quickack(struct sock *sk, int val) 3232 { 3233 lock_sock(sk); 3234 __tcp_sock_set_quickack(sk, val); 3235 release_sock(sk); 3236 } 3237 EXPORT_SYMBOL(tcp_sock_set_quickack); 3238 3239 int tcp_sock_set_syncnt(struct sock *sk, int val) 3240 { 3241 if (val < 1 || val > MAX_TCP_SYNCNT) 3242 return -EINVAL; 3243 3244 lock_sock(sk); 3245 inet_csk(sk)->icsk_syn_retries = val; 3246 release_sock(sk); 3247 return 0; 3248 } 3249 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3250 3251 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3252 { 3253 lock_sock(sk); 3254 inet_csk(sk)->icsk_user_timeout = val; 3255 release_sock(sk); 3256 } 3257 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3258 3259 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3260 { 3261 struct tcp_sock *tp = tcp_sk(sk); 3262 3263 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3264 return -EINVAL; 3265 3266 tp->keepalive_time = val * HZ; 3267 if (sock_flag(sk, SOCK_KEEPOPEN) && 3268 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3269 u32 elapsed = keepalive_time_elapsed(tp); 3270 3271 if (tp->keepalive_time > elapsed) 3272 elapsed = tp->keepalive_time - elapsed; 3273 else 3274 elapsed = 0; 3275 inet_csk_reset_keepalive_timer(sk, elapsed); 3276 } 3277 3278 return 0; 3279 } 3280 3281 int tcp_sock_set_keepidle(struct sock *sk, int val) 3282 { 3283 int err; 3284 3285 lock_sock(sk); 3286 err = tcp_sock_set_keepidle_locked(sk, val); 3287 release_sock(sk); 3288 return err; 3289 } 3290 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3291 3292 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3293 { 3294 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3295 return -EINVAL; 3296 3297 lock_sock(sk); 3298 tcp_sk(sk)->keepalive_intvl = val * HZ; 3299 release_sock(sk); 3300 return 0; 3301 } 3302 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3303 3304 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3305 { 3306 if (val < 1 || val > MAX_TCP_KEEPCNT) 3307 return -EINVAL; 3308 3309 lock_sock(sk); 3310 tcp_sk(sk)->keepalive_probes = val; 3311 release_sock(sk); 3312 return 0; 3313 } 3314 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3315 3316 int tcp_set_window_clamp(struct sock *sk, int val) 3317 { 3318 struct tcp_sock *tp = tcp_sk(sk); 3319 3320 if (!val) { 3321 if (sk->sk_state != TCP_CLOSE) 3322 return -EINVAL; 3323 tp->window_clamp = 0; 3324 } else { 3325 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3326 SOCK_MIN_RCVBUF / 2 : val; 3327 } 3328 return 0; 3329 } 3330 3331 /* 3332 * Socket option code for TCP. 3333 */ 3334 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3335 sockptr_t optval, unsigned int optlen) 3336 { 3337 struct tcp_sock *tp = tcp_sk(sk); 3338 struct inet_connection_sock *icsk = inet_csk(sk); 3339 struct net *net = sock_net(sk); 3340 int val; 3341 int err = 0; 3342 3343 /* These are data/string values, all the others are ints */ 3344 switch (optname) { 3345 case TCP_CONGESTION: { 3346 char name[TCP_CA_NAME_MAX]; 3347 3348 if (optlen < 1) 3349 return -EINVAL; 3350 3351 val = strncpy_from_sockptr(name, optval, 3352 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3353 if (val < 0) 3354 return -EFAULT; 3355 name[val] = 0; 3356 3357 lock_sock(sk); 3358 err = tcp_set_congestion_control(sk, name, true, 3359 ns_capable(sock_net(sk)->user_ns, 3360 CAP_NET_ADMIN)); 3361 release_sock(sk); 3362 return err; 3363 } 3364 case TCP_ULP: { 3365 char name[TCP_ULP_NAME_MAX]; 3366 3367 if (optlen < 1) 3368 return -EINVAL; 3369 3370 val = strncpy_from_sockptr(name, optval, 3371 min_t(long, TCP_ULP_NAME_MAX - 1, 3372 optlen)); 3373 if (val < 0) 3374 return -EFAULT; 3375 name[val] = 0; 3376 3377 lock_sock(sk); 3378 err = tcp_set_ulp(sk, name); 3379 release_sock(sk); 3380 return err; 3381 } 3382 case TCP_FASTOPEN_KEY: { 3383 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3384 __u8 *backup_key = NULL; 3385 3386 /* Allow a backup key as well to facilitate key rotation 3387 * First key is the active one. 3388 */ 3389 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3390 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3391 return -EINVAL; 3392 3393 if (copy_from_sockptr(key, optval, optlen)) 3394 return -EFAULT; 3395 3396 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3397 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3398 3399 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3400 } 3401 default: 3402 /* fallthru */ 3403 break; 3404 } 3405 3406 if (optlen < sizeof(int)) 3407 return -EINVAL; 3408 3409 if (copy_from_sockptr(&val, optval, sizeof(val))) 3410 return -EFAULT; 3411 3412 lock_sock(sk); 3413 3414 switch (optname) { 3415 case TCP_MAXSEG: 3416 /* Values greater than interface MTU won't take effect. However 3417 * at the point when this call is done we typically don't yet 3418 * know which interface is going to be used 3419 */ 3420 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3421 err = -EINVAL; 3422 break; 3423 } 3424 tp->rx_opt.user_mss = val; 3425 break; 3426 3427 case TCP_NODELAY: 3428 __tcp_sock_set_nodelay(sk, val); 3429 break; 3430 3431 case TCP_THIN_LINEAR_TIMEOUTS: 3432 if (val < 0 || val > 1) 3433 err = -EINVAL; 3434 else 3435 tp->thin_lto = val; 3436 break; 3437 3438 case TCP_THIN_DUPACK: 3439 if (val < 0 || val > 1) 3440 err = -EINVAL; 3441 break; 3442 3443 case TCP_REPAIR: 3444 if (!tcp_can_repair_sock(sk)) 3445 err = -EPERM; 3446 else if (val == TCP_REPAIR_ON) { 3447 tp->repair = 1; 3448 sk->sk_reuse = SK_FORCE_REUSE; 3449 tp->repair_queue = TCP_NO_QUEUE; 3450 } else if (val == TCP_REPAIR_OFF) { 3451 tp->repair = 0; 3452 sk->sk_reuse = SK_NO_REUSE; 3453 tcp_send_window_probe(sk); 3454 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3455 tp->repair = 0; 3456 sk->sk_reuse = SK_NO_REUSE; 3457 } else 3458 err = -EINVAL; 3459 3460 break; 3461 3462 case TCP_REPAIR_QUEUE: 3463 if (!tp->repair) 3464 err = -EPERM; 3465 else if ((unsigned int)val < TCP_QUEUES_NR) 3466 tp->repair_queue = val; 3467 else 3468 err = -EINVAL; 3469 break; 3470 3471 case TCP_QUEUE_SEQ: 3472 if (sk->sk_state != TCP_CLOSE) { 3473 err = -EPERM; 3474 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3475 if (!tcp_rtx_queue_empty(sk)) 3476 err = -EPERM; 3477 else 3478 WRITE_ONCE(tp->write_seq, val); 3479 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3480 if (tp->rcv_nxt != tp->copied_seq) { 3481 err = -EPERM; 3482 } else { 3483 WRITE_ONCE(tp->rcv_nxt, val); 3484 WRITE_ONCE(tp->copied_seq, val); 3485 } 3486 } else { 3487 err = -EINVAL; 3488 } 3489 break; 3490 3491 case TCP_REPAIR_OPTIONS: 3492 if (!tp->repair) 3493 err = -EINVAL; 3494 else if (sk->sk_state == TCP_ESTABLISHED) 3495 err = tcp_repair_options_est(sk, optval, optlen); 3496 else 3497 err = -EPERM; 3498 break; 3499 3500 case TCP_CORK: 3501 __tcp_sock_set_cork(sk, val); 3502 break; 3503 3504 case TCP_KEEPIDLE: 3505 err = tcp_sock_set_keepidle_locked(sk, val); 3506 break; 3507 case TCP_KEEPINTVL: 3508 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3509 err = -EINVAL; 3510 else 3511 tp->keepalive_intvl = val * HZ; 3512 break; 3513 case TCP_KEEPCNT: 3514 if (val < 1 || val > MAX_TCP_KEEPCNT) 3515 err = -EINVAL; 3516 else 3517 tp->keepalive_probes = val; 3518 break; 3519 case TCP_SYNCNT: 3520 if (val < 1 || val > MAX_TCP_SYNCNT) 3521 err = -EINVAL; 3522 else 3523 icsk->icsk_syn_retries = val; 3524 break; 3525 3526 case TCP_SAVE_SYN: 3527 /* 0: disable, 1: enable, 2: start from ether_header */ 3528 if (val < 0 || val > 2) 3529 err = -EINVAL; 3530 else 3531 tp->save_syn = val; 3532 break; 3533 3534 case TCP_LINGER2: 3535 if (val < 0) 3536 tp->linger2 = -1; 3537 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3538 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3539 else 3540 tp->linger2 = val * HZ; 3541 break; 3542 3543 case TCP_DEFER_ACCEPT: 3544 /* Translate value in seconds to number of retransmits */ 3545 icsk->icsk_accept_queue.rskq_defer_accept = 3546 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3547 TCP_RTO_MAX / HZ); 3548 break; 3549 3550 case TCP_WINDOW_CLAMP: 3551 err = tcp_set_window_clamp(sk, val); 3552 break; 3553 3554 case TCP_QUICKACK: 3555 __tcp_sock_set_quickack(sk, val); 3556 break; 3557 3558 #ifdef CONFIG_TCP_MD5SIG 3559 case TCP_MD5SIG: 3560 case TCP_MD5SIG_EXT: 3561 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3562 break; 3563 #endif 3564 case TCP_USER_TIMEOUT: 3565 /* Cap the max time in ms TCP will retry or probe the window 3566 * before giving up and aborting (ETIMEDOUT) a connection. 3567 */ 3568 if (val < 0) 3569 err = -EINVAL; 3570 else 3571 icsk->icsk_user_timeout = val; 3572 break; 3573 3574 case TCP_FASTOPEN: 3575 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3576 TCPF_LISTEN))) { 3577 tcp_fastopen_init_key_once(net); 3578 3579 fastopen_queue_tune(sk, val); 3580 } else { 3581 err = -EINVAL; 3582 } 3583 break; 3584 case TCP_FASTOPEN_CONNECT: 3585 if (val > 1 || val < 0) { 3586 err = -EINVAL; 3587 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3588 if (sk->sk_state == TCP_CLOSE) 3589 tp->fastopen_connect = val; 3590 else 3591 err = -EINVAL; 3592 } else { 3593 err = -EOPNOTSUPP; 3594 } 3595 break; 3596 case TCP_FASTOPEN_NO_COOKIE: 3597 if (val > 1 || val < 0) 3598 err = -EINVAL; 3599 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3600 err = -EINVAL; 3601 else 3602 tp->fastopen_no_cookie = val; 3603 break; 3604 case TCP_TIMESTAMP: 3605 if (!tp->repair) 3606 err = -EPERM; 3607 else 3608 tp->tsoffset = val - tcp_time_stamp_raw(); 3609 break; 3610 case TCP_REPAIR_WINDOW: 3611 err = tcp_repair_set_window(tp, optval, optlen); 3612 break; 3613 case TCP_NOTSENT_LOWAT: 3614 tp->notsent_lowat = val; 3615 sk->sk_write_space(sk); 3616 break; 3617 case TCP_INQ: 3618 if (val > 1 || val < 0) 3619 err = -EINVAL; 3620 else 3621 tp->recvmsg_inq = val; 3622 break; 3623 case TCP_TX_DELAY: 3624 if (val) 3625 tcp_enable_tx_delay(); 3626 tp->tcp_tx_delay = val; 3627 break; 3628 default: 3629 err = -ENOPROTOOPT; 3630 break; 3631 } 3632 3633 release_sock(sk); 3634 return err; 3635 } 3636 3637 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3638 unsigned int optlen) 3639 { 3640 const struct inet_connection_sock *icsk = inet_csk(sk); 3641 3642 if (level != SOL_TCP) 3643 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3644 optval, optlen); 3645 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3646 } 3647 EXPORT_SYMBOL(tcp_setsockopt); 3648 3649 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3650 struct tcp_info *info) 3651 { 3652 u64 stats[__TCP_CHRONO_MAX], total = 0; 3653 enum tcp_chrono i; 3654 3655 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3656 stats[i] = tp->chrono_stat[i - 1]; 3657 if (i == tp->chrono_type) 3658 stats[i] += tcp_jiffies32 - tp->chrono_start; 3659 stats[i] *= USEC_PER_SEC / HZ; 3660 total += stats[i]; 3661 } 3662 3663 info->tcpi_busy_time = total; 3664 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3665 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3666 } 3667 3668 /* Return information about state of tcp endpoint in API format. */ 3669 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3670 { 3671 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3672 const struct inet_connection_sock *icsk = inet_csk(sk); 3673 unsigned long rate; 3674 u32 now; 3675 u64 rate64; 3676 bool slow; 3677 3678 memset(info, 0, sizeof(*info)); 3679 if (sk->sk_type != SOCK_STREAM) 3680 return; 3681 3682 info->tcpi_state = inet_sk_state_load(sk); 3683 3684 /* Report meaningful fields for all TCP states, including listeners */ 3685 rate = READ_ONCE(sk->sk_pacing_rate); 3686 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3687 info->tcpi_pacing_rate = rate64; 3688 3689 rate = READ_ONCE(sk->sk_max_pacing_rate); 3690 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3691 info->tcpi_max_pacing_rate = rate64; 3692 3693 info->tcpi_reordering = tp->reordering; 3694 info->tcpi_snd_cwnd = tp->snd_cwnd; 3695 3696 if (info->tcpi_state == TCP_LISTEN) { 3697 /* listeners aliased fields : 3698 * tcpi_unacked -> Number of children ready for accept() 3699 * tcpi_sacked -> max backlog 3700 */ 3701 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3702 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3703 return; 3704 } 3705 3706 slow = lock_sock_fast(sk); 3707 3708 info->tcpi_ca_state = icsk->icsk_ca_state; 3709 info->tcpi_retransmits = icsk->icsk_retransmits; 3710 info->tcpi_probes = icsk->icsk_probes_out; 3711 info->tcpi_backoff = icsk->icsk_backoff; 3712 3713 if (tp->rx_opt.tstamp_ok) 3714 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3715 if (tcp_is_sack(tp)) 3716 info->tcpi_options |= TCPI_OPT_SACK; 3717 if (tp->rx_opt.wscale_ok) { 3718 info->tcpi_options |= TCPI_OPT_WSCALE; 3719 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3720 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3721 } 3722 3723 if (tp->ecn_flags & TCP_ECN_OK) 3724 info->tcpi_options |= TCPI_OPT_ECN; 3725 if (tp->ecn_flags & TCP_ECN_SEEN) 3726 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3727 if (tp->syn_data_acked) 3728 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3729 3730 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3731 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3732 info->tcpi_snd_mss = tp->mss_cache; 3733 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3734 3735 info->tcpi_unacked = tp->packets_out; 3736 info->tcpi_sacked = tp->sacked_out; 3737 3738 info->tcpi_lost = tp->lost_out; 3739 info->tcpi_retrans = tp->retrans_out; 3740 3741 now = tcp_jiffies32; 3742 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3743 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3744 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3745 3746 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3747 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3748 info->tcpi_rtt = tp->srtt_us >> 3; 3749 info->tcpi_rttvar = tp->mdev_us >> 2; 3750 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3751 info->tcpi_advmss = tp->advmss; 3752 3753 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3754 info->tcpi_rcv_space = tp->rcvq_space.space; 3755 3756 info->tcpi_total_retrans = tp->total_retrans; 3757 3758 info->tcpi_bytes_acked = tp->bytes_acked; 3759 info->tcpi_bytes_received = tp->bytes_received; 3760 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3761 tcp_get_info_chrono_stats(tp, info); 3762 3763 info->tcpi_segs_out = tp->segs_out; 3764 info->tcpi_segs_in = tp->segs_in; 3765 3766 info->tcpi_min_rtt = tcp_min_rtt(tp); 3767 info->tcpi_data_segs_in = tp->data_segs_in; 3768 info->tcpi_data_segs_out = tp->data_segs_out; 3769 3770 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3771 rate64 = tcp_compute_delivery_rate(tp); 3772 if (rate64) 3773 info->tcpi_delivery_rate = rate64; 3774 info->tcpi_delivered = tp->delivered; 3775 info->tcpi_delivered_ce = tp->delivered_ce; 3776 info->tcpi_bytes_sent = tp->bytes_sent; 3777 info->tcpi_bytes_retrans = tp->bytes_retrans; 3778 info->tcpi_dsack_dups = tp->dsack_dups; 3779 info->tcpi_reord_seen = tp->reord_seen; 3780 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3781 info->tcpi_snd_wnd = tp->snd_wnd; 3782 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3783 unlock_sock_fast(sk, slow); 3784 } 3785 EXPORT_SYMBOL_GPL(tcp_get_info); 3786 3787 static size_t tcp_opt_stats_get_size(void) 3788 { 3789 return 3790 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3791 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3792 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3793 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3794 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3795 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3796 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3797 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3798 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3799 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3800 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3801 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3802 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3803 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3804 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3805 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3806 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3812 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3813 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3814 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3815 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3816 0; 3817 } 3818 3819 /* Returns TTL or hop limit of an incoming packet from skb. */ 3820 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3821 { 3822 if (skb->protocol == htons(ETH_P_IP)) 3823 return ip_hdr(skb)->ttl; 3824 else if (skb->protocol == htons(ETH_P_IPV6)) 3825 return ipv6_hdr(skb)->hop_limit; 3826 else 3827 return 0; 3828 } 3829 3830 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3831 const struct sk_buff *orig_skb, 3832 const struct sk_buff *ack_skb) 3833 { 3834 const struct tcp_sock *tp = tcp_sk(sk); 3835 struct sk_buff *stats; 3836 struct tcp_info info; 3837 unsigned long rate; 3838 u64 rate64; 3839 3840 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3841 if (!stats) 3842 return NULL; 3843 3844 tcp_get_info_chrono_stats(tp, &info); 3845 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3846 info.tcpi_busy_time, TCP_NLA_PAD); 3847 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3848 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3849 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3850 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3851 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3852 tp->data_segs_out, TCP_NLA_PAD); 3853 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3854 tp->total_retrans, TCP_NLA_PAD); 3855 3856 rate = READ_ONCE(sk->sk_pacing_rate); 3857 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3858 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3859 3860 rate64 = tcp_compute_delivery_rate(tp); 3861 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3862 3863 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3864 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3865 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3866 3867 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3868 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3869 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3870 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3871 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3872 3873 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3874 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3875 3876 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3877 TCP_NLA_PAD); 3878 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3879 TCP_NLA_PAD); 3880 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3881 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3882 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3883 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3884 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3885 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3886 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3887 TCP_NLA_PAD); 3888 if (ack_skb) 3889 nla_put_u8(stats, TCP_NLA_TTL, 3890 tcp_skb_ttl_or_hop_limit(ack_skb)); 3891 3892 return stats; 3893 } 3894 3895 static int do_tcp_getsockopt(struct sock *sk, int level, 3896 int optname, char __user *optval, int __user *optlen) 3897 { 3898 struct inet_connection_sock *icsk = inet_csk(sk); 3899 struct tcp_sock *tp = tcp_sk(sk); 3900 struct net *net = sock_net(sk); 3901 int val, len; 3902 3903 if (get_user(len, optlen)) 3904 return -EFAULT; 3905 3906 len = min_t(unsigned int, len, sizeof(int)); 3907 3908 if (len < 0) 3909 return -EINVAL; 3910 3911 switch (optname) { 3912 case TCP_MAXSEG: 3913 val = tp->mss_cache; 3914 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3915 val = tp->rx_opt.user_mss; 3916 if (tp->repair) 3917 val = tp->rx_opt.mss_clamp; 3918 break; 3919 case TCP_NODELAY: 3920 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3921 break; 3922 case TCP_CORK: 3923 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3924 break; 3925 case TCP_KEEPIDLE: 3926 val = keepalive_time_when(tp) / HZ; 3927 break; 3928 case TCP_KEEPINTVL: 3929 val = keepalive_intvl_when(tp) / HZ; 3930 break; 3931 case TCP_KEEPCNT: 3932 val = keepalive_probes(tp); 3933 break; 3934 case TCP_SYNCNT: 3935 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3936 break; 3937 case TCP_LINGER2: 3938 val = tp->linger2; 3939 if (val >= 0) 3940 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3941 break; 3942 case TCP_DEFER_ACCEPT: 3943 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3944 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3945 break; 3946 case TCP_WINDOW_CLAMP: 3947 val = tp->window_clamp; 3948 break; 3949 case TCP_INFO: { 3950 struct tcp_info info; 3951 3952 if (get_user(len, optlen)) 3953 return -EFAULT; 3954 3955 tcp_get_info(sk, &info); 3956 3957 len = min_t(unsigned int, len, sizeof(info)); 3958 if (put_user(len, optlen)) 3959 return -EFAULT; 3960 if (copy_to_user(optval, &info, len)) 3961 return -EFAULT; 3962 return 0; 3963 } 3964 case TCP_CC_INFO: { 3965 const struct tcp_congestion_ops *ca_ops; 3966 union tcp_cc_info info; 3967 size_t sz = 0; 3968 int attr; 3969 3970 if (get_user(len, optlen)) 3971 return -EFAULT; 3972 3973 ca_ops = icsk->icsk_ca_ops; 3974 if (ca_ops && ca_ops->get_info) 3975 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3976 3977 len = min_t(unsigned int, len, sz); 3978 if (put_user(len, optlen)) 3979 return -EFAULT; 3980 if (copy_to_user(optval, &info, len)) 3981 return -EFAULT; 3982 return 0; 3983 } 3984 case TCP_QUICKACK: 3985 val = !inet_csk_in_pingpong_mode(sk); 3986 break; 3987 3988 case TCP_CONGESTION: 3989 if (get_user(len, optlen)) 3990 return -EFAULT; 3991 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3992 if (put_user(len, optlen)) 3993 return -EFAULT; 3994 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3995 return -EFAULT; 3996 return 0; 3997 3998 case TCP_ULP: 3999 if (get_user(len, optlen)) 4000 return -EFAULT; 4001 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4002 if (!icsk->icsk_ulp_ops) { 4003 if (put_user(0, optlen)) 4004 return -EFAULT; 4005 return 0; 4006 } 4007 if (put_user(len, optlen)) 4008 return -EFAULT; 4009 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4010 return -EFAULT; 4011 return 0; 4012 4013 case TCP_FASTOPEN_KEY: { 4014 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4015 unsigned int key_len; 4016 4017 if (get_user(len, optlen)) 4018 return -EFAULT; 4019 4020 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4021 TCP_FASTOPEN_KEY_LENGTH; 4022 len = min_t(unsigned int, len, key_len); 4023 if (put_user(len, optlen)) 4024 return -EFAULT; 4025 if (copy_to_user(optval, key, len)) 4026 return -EFAULT; 4027 return 0; 4028 } 4029 case TCP_THIN_LINEAR_TIMEOUTS: 4030 val = tp->thin_lto; 4031 break; 4032 4033 case TCP_THIN_DUPACK: 4034 val = 0; 4035 break; 4036 4037 case TCP_REPAIR: 4038 val = tp->repair; 4039 break; 4040 4041 case TCP_REPAIR_QUEUE: 4042 if (tp->repair) 4043 val = tp->repair_queue; 4044 else 4045 return -EINVAL; 4046 break; 4047 4048 case TCP_REPAIR_WINDOW: { 4049 struct tcp_repair_window opt; 4050 4051 if (get_user(len, optlen)) 4052 return -EFAULT; 4053 4054 if (len != sizeof(opt)) 4055 return -EINVAL; 4056 4057 if (!tp->repair) 4058 return -EPERM; 4059 4060 opt.snd_wl1 = tp->snd_wl1; 4061 opt.snd_wnd = tp->snd_wnd; 4062 opt.max_window = tp->max_window; 4063 opt.rcv_wnd = tp->rcv_wnd; 4064 opt.rcv_wup = tp->rcv_wup; 4065 4066 if (copy_to_user(optval, &opt, len)) 4067 return -EFAULT; 4068 return 0; 4069 } 4070 case TCP_QUEUE_SEQ: 4071 if (tp->repair_queue == TCP_SEND_QUEUE) 4072 val = tp->write_seq; 4073 else if (tp->repair_queue == TCP_RECV_QUEUE) 4074 val = tp->rcv_nxt; 4075 else 4076 return -EINVAL; 4077 break; 4078 4079 case TCP_USER_TIMEOUT: 4080 val = icsk->icsk_user_timeout; 4081 break; 4082 4083 case TCP_FASTOPEN: 4084 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4085 break; 4086 4087 case TCP_FASTOPEN_CONNECT: 4088 val = tp->fastopen_connect; 4089 break; 4090 4091 case TCP_FASTOPEN_NO_COOKIE: 4092 val = tp->fastopen_no_cookie; 4093 break; 4094 4095 case TCP_TX_DELAY: 4096 val = tp->tcp_tx_delay; 4097 break; 4098 4099 case TCP_TIMESTAMP: 4100 val = tcp_time_stamp_raw() + tp->tsoffset; 4101 break; 4102 case TCP_NOTSENT_LOWAT: 4103 val = tp->notsent_lowat; 4104 break; 4105 case TCP_INQ: 4106 val = tp->recvmsg_inq; 4107 break; 4108 case TCP_SAVE_SYN: 4109 val = tp->save_syn; 4110 break; 4111 case TCP_SAVED_SYN: { 4112 if (get_user(len, optlen)) 4113 return -EFAULT; 4114 4115 lock_sock(sk); 4116 if (tp->saved_syn) { 4117 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4118 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4119 optlen)) { 4120 release_sock(sk); 4121 return -EFAULT; 4122 } 4123 release_sock(sk); 4124 return -EINVAL; 4125 } 4126 len = tcp_saved_syn_len(tp->saved_syn); 4127 if (put_user(len, optlen)) { 4128 release_sock(sk); 4129 return -EFAULT; 4130 } 4131 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4132 release_sock(sk); 4133 return -EFAULT; 4134 } 4135 tcp_saved_syn_free(tp); 4136 release_sock(sk); 4137 } else { 4138 release_sock(sk); 4139 len = 0; 4140 if (put_user(len, optlen)) 4141 return -EFAULT; 4142 } 4143 return 0; 4144 } 4145 #ifdef CONFIG_MMU 4146 case TCP_ZEROCOPY_RECEIVE: { 4147 struct scm_timestamping_internal tss; 4148 struct tcp_zerocopy_receive zc = {}; 4149 int err; 4150 4151 if (get_user(len, optlen)) 4152 return -EFAULT; 4153 if (len < 0 || 4154 len < offsetofend(struct tcp_zerocopy_receive, length)) 4155 return -EINVAL; 4156 if (unlikely(len > sizeof(zc))) { 4157 err = check_zeroed_user(optval + sizeof(zc), 4158 len - sizeof(zc)); 4159 if (err < 1) 4160 return err == 0 ? -EINVAL : err; 4161 len = sizeof(zc); 4162 if (put_user(len, optlen)) 4163 return -EFAULT; 4164 } 4165 if (copy_from_user(&zc, optval, len)) 4166 return -EFAULT; 4167 if (zc.reserved) 4168 return -EINVAL; 4169 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4170 return -EINVAL; 4171 lock_sock(sk); 4172 err = tcp_zerocopy_receive(sk, &zc, &tss); 4173 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4174 &zc, &len, err); 4175 release_sock(sk); 4176 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4177 goto zerocopy_rcv_cmsg; 4178 switch (len) { 4179 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4180 goto zerocopy_rcv_cmsg; 4181 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4182 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4183 case offsetofend(struct tcp_zerocopy_receive, flags): 4184 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4185 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4186 case offsetofend(struct tcp_zerocopy_receive, err): 4187 goto zerocopy_rcv_sk_err; 4188 case offsetofend(struct tcp_zerocopy_receive, inq): 4189 goto zerocopy_rcv_inq; 4190 case offsetofend(struct tcp_zerocopy_receive, length): 4191 default: 4192 goto zerocopy_rcv_out; 4193 } 4194 zerocopy_rcv_cmsg: 4195 if (zc.msg_flags & TCP_CMSG_TS) 4196 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4197 else 4198 zc.msg_flags = 0; 4199 zerocopy_rcv_sk_err: 4200 if (!err) 4201 zc.err = sock_error(sk); 4202 zerocopy_rcv_inq: 4203 zc.inq = tcp_inq_hint(sk); 4204 zerocopy_rcv_out: 4205 if (!err && copy_to_user(optval, &zc, len)) 4206 err = -EFAULT; 4207 return err; 4208 } 4209 #endif 4210 default: 4211 return -ENOPROTOOPT; 4212 } 4213 4214 if (put_user(len, optlen)) 4215 return -EFAULT; 4216 if (copy_to_user(optval, &val, len)) 4217 return -EFAULT; 4218 return 0; 4219 } 4220 4221 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4222 { 4223 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4224 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4225 */ 4226 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4227 return true; 4228 4229 return false; 4230 } 4231 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4232 4233 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4234 int __user *optlen) 4235 { 4236 struct inet_connection_sock *icsk = inet_csk(sk); 4237 4238 if (level != SOL_TCP) 4239 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4240 optval, optlen); 4241 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4242 } 4243 EXPORT_SYMBOL(tcp_getsockopt); 4244 4245 #ifdef CONFIG_TCP_MD5SIG 4246 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4247 static DEFINE_MUTEX(tcp_md5sig_mutex); 4248 static bool tcp_md5sig_pool_populated = false; 4249 4250 static void __tcp_alloc_md5sig_pool(void) 4251 { 4252 struct crypto_ahash *hash; 4253 int cpu; 4254 4255 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4256 if (IS_ERR(hash)) 4257 return; 4258 4259 for_each_possible_cpu(cpu) { 4260 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4261 struct ahash_request *req; 4262 4263 if (!scratch) { 4264 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4265 sizeof(struct tcphdr), 4266 GFP_KERNEL, 4267 cpu_to_node(cpu)); 4268 if (!scratch) 4269 return; 4270 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4271 } 4272 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4273 continue; 4274 4275 req = ahash_request_alloc(hash, GFP_KERNEL); 4276 if (!req) 4277 return; 4278 4279 ahash_request_set_callback(req, 0, NULL, NULL); 4280 4281 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4282 } 4283 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4284 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4285 */ 4286 smp_wmb(); 4287 tcp_md5sig_pool_populated = true; 4288 } 4289 4290 bool tcp_alloc_md5sig_pool(void) 4291 { 4292 if (unlikely(!tcp_md5sig_pool_populated)) { 4293 mutex_lock(&tcp_md5sig_mutex); 4294 4295 if (!tcp_md5sig_pool_populated) { 4296 __tcp_alloc_md5sig_pool(); 4297 if (tcp_md5sig_pool_populated) 4298 static_branch_inc(&tcp_md5_needed); 4299 } 4300 4301 mutex_unlock(&tcp_md5sig_mutex); 4302 } 4303 return tcp_md5sig_pool_populated; 4304 } 4305 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4306 4307 4308 /** 4309 * tcp_get_md5sig_pool - get md5sig_pool for this user 4310 * 4311 * We use percpu structure, so if we succeed, we exit with preemption 4312 * and BH disabled, to make sure another thread or softirq handling 4313 * wont try to get same context. 4314 */ 4315 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4316 { 4317 local_bh_disable(); 4318 4319 if (tcp_md5sig_pool_populated) { 4320 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4321 smp_rmb(); 4322 return this_cpu_ptr(&tcp_md5sig_pool); 4323 } 4324 local_bh_enable(); 4325 return NULL; 4326 } 4327 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4328 4329 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4330 const struct sk_buff *skb, unsigned int header_len) 4331 { 4332 struct scatterlist sg; 4333 const struct tcphdr *tp = tcp_hdr(skb); 4334 struct ahash_request *req = hp->md5_req; 4335 unsigned int i; 4336 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4337 skb_headlen(skb) - header_len : 0; 4338 const struct skb_shared_info *shi = skb_shinfo(skb); 4339 struct sk_buff *frag_iter; 4340 4341 sg_init_table(&sg, 1); 4342 4343 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4344 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4345 if (crypto_ahash_update(req)) 4346 return 1; 4347 4348 for (i = 0; i < shi->nr_frags; ++i) { 4349 const skb_frag_t *f = &shi->frags[i]; 4350 unsigned int offset = skb_frag_off(f); 4351 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4352 4353 sg_set_page(&sg, page, skb_frag_size(f), 4354 offset_in_page(offset)); 4355 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4356 if (crypto_ahash_update(req)) 4357 return 1; 4358 } 4359 4360 skb_walk_frags(skb, frag_iter) 4361 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4362 return 1; 4363 4364 return 0; 4365 } 4366 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4367 4368 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4369 { 4370 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4371 struct scatterlist sg; 4372 4373 sg_init_one(&sg, key->key, keylen); 4374 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4375 4376 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4377 return data_race(crypto_ahash_update(hp->md5_req)); 4378 } 4379 EXPORT_SYMBOL(tcp_md5_hash_key); 4380 4381 #endif 4382 4383 void tcp_done(struct sock *sk) 4384 { 4385 struct request_sock *req; 4386 4387 /* We might be called with a new socket, after 4388 * inet_csk_prepare_forced_close() has been called 4389 * so we can not use lockdep_sock_is_held(sk) 4390 */ 4391 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4392 4393 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4394 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4395 4396 tcp_set_state(sk, TCP_CLOSE); 4397 tcp_clear_xmit_timers(sk); 4398 if (req) 4399 reqsk_fastopen_remove(sk, req, false); 4400 4401 sk->sk_shutdown = SHUTDOWN_MASK; 4402 4403 if (!sock_flag(sk, SOCK_DEAD)) 4404 sk->sk_state_change(sk); 4405 else 4406 inet_csk_destroy_sock(sk); 4407 } 4408 EXPORT_SYMBOL_GPL(tcp_done); 4409 4410 int tcp_abort(struct sock *sk, int err) 4411 { 4412 if (!sk_fullsock(sk)) { 4413 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4414 struct request_sock *req = inet_reqsk(sk); 4415 4416 local_bh_disable(); 4417 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4418 local_bh_enable(); 4419 return 0; 4420 } 4421 return -EOPNOTSUPP; 4422 } 4423 4424 /* Don't race with userspace socket closes such as tcp_close. */ 4425 lock_sock(sk); 4426 4427 if (sk->sk_state == TCP_LISTEN) { 4428 tcp_set_state(sk, TCP_CLOSE); 4429 inet_csk_listen_stop(sk); 4430 } 4431 4432 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4433 local_bh_disable(); 4434 bh_lock_sock(sk); 4435 4436 if (!sock_flag(sk, SOCK_DEAD)) { 4437 sk->sk_err = err; 4438 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4439 smp_wmb(); 4440 sk->sk_error_report(sk); 4441 if (tcp_need_reset(sk->sk_state)) 4442 tcp_send_active_reset(sk, GFP_ATOMIC); 4443 tcp_done(sk); 4444 } 4445 4446 bh_unlock_sock(sk); 4447 local_bh_enable(); 4448 tcp_write_queue_purge(sk); 4449 release_sock(sk); 4450 return 0; 4451 } 4452 EXPORT_SYMBOL_GPL(tcp_abort); 4453 4454 extern struct tcp_congestion_ops tcp_reno; 4455 4456 static __initdata unsigned long thash_entries; 4457 static int __init set_thash_entries(char *str) 4458 { 4459 ssize_t ret; 4460 4461 if (!str) 4462 return 0; 4463 4464 ret = kstrtoul(str, 0, &thash_entries); 4465 if (ret) 4466 return 0; 4467 4468 return 1; 4469 } 4470 __setup("thash_entries=", set_thash_entries); 4471 4472 static void __init tcp_init_mem(void) 4473 { 4474 unsigned long limit = nr_free_buffer_pages() / 16; 4475 4476 limit = max(limit, 128UL); 4477 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4478 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4479 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4480 } 4481 4482 void __init tcp_init(void) 4483 { 4484 int max_rshare, max_wshare, cnt; 4485 unsigned long limit; 4486 unsigned int i; 4487 4488 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4489 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4490 sizeof_field(struct sk_buff, cb)); 4491 4492 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4493 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 4494 inet_hashinfo_init(&tcp_hashinfo); 4495 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4496 thash_entries, 21, /* one slot per 2 MB*/ 4497 0, 64 * 1024); 4498 tcp_hashinfo.bind_bucket_cachep = 4499 kmem_cache_create("tcp_bind_bucket", 4500 sizeof(struct inet_bind_bucket), 0, 4501 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4502 4503 /* Size and allocate the main established and bind bucket 4504 * hash tables. 4505 * 4506 * The methodology is similar to that of the buffer cache. 4507 */ 4508 tcp_hashinfo.ehash = 4509 alloc_large_system_hash("TCP established", 4510 sizeof(struct inet_ehash_bucket), 4511 thash_entries, 4512 17, /* one slot per 128 KB of memory */ 4513 0, 4514 NULL, 4515 &tcp_hashinfo.ehash_mask, 4516 0, 4517 thash_entries ? 0 : 512 * 1024); 4518 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4519 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4520 4521 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4522 panic("TCP: failed to alloc ehash_locks"); 4523 tcp_hashinfo.bhash = 4524 alloc_large_system_hash("TCP bind", 4525 sizeof(struct inet_bind_hashbucket), 4526 tcp_hashinfo.ehash_mask + 1, 4527 17, /* one slot per 128 KB of memory */ 4528 0, 4529 &tcp_hashinfo.bhash_size, 4530 NULL, 4531 0, 4532 64 * 1024); 4533 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4534 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4535 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4536 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4537 } 4538 4539 4540 cnt = tcp_hashinfo.ehash_mask + 1; 4541 sysctl_tcp_max_orphans = cnt / 2; 4542 4543 tcp_init_mem(); 4544 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4545 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4546 max_wshare = min(4UL*1024*1024, limit); 4547 max_rshare = min(6UL*1024*1024, limit); 4548 4549 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4550 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4551 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4552 4553 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4554 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4555 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4556 4557 pr_info("Hash tables configured (established %u bind %u)\n", 4558 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4559 4560 tcp_v4_init(); 4561 tcp_metrics_init(); 4562 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4563 tcp_tasklet_init(); 4564 mptcp_init(); 4565 } 4566