1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #include <linux/kernel.h> 249 #include <linux/module.h> 250 #include <linux/types.h> 251 #include <linux/fcntl.h> 252 #include <linux/poll.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/bootmem.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/crypto.h> 267 #include <linux/time.h> 268 269 #include <net/icmp.h> 270 #include <net/tcp.h> 271 #include <net/xfrm.h> 272 #include <net/ip.h> 273 #include <net/netdma.h> 274 #include <net/sock.h> 275 276 #include <asm/uaccess.h> 277 #include <asm/ioctls.h> 278 279 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 280 281 struct percpu_counter tcp_orphan_count; 282 EXPORT_SYMBOL_GPL(tcp_orphan_count); 283 284 int sysctl_tcp_mem[3] __read_mostly; 285 int sysctl_tcp_wmem[3] __read_mostly; 286 int sysctl_tcp_rmem[3] __read_mostly; 287 288 EXPORT_SYMBOL(sysctl_tcp_mem); 289 EXPORT_SYMBOL(sysctl_tcp_rmem); 290 EXPORT_SYMBOL(sysctl_tcp_wmem); 291 292 atomic_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 /* 296 * Current number of TCP sockets. 297 */ 298 struct percpu_counter tcp_sockets_allocated; 299 EXPORT_SYMBOL(tcp_sockets_allocated); 300 301 /* 302 * TCP splice context 303 */ 304 struct tcp_splice_state { 305 struct pipe_inode_info *pipe; 306 size_t len; 307 unsigned int flags; 308 }; 309 310 /* 311 * Pressure flag: try to collapse. 312 * Technical note: it is used by multiple contexts non atomically. 313 * All the __sk_mem_schedule() is of this nature: accounting 314 * is strict, actions are advisory and have some latency. 315 */ 316 int tcp_memory_pressure __read_mostly; 317 318 EXPORT_SYMBOL(tcp_memory_pressure); 319 320 void tcp_enter_memory_pressure(struct sock *sk) 321 { 322 if (!tcp_memory_pressure) { 323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 324 tcp_memory_pressure = 1; 325 } 326 } 327 328 EXPORT_SYMBOL(tcp_enter_memory_pressure); 329 330 /* Convert seconds to retransmits based on initial and max timeout */ 331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 332 { 333 u8 res = 0; 334 335 if (seconds > 0) { 336 int period = timeout; 337 338 res = 1; 339 while (seconds > period && res < 255) { 340 res++; 341 timeout <<= 1; 342 if (timeout > rto_max) 343 timeout = rto_max; 344 period += timeout; 345 } 346 } 347 return res; 348 } 349 350 /* Convert retransmits to seconds based on initial and max timeout */ 351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 352 { 353 int period = 0; 354 355 if (retrans > 0) { 356 period = timeout; 357 while (--retrans) { 358 timeout <<= 1; 359 if (timeout > rto_max) 360 timeout = rto_max; 361 period += timeout; 362 } 363 } 364 return period; 365 } 366 367 /* 368 * Wait for a TCP event. 369 * 370 * Note that we don't need to lock the socket, as the upper poll layers 371 * take care of normal races (between the test and the event) and we don't 372 * go look at any of the socket buffers directly. 373 */ 374 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 375 { 376 unsigned int mask; 377 struct sock *sk = sock->sk; 378 struct tcp_sock *tp = tcp_sk(sk); 379 380 sock_poll_wait(file, sk->sk_sleep, wait); 381 if (sk->sk_state == TCP_LISTEN) 382 return inet_csk_listen_poll(sk); 383 384 /* Socket is not locked. We are protected from async events 385 * by poll logic and correct handling of state changes 386 * made by other threads is impossible in any case. 387 */ 388 389 mask = 0; 390 if (sk->sk_err) 391 mask = POLLERR; 392 393 /* 394 * POLLHUP is certainly not done right. But poll() doesn't 395 * have a notion of HUP in just one direction, and for a 396 * socket the read side is more interesting. 397 * 398 * Some poll() documentation says that POLLHUP is incompatible 399 * with the POLLOUT/POLLWR flags, so somebody should check this 400 * all. But careful, it tends to be safer to return too many 401 * bits than too few, and you can easily break real applications 402 * if you don't tell them that something has hung up! 403 * 404 * Check-me. 405 * 406 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 407 * our fs/select.c). It means that after we received EOF, 408 * poll always returns immediately, making impossible poll() on write() 409 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 410 * if and only if shutdown has been made in both directions. 411 * Actually, it is interesting to look how Solaris and DUX 412 * solve this dilemma. I would prefer, if POLLHUP were maskable, 413 * then we could set it on SND_SHUTDOWN. BTW examples given 414 * in Stevens' books assume exactly this behaviour, it explains 415 * why POLLHUP is incompatible with POLLOUT. --ANK 416 * 417 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 418 * blocking on fresh not-connected or disconnected socket. --ANK 419 */ 420 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 421 mask |= POLLHUP; 422 if (sk->sk_shutdown & RCV_SHUTDOWN) 423 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 424 425 /* Connected? */ 426 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 427 int target = sock_rcvlowat(sk, 0, INT_MAX); 428 429 if (tp->urg_seq == tp->copied_seq && 430 !sock_flag(sk, SOCK_URGINLINE) && 431 tp->urg_data) 432 target--; 433 434 /* Potential race condition. If read of tp below will 435 * escape above sk->sk_state, we can be illegally awaken 436 * in SYN_* states. */ 437 if (tp->rcv_nxt - tp->copied_seq >= target) 438 mask |= POLLIN | POLLRDNORM; 439 440 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 441 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 442 mask |= POLLOUT | POLLWRNORM; 443 } else { /* send SIGIO later */ 444 set_bit(SOCK_ASYNC_NOSPACE, 445 &sk->sk_socket->flags); 446 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 447 448 /* Race breaker. If space is freed after 449 * wspace test but before the flags are set, 450 * IO signal will be lost. 451 */ 452 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 453 mask |= POLLOUT | POLLWRNORM; 454 } 455 } 456 457 if (tp->urg_data & TCP_URG_VALID) 458 mask |= POLLPRI; 459 } 460 return mask; 461 } 462 463 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 464 { 465 struct tcp_sock *tp = tcp_sk(sk); 466 int answ; 467 468 switch (cmd) { 469 case SIOCINQ: 470 if (sk->sk_state == TCP_LISTEN) 471 return -EINVAL; 472 473 lock_sock(sk); 474 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 475 answ = 0; 476 else if (sock_flag(sk, SOCK_URGINLINE) || 477 !tp->urg_data || 478 before(tp->urg_seq, tp->copied_seq) || 479 !before(tp->urg_seq, tp->rcv_nxt)) { 480 struct sk_buff *skb; 481 482 answ = tp->rcv_nxt - tp->copied_seq; 483 484 /* Subtract 1, if FIN is in queue. */ 485 skb = skb_peek_tail(&sk->sk_receive_queue); 486 if (answ && skb) 487 answ -= tcp_hdr(skb)->fin; 488 } else 489 answ = tp->urg_seq - tp->copied_seq; 490 release_sock(sk); 491 break; 492 case SIOCATMARK: 493 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 494 break; 495 case SIOCOUTQ: 496 if (sk->sk_state == TCP_LISTEN) 497 return -EINVAL; 498 499 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 500 answ = 0; 501 else 502 answ = tp->write_seq - tp->snd_una; 503 break; 504 default: 505 return -ENOIOCTLCMD; 506 } 507 508 return put_user(answ, (int __user *)arg); 509 } 510 511 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 512 { 513 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 514 tp->pushed_seq = tp->write_seq; 515 } 516 517 static inline int forced_push(struct tcp_sock *tp) 518 { 519 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 520 } 521 522 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 523 { 524 struct tcp_sock *tp = tcp_sk(sk); 525 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 526 527 skb->csum = 0; 528 tcb->seq = tcb->end_seq = tp->write_seq; 529 tcb->flags = TCPCB_FLAG_ACK; 530 tcb->sacked = 0; 531 skb_header_release(skb); 532 tcp_add_write_queue_tail(sk, skb); 533 sk->sk_wmem_queued += skb->truesize; 534 sk_mem_charge(sk, skb->truesize); 535 if (tp->nonagle & TCP_NAGLE_PUSH) 536 tp->nonagle &= ~TCP_NAGLE_PUSH; 537 } 538 539 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags, 540 struct sk_buff *skb) 541 { 542 if (flags & MSG_OOB) 543 tp->snd_up = tp->write_seq; 544 } 545 546 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 547 int nonagle) 548 { 549 struct tcp_sock *tp = tcp_sk(sk); 550 551 if (tcp_send_head(sk)) { 552 struct sk_buff *skb = tcp_write_queue_tail(sk); 553 if (!(flags & MSG_MORE) || forced_push(tp)) 554 tcp_mark_push(tp, skb); 555 tcp_mark_urg(tp, flags, skb); 556 __tcp_push_pending_frames(sk, mss_now, 557 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 558 } 559 } 560 561 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 562 unsigned int offset, size_t len) 563 { 564 struct tcp_splice_state *tss = rd_desc->arg.data; 565 int ret; 566 567 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 568 tss->flags); 569 if (ret > 0) 570 rd_desc->count -= ret; 571 return ret; 572 } 573 574 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 575 { 576 /* Store TCP splice context information in read_descriptor_t. */ 577 read_descriptor_t rd_desc = { 578 .arg.data = tss, 579 .count = tss->len, 580 }; 581 582 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 583 } 584 585 /** 586 * tcp_splice_read - splice data from TCP socket to a pipe 587 * @sock: socket to splice from 588 * @ppos: position (not valid) 589 * @pipe: pipe to splice to 590 * @len: number of bytes to splice 591 * @flags: splice modifier flags 592 * 593 * Description: 594 * Will read pages from given socket and fill them into a pipe. 595 * 596 **/ 597 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 598 struct pipe_inode_info *pipe, size_t len, 599 unsigned int flags) 600 { 601 struct sock *sk = sock->sk; 602 struct tcp_splice_state tss = { 603 .pipe = pipe, 604 .len = len, 605 .flags = flags, 606 }; 607 long timeo; 608 ssize_t spliced; 609 int ret; 610 611 /* 612 * We can't seek on a socket input 613 */ 614 if (unlikely(*ppos)) 615 return -ESPIPE; 616 617 ret = spliced = 0; 618 619 lock_sock(sk); 620 621 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 622 while (tss.len) { 623 ret = __tcp_splice_read(sk, &tss); 624 if (ret < 0) 625 break; 626 else if (!ret) { 627 if (spliced) 628 break; 629 if (sock_flag(sk, SOCK_DONE)) 630 break; 631 if (sk->sk_err) { 632 ret = sock_error(sk); 633 break; 634 } 635 if (sk->sk_shutdown & RCV_SHUTDOWN) 636 break; 637 if (sk->sk_state == TCP_CLOSE) { 638 /* 639 * This occurs when user tries to read 640 * from never connected socket. 641 */ 642 if (!sock_flag(sk, SOCK_DONE)) 643 ret = -ENOTCONN; 644 break; 645 } 646 if (!timeo) { 647 ret = -EAGAIN; 648 break; 649 } 650 sk_wait_data(sk, &timeo); 651 if (signal_pending(current)) { 652 ret = sock_intr_errno(timeo); 653 break; 654 } 655 continue; 656 } 657 tss.len -= ret; 658 spliced += ret; 659 660 if (!timeo) 661 break; 662 release_sock(sk); 663 lock_sock(sk); 664 665 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 666 (sk->sk_shutdown & RCV_SHUTDOWN) || 667 signal_pending(current)) 668 break; 669 } 670 671 release_sock(sk); 672 673 if (spliced) 674 return spliced; 675 676 return ret; 677 } 678 679 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 680 { 681 struct sk_buff *skb; 682 683 /* The TCP header must be at least 32-bit aligned. */ 684 size = ALIGN(size, 4); 685 686 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 687 if (skb) { 688 if (sk_wmem_schedule(sk, skb->truesize)) { 689 /* 690 * Make sure that we have exactly size bytes 691 * available to the caller, no more, no less. 692 */ 693 skb_reserve(skb, skb_tailroom(skb) - size); 694 return skb; 695 } 696 __kfree_skb(skb); 697 } else { 698 sk->sk_prot->enter_memory_pressure(sk); 699 sk_stream_moderate_sndbuf(sk); 700 } 701 return NULL; 702 } 703 704 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 705 int large_allowed) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 u32 xmit_size_goal, old_size_goal; 709 710 xmit_size_goal = mss_now; 711 712 if (large_allowed && sk_can_gso(sk)) { 713 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 714 inet_csk(sk)->icsk_af_ops->net_header_len - 715 inet_csk(sk)->icsk_ext_hdr_len - 716 tp->tcp_header_len); 717 718 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 719 720 /* We try hard to avoid divides here */ 721 old_size_goal = tp->xmit_size_goal_segs * mss_now; 722 723 if (likely(old_size_goal <= xmit_size_goal && 724 old_size_goal + mss_now > xmit_size_goal)) { 725 xmit_size_goal = old_size_goal; 726 } else { 727 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 728 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 729 } 730 } 731 732 return max(xmit_size_goal, mss_now); 733 } 734 735 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 736 { 737 int mss_now; 738 739 mss_now = tcp_current_mss(sk); 740 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 741 742 return mss_now; 743 } 744 745 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 746 size_t psize, int flags) 747 { 748 struct tcp_sock *tp = tcp_sk(sk); 749 int mss_now, size_goal; 750 int err; 751 ssize_t copied; 752 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 753 754 /* Wait for a connection to finish. */ 755 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 756 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 757 goto out_err; 758 759 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 760 761 mss_now = tcp_send_mss(sk, &size_goal, flags); 762 copied = 0; 763 764 err = -EPIPE; 765 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 766 goto out_err; 767 768 while (psize > 0) { 769 struct sk_buff *skb = tcp_write_queue_tail(sk); 770 struct page *page = pages[poffset / PAGE_SIZE]; 771 int copy, i, can_coalesce; 772 int offset = poffset % PAGE_SIZE; 773 int size = min_t(size_t, psize, PAGE_SIZE - offset); 774 775 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 776 new_segment: 777 if (!sk_stream_memory_free(sk)) 778 goto wait_for_sndbuf; 779 780 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 781 if (!skb) 782 goto wait_for_memory; 783 784 skb_entail(sk, skb); 785 copy = size_goal; 786 } 787 788 if (copy > size) 789 copy = size; 790 791 i = skb_shinfo(skb)->nr_frags; 792 can_coalesce = skb_can_coalesce(skb, i, page, offset); 793 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 794 tcp_mark_push(tp, skb); 795 goto new_segment; 796 } 797 if (!sk_wmem_schedule(sk, copy)) 798 goto wait_for_memory; 799 800 if (can_coalesce) { 801 skb_shinfo(skb)->frags[i - 1].size += copy; 802 } else { 803 get_page(page); 804 skb_fill_page_desc(skb, i, page, offset, copy); 805 } 806 807 skb->len += copy; 808 skb->data_len += copy; 809 skb->truesize += copy; 810 sk->sk_wmem_queued += copy; 811 sk_mem_charge(sk, copy); 812 skb->ip_summed = CHECKSUM_PARTIAL; 813 tp->write_seq += copy; 814 TCP_SKB_CB(skb)->end_seq += copy; 815 skb_shinfo(skb)->gso_segs = 0; 816 817 if (!copied) 818 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 819 820 copied += copy; 821 poffset += copy; 822 if (!(psize -= copy)) 823 goto out; 824 825 if (skb->len < size_goal || (flags & MSG_OOB)) 826 continue; 827 828 if (forced_push(tp)) { 829 tcp_mark_push(tp, skb); 830 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 831 } else if (skb == tcp_send_head(sk)) 832 tcp_push_one(sk, mss_now); 833 continue; 834 835 wait_for_sndbuf: 836 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 837 wait_for_memory: 838 if (copied) 839 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 840 841 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 842 goto do_error; 843 844 mss_now = tcp_send_mss(sk, &size_goal, flags); 845 } 846 847 out: 848 if (copied) 849 tcp_push(sk, flags, mss_now, tp->nonagle); 850 return copied; 851 852 do_error: 853 if (copied) 854 goto out; 855 out_err: 856 return sk_stream_error(sk, flags, err); 857 } 858 859 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, 860 size_t size, int flags) 861 { 862 ssize_t res; 863 struct sock *sk = sock->sk; 864 865 if (!(sk->sk_route_caps & NETIF_F_SG) || 866 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 867 return sock_no_sendpage(sock, page, offset, size, flags); 868 869 lock_sock(sk); 870 TCP_CHECK_TIMER(sk); 871 res = do_tcp_sendpages(sk, &page, offset, size, flags); 872 TCP_CHECK_TIMER(sk); 873 release_sock(sk); 874 return res; 875 } 876 877 #define TCP_PAGE(sk) (sk->sk_sndmsg_page) 878 #define TCP_OFF(sk) (sk->sk_sndmsg_off) 879 880 static inline int select_size(struct sock *sk) 881 { 882 struct tcp_sock *tp = tcp_sk(sk); 883 int tmp = tp->mss_cache; 884 885 if (sk->sk_route_caps & NETIF_F_SG) { 886 if (sk_can_gso(sk)) 887 tmp = 0; 888 else { 889 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 890 891 if (tmp >= pgbreak && 892 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 893 tmp = pgbreak; 894 } 895 } 896 897 return tmp; 898 } 899 900 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 901 size_t size) 902 { 903 struct sock *sk = sock->sk; 904 struct iovec *iov; 905 struct tcp_sock *tp = tcp_sk(sk); 906 struct sk_buff *skb; 907 int iovlen, flags; 908 int mss_now, size_goal; 909 int err, copied; 910 long timeo; 911 912 lock_sock(sk); 913 TCP_CHECK_TIMER(sk); 914 915 flags = msg->msg_flags; 916 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 917 918 /* Wait for a connection to finish. */ 919 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 920 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 921 goto out_err; 922 923 /* This should be in poll */ 924 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 925 926 mss_now = tcp_send_mss(sk, &size_goal, flags); 927 928 /* Ok commence sending. */ 929 iovlen = msg->msg_iovlen; 930 iov = msg->msg_iov; 931 copied = 0; 932 933 err = -EPIPE; 934 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 935 goto out_err; 936 937 while (--iovlen >= 0) { 938 int seglen = iov->iov_len; 939 unsigned char __user *from = iov->iov_base; 940 941 iov++; 942 943 while (seglen > 0) { 944 int copy = 0; 945 int max = size_goal; 946 947 skb = tcp_write_queue_tail(sk); 948 if (tcp_send_head(sk)) { 949 if (skb->ip_summed == CHECKSUM_NONE) 950 max = mss_now; 951 copy = max - skb->len; 952 } 953 954 if (copy <= 0) { 955 new_segment: 956 /* Allocate new segment. If the interface is SG, 957 * allocate skb fitting to single page. 958 */ 959 if (!sk_stream_memory_free(sk)) 960 goto wait_for_sndbuf; 961 962 skb = sk_stream_alloc_skb(sk, select_size(sk), 963 sk->sk_allocation); 964 if (!skb) 965 goto wait_for_memory; 966 967 /* 968 * Check whether we can use HW checksum. 969 */ 970 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 971 skb->ip_summed = CHECKSUM_PARTIAL; 972 973 skb_entail(sk, skb); 974 copy = size_goal; 975 max = size_goal; 976 } 977 978 /* Try to append data to the end of skb. */ 979 if (copy > seglen) 980 copy = seglen; 981 982 /* Where to copy to? */ 983 if (skb_tailroom(skb) > 0) { 984 /* We have some space in skb head. Superb! */ 985 if (copy > skb_tailroom(skb)) 986 copy = skb_tailroom(skb); 987 if ((err = skb_add_data(skb, from, copy)) != 0) 988 goto do_fault; 989 } else { 990 int merge = 0; 991 int i = skb_shinfo(skb)->nr_frags; 992 struct page *page = TCP_PAGE(sk); 993 int off = TCP_OFF(sk); 994 995 if (skb_can_coalesce(skb, i, page, off) && 996 off != PAGE_SIZE) { 997 /* We can extend the last page 998 * fragment. */ 999 merge = 1; 1000 } else if (i == MAX_SKB_FRAGS || 1001 (!i && 1002 !(sk->sk_route_caps & NETIF_F_SG))) { 1003 /* Need to add new fragment and cannot 1004 * do this because interface is non-SG, 1005 * or because all the page slots are 1006 * busy. */ 1007 tcp_mark_push(tp, skb); 1008 goto new_segment; 1009 } else if (page) { 1010 if (off == PAGE_SIZE) { 1011 put_page(page); 1012 TCP_PAGE(sk) = page = NULL; 1013 off = 0; 1014 } 1015 } else 1016 off = 0; 1017 1018 if (copy > PAGE_SIZE - off) 1019 copy = PAGE_SIZE - off; 1020 1021 if (!sk_wmem_schedule(sk, copy)) 1022 goto wait_for_memory; 1023 1024 if (!page) { 1025 /* Allocate new cache page. */ 1026 if (!(page = sk_stream_alloc_page(sk))) 1027 goto wait_for_memory; 1028 } 1029 1030 /* Time to copy data. We are close to 1031 * the end! */ 1032 err = skb_copy_to_page(sk, from, skb, page, 1033 off, copy); 1034 if (err) { 1035 /* If this page was new, give it to the 1036 * socket so it does not get leaked. 1037 */ 1038 if (!TCP_PAGE(sk)) { 1039 TCP_PAGE(sk) = page; 1040 TCP_OFF(sk) = 0; 1041 } 1042 goto do_error; 1043 } 1044 1045 /* Update the skb. */ 1046 if (merge) { 1047 skb_shinfo(skb)->frags[i - 1].size += 1048 copy; 1049 } else { 1050 skb_fill_page_desc(skb, i, page, off, copy); 1051 if (TCP_PAGE(sk)) { 1052 get_page(page); 1053 } else if (off + copy < PAGE_SIZE) { 1054 get_page(page); 1055 TCP_PAGE(sk) = page; 1056 } 1057 } 1058 1059 TCP_OFF(sk) = off + copy; 1060 } 1061 1062 if (!copied) 1063 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 1064 1065 tp->write_seq += copy; 1066 TCP_SKB_CB(skb)->end_seq += copy; 1067 skb_shinfo(skb)->gso_segs = 0; 1068 1069 from += copy; 1070 copied += copy; 1071 if ((seglen -= copy) == 0 && iovlen == 0) 1072 goto out; 1073 1074 if (skb->len < max || (flags & MSG_OOB)) 1075 continue; 1076 1077 if (forced_push(tp)) { 1078 tcp_mark_push(tp, skb); 1079 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1080 } else if (skb == tcp_send_head(sk)) 1081 tcp_push_one(sk, mss_now); 1082 continue; 1083 1084 wait_for_sndbuf: 1085 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1086 wait_for_memory: 1087 if (copied) 1088 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1089 1090 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1091 goto do_error; 1092 1093 mss_now = tcp_send_mss(sk, &size_goal, flags); 1094 } 1095 } 1096 1097 out: 1098 if (copied) 1099 tcp_push(sk, flags, mss_now, tp->nonagle); 1100 TCP_CHECK_TIMER(sk); 1101 release_sock(sk); 1102 return copied; 1103 1104 do_fault: 1105 if (!skb->len) { 1106 tcp_unlink_write_queue(skb, sk); 1107 /* It is the one place in all of TCP, except connection 1108 * reset, where we can be unlinking the send_head. 1109 */ 1110 tcp_check_send_head(sk, skb); 1111 sk_wmem_free_skb(sk, skb); 1112 } 1113 1114 do_error: 1115 if (copied) 1116 goto out; 1117 out_err: 1118 err = sk_stream_error(sk, flags, err); 1119 TCP_CHECK_TIMER(sk); 1120 release_sock(sk); 1121 return err; 1122 } 1123 1124 /* 1125 * Handle reading urgent data. BSD has very simple semantics for 1126 * this, no blocking and very strange errors 8) 1127 */ 1128 1129 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1130 { 1131 struct tcp_sock *tp = tcp_sk(sk); 1132 1133 /* No URG data to read. */ 1134 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1135 tp->urg_data == TCP_URG_READ) 1136 return -EINVAL; /* Yes this is right ! */ 1137 1138 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1139 return -ENOTCONN; 1140 1141 if (tp->urg_data & TCP_URG_VALID) { 1142 int err = 0; 1143 char c = tp->urg_data; 1144 1145 if (!(flags & MSG_PEEK)) 1146 tp->urg_data = TCP_URG_READ; 1147 1148 /* Read urgent data. */ 1149 msg->msg_flags |= MSG_OOB; 1150 1151 if (len > 0) { 1152 if (!(flags & MSG_TRUNC)) 1153 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1154 len = 1; 1155 } else 1156 msg->msg_flags |= MSG_TRUNC; 1157 1158 return err ? -EFAULT : len; 1159 } 1160 1161 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1162 return 0; 1163 1164 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1165 * the available implementations agree in this case: 1166 * this call should never block, independent of the 1167 * blocking state of the socket. 1168 * Mike <pall@rz.uni-karlsruhe.de> 1169 */ 1170 return -EAGAIN; 1171 } 1172 1173 /* Clean up the receive buffer for full frames taken by the user, 1174 * then send an ACK if necessary. COPIED is the number of bytes 1175 * tcp_recvmsg has given to the user so far, it speeds up the 1176 * calculation of whether or not we must ACK for the sake of 1177 * a window update. 1178 */ 1179 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1180 { 1181 struct tcp_sock *tp = tcp_sk(sk); 1182 int time_to_ack = 0; 1183 1184 #if TCP_DEBUG 1185 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1186 1187 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1188 KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1189 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1190 #endif 1191 1192 if (inet_csk_ack_scheduled(sk)) { 1193 const struct inet_connection_sock *icsk = inet_csk(sk); 1194 /* Delayed ACKs frequently hit locked sockets during bulk 1195 * receive. */ 1196 if (icsk->icsk_ack.blocked || 1197 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1198 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1199 /* 1200 * If this read emptied read buffer, we send ACK, if 1201 * connection is not bidirectional, user drained 1202 * receive buffer and there was a small segment 1203 * in queue. 1204 */ 1205 (copied > 0 && 1206 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1207 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1208 !icsk->icsk_ack.pingpong)) && 1209 !atomic_read(&sk->sk_rmem_alloc))) 1210 time_to_ack = 1; 1211 } 1212 1213 /* We send an ACK if we can now advertise a non-zero window 1214 * which has been raised "significantly". 1215 * 1216 * Even if window raised up to infinity, do not send window open ACK 1217 * in states, where we will not receive more. It is useless. 1218 */ 1219 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1220 __u32 rcv_window_now = tcp_receive_window(tp); 1221 1222 /* Optimize, __tcp_select_window() is not cheap. */ 1223 if (2*rcv_window_now <= tp->window_clamp) { 1224 __u32 new_window = __tcp_select_window(sk); 1225 1226 /* Send ACK now, if this read freed lots of space 1227 * in our buffer. Certainly, new_window is new window. 1228 * We can advertise it now, if it is not less than current one. 1229 * "Lots" means "at least twice" here. 1230 */ 1231 if (new_window && new_window >= 2 * rcv_window_now) 1232 time_to_ack = 1; 1233 } 1234 } 1235 if (time_to_ack) 1236 tcp_send_ack(sk); 1237 } 1238 1239 static void tcp_prequeue_process(struct sock *sk) 1240 { 1241 struct sk_buff *skb; 1242 struct tcp_sock *tp = tcp_sk(sk); 1243 1244 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1245 1246 /* RX process wants to run with disabled BHs, though it is not 1247 * necessary */ 1248 local_bh_disable(); 1249 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1250 sk_backlog_rcv(sk, skb); 1251 local_bh_enable(); 1252 1253 /* Clear memory counter. */ 1254 tp->ucopy.memory = 0; 1255 } 1256 1257 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1258 { 1259 struct sk_buff *skb; 1260 u32 offset; 1261 1262 skb_queue_walk(&sk->sk_receive_queue, skb) { 1263 offset = seq - TCP_SKB_CB(skb)->seq; 1264 if (tcp_hdr(skb)->syn) 1265 offset--; 1266 if (offset < skb->len || tcp_hdr(skb)->fin) { 1267 *off = offset; 1268 return skb; 1269 } 1270 } 1271 return NULL; 1272 } 1273 1274 /* 1275 * This routine provides an alternative to tcp_recvmsg() for routines 1276 * that would like to handle copying from skbuffs directly in 'sendfile' 1277 * fashion. 1278 * Note: 1279 * - It is assumed that the socket was locked by the caller. 1280 * - The routine does not block. 1281 * - At present, there is no support for reading OOB data 1282 * or for 'peeking' the socket using this routine 1283 * (although both would be easy to implement). 1284 */ 1285 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1286 sk_read_actor_t recv_actor) 1287 { 1288 struct sk_buff *skb; 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 u32 seq = tp->copied_seq; 1291 u32 offset; 1292 int copied = 0; 1293 1294 if (sk->sk_state == TCP_LISTEN) 1295 return -ENOTCONN; 1296 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1297 if (offset < skb->len) { 1298 int used; 1299 size_t len; 1300 1301 len = skb->len - offset; 1302 /* Stop reading if we hit a patch of urgent data */ 1303 if (tp->urg_data) { 1304 u32 urg_offset = tp->urg_seq - seq; 1305 if (urg_offset < len) 1306 len = urg_offset; 1307 if (!len) 1308 break; 1309 } 1310 used = recv_actor(desc, skb, offset, len); 1311 if (used < 0) { 1312 if (!copied) 1313 copied = used; 1314 break; 1315 } else if (used <= len) { 1316 seq += used; 1317 copied += used; 1318 offset += used; 1319 } 1320 /* 1321 * If recv_actor drops the lock (e.g. TCP splice 1322 * receive) the skb pointer might be invalid when 1323 * getting here: tcp_collapse might have deleted it 1324 * while aggregating skbs from the socket queue. 1325 */ 1326 skb = tcp_recv_skb(sk, seq-1, &offset); 1327 if (!skb || (offset+1 != skb->len)) 1328 break; 1329 } 1330 if (tcp_hdr(skb)->fin) { 1331 sk_eat_skb(sk, skb, 0); 1332 ++seq; 1333 break; 1334 } 1335 sk_eat_skb(sk, skb, 0); 1336 if (!desc->count) 1337 break; 1338 } 1339 tp->copied_seq = seq; 1340 1341 tcp_rcv_space_adjust(sk); 1342 1343 /* Clean up data we have read: This will do ACK frames. */ 1344 if (copied > 0) 1345 tcp_cleanup_rbuf(sk, copied); 1346 return copied; 1347 } 1348 1349 /* 1350 * This routine copies from a sock struct into the user buffer. 1351 * 1352 * Technical note: in 2.3 we work on _locked_ socket, so that 1353 * tricks with *seq access order and skb->users are not required. 1354 * Probably, code can be easily improved even more. 1355 */ 1356 1357 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1358 size_t len, int nonblock, int flags, int *addr_len) 1359 { 1360 struct tcp_sock *tp = tcp_sk(sk); 1361 int copied = 0; 1362 u32 peek_seq; 1363 u32 *seq; 1364 unsigned long used; 1365 int err; 1366 int target; /* Read at least this many bytes */ 1367 long timeo; 1368 struct task_struct *user_recv = NULL; 1369 int copied_early = 0; 1370 struct sk_buff *skb; 1371 u32 urg_hole = 0; 1372 1373 lock_sock(sk); 1374 1375 TCP_CHECK_TIMER(sk); 1376 1377 err = -ENOTCONN; 1378 if (sk->sk_state == TCP_LISTEN) 1379 goto out; 1380 1381 timeo = sock_rcvtimeo(sk, nonblock); 1382 1383 /* Urgent data needs to be handled specially. */ 1384 if (flags & MSG_OOB) 1385 goto recv_urg; 1386 1387 seq = &tp->copied_seq; 1388 if (flags & MSG_PEEK) { 1389 peek_seq = tp->copied_seq; 1390 seq = &peek_seq; 1391 } 1392 1393 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1394 1395 #ifdef CONFIG_NET_DMA 1396 tp->ucopy.dma_chan = NULL; 1397 preempt_disable(); 1398 skb = skb_peek_tail(&sk->sk_receive_queue); 1399 { 1400 int available = 0; 1401 1402 if (skb) 1403 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1404 if ((available < target) && 1405 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1406 !sysctl_tcp_low_latency && 1407 dma_find_channel(DMA_MEMCPY)) { 1408 preempt_enable_no_resched(); 1409 tp->ucopy.pinned_list = 1410 dma_pin_iovec_pages(msg->msg_iov, len); 1411 } else { 1412 preempt_enable_no_resched(); 1413 } 1414 } 1415 #endif 1416 1417 do { 1418 u32 offset; 1419 1420 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1421 if (tp->urg_data && tp->urg_seq == *seq) { 1422 if (copied) 1423 break; 1424 if (signal_pending(current)) { 1425 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1426 break; 1427 } 1428 } 1429 1430 /* Next get a buffer. */ 1431 1432 skb_queue_walk(&sk->sk_receive_queue, skb) { 1433 /* Now that we have two receive queues this 1434 * shouldn't happen. 1435 */ 1436 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1437 KERN_INFO "recvmsg bug: copied %X " 1438 "seq %X rcvnxt %X fl %X\n", *seq, 1439 TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1440 flags)) 1441 break; 1442 1443 offset = *seq - TCP_SKB_CB(skb)->seq; 1444 if (tcp_hdr(skb)->syn) 1445 offset--; 1446 if (offset < skb->len) 1447 goto found_ok_skb; 1448 if (tcp_hdr(skb)->fin) 1449 goto found_fin_ok; 1450 WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: " 1451 "copied %X seq %X rcvnxt %X fl %X\n", 1452 *seq, TCP_SKB_CB(skb)->seq, 1453 tp->rcv_nxt, flags); 1454 } 1455 1456 /* Well, if we have backlog, try to process it now yet. */ 1457 1458 if (copied >= target && !sk->sk_backlog.tail) 1459 break; 1460 1461 if (copied) { 1462 if (sk->sk_err || 1463 sk->sk_state == TCP_CLOSE || 1464 (sk->sk_shutdown & RCV_SHUTDOWN) || 1465 !timeo || 1466 signal_pending(current)) 1467 break; 1468 } else { 1469 if (sock_flag(sk, SOCK_DONE)) 1470 break; 1471 1472 if (sk->sk_err) { 1473 copied = sock_error(sk); 1474 break; 1475 } 1476 1477 if (sk->sk_shutdown & RCV_SHUTDOWN) 1478 break; 1479 1480 if (sk->sk_state == TCP_CLOSE) { 1481 if (!sock_flag(sk, SOCK_DONE)) { 1482 /* This occurs when user tries to read 1483 * from never connected socket. 1484 */ 1485 copied = -ENOTCONN; 1486 break; 1487 } 1488 break; 1489 } 1490 1491 if (!timeo) { 1492 copied = -EAGAIN; 1493 break; 1494 } 1495 1496 if (signal_pending(current)) { 1497 copied = sock_intr_errno(timeo); 1498 break; 1499 } 1500 } 1501 1502 tcp_cleanup_rbuf(sk, copied); 1503 1504 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1505 /* Install new reader */ 1506 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1507 user_recv = current; 1508 tp->ucopy.task = user_recv; 1509 tp->ucopy.iov = msg->msg_iov; 1510 } 1511 1512 tp->ucopy.len = len; 1513 1514 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1515 !(flags & (MSG_PEEK | MSG_TRUNC))); 1516 1517 /* Ugly... If prequeue is not empty, we have to 1518 * process it before releasing socket, otherwise 1519 * order will be broken at second iteration. 1520 * More elegant solution is required!!! 1521 * 1522 * Look: we have the following (pseudo)queues: 1523 * 1524 * 1. packets in flight 1525 * 2. backlog 1526 * 3. prequeue 1527 * 4. receive_queue 1528 * 1529 * Each queue can be processed only if the next ones 1530 * are empty. At this point we have empty receive_queue. 1531 * But prequeue _can_ be not empty after 2nd iteration, 1532 * when we jumped to start of loop because backlog 1533 * processing added something to receive_queue. 1534 * We cannot release_sock(), because backlog contains 1535 * packets arrived _after_ prequeued ones. 1536 * 1537 * Shortly, algorithm is clear --- to process all 1538 * the queues in order. We could make it more directly, 1539 * requeueing packets from backlog to prequeue, if 1540 * is not empty. It is more elegant, but eats cycles, 1541 * unfortunately. 1542 */ 1543 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1544 goto do_prequeue; 1545 1546 /* __ Set realtime policy in scheduler __ */ 1547 } 1548 1549 if (copied >= target) { 1550 /* Do not sleep, just process backlog. */ 1551 release_sock(sk); 1552 lock_sock(sk); 1553 } else 1554 sk_wait_data(sk, &timeo); 1555 1556 #ifdef CONFIG_NET_DMA 1557 tp->ucopy.wakeup = 0; 1558 #endif 1559 1560 if (user_recv) { 1561 int chunk; 1562 1563 /* __ Restore normal policy in scheduler __ */ 1564 1565 if ((chunk = len - tp->ucopy.len) != 0) { 1566 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1567 len -= chunk; 1568 copied += chunk; 1569 } 1570 1571 if (tp->rcv_nxt == tp->copied_seq && 1572 !skb_queue_empty(&tp->ucopy.prequeue)) { 1573 do_prequeue: 1574 tcp_prequeue_process(sk); 1575 1576 if ((chunk = len - tp->ucopy.len) != 0) { 1577 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1578 len -= chunk; 1579 copied += chunk; 1580 } 1581 } 1582 } 1583 if ((flags & MSG_PEEK) && 1584 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1585 if (net_ratelimit()) 1586 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1587 current->comm, task_pid_nr(current)); 1588 peek_seq = tp->copied_seq; 1589 } 1590 continue; 1591 1592 found_ok_skb: 1593 /* Ok so how much can we use? */ 1594 used = skb->len - offset; 1595 if (len < used) 1596 used = len; 1597 1598 /* Do we have urgent data here? */ 1599 if (tp->urg_data) { 1600 u32 urg_offset = tp->urg_seq - *seq; 1601 if (urg_offset < used) { 1602 if (!urg_offset) { 1603 if (!sock_flag(sk, SOCK_URGINLINE)) { 1604 ++*seq; 1605 urg_hole++; 1606 offset++; 1607 used--; 1608 if (!used) 1609 goto skip_copy; 1610 } 1611 } else 1612 used = urg_offset; 1613 } 1614 } 1615 1616 if (!(flags & MSG_TRUNC)) { 1617 #ifdef CONFIG_NET_DMA 1618 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1619 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1620 1621 if (tp->ucopy.dma_chan) { 1622 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1623 tp->ucopy.dma_chan, skb, offset, 1624 msg->msg_iov, used, 1625 tp->ucopy.pinned_list); 1626 1627 if (tp->ucopy.dma_cookie < 0) { 1628 1629 printk(KERN_ALERT "dma_cookie < 0\n"); 1630 1631 /* Exception. Bailout! */ 1632 if (!copied) 1633 copied = -EFAULT; 1634 break; 1635 } 1636 if ((offset + used) == skb->len) 1637 copied_early = 1; 1638 1639 } else 1640 #endif 1641 { 1642 err = skb_copy_datagram_iovec(skb, offset, 1643 msg->msg_iov, used); 1644 if (err) { 1645 /* Exception. Bailout! */ 1646 if (!copied) 1647 copied = -EFAULT; 1648 break; 1649 } 1650 } 1651 } 1652 1653 *seq += used; 1654 copied += used; 1655 len -= used; 1656 1657 tcp_rcv_space_adjust(sk); 1658 1659 skip_copy: 1660 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1661 tp->urg_data = 0; 1662 tcp_fast_path_check(sk); 1663 } 1664 if (used + offset < skb->len) 1665 continue; 1666 1667 if (tcp_hdr(skb)->fin) 1668 goto found_fin_ok; 1669 if (!(flags & MSG_PEEK)) { 1670 sk_eat_skb(sk, skb, copied_early); 1671 copied_early = 0; 1672 } 1673 continue; 1674 1675 found_fin_ok: 1676 /* Process the FIN. */ 1677 ++*seq; 1678 if (!(flags & MSG_PEEK)) { 1679 sk_eat_skb(sk, skb, copied_early); 1680 copied_early = 0; 1681 } 1682 break; 1683 } while (len > 0); 1684 1685 if (user_recv) { 1686 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1687 int chunk; 1688 1689 tp->ucopy.len = copied > 0 ? len : 0; 1690 1691 tcp_prequeue_process(sk); 1692 1693 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1694 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1695 len -= chunk; 1696 copied += chunk; 1697 } 1698 } 1699 1700 tp->ucopy.task = NULL; 1701 tp->ucopy.len = 0; 1702 } 1703 1704 #ifdef CONFIG_NET_DMA 1705 if (tp->ucopy.dma_chan) { 1706 dma_cookie_t done, used; 1707 1708 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1709 1710 while (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1711 tp->ucopy.dma_cookie, &done, 1712 &used) == DMA_IN_PROGRESS) { 1713 /* do partial cleanup of sk_async_wait_queue */ 1714 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1715 (dma_async_is_complete(skb->dma_cookie, done, 1716 used) == DMA_SUCCESS)) { 1717 __skb_dequeue(&sk->sk_async_wait_queue); 1718 kfree_skb(skb); 1719 } 1720 } 1721 1722 /* Safe to free early-copied skbs now */ 1723 __skb_queue_purge(&sk->sk_async_wait_queue); 1724 tp->ucopy.dma_chan = NULL; 1725 } 1726 if (tp->ucopy.pinned_list) { 1727 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1728 tp->ucopy.pinned_list = NULL; 1729 } 1730 #endif 1731 1732 /* According to UNIX98, msg_name/msg_namelen are ignored 1733 * on connected socket. I was just happy when found this 8) --ANK 1734 */ 1735 1736 /* Clean up data we have read: This will do ACK frames. */ 1737 tcp_cleanup_rbuf(sk, copied); 1738 1739 TCP_CHECK_TIMER(sk); 1740 release_sock(sk); 1741 return copied; 1742 1743 out: 1744 TCP_CHECK_TIMER(sk); 1745 release_sock(sk); 1746 return err; 1747 1748 recv_urg: 1749 err = tcp_recv_urg(sk, msg, len, flags); 1750 goto out; 1751 } 1752 1753 void tcp_set_state(struct sock *sk, int state) 1754 { 1755 int oldstate = sk->sk_state; 1756 1757 switch (state) { 1758 case TCP_ESTABLISHED: 1759 if (oldstate != TCP_ESTABLISHED) 1760 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1761 break; 1762 1763 case TCP_CLOSE: 1764 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1765 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1766 1767 sk->sk_prot->unhash(sk); 1768 if (inet_csk(sk)->icsk_bind_hash && 1769 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1770 inet_put_port(sk); 1771 /* fall through */ 1772 default: 1773 if (oldstate == TCP_ESTABLISHED) 1774 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1775 } 1776 1777 /* Change state AFTER socket is unhashed to avoid closed 1778 * socket sitting in hash tables. 1779 */ 1780 sk->sk_state = state; 1781 1782 #ifdef STATE_TRACE 1783 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1784 #endif 1785 } 1786 EXPORT_SYMBOL_GPL(tcp_set_state); 1787 1788 /* 1789 * State processing on a close. This implements the state shift for 1790 * sending our FIN frame. Note that we only send a FIN for some 1791 * states. A shutdown() may have already sent the FIN, or we may be 1792 * closed. 1793 */ 1794 1795 static const unsigned char new_state[16] = { 1796 /* current state: new state: action: */ 1797 /* (Invalid) */ TCP_CLOSE, 1798 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1799 /* TCP_SYN_SENT */ TCP_CLOSE, 1800 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1801 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1802 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1803 /* TCP_TIME_WAIT */ TCP_CLOSE, 1804 /* TCP_CLOSE */ TCP_CLOSE, 1805 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1806 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1807 /* TCP_LISTEN */ TCP_CLOSE, 1808 /* TCP_CLOSING */ TCP_CLOSING, 1809 }; 1810 1811 static int tcp_close_state(struct sock *sk) 1812 { 1813 int next = (int)new_state[sk->sk_state]; 1814 int ns = next & TCP_STATE_MASK; 1815 1816 tcp_set_state(sk, ns); 1817 1818 return next & TCP_ACTION_FIN; 1819 } 1820 1821 /* 1822 * Shutdown the sending side of a connection. Much like close except 1823 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1824 */ 1825 1826 void tcp_shutdown(struct sock *sk, int how) 1827 { 1828 /* We need to grab some memory, and put together a FIN, 1829 * and then put it into the queue to be sent. 1830 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1831 */ 1832 if (!(how & SEND_SHUTDOWN)) 1833 return; 1834 1835 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1836 if ((1 << sk->sk_state) & 1837 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1838 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1839 /* Clear out any half completed packets. FIN if needed. */ 1840 if (tcp_close_state(sk)) 1841 tcp_send_fin(sk); 1842 } 1843 } 1844 1845 void tcp_close(struct sock *sk, long timeout) 1846 { 1847 struct sk_buff *skb; 1848 int data_was_unread = 0; 1849 int state; 1850 1851 lock_sock(sk); 1852 sk->sk_shutdown = SHUTDOWN_MASK; 1853 1854 if (sk->sk_state == TCP_LISTEN) { 1855 tcp_set_state(sk, TCP_CLOSE); 1856 1857 /* Special case. */ 1858 inet_csk_listen_stop(sk); 1859 1860 goto adjudge_to_death; 1861 } 1862 1863 /* We need to flush the recv. buffs. We do this only on the 1864 * descriptor close, not protocol-sourced closes, because the 1865 * reader process may not have drained the data yet! 1866 */ 1867 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1868 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1869 tcp_hdr(skb)->fin; 1870 data_was_unread += len; 1871 __kfree_skb(skb); 1872 } 1873 1874 sk_mem_reclaim(sk); 1875 1876 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1877 * data was lost. To witness the awful effects of the old behavior of 1878 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1879 * GET in an FTP client, suspend the process, wait for the client to 1880 * advertise a zero window, then kill -9 the FTP client, wheee... 1881 * Note: timeout is always zero in such a case. 1882 */ 1883 if (data_was_unread) { 1884 /* Unread data was tossed, zap the connection. */ 1885 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1886 tcp_set_state(sk, TCP_CLOSE); 1887 tcp_send_active_reset(sk, sk->sk_allocation); 1888 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1889 /* Check zero linger _after_ checking for unread data. */ 1890 sk->sk_prot->disconnect(sk, 0); 1891 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1892 } else if (tcp_close_state(sk)) { 1893 /* We FIN if the application ate all the data before 1894 * zapping the connection. 1895 */ 1896 1897 /* RED-PEN. Formally speaking, we have broken TCP state 1898 * machine. State transitions: 1899 * 1900 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1901 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1902 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1903 * 1904 * are legal only when FIN has been sent (i.e. in window), 1905 * rather than queued out of window. Purists blame. 1906 * 1907 * F.e. "RFC state" is ESTABLISHED, 1908 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1909 * 1910 * The visible declinations are that sometimes 1911 * we enter time-wait state, when it is not required really 1912 * (harmless), do not send active resets, when they are 1913 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1914 * they look as CLOSING or LAST_ACK for Linux) 1915 * Probably, I missed some more holelets. 1916 * --ANK 1917 */ 1918 tcp_send_fin(sk); 1919 } 1920 1921 sk_stream_wait_close(sk, timeout); 1922 1923 adjudge_to_death: 1924 state = sk->sk_state; 1925 sock_hold(sk); 1926 sock_orphan(sk); 1927 1928 /* It is the last release_sock in its life. It will remove backlog. */ 1929 release_sock(sk); 1930 1931 1932 /* Now socket is owned by kernel and we acquire BH lock 1933 to finish close. No need to check for user refs. 1934 */ 1935 local_bh_disable(); 1936 bh_lock_sock(sk); 1937 WARN_ON(sock_owned_by_user(sk)); 1938 1939 percpu_counter_inc(sk->sk_prot->orphan_count); 1940 1941 /* Have we already been destroyed by a softirq or backlog? */ 1942 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1943 goto out; 1944 1945 /* This is a (useful) BSD violating of the RFC. There is a 1946 * problem with TCP as specified in that the other end could 1947 * keep a socket open forever with no application left this end. 1948 * We use a 3 minute timeout (about the same as BSD) then kill 1949 * our end. If they send after that then tough - BUT: long enough 1950 * that we won't make the old 4*rto = almost no time - whoops 1951 * reset mistake. 1952 * 1953 * Nope, it was not mistake. It is really desired behaviour 1954 * f.e. on http servers, when such sockets are useless, but 1955 * consume significant resources. Let's do it with special 1956 * linger2 option. --ANK 1957 */ 1958 1959 if (sk->sk_state == TCP_FIN_WAIT2) { 1960 struct tcp_sock *tp = tcp_sk(sk); 1961 if (tp->linger2 < 0) { 1962 tcp_set_state(sk, TCP_CLOSE); 1963 tcp_send_active_reset(sk, GFP_ATOMIC); 1964 NET_INC_STATS_BH(sock_net(sk), 1965 LINUX_MIB_TCPABORTONLINGER); 1966 } else { 1967 const int tmo = tcp_fin_time(sk); 1968 1969 if (tmo > TCP_TIMEWAIT_LEN) { 1970 inet_csk_reset_keepalive_timer(sk, 1971 tmo - TCP_TIMEWAIT_LEN); 1972 } else { 1973 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 1974 goto out; 1975 } 1976 } 1977 } 1978 if (sk->sk_state != TCP_CLOSE) { 1979 int orphan_count = percpu_counter_read_positive( 1980 sk->sk_prot->orphan_count); 1981 1982 sk_mem_reclaim(sk); 1983 if (tcp_too_many_orphans(sk, orphan_count)) { 1984 if (net_ratelimit()) 1985 printk(KERN_INFO "TCP: too many of orphaned " 1986 "sockets\n"); 1987 tcp_set_state(sk, TCP_CLOSE); 1988 tcp_send_active_reset(sk, GFP_ATOMIC); 1989 NET_INC_STATS_BH(sock_net(sk), 1990 LINUX_MIB_TCPABORTONMEMORY); 1991 } 1992 } 1993 1994 if (sk->sk_state == TCP_CLOSE) 1995 inet_csk_destroy_sock(sk); 1996 /* Otherwise, socket is reprieved until protocol close. */ 1997 1998 out: 1999 bh_unlock_sock(sk); 2000 local_bh_enable(); 2001 sock_put(sk); 2002 } 2003 2004 /* These states need RST on ABORT according to RFC793 */ 2005 2006 static inline int tcp_need_reset(int state) 2007 { 2008 return (1 << state) & 2009 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2010 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2011 } 2012 2013 int tcp_disconnect(struct sock *sk, int flags) 2014 { 2015 struct inet_sock *inet = inet_sk(sk); 2016 struct inet_connection_sock *icsk = inet_csk(sk); 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 int err = 0; 2019 int old_state = sk->sk_state; 2020 2021 if (old_state != TCP_CLOSE) 2022 tcp_set_state(sk, TCP_CLOSE); 2023 2024 /* ABORT function of RFC793 */ 2025 if (old_state == TCP_LISTEN) { 2026 inet_csk_listen_stop(sk); 2027 } else if (tcp_need_reset(old_state) || 2028 (tp->snd_nxt != tp->write_seq && 2029 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2030 /* The last check adjusts for discrepancy of Linux wrt. RFC 2031 * states 2032 */ 2033 tcp_send_active_reset(sk, gfp_any()); 2034 sk->sk_err = ECONNRESET; 2035 } else if (old_state == TCP_SYN_SENT) 2036 sk->sk_err = ECONNRESET; 2037 2038 tcp_clear_xmit_timers(sk); 2039 __skb_queue_purge(&sk->sk_receive_queue); 2040 tcp_write_queue_purge(sk); 2041 __skb_queue_purge(&tp->out_of_order_queue); 2042 #ifdef CONFIG_NET_DMA 2043 __skb_queue_purge(&sk->sk_async_wait_queue); 2044 #endif 2045 2046 inet->inet_dport = 0; 2047 2048 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2049 inet_reset_saddr(sk); 2050 2051 sk->sk_shutdown = 0; 2052 sock_reset_flag(sk, SOCK_DONE); 2053 tp->srtt = 0; 2054 if ((tp->write_seq += tp->max_window + 2) == 0) 2055 tp->write_seq = 1; 2056 icsk->icsk_backoff = 0; 2057 tp->snd_cwnd = 2; 2058 icsk->icsk_probes_out = 0; 2059 tp->packets_out = 0; 2060 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2061 tp->snd_cwnd_cnt = 0; 2062 tp->bytes_acked = 0; 2063 tp->window_clamp = 0; 2064 tcp_set_ca_state(sk, TCP_CA_Open); 2065 tcp_clear_retrans(tp); 2066 inet_csk_delack_init(sk); 2067 tcp_init_send_head(sk); 2068 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2069 __sk_dst_reset(sk); 2070 2071 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2072 2073 sk->sk_error_report(sk); 2074 return err; 2075 } 2076 2077 /* 2078 * Socket option code for TCP. 2079 */ 2080 static int do_tcp_setsockopt(struct sock *sk, int level, 2081 int optname, char __user *optval, unsigned int optlen) 2082 { 2083 struct tcp_sock *tp = tcp_sk(sk); 2084 struct inet_connection_sock *icsk = inet_csk(sk); 2085 int val; 2086 int err = 0; 2087 2088 /* These are data/string values, all the others are ints */ 2089 switch (optname) { 2090 case TCP_CONGESTION: { 2091 char name[TCP_CA_NAME_MAX]; 2092 2093 if (optlen < 1) 2094 return -EINVAL; 2095 2096 val = strncpy_from_user(name, optval, 2097 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2098 if (val < 0) 2099 return -EFAULT; 2100 name[val] = 0; 2101 2102 lock_sock(sk); 2103 err = tcp_set_congestion_control(sk, name); 2104 release_sock(sk); 2105 return err; 2106 } 2107 case TCP_COOKIE_TRANSACTIONS: { 2108 struct tcp_cookie_transactions ctd; 2109 struct tcp_cookie_values *cvp = NULL; 2110 2111 if (sizeof(ctd) > optlen) 2112 return -EINVAL; 2113 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2114 return -EFAULT; 2115 2116 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2117 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2118 return -EINVAL; 2119 2120 if (ctd.tcpct_cookie_desired == 0) { 2121 /* default to global value */ 2122 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2123 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2124 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2125 return -EINVAL; 2126 } 2127 2128 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2129 /* Supercedes all other values */ 2130 lock_sock(sk); 2131 if (tp->cookie_values != NULL) { 2132 kref_put(&tp->cookie_values->kref, 2133 tcp_cookie_values_release); 2134 tp->cookie_values = NULL; 2135 } 2136 tp->rx_opt.cookie_in_always = 0; /* false */ 2137 tp->rx_opt.cookie_out_never = 1; /* true */ 2138 release_sock(sk); 2139 return err; 2140 } 2141 2142 /* Allocate ancillary memory before locking. 2143 */ 2144 if (ctd.tcpct_used > 0 || 2145 (tp->cookie_values == NULL && 2146 (sysctl_tcp_cookie_size > 0 || 2147 ctd.tcpct_cookie_desired > 0 || 2148 ctd.tcpct_s_data_desired > 0))) { 2149 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2150 GFP_KERNEL); 2151 if (cvp == NULL) 2152 return -ENOMEM; 2153 } 2154 lock_sock(sk); 2155 tp->rx_opt.cookie_in_always = 2156 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2157 tp->rx_opt.cookie_out_never = 0; /* false */ 2158 2159 if (tp->cookie_values != NULL) { 2160 if (cvp != NULL) { 2161 /* Changed values are recorded by a changed 2162 * pointer, ensuring the cookie will differ, 2163 * without separately hashing each value later. 2164 */ 2165 kref_put(&tp->cookie_values->kref, 2166 tcp_cookie_values_release); 2167 kref_init(&cvp->kref); 2168 tp->cookie_values = cvp; 2169 } else { 2170 cvp = tp->cookie_values; 2171 } 2172 } 2173 if (cvp != NULL) { 2174 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2175 2176 if (ctd.tcpct_used > 0) { 2177 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2178 ctd.tcpct_used); 2179 cvp->s_data_desired = ctd.tcpct_used; 2180 cvp->s_data_constant = 1; /* true */ 2181 } else { 2182 /* No constant payload data. */ 2183 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2184 cvp->s_data_constant = 0; /* false */ 2185 } 2186 } 2187 release_sock(sk); 2188 return err; 2189 } 2190 default: 2191 /* fallthru */ 2192 break; 2193 }; 2194 2195 if (optlen < sizeof(int)) 2196 return -EINVAL; 2197 2198 if (get_user(val, (int __user *)optval)) 2199 return -EFAULT; 2200 2201 lock_sock(sk); 2202 2203 switch (optname) { 2204 case TCP_MAXSEG: 2205 /* Values greater than interface MTU won't take effect. However 2206 * at the point when this call is done we typically don't yet 2207 * know which interface is going to be used */ 2208 if (val < 8 || val > MAX_TCP_WINDOW) { 2209 err = -EINVAL; 2210 break; 2211 } 2212 tp->rx_opt.user_mss = val; 2213 break; 2214 2215 case TCP_NODELAY: 2216 if (val) { 2217 /* TCP_NODELAY is weaker than TCP_CORK, so that 2218 * this option on corked socket is remembered, but 2219 * it is not activated until cork is cleared. 2220 * 2221 * However, when TCP_NODELAY is set we make 2222 * an explicit push, which overrides even TCP_CORK 2223 * for currently queued segments. 2224 */ 2225 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2226 tcp_push_pending_frames(sk); 2227 } else { 2228 tp->nonagle &= ~TCP_NAGLE_OFF; 2229 } 2230 break; 2231 2232 case TCP_CORK: 2233 /* When set indicates to always queue non-full frames. 2234 * Later the user clears this option and we transmit 2235 * any pending partial frames in the queue. This is 2236 * meant to be used alongside sendfile() to get properly 2237 * filled frames when the user (for example) must write 2238 * out headers with a write() call first and then use 2239 * sendfile to send out the data parts. 2240 * 2241 * TCP_CORK can be set together with TCP_NODELAY and it is 2242 * stronger than TCP_NODELAY. 2243 */ 2244 if (val) { 2245 tp->nonagle |= TCP_NAGLE_CORK; 2246 } else { 2247 tp->nonagle &= ~TCP_NAGLE_CORK; 2248 if (tp->nonagle&TCP_NAGLE_OFF) 2249 tp->nonagle |= TCP_NAGLE_PUSH; 2250 tcp_push_pending_frames(sk); 2251 } 2252 break; 2253 2254 case TCP_KEEPIDLE: 2255 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2256 err = -EINVAL; 2257 else { 2258 tp->keepalive_time = val * HZ; 2259 if (sock_flag(sk, SOCK_KEEPOPEN) && 2260 !((1 << sk->sk_state) & 2261 (TCPF_CLOSE | TCPF_LISTEN))) { 2262 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp; 2263 if (tp->keepalive_time > elapsed) 2264 elapsed = tp->keepalive_time - elapsed; 2265 else 2266 elapsed = 0; 2267 inet_csk_reset_keepalive_timer(sk, elapsed); 2268 } 2269 } 2270 break; 2271 case TCP_KEEPINTVL: 2272 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2273 err = -EINVAL; 2274 else 2275 tp->keepalive_intvl = val * HZ; 2276 break; 2277 case TCP_KEEPCNT: 2278 if (val < 1 || val > MAX_TCP_KEEPCNT) 2279 err = -EINVAL; 2280 else 2281 tp->keepalive_probes = val; 2282 break; 2283 case TCP_SYNCNT: 2284 if (val < 1 || val > MAX_TCP_SYNCNT) 2285 err = -EINVAL; 2286 else 2287 icsk->icsk_syn_retries = val; 2288 break; 2289 2290 case TCP_LINGER2: 2291 if (val < 0) 2292 tp->linger2 = -1; 2293 else if (val > sysctl_tcp_fin_timeout / HZ) 2294 tp->linger2 = 0; 2295 else 2296 tp->linger2 = val * HZ; 2297 break; 2298 2299 case TCP_DEFER_ACCEPT: 2300 /* Translate value in seconds to number of retransmits */ 2301 icsk->icsk_accept_queue.rskq_defer_accept = 2302 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2303 TCP_RTO_MAX / HZ); 2304 break; 2305 2306 case TCP_WINDOW_CLAMP: 2307 if (!val) { 2308 if (sk->sk_state != TCP_CLOSE) { 2309 err = -EINVAL; 2310 break; 2311 } 2312 tp->window_clamp = 0; 2313 } else 2314 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2315 SOCK_MIN_RCVBUF / 2 : val; 2316 break; 2317 2318 case TCP_QUICKACK: 2319 if (!val) { 2320 icsk->icsk_ack.pingpong = 1; 2321 } else { 2322 icsk->icsk_ack.pingpong = 0; 2323 if ((1 << sk->sk_state) & 2324 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2325 inet_csk_ack_scheduled(sk)) { 2326 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2327 tcp_cleanup_rbuf(sk, 1); 2328 if (!(val & 1)) 2329 icsk->icsk_ack.pingpong = 1; 2330 } 2331 } 2332 break; 2333 2334 #ifdef CONFIG_TCP_MD5SIG 2335 case TCP_MD5SIG: 2336 /* Read the IP->Key mappings from userspace */ 2337 err = tp->af_specific->md5_parse(sk, optval, optlen); 2338 break; 2339 #endif 2340 2341 default: 2342 err = -ENOPROTOOPT; 2343 break; 2344 } 2345 2346 release_sock(sk); 2347 return err; 2348 } 2349 2350 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2351 unsigned int optlen) 2352 { 2353 struct inet_connection_sock *icsk = inet_csk(sk); 2354 2355 if (level != SOL_TCP) 2356 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2357 optval, optlen); 2358 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2359 } 2360 2361 #ifdef CONFIG_COMPAT 2362 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2363 char __user *optval, unsigned int optlen) 2364 { 2365 if (level != SOL_TCP) 2366 return inet_csk_compat_setsockopt(sk, level, optname, 2367 optval, optlen); 2368 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2369 } 2370 2371 EXPORT_SYMBOL(compat_tcp_setsockopt); 2372 #endif 2373 2374 /* Return information about state of tcp endpoint in API format. */ 2375 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2376 { 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 const struct inet_connection_sock *icsk = inet_csk(sk); 2379 u32 now = tcp_time_stamp; 2380 2381 memset(info, 0, sizeof(*info)); 2382 2383 info->tcpi_state = sk->sk_state; 2384 info->tcpi_ca_state = icsk->icsk_ca_state; 2385 info->tcpi_retransmits = icsk->icsk_retransmits; 2386 info->tcpi_probes = icsk->icsk_probes_out; 2387 info->tcpi_backoff = icsk->icsk_backoff; 2388 2389 if (tp->rx_opt.tstamp_ok) 2390 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2391 if (tcp_is_sack(tp)) 2392 info->tcpi_options |= TCPI_OPT_SACK; 2393 if (tp->rx_opt.wscale_ok) { 2394 info->tcpi_options |= TCPI_OPT_WSCALE; 2395 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2396 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2397 } 2398 2399 if (tp->ecn_flags&TCP_ECN_OK) 2400 info->tcpi_options |= TCPI_OPT_ECN; 2401 2402 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2403 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2404 info->tcpi_snd_mss = tp->mss_cache; 2405 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2406 2407 if (sk->sk_state == TCP_LISTEN) { 2408 info->tcpi_unacked = sk->sk_ack_backlog; 2409 info->tcpi_sacked = sk->sk_max_ack_backlog; 2410 } else { 2411 info->tcpi_unacked = tp->packets_out; 2412 info->tcpi_sacked = tp->sacked_out; 2413 } 2414 info->tcpi_lost = tp->lost_out; 2415 info->tcpi_retrans = tp->retrans_out; 2416 info->tcpi_fackets = tp->fackets_out; 2417 2418 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2419 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2420 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2421 2422 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2423 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2424 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2425 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2426 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2427 info->tcpi_snd_cwnd = tp->snd_cwnd; 2428 info->tcpi_advmss = tp->advmss; 2429 info->tcpi_reordering = tp->reordering; 2430 2431 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2432 info->tcpi_rcv_space = tp->rcvq_space.space; 2433 2434 info->tcpi_total_retrans = tp->total_retrans; 2435 } 2436 2437 EXPORT_SYMBOL_GPL(tcp_get_info); 2438 2439 static int do_tcp_getsockopt(struct sock *sk, int level, 2440 int optname, char __user *optval, int __user *optlen) 2441 { 2442 struct inet_connection_sock *icsk = inet_csk(sk); 2443 struct tcp_sock *tp = tcp_sk(sk); 2444 int val, len; 2445 2446 if (get_user(len, optlen)) 2447 return -EFAULT; 2448 2449 len = min_t(unsigned int, len, sizeof(int)); 2450 2451 if (len < 0) 2452 return -EINVAL; 2453 2454 switch (optname) { 2455 case TCP_MAXSEG: 2456 val = tp->mss_cache; 2457 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2458 val = tp->rx_opt.user_mss; 2459 break; 2460 case TCP_NODELAY: 2461 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2462 break; 2463 case TCP_CORK: 2464 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2465 break; 2466 case TCP_KEEPIDLE: 2467 val = keepalive_time_when(tp) / HZ; 2468 break; 2469 case TCP_KEEPINTVL: 2470 val = keepalive_intvl_when(tp) / HZ; 2471 break; 2472 case TCP_KEEPCNT: 2473 val = keepalive_probes(tp); 2474 break; 2475 case TCP_SYNCNT: 2476 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2477 break; 2478 case TCP_LINGER2: 2479 val = tp->linger2; 2480 if (val >= 0) 2481 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2482 break; 2483 case TCP_DEFER_ACCEPT: 2484 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2485 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2486 break; 2487 case TCP_WINDOW_CLAMP: 2488 val = tp->window_clamp; 2489 break; 2490 case TCP_INFO: { 2491 struct tcp_info info; 2492 2493 if (get_user(len, optlen)) 2494 return -EFAULT; 2495 2496 tcp_get_info(sk, &info); 2497 2498 len = min_t(unsigned int, len, sizeof(info)); 2499 if (put_user(len, optlen)) 2500 return -EFAULT; 2501 if (copy_to_user(optval, &info, len)) 2502 return -EFAULT; 2503 return 0; 2504 } 2505 case TCP_QUICKACK: 2506 val = !icsk->icsk_ack.pingpong; 2507 break; 2508 2509 case TCP_CONGESTION: 2510 if (get_user(len, optlen)) 2511 return -EFAULT; 2512 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2513 if (put_user(len, optlen)) 2514 return -EFAULT; 2515 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2516 return -EFAULT; 2517 return 0; 2518 2519 case TCP_COOKIE_TRANSACTIONS: { 2520 struct tcp_cookie_transactions ctd; 2521 struct tcp_cookie_values *cvp = tp->cookie_values; 2522 2523 if (get_user(len, optlen)) 2524 return -EFAULT; 2525 if (len < sizeof(ctd)) 2526 return -EINVAL; 2527 2528 memset(&ctd, 0, sizeof(ctd)); 2529 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2530 TCP_COOKIE_IN_ALWAYS : 0) 2531 | (tp->rx_opt.cookie_out_never ? 2532 TCP_COOKIE_OUT_NEVER : 0); 2533 2534 if (cvp != NULL) { 2535 ctd.tcpct_flags |= (cvp->s_data_in ? 2536 TCP_S_DATA_IN : 0) 2537 | (cvp->s_data_out ? 2538 TCP_S_DATA_OUT : 0); 2539 2540 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2541 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2542 2543 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2544 cvp->cookie_pair_size); 2545 ctd.tcpct_used = cvp->cookie_pair_size; 2546 } 2547 2548 if (put_user(sizeof(ctd), optlen)) 2549 return -EFAULT; 2550 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2551 return -EFAULT; 2552 return 0; 2553 } 2554 default: 2555 return -ENOPROTOOPT; 2556 } 2557 2558 if (put_user(len, optlen)) 2559 return -EFAULT; 2560 if (copy_to_user(optval, &val, len)) 2561 return -EFAULT; 2562 return 0; 2563 } 2564 2565 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2566 int __user *optlen) 2567 { 2568 struct inet_connection_sock *icsk = inet_csk(sk); 2569 2570 if (level != SOL_TCP) 2571 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2572 optval, optlen); 2573 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2574 } 2575 2576 #ifdef CONFIG_COMPAT 2577 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2578 char __user *optval, int __user *optlen) 2579 { 2580 if (level != SOL_TCP) 2581 return inet_csk_compat_getsockopt(sk, level, optname, 2582 optval, optlen); 2583 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2584 } 2585 2586 EXPORT_SYMBOL(compat_tcp_getsockopt); 2587 #endif 2588 2589 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features) 2590 { 2591 struct sk_buff *segs = ERR_PTR(-EINVAL); 2592 struct tcphdr *th; 2593 unsigned thlen; 2594 unsigned int seq; 2595 __be32 delta; 2596 unsigned int oldlen; 2597 unsigned int mss; 2598 2599 if (!pskb_may_pull(skb, sizeof(*th))) 2600 goto out; 2601 2602 th = tcp_hdr(skb); 2603 thlen = th->doff * 4; 2604 if (thlen < sizeof(*th)) 2605 goto out; 2606 2607 if (!pskb_may_pull(skb, thlen)) 2608 goto out; 2609 2610 oldlen = (u16)~skb->len; 2611 __skb_pull(skb, thlen); 2612 2613 mss = skb_shinfo(skb)->gso_size; 2614 if (unlikely(skb->len <= mss)) 2615 goto out; 2616 2617 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2618 /* Packet is from an untrusted source, reset gso_segs. */ 2619 int type = skb_shinfo(skb)->gso_type; 2620 2621 if (unlikely(type & 2622 ~(SKB_GSO_TCPV4 | 2623 SKB_GSO_DODGY | 2624 SKB_GSO_TCP_ECN | 2625 SKB_GSO_TCPV6 | 2626 0) || 2627 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2628 goto out; 2629 2630 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2631 2632 segs = NULL; 2633 goto out; 2634 } 2635 2636 segs = skb_segment(skb, features); 2637 if (IS_ERR(segs)) 2638 goto out; 2639 2640 delta = htonl(oldlen + (thlen + mss)); 2641 2642 skb = segs; 2643 th = tcp_hdr(skb); 2644 seq = ntohl(th->seq); 2645 2646 do { 2647 th->fin = th->psh = 0; 2648 2649 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2650 (__force u32)delta)); 2651 if (skb->ip_summed != CHECKSUM_PARTIAL) 2652 th->check = 2653 csum_fold(csum_partial(skb_transport_header(skb), 2654 thlen, skb->csum)); 2655 2656 seq += mss; 2657 skb = skb->next; 2658 th = tcp_hdr(skb); 2659 2660 th->seq = htonl(seq); 2661 th->cwr = 0; 2662 } while (skb->next); 2663 2664 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2665 skb->data_len); 2666 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2667 (__force u32)delta)); 2668 if (skb->ip_summed != CHECKSUM_PARTIAL) 2669 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2670 thlen, skb->csum)); 2671 2672 out: 2673 return segs; 2674 } 2675 EXPORT_SYMBOL(tcp_tso_segment); 2676 2677 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2678 { 2679 struct sk_buff **pp = NULL; 2680 struct sk_buff *p; 2681 struct tcphdr *th; 2682 struct tcphdr *th2; 2683 unsigned int len; 2684 unsigned int thlen; 2685 unsigned int flags; 2686 unsigned int mss = 1; 2687 unsigned int hlen; 2688 unsigned int off; 2689 int flush = 1; 2690 int i; 2691 2692 off = skb_gro_offset(skb); 2693 hlen = off + sizeof(*th); 2694 th = skb_gro_header_fast(skb, off); 2695 if (skb_gro_header_hard(skb, hlen)) { 2696 th = skb_gro_header_slow(skb, hlen, off); 2697 if (unlikely(!th)) 2698 goto out; 2699 } 2700 2701 thlen = th->doff * 4; 2702 if (thlen < sizeof(*th)) 2703 goto out; 2704 2705 hlen = off + thlen; 2706 if (skb_gro_header_hard(skb, hlen)) { 2707 th = skb_gro_header_slow(skb, hlen, off); 2708 if (unlikely(!th)) 2709 goto out; 2710 } 2711 2712 skb_gro_pull(skb, thlen); 2713 2714 len = skb_gro_len(skb); 2715 flags = tcp_flag_word(th); 2716 2717 for (; (p = *head); head = &p->next) { 2718 if (!NAPI_GRO_CB(p)->same_flow) 2719 continue; 2720 2721 th2 = tcp_hdr(p); 2722 2723 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 2724 NAPI_GRO_CB(p)->same_flow = 0; 2725 continue; 2726 } 2727 2728 goto found; 2729 } 2730 2731 goto out_check_final; 2732 2733 found: 2734 flush = NAPI_GRO_CB(p)->flush; 2735 flush |= flags & TCP_FLAG_CWR; 2736 flush |= (flags ^ tcp_flag_word(th2)) & 2737 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH); 2738 flush |= th->ack_seq ^ th2->ack_seq; 2739 for (i = sizeof(*th); i < thlen; i += 4) 2740 flush |= *(u32 *)((u8 *)th + i) ^ 2741 *(u32 *)((u8 *)th2 + i); 2742 2743 mss = skb_shinfo(p)->gso_size; 2744 2745 flush |= (len - 1) >= mss; 2746 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2747 2748 if (flush || skb_gro_receive(head, skb)) { 2749 mss = 1; 2750 goto out_check_final; 2751 } 2752 2753 p = *head; 2754 th2 = tcp_hdr(p); 2755 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2756 2757 out_check_final: 2758 flush = len < mss; 2759 flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | 2760 TCP_FLAG_SYN | TCP_FLAG_FIN); 2761 2762 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2763 pp = head; 2764 2765 out: 2766 NAPI_GRO_CB(skb)->flush |= flush; 2767 2768 return pp; 2769 } 2770 EXPORT_SYMBOL(tcp_gro_receive); 2771 2772 int tcp_gro_complete(struct sk_buff *skb) 2773 { 2774 struct tcphdr *th = tcp_hdr(skb); 2775 2776 skb->csum_start = skb_transport_header(skb) - skb->head; 2777 skb->csum_offset = offsetof(struct tcphdr, check); 2778 skb->ip_summed = CHECKSUM_PARTIAL; 2779 2780 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2781 2782 if (th->cwr) 2783 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2784 2785 return 0; 2786 } 2787 EXPORT_SYMBOL(tcp_gro_complete); 2788 2789 #ifdef CONFIG_TCP_MD5SIG 2790 static unsigned long tcp_md5sig_users; 2791 static struct tcp_md5sig_pool **tcp_md5sig_pool; 2792 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2793 2794 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool) 2795 { 2796 int cpu; 2797 for_each_possible_cpu(cpu) { 2798 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu); 2799 if (p) { 2800 if (p->md5_desc.tfm) 2801 crypto_free_hash(p->md5_desc.tfm); 2802 kfree(p); 2803 p = NULL; 2804 } 2805 } 2806 free_percpu(pool); 2807 } 2808 2809 void tcp_free_md5sig_pool(void) 2810 { 2811 struct tcp_md5sig_pool **pool = NULL; 2812 2813 spin_lock_bh(&tcp_md5sig_pool_lock); 2814 if (--tcp_md5sig_users == 0) { 2815 pool = tcp_md5sig_pool; 2816 tcp_md5sig_pool = NULL; 2817 } 2818 spin_unlock_bh(&tcp_md5sig_pool_lock); 2819 if (pool) 2820 __tcp_free_md5sig_pool(pool); 2821 } 2822 2823 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2824 2825 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(struct sock *sk) 2826 { 2827 int cpu; 2828 struct tcp_md5sig_pool **pool; 2829 2830 pool = alloc_percpu(struct tcp_md5sig_pool *); 2831 if (!pool) 2832 return NULL; 2833 2834 for_each_possible_cpu(cpu) { 2835 struct tcp_md5sig_pool *p; 2836 struct crypto_hash *hash; 2837 2838 p = kzalloc(sizeof(*p), sk->sk_allocation); 2839 if (!p) 2840 goto out_free; 2841 *per_cpu_ptr(pool, cpu) = p; 2842 2843 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2844 if (!hash || IS_ERR(hash)) 2845 goto out_free; 2846 2847 p->md5_desc.tfm = hash; 2848 } 2849 return pool; 2850 out_free: 2851 __tcp_free_md5sig_pool(pool); 2852 return NULL; 2853 } 2854 2855 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(struct sock *sk) 2856 { 2857 struct tcp_md5sig_pool **pool; 2858 int alloc = 0; 2859 2860 retry: 2861 spin_lock_bh(&tcp_md5sig_pool_lock); 2862 pool = tcp_md5sig_pool; 2863 if (tcp_md5sig_users++ == 0) { 2864 alloc = 1; 2865 spin_unlock_bh(&tcp_md5sig_pool_lock); 2866 } else if (!pool) { 2867 tcp_md5sig_users--; 2868 spin_unlock_bh(&tcp_md5sig_pool_lock); 2869 cpu_relax(); 2870 goto retry; 2871 } else 2872 spin_unlock_bh(&tcp_md5sig_pool_lock); 2873 2874 if (alloc) { 2875 /* we cannot hold spinlock here because this may sleep. */ 2876 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool(sk); 2877 spin_lock_bh(&tcp_md5sig_pool_lock); 2878 if (!p) { 2879 tcp_md5sig_users--; 2880 spin_unlock_bh(&tcp_md5sig_pool_lock); 2881 return NULL; 2882 } 2883 pool = tcp_md5sig_pool; 2884 if (pool) { 2885 /* oops, it has already been assigned. */ 2886 spin_unlock_bh(&tcp_md5sig_pool_lock); 2887 __tcp_free_md5sig_pool(p); 2888 } else { 2889 tcp_md5sig_pool = pool = p; 2890 spin_unlock_bh(&tcp_md5sig_pool_lock); 2891 } 2892 } 2893 return pool; 2894 } 2895 2896 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2897 2898 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu) 2899 { 2900 struct tcp_md5sig_pool **p; 2901 spin_lock_bh(&tcp_md5sig_pool_lock); 2902 p = tcp_md5sig_pool; 2903 if (p) 2904 tcp_md5sig_users++; 2905 spin_unlock_bh(&tcp_md5sig_pool_lock); 2906 return (p ? *per_cpu_ptr(p, cpu) : NULL); 2907 } 2908 2909 EXPORT_SYMBOL(__tcp_get_md5sig_pool); 2910 2911 void __tcp_put_md5sig_pool(void) 2912 { 2913 tcp_free_md5sig_pool(); 2914 } 2915 2916 EXPORT_SYMBOL(__tcp_put_md5sig_pool); 2917 2918 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2919 struct tcphdr *th) 2920 { 2921 struct scatterlist sg; 2922 int err; 2923 2924 __sum16 old_checksum = th->check; 2925 th->check = 0; 2926 /* options aren't included in the hash */ 2927 sg_init_one(&sg, th, sizeof(struct tcphdr)); 2928 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr)); 2929 th->check = old_checksum; 2930 return err; 2931 } 2932 2933 EXPORT_SYMBOL(tcp_md5_hash_header); 2934 2935 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2936 struct sk_buff *skb, unsigned header_len) 2937 { 2938 struct scatterlist sg; 2939 const struct tcphdr *tp = tcp_hdr(skb); 2940 struct hash_desc *desc = &hp->md5_desc; 2941 unsigned i; 2942 const unsigned head_data_len = skb_headlen(skb) > header_len ? 2943 skb_headlen(skb) - header_len : 0; 2944 const struct skb_shared_info *shi = skb_shinfo(skb); 2945 2946 sg_init_table(&sg, 1); 2947 2948 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2949 if (crypto_hash_update(desc, &sg, head_data_len)) 2950 return 1; 2951 2952 for (i = 0; i < shi->nr_frags; ++i) { 2953 const struct skb_frag_struct *f = &shi->frags[i]; 2954 sg_set_page(&sg, f->page, f->size, f->page_offset); 2955 if (crypto_hash_update(desc, &sg, f->size)) 2956 return 1; 2957 } 2958 2959 return 0; 2960 } 2961 2962 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2963 2964 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key) 2965 { 2966 struct scatterlist sg; 2967 2968 sg_init_one(&sg, key->key, key->keylen); 2969 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2970 } 2971 2972 EXPORT_SYMBOL(tcp_md5_hash_key); 2973 2974 #endif 2975 2976 /** 2977 * Each Responder maintains up to two secret values concurrently for 2978 * efficient secret rollover. Each secret value has 4 states: 2979 * 2980 * Generating. (tcp_secret_generating != tcp_secret_primary) 2981 * Generates new Responder-Cookies, but not yet used for primary 2982 * verification. This is a short-term state, typically lasting only 2983 * one round trip time (RTT). 2984 * 2985 * Primary. (tcp_secret_generating == tcp_secret_primary) 2986 * Used both for generation and primary verification. 2987 * 2988 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 2989 * Used for verification, until the first failure that can be 2990 * verified by the newer Generating secret. At that time, this 2991 * cookie's state is changed to Secondary, and the Generating 2992 * cookie's state is changed to Primary. This is a short-term state, 2993 * typically lasting only one round trip time (RTT). 2994 * 2995 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 2996 * Used for secondary verification, after primary verification 2997 * failures. This state lasts no more than twice the Maximum Segment 2998 * Lifetime (2MSL). Then, the secret is discarded. 2999 */ 3000 struct tcp_cookie_secret { 3001 /* The secret is divided into two parts. The digest part is the 3002 * equivalent of previously hashing a secret and saving the state, 3003 * and serves as an initialization vector (IV). The message part 3004 * serves as the trailing secret. 3005 */ 3006 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3007 unsigned long expires; 3008 }; 3009 3010 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3011 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3012 #define TCP_SECRET_LIFE (HZ * 600) 3013 3014 static struct tcp_cookie_secret tcp_secret_one; 3015 static struct tcp_cookie_secret tcp_secret_two; 3016 3017 /* Essentially a circular list, without dynamic allocation. */ 3018 static struct tcp_cookie_secret *tcp_secret_generating; 3019 static struct tcp_cookie_secret *tcp_secret_primary; 3020 static struct tcp_cookie_secret *tcp_secret_retiring; 3021 static struct tcp_cookie_secret *tcp_secret_secondary; 3022 3023 static DEFINE_SPINLOCK(tcp_secret_locker); 3024 3025 /* Select a pseudo-random word in the cookie workspace. 3026 */ 3027 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3028 { 3029 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3030 } 3031 3032 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3033 * Called in softirq context. 3034 * Returns: 0 for success. 3035 */ 3036 int tcp_cookie_generator(u32 *bakery) 3037 { 3038 unsigned long jiffy = jiffies; 3039 3040 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3041 spin_lock_bh(&tcp_secret_locker); 3042 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3043 /* refreshed by another */ 3044 memcpy(bakery, 3045 &tcp_secret_generating->secrets[0], 3046 COOKIE_WORKSPACE_WORDS); 3047 } else { 3048 /* still needs refreshing */ 3049 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3050 3051 /* The first time, paranoia assumes that the 3052 * randomization function isn't as strong. But, 3053 * this secret initialization is delayed until 3054 * the last possible moment (packet arrival). 3055 * Although that time is observable, it is 3056 * unpredictably variable. Mash in the most 3057 * volatile clock bits available, and expire the 3058 * secret extra quickly. 3059 */ 3060 if (unlikely(tcp_secret_primary->expires == 3061 tcp_secret_secondary->expires)) { 3062 struct timespec tv; 3063 3064 getnstimeofday(&tv); 3065 bakery[COOKIE_DIGEST_WORDS+0] ^= 3066 (u32)tv.tv_nsec; 3067 3068 tcp_secret_secondary->expires = jiffy 3069 + TCP_SECRET_1MSL 3070 + (0x0f & tcp_cookie_work(bakery, 0)); 3071 } else { 3072 tcp_secret_secondary->expires = jiffy 3073 + TCP_SECRET_LIFE 3074 + (0xff & tcp_cookie_work(bakery, 1)); 3075 tcp_secret_primary->expires = jiffy 3076 + TCP_SECRET_2MSL 3077 + (0x1f & tcp_cookie_work(bakery, 2)); 3078 } 3079 memcpy(&tcp_secret_secondary->secrets[0], 3080 bakery, COOKIE_WORKSPACE_WORDS); 3081 3082 rcu_assign_pointer(tcp_secret_generating, 3083 tcp_secret_secondary); 3084 rcu_assign_pointer(tcp_secret_retiring, 3085 tcp_secret_primary); 3086 /* 3087 * Neither call_rcu() nor synchronize_rcu() needed. 3088 * Retiring data is not freed. It is replaced after 3089 * further (locked) pointer updates, and a quiet time 3090 * (minimum 1MSL, maximum LIFE - 2MSL). 3091 */ 3092 } 3093 spin_unlock_bh(&tcp_secret_locker); 3094 } else { 3095 rcu_read_lock_bh(); 3096 memcpy(bakery, 3097 &rcu_dereference(tcp_secret_generating)->secrets[0], 3098 COOKIE_WORKSPACE_WORDS); 3099 rcu_read_unlock_bh(); 3100 } 3101 return 0; 3102 } 3103 EXPORT_SYMBOL(tcp_cookie_generator); 3104 3105 void tcp_done(struct sock *sk) 3106 { 3107 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3108 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3109 3110 tcp_set_state(sk, TCP_CLOSE); 3111 tcp_clear_xmit_timers(sk); 3112 3113 sk->sk_shutdown = SHUTDOWN_MASK; 3114 3115 if (!sock_flag(sk, SOCK_DEAD)) 3116 sk->sk_state_change(sk); 3117 else 3118 inet_csk_destroy_sock(sk); 3119 } 3120 EXPORT_SYMBOL_GPL(tcp_done); 3121 3122 extern struct tcp_congestion_ops tcp_reno; 3123 3124 static __initdata unsigned long thash_entries; 3125 static int __init set_thash_entries(char *str) 3126 { 3127 if (!str) 3128 return 0; 3129 thash_entries = simple_strtoul(str, &str, 0); 3130 return 1; 3131 } 3132 __setup("thash_entries=", set_thash_entries); 3133 3134 void __init tcp_init(void) 3135 { 3136 struct sk_buff *skb = NULL; 3137 unsigned long nr_pages, limit; 3138 int order, i, max_share; 3139 unsigned long jiffy = jiffies; 3140 3141 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3142 3143 percpu_counter_init(&tcp_sockets_allocated, 0); 3144 percpu_counter_init(&tcp_orphan_count, 0); 3145 tcp_hashinfo.bind_bucket_cachep = 3146 kmem_cache_create("tcp_bind_bucket", 3147 sizeof(struct inet_bind_bucket), 0, 3148 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3149 3150 /* Size and allocate the main established and bind bucket 3151 * hash tables. 3152 * 3153 * The methodology is similar to that of the buffer cache. 3154 */ 3155 tcp_hashinfo.ehash = 3156 alloc_large_system_hash("TCP established", 3157 sizeof(struct inet_ehash_bucket), 3158 thash_entries, 3159 (totalram_pages >= 128 * 1024) ? 3160 13 : 15, 3161 0, 3162 NULL, 3163 &tcp_hashinfo.ehash_mask, 3164 thash_entries ? 0 : 512 * 1024); 3165 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3166 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3167 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3168 } 3169 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3170 panic("TCP: failed to alloc ehash_locks"); 3171 tcp_hashinfo.bhash = 3172 alloc_large_system_hash("TCP bind", 3173 sizeof(struct inet_bind_hashbucket), 3174 tcp_hashinfo.ehash_mask + 1, 3175 (totalram_pages >= 128 * 1024) ? 3176 13 : 15, 3177 0, 3178 &tcp_hashinfo.bhash_size, 3179 NULL, 3180 64 * 1024); 3181 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 3182 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3183 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3184 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3185 } 3186 3187 /* Try to be a bit smarter and adjust defaults depending 3188 * on available memory. 3189 */ 3190 for (order = 0; ((1 << order) << PAGE_SHIFT) < 3191 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket)); 3192 order++) 3193 ; 3194 if (order >= 4) { 3195 tcp_death_row.sysctl_max_tw_buckets = 180000; 3196 sysctl_tcp_max_orphans = 4096 << (order - 4); 3197 sysctl_max_syn_backlog = 1024; 3198 } else if (order < 3) { 3199 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order); 3200 sysctl_tcp_max_orphans >>= (3 - order); 3201 sysctl_max_syn_backlog = 128; 3202 } 3203 3204 /* Set the pressure threshold to be a fraction of global memory that 3205 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of 3206 * memory, with a floor of 128 pages. 3207 */ 3208 nr_pages = totalram_pages - totalhigh_pages; 3209 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); 3210 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); 3211 limit = max(limit, 128UL); 3212 sysctl_tcp_mem[0] = limit / 4 * 3; 3213 sysctl_tcp_mem[1] = limit; 3214 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3215 3216 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3217 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 3218 max_share = min(4UL*1024*1024, limit); 3219 3220 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3221 sysctl_tcp_wmem[1] = 16*1024; 3222 sysctl_tcp_wmem[2] = max(64*1024, max_share); 3223 3224 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3225 sysctl_tcp_rmem[1] = 87380; 3226 sysctl_tcp_rmem[2] = max(87380, max_share); 3227 3228 printk(KERN_INFO "TCP: Hash tables configured " 3229 "(established %u bind %u)\n", 3230 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3231 3232 tcp_register_congestion_control(&tcp_reno); 3233 3234 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3235 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3236 tcp_secret_one.expires = jiffy; /* past due */ 3237 tcp_secret_two.expires = jiffy; /* past due */ 3238 tcp_secret_generating = &tcp_secret_one; 3239 tcp_secret_primary = &tcp_secret_one; 3240 tcp_secret_retiring = &tcp_secret_two; 3241 tcp_secret_secondary = &tcp_secret_two; 3242 } 3243 3244 EXPORT_SYMBOL(tcp_close); 3245 EXPORT_SYMBOL(tcp_disconnect); 3246 EXPORT_SYMBOL(tcp_getsockopt); 3247 EXPORT_SYMBOL(tcp_ioctl); 3248 EXPORT_SYMBOL(tcp_poll); 3249 EXPORT_SYMBOL(tcp_read_sock); 3250 EXPORT_SYMBOL(tcp_recvmsg); 3251 EXPORT_SYMBOL(tcp_sendmsg); 3252 EXPORT_SYMBOL(tcp_splice_read); 3253 EXPORT_SYMBOL(tcp_sendpage); 3254 EXPORT_SYMBOL(tcp_setsockopt); 3255 EXPORT_SYMBOL(tcp_shutdown); 3256