xref: /openbmc/linux/net/ipv4/tcp.c (revision 7dd65feb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 
269 #include <net/icmp.h>
270 #include <net/tcp.h>
271 #include <net/xfrm.h>
272 #include <net/ip.h>
273 #include <net/netdma.h>
274 #include <net/sock.h>
275 
276 #include <asm/uaccess.h>
277 #include <asm/ioctls.h>
278 
279 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
280 
281 struct percpu_counter tcp_orphan_count;
282 EXPORT_SYMBOL_GPL(tcp_orphan_count);
283 
284 int sysctl_tcp_mem[3] __read_mostly;
285 int sysctl_tcp_wmem[3] __read_mostly;
286 int sysctl_tcp_rmem[3] __read_mostly;
287 
288 EXPORT_SYMBOL(sysctl_tcp_mem);
289 EXPORT_SYMBOL(sysctl_tcp_rmem);
290 EXPORT_SYMBOL(sysctl_tcp_wmem);
291 
292 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294 
295 /*
296  * Current number of TCP sockets.
297  */
298 struct percpu_counter tcp_sockets_allocated;
299 EXPORT_SYMBOL(tcp_sockets_allocated);
300 
301 /*
302  * TCP splice context
303  */
304 struct tcp_splice_state {
305 	struct pipe_inode_info *pipe;
306 	size_t len;
307 	unsigned int flags;
308 };
309 
310 /*
311  * Pressure flag: try to collapse.
312  * Technical note: it is used by multiple contexts non atomically.
313  * All the __sk_mem_schedule() is of this nature: accounting
314  * is strict, actions are advisory and have some latency.
315  */
316 int tcp_memory_pressure __read_mostly;
317 
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 	u8 res = 0;
334 
335 	if (seconds > 0) {
336 		int period = timeout;
337 
338 		res = 1;
339 		while (seconds > period && res < 255) {
340 			res++;
341 			timeout <<= 1;
342 			if (timeout > rto_max)
343 				timeout = rto_max;
344 			period += timeout;
345 		}
346 	}
347 	return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 	int period = 0;
354 
355 	if (retrans > 0) {
356 		period = timeout;
357 		while (--retrans) {
358 			timeout <<= 1;
359 			if (timeout > rto_max)
360 				timeout = rto_max;
361 			period += timeout;
362 		}
363 	}
364 	return period;
365 }
366 
367 /*
368  *	Wait for a TCP event.
369  *
370  *	Note that we don't need to lock the socket, as the upper poll layers
371  *	take care of normal races (between the test and the event) and we don't
372  *	go look at any of the socket buffers directly.
373  */
374 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
375 {
376 	unsigned int mask;
377 	struct sock *sk = sock->sk;
378 	struct tcp_sock *tp = tcp_sk(sk);
379 
380 	sock_poll_wait(file, sk->sk_sleep, wait);
381 	if (sk->sk_state == TCP_LISTEN)
382 		return inet_csk_listen_poll(sk);
383 
384 	/* Socket is not locked. We are protected from async events
385 	 * by poll logic and correct handling of state changes
386 	 * made by other threads is impossible in any case.
387 	 */
388 
389 	mask = 0;
390 	if (sk->sk_err)
391 		mask = POLLERR;
392 
393 	/*
394 	 * POLLHUP is certainly not done right. But poll() doesn't
395 	 * have a notion of HUP in just one direction, and for a
396 	 * socket the read side is more interesting.
397 	 *
398 	 * Some poll() documentation says that POLLHUP is incompatible
399 	 * with the POLLOUT/POLLWR flags, so somebody should check this
400 	 * all. But careful, it tends to be safer to return too many
401 	 * bits than too few, and you can easily break real applications
402 	 * if you don't tell them that something has hung up!
403 	 *
404 	 * Check-me.
405 	 *
406 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
407 	 * our fs/select.c). It means that after we received EOF,
408 	 * poll always returns immediately, making impossible poll() on write()
409 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
410 	 * if and only if shutdown has been made in both directions.
411 	 * Actually, it is interesting to look how Solaris and DUX
412 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
413 	 * then we could set it on SND_SHUTDOWN. BTW examples given
414 	 * in Stevens' books assume exactly this behaviour, it explains
415 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
416 	 *
417 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
418 	 * blocking on fresh not-connected or disconnected socket. --ANK
419 	 */
420 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
421 		mask |= POLLHUP;
422 	if (sk->sk_shutdown & RCV_SHUTDOWN)
423 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
424 
425 	/* Connected? */
426 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
427 		int target = sock_rcvlowat(sk, 0, INT_MAX);
428 
429 		if (tp->urg_seq == tp->copied_seq &&
430 		    !sock_flag(sk, SOCK_URGINLINE) &&
431 		    tp->urg_data)
432 			target--;
433 
434 		/* Potential race condition. If read of tp below will
435 		 * escape above sk->sk_state, we can be illegally awaken
436 		 * in SYN_* states. */
437 		if (tp->rcv_nxt - tp->copied_seq >= target)
438 			mask |= POLLIN | POLLRDNORM;
439 
440 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
441 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
442 				mask |= POLLOUT | POLLWRNORM;
443 			} else {  /* send SIGIO later */
444 				set_bit(SOCK_ASYNC_NOSPACE,
445 					&sk->sk_socket->flags);
446 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
447 
448 				/* Race breaker. If space is freed after
449 				 * wspace test but before the flags are set,
450 				 * IO signal will be lost.
451 				 */
452 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
453 					mask |= POLLOUT | POLLWRNORM;
454 			}
455 		}
456 
457 		if (tp->urg_data & TCP_URG_VALID)
458 			mask |= POLLPRI;
459 	}
460 	return mask;
461 }
462 
463 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
464 {
465 	struct tcp_sock *tp = tcp_sk(sk);
466 	int answ;
467 
468 	switch (cmd) {
469 	case SIOCINQ:
470 		if (sk->sk_state == TCP_LISTEN)
471 			return -EINVAL;
472 
473 		lock_sock(sk);
474 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
475 			answ = 0;
476 		else if (sock_flag(sk, SOCK_URGINLINE) ||
477 			 !tp->urg_data ||
478 			 before(tp->urg_seq, tp->copied_seq) ||
479 			 !before(tp->urg_seq, tp->rcv_nxt)) {
480 			struct sk_buff *skb;
481 
482 			answ = tp->rcv_nxt - tp->copied_seq;
483 
484 			/* Subtract 1, if FIN is in queue. */
485 			skb = skb_peek_tail(&sk->sk_receive_queue);
486 			if (answ && skb)
487 				answ -= tcp_hdr(skb)->fin;
488 		} else
489 			answ = tp->urg_seq - tp->copied_seq;
490 		release_sock(sk);
491 		break;
492 	case SIOCATMARK:
493 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
494 		break;
495 	case SIOCOUTQ:
496 		if (sk->sk_state == TCP_LISTEN)
497 			return -EINVAL;
498 
499 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
500 			answ = 0;
501 		else
502 			answ = tp->write_seq - tp->snd_una;
503 		break;
504 	default:
505 		return -ENOIOCTLCMD;
506 	}
507 
508 	return put_user(answ, (int __user *)arg);
509 }
510 
511 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
512 {
513 	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
514 	tp->pushed_seq = tp->write_seq;
515 }
516 
517 static inline int forced_push(struct tcp_sock *tp)
518 {
519 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
520 }
521 
522 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
523 {
524 	struct tcp_sock *tp = tcp_sk(sk);
525 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
526 
527 	skb->csum    = 0;
528 	tcb->seq     = tcb->end_seq = tp->write_seq;
529 	tcb->flags   = TCPCB_FLAG_ACK;
530 	tcb->sacked  = 0;
531 	skb_header_release(skb);
532 	tcp_add_write_queue_tail(sk, skb);
533 	sk->sk_wmem_queued += skb->truesize;
534 	sk_mem_charge(sk, skb->truesize);
535 	if (tp->nonagle & TCP_NAGLE_PUSH)
536 		tp->nonagle &= ~TCP_NAGLE_PUSH;
537 }
538 
539 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
540 				struct sk_buff *skb)
541 {
542 	if (flags & MSG_OOB)
543 		tp->snd_up = tp->write_seq;
544 }
545 
546 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
547 			    int nonagle)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 
551 	if (tcp_send_head(sk)) {
552 		struct sk_buff *skb = tcp_write_queue_tail(sk);
553 		if (!(flags & MSG_MORE) || forced_push(tp))
554 			tcp_mark_push(tp, skb);
555 		tcp_mark_urg(tp, flags, skb);
556 		__tcp_push_pending_frames(sk, mss_now,
557 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
558 	}
559 }
560 
561 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
562 				unsigned int offset, size_t len)
563 {
564 	struct tcp_splice_state *tss = rd_desc->arg.data;
565 	int ret;
566 
567 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
568 			      tss->flags);
569 	if (ret > 0)
570 		rd_desc->count -= ret;
571 	return ret;
572 }
573 
574 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
575 {
576 	/* Store TCP splice context information in read_descriptor_t. */
577 	read_descriptor_t rd_desc = {
578 		.arg.data = tss,
579 		.count	  = tss->len,
580 	};
581 
582 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
583 }
584 
585 /**
586  *  tcp_splice_read - splice data from TCP socket to a pipe
587  * @sock:	socket to splice from
588  * @ppos:	position (not valid)
589  * @pipe:	pipe to splice to
590  * @len:	number of bytes to splice
591  * @flags:	splice modifier flags
592  *
593  * Description:
594  *    Will read pages from given socket and fill them into a pipe.
595  *
596  **/
597 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
598 			struct pipe_inode_info *pipe, size_t len,
599 			unsigned int flags)
600 {
601 	struct sock *sk = sock->sk;
602 	struct tcp_splice_state tss = {
603 		.pipe = pipe,
604 		.len = len,
605 		.flags = flags,
606 	};
607 	long timeo;
608 	ssize_t spliced;
609 	int ret;
610 
611 	/*
612 	 * We can't seek on a socket input
613 	 */
614 	if (unlikely(*ppos))
615 		return -ESPIPE;
616 
617 	ret = spliced = 0;
618 
619 	lock_sock(sk);
620 
621 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
622 	while (tss.len) {
623 		ret = __tcp_splice_read(sk, &tss);
624 		if (ret < 0)
625 			break;
626 		else if (!ret) {
627 			if (spliced)
628 				break;
629 			if (sock_flag(sk, SOCK_DONE))
630 				break;
631 			if (sk->sk_err) {
632 				ret = sock_error(sk);
633 				break;
634 			}
635 			if (sk->sk_shutdown & RCV_SHUTDOWN)
636 				break;
637 			if (sk->sk_state == TCP_CLOSE) {
638 				/*
639 				 * This occurs when user tries to read
640 				 * from never connected socket.
641 				 */
642 				if (!sock_flag(sk, SOCK_DONE))
643 					ret = -ENOTCONN;
644 				break;
645 			}
646 			if (!timeo) {
647 				ret = -EAGAIN;
648 				break;
649 			}
650 			sk_wait_data(sk, &timeo);
651 			if (signal_pending(current)) {
652 				ret = sock_intr_errno(timeo);
653 				break;
654 			}
655 			continue;
656 		}
657 		tss.len -= ret;
658 		spliced += ret;
659 
660 		if (!timeo)
661 			break;
662 		release_sock(sk);
663 		lock_sock(sk);
664 
665 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
666 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
667 		    signal_pending(current))
668 			break;
669 	}
670 
671 	release_sock(sk);
672 
673 	if (spliced)
674 		return spliced;
675 
676 	return ret;
677 }
678 
679 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
680 {
681 	struct sk_buff *skb;
682 
683 	/* The TCP header must be at least 32-bit aligned.  */
684 	size = ALIGN(size, 4);
685 
686 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
687 	if (skb) {
688 		if (sk_wmem_schedule(sk, skb->truesize)) {
689 			/*
690 			 * Make sure that we have exactly size bytes
691 			 * available to the caller, no more, no less.
692 			 */
693 			skb_reserve(skb, skb_tailroom(skb) - size);
694 			return skb;
695 		}
696 		__kfree_skb(skb);
697 	} else {
698 		sk->sk_prot->enter_memory_pressure(sk);
699 		sk_stream_moderate_sndbuf(sk);
700 	}
701 	return NULL;
702 }
703 
704 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
705 				       int large_allowed)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	u32 xmit_size_goal, old_size_goal;
709 
710 	xmit_size_goal = mss_now;
711 
712 	if (large_allowed && sk_can_gso(sk)) {
713 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
714 				  inet_csk(sk)->icsk_af_ops->net_header_len -
715 				  inet_csk(sk)->icsk_ext_hdr_len -
716 				  tp->tcp_header_len);
717 
718 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
719 
720 		/* We try hard to avoid divides here */
721 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
722 
723 		if (likely(old_size_goal <= xmit_size_goal &&
724 			   old_size_goal + mss_now > xmit_size_goal)) {
725 			xmit_size_goal = old_size_goal;
726 		} else {
727 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
728 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
729 		}
730 	}
731 
732 	return max(xmit_size_goal, mss_now);
733 }
734 
735 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
736 {
737 	int mss_now;
738 
739 	mss_now = tcp_current_mss(sk);
740 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
741 
742 	return mss_now;
743 }
744 
745 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
746 			 size_t psize, int flags)
747 {
748 	struct tcp_sock *tp = tcp_sk(sk);
749 	int mss_now, size_goal;
750 	int err;
751 	ssize_t copied;
752 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
753 
754 	/* Wait for a connection to finish. */
755 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
756 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
757 			goto out_err;
758 
759 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
760 
761 	mss_now = tcp_send_mss(sk, &size_goal, flags);
762 	copied = 0;
763 
764 	err = -EPIPE;
765 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
766 		goto out_err;
767 
768 	while (psize > 0) {
769 		struct sk_buff *skb = tcp_write_queue_tail(sk);
770 		struct page *page = pages[poffset / PAGE_SIZE];
771 		int copy, i, can_coalesce;
772 		int offset = poffset % PAGE_SIZE;
773 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
774 
775 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
776 new_segment:
777 			if (!sk_stream_memory_free(sk))
778 				goto wait_for_sndbuf;
779 
780 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
781 			if (!skb)
782 				goto wait_for_memory;
783 
784 			skb_entail(sk, skb);
785 			copy = size_goal;
786 		}
787 
788 		if (copy > size)
789 			copy = size;
790 
791 		i = skb_shinfo(skb)->nr_frags;
792 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
793 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
794 			tcp_mark_push(tp, skb);
795 			goto new_segment;
796 		}
797 		if (!sk_wmem_schedule(sk, copy))
798 			goto wait_for_memory;
799 
800 		if (can_coalesce) {
801 			skb_shinfo(skb)->frags[i - 1].size += copy;
802 		} else {
803 			get_page(page);
804 			skb_fill_page_desc(skb, i, page, offset, copy);
805 		}
806 
807 		skb->len += copy;
808 		skb->data_len += copy;
809 		skb->truesize += copy;
810 		sk->sk_wmem_queued += copy;
811 		sk_mem_charge(sk, copy);
812 		skb->ip_summed = CHECKSUM_PARTIAL;
813 		tp->write_seq += copy;
814 		TCP_SKB_CB(skb)->end_seq += copy;
815 		skb_shinfo(skb)->gso_segs = 0;
816 
817 		if (!copied)
818 			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
819 
820 		copied += copy;
821 		poffset += copy;
822 		if (!(psize -= copy))
823 			goto out;
824 
825 		if (skb->len < size_goal || (flags & MSG_OOB))
826 			continue;
827 
828 		if (forced_push(tp)) {
829 			tcp_mark_push(tp, skb);
830 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
831 		} else if (skb == tcp_send_head(sk))
832 			tcp_push_one(sk, mss_now);
833 		continue;
834 
835 wait_for_sndbuf:
836 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
837 wait_for_memory:
838 		if (copied)
839 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
840 
841 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
842 			goto do_error;
843 
844 		mss_now = tcp_send_mss(sk, &size_goal, flags);
845 	}
846 
847 out:
848 	if (copied)
849 		tcp_push(sk, flags, mss_now, tp->nonagle);
850 	return copied;
851 
852 do_error:
853 	if (copied)
854 		goto out;
855 out_err:
856 	return sk_stream_error(sk, flags, err);
857 }
858 
859 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
860 		     size_t size, int flags)
861 {
862 	ssize_t res;
863 	struct sock *sk = sock->sk;
864 
865 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
866 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
867 		return sock_no_sendpage(sock, page, offset, size, flags);
868 
869 	lock_sock(sk);
870 	TCP_CHECK_TIMER(sk);
871 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
872 	TCP_CHECK_TIMER(sk);
873 	release_sock(sk);
874 	return res;
875 }
876 
877 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
878 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
879 
880 static inline int select_size(struct sock *sk)
881 {
882 	struct tcp_sock *tp = tcp_sk(sk);
883 	int tmp = tp->mss_cache;
884 
885 	if (sk->sk_route_caps & NETIF_F_SG) {
886 		if (sk_can_gso(sk))
887 			tmp = 0;
888 		else {
889 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
890 
891 			if (tmp >= pgbreak &&
892 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
893 				tmp = pgbreak;
894 		}
895 	}
896 
897 	return tmp;
898 }
899 
900 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
901 		size_t size)
902 {
903 	struct sock *sk = sock->sk;
904 	struct iovec *iov;
905 	struct tcp_sock *tp = tcp_sk(sk);
906 	struct sk_buff *skb;
907 	int iovlen, flags;
908 	int mss_now, size_goal;
909 	int err, copied;
910 	long timeo;
911 
912 	lock_sock(sk);
913 	TCP_CHECK_TIMER(sk);
914 
915 	flags = msg->msg_flags;
916 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
917 
918 	/* Wait for a connection to finish. */
919 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
920 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
921 			goto out_err;
922 
923 	/* This should be in poll */
924 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
925 
926 	mss_now = tcp_send_mss(sk, &size_goal, flags);
927 
928 	/* Ok commence sending. */
929 	iovlen = msg->msg_iovlen;
930 	iov = msg->msg_iov;
931 	copied = 0;
932 
933 	err = -EPIPE;
934 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
935 		goto out_err;
936 
937 	while (--iovlen >= 0) {
938 		int seglen = iov->iov_len;
939 		unsigned char __user *from = iov->iov_base;
940 
941 		iov++;
942 
943 		while (seglen > 0) {
944 			int copy = 0;
945 			int max = size_goal;
946 
947 			skb = tcp_write_queue_tail(sk);
948 			if (tcp_send_head(sk)) {
949 				if (skb->ip_summed == CHECKSUM_NONE)
950 					max = mss_now;
951 				copy = max - skb->len;
952 			}
953 
954 			if (copy <= 0) {
955 new_segment:
956 				/* Allocate new segment. If the interface is SG,
957 				 * allocate skb fitting to single page.
958 				 */
959 				if (!sk_stream_memory_free(sk))
960 					goto wait_for_sndbuf;
961 
962 				skb = sk_stream_alloc_skb(sk, select_size(sk),
963 						sk->sk_allocation);
964 				if (!skb)
965 					goto wait_for_memory;
966 
967 				/*
968 				 * Check whether we can use HW checksum.
969 				 */
970 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
971 					skb->ip_summed = CHECKSUM_PARTIAL;
972 
973 				skb_entail(sk, skb);
974 				copy = size_goal;
975 				max = size_goal;
976 			}
977 
978 			/* Try to append data to the end of skb. */
979 			if (copy > seglen)
980 				copy = seglen;
981 
982 			/* Where to copy to? */
983 			if (skb_tailroom(skb) > 0) {
984 				/* We have some space in skb head. Superb! */
985 				if (copy > skb_tailroom(skb))
986 					copy = skb_tailroom(skb);
987 				if ((err = skb_add_data(skb, from, copy)) != 0)
988 					goto do_fault;
989 			} else {
990 				int merge = 0;
991 				int i = skb_shinfo(skb)->nr_frags;
992 				struct page *page = TCP_PAGE(sk);
993 				int off = TCP_OFF(sk);
994 
995 				if (skb_can_coalesce(skb, i, page, off) &&
996 				    off != PAGE_SIZE) {
997 					/* We can extend the last page
998 					 * fragment. */
999 					merge = 1;
1000 				} else if (i == MAX_SKB_FRAGS ||
1001 					   (!i &&
1002 					   !(sk->sk_route_caps & NETIF_F_SG))) {
1003 					/* Need to add new fragment and cannot
1004 					 * do this because interface is non-SG,
1005 					 * or because all the page slots are
1006 					 * busy. */
1007 					tcp_mark_push(tp, skb);
1008 					goto new_segment;
1009 				} else if (page) {
1010 					if (off == PAGE_SIZE) {
1011 						put_page(page);
1012 						TCP_PAGE(sk) = page = NULL;
1013 						off = 0;
1014 					}
1015 				} else
1016 					off = 0;
1017 
1018 				if (copy > PAGE_SIZE - off)
1019 					copy = PAGE_SIZE - off;
1020 
1021 				if (!sk_wmem_schedule(sk, copy))
1022 					goto wait_for_memory;
1023 
1024 				if (!page) {
1025 					/* Allocate new cache page. */
1026 					if (!(page = sk_stream_alloc_page(sk)))
1027 						goto wait_for_memory;
1028 				}
1029 
1030 				/* Time to copy data. We are close to
1031 				 * the end! */
1032 				err = skb_copy_to_page(sk, from, skb, page,
1033 						       off, copy);
1034 				if (err) {
1035 					/* If this page was new, give it to the
1036 					 * socket so it does not get leaked.
1037 					 */
1038 					if (!TCP_PAGE(sk)) {
1039 						TCP_PAGE(sk) = page;
1040 						TCP_OFF(sk) = 0;
1041 					}
1042 					goto do_error;
1043 				}
1044 
1045 				/* Update the skb. */
1046 				if (merge) {
1047 					skb_shinfo(skb)->frags[i - 1].size +=
1048 									copy;
1049 				} else {
1050 					skb_fill_page_desc(skb, i, page, off, copy);
1051 					if (TCP_PAGE(sk)) {
1052 						get_page(page);
1053 					} else if (off + copy < PAGE_SIZE) {
1054 						get_page(page);
1055 						TCP_PAGE(sk) = page;
1056 					}
1057 				}
1058 
1059 				TCP_OFF(sk) = off + copy;
1060 			}
1061 
1062 			if (!copied)
1063 				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
1064 
1065 			tp->write_seq += copy;
1066 			TCP_SKB_CB(skb)->end_seq += copy;
1067 			skb_shinfo(skb)->gso_segs = 0;
1068 
1069 			from += copy;
1070 			copied += copy;
1071 			if ((seglen -= copy) == 0 && iovlen == 0)
1072 				goto out;
1073 
1074 			if (skb->len < max || (flags & MSG_OOB))
1075 				continue;
1076 
1077 			if (forced_push(tp)) {
1078 				tcp_mark_push(tp, skb);
1079 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1080 			} else if (skb == tcp_send_head(sk))
1081 				tcp_push_one(sk, mss_now);
1082 			continue;
1083 
1084 wait_for_sndbuf:
1085 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1086 wait_for_memory:
1087 			if (copied)
1088 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1089 
1090 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1091 				goto do_error;
1092 
1093 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1094 		}
1095 	}
1096 
1097 out:
1098 	if (copied)
1099 		tcp_push(sk, flags, mss_now, tp->nonagle);
1100 	TCP_CHECK_TIMER(sk);
1101 	release_sock(sk);
1102 	return copied;
1103 
1104 do_fault:
1105 	if (!skb->len) {
1106 		tcp_unlink_write_queue(skb, sk);
1107 		/* It is the one place in all of TCP, except connection
1108 		 * reset, where we can be unlinking the send_head.
1109 		 */
1110 		tcp_check_send_head(sk, skb);
1111 		sk_wmem_free_skb(sk, skb);
1112 	}
1113 
1114 do_error:
1115 	if (copied)
1116 		goto out;
1117 out_err:
1118 	err = sk_stream_error(sk, flags, err);
1119 	TCP_CHECK_TIMER(sk);
1120 	release_sock(sk);
1121 	return err;
1122 }
1123 
1124 /*
1125  *	Handle reading urgent data. BSD has very simple semantics for
1126  *	this, no blocking and very strange errors 8)
1127  */
1128 
1129 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1130 {
1131 	struct tcp_sock *tp = tcp_sk(sk);
1132 
1133 	/* No URG data to read. */
1134 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1135 	    tp->urg_data == TCP_URG_READ)
1136 		return -EINVAL;	/* Yes this is right ! */
1137 
1138 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1139 		return -ENOTCONN;
1140 
1141 	if (tp->urg_data & TCP_URG_VALID) {
1142 		int err = 0;
1143 		char c = tp->urg_data;
1144 
1145 		if (!(flags & MSG_PEEK))
1146 			tp->urg_data = TCP_URG_READ;
1147 
1148 		/* Read urgent data. */
1149 		msg->msg_flags |= MSG_OOB;
1150 
1151 		if (len > 0) {
1152 			if (!(flags & MSG_TRUNC))
1153 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1154 			len = 1;
1155 		} else
1156 			msg->msg_flags |= MSG_TRUNC;
1157 
1158 		return err ? -EFAULT : len;
1159 	}
1160 
1161 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1162 		return 0;
1163 
1164 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1165 	 * the available implementations agree in this case:
1166 	 * this call should never block, independent of the
1167 	 * blocking state of the socket.
1168 	 * Mike <pall@rz.uni-karlsruhe.de>
1169 	 */
1170 	return -EAGAIN;
1171 }
1172 
1173 /* Clean up the receive buffer for full frames taken by the user,
1174  * then send an ACK if necessary.  COPIED is the number of bytes
1175  * tcp_recvmsg has given to the user so far, it speeds up the
1176  * calculation of whether or not we must ACK for the sake of
1177  * a window update.
1178  */
1179 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1180 {
1181 	struct tcp_sock *tp = tcp_sk(sk);
1182 	int time_to_ack = 0;
1183 
1184 #if TCP_DEBUG
1185 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1186 
1187 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1188 	     KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1189 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1190 #endif
1191 
1192 	if (inet_csk_ack_scheduled(sk)) {
1193 		const struct inet_connection_sock *icsk = inet_csk(sk);
1194 		   /* Delayed ACKs frequently hit locked sockets during bulk
1195 		    * receive. */
1196 		if (icsk->icsk_ack.blocked ||
1197 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1198 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1199 		    /*
1200 		     * If this read emptied read buffer, we send ACK, if
1201 		     * connection is not bidirectional, user drained
1202 		     * receive buffer and there was a small segment
1203 		     * in queue.
1204 		     */
1205 		    (copied > 0 &&
1206 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1207 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1208 		       !icsk->icsk_ack.pingpong)) &&
1209 		      !atomic_read(&sk->sk_rmem_alloc)))
1210 			time_to_ack = 1;
1211 	}
1212 
1213 	/* We send an ACK if we can now advertise a non-zero window
1214 	 * which has been raised "significantly".
1215 	 *
1216 	 * Even if window raised up to infinity, do not send window open ACK
1217 	 * in states, where we will not receive more. It is useless.
1218 	 */
1219 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1220 		__u32 rcv_window_now = tcp_receive_window(tp);
1221 
1222 		/* Optimize, __tcp_select_window() is not cheap. */
1223 		if (2*rcv_window_now <= tp->window_clamp) {
1224 			__u32 new_window = __tcp_select_window(sk);
1225 
1226 			/* Send ACK now, if this read freed lots of space
1227 			 * in our buffer. Certainly, new_window is new window.
1228 			 * We can advertise it now, if it is not less than current one.
1229 			 * "Lots" means "at least twice" here.
1230 			 */
1231 			if (new_window && new_window >= 2 * rcv_window_now)
1232 				time_to_ack = 1;
1233 		}
1234 	}
1235 	if (time_to_ack)
1236 		tcp_send_ack(sk);
1237 }
1238 
1239 static void tcp_prequeue_process(struct sock *sk)
1240 {
1241 	struct sk_buff *skb;
1242 	struct tcp_sock *tp = tcp_sk(sk);
1243 
1244 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1245 
1246 	/* RX process wants to run with disabled BHs, though it is not
1247 	 * necessary */
1248 	local_bh_disable();
1249 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1250 		sk_backlog_rcv(sk, skb);
1251 	local_bh_enable();
1252 
1253 	/* Clear memory counter. */
1254 	tp->ucopy.memory = 0;
1255 }
1256 
1257 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1258 {
1259 	struct sk_buff *skb;
1260 	u32 offset;
1261 
1262 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1263 		offset = seq - TCP_SKB_CB(skb)->seq;
1264 		if (tcp_hdr(skb)->syn)
1265 			offset--;
1266 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1267 			*off = offset;
1268 			return skb;
1269 		}
1270 	}
1271 	return NULL;
1272 }
1273 
1274 /*
1275  * This routine provides an alternative to tcp_recvmsg() for routines
1276  * that would like to handle copying from skbuffs directly in 'sendfile'
1277  * fashion.
1278  * Note:
1279  *	- It is assumed that the socket was locked by the caller.
1280  *	- The routine does not block.
1281  *	- At present, there is no support for reading OOB data
1282  *	  or for 'peeking' the socket using this routine
1283  *	  (although both would be easy to implement).
1284  */
1285 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1286 		  sk_read_actor_t recv_actor)
1287 {
1288 	struct sk_buff *skb;
1289 	struct tcp_sock *tp = tcp_sk(sk);
1290 	u32 seq = tp->copied_seq;
1291 	u32 offset;
1292 	int copied = 0;
1293 
1294 	if (sk->sk_state == TCP_LISTEN)
1295 		return -ENOTCONN;
1296 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1297 		if (offset < skb->len) {
1298 			int used;
1299 			size_t len;
1300 
1301 			len = skb->len - offset;
1302 			/* Stop reading if we hit a patch of urgent data */
1303 			if (tp->urg_data) {
1304 				u32 urg_offset = tp->urg_seq - seq;
1305 				if (urg_offset < len)
1306 					len = urg_offset;
1307 				if (!len)
1308 					break;
1309 			}
1310 			used = recv_actor(desc, skb, offset, len);
1311 			if (used < 0) {
1312 				if (!copied)
1313 					copied = used;
1314 				break;
1315 			} else if (used <= len) {
1316 				seq += used;
1317 				copied += used;
1318 				offset += used;
1319 			}
1320 			/*
1321 			 * If recv_actor drops the lock (e.g. TCP splice
1322 			 * receive) the skb pointer might be invalid when
1323 			 * getting here: tcp_collapse might have deleted it
1324 			 * while aggregating skbs from the socket queue.
1325 			 */
1326 			skb = tcp_recv_skb(sk, seq-1, &offset);
1327 			if (!skb || (offset+1 != skb->len))
1328 				break;
1329 		}
1330 		if (tcp_hdr(skb)->fin) {
1331 			sk_eat_skb(sk, skb, 0);
1332 			++seq;
1333 			break;
1334 		}
1335 		sk_eat_skb(sk, skb, 0);
1336 		if (!desc->count)
1337 			break;
1338 	}
1339 	tp->copied_seq = seq;
1340 
1341 	tcp_rcv_space_adjust(sk);
1342 
1343 	/* Clean up data we have read: This will do ACK frames. */
1344 	if (copied > 0)
1345 		tcp_cleanup_rbuf(sk, copied);
1346 	return copied;
1347 }
1348 
1349 /*
1350  *	This routine copies from a sock struct into the user buffer.
1351  *
1352  *	Technical note: in 2.3 we work on _locked_ socket, so that
1353  *	tricks with *seq access order and skb->users are not required.
1354  *	Probably, code can be easily improved even more.
1355  */
1356 
1357 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1358 		size_t len, int nonblock, int flags, int *addr_len)
1359 {
1360 	struct tcp_sock *tp = tcp_sk(sk);
1361 	int copied = 0;
1362 	u32 peek_seq;
1363 	u32 *seq;
1364 	unsigned long used;
1365 	int err;
1366 	int target;		/* Read at least this many bytes */
1367 	long timeo;
1368 	struct task_struct *user_recv = NULL;
1369 	int copied_early = 0;
1370 	struct sk_buff *skb;
1371 	u32 urg_hole = 0;
1372 
1373 	lock_sock(sk);
1374 
1375 	TCP_CHECK_TIMER(sk);
1376 
1377 	err = -ENOTCONN;
1378 	if (sk->sk_state == TCP_LISTEN)
1379 		goto out;
1380 
1381 	timeo = sock_rcvtimeo(sk, nonblock);
1382 
1383 	/* Urgent data needs to be handled specially. */
1384 	if (flags & MSG_OOB)
1385 		goto recv_urg;
1386 
1387 	seq = &tp->copied_seq;
1388 	if (flags & MSG_PEEK) {
1389 		peek_seq = tp->copied_seq;
1390 		seq = &peek_seq;
1391 	}
1392 
1393 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1394 
1395 #ifdef CONFIG_NET_DMA
1396 	tp->ucopy.dma_chan = NULL;
1397 	preempt_disable();
1398 	skb = skb_peek_tail(&sk->sk_receive_queue);
1399 	{
1400 		int available = 0;
1401 
1402 		if (skb)
1403 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1404 		if ((available < target) &&
1405 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1406 		    !sysctl_tcp_low_latency &&
1407 		    dma_find_channel(DMA_MEMCPY)) {
1408 			preempt_enable_no_resched();
1409 			tp->ucopy.pinned_list =
1410 					dma_pin_iovec_pages(msg->msg_iov, len);
1411 		} else {
1412 			preempt_enable_no_resched();
1413 		}
1414 	}
1415 #endif
1416 
1417 	do {
1418 		u32 offset;
1419 
1420 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1421 		if (tp->urg_data && tp->urg_seq == *seq) {
1422 			if (copied)
1423 				break;
1424 			if (signal_pending(current)) {
1425 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1426 				break;
1427 			}
1428 		}
1429 
1430 		/* Next get a buffer. */
1431 
1432 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1433 			/* Now that we have two receive queues this
1434 			 * shouldn't happen.
1435 			 */
1436 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1437 			     KERN_INFO "recvmsg bug: copied %X "
1438 				       "seq %X rcvnxt %X fl %X\n", *seq,
1439 				       TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1440 				       flags))
1441 				break;
1442 
1443 			offset = *seq - TCP_SKB_CB(skb)->seq;
1444 			if (tcp_hdr(skb)->syn)
1445 				offset--;
1446 			if (offset < skb->len)
1447 				goto found_ok_skb;
1448 			if (tcp_hdr(skb)->fin)
1449 				goto found_fin_ok;
1450 			WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
1451 					"copied %X seq %X rcvnxt %X fl %X\n",
1452 					*seq, TCP_SKB_CB(skb)->seq,
1453 					tp->rcv_nxt, flags);
1454 		}
1455 
1456 		/* Well, if we have backlog, try to process it now yet. */
1457 
1458 		if (copied >= target && !sk->sk_backlog.tail)
1459 			break;
1460 
1461 		if (copied) {
1462 			if (sk->sk_err ||
1463 			    sk->sk_state == TCP_CLOSE ||
1464 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1465 			    !timeo ||
1466 			    signal_pending(current))
1467 				break;
1468 		} else {
1469 			if (sock_flag(sk, SOCK_DONE))
1470 				break;
1471 
1472 			if (sk->sk_err) {
1473 				copied = sock_error(sk);
1474 				break;
1475 			}
1476 
1477 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1478 				break;
1479 
1480 			if (sk->sk_state == TCP_CLOSE) {
1481 				if (!sock_flag(sk, SOCK_DONE)) {
1482 					/* This occurs when user tries to read
1483 					 * from never connected socket.
1484 					 */
1485 					copied = -ENOTCONN;
1486 					break;
1487 				}
1488 				break;
1489 			}
1490 
1491 			if (!timeo) {
1492 				copied = -EAGAIN;
1493 				break;
1494 			}
1495 
1496 			if (signal_pending(current)) {
1497 				copied = sock_intr_errno(timeo);
1498 				break;
1499 			}
1500 		}
1501 
1502 		tcp_cleanup_rbuf(sk, copied);
1503 
1504 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1505 			/* Install new reader */
1506 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1507 				user_recv = current;
1508 				tp->ucopy.task = user_recv;
1509 				tp->ucopy.iov = msg->msg_iov;
1510 			}
1511 
1512 			tp->ucopy.len = len;
1513 
1514 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1515 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1516 
1517 			/* Ugly... If prequeue is not empty, we have to
1518 			 * process it before releasing socket, otherwise
1519 			 * order will be broken at second iteration.
1520 			 * More elegant solution is required!!!
1521 			 *
1522 			 * Look: we have the following (pseudo)queues:
1523 			 *
1524 			 * 1. packets in flight
1525 			 * 2. backlog
1526 			 * 3. prequeue
1527 			 * 4. receive_queue
1528 			 *
1529 			 * Each queue can be processed only if the next ones
1530 			 * are empty. At this point we have empty receive_queue.
1531 			 * But prequeue _can_ be not empty after 2nd iteration,
1532 			 * when we jumped to start of loop because backlog
1533 			 * processing added something to receive_queue.
1534 			 * We cannot release_sock(), because backlog contains
1535 			 * packets arrived _after_ prequeued ones.
1536 			 *
1537 			 * Shortly, algorithm is clear --- to process all
1538 			 * the queues in order. We could make it more directly,
1539 			 * requeueing packets from backlog to prequeue, if
1540 			 * is not empty. It is more elegant, but eats cycles,
1541 			 * unfortunately.
1542 			 */
1543 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1544 				goto do_prequeue;
1545 
1546 			/* __ Set realtime policy in scheduler __ */
1547 		}
1548 
1549 		if (copied >= target) {
1550 			/* Do not sleep, just process backlog. */
1551 			release_sock(sk);
1552 			lock_sock(sk);
1553 		} else
1554 			sk_wait_data(sk, &timeo);
1555 
1556 #ifdef CONFIG_NET_DMA
1557 		tp->ucopy.wakeup = 0;
1558 #endif
1559 
1560 		if (user_recv) {
1561 			int chunk;
1562 
1563 			/* __ Restore normal policy in scheduler __ */
1564 
1565 			if ((chunk = len - tp->ucopy.len) != 0) {
1566 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1567 				len -= chunk;
1568 				copied += chunk;
1569 			}
1570 
1571 			if (tp->rcv_nxt == tp->copied_seq &&
1572 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1573 do_prequeue:
1574 				tcp_prequeue_process(sk);
1575 
1576 				if ((chunk = len - tp->ucopy.len) != 0) {
1577 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1578 					len -= chunk;
1579 					copied += chunk;
1580 				}
1581 			}
1582 		}
1583 		if ((flags & MSG_PEEK) &&
1584 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1585 			if (net_ratelimit())
1586 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1587 				       current->comm, task_pid_nr(current));
1588 			peek_seq = tp->copied_seq;
1589 		}
1590 		continue;
1591 
1592 	found_ok_skb:
1593 		/* Ok so how much can we use? */
1594 		used = skb->len - offset;
1595 		if (len < used)
1596 			used = len;
1597 
1598 		/* Do we have urgent data here? */
1599 		if (tp->urg_data) {
1600 			u32 urg_offset = tp->urg_seq - *seq;
1601 			if (urg_offset < used) {
1602 				if (!urg_offset) {
1603 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1604 						++*seq;
1605 						urg_hole++;
1606 						offset++;
1607 						used--;
1608 						if (!used)
1609 							goto skip_copy;
1610 					}
1611 				} else
1612 					used = urg_offset;
1613 			}
1614 		}
1615 
1616 		if (!(flags & MSG_TRUNC)) {
1617 #ifdef CONFIG_NET_DMA
1618 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1619 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1620 
1621 			if (tp->ucopy.dma_chan) {
1622 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1623 					tp->ucopy.dma_chan, skb, offset,
1624 					msg->msg_iov, used,
1625 					tp->ucopy.pinned_list);
1626 
1627 				if (tp->ucopy.dma_cookie < 0) {
1628 
1629 					printk(KERN_ALERT "dma_cookie < 0\n");
1630 
1631 					/* Exception. Bailout! */
1632 					if (!copied)
1633 						copied = -EFAULT;
1634 					break;
1635 				}
1636 				if ((offset + used) == skb->len)
1637 					copied_early = 1;
1638 
1639 			} else
1640 #endif
1641 			{
1642 				err = skb_copy_datagram_iovec(skb, offset,
1643 						msg->msg_iov, used);
1644 				if (err) {
1645 					/* Exception. Bailout! */
1646 					if (!copied)
1647 						copied = -EFAULT;
1648 					break;
1649 				}
1650 			}
1651 		}
1652 
1653 		*seq += used;
1654 		copied += used;
1655 		len -= used;
1656 
1657 		tcp_rcv_space_adjust(sk);
1658 
1659 skip_copy:
1660 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1661 			tp->urg_data = 0;
1662 			tcp_fast_path_check(sk);
1663 		}
1664 		if (used + offset < skb->len)
1665 			continue;
1666 
1667 		if (tcp_hdr(skb)->fin)
1668 			goto found_fin_ok;
1669 		if (!(flags & MSG_PEEK)) {
1670 			sk_eat_skb(sk, skb, copied_early);
1671 			copied_early = 0;
1672 		}
1673 		continue;
1674 
1675 	found_fin_ok:
1676 		/* Process the FIN. */
1677 		++*seq;
1678 		if (!(flags & MSG_PEEK)) {
1679 			sk_eat_skb(sk, skb, copied_early);
1680 			copied_early = 0;
1681 		}
1682 		break;
1683 	} while (len > 0);
1684 
1685 	if (user_recv) {
1686 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1687 			int chunk;
1688 
1689 			tp->ucopy.len = copied > 0 ? len : 0;
1690 
1691 			tcp_prequeue_process(sk);
1692 
1693 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1694 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1695 				len -= chunk;
1696 				copied += chunk;
1697 			}
1698 		}
1699 
1700 		tp->ucopy.task = NULL;
1701 		tp->ucopy.len = 0;
1702 	}
1703 
1704 #ifdef CONFIG_NET_DMA
1705 	if (tp->ucopy.dma_chan) {
1706 		dma_cookie_t done, used;
1707 
1708 		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1709 
1710 		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1711 						 tp->ucopy.dma_cookie, &done,
1712 						 &used) == DMA_IN_PROGRESS) {
1713 			/* do partial cleanup of sk_async_wait_queue */
1714 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1715 			       (dma_async_is_complete(skb->dma_cookie, done,
1716 						      used) == DMA_SUCCESS)) {
1717 				__skb_dequeue(&sk->sk_async_wait_queue);
1718 				kfree_skb(skb);
1719 			}
1720 		}
1721 
1722 		/* Safe to free early-copied skbs now */
1723 		__skb_queue_purge(&sk->sk_async_wait_queue);
1724 		tp->ucopy.dma_chan = NULL;
1725 	}
1726 	if (tp->ucopy.pinned_list) {
1727 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1728 		tp->ucopy.pinned_list = NULL;
1729 	}
1730 #endif
1731 
1732 	/* According to UNIX98, msg_name/msg_namelen are ignored
1733 	 * on connected socket. I was just happy when found this 8) --ANK
1734 	 */
1735 
1736 	/* Clean up data we have read: This will do ACK frames. */
1737 	tcp_cleanup_rbuf(sk, copied);
1738 
1739 	TCP_CHECK_TIMER(sk);
1740 	release_sock(sk);
1741 	return copied;
1742 
1743 out:
1744 	TCP_CHECK_TIMER(sk);
1745 	release_sock(sk);
1746 	return err;
1747 
1748 recv_urg:
1749 	err = tcp_recv_urg(sk, msg, len, flags);
1750 	goto out;
1751 }
1752 
1753 void tcp_set_state(struct sock *sk, int state)
1754 {
1755 	int oldstate = sk->sk_state;
1756 
1757 	switch (state) {
1758 	case TCP_ESTABLISHED:
1759 		if (oldstate != TCP_ESTABLISHED)
1760 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1761 		break;
1762 
1763 	case TCP_CLOSE:
1764 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1765 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1766 
1767 		sk->sk_prot->unhash(sk);
1768 		if (inet_csk(sk)->icsk_bind_hash &&
1769 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1770 			inet_put_port(sk);
1771 		/* fall through */
1772 	default:
1773 		if (oldstate == TCP_ESTABLISHED)
1774 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1775 	}
1776 
1777 	/* Change state AFTER socket is unhashed to avoid closed
1778 	 * socket sitting in hash tables.
1779 	 */
1780 	sk->sk_state = state;
1781 
1782 #ifdef STATE_TRACE
1783 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1784 #endif
1785 }
1786 EXPORT_SYMBOL_GPL(tcp_set_state);
1787 
1788 /*
1789  *	State processing on a close. This implements the state shift for
1790  *	sending our FIN frame. Note that we only send a FIN for some
1791  *	states. A shutdown() may have already sent the FIN, or we may be
1792  *	closed.
1793  */
1794 
1795 static const unsigned char new_state[16] = {
1796   /* current state:        new state:      action:	*/
1797   /* (Invalid)		*/ TCP_CLOSE,
1798   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1799   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1800   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1801   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1802   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1803   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1804   /* TCP_CLOSE		*/ TCP_CLOSE,
1805   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1806   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1807   /* TCP_LISTEN		*/ TCP_CLOSE,
1808   /* TCP_CLOSING	*/ TCP_CLOSING,
1809 };
1810 
1811 static int tcp_close_state(struct sock *sk)
1812 {
1813 	int next = (int)new_state[sk->sk_state];
1814 	int ns = next & TCP_STATE_MASK;
1815 
1816 	tcp_set_state(sk, ns);
1817 
1818 	return next & TCP_ACTION_FIN;
1819 }
1820 
1821 /*
1822  *	Shutdown the sending side of a connection. Much like close except
1823  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1824  */
1825 
1826 void tcp_shutdown(struct sock *sk, int how)
1827 {
1828 	/*	We need to grab some memory, and put together a FIN,
1829 	 *	and then put it into the queue to be sent.
1830 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1831 	 */
1832 	if (!(how & SEND_SHUTDOWN))
1833 		return;
1834 
1835 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1836 	if ((1 << sk->sk_state) &
1837 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1838 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1839 		/* Clear out any half completed packets.  FIN if needed. */
1840 		if (tcp_close_state(sk))
1841 			tcp_send_fin(sk);
1842 	}
1843 }
1844 
1845 void tcp_close(struct sock *sk, long timeout)
1846 {
1847 	struct sk_buff *skb;
1848 	int data_was_unread = 0;
1849 	int state;
1850 
1851 	lock_sock(sk);
1852 	sk->sk_shutdown = SHUTDOWN_MASK;
1853 
1854 	if (sk->sk_state == TCP_LISTEN) {
1855 		tcp_set_state(sk, TCP_CLOSE);
1856 
1857 		/* Special case. */
1858 		inet_csk_listen_stop(sk);
1859 
1860 		goto adjudge_to_death;
1861 	}
1862 
1863 	/*  We need to flush the recv. buffs.  We do this only on the
1864 	 *  descriptor close, not protocol-sourced closes, because the
1865 	 *  reader process may not have drained the data yet!
1866 	 */
1867 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1868 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1869 			  tcp_hdr(skb)->fin;
1870 		data_was_unread += len;
1871 		__kfree_skb(skb);
1872 	}
1873 
1874 	sk_mem_reclaim(sk);
1875 
1876 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1877 	 * data was lost. To witness the awful effects of the old behavior of
1878 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1879 	 * GET in an FTP client, suspend the process, wait for the client to
1880 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1881 	 * Note: timeout is always zero in such a case.
1882 	 */
1883 	if (data_was_unread) {
1884 		/* Unread data was tossed, zap the connection. */
1885 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1886 		tcp_set_state(sk, TCP_CLOSE);
1887 		tcp_send_active_reset(sk, sk->sk_allocation);
1888 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1889 		/* Check zero linger _after_ checking for unread data. */
1890 		sk->sk_prot->disconnect(sk, 0);
1891 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1892 	} else if (tcp_close_state(sk)) {
1893 		/* We FIN if the application ate all the data before
1894 		 * zapping the connection.
1895 		 */
1896 
1897 		/* RED-PEN. Formally speaking, we have broken TCP state
1898 		 * machine. State transitions:
1899 		 *
1900 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1901 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1902 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1903 		 *
1904 		 * are legal only when FIN has been sent (i.e. in window),
1905 		 * rather than queued out of window. Purists blame.
1906 		 *
1907 		 * F.e. "RFC state" is ESTABLISHED,
1908 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1909 		 *
1910 		 * The visible declinations are that sometimes
1911 		 * we enter time-wait state, when it is not required really
1912 		 * (harmless), do not send active resets, when they are
1913 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1914 		 * they look as CLOSING or LAST_ACK for Linux)
1915 		 * Probably, I missed some more holelets.
1916 		 * 						--ANK
1917 		 */
1918 		tcp_send_fin(sk);
1919 	}
1920 
1921 	sk_stream_wait_close(sk, timeout);
1922 
1923 adjudge_to_death:
1924 	state = sk->sk_state;
1925 	sock_hold(sk);
1926 	sock_orphan(sk);
1927 
1928 	/* It is the last release_sock in its life. It will remove backlog. */
1929 	release_sock(sk);
1930 
1931 
1932 	/* Now socket is owned by kernel and we acquire BH lock
1933 	   to finish close. No need to check for user refs.
1934 	 */
1935 	local_bh_disable();
1936 	bh_lock_sock(sk);
1937 	WARN_ON(sock_owned_by_user(sk));
1938 
1939 	percpu_counter_inc(sk->sk_prot->orphan_count);
1940 
1941 	/* Have we already been destroyed by a softirq or backlog? */
1942 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1943 		goto out;
1944 
1945 	/*	This is a (useful) BSD violating of the RFC. There is a
1946 	 *	problem with TCP as specified in that the other end could
1947 	 *	keep a socket open forever with no application left this end.
1948 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1949 	 *	our end. If they send after that then tough - BUT: long enough
1950 	 *	that we won't make the old 4*rto = almost no time - whoops
1951 	 *	reset mistake.
1952 	 *
1953 	 *	Nope, it was not mistake. It is really desired behaviour
1954 	 *	f.e. on http servers, when such sockets are useless, but
1955 	 *	consume significant resources. Let's do it with special
1956 	 *	linger2	option.					--ANK
1957 	 */
1958 
1959 	if (sk->sk_state == TCP_FIN_WAIT2) {
1960 		struct tcp_sock *tp = tcp_sk(sk);
1961 		if (tp->linger2 < 0) {
1962 			tcp_set_state(sk, TCP_CLOSE);
1963 			tcp_send_active_reset(sk, GFP_ATOMIC);
1964 			NET_INC_STATS_BH(sock_net(sk),
1965 					LINUX_MIB_TCPABORTONLINGER);
1966 		} else {
1967 			const int tmo = tcp_fin_time(sk);
1968 
1969 			if (tmo > TCP_TIMEWAIT_LEN) {
1970 				inet_csk_reset_keepalive_timer(sk,
1971 						tmo - TCP_TIMEWAIT_LEN);
1972 			} else {
1973 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1974 				goto out;
1975 			}
1976 		}
1977 	}
1978 	if (sk->sk_state != TCP_CLOSE) {
1979 		int orphan_count = percpu_counter_read_positive(
1980 						sk->sk_prot->orphan_count);
1981 
1982 		sk_mem_reclaim(sk);
1983 		if (tcp_too_many_orphans(sk, orphan_count)) {
1984 			if (net_ratelimit())
1985 				printk(KERN_INFO "TCP: too many of orphaned "
1986 				       "sockets\n");
1987 			tcp_set_state(sk, TCP_CLOSE);
1988 			tcp_send_active_reset(sk, GFP_ATOMIC);
1989 			NET_INC_STATS_BH(sock_net(sk),
1990 					LINUX_MIB_TCPABORTONMEMORY);
1991 		}
1992 	}
1993 
1994 	if (sk->sk_state == TCP_CLOSE)
1995 		inet_csk_destroy_sock(sk);
1996 	/* Otherwise, socket is reprieved until protocol close. */
1997 
1998 out:
1999 	bh_unlock_sock(sk);
2000 	local_bh_enable();
2001 	sock_put(sk);
2002 }
2003 
2004 /* These states need RST on ABORT according to RFC793 */
2005 
2006 static inline int tcp_need_reset(int state)
2007 {
2008 	return (1 << state) &
2009 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2010 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2011 }
2012 
2013 int tcp_disconnect(struct sock *sk, int flags)
2014 {
2015 	struct inet_sock *inet = inet_sk(sk);
2016 	struct inet_connection_sock *icsk = inet_csk(sk);
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 	int err = 0;
2019 	int old_state = sk->sk_state;
2020 
2021 	if (old_state != TCP_CLOSE)
2022 		tcp_set_state(sk, TCP_CLOSE);
2023 
2024 	/* ABORT function of RFC793 */
2025 	if (old_state == TCP_LISTEN) {
2026 		inet_csk_listen_stop(sk);
2027 	} else if (tcp_need_reset(old_state) ||
2028 		   (tp->snd_nxt != tp->write_seq &&
2029 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2030 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2031 		 * states
2032 		 */
2033 		tcp_send_active_reset(sk, gfp_any());
2034 		sk->sk_err = ECONNRESET;
2035 	} else if (old_state == TCP_SYN_SENT)
2036 		sk->sk_err = ECONNRESET;
2037 
2038 	tcp_clear_xmit_timers(sk);
2039 	__skb_queue_purge(&sk->sk_receive_queue);
2040 	tcp_write_queue_purge(sk);
2041 	__skb_queue_purge(&tp->out_of_order_queue);
2042 #ifdef CONFIG_NET_DMA
2043 	__skb_queue_purge(&sk->sk_async_wait_queue);
2044 #endif
2045 
2046 	inet->inet_dport = 0;
2047 
2048 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2049 		inet_reset_saddr(sk);
2050 
2051 	sk->sk_shutdown = 0;
2052 	sock_reset_flag(sk, SOCK_DONE);
2053 	tp->srtt = 0;
2054 	if ((tp->write_seq += tp->max_window + 2) == 0)
2055 		tp->write_seq = 1;
2056 	icsk->icsk_backoff = 0;
2057 	tp->snd_cwnd = 2;
2058 	icsk->icsk_probes_out = 0;
2059 	tp->packets_out = 0;
2060 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2061 	tp->snd_cwnd_cnt = 0;
2062 	tp->bytes_acked = 0;
2063 	tp->window_clamp = 0;
2064 	tcp_set_ca_state(sk, TCP_CA_Open);
2065 	tcp_clear_retrans(tp);
2066 	inet_csk_delack_init(sk);
2067 	tcp_init_send_head(sk);
2068 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2069 	__sk_dst_reset(sk);
2070 
2071 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2072 
2073 	sk->sk_error_report(sk);
2074 	return err;
2075 }
2076 
2077 /*
2078  *	Socket option code for TCP.
2079  */
2080 static int do_tcp_setsockopt(struct sock *sk, int level,
2081 		int optname, char __user *optval, unsigned int optlen)
2082 {
2083 	struct tcp_sock *tp = tcp_sk(sk);
2084 	struct inet_connection_sock *icsk = inet_csk(sk);
2085 	int val;
2086 	int err = 0;
2087 
2088 	/* These are data/string values, all the others are ints */
2089 	switch (optname) {
2090 	case TCP_CONGESTION: {
2091 		char name[TCP_CA_NAME_MAX];
2092 
2093 		if (optlen < 1)
2094 			return -EINVAL;
2095 
2096 		val = strncpy_from_user(name, optval,
2097 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2098 		if (val < 0)
2099 			return -EFAULT;
2100 		name[val] = 0;
2101 
2102 		lock_sock(sk);
2103 		err = tcp_set_congestion_control(sk, name);
2104 		release_sock(sk);
2105 		return err;
2106 	}
2107 	case TCP_COOKIE_TRANSACTIONS: {
2108 		struct tcp_cookie_transactions ctd;
2109 		struct tcp_cookie_values *cvp = NULL;
2110 
2111 		if (sizeof(ctd) > optlen)
2112 			return -EINVAL;
2113 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2114 			return -EFAULT;
2115 
2116 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2117 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2118 			return -EINVAL;
2119 
2120 		if (ctd.tcpct_cookie_desired == 0) {
2121 			/* default to global value */
2122 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2123 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2124 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2125 			return -EINVAL;
2126 		}
2127 
2128 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2129 			/* Supercedes all other values */
2130 			lock_sock(sk);
2131 			if (tp->cookie_values != NULL) {
2132 				kref_put(&tp->cookie_values->kref,
2133 					 tcp_cookie_values_release);
2134 				tp->cookie_values = NULL;
2135 			}
2136 			tp->rx_opt.cookie_in_always = 0; /* false */
2137 			tp->rx_opt.cookie_out_never = 1; /* true */
2138 			release_sock(sk);
2139 			return err;
2140 		}
2141 
2142 		/* Allocate ancillary memory before locking.
2143 		 */
2144 		if (ctd.tcpct_used > 0 ||
2145 		    (tp->cookie_values == NULL &&
2146 		     (sysctl_tcp_cookie_size > 0 ||
2147 		      ctd.tcpct_cookie_desired > 0 ||
2148 		      ctd.tcpct_s_data_desired > 0))) {
2149 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2150 				      GFP_KERNEL);
2151 			if (cvp == NULL)
2152 				return -ENOMEM;
2153 		}
2154 		lock_sock(sk);
2155 		tp->rx_opt.cookie_in_always =
2156 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2157 		tp->rx_opt.cookie_out_never = 0; /* false */
2158 
2159 		if (tp->cookie_values != NULL) {
2160 			if (cvp != NULL) {
2161 				/* Changed values are recorded by a changed
2162 				 * pointer, ensuring the cookie will differ,
2163 				 * without separately hashing each value later.
2164 				 */
2165 				kref_put(&tp->cookie_values->kref,
2166 					 tcp_cookie_values_release);
2167 				kref_init(&cvp->kref);
2168 				tp->cookie_values = cvp;
2169 			} else {
2170 				cvp = tp->cookie_values;
2171 			}
2172 		}
2173 		if (cvp != NULL) {
2174 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2175 
2176 			if (ctd.tcpct_used > 0) {
2177 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2178 				       ctd.tcpct_used);
2179 				cvp->s_data_desired = ctd.tcpct_used;
2180 				cvp->s_data_constant = 1; /* true */
2181 			} else {
2182 				/* No constant payload data. */
2183 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2184 				cvp->s_data_constant = 0; /* false */
2185 			}
2186 		}
2187 		release_sock(sk);
2188 		return err;
2189 	}
2190 	default:
2191 		/* fallthru */
2192 		break;
2193 	};
2194 
2195 	if (optlen < sizeof(int))
2196 		return -EINVAL;
2197 
2198 	if (get_user(val, (int __user *)optval))
2199 		return -EFAULT;
2200 
2201 	lock_sock(sk);
2202 
2203 	switch (optname) {
2204 	case TCP_MAXSEG:
2205 		/* Values greater than interface MTU won't take effect. However
2206 		 * at the point when this call is done we typically don't yet
2207 		 * know which interface is going to be used */
2208 		if (val < 8 || val > MAX_TCP_WINDOW) {
2209 			err = -EINVAL;
2210 			break;
2211 		}
2212 		tp->rx_opt.user_mss = val;
2213 		break;
2214 
2215 	case TCP_NODELAY:
2216 		if (val) {
2217 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2218 			 * this option on corked socket is remembered, but
2219 			 * it is not activated until cork is cleared.
2220 			 *
2221 			 * However, when TCP_NODELAY is set we make
2222 			 * an explicit push, which overrides even TCP_CORK
2223 			 * for currently queued segments.
2224 			 */
2225 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2226 			tcp_push_pending_frames(sk);
2227 		} else {
2228 			tp->nonagle &= ~TCP_NAGLE_OFF;
2229 		}
2230 		break;
2231 
2232 	case TCP_CORK:
2233 		/* When set indicates to always queue non-full frames.
2234 		 * Later the user clears this option and we transmit
2235 		 * any pending partial frames in the queue.  This is
2236 		 * meant to be used alongside sendfile() to get properly
2237 		 * filled frames when the user (for example) must write
2238 		 * out headers with a write() call first and then use
2239 		 * sendfile to send out the data parts.
2240 		 *
2241 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2242 		 * stronger than TCP_NODELAY.
2243 		 */
2244 		if (val) {
2245 			tp->nonagle |= TCP_NAGLE_CORK;
2246 		} else {
2247 			tp->nonagle &= ~TCP_NAGLE_CORK;
2248 			if (tp->nonagle&TCP_NAGLE_OFF)
2249 				tp->nonagle |= TCP_NAGLE_PUSH;
2250 			tcp_push_pending_frames(sk);
2251 		}
2252 		break;
2253 
2254 	case TCP_KEEPIDLE:
2255 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2256 			err = -EINVAL;
2257 		else {
2258 			tp->keepalive_time = val * HZ;
2259 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2260 			    !((1 << sk->sk_state) &
2261 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2262 				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2263 				if (tp->keepalive_time > elapsed)
2264 					elapsed = tp->keepalive_time - elapsed;
2265 				else
2266 					elapsed = 0;
2267 				inet_csk_reset_keepalive_timer(sk, elapsed);
2268 			}
2269 		}
2270 		break;
2271 	case TCP_KEEPINTVL:
2272 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2273 			err = -EINVAL;
2274 		else
2275 			tp->keepalive_intvl = val * HZ;
2276 		break;
2277 	case TCP_KEEPCNT:
2278 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2279 			err = -EINVAL;
2280 		else
2281 			tp->keepalive_probes = val;
2282 		break;
2283 	case TCP_SYNCNT:
2284 		if (val < 1 || val > MAX_TCP_SYNCNT)
2285 			err = -EINVAL;
2286 		else
2287 			icsk->icsk_syn_retries = val;
2288 		break;
2289 
2290 	case TCP_LINGER2:
2291 		if (val < 0)
2292 			tp->linger2 = -1;
2293 		else if (val > sysctl_tcp_fin_timeout / HZ)
2294 			tp->linger2 = 0;
2295 		else
2296 			tp->linger2 = val * HZ;
2297 		break;
2298 
2299 	case TCP_DEFER_ACCEPT:
2300 		/* Translate value in seconds to number of retransmits */
2301 		icsk->icsk_accept_queue.rskq_defer_accept =
2302 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2303 					TCP_RTO_MAX / HZ);
2304 		break;
2305 
2306 	case TCP_WINDOW_CLAMP:
2307 		if (!val) {
2308 			if (sk->sk_state != TCP_CLOSE) {
2309 				err = -EINVAL;
2310 				break;
2311 			}
2312 			tp->window_clamp = 0;
2313 		} else
2314 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2315 						SOCK_MIN_RCVBUF / 2 : val;
2316 		break;
2317 
2318 	case TCP_QUICKACK:
2319 		if (!val) {
2320 			icsk->icsk_ack.pingpong = 1;
2321 		} else {
2322 			icsk->icsk_ack.pingpong = 0;
2323 			if ((1 << sk->sk_state) &
2324 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2325 			    inet_csk_ack_scheduled(sk)) {
2326 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2327 				tcp_cleanup_rbuf(sk, 1);
2328 				if (!(val & 1))
2329 					icsk->icsk_ack.pingpong = 1;
2330 			}
2331 		}
2332 		break;
2333 
2334 #ifdef CONFIG_TCP_MD5SIG
2335 	case TCP_MD5SIG:
2336 		/* Read the IP->Key mappings from userspace */
2337 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2338 		break;
2339 #endif
2340 
2341 	default:
2342 		err = -ENOPROTOOPT;
2343 		break;
2344 	}
2345 
2346 	release_sock(sk);
2347 	return err;
2348 }
2349 
2350 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2351 		   unsigned int optlen)
2352 {
2353 	struct inet_connection_sock *icsk = inet_csk(sk);
2354 
2355 	if (level != SOL_TCP)
2356 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2357 						     optval, optlen);
2358 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2359 }
2360 
2361 #ifdef CONFIG_COMPAT
2362 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2363 			  char __user *optval, unsigned int optlen)
2364 {
2365 	if (level != SOL_TCP)
2366 		return inet_csk_compat_setsockopt(sk, level, optname,
2367 						  optval, optlen);
2368 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2369 }
2370 
2371 EXPORT_SYMBOL(compat_tcp_setsockopt);
2372 #endif
2373 
2374 /* Return information about state of tcp endpoint in API format. */
2375 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2376 {
2377 	struct tcp_sock *tp = tcp_sk(sk);
2378 	const struct inet_connection_sock *icsk = inet_csk(sk);
2379 	u32 now = tcp_time_stamp;
2380 
2381 	memset(info, 0, sizeof(*info));
2382 
2383 	info->tcpi_state = sk->sk_state;
2384 	info->tcpi_ca_state = icsk->icsk_ca_state;
2385 	info->tcpi_retransmits = icsk->icsk_retransmits;
2386 	info->tcpi_probes = icsk->icsk_probes_out;
2387 	info->tcpi_backoff = icsk->icsk_backoff;
2388 
2389 	if (tp->rx_opt.tstamp_ok)
2390 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2391 	if (tcp_is_sack(tp))
2392 		info->tcpi_options |= TCPI_OPT_SACK;
2393 	if (tp->rx_opt.wscale_ok) {
2394 		info->tcpi_options |= TCPI_OPT_WSCALE;
2395 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2396 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2397 	}
2398 
2399 	if (tp->ecn_flags&TCP_ECN_OK)
2400 		info->tcpi_options |= TCPI_OPT_ECN;
2401 
2402 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2403 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2404 	info->tcpi_snd_mss = tp->mss_cache;
2405 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2406 
2407 	if (sk->sk_state == TCP_LISTEN) {
2408 		info->tcpi_unacked = sk->sk_ack_backlog;
2409 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2410 	} else {
2411 		info->tcpi_unacked = tp->packets_out;
2412 		info->tcpi_sacked = tp->sacked_out;
2413 	}
2414 	info->tcpi_lost = tp->lost_out;
2415 	info->tcpi_retrans = tp->retrans_out;
2416 	info->tcpi_fackets = tp->fackets_out;
2417 
2418 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2419 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2420 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2421 
2422 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2423 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2424 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2425 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2426 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2427 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2428 	info->tcpi_advmss = tp->advmss;
2429 	info->tcpi_reordering = tp->reordering;
2430 
2431 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2432 	info->tcpi_rcv_space = tp->rcvq_space.space;
2433 
2434 	info->tcpi_total_retrans = tp->total_retrans;
2435 }
2436 
2437 EXPORT_SYMBOL_GPL(tcp_get_info);
2438 
2439 static int do_tcp_getsockopt(struct sock *sk, int level,
2440 		int optname, char __user *optval, int __user *optlen)
2441 {
2442 	struct inet_connection_sock *icsk = inet_csk(sk);
2443 	struct tcp_sock *tp = tcp_sk(sk);
2444 	int val, len;
2445 
2446 	if (get_user(len, optlen))
2447 		return -EFAULT;
2448 
2449 	len = min_t(unsigned int, len, sizeof(int));
2450 
2451 	if (len < 0)
2452 		return -EINVAL;
2453 
2454 	switch (optname) {
2455 	case TCP_MAXSEG:
2456 		val = tp->mss_cache;
2457 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2458 			val = tp->rx_opt.user_mss;
2459 		break;
2460 	case TCP_NODELAY:
2461 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2462 		break;
2463 	case TCP_CORK:
2464 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2465 		break;
2466 	case TCP_KEEPIDLE:
2467 		val = keepalive_time_when(tp) / HZ;
2468 		break;
2469 	case TCP_KEEPINTVL:
2470 		val = keepalive_intvl_when(tp) / HZ;
2471 		break;
2472 	case TCP_KEEPCNT:
2473 		val = keepalive_probes(tp);
2474 		break;
2475 	case TCP_SYNCNT:
2476 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2477 		break;
2478 	case TCP_LINGER2:
2479 		val = tp->linger2;
2480 		if (val >= 0)
2481 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2482 		break;
2483 	case TCP_DEFER_ACCEPT:
2484 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2485 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2486 		break;
2487 	case TCP_WINDOW_CLAMP:
2488 		val = tp->window_clamp;
2489 		break;
2490 	case TCP_INFO: {
2491 		struct tcp_info info;
2492 
2493 		if (get_user(len, optlen))
2494 			return -EFAULT;
2495 
2496 		tcp_get_info(sk, &info);
2497 
2498 		len = min_t(unsigned int, len, sizeof(info));
2499 		if (put_user(len, optlen))
2500 			return -EFAULT;
2501 		if (copy_to_user(optval, &info, len))
2502 			return -EFAULT;
2503 		return 0;
2504 	}
2505 	case TCP_QUICKACK:
2506 		val = !icsk->icsk_ack.pingpong;
2507 		break;
2508 
2509 	case TCP_CONGESTION:
2510 		if (get_user(len, optlen))
2511 			return -EFAULT;
2512 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2513 		if (put_user(len, optlen))
2514 			return -EFAULT;
2515 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2516 			return -EFAULT;
2517 		return 0;
2518 
2519 	case TCP_COOKIE_TRANSACTIONS: {
2520 		struct tcp_cookie_transactions ctd;
2521 		struct tcp_cookie_values *cvp = tp->cookie_values;
2522 
2523 		if (get_user(len, optlen))
2524 			return -EFAULT;
2525 		if (len < sizeof(ctd))
2526 			return -EINVAL;
2527 
2528 		memset(&ctd, 0, sizeof(ctd));
2529 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2530 				   TCP_COOKIE_IN_ALWAYS : 0)
2531 				| (tp->rx_opt.cookie_out_never ?
2532 				   TCP_COOKIE_OUT_NEVER : 0);
2533 
2534 		if (cvp != NULL) {
2535 			ctd.tcpct_flags |= (cvp->s_data_in ?
2536 					    TCP_S_DATA_IN : 0)
2537 					 | (cvp->s_data_out ?
2538 					    TCP_S_DATA_OUT : 0);
2539 
2540 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2541 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2542 
2543 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2544 			       cvp->cookie_pair_size);
2545 			ctd.tcpct_used = cvp->cookie_pair_size;
2546 		}
2547 
2548 		if (put_user(sizeof(ctd), optlen))
2549 			return -EFAULT;
2550 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2551 			return -EFAULT;
2552 		return 0;
2553 	}
2554 	default:
2555 		return -ENOPROTOOPT;
2556 	}
2557 
2558 	if (put_user(len, optlen))
2559 		return -EFAULT;
2560 	if (copy_to_user(optval, &val, len))
2561 		return -EFAULT;
2562 	return 0;
2563 }
2564 
2565 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2566 		   int __user *optlen)
2567 {
2568 	struct inet_connection_sock *icsk = inet_csk(sk);
2569 
2570 	if (level != SOL_TCP)
2571 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2572 						     optval, optlen);
2573 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2574 }
2575 
2576 #ifdef CONFIG_COMPAT
2577 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2578 			  char __user *optval, int __user *optlen)
2579 {
2580 	if (level != SOL_TCP)
2581 		return inet_csk_compat_getsockopt(sk, level, optname,
2582 						  optval, optlen);
2583 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2584 }
2585 
2586 EXPORT_SYMBOL(compat_tcp_getsockopt);
2587 #endif
2588 
2589 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2590 {
2591 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2592 	struct tcphdr *th;
2593 	unsigned thlen;
2594 	unsigned int seq;
2595 	__be32 delta;
2596 	unsigned int oldlen;
2597 	unsigned int mss;
2598 
2599 	if (!pskb_may_pull(skb, sizeof(*th)))
2600 		goto out;
2601 
2602 	th = tcp_hdr(skb);
2603 	thlen = th->doff * 4;
2604 	if (thlen < sizeof(*th))
2605 		goto out;
2606 
2607 	if (!pskb_may_pull(skb, thlen))
2608 		goto out;
2609 
2610 	oldlen = (u16)~skb->len;
2611 	__skb_pull(skb, thlen);
2612 
2613 	mss = skb_shinfo(skb)->gso_size;
2614 	if (unlikely(skb->len <= mss))
2615 		goto out;
2616 
2617 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2618 		/* Packet is from an untrusted source, reset gso_segs. */
2619 		int type = skb_shinfo(skb)->gso_type;
2620 
2621 		if (unlikely(type &
2622 			     ~(SKB_GSO_TCPV4 |
2623 			       SKB_GSO_DODGY |
2624 			       SKB_GSO_TCP_ECN |
2625 			       SKB_GSO_TCPV6 |
2626 			       0) ||
2627 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2628 			goto out;
2629 
2630 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2631 
2632 		segs = NULL;
2633 		goto out;
2634 	}
2635 
2636 	segs = skb_segment(skb, features);
2637 	if (IS_ERR(segs))
2638 		goto out;
2639 
2640 	delta = htonl(oldlen + (thlen + mss));
2641 
2642 	skb = segs;
2643 	th = tcp_hdr(skb);
2644 	seq = ntohl(th->seq);
2645 
2646 	do {
2647 		th->fin = th->psh = 0;
2648 
2649 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2650 				       (__force u32)delta));
2651 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2652 			th->check =
2653 			     csum_fold(csum_partial(skb_transport_header(skb),
2654 						    thlen, skb->csum));
2655 
2656 		seq += mss;
2657 		skb = skb->next;
2658 		th = tcp_hdr(skb);
2659 
2660 		th->seq = htonl(seq);
2661 		th->cwr = 0;
2662 	} while (skb->next);
2663 
2664 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2665 		      skb->data_len);
2666 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2667 				(__force u32)delta));
2668 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2669 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2670 						   thlen, skb->csum));
2671 
2672 out:
2673 	return segs;
2674 }
2675 EXPORT_SYMBOL(tcp_tso_segment);
2676 
2677 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2678 {
2679 	struct sk_buff **pp = NULL;
2680 	struct sk_buff *p;
2681 	struct tcphdr *th;
2682 	struct tcphdr *th2;
2683 	unsigned int len;
2684 	unsigned int thlen;
2685 	unsigned int flags;
2686 	unsigned int mss = 1;
2687 	unsigned int hlen;
2688 	unsigned int off;
2689 	int flush = 1;
2690 	int i;
2691 
2692 	off = skb_gro_offset(skb);
2693 	hlen = off + sizeof(*th);
2694 	th = skb_gro_header_fast(skb, off);
2695 	if (skb_gro_header_hard(skb, hlen)) {
2696 		th = skb_gro_header_slow(skb, hlen, off);
2697 		if (unlikely(!th))
2698 			goto out;
2699 	}
2700 
2701 	thlen = th->doff * 4;
2702 	if (thlen < sizeof(*th))
2703 		goto out;
2704 
2705 	hlen = off + thlen;
2706 	if (skb_gro_header_hard(skb, hlen)) {
2707 		th = skb_gro_header_slow(skb, hlen, off);
2708 		if (unlikely(!th))
2709 			goto out;
2710 	}
2711 
2712 	skb_gro_pull(skb, thlen);
2713 
2714 	len = skb_gro_len(skb);
2715 	flags = tcp_flag_word(th);
2716 
2717 	for (; (p = *head); head = &p->next) {
2718 		if (!NAPI_GRO_CB(p)->same_flow)
2719 			continue;
2720 
2721 		th2 = tcp_hdr(p);
2722 
2723 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2724 			NAPI_GRO_CB(p)->same_flow = 0;
2725 			continue;
2726 		}
2727 
2728 		goto found;
2729 	}
2730 
2731 	goto out_check_final;
2732 
2733 found:
2734 	flush = NAPI_GRO_CB(p)->flush;
2735 	flush |= flags & TCP_FLAG_CWR;
2736 	flush |= (flags ^ tcp_flag_word(th2)) &
2737 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
2738 	flush |= th->ack_seq ^ th2->ack_seq;
2739 	for (i = sizeof(*th); i < thlen; i += 4)
2740 		flush |= *(u32 *)((u8 *)th + i) ^
2741 			 *(u32 *)((u8 *)th2 + i);
2742 
2743 	mss = skb_shinfo(p)->gso_size;
2744 
2745 	flush |= (len - 1) >= mss;
2746 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2747 
2748 	if (flush || skb_gro_receive(head, skb)) {
2749 		mss = 1;
2750 		goto out_check_final;
2751 	}
2752 
2753 	p = *head;
2754 	th2 = tcp_hdr(p);
2755 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2756 
2757 out_check_final:
2758 	flush = len < mss;
2759 	flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
2760 			  TCP_FLAG_SYN | TCP_FLAG_FIN);
2761 
2762 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2763 		pp = head;
2764 
2765 out:
2766 	NAPI_GRO_CB(skb)->flush |= flush;
2767 
2768 	return pp;
2769 }
2770 EXPORT_SYMBOL(tcp_gro_receive);
2771 
2772 int tcp_gro_complete(struct sk_buff *skb)
2773 {
2774 	struct tcphdr *th = tcp_hdr(skb);
2775 
2776 	skb->csum_start = skb_transport_header(skb) - skb->head;
2777 	skb->csum_offset = offsetof(struct tcphdr, check);
2778 	skb->ip_summed = CHECKSUM_PARTIAL;
2779 
2780 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2781 
2782 	if (th->cwr)
2783 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2784 
2785 	return 0;
2786 }
2787 EXPORT_SYMBOL(tcp_gro_complete);
2788 
2789 #ifdef CONFIG_TCP_MD5SIG
2790 static unsigned long tcp_md5sig_users;
2791 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2792 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2793 
2794 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2795 {
2796 	int cpu;
2797 	for_each_possible_cpu(cpu) {
2798 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2799 		if (p) {
2800 			if (p->md5_desc.tfm)
2801 				crypto_free_hash(p->md5_desc.tfm);
2802 			kfree(p);
2803 			p = NULL;
2804 		}
2805 	}
2806 	free_percpu(pool);
2807 }
2808 
2809 void tcp_free_md5sig_pool(void)
2810 {
2811 	struct tcp_md5sig_pool **pool = NULL;
2812 
2813 	spin_lock_bh(&tcp_md5sig_pool_lock);
2814 	if (--tcp_md5sig_users == 0) {
2815 		pool = tcp_md5sig_pool;
2816 		tcp_md5sig_pool = NULL;
2817 	}
2818 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2819 	if (pool)
2820 		__tcp_free_md5sig_pool(pool);
2821 }
2822 
2823 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2824 
2825 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(struct sock *sk)
2826 {
2827 	int cpu;
2828 	struct tcp_md5sig_pool **pool;
2829 
2830 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2831 	if (!pool)
2832 		return NULL;
2833 
2834 	for_each_possible_cpu(cpu) {
2835 		struct tcp_md5sig_pool *p;
2836 		struct crypto_hash *hash;
2837 
2838 		p = kzalloc(sizeof(*p), sk->sk_allocation);
2839 		if (!p)
2840 			goto out_free;
2841 		*per_cpu_ptr(pool, cpu) = p;
2842 
2843 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2844 		if (!hash || IS_ERR(hash))
2845 			goto out_free;
2846 
2847 		p->md5_desc.tfm = hash;
2848 	}
2849 	return pool;
2850 out_free:
2851 	__tcp_free_md5sig_pool(pool);
2852 	return NULL;
2853 }
2854 
2855 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(struct sock *sk)
2856 {
2857 	struct tcp_md5sig_pool **pool;
2858 	int alloc = 0;
2859 
2860 retry:
2861 	spin_lock_bh(&tcp_md5sig_pool_lock);
2862 	pool = tcp_md5sig_pool;
2863 	if (tcp_md5sig_users++ == 0) {
2864 		alloc = 1;
2865 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2866 	} else if (!pool) {
2867 		tcp_md5sig_users--;
2868 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2869 		cpu_relax();
2870 		goto retry;
2871 	} else
2872 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2873 
2874 	if (alloc) {
2875 		/* we cannot hold spinlock here because this may sleep. */
2876 		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool(sk);
2877 		spin_lock_bh(&tcp_md5sig_pool_lock);
2878 		if (!p) {
2879 			tcp_md5sig_users--;
2880 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2881 			return NULL;
2882 		}
2883 		pool = tcp_md5sig_pool;
2884 		if (pool) {
2885 			/* oops, it has already been assigned. */
2886 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2887 			__tcp_free_md5sig_pool(p);
2888 		} else {
2889 			tcp_md5sig_pool = pool = p;
2890 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2891 		}
2892 	}
2893 	return pool;
2894 }
2895 
2896 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2897 
2898 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2899 {
2900 	struct tcp_md5sig_pool **p;
2901 	spin_lock_bh(&tcp_md5sig_pool_lock);
2902 	p = tcp_md5sig_pool;
2903 	if (p)
2904 		tcp_md5sig_users++;
2905 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2906 	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2907 }
2908 
2909 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2910 
2911 void __tcp_put_md5sig_pool(void)
2912 {
2913 	tcp_free_md5sig_pool();
2914 }
2915 
2916 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2917 
2918 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2919 			struct tcphdr *th)
2920 {
2921 	struct scatterlist sg;
2922 	int err;
2923 
2924 	__sum16 old_checksum = th->check;
2925 	th->check = 0;
2926 	/* options aren't included in the hash */
2927 	sg_init_one(&sg, th, sizeof(struct tcphdr));
2928 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2929 	th->check = old_checksum;
2930 	return err;
2931 }
2932 
2933 EXPORT_SYMBOL(tcp_md5_hash_header);
2934 
2935 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2936 			  struct sk_buff *skb, unsigned header_len)
2937 {
2938 	struct scatterlist sg;
2939 	const struct tcphdr *tp = tcp_hdr(skb);
2940 	struct hash_desc *desc = &hp->md5_desc;
2941 	unsigned i;
2942 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2943 				       skb_headlen(skb) - header_len : 0;
2944 	const struct skb_shared_info *shi = skb_shinfo(skb);
2945 
2946 	sg_init_table(&sg, 1);
2947 
2948 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2949 	if (crypto_hash_update(desc, &sg, head_data_len))
2950 		return 1;
2951 
2952 	for (i = 0; i < shi->nr_frags; ++i) {
2953 		const struct skb_frag_struct *f = &shi->frags[i];
2954 		sg_set_page(&sg, f->page, f->size, f->page_offset);
2955 		if (crypto_hash_update(desc, &sg, f->size))
2956 			return 1;
2957 	}
2958 
2959 	return 0;
2960 }
2961 
2962 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2963 
2964 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2965 {
2966 	struct scatterlist sg;
2967 
2968 	sg_init_one(&sg, key->key, key->keylen);
2969 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2970 }
2971 
2972 EXPORT_SYMBOL(tcp_md5_hash_key);
2973 
2974 #endif
2975 
2976 /**
2977  * Each Responder maintains up to two secret values concurrently for
2978  * efficient secret rollover.  Each secret value has 4 states:
2979  *
2980  * Generating.  (tcp_secret_generating != tcp_secret_primary)
2981  *    Generates new Responder-Cookies, but not yet used for primary
2982  *    verification.  This is a short-term state, typically lasting only
2983  *    one round trip time (RTT).
2984  *
2985  * Primary.  (tcp_secret_generating == tcp_secret_primary)
2986  *    Used both for generation and primary verification.
2987  *
2988  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
2989  *    Used for verification, until the first failure that can be
2990  *    verified by the newer Generating secret.  At that time, this
2991  *    cookie's state is changed to Secondary, and the Generating
2992  *    cookie's state is changed to Primary.  This is a short-term state,
2993  *    typically lasting only one round trip time (RTT).
2994  *
2995  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
2996  *    Used for secondary verification, after primary verification
2997  *    failures.  This state lasts no more than twice the Maximum Segment
2998  *    Lifetime (2MSL).  Then, the secret is discarded.
2999  */
3000 struct tcp_cookie_secret {
3001 	/* The secret is divided into two parts.  The digest part is the
3002 	 * equivalent of previously hashing a secret and saving the state,
3003 	 * and serves as an initialization vector (IV).  The message part
3004 	 * serves as the trailing secret.
3005 	 */
3006 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3007 	unsigned long			expires;
3008 };
3009 
3010 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3011 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3012 #define TCP_SECRET_LIFE (HZ * 600)
3013 
3014 static struct tcp_cookie_secret tcp_secret_one;
3015 static struct tcp_cookie_secret tcp_secret_two;
3016 
3017 /* Essentially a circular list, without dynamic allocation. */
3018 static struct tcp_cookie_secret *tcp_secret_generating;
3019 static struct tcp_cookie_secret *tcp_secret_primary;
3020 static struct tcp_cookie_secret *tcp_secret_retiring;
3021 static struct tcp_cookie_secret *tcp_secret_secondary;
3022 
3023 static DEFINE_SPINLOCK(tcp_secret_locker);
3024 
3025 /* Select a pseudo-random word in the cookie workspace.
3026  */
3027 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3028 {
3029 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3030 }
3031 
3032 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3033  * Called in softirq context.
3034  * Returns: 0 for success.
3035  */
3036 int tcp_cookie_generator(u32 *bakery)
3037 {
3038 	unsigned long jiffy = jiffies;
3039 
3040 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3041 		spin_lock_bh(&tcp_secret_locker);
3042 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3043 			/* refreshed by another */
3044 			memcpy(bakery,
3045 			       &tcp_secret_generating->secrets[0],
3046 			       COOKIE_WORKSPACE_WORDS);
3047 		} else {
3048 			/* still needs refreshing */
3049 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3050 
3051 			/* The first time, paranoia assumes that the
3052 			 * randomization function isn't as strong.  But,
3053 			 * this secret initialization is delayed until
3054 			 * the last possible moment (packet arrival).
3055 			 * Although that time is observable, it is
3056 			 * unpredictably variable.  Mash in the most
3057 			 * volatile clock bits available, and expire the
3058 			 * secret extra quickly.
3059 			 */
3060 			if (unlikely(tcp_secret_primary->expires ==
3061 				     tcp_secret_secondary->expires)) {
3062 				struct timespec tv;
3063 
3064 				getnstimeofday(&tv);
3065 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3066 					(u32)tv.tv_nsec;
3067 
3068 				tcp_secret_secondary->expires = jiffy
3069 					+ TCP_SECRET_1MSL
3070 					+ (0x0f & tcp_cookie_work(bakery, 0));
3071 			} else {
3072 				tcp_secret_secondary->expires = jiffy
3073 					+ TCP_SECRET_LIFE
3074 					+ (0xff & tcp_cookie_work(bakery, 1));
3075 				tcp_secret_primary->expires = jiffy
3076 					+ TCP_SECRET_2MSL
3077 					+ (0x1f & tcp_cookie_work(bakery, 2));
3078 			}
3079 			memcpy(&tcp_secret_secondary->secrets[0],
3080 			       bakery, COOKIE_WORKSPACE_WORDS);
3081 
3082 			rcu_assign_pointer(tcp_secret_generating,
3083 					   tcp_secret_secondary);
3084 			rcu_assign_pointer(tcp_secret_retiring,
3085 					   tcp_secret_primary);
3086 			/*
3087 			 * Neither call_rcu() nor synchronize_rcu() needed.
3088 			 * Retiring data is not freed.  It is replaced after
3089 			 * further (locked) pointer updates, and a quiet time
3090 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3091 			 */
3092 		}
3093 		spin_unlock_bh(&tcp_secret_locker);
3094 	} else {
3095 		rcu_read_lock_bh();
3096 		memcpy(bakery,
3097 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3098 		       COOKIE_WORKSPACE_WORDS);
3099 		rcu_read_unlock_bh();
3100 	}
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL(tcp_cookie_generator);
3104 
3105 void tcp_done(struct sock *sk)
3106 {
3107 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3108 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3109 
3110 	tcp_set_state(sk, TCP_CLOSE);
3111 	tcp_clear_xmit_timers(sk);
3112 
3113 	sk->sk_shutdown = SHUTDOWN_MASK;
3114 
3115 	if (!sock_flag(sk, SOCK_DEAD))
3116 		sk->sk_state_change(sk);
3117 	else
3118 		inet_csk_destroy_sock(sk);
3119 }
3120 EXPORT_SYMBOL_GPL(tcp_done);
3121 
3122 extern struct tcp_congestion_ops tcp_reno;
3123 
3124 static __initdata unsigned long thash_entries;
3125 static int __init set_thash_entries(char *str)
3126 {
3127 	if (!str)
3128 		return 0;
3129 	thash_entries = simple_strtoul(str, &str, 0);
3130 	return 1;
3131 }
3132 __setup("thash_entries=", set_thash_entries);
3133 
3134 void __init tcp_init(void)
3135 {
3136 	struct sk_buff *skb = NULL;
3137 	unsigned long nr_pages, limit;
3138 	int order, i, max_share;
3139 	unsigned long jiffy = jiffies;
3140 
3141 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3142 
3143 	percpu_counter_init(&tcp_sockets_allocated, 0);
3144 	percpu_counter_init(&tcp_orphan_count, 0);
3145 	tcp_hashinfo.bind_bucket_cachep =
3146 		kmem_cache_create("tcp_bind_bucket",
3147 				  sizeof(struct inet_bind_bucket), 0,
3148 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3149 
3150 	/* Size and allocate the main established and bind bucket
3151 	 * hash tables.
3152 	 *
3153 	 * The methodology is similar to that of the buffer cache.
3154 	 */
3155 	tcp_hashinfo.ehash =
3156 		alloc_large_system_hash("TCP established",
3157 					sizeof(struct inet_ehash_bucket),
3158 					thash_entries,
3159 					(totalram_pages >= 128 * 1024) ?
3160 					13 : 15,
3161 					0,
3162 					NULL,
3163 					&tcp_hashinfo.ehash_mask,
3164 					thash_entries ? 0 : 512 * 1024);
3165 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3166 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3167 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3168 	}
3169 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3170 		panic("TCP: failed to alloc ehash_locks");
3171 	tcp_hashinfo.bhash =
3172 		alloc_large_system_hash("TCP bind",
3173 					sizeof(struct inet_bind_hashbucket),
3174 					tcp_hashinfo.ehash_mask + 1,
3175 					(totalram_pages >= 128 * 1024) ?
3176 					13 : 15,
3177 					0,
3178 					&tcp_hashinfo.bhash_size,
3179 					NULL,
3180 					64 * 1024);
3181 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3182 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3183 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3184 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3185 	}
3186 
3187 	/* Try to be a bit smarter and adjust defaults depending
3188 	 * on available memory.
3189 	 */
3190 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
3191 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
3192 			order++)
3193 		;
3194 	if (order >= 4) {
3195 		tcp_death_row.sysctl_max_tw_buckets = 180000;
3196 		sysctl_tcp_max_orphans = 4096 << (order - 4);
3197 		sysctl_max_syn_backlog = 1024;
3198 	} else if (order < 3) {
3199 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
3200 		sysctl_tcp_max_orphans >>= (3 - order);
3201 		sysctl_max_syn_backlog = 128;
3202 	}
3203 
3204 	/* Set the pressure threshold to be a fraction of global memory that
3205 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3206 	 * memory, with a floor of 128 pages.
3207 	 */
3208 	nr_pages = totalram_pages - totalhigh_pages;
3209 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3210 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3211 	limit = max(limit, 128UL);
3212 	sysctl_tcp_mem[0] = limit / 4 * 3;
3213 	sysctl_tcp_mem[1] = limit;
3214 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3215 
3216 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3217 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3218 	max_share = min(4UL*1024*1024, limit);
3219 
3220 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3221 	sysctl_tcp_wmem[1] = 16*1024;
3222 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3223 
3224 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3225 	sysctl_tcp_rmem[1] = 87380;
3226 	sysctl_tcp_rmem[2] = max(87380, max_share);
3227 
3228 	printk(KERN_INFO "TCP: Hash tables configured "
3229 	       "(established %u bind %u)\n",
3230 	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3231 
3232 	tcp_register_congestion_control(&tcp_reno);
3233 
3234 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3235 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3236 	tcp_secret_one.expires = jiffy; /* past due */
3237 	tcp_secret_two.expires = jiffy; /* past due */
3238 	tcp_secret_generating = &tcp_secret_one;
3239 	tcp_secret_primary = &tcp_secret_one;
3240 	tcp_secret_retiring = &tcp_secret_two;
3241 	tcp_secret_secondary = &tcp_secret_two;
3242 }
3243 
3244 EXPORT_SYMBOL(tcp_close);
3245 EXPORT_SYMBOL(tcp_disconnect);
3246 EXPORT_SYMBOL(tcp_getsockopt);
3247 EXPORT_SYMBOL(tcp_ioctl);
3248 EXPORT_SYMBOL(tcp_poll);
3249 EXPORT_SYMBOL(tcp_read_sock);
3250 EXPORT_SYMBOL(tcp_recvmsg);
3251 EXPORT_SYMBOL(tcp_sendmsg);
3252 EXPORT_SYMBOL(tcp_splice_read);
3253 EXPORT_SYMBOL(tcp_sendpage);
3254 EXPORT_SYMBOL(tcp_setsockopt);
3255 EXPORT_SYMBOL(tcp_shutdown);
3256