1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_min_tso_segs __read_mostly = 2; 285 286 int sysctl_tcp_autocorking __read_mostly = 1; 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 long sysctl_tcp_mem[3] __read_mostly; 292 int sysctl_tcp_wmem[3] __read_mostly; 293 int sysctl_tcp_rmem[3] __read_mostly; 294 295 EXPORT_SYMBOL(sysctl_tcp_mem); 296 EXPORT_SYMBOL(sysctl_tcp_rmem); 297 EXPORT_SYMBOL(sysctl_tcp_wmem); 298 299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 300 EXPORT_SYMBOL(tcp_memory_allocated); 301 302 /* 303 * Current number of TCP sockets. 304 */ 305 struct percpu_counter tcp_sockets_allocated; 306 EXPORT_SYMBOL(tcp_sockets_allocated); 307 308 /* 309 * TCP splice context 310 */ 311 struct tcp_splice_state { 312 struct pipe_inode_info *pipe; 313 size_t len; 314 unsigned int flags; 315 }; 316 317 /* 318 * Pressure flag: try to collapse. 319 * Technical note: it is used by multiple contexts non atomically. 320 * All the __sk_mem_schedule() is of this nature: accounting 321 * is strict, actions are advisory and have some latency. 322 */ 323 int tcp_memory_pressure __read_mostly; 324 EXPORT_SYMBOL(tcp_memory_pressure); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 if (!tcp_memory_pressure) { 329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 330 tcp_memory_pressure = 1; 331 } 332 } 333 EXPORT_SYMBOL(tcp_enter_memory_pressure); 334 335 /* Convert seconds to retransmits based on initial and max timeout */ 336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 337 { 338 u8 res = 0; 339 340 if (seconds > 0) { 341 int period = timeout; 342 343 res = 1; 344 while (seconds > period && res < 255) { 345 res++; 346 timeout <<= 1; 347 if (timeout > rto_max) 348 timeout = rto_max; 349 period += timeout; 350 } 351 } 352 return res; 353 } 354 355 /* Convert retransmits to seconds based on initial and max timeout */ 356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 357 { 358 int period = 0; 359 360 if (retrans > 0) { 361 period = timeout; 362 while (--retrans) { 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return period; 370 } 371 372 /* Address-family independent initialization for a tcp_sock. 373 * 374 * NOTE: A lot of things set to zero explicitly by call to 375 * sk_alloc() so need not be done here. 376 */ 377 void tcp_init_sock(struct sock *sk) 378 { 379 struct inet_connection_sock *icsk = inet_csk(sk); 380 struct tcp_sock *tp = tcp_sk(sk); 381 382 tp->out_of_order_queue = RB_ROOT; 383 tcp_init_xmit_timers(sk); 384 tcp_prequeue_init(tp); 385 INIT_LIST_HEAD(&tp->tsq_node); 386 387 icsk->icsk_rto = TCP_TIMEOUT_INIT; 388 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 389 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U); 390 391 /* So many TCP implementations out there (incorrectly) count the 392 * initial SYN frame in their delayed-ACK and congestion control 393 * algorithms that we must have the following bandaid to talk 394 * efficiently to them. -DaveM 395 */ 396 tp->snd_cwnd = TCP_INIT_CWND; 397 398 /* There's a bubble in the pipe until at least the first ACK. */ 399 tp->app_limited = ~0U; 400 401 /* See draft-stevens-tcpca-spec-01 for discussion of the 402 * initialization of these values. 403 */ 404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 405 tp->snd_cwnd_clamp = ~0; 406 tp->mss_cache = TCP_MSS_DEFAULT; 407 408 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 409 tcp_assign_congestion_control(sk); 410 411 tp->tsoffset = 0; 412 413 sk->sk_state = TCP_CLOSE; 414 415 sk->sk_write_space = sk_stream_write_space; 416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 417 418 icsk->icsk_sync_mss = tcp_sync_mss; 419 420 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 421 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 422 423 sk_sockets_allocated_inc(sk); 424 } 425 EXPORT_SYMBOL(tcp_init_sock); 426 427 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb) 428 { 429 if (tsflags && skb) { 430 struct skb_shared_info *shinfo = skb_shinfo(skb); 431 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 432 433 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 434 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 435 tcb->txstamp_ack = 1; 436 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 437 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 438 } 439 } 440 441 /* 442 * Wait for a TCP event. 443 * 444 * Note that we don't need to lock the socket, as the upper poll layers 445 * take care of normal races (between the test and the event) and we don't 446 * go look at any of the socket buffers directly. 447 */ 448 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 449 { 450 unsigned int mask; 451 struct sock *sk = sock->sk; 452 const struct tcp_sock *tp = tcp_sk(sk); 453 int state; 454 455 sock_rps_record_flow(sk); 456 457 sock_poll_wait(file, sk_sleep(sk), wait); 458 459 state = sk_state_load(sk); 460 if (state == TCP_LISTEN) 461 return inet_csk_listen_poll(sk); 462 463 /* Socket is not locked. We are protected from async events 464 * by poll logic and correct handling of state changes 465 * made by other threads is impossible in any case. 466 */ 467 468 mask = 0; 469 470 /* 471 * POLLHUP is certainly not done right. But poll() doesn't 472 * have a notion of HUP in just one direction, and for a 473 * socket the read side is more interesting. 474 * 475 * Some poll() documentation says that POLLHUP is incompatible 476 * with the POLLOUT/POLLWR flags, so somebody should check this 477 * all. But careful, it tends to be safer to return too many 478 * bits than too few, and you can easily break real applications 479 * if you don't tell them that something has hung up! 480 * 481 * Check-me. 482 * 483 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 484 * our fs/select.c). It means that after we received EOF, 485 * poll always returns immediately, making impossible poll() on write() 486 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 487 * if and only if shutdown has been made in both directions. 488 * Actually, it is interesting to look how Solaris and DUX 489 * solve this dilemma. I would prefer, if POLLHUP were maskable, 490 * then we could set it on SND_SHUTDOWN. BTW examples given 491 * in Stevens' books assume exactly this behaviour, it explains 492 * why POLLHUP is incompatible with POLLOUT. --ANK 493 * 494 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 495 * blocking on fresh not-connected or disconnected socket. --ANK 496 */ 497 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 498 mask |= POLLHUP; 499 if (sk->sk_shutdown & RCV_SHUTDOWN) 500 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 501 502 /* Connected or passive Fast Open socket? */ 503 if (state != TCP_SYN_SENT && 504 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 505 int target = sock_rcvlowat(sk, 0, INT_MAX); 506 507 if (tp->urg_seq == tp->copied_seq && 508 !sock_flag(sk, SOCK_URGINLINE) && 509 tp->urg_data) 510 target++; 511 512 if (tp->rcv_nxt - tp->copied_seq >= target) 513 mask |= POLLIN | POLLRDNORM; 514 515 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 516 if (sk_stream_is_writeable(sk)) { 517 mask |= POLLOUT | POLLWRNORM; 518 } else { /* send SIGIO later */ 519 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 520 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 521 522 /* Race breaker. If space is freed after 523 * wspace test but before the flags are set, 524 * IO signal will be lost. Memory barrier 525 * pairs with the input side. 526 */ 527 smp_mb__after_atomic(); 528 if (sk_stream_is_writeable(sk)) 529 mask |= POLLOUT | POLLWRNORM; 530 } 531 } else 532 mask |= POLLOUT | POLLWRNORM; 533 534 if (tp->urg_data & TCP_URG_VALID) 535 mask |= POLLPRI; 536 } else if (sk->sk_state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 537 /* Active TCP fastopen socket with defer_connect 538 * Return POLLOUT so application can call write() 539 * in order for kernel to generate SYN+data 540 */ 541 mask |= POLLOUT | POLLWRNORM; 542 } 543 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 544 smp_rmb(); 545 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 546 mask |= POLLERR; 547 548 return mask; 549 } 550 EXPORT_SYMBOL(tcp_poll); 551 552 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 553 { 554 struct tcp_sock *tp = tcp_sk(sk); 555 int answ; 556 bool slow; 557 558 switch (cmd) { 559 case SIOCINQ: 560 if (sk->sk_state == TCP_LISTEN) 561 return -EINVAL; 562 563 slow = lock_sock_fast(sk); 564 answ = tcp_inq(sk); 565 unlock_sock_fast(sk, slow); 566 break; 567 case SIOCATMARK: 568 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 569 break; 570 case SIOCOUTQ: 571 if (sk->sk_state == TCP_LISTEN) 572 return -EINVAL; 573 574 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 575 answ = 0; 576 else 577 answ = tp->write_seq - tp->snd_una; 578 break; 579 case SIOCOUTQNSD: 580 if (sk->sk_state == TCP_LISTEN) 581 return -EINVAL; 582 583 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 584 answ = 0; 585 else 586 answ = tp->write_seq - tp->snd_nxt; 587 break; 588 default: 589 return -ENOIOCTLCMD; 590 } 591 592 return put_user(answ, (int __user *)arg); 593 } 594 EXPORT_SYMBOL(tcp_ioctl); 595 596 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 597 { 598 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 599 tp->pushed_seq = tp->write_seq; 600 } 601 602 static inline bool forced_push(const struct tcp_sock *tp) 603 { 604 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 605 } 606 607 static void skb_entail(struct sock *sk, struct sk_buff *skb) 608 { 609 struct tcp_sock *tp = tcp_sk(sk); 610 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 611 612 skb->csum = 0; 613 tcb->seq = tcb->end_seq = tp->write_seq; 614 tcb->tcp_flags = TCPHDR_ACK; 615 tcb->sacked = 0; 616 __skb_header_release(skb); 617 tcp_add_write_queue_tail(sk, skb); 618 sk->sk_wmem_queued += skb->truesize; 619 sk_mem_charge(sk, skb->truesize); 620 if (tp->nonagle & TCP_NAGLE_PUSH) 621 tp->nonagle &= ~TCP_NAGLE_PUSH; 622 623 tcp_slow_start_after_idle_check(sk); 624 } 625 626 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 627 { 628 if (flags & MSG_OOB) 629 tp->snd_up = tp->write_seq; 630 } 631 632 /* If a not yet filled skb is pushed, do not send it if 633 * we have data packets in Qdisc or NIC queues : 634 * Because TX completion will happen shortly, it gives a chance 635 * to coalesce future sendmsg() payload into this skb, without 636 * need for a timer, and with no latency trade off. 637 * As packets containing data payload have a bigger truesize 638 * than pure acks (dataless) packets, the last checks prevent 639 * autocorking if we only have an ACK in Qdisc/NIC queues, 640 * or if TX completion was delayed after we processed ACK packet. 641 */ 642 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 643 int size_goal) 644 { 645 return skb->len < size_goal && 646 sysctl_tcp_autocorking && 647 skb != tcp_write_queue_head(sk) && 648 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 649 } 650 651 static void tcp_push(struct sock *sk, int flags, int mss_now, 652 int nonagle, int size_goal) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct sk_buff *skb; 656 657 if (!tcp_send_head(sk)) 658 return; 659 660 skb = tcp_write_queue_tail(sk); 661 if (!(flags & MSG_MORE) || forced_push(tp)) 662 tcp_mark_push(tp, skb); 663 664 tcp_mark_urg(tp, flags); 665 666 if (tcp_should_autocork(sk, skb, size_goal)) { 667 668 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 669 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 670 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 671 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 672 } 673 /* It is possible TX completion already happened 674 * before we set TSQ_THROTTLED. 675 */ 676 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 677 return; 678 } 679 680 if (flags & MSG_MORE) 681 nonagle = TCP_NAGLE_CORK; 682 683 __tcp_push_pending_frames(sk, mss_now, nonagle); 684 } 685 686 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 687 unsigned int offset, size_t len) 688 { 689 struct tcp_splice_state *tss = rd_desc->arg.data; 690 int ret; 691 692 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 693 min(rd_desc->count, len), tss->flags); 694 if (ret > 0) 695 rd_desc->count -= ret; 696 return ret; 697 } 698 699 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 700 { 701 /* Store TCP splice context information in read_descriptor_t. */ 702 read_descriptor_t rd_desc = { 703 .arg.data = tss, 704 .count = tss->len, 705 }; 706 707 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 708 } 709 710 /** 711 * tcp_splice_read - splice data from TCP socket to a pipe 712 * @sock: socket to splice from 713 * @ppos: position (not valid) 714 * @pipe: pipe to splice to 715 * @len: number of bytes to splice 716 * @flags: splice modifier flags 717 * 718 * Description: 719 * Will read pages from given socket and fill them into a pipe. 720 * 721 **/ 722 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 723 struct pipe_inode_info *pipe, size_t len, 724 unsigned int flags) 725 { 726 struct sock *sk = sock->sk; 727 struct tcp_splice_state tss = { 728 .pipe = pipe, 729 .len = len, 730 .flags = flags, 731 }; 732 long timeo; 733 ssize_t spliced; 734 int ret; 735 736 sock_rps_record_flow(sk); 737 /* 738 * We can't seek on a socket input 739 */ 740 if (unlikely(*ppos)) 741 return -ESPIPE; 742 743 ret = spliced = 0; 744 745 lock_sock(sk); 746 747 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 748 while (tss.len) { 749 ret = __tcp_splice_read(sk, &tss); 750 if (ret < 0) 751 break; 752 else if (!ret) { 753 if (spliced) 754 break; 755 if (sock_flag(sk, SOCK_DONE)) 756 break; 757 if (sk->sk_err) { 758 ret = sock_error(sk); 759 break; 760 } 761 if (sk->sk_shutdown & RCV_SHUTDOWN) 762 break; 763 if (sk->sk_state == TCP_CLOSE) { 764 /* 765 * This occurs when user tries to read 766 * from never connected socket. 767 */ 768 if (!sock_flag(sk, SOCK_DONE)) 769 ret = -ENOTCONN; 770 break; 771 } 772 if (!timeo) { 773 ret = -EAGAIN; 774 break; 775 } 776 /* if __tcp_splice_read() got nothing while we have 777 * an skb in receive queue, we do not want to loop. 778 * This might happen with URG data. 779 */ 780 if (!skb_queue_empty(&sk->sk_receive_queue)) 781 break; 782 sk_wait_data(sk, &timeo, NULL); 783 if (signal_pending(current)) { 784 ret = sock_intr_errno(timeo); 785 break; 786 } 787 continue; 788 } 789 tss.len -= ret; 790 spliced += ret; 791 792 if (!timeo) 793 break; 794 release_sock(sk); 795 lock_sock(sk); 796 797 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 798 (sk->sk_shutdown & RCV_SHUTDOWN) || 799 signal_pending(current)) 800 break; 801 } 802 803 release_sock(sk); 804 805 if (spliced) 806 return spliced; 807 808 return ret; 809 } 810 EXPORT_SYMBOL(tcp_splice_read); 811 812 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 813 bool force_schedule) 814 { 815 struct sk_buff *skb; 816 817 /* The TCP header must be at least 32-bit aligned. */ 818 size = ALIGN(size, 4); 819 820 if (unlikely(tcp_under_memory_pressure(sk))) 821 sk_mem_reclaim_partial(sk); 822 823 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 824 if (likely(skb)) { 825 bool mem_scheduled; 826 827 if (force_schedule) { 828 mem_scheduled = true; 829 sk_forced_mem_schedule(sk, skb->truesize); 830 } else { 831 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 832 } 833 if (likely(mem_scheduled)) { 834 skb_reserve(skb, sk->sk_prot->max_header); 835 /* 836 * Make sure that we have exactly size bytes 837 * available to the caller, no more, no less. 838 */ 839 skb->reserved_tailroom = skb->end - skb->tail - size; 840 return skb; 841 } 842 __kfree_skb(skb); 843 } else { 844 sk->sk_prot->enter_memory_pressure(sk); 845 sk_stream_moderate_sndbuf(sk); 846 } 847 return NULL; 848 } 849 850 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 851 int large_allowed) 852 { 853 struct tcp_sock *tp = tcp_sk(sk); 854 u32 new_size_goal, size_goal; 855 856 if (!large_allowed || !sk_can_gso(sk)) 857 return mss_now; 858 859 /* Note : tcp_tso_autosize() will eventually split this later */ 860 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 861 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 862 863 /* We try hard to avoid divides here */ 864 size_goal = tp->gso_segs * mss_now; 865 if (unlikely(new_size_goal < size_goal || 866 new_size_goal >= size_goal + mss_now)) { 867 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 868 sk->sk_gso_max_segs); 869 size_goal = tp->gso_segs * mss_now; 870 } 871 872 return max(size_goal, mss_now); 873 } 874 875 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 876 { 877 int mss_now; 878 879 mss_now = tcp_current_mss(sk); 880 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 881 882 return mss_now; 883 } 884 885 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 886 size_t size, int flags) 887 { 888 struct tcp_sock *tp = tcp_sk(sk); 889 int mss_now, size_goal; 890 int err; 891 ssize_t copied; 892 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 893 894 /* Wait for a connection to finish. One exception is TCP Fast Open 895 * (passive side) where data is allowed to be sent before a connection 896 * is fully established. 897 */ 898 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 899 !tcp_passive_fastopen(sk)) { 900 err = sk_stream_wait_connect(sk, &timeo); 901 if (err != 0) 902 goto out_err; 903 } 904 905 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 906 907 mss_now = tcp_send_mss(sk, &size_goal, flags); 908 copied = 0; 909 910 err = -EPIPE; 911 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 912 goto out_err; 913 914 while (size > 0) { 915 struct sk_buff *skb = tcp_write_queue_tail(sk); 916 int copy, i; 917 bool can_coalesce; 918 919 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 || 920 !tcp_skb_can_collapse_to(skb)) { 921 new_segment: 922 if (!sk_stream_memory_free(sk)) 923 goto wait_for_sndbuf; 924 925 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 926 skb_queue_empty(&sk->sk_write_queue)); 927 if (!skb) 928 goto wait_for_memory; 929 930 skb_entail(sk, skb); 931 copy = size_goal; 932 } 933 934 if (copy > size) 935 copy = size; 936 937 i = skb_shinfo(skb)->nr_frags; 938 can_coalesce = skb_can_coalesce(skb, i, page, offset); 939 if (!can_coalesce && i >= sysctl_max_skb_frags) { 940 tcp_mark_push(tp, skb); 941 goto new_segment; 942 } 943 if (!sk_wmem_schedule(sk, copy)) 944 goto wait_for_memory; 945 946 if (can_coalesce) { 947 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 948 } else { 949 get_page(page); 950 skb_fill_page_desc(skb, i, page, offset, copy); 951 } 952 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 953 954 skb->len += copy; 955 skb->data_len += copy; 956 skb->truesize += copy; 957 sk->sk_wmem_queued += copy; 958 sk_mem_charge(sk, copy); 959 skb->ip_summed = CHECKSUM_PARTIAL; 960 tp->write_seq += copy; 961 TCP_SKB_CB(skb)->end_seq += copy; 962 tcp_skb_pcount_set(skb, 0); 963 964 if (!copied) 965 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 966 967 copied += copy; 968 offset += copy; 969 size -= copy; 970 if (!size) 971 goto out; 972 973 if (skb->len < size_goal || (flags & MSG_OOB)) 974 continue; 975 976 if (forced_push(tp)) { 977 tcp_mark_push(tp, skb); 978 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 979 } else if (skb == tcp_send_head(sk)) 980 tcp_push_one(sk, mss_now); 981 continue; 982 983 wait_for_sndbuf: 984 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 985 wait_for_memory: 986 tcp_push(sk, flags & ~MSG_MORE, mss_now, 987 TCP_NAGLE_PUSH, size_goal); 988 989 err = sk_stream_wait_memory(sk, &timeo); 990 if (err != 0) 991 goto do_error; 992 993 mss_now = tcp_send_mss(sk, &size_goal, flags); 994 } 995 996 out: 997 if (copied) { 998 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk)); 999 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1000 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1001 } 1002 return copied; 1003 1004 do_error: 1005 if (copied) 1006 goto out; 1007 out_err: 1008 /* make sure we wake any epoll edge trigger waiter */ 1009 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1010 err == -EAGAIN)) { 1011 sk->sk_write_space(sk); 1012 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1013 } 1014 return sk_stream_error(sk, flags, err); 1015 } 1016 1017 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1018 size_t size, int flags) 1019 { 1020 ssize_t res; 1021 1022 if (!(sk->sk_route_caps & NETIF_F_SG) || 1023 !sk_check_csum_caps(sk)) 1024 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1025 flags); 1026 1027 lock_sock(sk); 1028 1029 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1030 1031 res = do_tcp_sendpages(sk, page, offset, size, flags); 1032 release_sock(sk); 1033 return res; 1034 } 1035 EXPORT_SYMBOL(tcp_sendpage); 1036 1037 /* Do not bother using a page frag for very small frames. 1038 * But use this heuristic only for the first skb in write queue. 1039 * 1040 * Having no payload in skb->head allows better SACK shifting 1041 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1042 * write queue has less skbs. 1043 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1044 * This also speeds up tso_fragment(), since it wont fallback 1045 * to tcp_fragment(). 1046 */ 1047 static int linear_payload_sz(bool first_skb) 1048 { 1049 if (first_skb) 1050 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1051 return 0; 1052 } 1053 1054 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1055 { 1056 const struct tcp_sock *tp = tcp_sk(sk); 1057 int tmp = tp->mss_cache; 1058 1059 if (sg) { 1060 if (sk_can_gso(sk)) { 1061 tmp = linear_payload_sz(first_skb); 1062 } else { 1063 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1064 1065 if (tmp >= pgbreak && 1066 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1067 tmp = pgbreak; 1068 } 1069 } 1070 1071 return tmp; 1072 } 1073 1074 void tcp_free_fastopen_req(struct tcp_sock *tp) 1075 { 1076 if (tp->fastopen_req) { 1077 kfree(tp->fastopen_req); 1078 tp->fastopen_req = NULL; 1079 } 1080 } 1081 1082 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1083 int *copied, size_t size) 1084 { 1085 struct tcp_sock *tp = tcp_sk(sk); 1086 struct inet_sock *inet = inet_sk(sk); 1087 int err, flags; 1088 1089 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1090 return -EOPNOTSUPP; 1091 if (tp->fastopen_req) 1092 return -EALREADY; /* Another Fast Open is in progress */ 1093 1094 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1095 sk->sk_allocation); 1096 if (unlikely(!tp->fastopen_req)) 1097 return -ENOBUFS; 1098 tp->fastopen_req->data = msg; 1099 tp->fastopen_req->size = size; 1100 1101 if (inet->defer_connect) { 1102 err = tcp_connect(sk); 1103 /* Same failure procedure as in tcp_v4/6_connect */ 1104 if (err) { 1105 tcp_set_state(sk, TCP_CLOSE); 1106 inet->inet_dport = 0; 1107 sk->sk_route_caps = 0; 1108 } 1109 } 1110 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1111 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1112 msg->msg_namelen, flags, 1); 1113 inet->defer_connect = 0; 1114 *copied = tp->fastopen_req->copied; 1115 tcp_free_fastopen_req(tp); 1116 return err; 1117 } 1118 1119 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1120 { 1121 struct tcp_sock *tp = tcp_sk(sk); 1122 struct sk_buff *skb; 1123 struct sockcm_cookie sockc; 1124 int flags, err, copied = 0; 1125 int mss_now = 0, size_goal, copied_syn = 0; 1126 bool process_backlog = false; 1127 bool sg; 1128 long timeo; 1129 1130 lock_sock(sk); 1131 1132 flags = msg->msg_flags; 1133 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1134 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1135 if (err == -EINPROGRESS && copied_syn > 0) 1136 goto out; 1137 else if (err) 1138 goto out_err; 1139 } 1140 1141 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1142 1143 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1144 1145 /* Wait for a connection to finish. One exception is TCP Fast Open 1146 * (passive side) where data is allowed to be sent before a connection 1147 * is fully established. 1148 */ 1149 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1150 !tcp_passive_fastopen(sk)) { 1151 err = sk_stream_wait_connect(sk, &timeo); 1152 if (err != 0) 1153 goto do_error; 1154 } 1155 1156 if (unlikely(tp->repair)) { 1157 if (tp->repair_queue == TCP_RECV_QUEUE) { 1158 copied = tcp_send_rcvq(sk, msg, size); 1159 goto out_nopush; 1160 } 1161 1162 err = -EINVAL; 1163 if (tp->repair_queue == TCP_NO_QUEUE) 1164 goto out_err; 1165 1166 /* 'common' sending to sendq */ 1167 } 1168 1169 sockc.tsflags = sk->sk_tsflags; 1170 if (msg->msg_controllen) { 1171 err = sock_cmsg_send(sk, msg, &sockc); 1172 if (unlikely(err)) { 1173 err = -EINVAL; 1174 goto out_err; 1175 } 1176 } 1177 1178 /* This should be in poll */ 1179 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1180 1181 /* Ok commence sending. */ 1182 copied = 0; 1183 1184 restart: 1185 mss_now = tcp_send_mss(sk, &size_goal, flags); 1186 1187 err = -EPIPE; 1188 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1189 goto do_error; 1190 1191 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1192 1193 while (msg_data_left(msg)) { 1194 int copy = 0; 1195 int max = size_goal; 1196 1197 skb = tcp_write_queue_tail(sk); 1198 if (tcp_send_head(sk)) { 1199 if (skb->ip_summed == CHECKSUM_NONE) 1200 max = mss_now; 1201 copy = max - skb->len; 1202 } 1203 1204 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1205 bool first_skb; 1206 1207 new_segment: 1208 /* Allocate new segment. If the interface is SG, 1209 * allocate skb fitting to single page. 1210 */ 1211 if (!sk_stream_memory_free(sk)) 1212 goto wait_for_sndbuf; 1213 1214 if (process_backlog && sk_flush_backlog(sk)) { 1215 process_backlog = false; 1216 goto restart; 1217 } 1218 first_skb = skb_queue_empty(&sk->sk_write_queue); 1219 skb = sk_stream_alloc_skb(sk, 1220 select_size(sk, sg, first_skb), 1221 sk->sk_allocation, 1222 first_skb); 1223 if (!skb) 1224 goto wait_for_memory; 1225 1226 process_backlog = true; 1227 /* 1228 * Check whether we can use HW checksum. 1229 */ 1230 if (sk_check_csum_caps(sk)) 1231 skb->ip_summed = CHECKSUM_PARTIAL; 1232 1233 skb_entail(sk, skb); 1234 copy = size_goal; 1235 max = size_goal; 1236 1237 /* All packets are restored as if they have 1238 * already been sent. skb_mstamp isn't set to 1239 * avoid wrong rtt estimation. 1240 */ 1241 if (tp->repair) 1242 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1243 } 1244 1245 /* Try to append data to the end of skb. */ 1246 if (copy > msg_data_left(msg)) 1247 copy = msg_data_left(msg); 1248 1249 /* Where to copy to? */ 1250 if (skb_availroom(skb) > 0) { 1251 /* We have some space in skb head. Superb! */ 1252 copy = min_t(int, copy, skb_availroom(skb)); 1253 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1254 if (err) 1255 goto do_fault; 1256 } else { 1257 bool merge = true; 1258 int i = skb_shinfo(skb)->nr_frags; 1259 struct page_frag *pfrag = sk_page_frag(sk); 1260 1261 if (!sk_page_frag_refill(sk, pfrag)) 1262 goto wait_for_memory; 1263 1264 if (!skb_can_coalesce(skb, i, pfrag->page, 1265 pfrag->offset)) { 1266 if (i >= sysctl_max_skb_frags || !sg) { 1267 tcp_mark_push(tp, skb); 1268 goto new_segment; 1269 } 1270 merge = false; 1271 } 1272 1273 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1274 1275 if (!sk_wmem_schedule(sk, copy)) 1276 goto wait_for_memory; 1277 1278 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1279 pfrag->page, 1280 pfrag->offset, 1281 copy); 1282 if (err) 1283 goto do_error; 1284 1285 /* Update the skb. */ 1286 if (merge) { 1287 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1288 } else { 1289 skb_fill_page_desc(skb, i, pfrag->page, 1290 pfrag->offset, copy); 1291 page_ref_inc(pfrag->page); 1292 } 1293 pfrag->offset += copy; 1294 } 1295 1296 if (!copied) 1297 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1298 1299 tp->write_seq += copy; 1300 TCP_SKB_CB(skb)->end_seq += copy; 1301 tcp_skb_pcount_set(skb, 0); 1302 1303 copied += copy; 1304 if (!msg_data_left(msg)) { 1305 if (unlikely(flags & MSG_EOR)) 1306 TCP_SKB_CB(skb)->eor = 1; 1307 goto out; 1308 } 1309 1310 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1311 continue; 1312 1313 if (forced_push(tp)) { 1314 tcp_mark_push(tp, skb); 1315 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1316 } else if (skb == tcp_send_head(sk)) 1317 tcp_push_one(sk, mss_now); 1318 continue; 1319 1320 wait_for_sndbuf: 1321 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1322 wait_for_memory: 1323 if (copied) 1324 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1325 TCP_NAGLE_PUSH, size_goal); 1326 1327 err = sk_stream_wait_memory(sk, &timeo); 1328 if (err != 0) 1329 goto do_error; 1330 1331 mss_now = tcp_send_mss(sk, &size_goal, flags); 1332 } 1333 1334 out: 1335 if (copied) { 1336 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk)); 1337 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1338 } 1339 out_nopush: 1340 release_sock(sk); 1341 return copied + copied_syn; 1342 1343 do_fault: 1344 if (!skb->len) { 1345 tcp_unlink_write_queue(skb, sk); 1346 /* It is the one place in all of TCP, except connection 1347 * reset, where we can be unlinking the send_head. 1348 */ 1349 tcp_check_send_head(sk, skb); 1350 sk_wmem_free_skb(sk, skb); 1351 } 1352 1353 do_error: 1354 if (copied + copied_syn) 1355 goto out; 1356 out_err: 1357 err = sk_stream_error(sk, flags, err); 1358 /* make sure we wake any epoll edge trigger waiter */ 1359 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1360 err == -EAGAIN)) { 1361 sk->sk_write_space(sk); 1362 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1363 } 1364 release_sock(sk); 1365 return err; 1366 } 1367 EXPORT_SYMBOL(tcp_sendmsg); 1368 1369 /* 1370 * Handle reading urgent data. BSD has very simple semantics for 1371 * this, no blocking and very strange errors 8) 1372 */ 1373 1374 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1375 { 1376 struct tcp_sock *tp = tcp_sk(sk); 1377 1378 /* No URG data to read. */ 1379 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1380 tp->urg_data == TCP_URG_READ) 1381 return -EINVAL; /* Yes this is right ! */ 1382 1383 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1384 return -ENOTCONN; 1385 1386 if (tp->urg_data & TCP_URG_VALID) { 1387 int err = 0; 1388 char c = tp->urg_data; 1389 1390 if (!(flags & MSG_PEEK)) 1391 tp->urg_data = TCP_URG_READ; 1392 1393 /* Read urgent data. */ 1394 msg->msg_flags |= MSG_OOB; 1395 1396 if (len > 0) { 1397 if (!(flags & MSG_TRUNC)) 1398 err = memcpy_to_msg(msg, &c, 1); 1399 len = 1; 1400 } else 1401 msg->msg_flags |= MSG_TRUNC; 1402 1403 return err ? -EFAULT : len; 1404 } 1405 1406 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1407 return 0; 1408 1409 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1410 * the available implementations agree in this case: 1411 * this call should never block, independent of the 1412 * blocking state of the socket. 1413 * Mike <pall@rz.uni-karlsruhe.de> 1414 */ 1415 return -EAGAIN; 1416 } 1417 1418 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1419 { 1420 struct sk_buff *skb; 1421 int copied = 0, err = 0; 1422 1423 /* XXX -- need to support SO_PEEK_OFF */ 1424 1425 skb_queue_walk(&sk->sk_write_queue, skb) { 1426 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1427 if (err) 1428 break; 1429 1430 copied += skb->len; 1431 } 1432 1433 return err ?: copied; 1434 } 1435 1436 /* Clean up the receive buffer for full frames taken by the user, 1437 * then send an ACK if necessary. COPIED is the number of bytes 1438 * tcp_recvmsg has given to the user so far, it speeds up the 1439 * calculation of whether or not we must ACK for the sake of 1440 * a window update. 1441 */ 1442 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1443 { 1444 struct tcp_sock *tp = tcp_sk(sk); 1445 bool time_to_ack = false; 1446 1447 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1448 1449 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1450 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1451 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1452 1453 if (inet_csk_ack_scheduled(sk)) { 1454 const struct inet_connection_sock *icsk = inet_csk(sk); 1455 /* Delayed ACKs frequently hit locked sockets during bulk 1456 * receive. */ 1457 if (icsk->icsk_ack.blocked || 1458 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1459 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1460 /* 1461 * If this read emptied read buffer, we send ACK, if 1462 * connection is not bidirectional, user drained 1463 * receive buffer and there was a small segment 1464 * in queue. 1465 */ 1466 (copied > 0 && 1467 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1468 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1469 !icsk->icsk_ack.pingpong)) && 1470 !atomic_read(&sk->sk_rmem_alloc))) 1471 time_to_ack = true; 1472 } 1473 1474 /* We send an ACK if we can now advertise a non-zero window 1475 * which has been raised "significantly". 1476 * 1477 * Even if window raised up to infinity, do not send window open ACK 1478 * in states, where we will not receive more. It is useless. 1479 */ 1480 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1481 __u32 rcv_window_now = tcp_receive_window(tp); 1482 1483 /* Optimize, __tcp_select_window() is not cheap. */ 1484 if (2*rcv_window_now <= tp->window_clamp) { 1485 __u32 new_window = __tcp_select_window(sk); 1486 1487 /* Send ACK now, if this read freed lots of space 1488 * in our buffer. Certainly, new_window is new window. 1489 * We can advertise it now, if it is not less than current one. 1490 * "Lots" means "at least twice" here. 1491 */ 1492 if (new_window && new_window >= 2 * rcv_window_now) 1493 time_to_ack = true; 1494 } 1495 } 1496 if (time_to_ack) 1497 tcp_send_ack(sk); 1498 } 1499 1500 static void tcp_prequeue_process(struct sock *sk) 1501 { 1502 struct sk_buff *skb; 1503 struct tcp_sock *tp = tcp_sk(sk); 1504 1505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1506 1507 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1508 sk_backlog_rcv(sk, skb); 1509 1510 /* Clear memory counter. */ 1511 tp->ucopy.memory = 0; 1512 } 1513 1514 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1515 { 1516 struct sk_buff *skb; 1517 u32 offset; 1518 1519 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1520 offset = seq - TCP_SKB_CB(skb)->seq; 1521 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1522 pr_err_once("%s: found a SYN, please report !\n", __func__); 1523 offset--; 1524 } 1525 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1526 *off = offset; 1527 return skb; 1528 } 1529 /* This looks weird, but this can happen if TCP collapsing 1530 * splitted a fat GRO packet, while we released socket lock 1531 * in skb_splice_bits() 1532 */ 1533 sk_eat_skb(sk, skb); 1534 } 1535 return NULL; 1536 } 1537 1538 /* 1539 * This routine provides an alternative to tcp_recvmsg() for routines 1540 * that would like to handle copying from skbuffs directly in 'sendfile' 1541 * fashion. 1542 * Note: 1543 * - It is assumed that the socket was locked by the caller. 1544 * - The routine does not block. 1545 * - At present, there is no support for reading OOB data 1546 * or for 'peeking' the socket using this routine 1547 * (although both would be easy to implement). 1548 */ 1549 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1550 sk_read_actor_t recv_actor) 1551 { 1552 struct sk_buff *skb; 1553 struct tcp_sock *tp = tcp_sk(sk); 1554 u32 seq = tp->copied_seq; 1555 u32 offset; 1556 int copied = 0; 1557 1558 if (sk->sk_state == TCP_LISTEN) 1559 return -ENOTCONN; 1560 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1561 if (offset < skb->len) { 1562 int used; 1563 size_t len; 1564 1565 len = skb->len - offset; 1566 /* Stop reading if we hit a patch of urgent data */ 1567 if (tp->urg_data) { 1568 u32 urg_offset = tp->urg_seq - seq; 1569 if (urg_offset < len) 1570 len = urg_offset; 1571 if (!len) 1572 break; 1573 } 1574 used = recv_actor(desc, skb, offset, len); 1575 if (used <= 0) { 1576 if (!copied) 1577 copied = used; 1578 break; 1579 } else if (used <= len) { 1580 seq += used; 1581 copied += used; 1582 offset += used; 1583 } 1584 /* If recv_actor drops the lock (e.g. TCP splice 1585 * receive) the skb pointer might be invalid when 1586 * getting here: tcp_collapse might have deleted it 1587 * while aggregating skbs from the socket queue. 1588 */ 1589 skb = tcp_recv_skb(sk, seq - 1, &offset); 1590 if (!skb) 1591 break; 1592 /* TCP coalescing might have appended data to the skb. 1593 * Try to splice more frags 1594 */ 1595 if (offset + 1 != skb->len) 1596 continue; 1597 } 1598 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1599 sk_eat_skb(sk, skb); 1600 ++seq; 1601 break; 1602 } 1603 sk_eat_skb(sk, skb); 1604 if (!desc->count) 1605 break; 1606 tp->copied_seq = seq; 1607 } 1608 tp->copied_seq = seq; 1609 1610 tcp_rcv_space_adjust(sk); 1611 1612 /* Clean up data we have read: This will do ACK frames. */ 1613 if (copied > 0) { 1614 tcp_recv_skb(sk, seq, &offset); 1615 tcp_cleanup_rbuf(sk, copied); 1616 } 1617 return copied; 1618 } 1619 EXPORT_SYMBOL(tcp_read_sock); 1620 1621 int tcp_peek_len(struct socket *sock) 1622 { 1623 return tcp_inq(sock->sk); 1624 } 1625 EXPORT_SYMBOL(tcp_peek_len); 1626 1627 /* 1628 * This routine copies from a sock struct into the user buffer. 1629 * 1630 * Technical note: in 2.3 we work on _locked_ socket, so that 1631 * tricks with *seq access order and skb->users are not required. 1632 * Probably, code can be easily improved even more. 1633 */ 1634 1635 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1636 int flags, int *addr_len) 1637 { 1638 struct tcp_sock *tp = tcp_sk(sk); 1639 int copied = 0; 1640 u32 peek_seq; 1641 u32 *seq; 1642 unsigned long used; 1643 int err; 1644 int target; /* Read at least this many bytes */ 1645 long timeo; 1646 struct task_struct *user_recv = NULL; 1647 struct sk_buff *skb, *last; 1648 u32 urg_hole = 0; 1649 1650 if (unlikely(flags & MSG_ERRQUEUE)) 1651 return inet_recv_error(sk, msg, len, addr_len); 1652 1653 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1654 (sk->sk_state == TCP_ESTABLISHED)) 1655 sk_busy_loop(sk, nonblock); 1656 1657 lock_sock(sk); 1658 1659 err = -ENOTCONN; 1660 if (sk->sk_state == TCP_LISTEN) 1661 goto out; 1662 1663 timeo = sock_rcvtimeo(sk, nonblock); 1664 1665 /* Urgent data needs to be handled specially. */ 1666 if (flags & MSG_OOB) 1667 goto recv_urg; 1668 1669 if (unlikely(tp->repair)) { 1670 err = -EPERM; 1671 if (!(flags & MSG_PEEK)) 1672 goto out; 1673 1674 if (tp->repair_queue == TCP_SEND_QUEUE) 1675 goto recv_sndq; 1676 1677 err = -EINVAL; 1678 if (tp->repair_queue == TCP_NO_QUEUE) 1679 goto out; 1680 1681 /* 'common' recv queue MSG_PEEK-ing */ 1682 } 1683 1684 seq = &tp->copied_seq; 1685 if (flags & MSG_PEEK) { 1686 peek_seq = tp->copied_seq; 1687 seq = &peek_seq; 1688 } 1689 1690 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1691 1692 do { 1693 u32 offset; 1694 1695 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1696 if (tp->urg_data && tp->urg_seq == *seq) { 1697 if (copied) 1698 break; 1699 if (signal_pending(current)) { 1700 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1701 break; 1702 } 1703 } 1704 1705 /* Next get a buffer. */ 1706 1707 last = skb_peek_tail(&sk->sk_receive_queue); 1708 skb_queue_walk(&sk->sk_receive_queue, skb) { 1709 last = skb; 1710 /* Now that we have two receive queues this 1711 * shouldn't happen. 1712 */ 1713 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1714 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1715 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1716 flags)) 1717 break; 1718 1719 offset = *seq - TCP_SKB_CB(skb)->seq; 1720 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1721 pr_err_once("%s: found a SYN, please report !\n", __func__); 1722 offset--; 1723 } 1724 if (offset < skb->len) 1725 goto found_ok_skb; 1726 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1727 goto found_fin_ok; 1728 WARN(!(flags & MSG_PEEK), 1729 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1730 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1731 } 1732 1733 /* Well, if we have backlog, try to process it now yet. */ 1734 1735 if (copied >= target && !sk->sk_backlog.tail) 1736 break; 1737 1738 if (copied) { 1739 if (sk->sk_err || 1740 sk->sk_state == TCP_CLOSE || 1741 (sk->sk_shutdown & RCV_SHUTDOWN) || 1742 !timeo || 1743 signal_pending(current)) 1744 break; 1745 } else { 1746 if (sock_flag(sk, SOCK_DONE)) 1747 break; 1748 1749 if (sk->sk_err) { 1750 copied = sock_error(sk); 1751 break; 1752 } 1753 1754 if (sk->sk_shutdown & RCV_SHUTDOWN) 1755 break; 1756 1757 if (sk->sk_state == TCP_CLOSE) { 1758 if (!sock_flag(sk, SOCK_DONE)) { 1759 /* This occurs when user tries to read 1760 * from never connected socket. 1761 */ 1762 copied = -ENOTCONN; 1763 break; 1764 } 1765 break; 1766 } 1767 1768 if (!timeo) { 1769 copied = -EAGAIN; 1770 break; 1771 } 1772 1773 if (signal_pending(current)) { 1774 copied = sock_intr_errno(timeo); 1775 break; 1776 } 1777 } 1778 1779 tcp_cleanup_rbuf(sk, copied); 1780 1781 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1782 /* Install new reader */ 1783 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1784 user_recv = current; 1785 tp->ucopy.task = user_recv; 1786 tp->ucopy.msg = msg; 1787 } 1788 1789 tp->ucopy.len = len; 1790 1791 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1792 !(flags & (MSG_PEEK | MSG_TRUNC))); 1793 1794 /* Ugly... If prequeue is not empty, we have to 1795 * process it before releasing socket, otherwise 1796 * order will be broken at second iteration. 1797 * More elegant solution is required!!! 1798 * 1799 * Look: we have the following (pseudo)queues: 1800 * 1801 * 1. packets in flight 1802 * 2. backlog 1803 * 3. prequeue 1804 * 4. receive_queue 1805 * 1806 * Each queue can be processed only if the next ones 1807 * are empty. At this point we have empty receive_queue. 1808 * But prequeue _can_ be not empty after 2nd iteration, 1809 * when we jumped to start of loop because backlog 1810 * processing added something to receive_queue. 1811 * We cannot release_sock(), because backlog contains 1812 * packets arrived _after_ prequeued ones. 1813 * 1814 * Shortly, algorithm is clear --- to process all 1815 * the queues in order. We could make it more directly, 1816 * requeueing packets from backlog to prequeue, if 1817 * is not empty. It is more elegant, but eats cycles, 1818 * unfortunately. 1819 */ 1820 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1821 goto do_prequeue; 1822 1823 /* __ Set realtime policy in scheduler __ */ 1824 } 1825 1826 if (copied >= target) { 1827 /* Do not sleep, just process backlog. */ 1828 release_sock(sk); 1829 lock_sock(sk); 1830 } else { 1831 sk_wait_data(sk, &timeo, last); 1832 } 1833 1834 if (user_recv) { 1835 int chunk; 1836 1837 /* __ Restore normal policy in scheduler __ */ 1838 1839 chunk = len - tp->ucopy.len; 1840 if (chunk != 0) { 1841 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1842 len -= chunk; 1843 copied += chunk; 1844 } 1845 1846 if (tp->rcv_nxt == tp->copied_seq && 1847 !skb_queue_empty(&tp->ucopy.prequeue)) { 1848 do_prequeue: 1849 tcp_prequeue_process(sk); 1850 1851 chunk = len - tp->ucopy.len; 1852 if (chunk != 0) { 1853 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1854 len -= chunk; 1855 copied += chunk; 1856 } 1857 } 1858 } 1859 if ((flags & MSG_PEEK) && 1860 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1861 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1862 current->comm, 1863 task_pid_nr(current)); 1864 peek_seq = tp->copied_seq; 1865 } 1866 continue; 1867 1868 found_ok_skb: 1869 /* Ok so how much can we use? */ 1870 used = skb->len - offset; 1871 if (len < used) 1872 used = len; 1873 1874 /* Do we have urgent data here? */ 1875 if (tp->urg_data) { 1876 u32 urg_offset = tp->urg_seq - *seq; 1877 if (urg_offset < used) { 1878 if (!urg_offset) { 1879 if (!sock_flag(sk, SOCK_URGINLINE)) { 1880 ++*seq; 1881 urg_hole++; 1882 offset++; 1883 used--; 1884 if (!used) 1885 goto skip_copy; 1886 } 1887 } else 1888 used = urg_offset; 1889 } 1890 } 1891 1892 if (!(flags & MSG_TRUNC)) { 1893 err = skb_copy_datagram_msg(skb, offset, msg, used); 1894 if (err) { 1895 /* Exception. Bailout! */ 1896 if (!copied) 1897 copied = -EFAULT; 1898 break; 1899 } 1900 } 1901 1902 *seq += used; 1903 copied += used; 1904 len -= used; 1905 1906 tcp_rcv_space_adjust(sk); 1907 1908 skip_copy: 1909 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1910 tp->urg_data = 0; 1911 tcp_fast_path_check(sk); 1912 } 1913 if (used + offset < skb->len) 1914 continue; 1915 1916 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1917 goto found_fin_ok; 1918 if (!(flags & MSG_PEEK)) 1919 sk_eat_skb(sk, skb); 1920 continue; 1921 1922 found_fin_ok: 1923 /* Process the FIN. */ 1924 ++*seq; 1925 if (!(flags & MSG_PEEK)) 1926 sk_eat_skb(sk, skb); 1927 break; 1928 } while (len > 0); 1929 1930 if (user_recv) { 1931 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1932 int chunk; 1933 1934 tp->ucopy.len = copied > 0 ? len : 0; 1935 1936 tcp_prequeue_process(sk); 1937 1938 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1939 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1940 len -= chunk; 1941 copied += chunk; 1942 } 1943 } 1944 1945 tp->ucopy.task = NULL; 1946 tp->ucopy.len = 0; 1947 } 1948 1949 /* According to UNIX98, msg_name/msg_namelen are ignored 1950 * on connected socket. I was just happy when found this 8) --ANK 1951 */ 1952 1953 /* Clean up data we have read: This will do ACK frames. */ 1954 tcp_cleanup_rbuf(sk, copied); 1955 1956 release_sock(sk); 1957 return copied; 1958 1959 out: 1960 release_sock(sk); 1961 return err; 1962 1963 recv_urg: 1964 err = tcp_recv_urg(sk, msg, len, flags); 1965 goto out; 1966 1967 recv_sndq: 1968 err = tcp_peek_sndq(sk, msg, len); 1969 goto out; 1970 } 1971 EXPORT_SYMBOL(tcp_recvmsg); 1972 1973 void tcp_set_state(struct sock *sk, int state) 1974 { 1975 int oldstate = sk->sk_state; 1976 1977 switch (state) { 1978 case TCP_ESTABLISHED: 1979 if (oldstate != TCP_ESTABLISHED) 1980 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1981 break; 1982 1983 case TCP_CLOSE: 1984 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1985 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1986 1987 sk->sk_prot->unhash(sk); 1988 if (inet_csk(sk)->icsk_bind_hash && 1989 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1990 inet_put_port(sk); 1991 /* fall through */ 1992 default: 1993 if (oldstate == TCP_ESTABLISHED) 1994 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1995 } 1996 1997 /* Change state AFTER socket is unhashed to avoid closed 1998 * socket sitting in hash tables. 1999 */ 2000 sk_state_store(sk, state); 2001 2002 #ifdef STATE_TRACE 2003 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2004 #endif 2005 } 2006 EXPORT_SYMBOL_GPL(tcp_set_state); 2007 2008 /* 2009 * State processing on a close. This implements the state shift for 2010 * sending our FIN frame. Note that we only send a FIN for some 2011 * states. A shutdown() may have already sent the FIN, or we may be 2012 * closed. 2013 */ 2014 2015 static const unsigned char new_state[16] = { 2016 /* current state: new state: action: */ 2017 [0 /* (Invalid) */] = TCP_CLOSE, 2018 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2019 [TCP_SYN_SENT] = TCP_CLOSE, 2020 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2021 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2022 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2023 [TCP_TIME_WAIT] = TCP_CLOSE, 2024 [TCP_CLOSE] = TCP_CLOSE, 2025 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2026 [TCP_LAST_ACK] = TCP_LAST_ACK, 2027 [TCP_LISTEN] = TCP_CLOSE, 2028 [TCP_CLOSING] = TCP_CLOSING, 2029 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2030 }; 2031 2032 static int tcp_close_state(struct sock *sk) 2033 { 2034 int next = (int)new_state[sk->sk_state]; 2035 int ns = next & TCP_STATE_MASK; 2036 2037 tcp_set_state(sk, ns); 2038 2039 return next & TCP_ACTION_FIN; 2040 } 2041 2042 /* 2043 * Shutdown the sending side of a connection. Much like close except 2044 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2045 */ 2046 2047 void tcp_shutdown(struct sock *sk, int how) 2048 { 2049 /* We need to grab some memory, and put together a FIN, 2050 * and then put it into the queue to be sent. 2051 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2052 */ 2053 if (!(how & SEND_SHUTDOWN)) 2054 return; 2055 2056 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2057 if ((1 << sk->sk_state) & 2058 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2059 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2060 /* Clear out any half completed packets. FIN if needed. */ 2061 if (tcp_close_state(sk)) 2062 tcp_send_fin(sk); 2063 } 2064 } 2065 EXPORT_SYMBOL(tcp_shutdown); 2066 2067 bool tcp_check_oom(struct sock *sk, int shift) 2068 { 2069 bool too_many_orphans, out_of_socket_memory; 2070 2071 too_many_orphans = tcp_too_many_orphans(sk, shift); 2072 out_of_socket_memory = tcp_out_of_memory(sk); 2073 2074 if (too_many_orphans) 2075 net_info_ratelimited("too many orphaned sockets\n"); 2076 if (out_of_socket_memory) 2077 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2078 return too_many_orphans || out_of_socket_memory; 2079 } 2080 2081 void tcp_close(struct sock *sk, long timeout) 2082 { 2083 struct sk_buff *skb; 2084 int data_was_unread = 0; 2085 int state; 2086 2087 lock_sock(sk); 2088 sk->sk_shutdown = SHUTDOWN_MASK; 2089 2090 if (sk->sk_state == TCP_LISTEN) { 2091 tcp_set_state(sk, TCP_CLOSE); 2092 2093 /* Special case. */ 2094 inet_csk_listen_stop(sk); 2095 2096 goto adjudge_to_death; 2097 } 2098 2099 /* We need to flush the recv. buffs. We do this only on the 2100 * descriptor close, not protocol-sourced closes, because the 2101 * reader process may not have drained the data yet! 2102 */ 2103 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2104 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2105 2106 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2107 len--; 2108 data_was_unread += len; 2109 __kfree_skb(skb); 2110 } 2111 2112 sk_mem_reclaim(sk); 2113 2114 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2115 if (sk->sk_state == TCP_CLOSE) 2116 goto adjudge_to_death; 2117 2118 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2119 * data was lost. To witness the awful effects of the old behavior of 2120 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2121 * GET in an FTP client, suspend the process, wait for the client to 2122 * advertise a zero window, then kill -9 the FTP client, wheee... 2123 * Note: timeout is always zero in such a case. 2124 */ 2125 if (unlikely(tcp_sk(sk)->repair)) { 2126 sk->sk_prot->disconnect(sk, 0); 2127 } else if (data_was_unread) { 2128 /* Unread data was tossed, zap the connection. */ 2129 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2130 tcp_set_state(sk, TCP_CLOSE); 2131 tcp_send_active_reset(sk, sk->sk_allocation); 2132 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2133 /* Check zero linger _after_ checking for unread data. */ 2134 sk->sk_prot->disconnect(sk, 0); 2135 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2136 } else if (tcp_close_state(sk)) { 2137 /* We FIN if the application ate all the data before 2138 * zapping the connection. 2139 */ 2140 2141 /* RED-PEN. Formally speaking, we have broken TCP state 2142 * machine. State transitions: 2143 * 2144 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2145 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2146 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2147 * 2148 * are legal only when FIN has been sent (i.e. in window), 2149 * rather than queued out of window. Purists blame. 2150 * 2151 * F.e. "RFC state" is ESTABLISHED, 2152 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2153 * 2154 * The visible declinations are that sometimes 2155 * we enter time-wait state, when it is not required really 2156 * (harmless), do not send active resets, when they are 2157 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2158 * they look as CLOSING or LAST_ACK for Linux) 2159 * Probably, I missed some more holelets. 2160 * --ANK 2161 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2162 * in a single packet! (May consider it later but will 2163 * probably need API support or TCP_CORK SYN-ACK until 2164 * data is written and socket is closed.) 2165 */ 2166 tcp_send_fin(sk); 2167 } 2168 2169 sk_stream_wait_close(sk, timeout); 2170 2171 adjudge_to_death: 2172 state = sk->sk_state; 2173 sock_hold(sk); 2174 sock_orphan(sk); 2175 2176 /* It is the last release_sock in its life. It will remove backlog. */ 2177 release_sock(sk); 2178 2179 2180 /* Now socket is owned by kernel and we acquire BH lock 2181 to finish close. No need to check for user refs. 2182 */ 2183 local_bh_disable(); 2184 bh_lock_sock(sk); 2185 WARN_ON(sock_owned_by_user(sk)); 2186 2187 percpu_counter_inc(sk->sk_prot->orphan_count); 2188 2189 /* Have we already been destroyed by a softirq or backlog? */ 2190 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2191 goto out; 2192 2193 /* This is a (useful) BSD violating of the RFC. There is a 2194 * problem with TCP as specified in that the other end could 2195 * keep a socket open forever with no application left this end. 2196 * We use a 1 minute timeout (about the same as BSD) then kill 2197 * our end. If they send after that then tough - BUT: long enough 2198 * that we won't make the old 4*rto = almost no time - whoops 2199 * reset mistake. 2200 * 2201 * Nope, it was not mistake. It is really desired behaviour 2202 * f.e. on http servers, when such sockets are useless, but 2203 * consume significant resources. Let's do it with special 2204 * linger2 option. --ANK 2205 */ 2206 2207 if (sk->sk_state == TCP_FIN_WAIT2) { 2208 struct tcp_sock *tp = tcp_sk(sk); 2209 if (tp->linger2 < 0) { 2210 tcp_set_state(sk, TCP_CLOSE); 2211 tcp_send_active_reset(sk, GFP_ATOMIC); 2212 __NET_INC_STATS(sock_net(sk), 2213 LINUX_MIB_TCPABORTONLINGER); 2214 } else { 2215 const int tmo = tcp_fin_time(sk); 2216 2217 if (tmo > TCP_TIMEWAIT_LEN) { 2218 inet_csk_reset_keepalive_timer(sk, 2219 tmo - TCP_TIMEWAIT_LEN); 2220 } else { 2221 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2222 goto out; 2223 } 2224 } 2225 } 2226 if (sk->sk_state != TCP_CLOSE) { 2227 sk_mem_reclaim(sk); 2228 if (tcp_check_oom(sk, 0)) { 2229 tcp_set_state(sk, TCP_CLOSE); 2230 tcp_send_active_reset(sk, GFP_ATOMIC); 2231 __NET_INC_STATS(sock_net(sk), 2232 LINUX_MIB_TCPABORTONMEMORY); 2233 } 2234 } 2235 2236 if (sk->sk_state == TCP_CLOSE) { 2237 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2238 /* We could get here with a non-NULL req if the socket is 2239 * aborted (e.g., closed with unread data) before 3WHS 2240 * finishes. 2241 */ 2242 if (req) 2243 reqsk_fastopen_remove(sk, req, false); 2244 inet_csk_destroy_sock(sk); 2245 } 2246 /* Otherwise, socket is reprieved until protocol close. */ 2247 2248 out: 2249 bh_unlock_sock(sk); 2250 local_bh_enable(); 2251 sock_put(sk); 2252 } 2253 EXPORT_SYMBOL(tcp_close); 2254 2255 /* These states need RST on ABORT according to RFC793 */ 2256 2257 static inline bool tcp_need_reset(int state) 2258 { 2259 return (1 << state) & 2260 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2261 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2262 } 2263 2264 int tcp_disconnect(struct sock *sk, int flags) 2265 { 2266 struct inet_sock *inet = inet_sk(sk); 2267 struct inet_connection_sock *icsk = inet_csk(sk); 2268 struct tcp_sock *tp = tcp_sk(sk); 2269 int err = 0; 2270 int old_state = sk->sk_state; 2271 2272 if (old_state != TCP_CLOSE) 2273 tcp_set_state(sk, TCP_CLOSE); 2274 2275 /* ABORT function of RFC793 */ 2276 if (old_state == TCP_LISTEN) { 2277 inet_csk_listen_stop(sk); 2278 } else if (unlikely(tp->repair)) { 2279 sk->sk_err = ECONNABORTED; 2280 } else if (tcp_need_reset(old_state) || 2281 (tp->snd_nxt != tp->write_seq && 2282 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2283 /* The last check adjusts for discrepancy of Linux wrt. RFC 2284 * states 2285 */ 2286 tcp_send_active_reset(sk, gfp_any()); 2287 sk->sk_err = ECONNRESET; 2288 } else if (old_state == TCP_SYN_SENT) 2289 sk->sk_err = ECONNRESET; 2290 2291 tcp_clear_xmit_timers(sk); 2292 __skb_queue_purge(&sk->sk_receive_queue); 2293 tcp_write_queue_purge(sk); 2294 skb_rbtree_purge(&tp->out_of_order_queue); 2295 2296 inet->inet_dport = 0; 2297 2298 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2299 inet_reset_saddr(sk); 2300 2301 sk->sk_shutdown = 0; 2302 sock_reset_flag(sk, SOCK_DONE); 2303 tp->srtt_us = 0; 2304 tp->write_seq += tp->max_window + 2; 2305 if (tp->write_seq == 0) 2306 tp->write_seq = 1; 2307 icsk->icsk_backoff = 0; 2308 tp->snd_cwnd = 2; 2309 icsk->icsk_probes_out = 0; 2310 tp->packets_out = 0; 2311 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2312 tp->snd_cwnd_cnt = 0; 2313 tp->window_clamp = 0; 2314 tcp_set_ca_state(sk, TCP_CA_Open); 2315 tcp_clear_retrans(tp); 2316 inet_csk_delack_init(sk); 2317 tcp_init_send_head(sk); 2318 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2319 __sk_dst_reset(sk); 2320 2321 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2322 2323 sk->sk_error_report(sk); 2324 return err; 2325 } 2326 EXPORT_SYMBOL(tcp_disconnect); 2327 2328 static inline bool tcp_can_repair_sock(const struct sock *sk) 2329 { 2330 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2331 (sk->sk_state != TCP_LISTEN); 2332 } 2333 2334 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2335 { 2336 struct tcp_repair_window opt; 2337 2338 if (!tp->repair) 2339 return -EPERM; 2340 2341 if (len != sizeof(opt)) 2342 return -EINVAL; 2343 2344 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2345 return -EFAULT; 2346 2347 if (opt.max_window < opt.snd_wnd) 2348 return -EINVAL; 2349 2350 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2351 return -EINVAL; 2352 2353 if (after(opt.rcv_wup, tp->rcv_nxt)) 2354 return -EINVAL; 2355 2356 tp->snd_wl1 = opt.snd_wl1; 2357 tp->snd_wnd = opt.snd_wnd; 2358 tp->max_window = opt.max_window; 2359 2360 tp->rcv_wnd = opt.rcv_wnd; 2361 tp->rcv_wup = opt.rcv_wup; 2362 2363 return 0; 2364 } 2365 2366 static int tcp_repair_options_est(struct tcp_sock *tp, 2367 struct tcp_repair_opt __user *optbuf, unsigned int len) 2368 { 2369 struct tcp_repair_opt opt; 2370 2371 while (len >= sizeof(opt)) { 2372 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2373 return -EFAULT; 2374 2375 optbuf++; 2376 len -= sizeof(opt); 2377 2378 switch (opt.opt_code) { 2379 case TCPOPT_MSS: 2380 tp->rx_opt.mss_clamp = opt.opt_val; 2381 break; 2382 case TCPOPT_WINDOW: 2383 { 2384 u16 snd_wscale = opt.opt_val & 0xFFFF; 2385 u16 rcv_wscale = opt.opt_val >> 16; 2386 2387 if (snd_wscale > 14 || rcv_wscale > 14) 2388 return -EFBIG; 2389 2390 tp->rx_opt.snd_wscale = snd_wscale; 2391 tp->rx_opt.rcv_wscale = rcv_wscale; 2392 tp->rx_opt.wscale_ok = 1; 2393 } 2394 break; 2395 case TCPOPT_SACK_PERM: 2396 if (opt.opt_val != 0) 2397 return -EINVAL; 2398 2399 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2400 if (sysctl_tcp_fack) 2401 tcp_enable_fack(tp); 2402 break; 2403 case TCPOPT_TIMESTAMP: 2404 if (opt.opt_val != 0) 2405 return -EINVAL; 2406 2407 tp->rx_opt.tstamp_ok = 1; 2408 break; 2409 } 2410 } 2411 2412 return 0; 2413 } 2414 2415 /* 2416 * Socket option code for TCP. 2417 */ 2418 static int do_tcp_setsockopt(struct sock *sk, int level, 2419 int optname, char __user *optval, unsigned int optlen) 2420 { 2421 struct tcp_sock *tp = tcp_sk(sk); 2422 struct inet_connection_sock *icsk = inet_csk(sk); 2423 struct net *net = sock_net(sk); 2424 int val; 2425 int err = 0; 2426 2427 /* These are data/string values, all the others are ints */ 2428 switch (optname) { 2429 case TCP_CONGESTION: { 2430 char name[TCP_CA_NAME_MAX]; 2431 2432 if (optlen < 1) 2433 return -EINVAL; 2434 2435 val = strncpy_from_user(name, optval, 2436 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2437 if (val < 0) 2438 return -EFAULT; 2439 name[val] = 0; 2440 2441 lock_sock(sk); 2442 err = tcp_set_congestion_control(sk, name); 2443 release_sock(sk); 2444 return err; 2445 } 2446 default: 2447 /* fallthru */ 2448 break; 2449 } 2450 2451 if (optlen < sizeof(int)) 2452 return -EINVAL; 2453 2454 if (get_user(val, (int __user *)optval)) 2455 return -EFAULT; 2456 2457 lock_sock(sk); 2458 2459 switch (optname) { 2460 case TCP_MAXSEG: 2461 /* Values greater than interface MTU won't take effect. However 2462 * at the point when this call is done we typically don't yet 2463 * know which interface is going to be used */ 2464 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2465 err = -EINVAL; 2466 break; 2467 } 2468 tp->rx_opt.user_mss = val; 2469 break; 2470 2471 case TCP_NODELAY: 2472 if (val) { 2473 /* TCP_NODELAY is weaker than TCP_CORK, so that 2474 * this option on corked socket is remembered, but 2475 * it is not activated until cork is cleared. 2476 * 2477 * However, when TCP_NODELAY is set we make 2478 * an explicit push, which overrides even TCP_CORK 2479 * for currently queued segments. 2480 */ 2481 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2482 tcp_push_pending_frames(sk); 2483 } else { 2484 tp->nonagle &= ~TCP_NAGLE_OFF; 2485 } 2486 break; 2487 2488 case TCP_THIN_LINEAR_TIMEOUTS: 2489 if (val < 0 || val > 1) 2490 err = -EINVAL; 2491 else 2492 tp->thin_lto = val; 2493 break; 2494 2495 case TCP_THIN_DUPACK: 2496 if (val < 0 || val > 1) 2497 err = -EINVAL; 2498 break; 2499 2500 case TCP_REPAIR: 2501 if (!tcp_can_repair_sock(sk)) 2502 err = -EPERM; 2503 else if (val == 1) { 2504 tp->repair = 1; 2505 sk->sk_reuse = SK_FORCE_REUSE; 2506 tp->repair_queue = TCP_NO_QUEUE; 2507 } else if (val == 0) { 2508 tp->repair = 0; 2509 sk->sk_reuse = SK_NO_REUSE; 2510 tcp_send_window_probe(sk); 2511 } else 2512 err = -EINVAL; 2513 2514 break; 2515 2516 case TCP_REPAIR_QUEUE: 2517 if (!tp->repair) 2518 err = -EPERM; 2519 else if (val < TCP_QUEUES_NR) 2520 tp->repair_queue = val; 2521 else 2522 err = -EINVAL; 2523 break; 2524 2525 case TCP_QUEUE_SEQ: 2526 if (sk->sk_state != TCP_CLOSE) 2527 err = -EPERM; 2528 else if (tp->repair_queue == TCP_SEND_QUEUE) 2529 tp->write_seq = val; 2530 else if (tp->repair_queue == TCP_RECV_QUEUE) 2531 tp->rcv_nxt = val; 2532 else 2533 err = -EINVAL; 2534 break; 2535 2536 case TCP_REPAIR_OPTIONS: 2537 if (!tp->repair) 2538 err = -EINVAL; 2539 else if (sk->sk_state == TCP_ESTABLISHED) 2540 err = tcp_repair_options_est(tp, 2541 (struct tcp_repair_opt __user *)optval, 2542 optlen); 2543 else 2544 err = -EPERM; 2545 break; 2546 2547 case TCP_CORK: 2548 /* When set indicates to always queue non-full frames. 2549 * Later the user clears this option and we transmit 2550 * any pending partial frames in the queue. This is 2551 * meant to be used alongside sendfile() to get properly 2552 * filled frames when the user (for example) must write 2553 * out headers with a write() call first and then use 2554 * sendfile to send out the data parts. 2555 * 2556 * TCP_CORK can be set together with TCP_NODELAY and it is 2557 * stronger than TCP_NODELAY. 2558 */ 2559 if (val) { 2560 tp->nonagle |= TCP_NAGLE_CORK; 2561 } else { 2562 tp->nonagle &= ~TCP_NAGLE_CORK; 2563 if (tp->nonagle&TCP_NAGLE_OFF) 2564 tp->nonagle |= TCP_NAGLE_PUSH; 2565 tcp_push_pending_frames(sk); 2566 } 2567 break; 2568 2569 case TCP_KEEPIDLE: 2570 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2571 err = -EINVAL; 2572 else { 2573 tp->keepalive_time = val * HZ; 2574 if (sock_flag(sk, SOCK_KEEPOPEN) && 2575 !((1 << sk->sk_state) & 2576 (TCPF_CLOSE | TCPF_LISTEN))) { 2577 u32 elapsed = keepalive_time_elapsed(tp); 2578 if (tp->keepalive_time > elapsed) 2579 elapsed = tp->keepalive_time - elapsed; 2580 else 2581 elapsed = 0; 2582 inet_csk_reset_keepalive_timer(sk, elapsed); 2583 } 2584 } 2585 break; 2586 case TCP_KEEPINTVL: 2587 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2588 err = -EINVAL; 2589 else 2590 tp->keepalive_intvl = val * HZ; 2591 break; 2592 case TCP_KEEPCNT: 2593 if (val < 1 || val > MAX_TCP_KEEPCNT) 2594 err = -EINVAL; 2595 else 2596 tp->keepalive_probes = val; 2597 break; 2598 case TCP_SYNCNT: 2599 if (val < 1 || val > MAX_TCP_SYNCNT) 2600 err = -EINVAL; 2601 else 2602 icsk->icsk_syn_retries = val; 2603 break; 2604 2605 case TCP_SAVE_SYN: 2606 if (val < 0 || val > 1) 2607 err = -EINVAL; 2608 else 2609 tp->save_syn = val; 2610 break; 2611 2612 case TCP_LINGER2: 2613 if (val < 0) 2614 tp->linger2 = -1; 2615 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2616 tp->linger2 = 0; 2617 else 2618 tp->linger2 = val * HZ; 2619 break; 2620 2621 case TCP_DEFER_ACCEPT: 2622 /* Translate value in seconds to number of retransmits */ 2623 icsk->icsk_accept_queue.rskq_defer_accept = 2624 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2625 TCP_RTO_MAX / HZ); 2626 break; 2627 2628 case TCP_WINDOW_CLAMP: 2629 if (!val) { 2630 if (sk->sk_state != TCP_CLOSE) { 2631 err = -EINVAL; 2632 break; 2633 } 2634 tp->window_clamp = 0; 2635 } else 2636 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2637 SOCK_MIN_RCVBUF / 2 : val; 2638 break; 2639 2640 case TCP_QUICKACK: 2641 if (!val) { 2642 icsk->icsk_ack.pingpong = 1; 2643 } else { 2644 icsk->icsk_ack.pingpong = 0; 2645 if ((1 << sk->sk_state) & 2646 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2647 inet_csk_ack_scheduled(sk)) { 2648 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2649 tcp_cleanup_rbuf(sk, 1); 2650 if (!(val & 1)) 2651 icsk->icsk_ack.pingpong = 1; 2652 } 2653 } 2654 break; 2655 2656 #ifdef CONFIG_TCP_MD5SIG 2657 case TCP_MD5SIG: 2658 /* Read the IP->Key mappings from userspace */ 2659 err = tp->af_specific->md5_parse(sk, optval, optlen); 2660 break; 2661 #endif 2662 case TCP_USER_TIMEOUT: 2663 /* Cap the max time in ms TCP will retry or probe the window 2664 * before giving up and aborting (ETIMEDOUT) a connection. 2665 */ 2666 if (val < 0) 2667 err = -EINVAL; 2668 else 2669 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2670 break; 2671 2672 case TCP_FASTOPEN: 2673 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2674 TCPF_LISTEN))) { 2675 tcp_fastopen_init_key_once(true); 2676 2677 fastopen_queue_tune(sk, val); 2678 } else { 2679 err = -EINVAL; 2680 } 2681 break; 2682 case TCP_FASTOPEN_CONNECT: 2683 if (val > 1 || val < 0) { 2684 err = -EINVAL; 2685 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2686 if (sk->sk_state == TCP_CLOSE) 2687 tp->fastopen_connect = val; 2688 else 2689 err = -EINVAL; 2690 } else { 2691 err = -EOPNOTSUPP; 2692 } 2693 break; 2694 case TCP_TIMESTAMP: 2695 if (!tp->repair) 2696 err = -EPERM; 2697 else 2698 tp->tsoffset = val - tcp_time_stamp; 2699 break; 2700 case TCP_REPAIR_WINDOW: 2701 err = tcp_repair_set_window(tp, optval, optlen); 2702 break; 2703 case TCP_NOTSENT_LOWAT: 2704 tp->notsent_lowat = val; 2705 sk->sk_write_space(sk); 2706 break; 2707 default: 2708 err = -ENOPROTOOPT; 2709 break; 2710 } 2711 2712 release_sock(sk); 2713 return err; 2714 } 2715 2716 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2717 unsigned int optlen) 2718 { 2719 const struct inet_connection_sock *icsk = inet_csk(sk); 2720 2721 if (level != SOL_TCP) 2722 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2723 optval, optlen); 2724 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2725 } 2726 EXPORT_SYMBOL(tcp_setsockopt); 2727 2728 #ifdef CONFIG_COMPAT 2729 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2730 char __user *optval, unsigned int optlen) 2731 { 2732 if (level != SOL_TCP) 2733 return inet_csk_compat_setsockopt(sk, level, optname, 2734 optval, optlen); 2735 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2736 } 2737 EXPORT_SYMBOL(compat_tcp_setsockopt); 2738 #endif 2739 2740 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2741 struct tcp_info *info) 2742 { 2743 u64 stats[__TCP_CHRONO_MAX], total = 0; 2744 enum tcp_chrono i; 2745 2746 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2747 stats[i] = tp->chrono_stat[i - 1]; 2748 if (i == tp->chrono_type) 2749 stats[i] += tcp_time_stamp - tp->chrono_start; 2750 stats[i] *= USEC_PER_SEC / HZ; 2751 total += stats[i]; 2752 } 2753 2754 info->tcpi_busy_time = total; 2755 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2756 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2757 } 2758 2759 /* Return information about state of tcp endpoint in API format. */ 2760 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2761 { 2762 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2763 const struct inet_connection_sock *icsk = inet_csk(sk); 2764 u32 now = tcp_time_stamp, intv; 2765 u64 rate64; 2766 bool slow; 2767 u32 rate; 2768 2769 memset(info, 0, sizeof(*info)); 2770 if (sk->sk_type != SOCK_STREAM) 2771 return; 2772 2773 info->tcpi_state = sk_state_load(sk); 2774 2775 /* Report meaningful fields for all TCP states, including listeners */ 2776 rate = READ_ONCE(sk->sk_pacing_rate); 2777 rate64 = rate != ~0U ? rate : ~0ULL; 2778 info->tcpi_pacing_rate = rate64; 2779 2780 rate = READ_ONCE(sk->sk_max_pacing_rate); 2781 rate64 = rate != ~0U ? rate : ~0ULL; 2782 info->tcpi_max_pacing_rate = rate64; 2783 2784 info->tcpi_reordering = tp->reordering; 2785 info->tcpi_snd_cwnd = tp->snd_cwnd; 2786 2787 if (info->tcpi_state == TCP_LISTEN) { 2788 /* listeners aliased fields : 2789 * tcpi_unacked -> Number of children ready for accept() 2790 * tcpi_sacked -> max backlog 2791 */ 2792 info->tcpi_unacked = sk->sk_ack_backlog; 2793 info->tcpi_sacked = sk->sk_max_ack_backlog; 2794 return; 2795 } 2796 2797 slow = lock_sock_fast(sk); 2798 2799 info->tcpi_ca_state = icsk->icsk_ca_state; 2800 info->tcpi_retransmits = icsk->icsk_retransmits; 2801 info->tcpi_probes = icsk->icsk_probes_out; 2802 info->tcpi_backoff = icsk->icsk_backoff; 2803 2804 if (tp->rx_opt.tstamp_ok) 2805 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2806 if (tcp_is_sack(tp)) 2807 info->tcpi_options |= TCPI_OPT_SACK; 2808 if (tp->rx_opt.wscale_ok) { 2809 info->tcpi_options |= TCPI_OPT_WSCALE; 2810 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2811 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2812 } 2813 2814 if (tp->ecn_flags & TCP_ECN_OK) 2815 info->tcpi_options |= TCPI_OPT_ECN; 2816 if (tp->ecn_flags & TCP_ECN_SEEN) 2817 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2818 if (tp->syn_data_acked) 2819 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2820 2821 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2822 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2823 info->tcpi_snd_mss = tp->mss_cache; 2824 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2825 2826 info->tcpi_unacked = tp->packets_out; 2827 info->tcpi_sacked = tp->sacked_out; 2828 2829 info->tcpi_lost = tp->lost_out; 2830 info->tcpi_retrans = tp->retrans_out; 2831 info->tcpi_fackets = tp->fackets_out; 2832 2833 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2834 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2835 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2836 2837 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2838 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2839 info->tcpi_rtt = tp->srtt_us >> 3; 2840 info->tcpi_rttvar = tp->mdev_us >> 2; 2841 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2842 info->tcpi_advmss = tp->advmss; 2843 2844 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2845 info->tcpi_rcv_space = tp->rcvq_space.space; 2846 2847 info->tcpi_total_retrans = tp->total_retrans; 2848 2849 info->tcpi_bytes_acked = tp->bytes_acked; 2850 info->tcpi_bytes_received = tp->bytes_received; 2851 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 2852 tcp_get_info_chrono_stats(tp, info); 2853 2854 info->tcpi_segs_out = tp->segs_out; 2855 info->tcpi_segs_in = tp->segs_in; 2856 2857 info->tcpi_min_rtt = tcp_min_rtt(tp); 2858 info->tcpi_data_segs_in = tp->data_segs_in; 2859 info->tcpi_data_segs_out = tp->data_segs_out; 2860 2861 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 2862 rate = READ_ONCE(tp->rate_delivered); 2863 intv = READ_ONCE(tp->rate_interval_us); 2864 if (rate && intv) { 2865 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 2866 do_div(rate64, intv); 2867 info->tcpi_delivery_rate = rate64; 2868 } 2869 unlock_sock_fast(sk, slow); 2870 } 2871 EXPORT_SYMBOL_GPL(tcp_get_info); 2872 2873 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 2874 { 2875 const struct tcp_sock *tp = tcp_sk(sk); 2876 struct sk_buff *stats; 2877 struct tcp_info info; 2878 2879 stats = alloc_skb(5 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC); 2880 if (!stats) 2881 return NULL; 2882 2883 tcp_get_info_chrono_stats(tp, &info); 2884 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 2885 info.tcpi_busy_time, TCP_NLA_PAD); 2886 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 2887 info.tcpi_rwnd_limited, TCP_NLA_PAD); 2888 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 2889 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 2890 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 2891 tp->data_segs_out, TCP_NLA_PAD); 2892 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 2893 tp->total_retrans, TCP_NLA_PAD); 2894 return stats; 2895 } 2896 2897 static int do_tcp_getsockopt(struct sock *sk, int level, 2898 int optname, char __user *optval, int __user *optlen) 2899 { 2900 struct inet_connection_sock *icsk = inet_csk(sk); 2901 struct tcp_sock *tp = tcp_sk(sk); 2902 struct net *net = sock_net(sk); 2903 int val, len; 2904 2905 if (get_user(len, optlen)) 2906 return -EFAULT; 2907 2908 len = min_t(unsigned int, len, sizeof(int)); 2909 2910 if (len < 0) 2911 return -EINVAL; 2912 2913 switch (optname) { 2914 case TCP_MAXSEG: 2915 val = tp->mss_cache; 2916 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2917 val = tp->rx_opt.user_mss; 2918 if (tp->repair) 2919 val = tp->rx_opt.mss_clamp; 2920 break; 2921 case TCP_NODELAY: 2922 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2923 break; 2924 case TCP_CORK: 2925 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2926 break; 2927 case TCP_KEEPIDLE: 2928 val = keepalive_time_when(tp) / HZ; 2929 break; 2930 case TCP_KEEPINTVL: 2931 val = keepalive_intvl_when(tp) / HZ; 2932 break; 2933 case TCP_KEEPCNT: 2934 val = keepalive_probes(tp); 2935 break; 2936 case TCP_SYNCNT: 2937 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2938 break; 2939 case TCP_LINGER2: 2940 val = tp->linger2; 2941 if (val >= 0) 2942 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2943 break; 2944 case TCP_DEFER_ACCEPT: 2945 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2946 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2947 break; 2948 case TCP_WINDOW_CLAMP: 2949 val = tp->window_clamp; 2950 break; 2951 case TCP_INFO: { 2952 struct tcp_info info; 2953 2954 if (get_user(len, optlen)) 2955 return -EFAULT; 2956 2957 tcp_get_info(sk, &info); 2958 2959 len = min_t(unsigned int, len, sizeof(info)); 2960 if (put_user(len, optlen)) 2961 return -EFAULT; 2962 if (copy_to_user(optval, &info, len)) 2963 return -EFAULT; 2964 return 0; 2965 } 2966 case TCP_CC_INFO: { 2967 const struct tcp_congestion_ops *ca_ops; 2968 union tcp_cc_info info; 2969 size_t sz = 0; 2970 int attr; 2971 2972 if (get_user(len, optlen)) 2973 return -EFAULT; 2974 2975 ca_ops = icsk->icsk_ca_ops; 2976 if (ca_ops && ca_ops->get_info) 2977 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2978 2979 len = min_t(unsigned int, len, sz); 2980 if (put_user(len, optlen)) 2981 return -EFAULT; 2982 if (copy_to_user(optval, &info, len)) 2983 return -EFAULT; 2984 return 0; 2985 } 2986 case TCP_QUICKACK: 2987 val = !icsk->icsk_ack.pingpong; 2988 break; 2989 2990 case TCP_CONGESTION: 2991 if (get_user(len, optlen)) 2992 return -EFAULT; 2993 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2994 if (put_user(len, optlen)) 2995 return -EFAULT; 2996 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2997 return -EFAULT; 2998 return 0; 2999 3000 case TCP_THIN_LINEAR_TIMEOUTS: 3001 val = tp->thin_lto; 3002 break; 3003 3004 case TCP_THIN_DUPACK: 3005 val = 0; 3006 break; 3007 3008 case TCP_REPAIR: 3009 val = tp->repair; 3010 break; 3011 3012 case TCP_REPAIR_QUEUE: 3013 if (tp->repair) 3014 val = tp->repair_queue; 3015 else 3016 return -EINVAL; 3017 break; 3018 3019 case TCP_REPAIR_WINDOW: { 3020 struct tcp_repair_window opt; 3021 3022 if (get_user(len, optlen)) 3023 return -EFAULT; 3024 3025 if (len != sizeof(opt)) 3026 return -EINVAL; 3027 3028 if (!tp->repair) 3029 return -EPERM; 3030 3031 opt.snd_wl1 = tp->snd_wl1; 3032 opt.snd_wnd = tp->snd_wnd; 3033 opt.max_window = tp->max_window; 3034 opt.rcv_wnd = tp->rcv_wnd; 3035 opt.rcv_wup = tp->rcv_wup; 3036 3037 if (copy_to_user(optval, &opt, len)) 3038 return -EFAULT; 3039 return 0; 3040 } 3041 case TCP_QUEUE_SEQ: 3042 if (tp->repair_queue == TCP_SEND_QUEUE) 3043 val = tp->write_seq; 3044 else if (tp->repair_queue == TCP_RECV_QUEUE) 3045 val = tp->rcv_nxt; 3046 else 3047 return -EINVAL; 3048 break; 3049 3050 case TCP_USER_TIMEOUT: 3051 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3052 break; 3053 3054 case TCP_FASTOPEN: 3055 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3056 break; 3057 3058 case TCP_FASTOPEN_CONNECT: 3059 val = tp->fastopen_connect; 3060 break; 3061 3062 case TCP_TIMESTAMP: 3063 val = tcp_time_stamp + tp->tsoffset; 3064 break; 3065 case TCP_NOTSENT_LOWAT: 3066 val = tp->notsent_lowat; 3067 break; 3068 case TCP_SAVE_SYN: 3069 val = tp->save_syn; 3070 break; 3071 case TCP_SAVED_SYN: { 3072 if (get_user(len, optlen)) 3073 return -EFAULT; 3074 3075 lock_sock(sk); 3076 if (tp->saved_syn) { 3077 if (len < tp->saved_syn[0]) { 3078 if (put_user(tp->saved_syn[0], optlen)) { 3079 release_sock(sk); 3080 return -EFAULT; 3081 } 3082 release_sock(sk); 3083 return -EINVAL; 3084 } 3085 len = tp->saved_syn[0]; 3086 if (put_user(len, optlen)) { 3087 release_sock(sk); 3088 return -EFAULT; 3089 } 3090 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3091 release_sock(sk); 3092 return -EFAULT; 3093 } 3094 tcp_saved_syn_free(tp); 3095 release_sock(sk); 3096 } else { 3097 release_sock(sk); 3098 len = 0; 3099 if (put_user(len, optlen)) 3100 return -EFAULT; 3101 } 3102 return 0; 3103 } 3104 default: 3105 return -ENOPROTOOPT; 3106 } 3107 3108 if (put_user(len, optlen)) 3109 return -EFAULT; 3110 if (copy_to_user(optval, &val, len)) 3111 return -EFAULT; 3112 return 0; 3113 } 3114 3115 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3116 int __user *optlen) 3117 { 3118 struct inet_connection_sock *icsk = inet_csk(sk); 3119 3120 if (level != SOL_TCP) 3121 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3122 optval, optlen); 3123 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3124 } 3125 EXPORT_SYMBOL(tcp_getsockopt); 3126 3127 #ifdef CONFIG_COMPAT 3128 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3129 char __user *optval, int __user *optlen) 3130 { 3131 if (level != SOL_TCP) 3132 return inet_csk_compat_getsockopt(sk, level, optname, 3133 optval, optlen); 3134 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3135 } 3136 EXPORT_SYMBOL(compat_tcp_getsockopt); 3137 #endif 3138 3139 #ifdef CONFIG_TCP_MD5SIG 3140 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3141 static DEFINE_MUTEX(tcp_md5sig_mutex); 3142 static bool tcp_md5sig_pool_populated = false; 3143 3144 static void __tcp_alloc_md5sig_pool(void) 3145 { 3146 struct crypto_ahash *hash; 3147 int cpu; 3148 3149 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3150 if (IS_ERR(hash)) 3151 return; 3152 3153 for_each_possible_cpu(cpu) { 3154 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3155 struct ahash_request *req; 3156 3157 if (!scratch) { 3158 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3159 sizeof(struct tcphdr), 3160 GFP_KERNEL, 3161 cpu_to_node(cpu)); 3162 if (!scratch) 3163 return; 3164 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3165 } 3166 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3167 continue; 3168 3169 req = ahash_request_alloc(hash, GFP_KERNEL); 3170 if (!req) 3171 return; 3172 3173 ahash_request_set_callback(req, 0, NULL, NULL); 3174 3175 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3176 } 3177 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3178 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3179 */ 3180 smp_wmb(); 3181 tcp_md5sig_pool_populated = true; 3182 } 3183 3184 bool tcp_alloc_md5sig_pool(void) 3185 { 3186 if (unlikely(!tcp_md5sig_pool_populated)) { 3187 mutex_lock(&tcp_md5sig_mutex); 3188 3189 if (!tcp_md5sig_pool_populated) 3190 __tcp_alloc_md5sig_pool(); 3191 3192 mutex_unlock(&tcp_md5sig_mutex); 3193 } 3194 return tcp_md5sig_pool_populated; 3195 } 3196 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3197 3198 3199 /** 3200 * tcp_get_md5sig_pool - get md5sig_pool for this user 3201 * 3202 * We use percpu structure, so if we succeed, we exit with preemption 3203 * and BH disabled, to make sure another thread or softirq handling 3204 * wont try to get same context. 3205 */ 3206 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3207 { 3208 local_bh_disable(); 3209 3210 if (tcp_md5sig_pool_populated) { 3211 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3212 smp_rmb(); 3213 return this_cpu_ptr(&tcp_md5sig_pool); 3214 } 3215 local_bh_enable(); 3216 return NULL; 3217 } 3218 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3219 3220 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3221 const struct sk_buff *skb, unsigned int header_len) 3222 { 3223 struct scatterlist sg; 3224 const struct tcphdr *tp = tcp_hdr(skb); 3225 struct ahash_request *req = hp->md5_req; 3226 unsigned int i; 3227 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3228 skb_headlen(skb) - header_len : 0; 3229 const struct skb_shared_info *shi = skb_shinfo(skb); 3230 struct sk_buff *frag_iter; 3231 3232 sg_init_table(&sg, 1); 3233 3234 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3235 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3236 if (crypto_ahash_update(req)) 3237 return 1; 3238 3239 for (i = 0; i < shi->nr_frags; ++i) { 3240 const struct skb_frag_struct *f = &shi->frags[i]; 3241 unsigned int offset = f->page_offset; 3242 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3243 3244 sg_set_page(&sg, page, skb_frag_size(f), 3245 offset_in_page(offset)); 3246 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3247 if (crypto_ahash_update(req)) 3248 return 1; 3249 } 3250 3251 skb_walk_frags(skb, frag_iter) 3252 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3253 return 1; 3254 3255 return 0; 3256 } 3257 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3258 3259 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3260 { 3261 struct scatterlist sg; 3262 3263 sg_init_one(&sg, key->key, key->keylen); 3264 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3265 return crypto_ahash_update(hp->md5_req); 3266 } 3267 EXPORT_SYMBOL(tcp_md5_hash_key); 3268 3269 #endif 3270 3271 void tcp_done(struct sock *sk) 3272 { 3273 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3274 3275 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3276 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3277 3278 tcp_set_state(sk, TCP_CLOSE); 3279 tcp_clear_xmit_timers(sk); 3280 if (req) 3281 reqsk_fastopen_remove(sk, req, false); 3282 3283 sk->sk_shutdown = SHUTDOWN_MASK; 3284 3285 if (!sock_flag(sk, SOCK_DEAD)) 3286 sk->sk_state_change(sk); 3287 else 3288 inet_csk_destroy_sock(sk); 3289 } 3290 EXPORT_SYMBOL_GPL(tcp_done); 3291 3292 int tcp_abort(struct sock *sk, int err) 3293 { 3294 if (!sk_fullsock(sk)) { 3295 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3296 struct request_sock *req = inet_reqsk(sk); 3297 3298 local_bh_disable(); 3299 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3300 req); 3301 local_bh_enable(); 3302 return 0; 3303 } 3304 return -EOPNOTSUPP; 3305 } 3306 3307 /* Don't race with userspace socket closes such as tcp_close. */ 3308 lock_sock(sk); 3309 3310 if (sk->sk_state == TCP_LISTEN) { 3311 tcp_set_state(sk, TCP_CLOSE); 3312 inet_csk_listen_stop(sk); 3313 } 3314 3315 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3316 local_bh_disable(); 3317 bh_lock_sock(sk); 3318 3319 if (!sock_flag(sk, SOCK_DEAD)) { 3320 sk->sk_err = err; 3321 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3322 smp_wmb(); 3323 sk->sk_error_report(sk); 3324 if (tcp_need_reset(sk->sk_state)) 3325 tcp_send_active_reset(sk, GFP_ATOMIC); 3326 tcp_done(sk); 3327 } 3328 3329 bh_unlock_sock(sk); 3330 local_bh_enable(); 3331 release_sock(sk); 3332 return 0; 3333 } 3334 EXPORT_SYMBOL_GPL(tcp_abort); 3335 3336 extern struct tcp_congestion_ops tcp_reno; 3337 3338 static __initdata unsigned long thash_entries; 3339 static int __init set_thash_entries(char *str) 3340 { 3341 ssize_t ret; 3342 3343 if (!str) 3344 return 0; 3345 3346 ret = kstrtoul(str, 0, &thash_entries); 3347 if (ret) 3348 return 0; 3349 3350 return 1; 3351 } 3352 __setup("thash_entries=", set_thash_entries); 3353 3354 static void __init tcp_init_mem(void) 3355 { 3356 unsigned long limit = nr_free_buffer_pages() / 16; 3357 3358 limit = max(limit, 128UL); 3359 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3360 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3361 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3362 } 3363 3364 void __init tcp_init(void) 3365 { 3366 int max_rshare, max_wshare, cnt; 3367 unsigned long limit; 3368 unsigned int i; 3369 3370 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3371 FIELD_SIZEOF(struct sk_buff, cb)); 3372 3373 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3374 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3375 inet_hashinfo_init(&tcp_hashinfo); 3376 tcp_hashinfo.bind_bucket_cachep = 3377 kmem_cache_create("tcp_bind_bucket", 3378 sizeof(struct inet_bind_bucket), 0, 3379 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3380 3381 /* Size and allocate the main established and bind bucket 3382 * hash tables. 3383 * 3384 * The methodology is similar to that of the buffer cache. 3385 */ 3386 tcp_hashinfo.ehash = 3387 alloc_large_system_hash("TCP established", 3388 sizeof(struct inet_ehash_bucket), 3389 thash_entries, 3390 17, /* one slot per 128 KB of memory */ 3391 0, 3392 NULL, 3393 &tcp_hashinfo.ehash_mask, 3394 0, 3395 thash_entries ? 0 : 512 * 1024); 3396 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3397 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3398 3399 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3400 panic("TCP: failed to alloc ehash_locks"); 3401 tcp_hashinfo.bhash = 3402 alloc_large_system_hash("TCP bind", 3403 sizeof(struct inet_bind_hashbucket), 3404 tcp_hashinfo.ehash_mask + 1, 3405 17, /* one slot per 128 KB of memory */ 3406 0, 3407 &tcp_hashinfo.bhash_size, 3408 NULL, 3409 0, 3410 64 * 1024); 3411 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3412 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3413 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3414 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3415 } 3416 3417 3418 cnt = tcp_hashinfo.ehash_mask + 1; 3419 sysctl_tcp_max_orphans = cnt / 2; 3420 3421 tcp_init_mem(); 3422 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3423 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3424 max_wshare = min(4UL*1024*1024, limit); 3425 max_rshare = min(6UL*1024*1024, limit); 3426 3427 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3428 sysctl_tcp_wmem[1] = 16*1024; 3429 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3430 3431 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3432 sysctl_tcp_rmem[1] = 87380; 3433 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3434 3435 pr_info("Hash tables configured (established %u bind %u)\n", 3436 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3437 3438 tcp_v4_init(); 3439 tcp_metrics_init(); 3440 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3441 tcp_tasklet_init(); 3442 } 3443