xref: /openbmc/linux/net/ipv4/tcp.c (revision 7b7090b4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 
439 	/* See draft-stevens-tcpca-spec-01 for discussion of the
440 	 * initialization of these values.
441 	 */
442 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 	tp->snd_cwnd_clamp = ~0;
444 	tp->mss_cache = TCP_MSS_DEFAULT;
445 
446 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
447 	tcp_assign_congestion_control(sk);
448 
449 	tp->tsoffset = 0;
450 	tp->rack.reo_wnd_steps = 1;
451 
452 	sk->sk_write_space = sk_stream_write_space;
453 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454 
455 	icsk->icsk_sync_mss = tcp_sync_mss;
456 
457 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
458 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
459 
460 	sk_sockets_allocated_inc(sk);
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463 
464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 	struct sk_buff *skb = tcp_write_queue_tail(sk);
467 
468 	if (tsflags && skb) {
469 		struct skb_shared_info *shinfo = skb_shinfo(skb);
470 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471 
472 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 			tcb->txstamp_ack = 1;
475 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 	}
478 }
479 
480 static bool tcp_stream_is_readable(struct sock *sk, int target)
481 {
482 	if (tcp_epollin_ready(sk, target))
483 		return true;
484 	return sk_is_readable(sk);
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	__poll_t mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_poll_wait(file, sock, wait);
502 
503 	state = inet_sk_state_load(sk);
504 	if (state == TCP_LISTEN)
505 		return inet_csk_listen_poll(sk);
506 
507 	/* Socket is not locked. We are protected from async events
508 	 * by poll logic and correct handling of state changes
509 	 * made by other threads is impossible in any case.
510 	 */
511 
512 	mask = 0;
513 
514 	/*
515 	 * EPOLLHUP is certainly not done right. But poll() doesn't
516 	 * have a notion of HUP in just one direction, and for a
517 	 * socket the read side is more interesting.
518 	 *
519 	 * Some poll() documentation says that EPOLLHUP is incompatible
520 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 	 * all. But careful, it tends to be safer to return too many
522 	 * bits than too few, and you can easily break real applications
523 	 * if you don't tell them that something has hung up!
524 	 *
525 	 * Check-me.
526 	 *
527 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 	 * our fs/select.c). It means that after we received EOF,
529 	 * poll always returns immediately, making impossible poll() on write()
530 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 	 * if and only if shutdown has been made in both directions.
532 	 * Actually, it is interesting to look how Solaris and DUX
533 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 	 * then we could set it on SND_SHUTDOWN. BTW examples given
535 	 * in Stevens' books assume exactly this behaviour, it explains
536 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
537 	 *
538 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 	 * blocking on fresh not-connected or disconnected socket. --ANK
540 	 */
541 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 		mask |= EPOLLHUP;
543 	if (sk->sk_shutdown & RCV_SHUTDOWN)
544 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545 
546 	/* Connected or passive Fast Open socket? */
547 	if (state != TCP_SYN_SENT &&
548 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
549 		int target = sock_rcvlowat(sk, 0, INT_MAX);
550 		u16 urg_data = READ_ONCE(tp->urg_data);
551 
552 		if (unlikely(urg_data) &&
553 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
554 		    !sock_flag(sk, SOCK_URGINLINE))
555 			target++;
556 
557 		if (tcp_stream_is_readable(sk, target))
558 			mask |= EPOLLIN | EPOLLRDNORM;
559 
560 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
561 			if (__sk_stream_is_writeable(sk, 1)) {
562 				mask |= EPOLLOUT | EPOLLWRNORM;
563 			} else {  /* send SIGIO later */
564 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
565 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
566 
567 				/* Race breaker. If space is freed after
568 				 * wspace test but before the flags are set,
569 				 * IO signal will be lost. Memory barrier
570 				 * pairs with the input side.
571 				 */
572 				smp_mb__after_atomic();
573 				if (__sk_stream_is_writeable(sk, 1))
574 					mask |= EPOLLOUT | EPOLLWRNORM;
575 			}
576 		} else
577 			mask |= EPOLLOUT | EPOLLWRNORM;
578 
579 		if (urg_data & TCP_URG_VALID)
580 			mask |= EPOLLPRI;
581 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
582 		/* Active TCP fastopen socket with defer_connect
583 		 * Return EPOLLOUT so application can call write()
584 		 * in order for kernel to generate SYN+data
585 		 */
586 		mask |= EPOLLOUT | EPOLLWRNORM;
587 	}
588 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
589 	smp_rmb();
590 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
591 		mask |= EPOLLERR;
592 
593 	return mask;
594 }
595 EXPORT_SYMBOL(tcp_poll);
596 
597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
598 {
599 	struct tcp_sock *tp = tcp_sk(sk);
600 	int answ;
601 	bool slow;
602 
603 	switch (cmd) {
604 	case SIOCINQ:
605 		if (sk->sk_state == TCP_LISTEN)
606 			return -EINVAL;
607 
608 		slow = lock_sock_fast(sk);
609 		answ = tcp_inq(sk);
610 		unlock_sock_fast(sk, slow);
611 		break;
612 	case SIOCATMARK:
613 		answ = READ_ONCE(tp->urg_data) &&
614 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
615 		break;
616 	case SIOCOUTQ:
617 		if (sk->sk_state == TCP_LISTEN)
618 			return -EINVAL;
619 
620 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
621 			answ = 0;
622 		else
623 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
624 		break;
625 	case SIOCOUTQNSD:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 			answ = 0;
631 		else
632 			answ = READ_ONCE(tp->write_seq) -
633 			       READ_ONCE(tp->snd_nxt);
634 		break;
635 	default:
636 		return -ENOIOCTLCMD;
637 	}
638 
639 	return put_user(answ, (int __user *)arg);
640 }
641 EXPORT_SYMBOL(tcp_ioctl);
642 
643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
644 {
645 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
646 	tp->pushed_seq = tp->write_seq;
647 }
648 
649 static inline bool forced_push(const struct tcp_sock *tp)
650 {
651 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
652 }
653 
654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
658 
659 	tcb->seq     = tcb->end_seq = tp->write_seq;
660 	tcb->tcp_flags = TCPHDR_ACK;
661 	__skb_header_release(skb);
662 	tcp_add_write_queue_tail(sk, skb);
663 	sk_wmem_queued_add(sk, skb->truesize);
664 	sk_mem_charge(sk, skb->truesize);
665 	if (tp->nonagle & TCP_NAGLE_PUSH)
666 		tp->nonagle &= ~TCP_NAGLE_PUSH;
667 
668 	tcp_slow_start_after_idle_check(sk);
669 }
670 
671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
672 {
673 	if (flags & MSG_OOB)
674 		tp->snd_up = tp->write_seq;
675 }
676 
677 /* If a not yet filled skb is pushed, do not send it if
678  * we have data packets in Qdisc or NIC queues :
679  * Because TX completion will happen shortly, it gives a chance
680  * to coalesce future sendmsg() payload into this skb, without
681  * need for a timer, and with no latency trade off.
682  * As packets containing data payload have a bigger truesize
683  * than pure acks (dataless) packets, the last checks prevent
684  * autocorking if we only have an ACK in Qdisc/NIC queues,
685  * or if TX completion was delayed after we processed ACK packet.
686  */
687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
688 				int size_goal)
689 {
690 	return skb->len < size_goal &&
691 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
692 	       !tcp_rtx_queue_empty(sk) &&
693 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
694 	       tcp_skb_can_collapse_to(skb);
695 }
696 
697 void tcp_push(struct sock *sk, int flags, int mss_now,
698 	      int nonagle, int size_goal)
699 {
700 	struct tcp_sock *tp = tcp_sk(sk);
701 	struct sk_buff *skb;
702 
703 	skb = tcp_write_queue_tail(sk);
704 	if (!skb)
705 		return;
706 	if (!(flags & MSG_MORE) || forced_push(tp))
707 		tcp_mark_push(tp, skb);
708 
709 	tcp_mark_urg(tp, flags);
710 
711 	if (tcp_should_autocork(sk, skb, size_goal)) {
712 
713 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
714 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
715 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
716 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
717 		}
718 		/* It is possible TX completion already happened
719 		 * before we set TSQ_THROTTLED.
720 		 */
721 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
722 			return;
723 	}
724 
725 	if (flags & MSG_MORE)
726 		nonagle = TCP_NAGLE_CORK;
727 
728 	__tcp_push_pending_frames(sk, mss_now, nonagle);
729 }
730 
731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
732 				unsigned int offset, size_t len)
733 {
734 	struct tcp_splice_state *tss = rd_desc->arg.data;
735 	int ret;
736 
737 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
738 			      min(rd_desc->count, len), tss->flags);
739 	if (ret > 0)
740 		rd_desc->count -= ret;
741 	return ret;
742 }
743 
744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
745 {
746 	/* Store TCP splice context information in read_descriptor_t. */
747 	read_descriptor_t rd_desc = {
748 		.arg.data = tss,
749 		.count	  = tss->len,
750 	};
751 
752 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
753 }
754 
755 /**
756  *  tcp_splice_read - splice data from TCP socket to a pipe
757  * @sock:	socket to splice from
758  * @ppos:	position (not valid)
759  * @pipe:	pipe to splice to
760  * @len:	number of bytes to splice
761  * @flags:	splice modifier flags
762  *
763  * Description:
764  *    Will read pages from given socket and fill them into a pipe.
765  *
766  **/
767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
768 			struct pipe_inode_info *pipe, size_t len,
769 			unsigned int flags)
770 {
771 	struct sock *sk = sock->sk;
772 	struct tcp_splice_state tss = {
773 		.pipe = pipe,
774 		.len = len,
775 		.flags = flags,
776 	};
777 	long timeo;
778 	ssize_t spliced;
779 	int ret;
780 
781 	sock_rps_record_flow(sk);
782 	/*
783 	 * We can't seek on a socket input
784 	 */
785 	if (unlikely(*ppos))
786 		return -ESPIPE;
787 
788 	ret = spliced = 0;
789 
790 	lock_sock(sk);
791 
792 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
793 	while (tss.len) {
794 		ret = __tcp_splice_read(sk, &tss);
795 		if (ret < 0)
796 			break;
797 		else if (!ret) {
798 			if (spliced)
799 				break;
800 			if (sock_flag(sk, SOCK_DONE))
801 				break;
802 			if (sk->sk_err) {
803 				ret = sock_error(sk);
804 				break;
805 			}
806 			if (sk->sk_shutdown & RCV_SHUTDOWN)
807 				break;
808 			if (sk->sk_state == TCP_CLOSE) {
809 				/*
810 				 * This occurs when user tries to read
811 				 * from never connected socket.
812 				 */
813 				ret = -ENOTCONN;
814 				break;
815 			}
816 			if (!timeo) {
817 				ret = -EAGAIN;
818 				break;
819 			}
820 			/* if __tcp_splice_read() got nothing while we have
821 			 * an skb in receive queue, we do not want to loop.
822 			 * This might happen with URG data.
823 			 */
824 			if (!skb_queue_empty(&sk->sk_receive_queue))
825 				break;
826 			sk_wait_data(sk, &timeo, NULL);
827 			if (signal_pending(current)) {
828 				ret = sock_intr_errno(timeo);
829 				break;
830 			}
831 			continue;
832 		}
833 		tss.len -= ret;
834 		spliced += ret;
835 
836 		if (!timeo)
837 			break;
838 		release_sock(sk);
839 		lock_sock(sk);
840 
841 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
842 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
843 		    signal_pending(current))
844 			break;
845 	}
846 
847 	release_sock(sk);
848 
849 	if (spliced)
850 		return spliced;
851 
852 	return ret;
853 }
854 EXPORT_SYMBOL(tcp_splice_read);
855 
856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
857 				     bool force_schedule)
858 {
859 	struct sk_buff *skb;
860 
861 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
862 	if (likely(skb)) {
863 		bool mem_scheduled;
864 
865 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
866 		if (force_schedule) {
867 			mem_scheduled = true;
868 			sk_forced_mem_schedule(sk, skb->truesize);
869 		} else {
870 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 		}
872 		if (likely(mem_scheduled)) {
873 			skb_reserve(skb, MAX_TCP_HEADER);
874 			skb->ip_summed = CHECKSUM_PARTIAL;
875 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 			return skb;
877 		}
878 		__kfree_skb(skb);
879 	} else {
880 		sk->sk_prot->enter_memory_pressure(sk);
881 		sk_stream_moderate_sndbuf(sk);
882 	}
883 	return NULL;
884 }
885 
886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 				       int large_allowed)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	u32 new_size_goal, size_goal;
891 
892 	if (!large_allowed)
893 		return mss_now;
894 
895 	/* Note : tcp_tso_autosize() will eventually split this later */
896 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
897 
898 	/* We try hard to avoid divides here */
899 	size_goal = tp->gso_segs * mss_now;
900 	if (unlikely(new_size_goal < size_goal ||
901 		     new_size_goal >= size_goal + mss_now)) {
902 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
903 				     sk->sk_gso_max_segs);
904 		size_goal = tp->gso_segs * mss_now;
905 	}
906 
907 	return max(size_goal, mss_now);
908 }
909 
910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
911 {
912 	int mss_now;
913 
914 	mss_now = tcp_current_mss(sk);
915 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
916 
917 	return mss_now;
918 }
919 
920 /* In some cases, both sendpage() and sendmsg() could have added
921  * an skb to the write queue, but failed adding payload on it.
922  * We need to remove it to consume less memory, but more
923  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
924  * users.
925  */
926 void tcp_remove_empty_skb(struct sock *sk)
927 {
928 	struct sk_buff *skb = tcp_write_queue_tail(sk);
929 
930 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
931 		tcp_unlink_write_queue(skb, sk);
932 		if (tcp_write_queue_empty(sk))
933 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
934 		tcp_wmem_free_skb(sk, skb);
935 	}
936 }
937 
938 /* skb changing from pure zc to mixed, must charge zc */
939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
940 {
941 	if (unlikely(skb_zcopy_pure(skb))) {
942 		u32 extra = skb->truesize -
943 			    SKB_TRUESIZE(skb_end_offset(skb));
944 
945 		if (!sk_wmem_schedule(sk, extra))
946 			return -ENOMEM;
947 
948 		sk_mem_charge(sk, extra);
949 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
950 	}
951 	return 0;
952 }
953 
954 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
955 				      struct page *page, int offset, size_t *size)
956 {
957 	struct sk_buff *skb = tcp_write_queue_tail(sk);
958 	struct tcp_sock *tp = tcp_sk(sk);
959 	bool can_coalesce;
960 	int copy, i;
961 
962 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
963 	    !tcp_skb_can_collapse_to(skb)) {
964 new_segment:
965 		if (!sk_stream_memory_free(sk))
966 			return NULL;
967 
968 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
969 					   tcp_rtx_and_write_queues_empty(sk));
970 		if (!skb)
971 			return NULL;
972 
973 #ifdef CONFIG_TLS_DEVICE
974 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
975 #endif
976 		tcp_skb_entail(sk, skb);
977 		copy = size_goal;
978 	}
979 
980 	if (copy > *size)
981 		copy = *size;
982 
983 	i = skb_shinfo(skb)->nr_frags;
984 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
985 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
986 		tcp_mark_push(tp, skb);
987 		goto new_segment;
988 	}
989 	if (tcp_downgrade_zcopy_pure(sk, skb) || !sk_wmem_schedule(sk, copy))
990 		return NULL;
991 
992 	if (can_coalesce) {
993 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
994 	} else {
995 		get_page(page);
996 		skb_fill_page_desc(skb, i, page, offset, copy);
997 	}
998 
999 	if (!(flags & MSG_NO_SHARED_FRAGS))
1000 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1001 
1002 	skb->len += copy;
1003 	skb->data_len += copy;
1004 	skb->truesize += copy;
1005 	sk_wmem_queued_add(sk, copy);
1006 	sk_mem_charge(sk, copy);
1007 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1008 	TCP_SKB_CB(skb)->end_seq += copy;
1009 	tcp_skb_pcount_set(skb, 0);
1010 
1011 	*size = copy;
1012 	return skb;
1013 }
1014 
1015 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1016 			 size_t size, int flags)
1017 {
1018 	struct tcp_sock *tp = tcp_sk(sk);
1019 	int mss_now, size_goal;
1020 	int err;
1021 	ssize_t copied;
1022 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1023 
1024 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1025 	    WARN_ONCE(!sendpage_ok(page),
1026 		      "page must not be a Slab one and have page_count > 0"))
1027 		return -EINVAL;
1028 
1029 	/* Wait for a connection to finish. One exception is TCP Fast Open
1030 	 * (passive side) where data is allowed to be sent before a connection
1031 	 * is fully established.
1032 	 */
1033 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1034 	    !tcp_passive_fastopen(sk)) {
1035 		err = sk_stream_wait_connect(sk, &timeo);
1036 		if (err != 0)
1037 			goto out_err;
1038 	}
1039 
1040 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1041 
1042 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1043 	copied = 0;
1044 
1045 	err = -EPIPE;
1046 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1047 		goto out_err;
1048 
1049 	while (size > 0) {
1050 		struct sk_buff *skb;
1051 		size_t copy = size;
1052 
1053 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1054 		if (!skb)
1055 			goto wait_for_space;
1056 
1057 		if (!copied)
1058 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1059 
1060 		copied += copy;
1061 		offset += copy;
1062 		size -= copy;
1063 		if (!size)
1064 			goto out;
1065 
1066 		if (skb->len < size_goal || (flags & MSG_OOB))
1067 			continue;
1068 
1069 		if (forced_push(tp)) {
1070 			tcp_mark_push(tp, skb);
1071 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1072 		} else if (skb == tcp_send_head(sk))
1073 			tcp_push_one(sk, mss_now);
1074 		continue;
1075 
1076 wait_for_space:
1077 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1078 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1079 			 TCP_NAGLE_PUSH, size_goal);
1080 
1081 		err = sk_stream_wait_memory(sk, &timeo);
1082 		if (err != 0)
1083 			goto do_error;
1084 
1085 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1086 	}
1087 
1088 out:
1089 	if (copied) {
1090 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1091 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1092 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1093 	}
1094 	return copied;
1095 
1096 do_error:
1097 	tcp_remove_empty_skb(sk);
1098 	if (copied)
1099 		goto out;
1100 out_err:
1101 	/* make sure we wake any epoll edge trigger waiter */
1102 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1103 		sk->sk_write_space(sk);
1104 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1105 	}
1106 	return sk_stream_error(sk, flags, err);
1107 }
1108 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1109 
1110 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1111 			size_t size, int flags)
1112 {
1113 	if (!(sk->sk_route_caps & NETIF_F_SG))
1114 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1115 
1116 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1117 
1118 	return do_tcp_sendpages(sk, page, offset, size, flags);
1119 }
1120 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1121 
1122 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1123 		 size_t size, int flags)
1124 {
1125 	int ret;
1126 
1127 	lock_sock(sk);
1128 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1129 	release_sock(sk);
1130 
1131 	return ret;
1132 }
1133 EXPORT_SYMBOL(tcp_sendpage);
1134 
1135 void tcp_free_fastopen_req(struct tcp_sock *tp)
1136 {
1137 	if (tp->fastopen_req) {
1138 		kfree(tp->fastopen_req);
1139 		tp->fastopen_req = NULL;
1140 	}
1141 }
1142 
1143 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1144 				int *copied, size_t size,
1145 				struct ubuf_info *uarg)
1146 {
1147 	struct tcp_sock *tp = tcp_sk(sk);
1148 	struct inet_sock *inet = inet_sk(sk);
1149 	struct sockaddr *uaddr = msg->msg_name;
1150 	int err, flags;
1151 
1152 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1153 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1154 	     uaddr->sa_family == AF_UNSPEC))
1155 		return -EOPNOTSUPP;
1156 	if (tp->fastopen_req)
1157 		return -EALREADY; /* Another Fast Open is in progress */
1158 
1159 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1160 				   sk->sk_allocation);
1161 	if (unlikely(!tp->fastopen_req))
1162 		return -ENOBUFS;
1163 	tp->fastopen_req->data = msg;
1164 	tp->fastopen_req->size = size;
1165 	tp->fastopen_req->uarg = uarg;
1166 
1167 	if (inet->defer_connect) {
1168 		err = tcp_connect(sk);
1169 		/* Same failure procedure as in tcp_v4/6_connect */
1170 		if (err) {
1171 			tcp_set_state(sk, TCP_CLOSE);
1172 			inet->inet_dport = 0;
1173 			sk->sk_route_caps = 0;
1174 		}
1175 	}
1176 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1177 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1178 				    msg->msg_namelen, flags, 1);
1179 	/* fastopen_req could already be freed in __inet_stream_connect
1180 	 * if the connection times out or gets rst
1181 	 */
1182 	if (tp->fastopen_req) {
1183 		*copied = tp->fastopen_req->copied;
1184 		tcp_free_fastopen_req(tp);
1185 		inet->defer_connect = 0;
1186 	}
1187 	return err;
1188 }
1189 
1190 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1191 {
1192 	struct tcp_sock *tp = tcp_sk(sk);
1193 	struct ubuf_info *uarg = NULL;
1194 	struct sk_buff *skb;
1195 	struct sockcm_cookie sockc;
1196 	int flags, err, copied = 0;
1197 	int mss_now = 0, size_goal, copied_syn = 0;
1198 	int process_backlog = 0;
1199 	bool zc = false;
1200 	long timeo;
1201 
1202 	flags = msg->msg_flags;
1203 
1204 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1205 		skb = tcp_write_queue_tail(sk);
1206 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1207 		if (!uarg) {
1208 			err = -ENOBUFS;
1209 			goto out_err;
1210 		}
1211 
1212 		zc = sk->sk_route_caps & NETIF_F_SG;
1213 		if (!zc)
1214 			uarg->zerocopy = 0;
1215 	}
1216 
1217 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1218 	    !tp->repair) {
1219 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1220 		if (err == -EINPROGRESS && copied_syn > 0)
1221 			goto out;
1222 		else if (err)
1223 			goto out_err;
1224 	}
1225 
1226 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1227 
1228 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1229 
1230 	/* Wait for a connection to finish. One exception is TCP Fast Open
1231 	 * (passive side) where data is allowed to be sent before a connection
1232 	 * is fully established.
1233 	 */
1234 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1235 	    !tcp_passive_fastopen(sk)) {
1236 		err = sk_stream_wait_connect(sk, &timeo);
1237 		if (err != 0)
1238 			goto do_error;
1239 	}
1240 
1241 	if (unlikely(tp->repair)) {
1242 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1243 			copied = tcp_send_rcvq(sk, msg, size);
1244 			goto out_nopush;
1245 		}
1246 
1247 		err = -EINVAL;
1248 		if (tp->repair_queue == TCP_NO_QUEUE)
1249 			goto out_err;
1250 
1251 		/* 'common' sending to sendq */
1252 	}
1253 
1254 	sockcm_init(&sockc, sk);
1255 	if (msg->msg_controllen) {
1256 		err = sock_cmsg_send(sk, msg, &sockc);
1257 		if (unlikely(err)) {
1258 			err = -EINVAL;
1259 			goto out_err;
1260 		}
1261 	}
1262 
1263 	/* This should be in poll */
1264 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1265 
1266 	/* Ok commence sending. */
1267 	copied = 0;
1268 
1269 restart:
1270 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1271 
1272 	err = -EPIPE;
1273 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1274 		goto do_error;
1275 
1276 	while (msg_data_left(msg)) {
1277 		int copy = 0;
1278 
1279 		skb = tcp_write_queue_tail(sk);
1280 		if (skb)
1281 			copy = size_goal - skb->len;
1282 
1283 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1284 			bool first_skb;
1285 
1286 new_segment:
1287 			if (!sk_stream_memory_free(sk))
1288 				goto wait_for_space;
1289 
1290 			if (unlikely(process_backlog >= 16)) {
1291 				process_backlog = 0;
1292 				if (sk_flush_backlog(sk))
1293 					goto restart;
1294 			}
1295 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1296 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1297 						   first_skb);
1298 			if (!skb)
1299 				goto wait_for_space;
1300 
1301 			process_backlog++;
1302 
1303 			tcp_skb_entail(sk, skb);
1304 			copy = size_goal;
1305 
1306 			/* All packets are restored as if they have
1307 			 * already been sent. skb_mstamp_ns isn't set to
1308 			 * avoid wrong rtt estimation.
1309 			 */
1310 			if (tp->repair)
1311 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1312 		}
1313 
1314 		/* Try to append data to the end of skb. */
1315 		if (copy > msg_data_left(msg))
1316 			copy = msg_data_left(msg);
1317 
1318 		if (!zc) {
1319 			bool merge = true;
1320 			int i = skb_shinfo(skb)->nr_frags;
1321 			struct page_frag *pfrag = sk_page_frag(sk);
1322 
1323 			if (!sk_page_frag_refill(sk, pfrag))
1324 				goto wait_for_space;
1325 
1326 			if (!skb_can_coalesce(skb, i, pfrag->page,
1327 					      pfrag->offset)) {
1328 				if (i >= sysctl_max_skb_frags) {
1329 					tcp_mark_push(tp, skb);
1330 					goto new_segment;
1331 				}
1332 				merge = false;
1333 			}
1334 
1335 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1336 
1337 			if (tcp_downgrade_zcopy_pure(sk, skb) ||
1338 			    !sk_wmem_schedule(sk, copy))
1339 				goto wait_for_space;
1340 
1341 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1342 						       pfrag->page,
1343 						       pfrag->offset,
1344 						       copy);
1345 			if (err)
1346 				goto do_error;
1347 
1348 			/* Update the skb. */
1349 			if (merge) {
1350 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1351 			} else {
1352 				skb_fill_page_desc(skb, i, pfrag->page,
1353 						   pfrag->offset, copy);
1354 				page_ref_inc(pfrag->page);
1355 			}
1356 			pfrag->offset += copy;
1357 		} else {
1358 			/* First append to a fragless skb builds initial
1359 			 * pure zerocopy skb
1360 			 */
1361 			if (!skb->len)
1362 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1363 
1364 			if (!skb_zcopy_pure(skb)) {
1365 				if (!sk_wmem_schedule(sk, copy))
1366 					goto wait_for_space;
1367 			}
1368 
1369 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1370 			if (err == -EMSGSIZE || err == -EEXIST) {
1371 				tcp_mark_push(tp, skb);
1372 				goto new_segment;
1373 			}
1374 			if (err < 0)
1375 				goto do_error;
1376 			copy = err;
1377 		}
1378 
1379 		if (!copied)
1380 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1381 
1382 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1383 		TCP_SKB_CB(skb)->end_seq += copy;
1384 		tcp_skb_pcount_set(skb, 0);
1385 
1386 		copied += copy;
1387 		if (!msg_data_left(msg)) {
1388 			if (unlikely(flags & MSG_EOR))
1389 				TCP_SKB_CB(skb)->eor = 1;
1390 			goto out;
1391 		}
1392 
1393 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1394 			continue;
1395 
1396 		if (forced_push(tp)) {
1397 			tcp_mark_push(tp, skb);
1398 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1399 		} else if (skb == tcp_send_head(sk))
1400 			tcp_push_one(sk, mss_now);
1401 		continue;
1402 
1403 wait_for_space:
1404 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1405 		if (copied)
1406 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1407 				 TCP_NAGLE_PUSH, size_goal);
1408 
1409 		err = sk_stream_wait_memory(sk, &timeo);
1410 		if (err != 0)
1411 			goto do_error;
1412 
1413 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1414 	}
1415 
1416 out:
1417 	if (copied) {
1418 		tcp_tx_timestamp(sk, sockc.tsflags);
1419 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1420 	}
1421 out_nopush:
1422 	net_zcopy_put(uarg);
1423 	return copied + copied_syn;
1424 
1425 do_error:
1426 	tcp_remove_empty_skb(sk);
1427 
1428 	if (copied + copied_syn)
1429 		goto out;
1430 out_err:
1431 	net_zcopy_put_abort(uarg, true);
1432 	err = sk_stream_error(sk, flags, err);
1433 	/* make sure we wake any epoll edge trigger waiter */
1434 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1435 		sk->sk_write_space(sk);
1436 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437 	}
1438 	return err;
1439 }
1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441 
1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443 {
1444 	int ret;
1445 
1446 	lock_sock(sk);
1447 	ret = tcp_sendmsg_locked(sk, msg, size);
1448 	release_sock(sk);
1449 
1450 	return ret;
1451 }
1452 EXPORT_SYMBOL(tcp_sendmsg);
1453 
1454 /*
1455  *	Handle reading urgent data. BSD has very simple semantics for
1456  *	this, no blocking and very strange errors 8)
1457  */
1458 
1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	/* No URG data to read. */
1464 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 	    tp->urg_data == TCP_URG_READ)
1466 		return -EINVAL;	/* Yes this is right ! */
1467 
1468 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 		return -ENOTCONN;
1470 
1471 	if (tp->urg_data & TCP_URG_VALID) {
1472 		int err = 0;
1473 		char c = tp->urg_data;
1474 
1475 		if (!(flags & MSG_PEEK))
1476 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1477 
1478 		/* Read urgent data. */
1479 		msg->msg_flags |= MSG_OOB;
1480 
1481 		if (len > 0) {
1482 			if (!(flags & MSG_TRUNC))
1483 				err = memcpy_to_msg(msg, &c, 1);
1484 			len = 1;
1485 		} else
1486 			msg->msg_flags |= MSG_TRUNC;
1487 
1488 		return err ? -EFAULT : len;
1489 	}
1490 
1491 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 		return 0;
1493 
1494 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1495 	 * the available implementations agree in this case:
1496 	 * this call should never block, independent of the
1497 	 * blocking state of the socket.
1498 	 * Mike <pall@rz.uni-karlsruhe.de>
1499 	 */
1500 	return -EAGAIN;
1501 }
1502 
1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504 {
1505 	struct sk_buff *skb;
1506 	int copied = 0, err = 0;
1507 
1508 	/* XXX -- need to support SO_PEEK_OFF */
1509 
1510 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 		if (err)
1513 			return err;
1514 		copied += skb->len;
1515 	}
1516 
1517 	skb_queue_walk(&sk->sk_write_queue, skb) {
1518 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 		if (err)
1520 			break;
1521 
1522 		copied += skb->len;
1523 	}
1524 
1525 	return err ?: copied;
1526 }
1527 
1528 /* Clean up the receive buffer for full frames taken by the user,
1529  * then send an ACK if necessary.  COPIED is the number of bytes
1530  * tcp_recvmsg has given to the user so far, it speeds up the
1531  * calculation of whether or not we must ACK for the sake of
1532  * a window update.
1533  */
1534 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	bool time_to_ack = false;
1538 
1539 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540 
1541 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544 
1545 	if (inet_csk_ack_scheduled(sk)) {
1546 		const struct inet_connection_sock *icsk = inet_csk(sk);
1547 
1548 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1549 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1550 		    /*
1551 		     * If this read emptied read buffer, we send ACK, if
1552 		     * connection is not bidirectional, user drained
1553 		     * receive buffer and there was a small segment
1554 		     * in queue.
1555 		     */
1556 		    (copied > 0 &&
1557 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1558 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1559 		       !inet_csk_in_pingpong_mode(sk))) &&
1560 		      !atomic_read(&sk->sk_rmem_alloc)))
1561 			time_to_ack = true;
1562 	}
1563 
1564 	/* We send an ACK if we can now advertise a non-zero window
1565 	 * which has been raised "significantly".
1566 	 *
1567 	 * Even if window raised up to infinity, do not send window open ACK
1568 	 * in states, where we will not receive more. It is useless.
1569 	 */
1570 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1571 		__u32 rcv_window_now = tcp_receive_window(tp);
1572 
1573 		/* Optimize, __tcp_select_window() is not cheap. */
1574 		if (2*rcv_window_now <= tp->window_clamp) {
1575 			__u32 new_window = __tcp_select_window(sk);
1576 
1577 			/* Send ACK now, if this read freed lots of space
1578 			 * in our buffer. Certainly, new_window is new window.
1579 			 * We can advertise it now, if it is not less than current one.
1580 			 * "Lots" means "at least twice" here.
1581 			 */
1582 			if (new_window && new_window >= 2 * rcv_window_now)
1583 				time_to_ack = true;
1584 		}
1585 	}
1586 	if (time_to_ack)
1587 		tcp_send_ack(sk);
1588 }
1589 
1590 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1591 {
1592 	__skb_unlink(skb, &sk->sk_receive_queue);
1593 	if (likely(skb->destructor == sock_rfree)) {
1594 		sock_rfree(skb);
1595 		skb->destructor = NULL;
1596 		skb->sk = NULL;
1597 		return skb_attempt_defer_free(skb);
1598 	}
1599 	__kfree_skb(skb);
1600 }
1601 
1602 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1603 {
1604 	struct sk_buff *skb;
1605 	u32 offset;
1606 
1607 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1608 		offset = seq - TCP_SKB_CB(skb)->seq;
1609 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1610 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1611 			offset--;
1612 		}
1613 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1614 			*off = offset;
1615 			return skb;
1616 		}
1617 		/* This looks weird, but this can happen if TCP collapsing
1618 		 * splitted a fat GRO packet, while we released socket lock
1619 		 * in skb_splice_bits()
1620 		 */
1621 		tcp_eat_recv_skb(sk, skb);
1622 	}
1623 	return NULL;
1624 }
1625 
1626 /*
1627  * This routine provides an alternative to tcp_recvmsg() for routines
1628  * that would like to handle copying from skbuffs directly in 'sendfile'
1629  * fashion.
1630  * Note:
1631  *	- It is assumed that the socket was locked by the caller.
1632  *	- The routine does not block.
1633  *	- At present, there is no support for reading OOB data
1634  *	  or for 'peeking' the socket using this routine
1635  *	  (although both would be easy to implement).
1636  */
1637 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1638 		  sk_read_actor_t recv_actor)
1639 {
1640 	struct sk_buff *skb;
1641 	struct tcp_sock *tp = tcp_sk(sk);
1642 	u32 seq = tp->copied_seq;
1643 	u32 offset;
1644 	int copied = 0;
1645 
1646 	if (sk->sk_state == TCP_LISTEN)
1647 		return -ENOTCONN;
1648 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1649 		if (offset < skb->len) {
1650 			int used;
1651 			size_t len;
1652 
1653 			len = skb->len - offset;
1654 			/* Stop reading if we hit a patch of urgent data */
1655 			if (unlikely(tp->urg_data)) {
1656 				u32 urg_offset = tp->urg_seq - seq;
1657 				if (urg_offset < len)
1658 					len = urg_offset;
1659 				if (!len)
1660 					break;
1661 			}
1662 			used = recv_actor(desc, skb, offset, len);
1663 			if (used <= 0) {
1664 				if (!copied)
1665 					copied = used;
1666 				break;
1667 			}
1668 			if (WARN_ON_ONCE(used > len))
1669 				used = len;
1670 			seq += used;
1671 			copied += used;
1672 			offset += used;
1673 
1674 			/* If recv_actor drops the lock (e.g. TCP splice
1675 			 * receive) the skb pointer might be invalid when
1676 			 * getting here: tcp_collapse might have deleted it
1677 			 * while aggregating skbs from the socket queue.
1678 			 */
1679 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1680 			if (!skb)
1681 				break;
1682 			/* TCP coalescing might have appended data to the skb.
1683 			 * Try to splice more frags
1684 			 */
1685 			if (offset + 1 != skb->len)
1686 				continue;
1687 		}
1688 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1689 			tcp_eat_recv_skb(sk, skb);
1690 			++seq;
1691 			break;
1692 		}
1693 		tcp_eat_recv_skb(sk, skb);
1694 		if (!desc->count)
1695 			break;
1696 		WRITE_ONCE(tp->copied_seq, seq);
1697 	}
1698 	WRITE_ONCE(tp->copied_seq, seq);
1699 
1700 	tcp_rcv_space_adjust(sk);
1701 
1702 	/* Clean up data we have read: This will do ACK frames. */
1703 	if (copied > 0) {
1704 		tcp_recv_skb(sk, seq, &offset);
1705 		tcp_cleanup_rbuf(sk, copied);
1706 	}
1707 	return copied;
1708 }
1709 EXPORT_SYMBOL(tcp_read_sock);
1710 
1711 int tcp_peek_len(struct socket *sock)
1712 {
1713 	return tcp_inq(sock->sk);
1714 }
1715 EXPORT_SYMBOL(tcp_peek_len);
1716 
1717 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1718 int tcp_set_rcvlowat(struct sock *sk, int val)
1719 {
1720 	int cap;
1721 
1722 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723 		cap = sk->sk_rcvbuf >> 1;
1724 	else
1725 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1726 	val = min(val, cap);
1727 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1728 
1729 	/* Check if we need to signal EPOLLIN right now */
1730 	tcp_data_ready(sk);
1731 
1732 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733 		return 0;
1734 
1735 	val <<= 1;
1736 	if (val > sk->sk_rcvbuf) {
1737 		WRITE_ONCE(sk->sk_rcvbuf, val);
1738 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1739 	}
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL(tcp_set_rcvlowat);
1743 
1744 void tcp_update_recv_tstamps(struct sk_buff *skb,
1745 			     struct scm_timestamping_internal *tss)
1746 {
1747 	if (skb->tstamp)
1748 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1749 	else
1750 		tss->ts[0] = (struct timespec64) {0};
1751 
1752 	if (skb_hwtstamps(skb)->hwtstamp)
1753 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1754 	else
1755 		tss->ts[2] = (struct timespec64) {0};
1756 }
1757 
1758 #ifdef CONFIG_MMU
1759 static const struct vm_operations_struct tcp_vm_ops = {
1760 };
1761 
1762 int tcp_mmap(struct file *file, struct socket *sock,
1763 	     struct vm_area_struct *vma)
1764 {
1765 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1766 		return -EPERM;
1767 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1768 
1769 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1770 	vma->vm_flags |= VM_MIXEDMAP;
1771 
1772 	vma->vm_ops = &tcp_vm_ops;
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL(tcp_mmap);
1776 
1777 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1778 				       u32 *offset_frag)
1779 {
1780 	skb_frag_t *frag;
1781 
1782 	if (unlikely(offset_skb >= skb->len))
1783 		return NULL;
1784 
1785 	offset_skb -= skb_headlen(skb);
1786 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1787 		return NULL;
1788 
1789 	frag = skb_shinfo(skb)->frags;
1790 	while (offset_skb) {
1791 		if (skb_frag_size(frag) > offset_skb) {
1792 			*offset_frag = offset_skb;
1793 			return frag;
1794 		}
1795 		offset_skb -= skb_frag_size(frag);
1796 		++frag;
1797 	}
1798 	*offset_frag = 0;
1799 	return frag;
1800 }
1801 
1802 static bool can_map_frag(const skb_frag_t *frag)
1803 {
1804 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1805 }
1806 
1807 static int find_next_mappable_frag(const skb_frag_t *frag,
1808 				   int remaining_in_skb)
1809 {
1810 	int offset = 0;
1811 
1812 	if (likely(can_map_frag(frag)))
1813 		return 0;
1814 
1815 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1816 		offset += skb_frag_size(frag);
1817 		++frag;
1818 	}
1819 	return offset;
1820 }
1821 
1822 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1823 					  struct tcp_zerocopy_receive *zc,
1824 					  struct sk_buff *skb, u32 offset)
1825 {
1826 	u32 frag_offset, partial_frag_remainder = 0;
1827 	int mappable_offset;
1828 	skb_frag_t *frag;
1829 
1830 	/* worst case: skip to next skb. try to improve on this case below */
1831 	zc->recv_skip_hint = skb->len - offset;
1832 
1833 	/* Find the frag containing this offset (and how far into that frag) */
1834 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1835 	if (!frag)
1836 		return;
1837 
1838 	if (frag_offset) {
1839 		struct skb_shared_info *info = skb_shinfo(skb);
1840 
1841 		/* We read part of the last frag, must recvmsg() rest of skb. */
1842 		if (frag == &info->frags[info->nr_frags - 1])
1843 			return;
1844 
1845 		/* Else, we must at least read the remainder in this frag. */
1846 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1847 		zc->recv_skip_hint -= partial_frag_remainder;
1848 		++frag;
1849 	}
1850 
1851 	/* partial_frag_remainder: If part way through a frag, must read rest.
1852 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1853 	 * in partial_frag_remainder.
1854 	 */
1855 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1856 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1857 }
1858 
1859 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1860 			      int flags, struct scm_timestamping_internal *tss,
1861 			      int *cmsg_flags);
1862 static int receive_fallback_to_copy(struct sock *sk,
1863 				    struct tcp_zerocopy_receive *zc, int inq,
1864 				    struct scm_timestamping_internal *tss)
1865 {
1866 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1867 	struct msghdr msg = {};
1868 	struct iovec iov;
1869 	int err;
1870 
1871 	zc->length = 0;
1872 	zc->recv_skip_hint = 0;
1873 
1874 	if (copy_address != zc->copybuf_address)
1875 		return -EINVAL;
1876 
1877 	err = import_single_range(READ, (void __user *)copy_address,
1878 				  inq, &iov, &msg.msg_iter);
1879 	if (err)
1880 		return err;
1881 
1882 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1883 				 tss, &zc->msg_flags);
1884 	if (err < 0)
1885 		return err;
1886 
1887 	zc->copybuf_len = err;
1888 	if (likely(zc->copybuf_len)) {
1889 		struct sk_buff *skb;
1890 		u32 offset;
1891 
1892 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1893 		if (skb)
1894 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1895 	}
1896 	return 0;
1897 }
1898 
1899 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1900 				   struct sk_buff *skb, u32 copylen,
1901 				   u32 *offset, u32 *seq)
1902 {
1903 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1904 	struct msghdr msg = {};
1905 	struct iovec iov;
1906 	int err;
1907 
1908 	if (copy_address != zc->copybuf_address)
1909 		return -EINVAL;
1910 
1911 	err = import_single_range(READ, (void __user *)copy_address,
1912 				  copylen, &iov, &msg.msg_iter);
1913 	if (err)
1914 		return err;
1915 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1916 	if (err)
1917 		return err;
1918 	zc->recv_skip_hint -= copylen;
1919 	*offset += copylen;
1920 	*seq += copylen;
1921 	return (__s32)copylen;
1922 }
1923 
1924 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1925 				  struct sock *sk,
1926 				  struct sk_buff *skb,
1927 				  u32 *seq,
1928 				  s32 copybuf_len,
1929 				  struct scm_timestamping_internal *tss)
1930 {
1931 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1932 
1933 	if (!copylen)
1934 		return 0;
1935 	/* skb is null if inq < PAGE_SIZE. */
1936 	if (skb) {
1937 		offset = *seq - TCP_SKB_CB(skb)->seq;
1938 	} else {
1939 		skb = tcp_recv_skb(sk, *seq, &offset);
1940 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1941 			tcp_update_recv_tstamps(skb, tss);
1942 			zc->msg_flags |= TCP_CMSG_TS;
1943 		}
1944 	}
1945 
1946 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1947 						  seq);
1948 	return zc->copybuf_len < 0 ? 0 : copylen;
1949 }
1950 
1951 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1952 					      struct page **pending_pages,
1953 					      unsigned long pages_remaining,
1954 					      unsigned long *address,
1955 					      u32 *length,
1956 					      u32 *seq,
1957 					      struct tcp_zerocopy_receive *zc,
1958 					      u32 total_bytes_to_map,
1959 					      int err)
1960 {
1961 	/* At least one page did not map. Try zapping if we skipped earlier. */
1962 	if (err == -EBUSY &&
1963 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1964 		u32 maybe_zap_len;
1965 
1966 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1967 				*length + /* Mapped or pending */
1968 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1969 		zap_page_range(vma, *address, maybe_zap_len);
1970 		err = 0;
1971 	}
1972 
1973 	if (!err) {
1974 		unsigned long leftover_pages = pages_remaining;
1975 		int bytes_mapped;
1976 
1977 		/* We called zap_page_range, try to reinsert. */
1978 		err = vm_insert_pages(vma, *address,
1979 				      pending_pages,
1980 				      &pages_remaining);
1981 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1982 		*seq += bytes_mapped;
1983 		*address += bytes_mapped;
1984 	}
1985 	if (err) {
1986 		/* Either we were unable to zap, OR we zapped, retried an
1987 		 * insert, and still had an issue. Either ways, pages_remaining
1988 		 * is the number of pages we were unable to map, and we unroll
1989 		 * some state we speculatively touched before.
1990 		 */
1991 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1992 
1993 		*length -= bytes_not_mapped;
1994 		zc->recv_skip_hint += bytes_not_mapped;
1995 	}
1996 	return err;
1997 }
1998 
1999 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2000 					struct page **pages,
2001 					unsigned int pages_to_map,
2002 					unsigned long *address,
2003 					u32 *length,
2004 					u32 *seq,
2005 					struct tcp_zerocopy_receive *zc,
2006 					u32 total_bytes_to_map)
2007 {
2008 	unsigned long pages_remaining = pages_to_map;
2009 	unsigned int pages_mapped;
2010 	unsigned int bytes_mapped;
2011 	int err;
2012 
2013 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2014 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2015 	bytes_mapped = PAGE_SIZE * pages_mapped;
2016 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2017 	 * mapping (some but not all of the pages).
2018 	 */
2019 	*seq += bytes_mapped;
2020 	*address += bytes_mapped;
2021 
2022 	if (likely(!err))
2023 		return 0;
2024 
2025 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2026 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2027 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2028 		err);
2029 }
2030 
2031 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2032 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2033 				      struct tcp_zerocopy_receive *zc,
2034 				      struct scm_timestamping_internal *tss)
2035 {
2036 	unsigned long msg_control_addr;
2037 	struct msghdr cmsg_dummy;
2038 
2039 	msg_control_addr = (unsigned long)zc->msg_control;
2040 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2041 	cmsg_dummy.msg_controllen =
2042 		(__kernel_size_t)zc->msg_controllen;
2043 	cmsg_dummy.msg_flags = in_compat_syscall()
2044 		? MSG_CMSG_COMPAT : 0;
2045 	cmsg_dummy.msg_control_is_user = true;
2046 	zc->msg_flags = 0;
2047 	if (zc->msg_control == msg_control_addr &&
2048 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2049 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2050 		zc->msg_control = (__u64)
2051 			((uintptr_t)cmsg_dummy.msg_control);
2052 		zc->msg_controllen =
2053 			(__u64)cmsg_dummy.msg_controllen;
2054 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2055 	}
2056 }
2057 
2058 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2059 static int tcp_zerocopy_receive(struct sock *sk,
2060 				struct tcp_zerocopy_receive *zc,
2061 				struct scm_timestamping_internal *tss)
2062 {
2063 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2064 	unsigned long address = (unsigned long)zc->address;
2065 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2066 	s32 copybuf_len = zc->copybuf_len;
2067 	struct tcp_sock *tp = tcp_sk(sk);
2068 	const skb_frag_t *frags = NULL;
2069 	unsigned int pages_to_map = 0;
2070 	struct vm_area_struct *vma;
2071 	struct sk_buff *skb = NULL;
2072 	u32 seq = tp->copied_seq;
2073 	u32 total_bytes_to_map;
2074 	int inq = tcp_inq(sk);
2075 	int ret;
2076 
2077 	zc->copybuf_len = 0;
2078 	zc->msg_flags = 0;
2079 
2080 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2081 		return -EINVAL;
2082 
2083 	if (sk->sk_state == TCP_LISTEN)
2084 		return -ENOTCONN;
2085 
2086 	sock_rps_record_flow(sk);
2087 
2088 	if (inq && inq <= copybuf_len)
2089 		return receive_fallback_to_copy(sk, zc, inq, tss);
2090 
2091 	if (inq < PAGE_SIZE) {
2092 		zc->length = 0;
2093 		zc->recv_skip_hint = inq;
2094 		if (!inq && sock_flag(sk, SOCK_DONE))
2095 			return -EIO;
2096 		return 0;
2097 	}
2098 
2099 	mmap_read_lock(current->mm);
2100 
2101 	vma = vma_lookup(current->mm, address);
2102 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2103 		mmap_read_unlock(current->mm);
2104 		return -EINVAL;
2105 	}
2106 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2107 	avail_len = min_t(u32, vma_len, inq);
2108 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2109 	if (total_bytes_to_map) {
2110 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2111 			zap_page_range(vma, address, total_bytes_to_map);
2112 		zc->length = total_bytes_to_map;
2113 		zc->recv_skip_hint = 0;
2114 	} else {
2115 		zc->length = avail_len;
2116 		zc->recv_skip_hint = avail_len;
2117 	}
2118 	ret = 0;
2119 	while (length + PAGE_SIZE <= zc->length) {
2120 		int mappable_offset;
2121 		struct page *page;
2122 
2123 		if (zc->recv_skip_hint < PAGE_SIZE) {
2124 			u32 offset_frag;
2125 
2126 			if (skb) {
2127 				if (zc->recv_skip_hint > 0)
2128 					break;
2129 				skb = skb->next;
2130 				offset = seq - TCP_SKB_CB(skb)->seq;
2131 			} else {
2132 				skb = tcp_recv_skb(sk, seq, &offset);
2133 			}
2134 
2135 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2136 				tcp_update_recv_tstamps(skb, tss);
2137 				zc->msg_flags |= TCP_CMSG_TS;
2138 			}
2139 			zc->recv_skip_hint = skb->len - offset;
2140 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2141 			if (!frags || offset_frag)
2142 				break;
2143 		}
2144 
2145 		mappable_offset = find_next_mappable_frag(frags,
2146 							  zc->recv_skip_hint);
2147 		if (mappable_offset) {
2148 			zc->recv_skip_hint = mappable_offset;
2149 			break;
2150 		}
2151 		page = skb_frag_page(frags);
2152 		prefetchw(page);
2153 		pages[pages_to_map++] = page;
2154 		length += PAGE_SIZE;
2155 		zc->recv_skip_hint -= PAGE_SIZE;
2156 		frags++;
2157 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2158 		    zc->recv_skip_hint < PAGE_SIZE) {
2159 			/* Either full batch, or we're about to go to next skb
2160 			 * (and we cannot unroll failed ops across skbs).
2161 			 */
2162 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2163 							   pages_to_map,
2164 							   &address, &length,
2165 							   &seq, zc,
2166 							   total_bytes_to_map);
2167 			if (ret)
2168 				goto out;
2169 			pages_to_map = 0;
2170 		}
2171 	}
2172 	if (pages_to_map) {
2173 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2174 						   &address, &length, &seq,
2175 						   zc, total_bytes_to_map);
2176 	}
2177 out:
2178 	mmap_read_unlock(current->mm);
2179 	/* Try to copy straggler data. */
2180 	if (!ret)
2181 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2182 
2183 	if (length + copylen) {
2184 		WRITE_ONCE(tp->copied_seq, seq);
2185 		tcp_rcv_space_adjust(sk);
2186 
2187 		/* Clean up data we have read: This will do ACK frames. */
2188 		tcp_recv_skb(sk, seq, &offset);
2189 		tcp_cleanup_rbuf(sk, length + copylen);
2190 		ret = 0;
2191 		if (length == zc->length)
2192 			zc->recv_skip_hint = 0;
2193 	} else {
2194 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2195 			ret = -EIO;
2196 	}
2197 	zc->length = length;
2198 	return ret;
2199 }
2200 #endif
2201 
2202 /* Similar to __sock_recv_timestamp, but does not require an skb */
2203 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2204 			struct scm_timestamping_internal *tss)
2205 {
2206 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2207 	bool has_timestamping = false;
2208 
2209 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2210 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2211 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2212 				if (new_tstamp) {
2213 					struct __kernel_timespec kts = {
2214 						.tv_sec = tss->ts[0].tv_sec,
2215 						.tv_nsec = tss->ts[0].tv_nsec,
2216 					};
2217 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2218 						 sizeof(kts), &kts);
2219 				} else {
2220 					struct __kernel_old_timespec ts_old = {
2221 						.tv_sec = tss->ts[0].tv_sec,
2222 						.tv_nsec = tss->ts[0].tv_nsec,
2223 					};
2224 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2225 						 sizeof(ts_old), &ts_old);
2226 				}
2227 			} else {
2228 				if (new_tstamp) {
2229 					struct __kernel_sock_timeval stv = {
2230 						.tv_sec = tss->ts[0].tv_sec,
2231 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2232 					};
2233 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2234 						 sizeof(stv), &stv);
2235 				} else {
2236 					struct __kernel_old_timeval tv = {
2237 						.tv_sec = tss->ts[0].tv_sec,
2238 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2239 					};
2240 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2241 						 sizeof(tv), &tv);
2242 				}
2243 			}
2244 		}
2245 
2246 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2247 			has_timestamping = true;
2248 		else
2249 			tss->ts[0] = (struct timespec64) {0};
2250 	}
2251 
2252 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2253 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2254 			has_timestamping = true;
2255 		else
2256 			tss->ts[2] = (struct timespec64) {0};
2257 	}
2258 
2259 	if (has_timestamping) {
2260 		tss->ts[1] = (struct timespec64) {0};
2261 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2262 			put_cmsg_scm_timestamping64(msg, tss);
2263 		else
2264 			put_cmsg_scm_timestamping(msg, tss);
2265 	}
2266 }
2267 
2268 static int tcp_inq_hint(struct sock *sk)
2269 {
2270 	const struct tcp_sock *tp = tcp_sk(sk);
2271 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2272 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2273 	int inq;
2274 
2275 	inq = rcv_nxt - copied_seq;
2276 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2277 		lock_sock(sk);
2278 		inq = tp->rcv_nxt - tp->copied_seq;
2279 		release_sock(sk);
2280 	}
2281 	/* After receiving a FIN, tell the user-space to continue reading
2282 	 * by returning a non-zero inq.
2283 	 */
2284 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2285 		inq = 1;
2286 	return inq;
2287 }
2288 
2289 /*
2290  *	This routine copies from a sock struct into the user buffer.
2291  *
2292  *	Technical note: in 2.3 we work on _locked_ socket, so that
2293  *	tricks with *seq access order and skb->users are not required.
2294  *	Probably, code can be easily improved even more.
2295  */
2296 
2297 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2298 			      int flags, struct scm_timestamping_internal *tss,
2299 			      int *cmsg_flags)
2300 {
2301 	struct tcp_sock *tp = tcp_sk(sk);
2302 	int copied = 0;
2303 	u32 peek_seq;
2304 	u32 *seq;
2305 	unsigned long used;
2306 	int err;
2307 	int target;		/* Read at least this many bytes */
2308 	long timeo;
2309 	struct sk_buff *skb, *last;
2310 	u32 urg_hole = 0;
2311 
2312 	err = -ENOTCONN;
2313 	if (sk->sk_state == TCP_LISTEN)
2314 		goto out;
2315 
2316 	if (tp->recvmsg_inq) {
2317 		*cmsg_flags = TCP_CMSG_INQ;
2318 		msg->msg_get_inq = 1;
2319 	}
2320 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2321 
2322 	/* Urgent data needs to be handled specially. */
2323 	if (flags & MSG_OOB)
2324 		goto recv_urg;
2325 
2326 	if (unlikely(tp->repair)) {
2327 		err = -EPERM;
2328 		if (!(flags & MSG_PEEK))
2329 			goto out;
2330 
2331 		if (tp->repair_queue == TCP_SEND_QUEUE)
2332 			goto recv_sndq;
2333 
2334 		err = -EINVAL;
2335 		if (tp->repair_queue == TCP_NO_QUEUE)
2336 			goto out;
2337 
2338 		/* 'common' recv queue MSG_PEEK-ing */
2339 	}
2340 
2341 	seq = &tp->copied_seq;
2342 	if (flags & MSG_PEEK) {
2343 		peek_seq = tp->copied_seq;
2344 		seq = &peek_seq;
2345 	}
2346 
2347 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2348 
2349 	do {
2350 		u32 offset;
2351 
2352 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2353 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2354 			if (copied)
2355 				break;
2356 			if (signal_pending(current)) {
2357 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2358 				break;
2359 			}
2360 		}
2361 
2362 		/* Next get a buffer. */
2363 
2364 		last = skb_peek_tail(&sk->sk_receive_queue);
2365 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2366 			last = skb;
2367 			/* Now that we have two receive queues this
2368 			 * shouldn't happen.
2369 			 */
2370 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2371 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2372 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2373 				 flags))
2374 				break;
2375 
2376 			offset = *seq - TCP_SKB_CB(skb)->seq;
2377 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2378 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2379 				offset--;
2380 			}
2381 			if (offset < skb->len)
2382 				goto found_ok_skb;
2383 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2384 				goto found_fin_ok;
2385 			WARN(!(flags & MSG_PEEK),
2386 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2387 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2388 		}
2389 
2390 		/* Well, if we have backlog, try to process it now yet. */
2391 
2392 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2393 			break;
2394 
2395 		if (copied) {
2396 			if (!timeo ||
2397 			    sk->sk_err ||
2398 			    sk->sk_state == TCP_CLOSE ||
2399 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2400 			    signal_pending(current))
2401 				break;
2402 		} else {
2403 			if (sock_flag(sk, SOCK_DONE))
2404 				break;
2405 
2406 			if (sk->sk_err) {
2407 				copied = sock_error(sk);
2408 				break;
2409 			}
2410 
2411 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2412 				break;
2413 
2414 			if (sk->sk_state == TCP_CLOSE) {
2415 				/* This occurs when user tries to read
2416 				 * from never connected socket.
2417 				 */
2418 				copied = -ENOTCONN;
2419 				break;
2420 			}
2421 
2422 			if (!timeo) {
2423 				copied = -EAGAIN;
2424 				break;
2425 			}
2426 
2427 			if (signal_pending(current)) {
2428 				copied = sock_intr_errno(timeo);
2429 				break;
2430 			}
2431 		}
2432 
2433 		if (copied >= target) {
2434 			/* Do not sleep, just process backlog. */
2435 			__sk_flush_backlog(sk);
2436 		} else {
2437 			tcp_cleanup_rbuf(sk, copied);
2438 			sk_wait_data(sk, &timeo, last);
2439 		}
2440 
2441 		if ((flags & MSG_PEEK) &&
2442 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2443 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2444 					    current->comm,
2445 					    task_pid_nr(current));
2446 			peek_seq = tp->copied_seq;
2447 		}
2448 		continue;
2449 
2450 found_ok_skb:
2451 		/* Ok so how much can we use? */
2452 		used = skb->len - offset;
2453 		if (len < used)
2454 			used = len;
2455 
2456 		/* Do we have urgent data here? */
2457 		if (unlikely(tp->urg_data)) {
2458 			u32 urg_offset = tp->urg_seq - *seq;
2459 			if (urg_offset < used) {
2460 				if (!urg_offset) {
2461 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2462 						WRITE_ONCE(*seq, *seq + 1);
2463 						urg_hole++;
2464 						offset++;
2465 						used--;
2466 						if (!used)
2467 							goto skip_copy;
2468 					}
2469 				} else
2470 					used = urg_offset;
2471 			}
2472 		}
2473 
2474 		if (!(flags & MSG_TRUNC)) {
2475 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2476 			if (err) {
2477 				/* Exception. Bailout! */
2478 				if (!copied)
2479 					copied = -EFAULT;
2480 				break;
2481 			}
2482 		}
2483 
2484 		WRITE_ONCE(*seq, *seq + used);
2485 		copied += used;
2486 		len -= used;
2487 
2488 		tcp_rcv_space_adjust(sk);
2489 
2490 skip_copy:
2491 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2492 			WRITE_ONCE(tp->urg_data, 0);
2493 			tcp_fast_path_check(sk);
2494 		}
2495 
2496 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2497 			tcp_update_recv_tstamps(skb, tss);
2498 			*cmsg_flags |= TCP_CMSG_TS;
2499 		}
2500 
2501 		if (used + offset < skb->len)
2502 			continue;
2503 
2504 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2505 			goto found_fin_ok;
2506 		if (!(flags & MSG_PEEK))
2507 			tcp_eat_recv_skb(sk, skb);
2508 		continue;
2509 
2510 found_fin_ok:
2511 		/* Process the FIN. */
2512 		WRITE_ONCE(*seq, *seq + 1);
2513 		if (!(flags & MSG_PEEK))
2514 			tcp_eat_recv_skb(sk, skb);
2515 		break;
2516 	} while (len > 0);
2517 
2518 	/* According to UNIX98, msg_name/msg_namelen are ignored
2519 	 * on connected socket. I was just happy when found this 8) --ANK
2520 	 */
2521 
2522 	/* Clean up data we have read: This will do ACK frames. */
2523 	tcp_cleanup_rbuf(sk, copied);
2524 	return copied;
2525 
2526 out:
2527 	return err;
2528 
2529 recv_urg:
2530 	err = tcp_recv_urg(sk, msg, len, flags);
2531 	goto out;
2532 
2533 recv_sndq:
2534 	err = tcp_peek_sndq(sk, msg, len);
2535 	goto out;
2536 }
2537 
2538 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2539 		int *addr_len)
2540 {
2541 	int cmsg_flags = 0, ret;
2542 	struct scm_timestamping_internal tss;
2543 
2544 	if (unlikely(flags & MSG_ERRQUEUE))
2545 		return inet_recv_error(sk, msg, len, addr_len);
2546 
2547 	if (sk_can_busy_loop(sk) &&
2548 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2549 	    sk->sk_state == TCP_ESTABLISHED)
2550 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2551 
2552 	lock_sock(sk);
2553 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2554 	release_sock(sk);
2555 
2556 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2557 		if (cmsg_flags & TCP_CMSG_TS)
2558 			tcp_recv_timestamp(msg, sk, &tss);
2559 		if (msg->msg_get_inq) {
2560 			msg->msg_inq = tcp_inq_hint(sk);
2561 			if (cmsg_flags & TCP_CMSG_INQ)
2562 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2563 					 sizeof(msg->msg_inq), &msg->msg_inq);
2564 		}
2565 	}
2566 	return ret;
2567 }
2568 EXPORT_SYMBOL(tcp_recvmsg);
2569 
2570 void tcp_set_state(struct sock *sk, int state)
2571 {
2572 	int oldstate = sk->sk_state;
2573 
2574 	/* We defined a new enum for TCP states that are exported in BPF
2575 	 * so as not force the internal TCP states to be frozen. The
2576 	 * following checks will detect if an internal state value ever
2577 	 * differs from the BPF value. If this ever happens, then we will
2578 	 * need to remap the internal value to the BPF value before calling
2579 	 * tcp_call_bpf_2arg.
2580 	 */
2581 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2582 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2583 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2584 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2585 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2586 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2587 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2588 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2589 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2590 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2591 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2592 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2593 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2594 
2595 	/* bpf uapi header bpf.h defines an anonymous enum with values
2596 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2597 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2598 	 * But clang built vmlinux does not have this enum in DWARF
2599 	 * since clang removes the above code before generating IR/debuginfo.
2600 	 * Let us explicitly emit the type debuginfo to ensure the
2601 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2602 	 * regardless of which compiler is used.
2603 	 */
2604 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2605 
2606 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2607 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2608 
2609 	switch (state) {
2610 	case TCP_ESTABLISHED:
2611 		if (oldstate != TCP_ESTABLISHED)
2612 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2613 		break;
2614 
2615 	case TCP_CLOSE:
2616 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2617 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2618 
2619 		sk->sk_prot->unhash(sk);
2620 		if (inet_csk(sk)->icsk_bind_hash &&
2621 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2622 			inet_put_port(sk);
2623 		fallthrough;
2624 	default:
2625 		if (oldstate == TCP_ESTABLISHED)
2626 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2627 	}
2628 
2629 	/* Change state AFTER socket is unhashed to avoid closed
2630 	 * socket sitting in hash tables.
2631 	 */
2632 	inet_sk_state_store(sk, state);
2633 }
2634 EXPORT_SYMBOL_GPL(tcp_set_state);
2635 
2636 /*
2637  *	State processing on a close. This implements the state shift for
2638  *	sending our FIN frame. Note that we only send a FIN for some
2639  *	states. A shutdown() may have already sent the FIN, or we may be
2640  *	closed.
2641  */
2642 
2643 static const unsigned char new_state[16] = {
2644   /* current state:        new state:      action:	*/
2645   [0 /* (Invalid) */]	= TCP_CLOSE,
2646   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2647   [TCP_SYN_SENT]	= TCP_CLOSE,
2648   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2649   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2650   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2651   [TCP_TIME_WAIT]	= TCP_CLOSE,
2652   [TCP_CLOSE]		= TCP_CLOSE,
2653   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2654   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2655   [TCP_LISTEN]		= TCP_CLOSE,
2656   [TCP_CLOSING]		= TCP_CLOSING,
2657   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2658 };
2659 
2660 static int tcp_close_state(struct sock *sk)
2661 {
2662 	int next = (int)new_state[sk->sk_state];
2663 	int ns = next & TCP_STATE_MASK;
2664 
2665 	tcp_set_state(sk, ns);
2666 
2667 	return next & TCP_ACTION_FIN;
2668 }
2669 
2670 /*
2671  *	Shutdown the sending side of a connection. Much like close except
2672  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2673  */
2674 
2675 void tcp_shutdown(struct sock *sk, int how)
2676 {
2677 	/*	We need to grab some memory, and put together a FIN,
2678 	 *	and then put it into the queue to be sent.
2679 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2680 	 */
2681 	if (!(how & SEND_SHUTDOWN))
2682 		return;
2683 
2684 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2685 	if ((1 << sk->sk_state) &
2686 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2687 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2688 		/* Clear out any half completed packets.  FIN if needed. */
2689 		if (tcp_close_state(sk))
2690 			tcp_send_fin(sk);
2691 	}
2692 }
2693 EXPORT_SYMBOL(tcp_shutdown);
2694 
2695 int tcp_orphan_count_sum(void)
2696 {
2697 	int i, total = 0;
2698 
2699 	for_each_possible_cpu(i)
2700 		total += per_cpu(tcp_orphan_count, i);
2701 
2702 	return max(total, 0);
2703 }
2704 
2705 static int tcp_orphan_cache;
2706 static struct timer_list tcp_orphan_timer;
2707 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2708 
2709 static void tcp_orphan_update(struct timer_list *unused)
2710 {
2711 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2712 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2713 }
2714 
2715 static bool tcp_too_many_orphans(int shift)
2716 {
2717 	return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2718 }
2719 
2720 bool tcp_check_oom(struct sock *sk, int shift)
2721 {
2722 	bool too_many_orphans, out_of_socket_memory;
2723 
2724 	too_many_orphans = tcp_too_many_orphans(shift);
2725 	out_of_socket_memory = tcp_out_of_memory(sk);
2726 
2727 	if (too_many_orphans)
2728 		net_info_ratelimited("too many orphaned sockets\n");
2729 	if (out_of_socket_memory)
2730 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2731 	return too_many_orphans || out_of_socket_memory;
2732 }
2733 
2734 void __tcp_close(struct sock *sk, long timeout)
2735 {
2736 	struct sk_buff *skb;
2737 	int data_was_unread = 0;
2738 	int state;
2739 
2740 	sk->sk_shutdown = SHUTDOWN_MASK;
2741 
2742 	if (sk->sk_state == TCP_LISTEN) {
2743 		tcp_set_state(sk, TCP_CLOSE);
2744 
2745 		/* Special case. */
2746 		inet_csk_listen_stop(sk);
2747 
2748 		goto adjudge_to_death;
2749 	}
2750 
2751 	/*  We need to flush the recv. buffs.  We do this only on the
2752 	 *  descriptor close, not protocol-sourced closes, because the
2753 	 *  reader process may not have drained the data yet!
2754 	 */
2755 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2756 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2757 
2758 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2759 			len--;
2760 		data_was_unread += len;
2761 		__kfree_skb(skb);
2762 	}
2763 
2764 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2765 	if (sk->sk_state == TCP_CLOSE)
2766 		goto adjudge_to_death;
2767 
2768 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2769 	 * data was lost. To witness the awful effects of the old behavior of
2770 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2771 	 * GET in an FTP client, suspend the process, wait for the client to
2772 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2773 	 * Note: timeout is always zero in such a case.
2774 	 */
2775 	if (unlikely(tcp_sk(sk)->repair)) {
2776 		sk->sk_prot->disconnect(sk, 0);
2777 	} else if (data_was_unread) {
2778 		/* Unread data was tossed, zap the connection. */
2779 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2780 		tcp_set_state(sk, TCP_CLOSE);
2781 		tcp_send_active_reset(sk, sk->sk_allocation);
2782 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2783 		/* Check zero linger _after_ checking for unread data. */
2784 		sk->sk_prot->disconnect(sk, 0);
2785 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2786 	} else if (tcp_close_state(sk)) {
2787 		/* We FIN if the application ate all the data before
2788 		 * zapping the connection.
2789 		 */
2790 
2791 		/* RED-PEN. Formally speaking, we have broken TCP state
2792 		 * machine. State transitions:
2793 		 *
2794 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2795 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2796 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2797 		 *
2798 		 * are legal only when FIN has been sent (i.e. in window),
2799 		 * rather than queued out of window. Purists blame.
2800 		 *
2801 		 * F.e. "RFC state" is ESTABLISHED,
2802 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2803 		 *
2804 		 * The visible declinations are that sometimes
2805 		 * we enter time-wait state, when it is not required really
2806 		 * (harmless), do not send active resets, when they are
2807 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2808 		 * they look as CLOSING or LAST_ACK for Linux)
2809 		 * Probably, I missed some more holelets.
2810 		 * 						--ANK
2811 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2812 		 * in a single packet! (May consider it later but will
2813 		 * probably need API support or TCP_CORK SYN-ACK until
2814 		 * data is written and socket is closed.)
2815 		 */
2816 		tcp_send_fin(sk);
2817 	}
2818 
2819 	sk_stream_wait_close(sk, timeout);
2820 
2821 adjudge_to_death:
2822 	state = sk->sk_state;
2823 	sock_hold(sk);
2824 	sock_orphan(sk);
2825 
2826 	local_bh_disable();
2827 	bh_lock_sock(sk);
2828 	/* remove backlog if any, without releasing ownership. */
2829 	__release_sock(sk);
2830 
2831 	this_cpu_inc(tcp_orphan_count);
2832 
2833 	/* Have we already been destroyed by a softirq or backlog? */
2834 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2835 		goto out;
2836 
2837 	/*	This is a (useful) BSD violating of the RFC. There is a
2838 	 *	problem with TCP as specified in that the other end could
2839 	 *	keep a socket open forever with no application left this end.
2840 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2841 	 *	our end. If they send after that then tough - BUT: long enough
2842 	 *	that we won't make the old 4*rto = almost no time - whoops
2843 	 *	reset mistake.
2844 	 *
2845 	 *	Nope, it was not mistake. It is really desired behaviour
2846 	 *	f.e. on http servers, when such sockets are useless, but
2847 	 *	consume significant resources. Let's do it with special
2848 	 *	linger2	option.					--ANK
2849 	 */
2850 
2851 	if (sk->sk_state == TCP_FIN_WAIT2) {
2852 		struct tcp_sock *tp = tcp_sk(sk);
2853 		if (tp->linger2 < 0) {
2854 			tcp_set_state(sk, TCP_CLOSE);
2855 			tcp_send_active_reset(sk, GFP_ATOMIC);
2856 			__NET_INC_STATS(sock_net(sk),
2857 					LINUX_MIB_TCPABORTONLINGER);
2858 		} else {
2859 			const int tmo = tcp_fin_time(sk);
2860 
2861 			if (tmo > TCP_TIMEWAIT_LEN) {
2862 				inet_csk_reset_keepalive_timer(sk,
2863 						tmo - TCP_TIMEWAIT_LEN);
2864 			} else {
2865 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2866 				goto out;
2867 			}
2868 		}
2869 	}
2870 	if (sk->sk_state != TCP_CLOSE) {
2871 		if (tcp_check_oom(sk, 0)) {
2872 			tcp_set_state(sk, TCP_CLOSE);
2873 			tcp_send_active_reset(sk, GFP_ATOMIC);
2874 			__NET_INC_STATS(sock_net(sk),
2875 					LINUX_MIB_TCPABORTONMEMORY);
2876 		} else if (!check_net(sock_net(sk))) {
2877 			/* Not possible to send reset; just close */
2878 			tcp_set_state(sk, TCP_CLOSE);
2879 		}
2880 	}
2881 
2882 	if (sk->sk_state == TCP_CLOSE) {
2883 		struct request_sock *req;
2884 
2885 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2886 						lockdep_sock_is_held(sk));
2887 		/* We could get here with a non-NULL req if the socket is
2888 		 * aborted (e.g., closed with unread data) before 3WHS
2889 		 * finishes.
2890 		 */
2891 		if (req)
2892 			reqsk_fastopen_remove(sk, req, false);
2893 		inet_csk_destroy_sock(sk);
2894 	}
2895 	/* Otherwise, socket is reprieved until protocol close. */
2896 
2897 out:
2898 	bh_unlock_sock(sk);
2899 	local_bh_enable();
2900 }
2901 
2902 void tcp_close(struct sock *sk, long timeout)
2903 {
2904 	lock_sock(sk);
2905 	__tcp_close(sk, timeout);
2906 	release_sock(sk);
2907 	sock_put(sk);
2908 }
2909 EXPORT_SYMBOL(tcp_close);
2910 
2911 /* These states need RST on ABORT according to RFC793 */
2912 
2913 static inline bool tcp_need_reset(int state)
2914 {
2915 	return (1 << state) &
2916 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2917 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2918 }
2919 
2920 static void tcp_rtx_queue_purge(struct sock *sk)
2921 {
2922 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2923 
2924 	tcp_sk(sk)->highest_sack = NULL;
2925 	while (p) {
2926 		struct sk_buff *skb = rb_to_skb(p);
2927 
2928 		p = rb_next(p);
2929 		/* Since we are deleting whole queue, no need to
2930 		 * list_del(&skb->tcp_tsorted_anchor)
2931 		 */
2932 		tcp_rtx_queue_unlink(skb, sk);
2933 		tcp_wmem_free_skb(sk, skb);
2934 	}
2935 }
2936 
2937 void tcp_write_queue_purge(struct sock *sk)
2938 {
2939 	struct sk_buff *skb;
2940 
2941 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2942 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2943 		tcp_skb_tsorted_anchor_cleanup(skb);
2944 		tcp_wmem_free_skb(sk, skb);
2945 	}
2946 	tcp_rtx_queue_purge(sk);
2947 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2948 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2949 	tcp_sk(sk)->packets_out = 0;
2950 	inet_csk(sk)->icsk_backoff = 0;
2951 }
2952 
2953 int tcp_disconnect(struct sock *sk, int flags)
2954 {
2955 	struct inet_sock *inet = inet_sk(sk);
2956 	struct inet_connection_sock *icsk = inet_csk(sk);
2957 	struct tcp_sock *tp = tcp_sk(sk);
2958 	int old_state = sk->sk_state;
2959 	u32 seq;
2960 
2961 	if (old_state != TCP_CLOSE)
2962 		tcp_set_state(sk, TCP_CLOSE);
2963 
2964 	/* ABORT function of RFC793 */
2965 	if (old_state == TCP_LISTEN) {
2966 		inet_csk_listen_stop(sk);
2967 	} else if (unlikely(tp->repair)) {
2968 		sk->sk_err = ECONNABORTED;
2969 	} else if (tcp_need_reset(old_state) ||
2970 		   (tp->snd_nxt != tp->write_seq &&
2971 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2972 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2973 		 * states
2974 		 */
2975 		tcp_send_active_reset(sk, gfp_any());
2976 		sk->sk_err = ECONNRESET;
2977 	} else if (old_state == TCP_SYN_SENT)
2978 		sk->sk_err = ECONNRESET;
2979 
2980 	tcp_clear_xmit_timers(sk);
2981 	__skb_queue_purge(&sk->sk_receive_queue);
2982 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2983 	WRITE_ONCE(tp->urg_data, 0);
2984 	tcp_write_queue_purge(sk);
2985 	tcp_fastopen_active_disable_ofo_check(sk);
2986 	skb_rbtree_purge(&tp->out_of_order_queue);
2987 
2988 	inet->inet_dport = 0;
2989 
2990 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2991 		inet_reset_saddr(sk);
2992 
2993 	sk->sk_shutdown = 0;
2994 	sock_reset_flag(sk, SOCK_DONE);
2995 	tp->srtt_us = 0;
2996 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2997 	tp->rcv_rtt_last_tsecr = 0;
2998 
2999 	seq = tp->write_seq + tp->max_window + 2;
3000 	if (!seq)
3001 		seq = 1;
3002 	WRITE_ONCE(tp->write_seq, seq);
3003 
3004 	icsk->icsk_backoff = 0;
3005 	icsk->icsk_probes_out = 0;
3006 	icsk->icsk_probes_tstamp = 0;
3007 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3008 	icsk->icsk_rto_min = TCP_RTO_MIN;
3009 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3010 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3011 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3012 	tp->snd_cwnd_cnt = 0;
3013 	tp->window_clamp = 0;
3014 	tp->delivered = 0;
3015 	tp->delivered_ce = 0;
3016 	if (icsk->icsk_ca_ops->release)
3017 		icsk->icsk_ca_ops->release(sk);
3018 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3019 	icsk->icsk_ca_initialized = 0;
3020 	tcp_set_ca_state(sk, TCP_CA_Open);
3021 	tp->is_sack_reneg = 0;
3022 	tcp_clear_retrans(tp);
3023 	tp->total_retrans = 0;
3024 	inet_csk_delack_init(sk);
3025 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3026 	 * issue in __tcp_select_window()
3027 	 */
3028 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3029 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3030 	__sk_dst_reset(sk);
3031 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3032 	tcp_saved_syn_free(tp);
3033 	tp->compressed_ack = 0;
3034 	tp->segs_in = 0;
3035 	tp->segs_out = 0;
3036 	tp->bytes_sent = 0;
3037 	tp->bytes_acked = 0;
3038 	tp->bytes_received = 0;
3039 	tp->bytes_retrans = 0;
3040 	tp->data_segs_in = 0;
3041 	tp->data_segs_out = 0;
3042 	tp->duplicate_sack[0].start_seq = 0;
3043 	tp->duplicate_sack[0].end_seq = 0;
3044 	tp->dsack_dups = 0;
3045 	tp->reord_seen = 0;
3046 	tp->retrans_out = 0;
3047 	tp->sacked_out = 0;
3048 	tp->tlp_high_seq = 0;
3049 	tp->last_oow_ack_time = 0;
3050 	/* There's a bubble in the pipe until at least the first ACK. */
3051 	tp->app_limited = ~0U;
3052 	tp->rack.mstamp = 0;
3053 	tp->rack.advanced = 0;
3054 	tp->rack.reo_wnd_steps = 1;
3055 	tp->rack.last_delivered = 0;
3056 	tp->rack.reo_wnd_persist = 0;
3057 	tp->rack.dsack_seen = 0;
3058 	tp->syn_data_acked = 0;
3059 	tp->rx_opt.saw_tstamp = 0;
3060 	tp->rx_opt.dsack = 0;
3061 	tp->rx_opt.num_sacks = 0;
3062 	tp->rcv_ooopack = 0;
3063 
3064 
3065 	/* Clean up fastopen related fields */
3066 	tcp_free_fastopen_req(tp);
3067 	inet->defer_connect = 0;
3068 	tp->fastopen_client_fail = 0;
3069 
3070 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3071 
3072 	if (sk->sk_frag.page) {
3073 		put_page(sk->sk_frag.page);
3074 		sk->sk_frag.page = NULL;
3075 		sk->sk_frag.offset = 0;
3076 	}
3077 	sk_error_report(sk);
3078 	return 0;
3079 }
3080 EXPORT_SYMBOL(tcp_disconnect);
3081 
3082 static inline bool tcp_can_repair_sock(const struct sock *sk)
3083 {
3084 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3085 		(sk->sk_state != TCP_LISTEN);
3086 }
3087 
3088 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3089 {
3090 	struct tcp_repair_window opt;
3091 
3092 	if (!tp->repair)
3093 		return -EPERM;
3094 
3095 	if (len != sizeof(opt))
3096 		return -EINVAL;
3097 
3098 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3099 		return -EFAULT;
3100 
3101 	if (opt.max_window < opt.snd_wnd)
3102 		return -EINVAL;
3103 
3104 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3105 		return -EINVAL;
3106 
3107 	if (after(opt.rcv_wup, tp->rcv_nxt))
3108 		return -EINVAL;
3109 
3110 	tp->snd_wl1	= opt.snd_wl1;
3111 	tp->snd_wnd	= opt.snd_wnd;
3112 	tp->max_window	= opt.max_window;
3113 
3114 	tp->rcv_wnd	= opt.rcv_wnd;
3115 	tp->rcv_wup	= opt.rcv_wup;
3116 
3117 	return 0;
3118 }
3119 
3120 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3121 		unsigned int len)
3122 {
3123 	struct tcp_sock *tp = tcp_sk(sk);
3124 	struct tcp_repair_opt opt;
3125 	size_t offset = 0;
3126 
3127 	while (len >= sizeof(opt)) {
3128 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3129 			return -EFAULT;
3130 
3131 		offset += sizeof(opt);
3132 		len -= sizeof(opt);
3133 
3134 		switch (opt.opt_code) {
3135 		case TCPOPT_MSS:
3136 			tp->rx_opt.mss_clamp = opt.opt_val;
3137 			tcp_mtup_init(sk);
3138 			break;
3139 		case TCPOPT_WINDOW:
3140 			{
3141 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3142 				u16 rcv_wscale = opt.opt_val >> 16;
3143 
3144 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3145 					return -EFBIG;
3146 
3147 				tp->rx_opt.snd_wscale = snd_wscale;
3148 				tp->rx_opt.rcv_wscale = rcv_wscale;
3149 				tp->rx_opt.wscale_ok = 1;
3150 			}
3151 			break;
3152 		case TCPOPT_SACK_PERM:
3153 			if (opt.opt_val != 0)
3154 				return -EINVAL;
3155 
3156 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3157 			break;
3158 		case TCPOPT_TIMESTAMP:
3159 			if (opt.opt_val != 0)
3160 				return -EINVAL;
3161 
3162 			tp->rx_opt.tstamp_ok = 1;
3163 			break;
3164 		}
3165 	}
3166 
3167 	return 0;
3168 }
3169 
3170 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3171 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3172 
3173 static void tcp_enable_tx_delay(void)
3174 {
3175 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3176 		static int __tcp_tx_delay_enabled = 0;
3177 
3178 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3179 			static_branch_enable(&tcp_tx_delay_enabled);
3180 			pr_info("TCP_TX_DELAY enabled\n");
3181 		}
3182 	}
3183 }
3184 
3185 /* When set indicates to always queue non-full frames.  Later the user clears
3186  * this option and we transmit any pending partial frames in the queue.  This is
3187  * meant to be used alongside sendfile() to get properly filled frames when the
3188  * user (for example) must write out headers with a write() call first and then
3189  * use sendfile to send out the data parts.
3190  *
3191  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3192  * TCP_NODELAY.
3193  */
3194 void __tcp_sock_set_cork(struct sock *sk, bool on)
3195 {
3196 	struct tcp_sock *tp = tcp_sk(sk);
3197 
3198 	if (on) {
3199 		tp->nonagle |= TCP_NAGLE_CORK;
3200 	} else {
3201 		tp->nonagle &= ~TCP_NAGLE_CORK;
3202 		if (tp->nonagle & TCP_NAGLE_OFF)
3203 			tp->nonagle |= TCP_NAGLE_PUSH;
3204 		tcp_push_pending_frames(sk);
3205 	}
3206 }
3207 
3208 void tcp_sock_set_cork(struct sock *sk, bool on)
3209 {
3210 	lock_sock(sk);
3211 	__tcp_sock_set_cork(sk, on);
3212 	release_sock(sk);
3213 }
3214 EXPORT_SYMBOL(tcp_sock_set_cork);
3215 
3216 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3217  * remembered, but it is not activated until cork is cleared.
3218  *
3219  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3220  * even TCP_CORK for currently queued segments.
3221  */
3222 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3223 {
3224 	if (on) {
3225 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3226 		tcp_push_pending_frames(sk);
3227 	} else {
3228 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3229 	}
3230 }
3231 
3232 void tcp_sock_set_nodelay(struct sock *sk)
3233 {
3234 	lock_sock(sk);
3235 	__tcp_sock_set_nodelay(sk, true);
3236 	release_sock(sk);
3237 }
3238 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3239 
3240 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3241 {
3242 	if (!val) {
3243 		inet_csk_enter_pingpong_mode(sk);
3244 		return;
3245 	}
3246 
3247 	inet_csk_exit_pingpong_mode(sk);
3248 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3249 	    inet_csk_ack_scheduled(sk)) {
3250 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3251 		tcp_cleanup_rbuf(sk, 1);
3252 		if (!(val & 1))
3253 			inet_csk_enter_pingpong_mode(sk);
3254 	}
3255 }
3256 
3257 void tcp_sock_set_quickack(struct sock *sk, int val)
3258 {
3259 	lock_sock(sk);
3260 	__tcp_sock_set_quickack(sk, val);
3261 	release_sock(sk);
3262 }
3263 EXPORT_SYMBOL(tcp_sock_set_quickack);
3264 
3265 int tcp_sock_set_syncnt(struct sock *sk, int val)
3266 {
3267 	if (val < 1 || val > MAX_TCP_SYNCNT)
3268 		return -EINVAL;
3269 
3270 	lock_sock(sk);
3271 	inet_csk(sk)->icsk_syn_retries = val;
3272 	release_sock(sk);
3273 	return 0;
3274 }
3275 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3276 
3277 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3278 {
3279 	lock_sock(sk);
3280 	inet_csk(sk)->icsk_user_timeout = val;
3281 	release_sock(sk);
3282 }
3283 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3284 
3285 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3286 {
3287 	struct tcp_sock *tp = tcp_sk(sk);
3288 
3289 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3290 		return -EINVAL;
3291 
3292 	tp->keepalive_time = val * HZ;
3293 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3294 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3295 		u32 elapsed = keepalive_time_elapsed(tp);
3296 
3297 		if (tp->keepalive_time > elapsed)
3298 			elapsed = tp->keepalive_time - elapsed;
3299 		else
3300 			elapsed = 0;
3301 		inet_csk_reset_keepalive_timer(sk, elapsed);
3302 	}
3303 
3304 	return 0;
3305 }
3306 
3307 int tcp_sock_set_keepidle(struct sock *sk, int val)
3308 {
3309 	int err;
3310 
3311 	lock_sock(sk);
3312 	err = tcp_sock_set_keepidle_locked(sk, val);
3313 	release_sock(sk);
3314 	return err;
3315 }
3316 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3317 
3318 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3319 {
3320 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3321 		return -EINVAL;
3322 
3323 	lock_sock(sk);
3324 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3325 	release_sock(sk);
3326 	return 0;
3327 }
3328 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3329 
3330 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3331 {
3332 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3333 		return -EINVAL;
3334 
3335 	lock_sock(sk);
3336 	tcp_sk(sk)->keepalive_probes = val;
3337 	release_sock(sk);
3338 	return 0;
3339 }
3340 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3341 
3342 int tcp_set_window_clamp(struct sock *sk, int val)
3343 {
3344 	struct tcp_sock *tp = tcp_sk(sk);
3345 
3346 	if (!val) {
3347 		if (sk->sk_state != TCP_CLOSE)
3348 			return -EINVAL;
3349 		tp->window_clamp = 0;
3350 	} else {
3351 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3352 			SOCK_MIN_RCVBUF / 2 : val;
3353 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3354 	}
3355 	return 0;
3356 }
3357 
3358 /*
3359  *	Socket option code for TCP.
3360  */
3361 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3362 		sockptr_t optval, unsigned int optlen)
3363 {
3364 	struct tcp_sock *tp = tcp_sk(sk);
3365 	struct inet_connection_sock *icsk = inet_csk(sk);
3366 	struct net *net = sock_net(sk);
3367 	int val;
3368 	int err = 0;
3369 
3370 	/* These are data/string values, all the others are ints */
3371 	switch (optname) {
3372 	case TCP_CONGESTION: {
3373 		char name[TCP_CA_NAME_MAX];
3374 
3375 		if (optlen < 1)
3376 			return -EINVAL;
3377 
3378 		val = strncpy_from_sockptr(name, optval,
3379 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3380 		if (val < 0)
3381 			return -EFAULT;
3382 		name[val] = 0;
3383 
3384 		lock_sock(sk);
3385 		err = tcp_set_congestion_control(sk, name, true,
3386 						 ns_capable(sock_net(sk)->user_ns,
3387 							    CAP_NET_ADMIN));
3388 		release_sock(sk);
3389 		return err;
3390 	}
3391 	case TCP_ULP: {
3392 		char name[TCP_ULP_NAME_MAX];
3393 
3394 		if (optlen < 1)
3395 			return -EINVAL;
3396 
3397 		val = strncpy_from_sockptr(name, optval,
3398 					min_t(long, TCP_ULP_NAME_MAX - 1,
3399 					      optlen));
3400 		if (val < 0)
3401 			return -EFAULT;
3402 		name[val] = 0;
3403 
3404 		lock_sock(sk);
3405 		err = tcp_set_ulp(sk, name);
3406 		release_sock(sk);
3407 		return err;
3408 	}
3409 	case TCP_FASTOPEN_KEY: {
3410 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3411 		__u8 *backup_key = NULL;
3412 
3413 		/* Allow a backup key as well to facilitate key rotation
3414 		 * First key is the active one.
3415 		 */
3416 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3417 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3418 			return -EINVAL;
3419 
3420 		if (copy_from_sockptr(key, optval, optlen))
3421 			return -EFAULT;
3422 
3423 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3424 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3425 
3426 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3427 	}
3428 	default:
3429 		/* fallthru */
3430 		break;
3431 	}
3432 
3433 	if (optlen < sizeof(int))
3434 		return -EINVAL;
3435 
3436 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3437 		return -EFAULT;
3438 
3439 	lock_sock(sk);
3440 
3441 	switch (optname) {
3442 	case TCP_MAXSEG:
3443 		/* Values greater than interface MTU won't take effect. However
3444 		 * at the point when this call is done we typically don't yet
3445 		 * know which interface is going to be used
3446 		 */
3447 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3448 			err = -EINVAL;
3449 			break;
3450 		}
3451 		tp->rx_opt.user_mss = val;
3452 		break;
3453 
3454 	case TCP_NODELAY:
3455 		__tcp_sock_set_nodelay(sk, val);
3456 		break;
3457 
3458 	case TCP_THIN_LINEAR_TIMEOUTS:
3459 		if (val < 0 || val > 1)
3460 			err = -EINVAL;
3461 		else
3462 			tp->thin_lto = val;
3463 		break;
3464 
3465 	case TCP_THIN_DUPACK:
3466 		if (val < 0 || val > 1)
3467 			err = -EINVAL;
3468 		break;
3469 
3470 	case TCP_REPAIR:
3471 		if (!tcp_can_repair_sock(sk))
3472 			err = -EPERM;
3473 		else if (val == TCP_REPAIR_ON) {
3474 			tp->repair = 1;
3475 			sk->sk_reuse = SK_FORCE_REUSE;
3476 			tp->repair_queue = TCP_NO_QUEUE;
3477 		} else if (val == TCP_REPAIR_OFF) {
3478 			tp->repair = 0;
3479 			sk->sk_reuse = SK_NO_REUSE;
3480 			tcp_send_window_probe(sk);
3481 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3482 			tp->repair = 0;
3483 			sk->sk_reuse = SK_NO_REUSE;
3484 		} else
3485 			err = -EINVAL;
3486 
3487 		break;
3488 
3489 	case TCP_REPAIR_QUEUE:
3490 		if (!tp->repair)
3491 			err = -EPERM;
3492 		else if ((unsigned int)val < TCP_QUEUES_NR)
3493 			tp->repair_queue = val;
3494 		else
3495 			err = -EINVAL;
3496 		break;
3497 
3498 	case TCP_QUEUE_SEQ:
3499 		if (sk->sk_state != TCP_CLOSE) {
3500 			err = -EPERM;
3501 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3502 			if (!tcp_rtx_queue_empty(sk))
3503 				err = -EPERM;
3504 			else
3505 				WRITE_ONCE(tp->write_seq, val);
3506 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3507 			if (tp->rcv_nxt != tp->copied_seq) {
3508 				err = -EPERM;
3509 			} else {
3510 				WRITE_ONCE(tp->rcv_nxt, val);
3511 				WRITE_ONCE(tp->copied_seq, val);
3512 			}
3513 		} else {
3514 			err = -EINVAL;
3515 		}
3516 		break;
3517 
3518 	case TCP_REPAIR_OPTIONS:
3519 		if (!tp->repair)
3520 			err = -EINVAL;
3521 		else if (sk->sk_state == TCP_ESTABLISHED)
3522 			err = tcp_repair_options_est(sk, optval, optlen);
3523 		else
3524 			err = -EPERM;
3525 		break;
3526 
3527 	case TCP_CORK:
3528 		__tcp_sock_set_cork(sk, val);
3529 		break;
3530 
3531 	case TCP_KEEPIDLE:
3532 		err = tcp_sock_set_keepidle_locked(sk, val);
3533 		break;
3534 	case TCP_KEEPINTVL:
3535 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3536 			err = -EINVAL;
3537 		else
3538 			tp->keepalive_intvl = val * HZ;
3539 		break;
3540 	case TCP_KEEPCNT:
3541 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3542 			err = -EINVAL;
3543 		else
3544 			tp->keepalive_probes = val;
3545 		break;
3546 	case TCP_SYNCNT:
3547 		if (val < 1 || val > MAX_TCP_SYNCNT)
3548 			err = -EINVAL;
3549 		else
3550 			icsk->icsk_syn_retries = val;
3551 		break;
3552 
3553 	case TCP_SAVE_SYN:
3554 		/* 0: disable, 1: enable, 2: start from ether_header */
3555 		if (val < 0 || val > 2)
3556 			err = -EINVAL;
3557 		else
3558 			tp->save_syn = val;
3559 		break;
3560 
3561 	case TCP_LINGER2:
3562 		if (val < 0)
3563 			tp->linger2 = -1;
3564 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3565 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3566 		else
3567 			tp->linger2 = val * HZ;
3568 		break;
3569 
3570 	case TCP_DEFER_ACCEPT:
3571 		/* Translate value in seconds to number of retransmits */
3572 		icsk->icsk_accept_queue.rskq_defer_accept =
3573 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3574 					TCP_RTO_MAX / HZ);
3575 		break;
3576 
3577 	case TCP_WINDOW_CLAMP:
3578 		err = tcp_set_window_clamp(sk, val);
3579 		break;
3580 
3581 	case TCP_QUICKACK:
3582 		__tcp_sock_set_quickack(sk, val);
3583 		break;
3584 
3585 #ifdef CONFIG_TCP_MD5SIG
3586 	case TCP_MD5SIG:
3587 	case TCP_MD5SIG_EXT:
3588 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3589 		break;
3590 #endif
3591 	case TCP_USER_TIMEOUT:
3592 		/* Cap the max time in ms TCP will retry or probe the window
3593 		 * before giving up and aborting (ETIMEDOUT) a connection.
3594 		 */
3595 		if (val < 0)
3596 			err = -EINVAL;
3597 		else
3598 			icsk->icsk_user_timeout = val;
3599 		break;
3600 
3601 	case TCP_FASTOPEN:
3602 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3603 		    TCPF_LISTEN))) {
3604 			tcp_fastopen_init_key_once(net);
3605 
3606 			fastopen_queue_tune(sk, val);
3607 		} else {
3608 			err = -EINVAL;
3609 		}
3610 		break;
3611 	case TCP_FASTOPEN_CONNECT:
3612 		if (val > 1 || val < 0) {
3613 			err = -EINVAL;
3614 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3615 			if (sk->sk_state == TCP_CLOSE)
3616 				tp->fastopen_connect = val;
3617 			else
3618 				err = -EINVAL;
3619 		} else {
3620 			err = -EOPNOTSUPP;
3621 		}
3622 		break;
3623 	case TCP_FASTOPEN_NO_COOKIE:
3624 		if (val > 1 || val < 0)
3625 			err = -EINVAL;
3626 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3627 			err = -EINVAL;
3628 		else
3629 			tp->fastopen_no_cookie = val;
3630 		break;
3631 	case TCP_TIMESTAMP:
3632 		if (!tp->repair)
3633 			err = -EPERM;
3634 		else
3635 			tp->tsoffset = val - tcp_time_stamp_raw();
3636 		break;
3637 	case TCP_REPAIR_WINDOW:
3638 		err = tcp_repair_set_window(tp, optval, optlen);
3639 		break;
3640 	case TCP_NOTSENT_LOWAT:
3641 		tp->notsent_lowat = val;
3642 		sk->sk_write_space(sk);
3643 		break;
3644 	case TCP_INQ:
3645 		if (val > 1 || val < 0)
3646 			err = -EINVAL;
3647 		else
3648 			tp->recvmsg_inq = val;
3649 		break;
3650 	case TCP_TX_DELAY:
3651 		if (val)
3652 			tcp_enable_tx_delay();
3653 		tp->tcp_tx_delay = val;
3654 		break;
3655 	default:
3656 		err = -ENOPROTOOPT;
3657 		break;
3658 	}
3659 
3660 	release_sock(sk);
3661 	return err;
3662 }
3663 
3664 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3665 		   unsigned int optlen)
3666 {
3667 	const struct inet_connection_sock *icsk = inet_csk(sk);
3668 
3669 	if (level != SOL_TCP)
3670 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3671 						     optval, optlen);
3672 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3673 }
3674 EXPORT_SYMBOL(tcp_setsockopt);
3675 
3676 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3677 				      struct tcp_info *info)
3678 {
3679 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3680 	enum tcp_chrono i;
3681 
3682 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3683 		stats[i] = tp->chrono_stat[i - 1];
3684 		if (i == tp->chrono_type)
3685 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3686 		stats[i] *= USEC_PER_SEC / HZ;
3687 		total += stats[i];
3688 	}
3689 
3690 	info->tcpi_busy_time = total;
3691 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3692 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3693 }
3694 
3695 /* Return information about state of tcp endpoint in API format. */
3696 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3697 {
3698 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3699 	const struct inet_connection_sock *icsk = inet_csk(sk);
3700 	unsigned long rate;
3701 	u32 now;
3702 	u64 rate64;
3703 	bool slow;
3704 
3705 	memset(info, 0, sizeof(*info));
3706 	if (sk->sk_type != SOCK_STREAM)
3707 		return;
3708 
3709 	info->tcpi_state = inet_sk_state_load(sk);
3710 
3711 	/* Report meaningful fields for all TCP states, including listeners */
3712 	rate = READ_ONCE(sk->sk_pacing_rate);
3713 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3714 	info->tcpi_pacing_rate = rate64;
3715 
3716 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3717 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3718 	info->tcpi_max_pacing_rate = rate64;
3719 
3720 	info->tcpi_reordering = tp->reordering;
3721 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3722 
3723 	if (info->tcpi_state == TCP_LISTEN) {
3724 		/* listeners aliased fields :
3725 		 * tcpi_unacked -> Number of children ready for accept()
3726 		 * tcpi_sacked  -> max backlog
3727 		 */
3728 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3729 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3730 		return;
3731 	}
3732 
3733 	slow = lock_sock_fast(sk);
3734 
3735 	info->tcpi_ca_state = icsk->icsk_ca_state;
3736 	info->tcpi_retransmits = icsk->icsk_retransmits;
3737 	info->tcpi_probes = icsk->icsk_probes_out;
3738 	info->tcpi_backoff = icsk->icsk_backoff;
3739 
3740 	if (tp->rx_opt.tstamp_ok)
3741 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3742 	if (tcp_is_sack(tp))
3743 		info->tcpi_options |= TCPI_OPT_SACK;
3744 	if (tp->rx_opt.wscale_ok) {
3745 		info->tcpi_options |= TCPI_OPT_WSCALE;
3746 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3747 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3748 	}
3749 
3750 	if (tp->ecn_flags & TCP_ECN_OK)
3751 		info->tcpi_options |= TCPI_OPT_ECN;
3752 	if (tp->ecn_flags & TCP_ECN_SEEN)
3753 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3754 	if (tp->syn_data_acked)
3755 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3756 
3757 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3758 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3759 	info->tcpi_snd_mss = tp->mss_cache;
3760 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3761 
3762 	info->tcpi_unacked = tp->packets_out;
3763 	info->tcpi_sacked = tp->sacked_out;
3764 
3765 	info->tcpi_lost = tp->lost_out;
3766 	info->tcpi_retrans = tp->retrans_out;
3767 
3768 	now = tcp_jiffies32;
3769 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3770 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3771 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3772 
3773 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3774 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3775 	info->tcpi_rtt = tp->srtt_us >> 3;
3776 	info->tcpi_rttvar = tp->mdev_us >> 2;
3777 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3778 	info->tcpi_advmss = tp->advmss;
3779 
3780 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3781 	info->tcpi_rcv_space = tp->rcvq_space.space;
3782 
3783 	info->tcpi_total_retrans = tp->total_retrans;
3784 
3785 	info->tcpi_bytes_acked = tp->bytes_acked;
3786 	info->tcpi_bytes_received = tp->bytes_received;
3787 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3788 	tcp_get_info_chrono_stats(tp, info);
3789 
3790 	info->tcpi_segs_out = tp->segs_out;
3791 
3792 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3793 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3794 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3795 
3796 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3797 	info->tcpi_data_segs_out = tp->data_segs_out;
3798 
3799 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3800 	rate64 = tcp_compute_delivery_rate(tp);
3801 	if (rate64)
3802 		info->tcpi_delivery_rate = rate64;
3803 	info->tcpi_delivered = tp->delivered;
3804 	info->tcpi_delivered_ce = tp->delivered_ce;
3805 	info->tcpi_bytes_sent = tp->bytes_sent;
3806 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3807 	info->tcpi_dsack_dups = tp->dsack_dups;
3808 	info->tcpi_reord_seen = tp->reord_seen;
3809 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3810 	info->tcpi_snd_wnd = tp->snd_wnd;
3811 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3812 	unlock_sock_fast(sk, slow);
3813 }
3814 EXPORT_SYMBOL_GPL(tcp_get_info);
3815 
3816 static size_t tcp_opt_stats_get_size(void)
3817 {
3818 	return
3819 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3820 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3821 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3822 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3823 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3824 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3825 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3826 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3827 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3828 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3829 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3830 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3831 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3832 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3833 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3834 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3835 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3836 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3837 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3838 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3839 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3840 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3841 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3842 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3843 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3844 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3845 		0;
3846 }
3847 
3848 /* Returns TTL or hop limit of an incoming packet from skb. */
3849 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3850 {
3851 	if (skb->protocol == htons(ETH_P_IP))
3852 		return ip_hdr(skb)->ttl;
3853 	else if (skb->protocol == htons(ETH_P_IPV6))
3854 		return ipv6_hdr(skb)->hop_limit;
3855 	else
3856 		return 0;
3857 }
3858 
3859 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3860 					       const struct sk_buff *orig_skb,
3861 					       const struct sk_buff *ack_skb)
3862 {
3863 	const struct tcp_sock *tp = tcp_sk(sk);
3864 	struct sk_buff *stats;
3865 	struct tcp_info info;
3866 	unsigned long rate;
3867 	u64 rate64;
3868 
3869 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3870 	if (!stats)
3871 		return NULL;
3872 
3873 	tcp_get_info_chrono_stats(tp, &info);
3874 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3875 			  info.tcpi_busy_time, TCP_NLA_PAD);
3876 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3877 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3878 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3879 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3880 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3881 			  tp->data_segs_out, TCP_NLA_PAD);
3882 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3883 			  tp->total_retrans, TCP_NLA_PAD);
3884 
3885 	rate = READ_ONCE(sk->sk_pacing_rate);
3886 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3887 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3888 
3889 	rate64 = tcp_compute_delivery_rate(tp);
3890 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3891 
3892 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3893 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3894 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3895 
3896 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3897 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3898 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3899 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3900 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3901 
3902 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3903 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3904 
3905 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3906 			  TCP_NLA_PAD);
3907 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3908 			  TCP_NLA_PAD);
3909 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3910 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3911 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3912 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3913 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3914 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3915 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3916 			  TCP_NLA_PAD);
3917 	if (ack_skb)
3918 		nla_put_u8(stats, TCP_NLA_TTL,
3919 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3920 
3921 	return stats;
3922 }
3923 
3924 static int do_tcp_getsockopt(struct sock *sk, int level,
3925 		int optname, char __user *optval, int __user *optlen)
3926 {
3927 	struct inet_connection_sock *icsk = inet_csk(sk);
3928 	struct tcp_sock *tp = tcp_sk(sk);
3929 	struct net *net = sock_net(sk);
3930 	int val, len;
3931 
3932 	if (get_user(len, optlen))
3933 		return -EFAULT;
3934 
3935 	len = min_t(unsigned int, len, sizeof(int));
3936 
3937 	if (len < 0)
3938 		return -EINVAL;
3939 
3940 	switch (optname) {
3941 	case TCP_MAXSEG:
3942 		val = tp->mss_cache;
3943 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3944 			val = tp->rx_opt.user_mss;
3945 		if (tp->repair)
3946 			val = tp->rx_opt.mss_clamp;
3947 		break;
3948 	case TCP_NODELAY:
3949 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3950 		break;
3951 	case TCP_CORK:
3952 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3953 		break;
3954 	case TCP_KEEPIDLE:
3955 		val = keepalive_time_when(tp) / HZ;
3956 		break;
3957 	case TCP_KEEPINTVL:
3958 		val = keepalive_intvl_when(tp) / HZ;
3959 		break;
3960 	case TCP_KEEPCNT:
3961 		val = keepalive_probes(tp);
3962 		break;
3963 	case TCP_SYNCNT:
3964 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3965 		break;
3966 	case TCP_LINGER2:
3967 		val = tp->linger2;
3968 		if (val >= 0)
3969 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3970 		break;
3971 	case TCP_DEFER_ACCEPT:
3972 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3973 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3974 		break;
3975 	case TCP_WINDOW_CLAMP:
3976 		val = tp->window_clamp;
3977 		break;
3978 	case TCP_INFO: {
3979 		struct tcp_info info;
3980 
3981 		if (get_user(len, optlen))
3982 			return -EFAULT;
3983 
3984 		tcp_get_info(sk, &info);
3985 
3986 		len = min_t(unsigned int, len, sizeof(info));
3987 		if (put_user(len, optlen))
3988 			return -EFAULT;
3989 		if (copy_to_user(optval, &info, len))
3990 			return -EFAULT;
3991 		return 0;
3992 	}
3993 	case TCP_CC_INFO: {
3994 		const struct tcp_congestion_ops *ca_ops;
3995 		union tcp_cc_info info;
3996 		size_t sz = 0;
3997 		int attr;
3998 
3999 		if (get_user(len, optlen))
4000 			return -EFAULT;
4001 
4002 		ca_ops = icsk->icsk_ca_ops;
4003 		if (ca_ops && ca_ops->get_info)
4004 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4005 
4006 		len = min_t(unsigned int, len, sz);
4007 		if (put_user(len, optlen))
4008 			return -EFAULT;
4009 		if (copy_to_user(optval, &info, len))
4010 			return -EFAULT;
4011 		return 0;
4012 	}
4013 	case TCP_QUICKACK:
4014 		val = !inet_csk_in_pingpong_mode(sk);
4015 		break;
4016 
4017 	case TCP_CONGESTION:
4018 		if (get_user(len, optlen))
4019 			return -EFAULT;
4020 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4021 		if (put_user(len, optlen))
4022 			return -EFAULT;
4023 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4024 			return -EFAULT;
4025 		return 0;
4026 
4027 	case TCP_ULP:
4028 		if (get_user(len, optlen))
4029 			return -EFAULT;
4030 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4031 		if (!icsk->icsk_ulp_ops) {
4032 			if (put_user(0, optlen))
4033 				return -EFAULT;
4034 			return 0;
4035 		}
4036 		if (put_user(len, optlen))
4037 			return -EFAULT;
4038 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4039 			return -EFAULT;
4040 		return 0;
4041 
4042 	case TCP_FASTOPEN_KEY: {
4043 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4044 		unsigned int key_len;
4045 
4046 		if (get_user(len, optlen))
4047 			return -EFAULT;
4048 
4049 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4050 				TCP_FASTOPEN_KEY_LENGTH;
4051 		len = min_t(unsigned int, len, key_len);
4052 		if (put_user(len, optlen))
4053 			return -EFAULT;
4054 		if (copy_to_user(optval, key, len))
4055 			return -EFAULT;
4056 		return 0;
4057 	}
4058 	case TCP_THIN_LINEAR_TIMEOUTS:
4059 		val = tp->thin_lto;
4060 		break;
4061 
4062 	case TCP_THIN_DUPACK:
4063 		val = 0;
4064 		break;
4065 
4066 	case TCP_REPAIR:
4067 		val = tp->repair;
4068 		break;
4069 
4070 	case TCP_REPAIR_QUEUE:
4071 		if (tp->repair)
4072 			val = tp->repair_queue;
4073 		else
4074 			return -EINVAL;
4075 		break;
4076 
4077 	case TCP_REPAIR_WINDOW: {
4078 		struct tcp_repair_window opt;
4079 
4080 		if (get_user(len, optlen))
4081 			return -EFAULT;
4082 
4083 		if (len != sizeof(opt))
4084 			return -EINVAL;
4085 
4086 		if (!tp->repair)
4087 			return -EPERM;
4088 
4089 		opt.snd_wl1	= tp->snd_wl1;
4090 		opt.snd_wnd	= tp->snd_wnd;
4091 		opt.max_window	= tp->max_window;
4092 		opt.rcv_wnd	= tp->rcv_wnd;
4093 		opt.rcv_wup	= tp->rcv_wup;
4094 
4095 		if (copy_to_user(optval, &opt, len))
4096 			return -EFAULT;
4097 		return 0;
4098 	}
4099 	case TCP_QUEUE_SEQ:
4100 		if (tp->repair_queue == TCP_SEND_QUEUE)
4101 			val = tp->write_seq;
4102 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4103 			val = tp->rcv_nxt;
4104 		else
4105 			return -EINVAL;
4106 		break;
4107 
4108 	case TCP_USER_TIMEOUT:
4109 		val = icsk->icsk_user_timeout;
4110 		break;
4111 
4112 	case TCP_FASTOPEN:
4113 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4114 		break;
4115 
4116 	case TCP_FASTOPEN_CONNECT:
4117 		val = tp->fastopen_connect;
4118 		break;
4119 
4120 	case TCP_FASTOPEN_NO_COOKIE:
4121 		val = tp->fastopen_no_cookie;
4122 		break;
4123 
4124 	case TCP_TX_DELAY:
4125 		val = tp->tcp_tx_delay;
4126 		break;
4127 
4128 	case TCP_TIMESTAMP:
4129 		val = tcp_time_stamp_raw() + tp->tsoffset;
4130 		break;
4131 	case TCP_NOTSENT_LOWAT:
4132 		val = tp->notsent_lowat;
4133 		break;
4134 	case TCP_INQ:
4135 		val = tp->recvmsg_inq;
4136 		break;
4137 	case TCP_SAVE_SYN:
4138 		val = tp->save_syn;
4139 		break;
4140 	case TCP_SAVED_SYN: {
4141 		if (get_user(len, optlen))
4142 			return -EFAULT;
4143 
4144 		lock_sock(sk);
4145 		if (tp->saved_syn) {
4146 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4147 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4148 					     optlen)) {
4149 					release_sock(sk);
4150 					return -EFAULT;
4151 				}
4152 				release_sock(sk);
4153 				return -EINVAL;
4154 			}
4155 			len = tcp_saved_syn_len(tp->saved_syn);
4156 			if (put_user(len, optlen)) {
4157 				release_sock(sk);
4158 				return -EFAULT;
4159 			}
4160 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4161 				release_sock(sk);
4162 				return -EFAULT;
4163 			}
4164 			tcp_saved_syn_free(tp);
4165 			release_sock(sk);
4166 		} else {
4167 			release_sock(sk);
4168 			len = 0;
4169 			if (put_user(len, optlen))
4170 				return -EFAULT;
4171 		}
4172 		return 0;
4173 	}
4174 #ifdef CONFIG_MMU
4175 	case TCP_ZEROCOPY_RECEIVE: {
4176 		struct scm_timestamping_internal tss;
4177 		struct tcp_zerocopy_receive zc = {};
4178 		int err;
4179 
4180 		if (get_user(len, optlen))
4181 			return -EFAULT;
4182 		if (len < 0 ||
4183 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4184 			return -EINVAL;
4185 		if (unlikely(len > sizeof(zc))) {
4186 			err = check_zeroed_user(optval + sizeof(zc),
4187 						len - sizeof(zc));
4188 			if (err < 1)
4189 				return err == 0 ? -EINVAL : err;
4190 			len = sizeof(zc);
4191 			if (put_user(len, optlen))
4192 				return -EFAULT;
4193 		}
4194 		if (copy_from_user(&zc, optval, len))
4195 			return -EFAULT;
4196 		if (zc.reserved)
4197 			return -EINVAL;
4198 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4199 			return -EINVAL;
4200 		lock_sock(sk);
4201 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4202 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4203 							  &zc, &len, err);
4204 		release_sock(sk);
4205 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4206 			goto zerocopy_rcv_cmsg;
4207 		switch (len) {
4208 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4209 			goto zerocopy_rcv_cmsg;
4210 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4211 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4212 		case offsetofend(struct tcp_zerocopy_receive, flags):
4213 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4214 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4215 		case offsetofend(struct tcp_zerocopy_receive, err):
4216 			goto zerocopy_rcv_sk_err;
4217 		case offsetofend(struct tcp_zerocopy_receive, inq):
4218 			goto zerocopy_rcv_inq;
4219 		case offsetofend(struct tcp_zerocopy_receive, length):
4220 		default:
4221 			goto zerocopy_rcv_out;
4222 		}
4223 zerocopy_rcv_cmsg:
4224 		if (zc.msg_flags & TCP_CMSG_TS)
4225 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4226 		else
4227 			zc.msg_flags = 0;
4228 zerocopy_rcv_sk_err:
4229 		if (!err)
4230 			zc.err = sock_error(sk);
4231 zerocopy_rcv_inq:
4232 		zc.inq = tcp_inq_hint(sk);
4233 zerocopy_rcv_out:
4234 		if (!err && copy_to_user(optval, &zc, len))
4235 			err = -EFAULT;
4236 		return err;
4237 	}
4238 #endif
4239 	default:
4240 		return -ENOPROTOOPT;
4241 	}
4242 
4243 	if (put_user(len, optlen))
4244 		return -EFAULT;
4245 	if (copy_to_user(optval, &val, len))
4246 		return -EFAULT;
4247 	return 0;
4248 }
4249 
4250 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4251 {
4252 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4253 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4254 	 */
4255 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4256 		return true;
4257 
4258 	return false;
4259 }
4260 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4261 
4262 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4263 		   int __user *optlen)
4264 {
4265 	struct inet_connection_sock *icsk = inet_csk(sk);
4266 
4267 	if (level != SOL_TCP)
4268 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4269 						     optval, optlen);
4270 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4271 }
4272 EXPORT_SYMBOL(tcp_getsockopt);
4273 
4274 #ifdef CONFIG_TCP_MD5SIG
4275 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4276 static DEFINE_MUTEX(tcp_md5sig_mutex);
4277 static bool tcp_md5sig_pool_populated = false;
4278 
4279 static void __tcp_alloc_md5sig_pool(void)
4280 {
4281 	struct crypto_ahash *hash;
4282 	int cpu;
4283 
4284 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4285 	if (IS_ERR(hash))
4286 		return;
4287 
4288 	for_each_possible_cpu(cpu) {
4289 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4290 		struct ahash_request *req;
4291 
4292 		if (!scratch) {
4293 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4294 					       sizeof(struct tcphdr),
4295 					       GFP_KERNEL,
4296 					       cpu_to_node(cpu));
4297 			if (!scratch)
4298 				return;
4299 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4300 		}
4301 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4302 			continue;
4303 
4304 		req = ahash_request_alloc(hash, GFP_KERNEL);
4305 		if (!req)
4306 			return;
4307 
4308 		ahash_request_set_callback(req, 0, NULL, NULL);
4309 
4310 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4311 	}
4312 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4313 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4314 	 */
4315 	smp_wmb();
4316 	tcp_md5sig_pool_populated = true;
4317 }
4318 
4319 bool tcp_alloc_md5sig_pool(void)
4320 {
4321 	if (unlikely(!tcp_md5sig_pool_populated)) {
4322 		mutex_lock(&tcp_md5sig_mutex);
4323 
4324 		if (!tcp_md5sig_pool_populated) {
4325 			__tcp_alloc_md5sig_pool();
4326 			if (tcp_md5sig_pool_populated)
4327 				static_branch_inc(&tcp_md5_needed);
4328 		}
4329 
4330 		mutex_unlock(&tcp_md5sig_mutex);
4331 	}
4332 	return tcp_md5sig_pool_populated;
4333 }
4334 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4335 
4336 
4337 /**
4338  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4339  *
4340  *	We use percpu structure, so if we succeed, we exit with preemption
4341  *	and BH disabled, to make sure another thread or softirq handling
4342  *	wont try to get same context.
4343  */
4344 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4345 {
4346 	local_bh_disable();
4347 
4348 	if (tcp_md5sig_pool_populated) {
4349 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4350 		smp_rmb();
4351 		return this_cpu_ptr(&tcp_md5sig_pool);
4352 	}
4353 	local_bh_enable();
4354 	return NULL;
4355 }
4356 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4357 
4358 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4359 			  const struct sk_buff *skb, unsigned int header_len)
4360 {
4361 	struct scatterlist sg;
4362 	const struct tcphdr *tp = tcp_hdr(skb);
4363 	struct ahash_request *req = hp->md5_req;
4364 	unsigned int i;
4365 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4366 					   skb_headlen(skb) - header_len : 0;
4367 	const struct skb_shared_info *shi = skb_shinfo(skb);
4368 	struct sk_buff *frag_iter;
4369 
4370 	sg_init_table(&sg, 1);
4371 
4372 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4373 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4374 	if (crypto_ahash_update(req))
4375 		return 1;
4376 
4377 	for (i = 0; i < shi->nr_frags; ++i) {
4378 		const skb_frag_t *f = &shi->frags[i];
4379 		unsigned int offset = skb_frag_off(f);
4380 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4381 
4382 		sg_set_page(&sg, page, skb_frag_size(f),
4383 			    offset_in_page(offset));
4384 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4385 		if (crypto_ahash_update(req))
4386 			return 1;
4387 	}
4388 
4389 	skb_walk_frags(skb, frag_iter)
4390 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4391 			return 1;
4392 
4393 	return 0;
4394 }
4395 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4396 
4397 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4398 {
4399 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4400 	struct scatterlist sg;
4401 
4402 	sg_init_one(&sg, key->key, keylen);
4403 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4404 
4405 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4406 	return data_race(crypto_ahash_update(hp->md5_req));
4407 }
4408 EXPORT_SYMBOL(tcp_md5_hash_key);
4409 
4410 /* Called with rcu_read_lock() */
4411 enum skb_drop_reason
4412 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4413 		     const void *saddr, const void *daddr,
4414 		     int family, int dif, int sdif)
4415 {
4416 	/*
4417 	 * This gets called for each TCP segment that arrives
4418 	 * so we want to be efficient.
4419 	 * We have 3 drop cases:
4420 	 * o No MD5 hash and one expected.
4421 	 * o MD5 hash and we're not expecting one.
4422 	 * o MD5 hash and its wrong.
4423 	 */
4424 	const __u8 *hash_location = NULL;
4425 	struct tcp_md5sig_key *hash_expected;
4426 	const struct tcphdr *th = tcp_hdr(skb);
4427 	struct tcp_sock *tp = tcp_sk(sk);
4428 	int genhash, l3index;
4429 	u8 newhash[16];
4430 
4431 	/* sdif set, means packet ingressed via a device
4432 	 * in an L3 domain and dif is set to the l3mdev
4433 	 */
4434 	l3index = sdif ? dif : 0;
4435 
4436 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4437 	hash_location = tcp_parse_md5sig_option(th);
4438 
4439 	/* We've parsed the options - do we have a hash? */
4440 	if (!hash_expected && !hash_location)
4441 		return SKB_NOT_DROPPED_YET;
4442 
4443 	if (hash_expected && !hash_location) {
4444 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4445 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4446 	}
4447 
4448 	if (!hash_expected && hash_location) {
4449 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4450 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4451 	}
4452 
4453 	/* check the signature */
4454 	genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected,
4455 						 NULL, skb);
4456 
4457 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4458 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4459 		if (family == AF_INET) {
4460 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4461 					saddr, ntohs(th->source),
4462 					daddr, ntohs(th->dest),
4463 					genhash ? " tcp_v4_calc_md5_hash failed"
4464 					: "", l3index);
4465 		} else {
4466 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4467 					genhash ? "failed" : "mismatch",
4468 					saddr, ntohs(th->source),
4469 					daddr, ntohs(th->dest), l3index);
4470 		}
4471 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4472 	}
4473 	return SKB_NOT_DROPPED_YET;
4474 }
4475 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4476 
4477 #endif
4478 
4479 void tcp_done(struct sock *sk)
4480 {
4481 	struct request_sock *req;
4482 
4483 	/* We might be called with a new socket, after
4484 	 * inet_csk_prepare_forced_close() has been called
4485 	 * so we can not use lockdep_sock_is_held(sk)
4486 	 */
4487 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4488 
4489 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4490 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4491 
4492 	tcp_set_state(sk, TCP_CLOSE);
4493 	tcp_clear_xmit_timers(sk);
4494 	if (req)
4495 		reqsk_fastopen_remove(sk, req, false);
4496 
4497 	sk->sk_shutdown = SHUTDOWN_MASK;
4498 
4499 	if (!sock_flag(sk, SOCK_DEAD))
4500 		sk->sk_state_change(sk);
4501 	else
4502 		inet_csk_destroy_sock(sk);
4503 }
4504 EXPORT_SYMBOL_GPL(tcp_done);
4505 
4506 int tcp_abort(struct sock *sk, int err)
4507 {
4508 	if (!sk_fullsock(sk)) {
4509 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4510 			struct request_sock *req = inet_reqsk(sk);
4511 
4512 			local_bh_disable();
4513 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4514 			local_bh_enable();
4515 			return 0;
4516 		}
4517 		return -EOPNOTSUPP;
4518 	}
4519 
4520 	/* Don't race with userspace socket closes such as tcp_close. */
4521 	lock_sock(sk);
4522 
4523 	if (sk->sk_state == TCP_LISTEN) {
4524 		tcp_set_state(sk, TCP_CLOSE);
4525 		inet_csk_listen_stop(sk);
4526 	}
4527 
4528 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4529 	local_bh_disable();
4530 	bh_lock_sock(sk);
4531 
4532 	if (!sock_flag(sk, SOCK_DEAD)) {
4533 		sk->sk_err = err;
4534 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4535 		smp_wmb();
4536 		sk_error_report(sk);
4537 		if (tcp_need_reset(sk->sk_state))
4538 			tcp_send_active_reset(sk, GFP_ATOMIC);
4539 		tcp_done(sk);
4540 	}
4541 
4542 	bh_unlock_sock(sk);
4543 	local_bh_enable();
4544 	tcp_write_queue_purge(sk);
4545 	release_sock(sk);
4546 	return 0;
4547 }
4548 EXPORT_SYMBOL_GPL(tcp_abort);
4549 
4550 extern struct tcp_congestion_ops tcp_reno;
4551 
4552 static __initdata unsigned long thash_entries;
4553 static int __init set_thash_entries(char *str)
4554 {
4555 	ssize_t ret;
4556 
4557 	if (!str)
4558 		return 0;
4559 
4560 	ret = kstrtoul(str, 0, &thash_entries);
4561 	if (ret)
4562 		return 0;
4563 
4564 	return 1;
4565 }
4566 __setup("thash_entries=", set_thash_entries);
4567 
4568 static void __init tcp_init_mem(void)
4569 {
4570 	unsigned long limit = nr_free_buffer_pages() / 16;
4571 
4572 	limit = max(limit, 128UL);
4573 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4574 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4575 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4576 }
4577 
4578 void __init tcp_init(void)
4579 {
4580 	int max_rshare, max_wshare, cnt;
4581 	unsigned long limit;
4582 	unsigned int i;
4583 
4584 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4585 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4586 		     sizeof_field(struct sk_buff, cb));
4587 
4588 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4589 
4590 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4591 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4592 
4593 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4594 			    thash_entries, 21,  /* one slot per 2 MB*/
4595 			    0, 64 * 1024);
4596 	tcp_hashinfo.bind_bucket_cachep =
4597 		kmem_cache_create("tcp_bind_bucket",
4598 				  sizeof(struct inet_bind_bucket), 0,
4599 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4600 				  SLAB_ACCOUNT,
4601 				  NULL);
4602 	tcp_hashinfo.bind2_bucket_cachep =
4603 		kmem_cache_create("tcp_bind2_bucket",
4604 				  sizeof(struct inet_bind2_bucket), 0,
4605 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4606 				  SLAB_ACCOUNT,
4607 				  NULL);
4608 
4609 	/* Size and allocate the main established and bind bucket
4610 	 * hash tables.
4611 	 *
4612 	 * The methodology is similar to that of the buffer cache.
4613 	 */
4614 	tcp_hashinfo.ehash =
4615 		alloc_large_system_hash("TCP established",
4616 					sizeof(struct inet_ehash_bucket),
4617 					thash_entries,
4618 					17, /* one slot per 128 KB of memory */
4619 					0,
4620 					NULL,
4621 					&tcp_hashinfo.ehash_mask,
4622 					0,
4623 					thash_entries ? 0 : 512 * 1024);
4624 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4625 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4626 
4627 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4628 		panic("TCP: failed to alloc ehash_locks");
4629 	tcp_hashinfo.bhash =
4630 		alloc_large_system_hash("TCP bind bhash tables",
4631 					sizeof(struct inet_bind_hashbucket) +
4632 					sizeof(struct inet_bind2_hashbucket),
4633 					tcp_hashinfo.ehash_mask + 1,
4634 					17, /* one slot per 128 KB of memory */
4635 					0,
4636 					&tcp_hashinfo.bhash_size,
4637 					NULL,
4638 					0,
4639 					64 * 1024);
4640 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4641 	tcp_hashinfo.bhash2 =
4642 		(struct inet_bind2_hashbucket *)(tcp_hashinfo.bhash + tcp_hashinfo.bhash_size);
4643 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4644 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4645 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4646 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4647 	}
4648 
4649 
4650 	cnt = tcp_hashinfo.ehash_mask + 1;
4651 	sysctl_tcp_max_orphans = cnt / 2;
4652 
4653 	tcp_init_mem();
4654 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4655 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4656 	max_wshare = min(4UL*1024*1024, limit);
4657 	max_rshare = min(6UL*1024*1024, limit);
4658 
4659 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4660 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4661 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4662 
4663 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4664 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4665 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4666 
4667 	pr_info("Hash tables configured (established %u bind %u)\n",
4668 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4669 
4670 	tcp_v4_init();
4671 	tcp_metrics_init();
4672 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4673 	tcp_tasklet_init();
4674 	mptcp_init();
4675 }
4676