1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 458 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 955 struct page *page, int offset, size_t *size) 956 { 957 struct sk_buff *skb = tcp_write_queue_tail(sk); 958 struct tcp_sock *tp = tcp_sk(sk); 959 bool can_coalesce; 960 int copy, i; 961 962 if (!skb || (copy = size_goal - skb->len) <= 0 || 963 !tcp_skb_can_collapse_to(skb)) { 964 new_segment: 965 if (!sk_stream_memory_free(sk)) 966 return NULL; 967 968 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 969 tcp_rtx_and_write_queues_empty(sk)); 970 if (!skb) 971 return NULL; 972 973 #ifdef CONFIG_TLS_DEVICE 974 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 975 #endif 976 tcp_skb_entail(sk, skb); 977 copy = size_goal; 978 } 979 980 if (copy > *size) 981 copy = *size; 982 983 i = skb_shinfo(skb)->nr_frags; 984 can_coalesce = skb_can_coalesce(skb, i, page, offset); 985 if (!can_coalesce && i >= sysctl_max_skb_frags) { 986 tcp_mark_push(tp, skb); 987 goto new_segment; 988 } 989 if (tcp_downgrade_zcopy_pure(sk, skb) || !sk_wmem_schedule(sk, copy)) 990 return NULL; 991 992 if (can_coalesce) { 993 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 994 } else { 995 get_page(page); 996 skb_fill_page_desc(skb, i, page, offset, copy); 997 } 998 999 if (!(flags & MSG_NO_SHARED_FRAGS)) 1000 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1001 1002 skb->len += copy; 1003 skb->data_len += copy; 1004 skb->truesize += copy; 1005 sk_wmem_queued_add(sk, copy); 1006 sk_mem_charge(sk, copy); 1007 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1008 TCP_SKB_CB(skb)->end_seq += copy; 1009 tcp_skb_pcount_set(skb, 0); 1010 1011 *size = copy; 1012 return skb; 1013 } 1014 1015 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1016 size_t size, int flags) 1017 { 1018 struct tcp_sock *tp = tcp_sk(sk); 1019 int mss_now, size_goal; 1020 int err; 1021 ssize_t copied; 1022 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1023 1024 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1025 WARN_ONCE(!sendpage_ok(page), 1026 "page must not be a Slab one and have page_count > 0")) 1027 return -EINVAL; 1028 1029 /* Wait for a connection to finish. One exception is TCP Fast Open 1030 * (passive side) where data is allowed to be sent before a connection 1031 * is fully established. 1032 */ 1033 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1034 !tcp_passive_fastopen(sk)) { 1035 err = sk_stream_wait_connect(sk, &timeo); 1036 if (err != 0) 1037 goto out_err; 1038 } 1039 1040 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1041 1042 mss_now = tcp_send_mss(sk, &size_goal, flags); 1043 copied = 0; 1044 1045 err = -EPIPE; 1046 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1047 goto out_err; 1048 1049 while (size > 0) { 1050 struct sk_buff *skb; 1051 size_t copy = size; 1052 1053 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1054 if (!skb) 1055 goto wait_for_space; 1056 1057 if (!copied) 1058 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1059 1060 copied += copy; 1061 offset += copy; 1062 size -= copy; 1063 if (!size) 1064 goto out; 1065 1066 if (skb->len < size_goal || (flags & MSG_OOB)) 1067 continue; 1068 1069 if (forced_push(tp)) { 1070 tcp_mark_push(tp, skb); 1071 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1072 } else if (skb == tcp_send_head(sk)) 1073 tcp_push_one(sk, mss_now); 1074 continue; 1075 1076 wait_for_space: 1077 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1078 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1079 TCP_NAGLE_PUSH, size_goal); 1080 1081 err = sk_stream_wait_memory(sk, &timeo); 1082 if (err != 0) 1083 goto do_error; 1084 1085 mss_now = tcp_send_mss(sk, &size_goal, flags); 1086 } 1087 1088 out: 1089 if (copied) { 1090 tcp_tx_timestamp(sk, sk->sk_tsflags); 1091 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1092 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1093 } 1094 return copied; 1095 1096 do_error: 1097 tcp_remove_empty_skb(sk); 1098 if (copied) 1099 goto out; 1100 out_err: 1101 /* make sure we wake any epoll edge trigger waiter */ 1102 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1103 sk->sk_write_space(sk); 1104 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1105 } 1106 return sk_stream_error(sk, flags, err); 1107 } 1108 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1109 1110 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1111 size_t size, int flags) 1112 { 1113 if (!(sk->sk_route_caps & NETIF_F_SG)) 1114 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1115 1116 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1117 1118 return do_tcp_sendpages(sk, page, offset, size, flags); 1119 } 1120 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1121 1122 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1123 size_t size, int flags) 1124 { 1125 int ret; 1126 1127 lock_sock(sk); 1128 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1129 release_sock(sk); 1130 1131 return ret; 1132 } 1133 EXPORT_SYMBOL(tcp_sendpage); 1134 1135 void tcp_free_fastopen_req(struct tcp_sock *tp) 1136 { 1137 if (tp->fastopen_req) { 1138 kfree(tp->fastopen_req); 1139 tp->fastopen_req = NULL; 1140 } 1141 } 1142 1143 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1144 int *copied, size_t size, 1145 struct ubuf_info *uarg) 1146 { 1147 struct tcp_sock *tp = tcp_sk(sk); 1148 struct inet_sock *inet = inet_sk(sk); 1149 struct sockaddr *uaddr = msg->msg_name; 1150 int err, flags; 1151 1152 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1153 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1154 uaddr->sa_family == AF_UNSPEC)) 1155 return -EOPNOTSUPP; 1156 if (tp->fastopen_req) 1157 return -EALREADY; /* Another Fast Open is in progress */ 1158 1159 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1160 sk->sk_allocation); 1161 if (unlikely(!tp->fastopen_req)) 1162 return -ENOBUFS; 1163 tp->fastopen_req->data = msg; 1164 tp->fastopen_req->size = size; 1165 tp->fastopen_req->uarg = uarg; 1166 1167 if (inet->defer_connect) { 1168 err = tcp_connect(sk); 1169 /* Same failure procedure as in tcp_v4/6_connect */ 1170 if (err) { 1171 tcp_set_state(sk, TCP_CLOSE); 1172 inet->inet_dport = 0; 1173 sk->sk_route_caps = 0; 1174 } 1175 } 1176 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1177 err = __inet_stream_connect(sk->sk_socket, uaddr, 1178 msg->msg_namelen, flags, 1); 1179 /* fastopen_req could already be freed in __inet_stream_connect 1180 * if the connection times out or gets rst 1181 */ 1182 if (tp->fastopen_req) { 1183 *copied = tp->fastopen_req->copied; 1184 tcp_free_fastopen_req(tp); 1185 inet->defer_connect = 0; 1186 } 1187 return err; 1188 } 1189 1190 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1191 { 1192 struct tcp_sock *tp = tcp_sk(sk); 1193 struct ubuf_info *uarg = NULL; 1194 struct sk_buff *skb; 1195 struct sockcm_cookie sockc; 1196 int flags, err, copied = 0; 1197 int mss_now = 0, size_goal, copied_syn = 0; 1198 int process_backlog = 0; 1199 bool zc = false; 1200 long timeo; 1201 1202 flags = msg->msg_flags; 1203 1204 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1205 skb = tcp_write_queue_tail(sk); 1206 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1207 if (!uarg) { 1208 err = -ENOBUFS; 1209 goto out_err; 1210 } 1211 1212 zc = sk->sk_route_caps & NETIF_F_SG; 1213 if (!zc) 1214 uarg->zerocopy = 0; 1215 } 1216 1217 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1218 !tp->repair) { 1219 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1220 if (err == -EINPROGRESS && copied_syn > 0) 1221 goto out; 1222 else if (err) 1223 goto out_err; 1224 } 1225 1226 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1227 1228 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1229 1230 /* Wait for a connection to finish. One exception is TCP Fast Open 1231 * (passive side) where data is allowed to be sent before a connection 1232 * is fully established. 1233 */ 1234 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1235 !tcp_passive_fastopen(sk)) { 1236 err = sk_stream_wait_connect(sk, &timeo); 1237 if (err != 0) 1238 goto do_error; 1239 } 1240 1241 if (unlikely(tp->repair)) { 1242 if (tp->repair_queue == TCP_RECV_QUEUE) { 1243 copied = tcp_send_rcvq(sk, msg, size); 1244 goto out_nopush; 1245 } 1246 1247 err = -EINVAL; 1248 if (tp->repair_queue == TCP_NO_QUEUE) 1249 goto out_err; 1250 1251 /* 'common' sending to sendq */ 1252 } 1253 1254 sockcm_init(&sockc, sk); 1255 if (msg->msg_controllen) { 1256 err = sock_cmsg_send(sk, msg, &sockc); 1257 if (unlikely(err)) { 1258 err = -EINVAL; 1259 goto out_err; 1260 } 1261 } 1262 1263 /* This should be in poll */ 1264 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1265 1266 /* Ok commence sending. */ 1267 copied = 0; 1268 1269 restart: 1270 mss_now = tcp_send_mss(sk, &size_goal, flags); 1271 1272 err = -EPIPE; 1273 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1274 goto do_error; 1275 1276 while (msg_data_left(msg)) { 1277 int copy = 0; 1278 1279 skb = tcp_write_queue_tail(sk); 1280 if (skb) 1281 copy = size_goal - skb->len; 1282 1283 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1284 bool first_skb; 1285 1286 new_segment: 1287 if (!sk_stream_memory_free(sk)) 1288 goto wait_for_space; 1289 1290 if (unlikely(process_backlog >= 16)) { 1291 process_backlog = 0; 1292 if (sk_flush_backlog(sk)) 1293 goto restart; 1294 } 1295 first_skb = tcp_rtx_and_write_queues_empty(sk); 1296 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1297 first_skb); 1298 if (!skb) 1299 goto wait_for_space; 1300 1301 process_backlog++; 1302 1303 tcp_skb_entail(sk, skb); 1304 copy = size_goal; 1305 1306 /* All packets are restored as if they have 1307 * already been sent. skb_mstamp_ns isn't set to 1308 * avoid wrong rtt estimation. 1309 */ 1310 if (tp->repair) 1311 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1312 } 1313 1314 /* Try to append data to the end of skb. */ 1315 if (copy > msg_data_left(msg)) 1316 copy = msg_data_left(msg); 1317 1318 if (!zc) { 1319 bool merge = true; 1320 int i = skb_shinfo(skb)->nr_frags; 1321 struct page_frag *pfrag = sk_page_frag(sk); 1322 1323 if (!sk_page_frag_refill(sk, pfrag)) 1324 goto wait_for_space; 1325 1326 if (!skb_can_coalesce(skb, i, pfrag->page, 1327 pfrag->offset)) { 1328 if (i >= sysctl_max_skb_frags) { 1329 tcp_mark_push(tp, skb); 1330 goto new_segment; 1331 } 1332 merge = false; 1333 } 1334 1335 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1336 1337 if (tcp_downgrade_zcopy_pure(sk, skb) || 1338 !sk_wmem_schedule(sk, copy)) 1339 goto wait_for_space; 1340 1341 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1342 pfrag->page, 1343 pfrag->offset, 1344 copy); 1345 if (err) 1346 goto do_error; 1347 1348 /* Update the skb. */ 1349 if (merge) { 1350 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1351 } else { 1352 skb_fill_page_desc(skb, i, pfrag->page, 1353 pfrag->offset, copy); 1354 page_ref_inc(pfrag->page); 1355 } 1356 pfrag->offset += copy; 1357 } else { 1358 /* First append to a fragless skb builds initial 1359 * pure zerocopy skb 1360 */ 1361 if (!skb->len) 1362 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1363 1364 if (!skb_zcopy_pure(skb)) { 1365 if (!sk_wmem_schedule(sk, copy)) 1366 goto wait_for_space; 1367 } 1368 1369 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1370 if (err == -EMSGSIZE || err == -EEXIST) { 1371 tcp_mark_push(tp, skb); 1372 goto new_segment; 1373 } 1374 if (err < 0) 1375 goto do_error; 1376 copy = err; 1377 } 1378 1379 if (!copied) 1380 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1381 1382 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1383 TCP_SKB_CB(skb)->end_seq += copy; 1384 tcp_skb_pcount_set(skb, 0); 1385 1386 copied += copy; 1387 if (!msg_data_left(msg)) { 1388 if (unlikely(flags & MSG_EOR)) 1389 TCP_SKB_CB(skb)->eor = 1; 1390 goto out; 1391 } 1392 1393 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1394 continue; 1395 1396 if (forced_push(tp)) { 1397 tcp_mark_push(tp, skb); 1398 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1399 } else if (skb == tcp_send_head(sk)) 1400 tcp_push_one(sk, mss_now); 1401 continue; 1402 1403 wait_for_space: 1404 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1405 if (copied) 1406 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1407 TCP_NAGLE_PUSH, size_goal); 1408 1409 err = sk_stream_wait_memory(sk, &timeo); 1410 if (err != 0) 1411 goto do_error; 1412 1413 mss_now = tcp_send_mss(sk, &size_goal, flags); 1414 } 1415 1416 out: 1417 if (copied) { 1418 tcp_tx_timestamp(sk, sockc.tsflags); 1419 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1420 } 1421 out_nopush: 1422 net_zcopy_put(uarg); 1423 return copied + copied_syn; 1424 1425 do_error: 1426 tcp_remove_empty_skb(sk); 1427 1428 if (copied + copied_syn) 1429 goto out; 1430 out_err: 1431 net_zcopy_put_abort(uarg, true); 1432 err = sk_stream_error(sk, flags, err); 1433 /* make sure we wake any epoll edge trigger waiter */ 1434 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1435 sk->sk_write_space(sk); 1436 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1437 } 1438 return err; 1439 } 1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1441 1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1443 { 1444 int ret; 1445 1446 lock_sock(sk); 1447 ret = tcp_sendmsg_locked(sk, msg, size); 1448 release_sock(sk); 1449 1450 return ret; 1451 } 1452 EXPORT_SYMBOL(tcp_sendmsg); 1453 1454 /* 1455 * Handle reading urgent data. BSD has very simple semantics for 1456 * this, no blocking and very strange errors 8) 1457 */ 1458 1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1460 { 1461 struct tcp_sock *tp = tcp_sk(sk); 1462 1463 /* No URG data to read. */ 1464 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1465 tp->urg_data == TCP_URG_READ) 1466 return -EINVAL; /* Yes this is right ! */ 1467 1468 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1469 return -ENOTCONN; 1470 1471 if (tp->urg_data & TCP_URG_VALID) { 1472 int err = 0; 1473 char c = tp->urg_data; 1474 1475 if (!(flags & MSG_PEEK)) 1476 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1477 1478 /* Read urgent data. */ 1479 msg->msg_flags |= MSG_OOB; 1480 1481 if (len > 0) { 1482 if (!(flags & MSG_TRUNC)) 1483 err = memcpy_to_msg(msg, &c, 1); 1484 len = 1; 1485 } else 1486 msg->msg_flags |= MSG_TRUNC; 1487 1488 return err ? -EFAULT : len; 1489 } 1490 1491 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1492 return 0; 1493 1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1495 * the available implementations agree in this case: 1496 * this call should never block, independent of the 1497 * blocking state of the socket. 1498 * Mike <pall@rz.uni-karlsruhe.de> 1499 */ 1500 return -EAGAIN; 1501 } 1502 1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1504 { 1505 struct sk_buff *skb; 1506 int copied = 0, err = 0; 1507 1508 /* XXX -- need to support SO_PEEK_OFF */ 1509 1510 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1512 if (err) 1513 return err; 1514 copied += skb->len; 1515 } 1516 1517 skb_queue_walk(&sk->sk_write_queue, skb) { 1518 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1519 if (err) 1520 break; 1521 1522 copied += skb->len; 1523 } 1524 1525 return err ?: copied; 1526 } 1527 1528 /* Clean up the receive buffer for full frames taken by the user, 1529 * then send an ACK if necessary. COPIED is the number of bytes 1530 * tcp_recvmsg has given to the user so far, it speeds up the 1531 * calculation of whether or not we must ACK for the sake of 1532 * a window update. 1533 */ 1534 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1535 { 1536 struct tcp_sock *tp = tcp_sk(sk); 1537 bool time_to_ack = false; 1538 1539 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1540 1541 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1543 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1544 1545 if (inet_csk_ack_scheduled(sk)) { 1546 const struct inet_connection_sock *icsk = inet_csk(sk); 1547 1548 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1549 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1550 /* 1551 * If this read emptied read buffer, we send ACK, if 1552 * connection is not bidirectional, user drained 1553 * receive buffer and there was a small segment 1554 * in queue. 1555 */ 1556 (copied > 0 && 1557 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1558 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1559 !inet_csk_in_pingpong_mode(sk))) && 1560 !atomic_read(&sk->sk_rmem_alloc))) 1561 time_to_ack = true; 1562 } 1563 1564 /* We send an ACK if we can now advertise a non-zero window 1565 * which has been raised "significantly". 1566 * 1567 * Even if window raised up to infinity, do not send window open ACK 1568 * in states, where we will not receive more. It is useless. 1569 */ 1570 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1571 __u32 rcv_window_now = tcp_receive_window(tp); 1572 1573 /* Optimize, __tcp_select_window() is not cheap. */ 1574 if (2*rcv_window_now <= tp->window_clamp) { 1575 __u32 new_window = __tcp_select_window(sk); 1576 1577 /* Send ACK now, if this read freed lots of space 1578 * in our buffer. Certainly, new_window is new window. 1579 * We can advertise it now, if it is not less than current one. 1580 * "Lots" means "at least twice" here. 1581 */ 1582 if (new_window && new_window >= 2 * rcv_window_now) 1583 time_to_ack = true; 1584 } 1585 } 1586 if (time_to_ack) 1587 tcp_send_ack(sk); 1588 } 1589 1590 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1591 { 1592 __skb_unlink(skb, &sk->sk_receive_queue); 1593 if (likely(skb->destructor == sock_rfree)) { 1594 sock_rfree(skb); 1595 skb->destructor = NULL; 1596 skb->sk = NULL; 1597 return skb_attempt_defer_free(skb); 1598 } 1599 __kfree_skb(skb); 1600 } 1601 1602 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1603 { 1604 struct sk_buff *skb; 1605 u32 offset; 1606 1607 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1608 offset = seq - TCP_SKB_CB(skb)->seq; 1609 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1610 pr_err_once("%s: found a SYN, please report !\n", __func__); 1611 offset--; 1612 } 1613 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1614 *off = offset; 1615 return skb; 1616 } 1617 /* This looks weird, but this can happen if TCP collapsing 1618 * splitted a fat GRO packet, while we released socket lock 1619 * in skb_splice_bits() 1620 */ 1621 tcp_eat_recv_skb(sk, skb); 1622 } 1623 return NULL; 1624 } 1625 1626 /* 1627 * This routine provides an alternative to tcp_recvmsg() for routines 1628 * that would like to handle copying from skbuffs directly in 'sendfile' 1629 * fashion. 1630 * Note: 1631 * - It is assumed that the socket was locked by the caller. 1632 * - The routine does not block. 1633 * - At present, there is no support for reading OOB data 1634 * or for 'peeking' the socket using this routine 1635 * (although both would be easy to implement). 1636 */ 1637 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1638 sk_read_actor_t recv_actor) 1639 { 1640 struct sk_buff *skb; 1641 struct tcp_sock *tp = tcp_sk(sk); 1642 u32 seq = tp->copied_seq; 1643 u32 offset; 1644 int copied = 0; 1645 1646 if (sk->sk_state == TCP_LISTEN) 1647 return -ENOTCONN; 1648 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1649 if (offset < skb->len) { 1650 int used; 1651 size_t len; 1652 1653 len = skb->len - offset; 1654 /* Stop reading if we hit a patch of urgent data */ 1655 if (unlikely(tp->urg_data)) { 1656 u32 urg_offset = tp->urg_seq - seq; 1657 if (urg_offset < len) 1658 len = urg_offset; 1659 if (!len) 1660 break; 1661 } 1662 used = recv_actor(desc, skb, offset, len); 1663 if (used <= 0) { 1664 if (!copied) 1665 copied = used; 1666 break; 1667 } 1668 if (WARN_ON_ONCE(used > len)) 1669 used = len; 1670 seq += used; 1671 copied += used; 1672 offset += used; 1673 1674 /* If recv_actor drops the lock (e.g. TCP splice 1675 * receive) the skb pointer might be invalid when 1676 * getting here: tcp_collapse might have deleted it 1677 * while aggregating skbs from the socket queue. 1678 */ 1679 skb = tcp_recv_skb(sk, seq - 1, &offset); 1680 if (!skb) 1681 break; 1682 /* TCP coalescing might have appended data to the skb. 1683 * Try to splice more frags 1684 */ 1685 if (offset + 1 != skb->len) 1686 continue; 1687 } 1688 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1689 tcp_eat_recv_skb(sk, skb); 1690 ++seq; 1691 break; 1692 } 1693 tcp_eat_recv_skb(sk, skb); 1694 if (!desc->count) 1695 break; 1696 WRITE_ONCE(tp->copied_seq, seq); 1697 } 1698 WRITE_ONCE(tp->copied_seq, seq); 1699 1700 tcp_rcv_space_adjust(sk); 1701 1702 /* Clean up data we have read: This will do ACK frames. */ 1703 if (copied > 0) { 1704 tcp_recv_skb(sk, seq, &offset); 1705 tcp_cleanup_rbuf(sk, copied); 1706 } 1707 return copied; 1708 } 1709 EXPORT_SYMBOL(tcp_read_sock); 1710 1711 int tcp_peek_len(struct socket *sock) 1712 { 1713 return tcp_inq(sock->sk); 1714 } 1715 EXPORT_SYMBOL(tcp_peek_len); 1716 1717 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1718 int tcp_set_rcvlowat(struct sock *sk, int val) 1719 { 1720 int cap; 1721 1722 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1723 cap = sk->sk_rcvbuf >> 1; 1724 else 1725 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1726 val = min(val, cap); 1727 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1728 1729 /* Check if we need to signal EPOLLIN right now */ 1730 tcp_data_ready(sk); 1731 1732 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1733 return 0; 1734 1735 val <<= 1; 1736 if (val > sk->sk_rcvbuf) { 1737 WRITE_ONCE(sk->sk_rcvbuf, val); 1738 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1739 } 1740 return 0; 1741 } 1742 EXPORT_SYMBOL(tcp_set_rcvlowat); 1743 1744 void tcp_update_recv_tstamps(struct sk_buff *skb, 1745 struct scm_timestamping_internal *tss) 1746 { 1747 if (skb->tstamp) 1748 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1749 else 1750 tss->ts[0] = (struct timespec64) {0}; 1751 1752 if (skb_hwtstamps(skb)->hwtstamp) 1753 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1754 else 1755 tss->ts[2] = (struct timespec64) {0}; 1756 } 1757 1758 #ifdef CONFIG_MMU 1759 static const struct vm_operations_struct tcp_vm_ops = { 1760 }; 1761 1762 int tcp_mmap(struct file *file, struct socket *sock, 1763 struct vm_area_struct *vma) 1764 { 1765 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1766 return -EPERM; 1767 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1768 1769 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1770 vma->vm_flags |= VM_MIXEDMAP; 1771 1772 vma->vm_ops = &tcp_vm_ops; 1773 return 0; 1774 } 1775 EXPORT_SYMBOL(tcp_mmap); 1776 1777 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1778 u32 *offset_frag) 1779 { 1780 skb_frag_t *frag; 1781 1782 if (unlikely(offset_skb >= skb->len)) 1783 return NULL; 1784 1785 offset_skb -= skb_headlen(skb); 1786 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1787 return NULL; 1788 1789 frag = skb_shinfo(skb)->frags; 1790 while (offset_skb) { 1791 if (skb_frag_size(frag) > offset_skb) { 1792 *offset_frag = offset_skb; 1793 return frag; 1794 } 1795 offset_skb -= skb_frag_size(frag); 1796 ++frag; 1797 } 1798 *offset_frag = 0; 1799 return frag; 1800 } 1801 1802 static bool can_map_frag(const skb_frag_t *frag) 1803 { 1804 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1805 } 1806 1807 static int find_next_mappable_frag(const skb_frag_t *frag, 1808 int remaining_in_skb) 1809 { 1810 int offset = 0; 1811 1812 if (likely(can_map_frag(frag))) 1813 return 0; 1814 1815 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1816 offset += skb_frag_size(frag); 1817 ++frag; 1818 } 1819 return offset; 1820 } 1821 1822 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1823 struct tcp_zerocopy_receive *zc, 1824 struct sk_buff *skb, u32 offset) 1825 { 1826 u32 frag_offset, partial_frag_remainder = 0; 1827 int mappable_offset; 1828 skb_frag_t *frag; 1829 1830 /* worst case: skip to next skb. try to improve on this case below */ 1831 zc->recv_skip_hint = skb->len - offset; 1832 1833 /* Find the frag containing this offset (and how far into that frag) */ 1834 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1835 if (!frag) 1836 return; 1837 1838 if (frag_offset) { 1839 struct skb_shared_info *info = skb_shinfo(skb); 1840 1841 /* We read part of the last frag, must recvmsg() rest of skb. */ 1842 if (frag == &info->frags[info->nr_frags - 1]) 1843 return; 1844 1845 /* Else, we must at least read the remainder in this frag. */ 1846 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1847 zc->recv_skip_hint -= partial_frag_remainder; 1848 ++frag; 1849 } 1850 1851 /* partial_frag_remainder: If part way through a frag, must read rest. 1852 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1853 * in partial_frag_remainder. 1854 */ 1855 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1856 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1857 } 1858 1859 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1860 int flags, struct scm_timestamping_internal *tss, 1861 int *cmsg_flags); 1862 static int receive_fallback_to_copy(struct sock *sk, 1863 struct tcp_zerocopy_receive *zc, int inq, 1864 struct scm_timestamping_internal *tss) 1865 { 1866 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1867 struct msghdr msg = {}; 1868 struct iovec iov; 1869 int err; 1870 1871 zc->length = 0; 1872 zc->recv_skip_hint = 0; 1873 1874 if (copy_address != zc->copybuf_address) 1875 return -EINVAL; 1876 1877 err = import_single_range(READ, (void __user *)copy_address, 1878 inq, &iov, &msg.msg_iter); 1879 if (err) 1880 return err; 1881 1882 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1883 tss, &zc->msg_flags); 1884 if (err < 0) 1885 return err; 1886 1887 zc->copybuf_len = err; 1888 if (likely(zc->copybuf_len)) { 1889 struct sk_buff *skb; 1890 u32 offset; 1891 1892 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1893 if (skb) 1894 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1895 } 1896 return 0; 1897 } 1898 1899 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1900 struct sk_buff *skb, u32 copylen, 1901 u32 *offset, u32 *seq) 1902 { 1903 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1904 struct msghdr msg = {}; 1905 struct iovec iov; 1906 int err; 1907 1908 if (copy_address != zc->copybuf_address) 1909 return -EINVAL; 1910 1911 err = import_single_range(READ, (void __user *)copy_address, 1912 copylen, &iov, &msg.msg_iter); 1913 if (err) 1914 return err; 1915 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1916 if (err) 1917 return err; 1918 zc->recv_skip_hint -= copylen; 1919 *offset += copylen; 1920 *seq += copylen; 1921 return (__s32)copylen; 1922 } 1923 1924 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1925 struct sock *sk, 1926 struct sk_buff *skb, 1927 u32 *seq, 1928 s32 copybuf_len, 1929 struct scm_timestamping_internal *tss) 1930 { 1931 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1932 1933 if (!copylen) 1934 return 0; 1935 /* skb is null if inq < PAGE_SIZE. */ 1936 if (skb) { 1937 offset = *seq - TCP_SKB_CB(skb)->seq; 1938 } else { 1939 skb = tcp_recv_skb(sk, *seq, &offset); 1940 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1941 tcp_update_recv_tstamps(skb, tss); 1942 zc->msg_flags |= TCP_CMSG_TS; 1943 } 1944 } 1945 1946 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1947 seq); 1948 return zc->copybuf_len < 0 ? 0 : copylen; 1949 } 1950 1951 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1952 struct page **pending_pages, 1953 unsigned long pages_remaining, 1954 unsigned long *address, 1955 u32 *length, 1956 u32 *seq, 1957 struct tcp_zerocopy_receive *zc, 1958 u32 total_bytes_to_map, 1959 int err) 1960 { 1961 /* At least one page did not map. Try zapping if we skipped earlier. */ 1962 if (err == -EBUSY && 1963 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1964 u32 maybe_zap_len; 1965 1966 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1967 *length + /* Mapped or pending */ 1968 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1969 zap_page_range(vma, *address, maybe_zap_len); 1970 err = 0; 1971 } 1972 1973 if (!err) { 1974 unsigned long leftover_pages = pages_remaining; 1975 int bytes_mapped; 1976 1977 /* We called zap_page_range, try to reinsert. */ 1978 err = vm_insert_pages(vma, *address, 1979 pending_pages, 1980 &pages_remaining); 1981 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1982 *seq += bytes_mapped; 1983 *address += bytes_mapped; 1984 } 1985 if (err) { 1986 /* Either we were unable to zap, OR we zapped, retried an 1987 * insert, and still had an issue. Either ways, pages_remaining 1988 * is the number of pages we were unable to map, and we unroll 1989 * some state we speculatively touched before. 1990 */ 1991 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1992 1993 *length -= bytes_not_mapped; 1994 zc->recv_skip_hint += bytes_not_mapped; 1995 } 1996 return err; 1997 } 1998 1999 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2000 struct page **pages, 2001 unsigned int pages_to_map, 2002 unsigned long *address, 2003 u32 *length, 2004 u32 *seq, 2005 struct tcp_zerocopy_receive *zc, 2006 u32 total_bytes_to_map) 2007 { 2008 unsigned long pages_remaining = pages_to_map; 2009 unsigned int pages_mapped; 2010 unsigned int bytes_mapped; 2011 int err; 2012 2013 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2014 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2015 bytes_mapped = PAGE_SIZE * pages_mapped; 2016 /* Even if vm_insert_pages fails, it may have partially succeeded in 2017 * mapping (some but not all of the pages). 2018 */ 2019 *seq += bytes_mapped; 2020 *address += bytes_mapped; 2021 2022 if (likely(!err)) 2023 return 0; 2024 2025 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2026 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2027 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2028 err); 2029 } 2030 2031 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2032 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2033 struct tcp_zerocopy_receive *zc, 2034 struct scm_timestamping_internal *tss) 2035 { 2036 unsigned long msg_control_addr; 2037 struct msghdr cmsg_dummy; 2038 2039 msg_control_addr = (unsigned long)zc->msg_control; 2040 cmsg_dummy.msg_control = (void *)msg_control_addr; 2041 cmsg_dummy.msg_controllen = 2042 (__kernel_size_t)zc->msg_controllen; 2043 cmsg_dummy.msg_flags = in_compat_syscall() 2044 ? MSG_CMSG_COMPAT : 0; 2045 cmsg_dummy.msg_control_is_user = true; 2046 zc->msg_flags = 0; 2047 if (zc->msg_control == msg_control_addr && 2048 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2049 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2050 zc->msg_control = (__u64) 2051 ((uintptr_t)cmsg_dummy.msg_control); 2052 zc->msg_controllen = 2053 (__u64)cmsg_dummy.msg_controllen; 2054 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2055 } 2056 } 2057 2058 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2059 static int tcp_zerocopy_receive(struct sock *sk, 2060 struct tcp_zerocopy_receive *zc, 2061 struct scm_timestamping_internal *tss) 2062 { 2063 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2064 unsigned long address = (unsigned long)zc->address; 2065 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2066 s32 copybuf_len = zc->copybuf_len; 2067 struct tcp_sock *tp = tcp_sk(sk); 2068 const skb_frag_t *frags = NULL; 2069 unsigned int pages_to_map = 0; 2070 struct vm_area_struct *vma; 2071 struct sk_buff *skb = NULL; 2072 u32 seq = tp->copied_seq; 2073 u32 total_bytes_to_map; 2074 int inq = tcp_inq(sk); 2075 int ret; 2076 2077 zc->copybuf_len = 0; 2078 zc->msg_flags = 0; 2079 2080 if (address & (PAGE_SIZE - 1) || address != zc->address) 2081 return -EINVAL; 2082 2083 if (sk->sk_state == TCP_LISTEN) 2084 return -ENOTCONN; 2085 2086 sock_rps_record_flow(sk); 2087 2088 if (inq && inq <= copybuf_len) 2089 return receive_fallback_to_copy(sk, zc, inq, tss); 2090 2091 if (inq < PAGE_SIZE) { 2092 zc->length = 0; 2093 zc->recv_skip_hint = inq; 2094 if (!inq && sock_flag(sk, SOCK_DONE)) 2095 return -EIO; 2096 return 0; 2097 } 2098 2099 mmap_read_lock(current->mm); 2100 2101 vma = vma_lookup(current->mm, address); 2102 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2103 mmap_read_unlock(current->mm); 2104 return -EINVAL; 2105 } 2106 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2107 avail_len = min_t(u32, vma_len, inq); 2108 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2109 if (total_bytes_to_map) { 2110 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2111 zap_page_range(vma, address, total_bytes_to_map); 2112 zc->length = total_bytes_to_map; 2113 zc->recv_skip_hint = 0; 2114 } else { 2115 zc->length = avail_len; 2116 zc->recv_skip_hint = avail_len; 2117 } 2118 ret = 0; 2119 while (length + PAGE_SIZE <= zc->length) { 2120 int mappable_offset; 2121 struct page *page; 2122 2123 if (zc->recv_skip_hint < PAGE_SIZE) { 2124 u32 offset_frag; 2125 2126 if (skb) { 2127 if (zc->recv_skip_hint > 0) 2128 break; 2129 skb = skb->next; 2130 offset = seq - TCP_SKB_CB(skb)->seq; 2131 } else { 2132 skb = tcp_recv_skb(sk, seq, &offset); 2133 } 2134 2135 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2136 tcp_update_recv_tstamps(skb, tss); 2137 zc->msg_flags |= TCP_CMSG_TS; 2138 } 2139 zc->recv_skip_hint = skb->len - offset; 2140 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2141 if (!frags || offset_frag) 2142 break; 2143 } 2144 2145 mappable_offset = find_next_mappable_frag(frags, 2146 zc->recv_skip_hint); 2147 if (mappable_offset) { 2148 zc->recv_skip_hint = mappable_offset; 2149 break; 2150 } 2151 page = skb_frag_page(frags); 2152 prefetchw(page); 2153 pages[pages_to_map++] = page; 2154 length += PAGE_SIZE; 2155 zc->recv_skip_hint -= PAGE_SIZE; 2156 frags++; 2157 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2158 zc->recv_skip_hint < PAGE_SIZE) { 2159 /* Either full batch, or we're about to go to next skb 2160 * (and we cannot unroll failed ops across skbs). 2161 */ 2162 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2163 pages_to_map, 2164 &address, &length, 2165 &seq, zc, 2166 total_bytes_to_map); 2167 if (ret) 2168 goto out; 2169 pages_to_map = 0; 2170 } 2171 } 2172 if (pages_to_map) { 2173 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2174 &address, &length, &seq, 2175 zc, total_bytes_to_map); 2176 } 2177 out: 2178 mmap_read_unlock(current->mm); 2179 /* Try to copy straggler data. */ 2180 if (!ret) 2181 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2182 2183 if (length + copylen) { 2184 WRITE_ONCE(tp->copied_seq, seq); 2185 tcp_rcv_space_adjust(sk); 2186 2187 /* Clean up data we have read: This will do ACK frames. */ 2188 tcp_recv_skb(sk, seq, &offset); 2189 tcp_cleanup_rbuf(sk, length + copylen); 2190 ret = 0; 2191 if (length == zc->length) 2192 zc->recv_skip_hint = 0; 2193 } else { 2194 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2195 ret = -EIO; 2196 } 2197 zc->length = length; 2198 return ret; 2199 } 2200 #endif 2201 2202 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2203 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2204 struct scm_timestamping_internal *tss) 2205 { 2206 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2207 bool has_timestamping = false; 2208 2209 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2210 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2211 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2212 if (new_tstamp) { 2213 struct __kernel_timespec kts = { 2214 .tv_sec = tss->ts[0].tv_sec, 2215 .tv_nsec = tss->ts[0].tv_nsec, 2216 }; 2217 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2218 sizeof(kts), &kts); 2219 } else { 2220 struct __kernel_old_timespec ts_old = { 2221 .tv_sec = tss->ts[0].tv_sec, 2222 .tv_nsec = tss->ts[0].tv_nsec, 2223 }; 2224 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2225 sizeof(ts_old), &ts_old); 2226 } 2227 } else { 2228 if (new_tstamp) { 2229 struct __kernel_sock_timeval stv = { 2230 .tv_sec = tss->ts[0].tv_sec, 2231 .tv_usec = tss->ts[0].tv_nsec / 1000, 2232 }; 2233 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2234 sizeof(stv), &stv); 2235 } else { 2236 struct __kernel_old_timeval tv = { 2237 .tv_sec = tss->ts[0].tv_sec, 2238 .tv_usec = tss->ts[0].tv_nsec / 1000, 2239 }; 2240 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2241 sizeof(tv), &tv); 2242 } 2243 } 2244 } 2245 2246 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2247 has_timestamping = true; 2248 else 2249 tss->ts[0] = (struct timespec64) {0}; 2250 } 2251 2252 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2253 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2254 has_timestamping = true; 2255 else 2256 tss->ts[2] = (struct timespec64) {0}; 2257 } 2258 2259 if (has_timestamping) { 2260 tss->ts[1] = (struct timespec64) {0}; 2261 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2262 put_cmsg_scm_timestamping64(msg, tss); 2263 else 2264 put_cmsg_scm_timestamping(msg, tss); 2265 } 2266 } 2267 2268 static int tcp_inq_hint(struct sock *sk) 2269 { 2270 const struct tcp_sock *tp = tcp_sk(sk); 2271 u32 copied_seq = READ_ONCE(tp->copied_seq); 2272 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2273 int inq; 2274 2275 inq = rcv_nxt - copied_seq; 2276 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2277 lock_sock(sk); 2278 inq = tp->rcv_nxt - tp->copied_seq; 2279 release_sock(sk); 2280 } 2281 /* After receiving a FIN, tell the user-space to continue reading 2282 * by returning a non-zero inq. 2283 */ 2284 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2285 inq = 1; 2286 return inq; 2287 } 2288 2289 /* 2290 * This routine copies from a sock struct into the user buffer. 2291 * 2292 * Technical note: in 2.3 we work on _locked_ socket, so that 2293 * tricks with *seq access order and skb->users are not required. 2294 * Probably, code can be easily improved even more. 2295 */ 2296 2297 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2298 int flags, struct scm_timestamping_internal *tss, 2299 int *cmsg_flags) 2300 { 2301 struct tcp_sock *tp = tcp_sk(sk); 2302 int copied = 0; 2303 u32 peek_seq; 2304 u32 *seq; 2305 unsigned long used; 2306 int err; 2307 int target; /* Read at least this many bytes */ 2308 long timeo; 2309 struct sk_buff *skb, *last; 2310 u32 urg_hole = 0; 2311 2312 err = -ENOTCONN; 2313 if (sk->sk_state == TCP_LISTEN) 2314 goto out; 2315 2316 if (tp->recvmsg_inq) { 2317 *cmsg_flags = TCP_CMSG_INQ; 2318 msg->msg_get_inq = 1; 2319 } 2320 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2321 2322 /* Urgent data needs to be handled specially. */ 2323 if (flags & MSG_OOB) 2324 goto recv_urg; 2325 2326 if (unlikely(tp->repair)) { 2327 err = -EPERM; 2328 if (!(flags & MSG_PEEK)) 2329 goto out; 2330 2331 if (tp->repair_queue == TCP_SEND_QUEUE) 2332 goto recv_sndq; 2333 2334 err = -EINVAL; 2335 if (tp->repair_queue == TCP_NO_QUEUE) 2336 goto out; 2337 2338 /* 'common' recv queue MSG_PEEK-ing */ 2339 } 2340 2341 seq = &tp->copied_seq; 2342 if (flags & MSG_PEEK) { 2343 peek_seq = tp->copied_seq; 2344 seq = &peek_seq; 2345 } 2346 2347 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2348 2349 do { 2350 u32 offset; 2351 2352 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2353 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2354 if (copied) 2355 break; 2356 if (signal_pending(current)) { 2357 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2358 break; 2359 } 2360 } 2361 2362 /* Next get a buffer. */ 2363 2364 last = skb_peek_tail(&sk->sk_receive_queue); 2365 skb_queue_walk(&sk->sk_receive_queue, skb) { 2366 last = skb; 2367 /* Now that we have two receive queues this 2368 * shouldn't happen. 2369 */ 2370 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2371 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2372 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2373 flags)) 2374 break; 2375 2376 offset = *seq - TCP_SKB_CB(skb)->seq; 2377 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2378 pr_err_once("%s: found a SYN, please report !\n", __func__); 2379 offset--; 2380 } 2381 if (offset < skb->len) 2382 goto found_ok_skb; 2383 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2384 goto found_fin_ok; 2385 WARN(!(flags & MSG_PEEK), 2386 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2387 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2388 } 2389 2390 /* Well, if we have backlog, try to process it now yet. */ 2391 2392 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2393 break; 2394 2395 if (copied) { 2396 if (!timeo || 2397 sk->sk_err || 2398 sk->sk_state == TCP_CLOSE || 2399 (sk->sk_shutdown & RCV_SHUTDOWN) || 2400 signal_pending(current)) 2401 break; 2402 } else { 2403 if (sock_flag(sk, SOCK_DONE)) 2404 break; 2405 2406 if (sk->sk_err) { 2407 copied = sock_error(sk); 2408 break; 2409 } 2410 2411 if (sk->sk_shutdown & RCV_SHUTDOWN) 2412 break; 2413 2414 if (sk->sk_state == TCP_CLOSE) { 2415 /* This occurs when user tries to read 2416 * from never connected socket. 2417 */ 2418 copied = -ENOTCONN; 2419 break; 2420 } 2421 2422 if (!timeo) { 2423 copied = -EAGAIN; 2424 break; 2425 } 2426 2427 if (signal_pending(current)) { 2428 copied = sock_intr_errno(timeo); 2429 break; 2430 } 2431 } 2432 2433 if (copied >= target) { 2434 /* Do not sleep, just process backlog. */ 2435 __sk_flush_backlog(sk); 2436 } else { 2437 tcp_cleanup_rbuf(sk, copied); 2438 sk_wait_data(sk, &timeo, last); 2439 } 2440 2441 if ((flags & MSG_PEEK) && 2442 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2443 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2444 current->comm, 2445 task_pid_nr(current)); 2446 peek_seq = tp->copied_seq; 2447 } 2448 continue; 2449 2450 found_ok_skb: 2451 /* Ok so how much can we use? */ 2452 used = skb->len - offset; 2453 if (len < used) 2454 used = len; 2455 2456 /* Do we have urgent data here? */ 2457 if (unlikely(tp->urg_data)) { 2458 u32 urg_offset = tp->urg_seq - *seq; 2459 if (urg_offset < used) { 2460 if (!urg_offset) { 2461 if (!sock_flag(sk, SOCK_URGINLINE)) { 2462 WRITE_ONCE(*seq, *seq + 1); 2463 urg_hole++; 2464 offset++; 2465 used--; 2466 if (!used) 2467 goto skip_copy; 2468 } 2469 } else 2470 used = urg_offset; 2471 } 2472 } 2473 2474 if (!(flags & MSG_TRUNC)) { 2475 err = skb_copy_datagram_msg(skb, offset, msg, used); 2476 if (err) { 2477 /* Exception. Bailout! */ 2478 if (!copied) 2479 copied = -EFAULT; 2480 break; 2481 } 2482 } 2483 2484 WRITE_ONCE(*seq, *seq + used); 2485 copied += used; 2486 len -= used; 2487 2488 tcp_rcv_space_adjust(sk); 2489 2490 skip_copy: 2491 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2492 WRITE_ONCE(tp->urg_data, 0); 2493 tcp_fast_path_check(sk); 2494 } 2495 2496 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2497 tcp_update_recv_tstamps(skb, tss); 2498 *cmsg_flags |= TCP_CMSG_TS; 2499 } 2500 2501 if (used + offset < skb->len) 2502 continue; 2503 2504 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2505 goto found_fin_ok; 2506 if (!(flags & MSG_PEEK)) 2507 tcp_eat_recv_skb(sk, skb); 2508 continue; 2509 2510 found_fin_ok: 2511 /* Process the FIN. */ 2512 WRITE_ONCE(*seq, *seq + 1); 2513 if (!(flags & MSG_PEEK)) 2514 tcp_eat_recv_skb(sk, skb); 2515 break; 2516 } while (len > 0); 2517 2518 /* According to UNIX98, msg_name/msg_namelen are ignored 2519 * on connected socket. I was just happy when found this 8) --ANK 2520 */ 2521 2522 /* Clean up data we have read: This will do ACK frames. */ 2523 tcp_cleanup_rbuf(sk, copied); 2524 return copied; 2525 2526 out: 2527 return err; 2528 2529 recv_urg: 2530 err = tcp_recv_urg(sk, msg, len, flags); 2531 goto out; 2532 2533 recv_sndq: 2534 err = tcp_peek_sndq(sk, msg, len); 2535 goto out; 2536 } 2537 2538 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2539 int *addr_len) 2540 { 2541 int cmsg_flags = 0, ret; 2542 struct scm_timestamping_internal tss; 2543 2544 if (unlikely(flags & MSG_ERRQUEUE)) 2545 return inet_recv_error(sk, msg, len, addr_len); 2546 2547 if (sk_can_busy_loop(sk) && 2548 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2549 sk->sk_state == TCP_ESTABLISHED) 2550 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2551 2552 lock_sock(sk); 2553 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2554 release_sock(sk); 2555 2556 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2557 if (cmsg_flags & TCP_CMSG_TS) 2558 tcp_recv_timestamp(msg, sk, &tss); 2559 if (msg->msg_get_inq) { 2560 msg->msg_inq = tcp_inq_hint(sk); 2561 if (cmsg_flags & TCP_CMSG_INQ) 2562 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2563 sizeof(msg->msg_inq), &msg->msg_inq); 2564 } 2565 } 2566 return ret; 2567 } 2568 EXPORT_SYMBOL(tcp_recvmsg); 2569 2570 void tcp_set_state(struct sock *sk, int state) 2571 { 2572 int oldstate = sk->sk_state; 2573 2574 /* We defined a new enum for TCP states that are exported in BPF 2575 * so as not force the internal TCP states to be frozen. The 2576 * following checks will detect if an internal state value ever 2577 * differs from the BPF value. If this ever happens, then we will 2578 * need to remap the internal value to the BPF value before calling 2579 * tcp_call_bpf_2arg. 2580 */ 2581 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2582 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2583 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2584 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2585 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2586 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2587 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2588 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2589 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2590 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2591 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2592 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2593 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2594 2595 /* bpf uapi header bpf.h defines an anonymous enum with values 2596 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2597 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2598 * But clang built vmlinux does not have this enum in DWARF 2599 * since clang removes the above code before generating IR/debuginfo. 2600 * Let us explicitly emit the type debuginfo to ensure the 2601 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2602 * regardless of which compiler is used. 2603 */ 2604 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2605 2606 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2607 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2608 2609 switch (state) { 2610 case TCP_ESTABLISHED: 2611 if (oldstate != TCP_ESTABLISHED) 2612 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2613 break; 2614 2615 case TCP_CLOSE: 2616 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2617 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2618 2619 sk->sk_prot->unhash(sk); 2620 if (inet_csk(sk)->icsk_bind_hash && 2621 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2622 inet_put_port(sk); 2623 fallthrough; 2624 default: 2625 if (oldstate == TCP_ESTABLISHED) 2626 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2627 } 2628 2629 /* Change state AFTER socket is unhashed to avoid closed 2630 * socket sitting in hash tables. 2631 */ 2632 inet_sk_state_store(sk, state); 2633 } 2634 EXPORT_SYMBOL_GPL(tcp_set_state); 2635 2636 /* 2637 * State processing on a close. This implements the state shift for 2638 * sending our FIN frame. Note that we only send a FIN for some 2639 * states. A shutdown() may have already sent the FIN, or we may be 2640 * closed. 2641 */ 2642 2643 static const unsigned char new_state[16] = { 2644 /* current state: new state: action: */ 2645 [0 /* (Invalid) */] = TCP_CLOSE, 2646 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2647 [TCP_SYN_SENT] = TCP_CLOSE, 2648 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2649 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2650 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2651 [TCP_TIME_WAIT] = TCP_CLOSE, 2652 [TCP_CLOSE] = TCP_CLOSE, 2653 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2654 [TCP_LAST_ACK] = TCP_LAST_ACK, 2655 [TCP_LISTEN] = TCP_CLOSE, 2656 [TCP_CLOSING] = TCP_CLOSING, 2657 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2658 }; 2659 2660 static int tcp_close_state(struct sock *sk) 2661 { 2662 int next = (int)new_state[sk->sk_state]; 2663 int ns = next & TCP_STATE_MASK; 2664 2665 tcp_set_state(sk, ns); 2666 2667 return next & TCP_ACTION_FIN; 2668 } 2669 2670 /* 2671 * Shutdown the sending side of a connection. Much like close except 2672 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2673 */ 2674 2675 void tcp_shutdown(struct sock *sk, int how) 2676 { 2677 /* We need to grab some memory, and put together a FIN, 2678 * and then put it into the queue to be sent. 2679 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2680 */ 2681 if (!(how & SEND_SHUTDOWN)) 2682 return; 2683 2684 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2685 if ((1 << sk->sk_state) & 2686 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2687 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2688 /* Clear out any half completed packets. FIN if needed. */ 2689 if (tcp_close_state(sk)) 2690 tcp_send_fin(sk); 2691 } 2692 } 2693 EXPORT_SYMBOL(tcp_shutdown); 2694 2695 int tcp_orphan_count_sum(void) 2696 { 2697 int i, total = 0; 2698 2699 for_each_possible_cpu(i) 2700 total += per_cpu(tcp_orphan_count, i); 2701 2702 return max(total, 0); 2703 } 2704 2705 static int tcp_orphan_cache; 2706 static struct timer_list tcp_orphan_timer; 2707 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2708 2709 static void tcp_orphan_update(struct timer_list *unused) 2710 { 2711 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2712 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2713 } 2714 2715 static bool tcp_too_many_orphans(int shift) 2716 { 2717 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2718 } 2719 2720 bool tcp_check_oom(struct sock *sk, int shift) 2721 { 2722 bool too_many_orphans, out_of_socket_memory; 2723 2724 too_many_orphans = tcp_too_many_orphans(shift); 2725 out_of_socket_memory = tcp_out_of_memory(sk); 2726 2727 if (too_many_orphans) 2728 net_info_ratelimited("too many orphaned sockets\n"); 2729 if (out_of_socket_memory) 2730 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2731 return too_many_orphans || out_of_socket_memory; 2732 } 2733 2734 void __tcp_close(struct sock *sk, long timeout) 2735 { 2736 struct sk_buff *skb; 2737 int data_was_unread = 0; 2738 int state; 2739 2740 sk->sk_shutdown = SHUTDOWN_MASK; 2741 2742 if (sk->sk_state == TCP_LISTEN) { 2743 tcp_set_state(sk, TCP_CLOSE); 2744 2745 /* Special case. */ 2746 inet_csk_listen_stop(sk); 2747 2748 goto adjudge_to_death; 2749 } 2750 2751 /* We need to flush the recv. buffs. We do this only on the 2752 * descriptor close, not protocol-sourced closes, because the 2753 * reader process may not have drained the data yet! 2754 */ 2755 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2756 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2757 2758 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2759 len--; 2760 data_was_unread += len; 2761 __kfree_skb(skb); 2762 } 2763 2764 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2765 if (sk->sk_state == TCP_CLOSE) 2766 goto adjudge_to_death; 2767 2768 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2769 * data was lost. To witness the awful effects of the old behavior of 2770 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2771 * GET in an FTP client, suspend the process, wait for the client to 2772 * advertise a zero window, then kill -9 the FTP client, wheee... 2773 * Note: timeout is always zero in such a case. 2774 */ 2775 if (unlikely(tcp_sk(sk)->repair)) { 2776 sk->sk_prot->disconnect(sk, 0); 2777 } else if (data_was_unread) { 2778 /* Unread data was tossed, zap the connection. */ 2779 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2780 tcp_set_state(sk, TCP_CLOSE); 2781 tcp_send_active_reset(sk, sk->sk_allocation); 2782 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2783 /* Check zero linger _after_ checking for unread data. */ 2784 sk->sk_prot->disconnect(sk, 0); 2785 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2786 } else if (tcp_close_state(sk)) { 2787 /* We FIN if the application ate all the data before 2788 * zapping the connection. 2789 */ 2790 2791 /* RED-PEN. Formally speaking, we have broken TCP state 2792 * machine. State transitions: 2793 * 2794 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2795 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2796 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2797 * 2798 * are legal only when FIN has been sent (i.e. in window), 2799 * rather than queued out of window. Purists blame. 2800 * 2801 * F.e. "RFC state" is ESTABLISHED, 2802 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2803 * 2804 * The visible declinations are that sometimes 2805 * we enter time-wait state, when it is not required really 2806 * (harmless), do not send active resets, when they are 2807 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2808 * they look as CLOSING or LAST_ACK for Linux) 2809 * Probably, I missed some more holelets. 2810 * --ANK 2811 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2812 * in a single packet! (May consider it later but will 2813 * probably need API support or TCP_CORK SYN-ACK until 2814 * data is written and socket is closed.) 2815 */ 2816 tcp_send_fin(sk); 2817 } 2818 2819 sk_stream_wait_close(sk, timeout); 2820 2821 adjudge_to_death: 2822 state = sk->sk_state; 2823 sock_hold(sk); 2824 sock_orphan(sk); 2825 2826 local_bh_disable(); 2827 bh_lock_sock(sk); 2828 /* remove backlog if any, without releasing ownership. */ 2829 __release_sock(sk); 2830 2831 this_cpu_inc(tcp_orphan_count); 2832 2833 /* Have we already been destroyed by a softirq or backlog? */ 2834 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2835 goto out; 2836 2837 /* This is a (useful) BSD violating of the RFC. There is a 2838 * problem with TCP as specified in that the other end could 2839 * keep a socket open forever with no application left this end. 2840 * We use a 1 minute timeout (about the same as BSD) then kill 2841 * our end. If they send after that then tough - BUT: long enough 2842 * that we won't make the old 4*rto = almost no time - whoops 2843 * reset mistake. 2844 * 2845 * Nope, it was not mistake. It is really desired behaviour 2846 * f.e. on http servers, when such sockets are useless, but 2847 * consume significant resources. Let's do it with special 2848 * linger2 option. --ANK 2849 */ 2850 2851 if (sk->sk_state == TCP_FIN_WAIT2) { 2852 struct tcp_sock *tp = tcp_sk(sk); 2853 if (tp->linger2 < 0) { 2854 tcp_set_state(sk, TCP_CLOSE); 2855 tcp_send_active_reset(sk, GFP_ATOMIC); 2856 __NET_INC_STATS(sock_net(sk), 2857 LINUX_MIB_TCPABORTONLINGER); 2858 } else { 2859 const int tmo = tcp_fin_time(sk); 2860 2861 if (tmo > TCP_TIMEWAIT_LEN) { 2862 inet_csk_reset_keepalive_timer(sk, 2863 tmo - TCP_TIMEWAIT_LEN); 2864 } else { 2865 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2866 goto out; 2867 } 2868 } 2869 } 2870 if (sk->sk_state != TCP_CLOSE) { 2871 if (tcp_check_oom(sk, 0)) { 2872 tcp_set_state(sk, TCP_CLOSE); 2873 tcp_send_active_reset(sk, GFP_ATOMIC); 2874 __NET_INC_STATS(sock_net(sk), 2875 LINUX_MIB_TCPABORTONMEMORY); 2876 } else if (!check_net(sock_net(sk))) { 2877 /* Not possible to send reset; just close */ 2878 tcp_set_state(sk, TCP_CLOSE); 2879 } 2880 } 2881 2882 if (sk->sk_state == TCP_CLOSE) { 2883 struct request_sock *req; 2884 2885 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2886 lockdep_sock_is_held(sk)); 2887 /* We could get here with a non-NULL req if the socket is 2888 * aborted (e.g., closed with unread data) before 3WHS 2889 * finishes. 2890 */ 2891 if (req) 2892 reqsk_fastopen_remove(sk, req, false); 2893 inet_csk_destroy_sock(sk); 2894 } 2895 /* Otherwise, socket is reprieved until protocol close. */ 2896 2897 out: 2898 bh_unlock_sock(sk); 2899 local_bh_enable(); 2900 } 2901 2902 void tcp_close(struct sock *sk, long timeout) 2903 { 2904 lock_sock(sk); 2905 __tcp_close(sk, timeout); 2906 release_sock(sk); 2907 sock_put(sk); 2908 } 2909 EXPORT_SYMBOL(tcp_close); 2910 2911 /* These states need RST on ABORT according to RFC793 */ 2912 2913 static inline bool tcp_need_reset(int state) 2914 { 2915 return (1 << state) & 2916 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2917 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2918 } 2919 2920 static void tcp_rtx_queue_purge(struct sock *sk) 2921 { 2922 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2923 2924 tcp_sk(sk)->highest_sack = NULL; 2925 while (p) { 2926 struct sk_buff *skb = rb_to_skb(p); 2927 2928 p = rb_next(p); 2929 /* Since we are deleting whole queue, no need to 2930 * list_del(&skb->tcp_tsorted_anchor) 2931 */ 2932 tcp_rtx_queue_unlink(skb, sk); 2933 tcp_wmem_free_skb(sk, skb); 2934 } 2935 } 2936 2937 void tcp_write_queue_purge(struct sock *sk) 2938 { 2939 struct sk_buff *skb; 2940 2941 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2942 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2943 tcp_skb_tsorted_anchor_cleanup(skb); 2944 tcp_wmem_free_skb(sk, skb); 2945 } 2946 tcp_rtx_queue_purge(sk); 2947 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2948 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2949 tcp_sk(sk)->packets_out = 0; 2950 inet_csk(sk)->icsk_backoff = 0; 2951 } 2952 2953 int tcp_disconnect(struct sock *sk, int flags) 2954 { 2955 struct inet_sock *inet = inet_sk(sk); 2956 struct inet_connection_sock *icsk = inet_csk(sk); 2957 struct tcp_sock *tp = tcp_sk(sk); 2958 int old_state = sk->sk_state; 2959 u32 seq; 2960 2961 if (old_state != TCP_CLOSE) 2962 tcp_set_state(sk, TCP_CLOSE); 2963 2964 /* ABORT function of RFC793 */ 2965 if (old_state == TCP_LISTEN) { 2966 inet_csk_listen_stop(sk); 2967 } else if (unlikely(tp->repair)) { 2968 sk->sk_err = ECONNABORTED; 2969 } else if (tcp_need_reset(old_state) || 2970 (tp->snd_nxt != tp->write_seq && 2971 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2972 /* The last check adjusts for discrepancy of Linux wrt. RFC 2973 * states 2974 */ 2975 tcp_send_active_reset(sk, gfp_any()); 2976 sk->sk_err = ECONNRESET; 2977 } else if (old_state == TCP_SYN_SENT) 2978 sk->sk_err = ECONNRESET; 2979 2980 tcp_clear_xmit_timers(sk); 2981 __skb_queue_purge(&sk->sk_receive_queue); 2982 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2983 WRITE_ONCE(tp->urg_data, 0); 2984 tcp_write_queue_purge(sk); 2985 tcp_fastopen_active_disable_ofo_check(sk); 2986 skb_rbtree_purge(&tp->out_of_order_queue); 2987 2988 inet->inet_dport = 0; 2989 2990 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2991 inet_reset_saddr(sk); 2992 2993 sk->sk_shutdown = 0; 2994 sock_reset_flag(sk, SOCK_DONE); 2995 tp->srtt_us = 0; 2996 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2997 tp->rcv_rtt_last_tsecr = 0; 2998 2999 seq = tp->write_seq + tp->max_window + 2; 3000 if (!seq) 3001 seq = 1; 3002 WRITE_ONCE(tp->write_seq, seq); 3003 3004 icsk->icsk_backoff = 0; 3005 icsk->icsk_probes_out = 0; 3006 icsk->icsk_probes_tstamp = 0; 3007 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3008 icsk->icsk_rto_min = TCP_RTO_MIN; 3009 icsk->icsk_delack_max = TCP_DELACK_MAX; 3010 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3011 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3012 tp->snd_cwnd_cnt = 0; 3013 tp->window_clamp = 0; 3014 tp->delivered = 0; 3015 tp->delivered_ce = 0; 3016 if (icsk->icsk_ca_ops->release) 3017 icsk->icsk_ca_ops->release(sk); 3018 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3019 icsk->icsk_ca_initialized = 0; 3020 tcp_set_ca_state(sk, TCP_CA_Open); 3021 tp->is_sack_reneg = 0; 3022 tcp_clear_retrans(tp); 3023 tp->total_retrans = 0; 3024 inet_csk_delack_init(sk); 3025 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3026 * issue in __tcp_select_window() 3027 */ 3028 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3029 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3030 __sk_dst_reset(sk); 3031 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3032 tcp_saved_syn_free(tp); 3033 tp->compressed_ack = 0; 3034 tp->segs_in = 0; 3035 tp->segs_out = 0; 3036 tp->bytes_sent = 0; 3037 tp->bytes_acked = 0; 3038 tp->bytes_received = 0; 3039 tp->bytes_retrans = 0; 3040 tp->data_segs_in = 0; 3041 tp->data_segs_out = 0; 3042 tp->duplicate_sack[0].start_seq = 0; 3043 tp->duplicate_sack[0].end_seq = 0; 3044 tp->dsack_dups = 0; 3045 tp->reord_seen = 0; 3046 tp->retrans_out = 0; 3047 tp->sacked_out = 0; 3048 tp->tlp_high_seq = 0; 3049 tp->last_oow_ack_time = 0; 3050 /* There's a bubble in the pipe until at least the first ACK. */ 3051 tp->app_limited = ~0U; 3052 tp->rack.mstamp = 0; 3053 tp->rack.advanced = 0; 3054 tp->rack.reo_wnd_steps = 1; 3055 tp->rack.last_delivered = 0; 3056 tp->rack.reo_wnd_persist = 0; 3057 tp->rack.dsack_seen = 0; 3058 tp->syn_data_acked = 0; 3059 tp->rx_opt.saw_tstamp = 0; 3060 tp->rx_opt.dsack = 0; 3061 tp->rx_opt.num_sacks = 0; 3062 tp->rcv_ooopack = 0; 3063 3064 3065 /* Clean up fastopen related fields */ 3066 tcp_free_fastopen_req(tp); 3067 inet->defer_connect = 0; 3068 tp->fastopen_client_fail = 0; 3069 3070 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3071 3072 if (sk->sk_frag.page) { 3073 put_page(sk->sk_frag.page); 3074 sk->sk_frag.page = NULL; 3075 sk->sk_frag.offset = 0; 3076 } 3077 sk_error_report(sk); 3078 return 0; 3079 } 3080 EXPORT_SYMBOL(tcp_disconnect); 3081 3082 static inline bool tcp_can_repair_sock(const struct sock *sk) 3083 { 3084 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3085 (sk->sk_state != TCP_LISTEN); 3086 } 3087 3088 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3089 { 3090 struct tcp_repair_window opt; 3091 3092 if (!tp->repair) 3093 return -EPERM; 3094 3095 if (len != sizeof(opt)) 3096 return -EINVAL; 3097 3098 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3099 return -EFAULT; 3100 3101 if (opt.max_window < opt.snd_wnd) 3102 return -EINVAL; 3103 3104 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3105 return -EINVAL; 3106 3107 if (after(opt.rcv_wup, tp->rcv_nxt)) 3108 return -EINVAL; 3109 3110 tp->snd_wl1 = opt.snd_wl1; 3111 tp->snd_wnd = opt.snd_wnd; 3112 tp->max_window = opt.max_window; 3113 3114 tp->rcv_wnd = opt.rcv_wnd; 3115 tp->rcv_wup = opt.rcv_wup; 3116 3117 return 0; 3118 } 3119 3120 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3121 unsigned int len) 3122 { 3123 struct tcp_sock *tp = tcp_sk(sk); 3124 struct tcp_repair_opt opt; 3125 size_t offset = 0; 3126 3127 while (len >= sizeof(opt)) { 3128 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3129 return -EFAULT; 3130 3131 offset += sizeof(opt); 3132 len -= sizeof(opt); 3133 3134 switch (opt.opt_code) { 3135 case TCPOPT_MSS: 3136 tp->rx_opt.mss_clamp = opt.opt_val; 3137 tcp_mtup_init(sk); 3138 break; 3139 case TCPOPT_WINDOW: 3140 { 3141 u16 snd_wscale = opt.opt_val & 0xFFFF; 3142 u16 rcv_wscale = opt.opt_val >> 16; 3143 3144 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3145 return -EFBIG; 3146 3147 tp->rx_opt.snd_wscale = snd_wscale; 3148 tp->rx_opt.rcv_wscale = rcv_wscale; 3149 tp->rx_opt.wscale_ok = 1; 3150 } 3151 break; 3152 case TCPOPT_SACK_PERM: 3153 if (opt.opt_val != 0) 3154 return -EINVAL; 3155 3156 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3157 break; 3158 case TCPOPT_TIMESTAMP: 3159 if (opt.opt_val != 0) 3160 return -EINVAL; 3161 3162 tp->rx_opt.tstamp_ok = 1; 3163 break; 3164 } 3165 } 3166 3167 return 0; 3168 } 3169 3170 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3171 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3172 3173 static void tcp_enable_tx_delay(void) 3174 { 3175 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3176 static int __tcp_tx_delay_enabled = 0; 3177 3178 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3179 static_branch_enable(&tcp_tx_delay_enabled); 3180 pr_info("TCP_TX_DELAY enabled\n"); 3181 } 3182 } 3183 } 3184 3185 /* When set indicates to always queue non-full frames. Later the user clears 3186 * this option and we transmit any pending partial frames in the queue. This is 3187 * meant to be used alongside sendfile() to get properly filled frames when the 3188 * user (for example) must write out headers with a write() call first and then 3189 * use sendfile to send out the data parts. 3190 * 3191 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3192 * TCP_NODELAY. 3193 */ 3194 void __tcp_sock_set_cork(struct sock *sk, bool on) 3195 { 3196 struct tcp_sock *tp = tcp_sk(sk); 3197 3198 if (on) { 3199 tp->nonagle |= TCP_NAGLE_CORK; 3200 } else { 3201 tp->nonagle &= ~TCP_NAGLE_CORK; 3202 if (tp->nonagle & TCP_NAGLE_OFF) 3203 tp->nonagle |= TCP_NAGLE_PUSH; 3204 tcp_push_pending_frames(sk); 3205 } 3206 } 3207 3208 void tcp_sock_set_cork(struct sock *sk, bool on) 3209 { 3210 lock_sock(sk); 3211 __tcp_sock_set_cork(sk, on); 3212 release_sock(sk); 3213 } 3214 EXPORT_SYMBOL(tcp_sock_set_cork); 3215 3216 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3217 * remembered, but it is not activated until cork is cleared. 3218 * 3219 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3220 * even TCP_CORK for currently queued segments. 3221 */ 3222 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3223 { 3224 if (on) { 3225 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3226 tcp_push_pending_frames(sk); 3227 } else { 3228 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3229 } 3230 } 3231 3232 void tcp_sock_set_nodelay(struct sock *sk) 3233 { 3234 lock_sock(sk); 3235 __tcp_sock_set_nodelay(sk, true); 3236 release_sock(sk); 3237 } 3238 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3239 3240 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3241 { 3242 if (!val) { 3243 inet_csk_enter_pingpong_mode(sk); 3244 return; 3245 } 3246 3247 inet_csk_exit_pingpong_mode(sk); 3248 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3249 inet_csk_ack_scheduled(sk)) { 3250 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3251 tcp_cleanup_rbuf(sk, 1); 3252 if (!(val & 1)) 3253 inet_csk_enter_pingpong_mode(sk); 3254 } 3255 } 3256 3257 void tcp_sock_set_quickack(struct sock *sk, int val) 3258 { 3259 lock_sock(sk); 3260 __tcp_sock_set_quickack(sk, val); 3261 release_sock(sk); 3262 } 3263 EXPORT_SYMBOL(tcp_sock_set_quickack); 3264 3265 int tcp_sock_set_syncnt(struct sock *sk, int val) 3266 { 3267 if (val < 1 || val > MAX_TCP_SYNCNT) 3268 return -EINVAL; 3269 3270 lock_sock(sk); 3271 inet_csk(sk)->icsk_syn_retries = val; 3272 release_sock(sk); 3273 return 0; 3274 } 3275 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3276 3277 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3278 { 3279 lock_sock(sk); 3280 inet_csk(sk)->icsk_user_timeout = val; 3281 release_sock(sk); 3282 } 3283 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3284 3285 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3286 { 3287 struct tcp_sock *tp = tcp_sk(sk); 3288 3289 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3290 return -EINVAL; 3291 3292 tp->keepalive_time = val * HZ; 3293 if (sock_flag(sk, SOCK_KEEPOPEN) && 3294 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3295 u32 elapsed = keepalive_time_elapsed(tp); 3296 3297 if (tp->keepalive_time > elapsed) 3298 elapsed = tp->keepalive_time - elapsed; 3299 else 3300 elapsed = 0; 3301 inet_csk_reset_keepalive_timer(sk, elapsed); 3302 } 3303 3304 return 0; 3305 } 3306 3307 int tcp_sock_set_keepidle(struct sock *sk, int val) 3308 { 3309 int err; 3310 3311 lock_sock(sk); 3312 err = tcp_sock_set_keepidle_locked(sk, val); 3313 release_sock(sk); 3314 return err; 3315 } 3316 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3317 3318 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3319 { 3320 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3321 return -EINVAL; 3322 3323 lock_sock(sk); 3324 tcp_sk(sk)->keepalive_intvl = val * HZ; 3325 release_sock(sk); 3326 return 0; 3327 } 3328 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3329 3330 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3331 { 3332 if (val < 1 || val > MAX_TCP_KEEPCNT) 3333 return -EINVAL; 3334 3335 lock_sock(sk); 3336 tcp_sk(sk)->keepalive_probes = val; 3337 release_sock(sk); 3338 return 0; 3339 } 3340 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3341 3342 int tcp_set_window_clamp(struct sock *sk, int val) 3343 { 3344 struct tcp_sock *tp = tcp_sk(sk); 3345 3346 if (!val) { 3347 if (sk->sk_state != TCP_CLOSE) 3348 return -EINVAL; 3349 tp->window_clamp = 0; 3350 } else { 3351 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3352 SOCK_MIN_RCVBUF / 2 : val; 3353 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3354 } 3355 return 0; 3356 } 3357 3358 /* 3359 * Socket option code for TCP. 3360 */ 3361 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3362 sockptr_t optval, unsigned int optlen) 3363 { 3364 struct tcp_sock *tp = tcp_sk(sk); 3365 struct inet_connection_sock *icsk = inet_csk(sk); 3366 struct net *net = sock_net(sk); 3367 int val; 3368 int err = 0; 3369 3370 /* These are data/string values, all the others are ints */ 3371 switch (optname) { 3372 case TCP_CONGESTION: { 3373 char name[TCP_CA_NAME_MAX]; 3374 3375 if (optlen < 1) 3376 return -EINVAL; 3377 3378 val = strncpy_from_sockptr(name, optval, 3379 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3380 if (val < 0) 3381 return -EFAULT; 3382 name[val] = 0; 3383 3384 lock_sock(sk); 3385 err = tcp_set_congestion_control(sk, name, true, 3386 ns_capable(sock_net(sk)->user_ns, 3387 CAP_NET_ADMIN)); 3388 release_sock(sk); 3389 return err; 3390 } 3391 case TCP_ULP: { 3392 char name[TCP_ULP_NAME_MAX]; 3393 3394 if (optlen < 1) 3395 return -EINVAL; 3396 3397 val = strncpy_from_sockptr(name, optval, 3398 min_t(long, TCP_ULP_NAME_MAX - 1, 3399 optlen)); 3400 if (val < 0) 3401 return -EFAULT; 3402 name[val] = 0; 3403 3404 lock_sock(sk); 3405 err = tcp_set_ulp(sk, name); 3406 release_sock(sk); 3407 return err; 3408 } 3409 case TCP_FASTOPEN_KEY: { 3410 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3411 __u8 *backup_key = NULL; 3412 3413 /* Allow a backup key as well to facilitate key rotation 3414 * First key is the active one. 3415 */ 3416 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3417 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3418 return -EINVAL; 3419 3420 if (copy_from_sockptr(key, optval, optlen)) 3421 return -EFAULT; 3422 3423 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3424 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3425 3426 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3427 } 3428 default: 3429 /* fallthru */ 3430 break; 3431 } 3432 3433 if (optlen < sizeof(int)) 3434 return -EINVAL; 3435 3436 if (copy_from_sockptr(&val, optval, sizeof(val))) 3437 return -EFAULT; 3438 3439 lock_sock(sk); 3440 3441 switch (optname) { 3442 case TCP_MAXSEG: 3443 /* Values greater than interface MTU won't take effect. However 3444 * at the point when this call is done we typically don't yet 3445 * know which interface is going to be used 3446 */ 3447 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3448 err = -EINVAL; 3449 break; 3450 } 3451 tp->rx_opt.user_mss = val; 3452 break; 3453 3454 case TCP_NODELAY: 3455 __tcp_sock_set_nodelay(sk, val); 3456 break; 3457 3458 case TCP_THIN_LINEAR_TIMEOUTS: 3459 if (val < 0 || val > 1) 3460 err = -EINVAL; 3461 else 3462 tp->thin_lto = val; 3463 break; 3464 3465 case TCP_THIN_DUPACK: 3466 if (val < 0 || val > 1) 3467 err = -EINVAL; 3468 break; 3469 3470 case TCP_REPAIR: 3471 if (!tcp_can_repair_sock(sk)) 3472 err = -EPERM; 3473 else if (val == TCP_REPAIR_ON) { 3474 tp->repair = 1; 3475 sk->sk_reuse = SK_FORCE_REUSE; 3476 tp->repair_queue = TCP_NO_QUEUE; 3477 } else if (val == TCP_REPAIR_OFF) { 3478 tp->repair = 0; 3479 sk->sk_reuse = SK_NO_REUSE; 3480 tcp_send_window_probe(sk); 3481 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3482 tp->repair = 0; 3483 sk->sk_reuse = SK_NO_REUSE; 3484 } else 3485 err = -EINVAL; 3486 3487 break; 3488 3489 case TCP_REPAIR_QUEUE: 3490 if (!tp->repair) 3491 err = -EPERM; 3492 else if ((unsigned int)val < TCP_QUEUES_NR) 3493 tp->repair_queue = val; 3494 else 3495 err = -EINVAL; 3496 break; 3497 3498 case TCP_QUEUE_SEQ: 3499 if (sk->sk_state != TCP_CLOSE) { 3500 err = -EPERM; 3501 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3502 if (!tcp_rtx_queue_empty(sk)) 3503 err = -EPERM; 3504 else 3505 WRITE_ONCE(tp->write_seq, val); 3506 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3507 if (tp->rcv_nxt != tp->copied_seq) { 3508 err = -EPERM; 3509 } else { 3510 WRITE_ONCE(tp->rcv_nxt, val); 3511 WRITE_ONCE(tp->copied_seq, val); 3512 } 3513 } else { 3514 err = -EINVAL; 3515 } 3516 break; 3517 3518 case TCP_REPAIR_OPTIONS: 3519 if (!tp->repair) 3520 err = -EINVAL; 3521 else if (sk->sk_state == TCP_ESTABLISHED) 3522 err = tcp_repair_options_est(sk, optval, optlen); 3523 else 3524 err = -EPERM; 3525 break; 3526 3527 case TCP_CORK: 3528 __tcp_sock_set_cork(sk, val); 3529 break; 3530 3531 case TCP_KEEPIDLE: 3532 err = tcp_sock_set_keepidle_locked(sk, val); 3533 break; 3534 case TCP_KEEPINTVL: 3535 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3536 err = -EINVAL; 3537 else 3538 tp->keepalive_intvl = val * HZ; 3539 break; 3540 case TCP_KEEPCNT: 3541 if (val < 1 || val > MAX_TCP_KEEPCNT) 3542 err = -EINVAL; 3543 else 3544 tp->keepalive_probes = val; 3545 break; 3546 case TCP_SYNCNT: 3547 if (val < 1 || val > MAX_TCP_SYNCNT) 3548 err = -EINVAL; 3549 else 3550 icsk->icsk_syn_retries = val; 3551 break; 3552 3553 case TCP_SAVE_SYN: 3554 /* 0: disable, 1: enable, 2: start from ether_header */ 3555 if (val < 0 || val > 2) 3556 err = -EINVAL; 3557 else 3558 tp->save_syn = val; 3559 break; 3560 3561 case TCP_LINGER2: 3562 if (val < 0) 3563 tp->linger2 = -1; 3564 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3565 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3566 else 3567 tp->linger2 = val * HZ; 3568 break; 3569 3570 case TCP_DEFER_ACCEPT: 3571 /* Translate value in seconds to number of retransmits */ 3572 icsk->icsk_accept_queue.rskq_defer_accept = 3573 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3574 TCP_RTO_MAX / HZ); 3575 break; 3576 3577 case TCP_WINDOW_CLAMP: 3578 err = tcp_set_window_clamp(sk, val); 3579 break; 3580 3581 case TCP_QUICKACK: 3582 __tcp_sock_set_quickack(sk, val); 3583 break; 3584 3585 #ifdef CONFIG_TCP_MD5SIG 3586 case TCP_MD5SIG: 3587 case TCP_MD5SIG_EXT: 3588 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3589 break; 3590 #endif 3591 case TCP_USER_TIMEOUT: 3592 /* Cap the max time in ms TCP will retry or probe the window 3593 * before giving up and aborting (ETIMEDOUT) a connection. 3594 */ 3595 if (val < 0) 3596 err = -EINVAL; 3597 else 3598 icsk->icsk_user_timeout = val; 3599 break; 3600 3601 case TCP_FASTOPEN: 3602 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3603 TCPF_LISTEN))) { 3604 tcp_fastopen_init_key_once(net); 3605 3606 fastopen_queue_tune(sk, val); 3607 } else { 3608 err = -EINVAL; 3609 } 3610 break; 3611 case TCP_FASTOPEN_CONNECT: 3612 if (val > 1 || val < 0) { 3613 err = -EINVAL; 3614 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3615 if (sk->sk_state == TCP_CLOSE) 3616 tp->fastopen_connect = val; 3617 else 3618 err = -EINVAL; 3619 } else { 3620 err = -EOPNOTSUPP; 3621 } 3622 break; 3623 case TCP_FASTOPEN_NO_COOKIE: 3624 if (val > 1 || val < 0) 3625 err = -EINVAL; 3626 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3627 err = -EINVAL; 3628 else 3629 tp->fastopen_no_cookie = val; 3630 break; 3631 case TCP_TIMESTAMP: 3632 if (!tp->repair) 3633 err = -EPERM; 3634 else 3635 tp->tsoffset = val - tcp_time_stamp_raw(); 3636 break; 3637 case TCP_REPAIR_WINDOW: 3638 err = tcp_repair_set_window(tp, optval, optlen); 3639 break; 3640 case TCP_NOTSENT_LOWAT: 3641 tp->notsent_lowat = val; 3642 sk->sk_write_space(sk); 3643 break; 3644 case TCP_INQ: 3645 if (val > 1 || val < 0) 3646 err = -EINVAL; 3647 else 3648 tp->recvmsg_inq = val; 3649 break; 3650 case TCP_TX_DELAY: 3651 if (val) 3652 tcp_enable_tx_delay(); 3653 tp->tcp_tx_delay = val; 3654 break; 3655 default: 3656 err = -ENOPROTOOPT; 3657 break; 3658 } 3659 3660 release_sock(sk); 3661 return err; 3662 } 3663 3664 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3665 unsigned int optlen) 3666 { 3667 const struct inet_connection_sock *icsk = inet_csk(sk); 3668 3669 if (level != SOL_TCP) 3670 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3671 optval, optlen); 3672 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3673 } 3674 EXPORT_SYMBOL(tcp_setsockopt); 3675 3676 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3677 struct tcp_info *info) 3678 { 3679 u64 stats[__TCP_CHRONO_MAX], total = 0; 3680 enum tcp_chrono i; 3681 3682 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3683 stats[i] = tp->chrono_stat[i - 1]; 3684 if (i == tp->chrono_type) 3685 stats[i] += tcp_jiffies32 - tp->chrono_start; 3686 stats[i] *= USEC_PER_SEC / HZ; 3687 total += stats[i]; 3688 } 3689 3690 info->tcpi_busy_time = total; 3691 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3692 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3693 } 3694 3695 /* Return information about state of tcp endpoint in API format. */ 3696 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3697 { 3698 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3699 const struct inet_connection_sock *icsk = inet_csk(sk); 3700 unsigned long rate; 3701 u32 now; 3702 u64 rate64; 3703 bool slow; 3704 3705 memset(info, 0, sizeof(*info)); 3706 if (sk->sk_type != SOCK_STREAM) 3707 return; 3708 3709 info->tcpi_state = inet_sk_state_load(sk); 3710 3711 /* Report meaningful fields for all TCP states, including listeners */ 3712 rate = READ_ONCE(sk->sk_pacing_rate); 3713 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3714 info->tcpi_pacing_rate = rate64; 3715 3716 rate = READ_ONCE(sk->sk_max_pacing_rate); 3717 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3718 info->tcpi_max_pacing_rate = rate64; 3719 3720 info->tcpi_reordering = tp->reordering; 3721 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3722 3723 if (info->tcpi_state == TCP_LISTEN) { 3724 /* listeners aliased fields : 3725 * tcpi_unacked -> Number of children ready for accept() 3726 * tcpi_sacked -> max backlog 3727 */ 3728 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3729 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3730 return; 3731 } 3732 3733 slow = lock_sock_fast(sk); 3734 3735 info->tcpi_ca_state = icsk->icsk_ca_state; 3736 info->tcpi_retransmits = icsk->icsk_retransmits; 3737 info->tcpi_probes = icsk->icsk_probes_out; 3738 info->tcpi_backoff = icsk->icsk_backoff; 3739 3740 if (tp->rx_opt.tstamp_ok) 3741 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3742 if (tcp_is_sack(tp)) 3743 info->tcpi_options |= TCPI_OPT_SACK; 3744 if (tp->rx_opt.wscale_ok) { 3745 info->tcpi_options |= TCPI_OPT_WSCALE; 3746 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3747 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3748 } 3749 3750 if (tp->ecn_flags & TCP_ECN_OK) 3751 info->tcpi_options |= TCPI_OPT_ECN; 3752 if (tp->ecn_flags & TCP_ECN_SEEN) 3753 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3754 if (tp->syn_data_acked) 3755 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3756 3757 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3758 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3759 info->tcpi_snd_mss = tp->mss_cache; 3760 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3761 3762 info->tcpi_unacked = tp->packets_out; 3763 info->tcpi_sacked = tp->sacked_out; 3764 3765 info->tcpi_lost = tp->lost_out; 3766 info->tcpi_retrans = tp->retrans_out; 3767 3768 now = tcp_jiffies32; 3769 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3770 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3771 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3772 3773 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3774 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3775 info->tcpi_rtt = tp->srtt_us >> 3; 3776 info->tcpi_rttvar = tp->mdev_us >> 2; 3777 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3778 info->tcpi_advmss = tp->advmss; 3779 3780 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3781 info->tcpi_rcv_space = tp->rcvq_space.space; 3782 3783 info->tcpi_total_retrans = tp->total_retrans; 3784 3785 info->tcpi_bytes_acked = tp->bytes_acked; 3786 info->tcpi_bytes_received = tp->bytes_received; 3787 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3788 tcp_get_info_chrono_stats(tp, info); 3789 3790 info->tcpi_segs_out = tp->segs_out; 3791 3792 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3793 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3794 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3795 3796 info->tcpi_min_rtt = tcp_min_rtt(tp); 3797 info->tcpi_data_segs_out = tp->data_segs_out; 3798 3799 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3800 rate64 = tcp_compute_delivery_rate(tp); 3801 if (rate64) 3802 info->tcpi_delivery_rate = rate64; 3803 info->tcpi_delivered = tp->delivered; 3804 info->tcpi_delivered_ce = tp->delivered_ce; 3805 info->tcpi_bytes_sent = tp->bytes_sent; 3806 info->tcpi_bytes_retrans = tp->bytes_retrans; 3807 info->tcpi_dsack_dups = tp->dsack_dups; 3808 info->tcpi_reord_seen = tp->reord_seen; 3809 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3810 info->tcpi_snd_wnd = tp->snd_wnd; 3811 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3812 unlock_sock_fast(sk, slow); 3813 } 3814 EXPORT_SYMBOL_GPL(tcp_get_info); 3815 3816 static size_t tcp_opt_stats_get_size(void) 3817 { 3818 return 3819 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3820 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3821 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3822 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3823 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3824 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3825 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3826 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3827 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3828 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3829 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3830 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3831 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3832 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3833 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3834 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3835 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3836 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3837 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3838 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3839 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3840 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3841 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3842 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3843 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3844 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3845 0; 3846 } 3847 3848 /* Returns TTL or hop limit of an incoming packet from skb. */ 3849 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3850 { 3851 if (skb->protocol == htons(ETH_P_IP)) 3852 return ip_hdr(skb)->ttl; 3853 else if (skb->protocol == htons(ETH_P_IPV6)) 3854 return ipv6_hdr(skb)->hop_limit; 3855 else 3856 return 0; 3857 } 3858 3859 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3860 const struct sk_buff *orig_skb, 3861 const struct sk_buff *ack_skb) 3862 { 3863 const struct tcp_sock *tp = tcp_sk(sk); 3864 struct sk_buff *stats; 3865 struct tcp_info info; 3866 unsigned long rate; 3867 u64 rate64; 3868 3869 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3870 if (!stats) 3871 return NULL; 3872 3873 tcp_get_info_chrono_stats(tp, &info); 3874 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3875 info.tcpi_busy_time, TCP_NLA_PAD); 3876 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3877 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3878 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3879 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3880 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3881 tp->data_segs_out, TCP_NLA_PAD); 3882 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3883 tp->total_retrans, TCP_NLA_PAD); 3884 3885 rate = READ_ONCE(sk->sk_pacing_rate); 3886 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3887 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3888 3889 rate64 = tcp_compute_delivery_rate(tp); 3890 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3891 3892 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3893 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3894 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3895 3896 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3897 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3898 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3899 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3900 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3901 3902 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3903 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3904 3905 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3906 TCP_NLA_PAD); 3907 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3908 TCP_NLA_PAD); 3909 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3910 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3911 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3912 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3913 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3914 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3915 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3916 TCP_NLA_PAD); 3917 if (ack_skb) 3918 nla_put_u8(stats, TCP_NLA_TTL, 3919 tcp_skb_ttl_or_hop_limit(ack_skb)); 3920 3921 return stats; 3922 } 3923 3924 static int do_tcp_getsockopt(struct sock *sk, int level, 3925 int optname, char __user *optval, int __user *optlen) 3926 { 3927 struct inet_connection_sock *icsk = inet_csk(sk); 3928 struct tcp_sock *tp = tcp_sk(sk); 3929 struct net *net = sock_net(sk); 3930 int val, len; 3931 3932 if (get_user(len, optlen)) 3933 return -EFAULT; 3934 3935 len = min_t(unsigned int, len, sizeof(int)); 3936 3937 if (len < 0) 3938 return -EINVAL; 3939 3940 switch (optname) { 3941 case TCP_MAXSEG: 3942 val = tp->mss_cache; 3943 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3944 val = tp->rx_opt.user_mss; 3945 if (tp->repair) 3946 val = tp->rx_opt.mss_clamp; 3947 break; 3948 case TCP_NODELAY: 3949 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3950 break; 3951 case TCP_CORK: 3952 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3953 break; 3954 case TCP_KEEPIDLE: 3955 val = keepalive_time_when(tp) / HZ; 3956 break; 3957 case TCP_KEEPINTVL: 3958 val = keepalive_intvl_when(tp) / HZ; 3959 break; 3960 case TCP_KEEPCNT: 3961 val = keepalive_probes(tp); 3962 break; 3963 case TCP_SYNCNT: 3964 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3965 break; 3966 case TCP_LINGER2: 3967 val = tp->linger2; 3968 if (val >= 0) 3969 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3970 break; 3971 case TCP_DEFER_ACCEPT: 3972 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3973 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3974 break; 3975 case TCP_WINDOW_CLAMP: 3976 val = tp->window_clamp; 3977 break; 3978 case TCP_INFO: { 3979 struct tcp_info info; 3980 3981 if (get_user(len, optlen)) 3982 return -EFAULT; 3983 3984 tcp_get_info(sk, &info); 3985 3986 len = min_t(unsigned int, len, sizeof(info)); 3987 if (put_user(len, optlen)) 3988 return -EFAULT; 3989 if (copy_to_user(optval, &info, len)) 3990 return -EFAULT; 3991 return 0; 3992 } 3993 case TCP_CC_INFO: { 3994 const struct tcp_congestion_ops *ca_ops; 3995 union tcp_cc_info info; 3996 size_t sz = 0; 3997 int attr; 3998 3999 if (get_user(len, optlen)) 4000 return -EFAULT; 4001 4002 ca_ops = icsk->icsk_ca_ops; 4003 if (ca_ops && ca_ops->get_info) 4004 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4005 4006 len = min_t(unsigned int, len, sz); 4007 if (put_user(len, optlen)) 4008 return -EFAULT; 4009 if (copy_to_user(optval, &info, len)) 4010 return -EFAULT; 4011 return 0; 4012 } 4013 case TCP_QUICKACK: 4014 val = !inet_csk_in_pingpong_mode(sk); 4015 break; 4016 4017 case TCP_CONGESTION: 4018 if (get_user(len, optlen)) 4019 return -EFAULT; 4020 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4021 if (put_user(len, optlen)) 4022 return -EFAULT; 4023 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4024 return -EFAULT; 4025 return 0; 4026 4027 case TCP_ULP: 4028 if (get_user(len, optlen)) 4029 return -EFAULT; 4030 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4031 if (!icsk->icsk_ulp_ops) { 4032 if (put_user(0, optlen)) 4033 return -EFAULT; 4034 return 0; 4035 } 4036 if (put_user(len, optlen)) 4037 return -EFAULT; 4038 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4039 return -EFAULT; 4040 return 0; 4041 4042 case TCP_FASTOPEN_KEY: { 4043 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4044 unsigned int key_len; 4045 4046 if (get_user(len, optlen)) 4047 return -EFAULT; 4048 4049 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4050 TCP_FASTOPEN_KEY_LENGTH; 4051 len = min_t(unsigned int, len, key_len); 4052 if (put_user(len, optlen)) 4053 return -EFAULT; 4054 if (copy_to_user(optval, key, len)) 4055 return -EFAULT; 4056 return 0; 4057 } 4058 case TCP_THIN_LINEAR_TIMEOUTS: 4059 val = tp->thin_lto; 4060 break; 4061 4062 case TCP_THIN_DUPACK: 4063 val = 0; 4064 break; 4065 4066 case TCP_REPAIR: 4067 val = tp->repair; 4068 break; 4069 4070 case TCP_REPAIR_QUEUE: 4071 if (tp->repair) 4072 val = tp->repair_queue; 4073 else 4074 return -EINVAL; 4075 break; 4076 4077 case TCP_REPAIR_WINDOW: { 4078 struct tcp_repair_window opt; 4079 4080 if (get_user(len, optlen)) 4081 return -EFAULT; 4082 4083 if (len != sizeof(opt)) 4084 return -EINVAL; 4085 4086 if (!tp->repair) 4087 return -EPERM; 4088 4089 opt.snd_wl1 = tp->snd_wl1; 4090 opt.snd_wnd = tp->snd_wnd; 4091 opt.max_window = tp->max_window; 4092 opt.rcv_wnd = tp->rcv_wnd; 4093 opt.rcv_wup = tp->rcv_wup; 4094 4095 if (copy_to_user(optval, &opt, len)) 4096 return -EFAULT; 4097 return 0; 4098 } 4099 case TCP_QUEUE_SEQ: 4100 if (tp->repair_queue == TCP_SEND_QUEUE) 4101 val = tp->write_seq; 4102 else if (tp->repair_queue == TCP_RECV_QUEUE) 4103 val = tp->rcv_nxt; 4104 else 4105 return -EINVAL; 4106 break; 4107 4108 case TCP_USER_TIMEOUT: 4109 val = icsk->icsk_user_timeout; 4110 break; 4111 4112 case TCP_FASTOPEN: 4113 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4114 break; 4115 4116 case TCP_FASTOPEN_CONNECT: 4117 val = tp->fastopen_connect; 4118 break; 4119 4120 case TCP_FASTOPEN_NO_COOKIE: 4121 val = tp->fastopen_no_cookie; 4122 break; 4123 4124 case TCP_TX_DELAY: 4125 val = tp->tcp_tx_delay; 4126 break; 4127 4128 case TCP_TIMESTAMP: 4129 val = tcp_time_stamp_raw() + tp->tsoffset; 4130 break; 4131 case TCP_NOTSENT_LOWAT: 4132 val = tp->notsent_lowat; 4133 break; 4134 case TCP_INQ: 4135 val = tp->recvmsg_inq; 4136 break; 4137 case TCP_SAVE_SYN: 4138 val = tp->save_syn; 4139 break; 4140 case TCP_SAVED_SYN: { 4141 if (get_user(len, optlen)) 4142 return -EFAULT; 4143 4144 lock_sock(sk); 4145 if (tp->saved_syn) { 4146 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4147 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4148 optlen)) { 4149 release_sock(sk); 4150 return -EFAULT; 4151 } 4152 release_sock(sk); 4153 return -EINVAL; 4154 } 4155 len = tcp_saved_syn_len(tp->saved_syn); 4156 if (put_user(len, optlen)) { 4157 release_sock(sk); 4158 return -EFAULT; 4159 } 4160 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4161 release_sock(sk); 4162 return -EFAULT; 4163 } 4164 tcp_saved_syn_free(tp); 4165 release_sock(sk); 4166 } else { 4167 release_sock(sk); 4168 len = 0; 4169 if (put_user(len, optlen)) 4170 return -EFAULT; 4171 } 4172 return 0; 4173 } 4174 #ifdef CONFIG_MMU 4175 case TCP_ZEROCOPY_RECEIVE: { 4176 struct scm_timestamping_internal tss; 4177 struct tcp_zerocopy_receive zc = {}; 4178 int err; 4179 4180 if (get_user(len, optlen)) 4181 return -EFAULT; 4182 if (len < 0 || 4183 len < offsetofend(struct tcp_zerocopy_receive, length)) 4184 return -EINVAL; 4185 if (unlikely(len > sizeof(zc))) { 4186 err = check_zeroed_user(optval + sizeof(zc), 4187 len - sizeof(zc)); 4188 if (err < 1) 4189 return err == 0 ? -EINVAL : err; 4190 len = sizeof(zc); 4191 if (put_user(len, optlen)) 4192 return -EFAULT; 4193 } 4194 if (copy_from_user(&zc, optval, len)) 4195 return -EFAULT; 4196 if (zc.reserved) 4197 return -EINVAL; 4198 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4199 return -EINVAL; 4200 lock_sock(sk); 4201 err = tcp_zerocopy_receive(sk, &zc, &tss); 4202 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4203 &zc, &len, err); 4204 release_sock(sk); 4205 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4206 goto zerocopy_rcv_cmsg; 4207 switch (len) { 4208 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4209 goto zerocopy_rcv_cmsg; 4210 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4211 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4212 case offsetofend(struct tcp_zerocopy_receive, flags): 4213 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4214 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4215 case offsetofend(struct tcp_zerocopy_receive, err): 4216 goto zerocopy_rcv_sk_err; 4217 case offsetofend(struct tcp_zerocopy_receive, inq): 4218 goto zerocopy_rcv_inq; 4219 case offsetofend(struct tcp_zerocopy_receive, length): 4220 default: 4221 goto zerocopy_rcv_out; 4222 } 4223 zerocopy_rcv_cmsg: 4224 if (zc.msg_flags & TCP_CMSG_TS) 4225 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4226 else 4227 zc.msg_flags = 0; 4228 zerocopy_rcv_sk_err: 4229 if (!err) 4230 zc.err = sock_error(sk); 4231 zerocopy_rcv_inq: 4232 zc.inq = tcp_inq_hint(sk); 4233 zerocopy_rcv_out: 4234 if (!err && copy_to_user(optval, &zc, len)) 4235 err = -EFAULT; 4236 return err; 4237 } 4238 #endif 4239 default: 4240 return -ENOPROTOOPT; 4241 } 4242 4243 if (put_user(len, optlen)) 4244 return -EFAULT; 4245 if (copy_to_user(optval, &val, len)) 4246 return -EFAULT; 4247 return 0; 4248 } 4249 4250 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4251 { 4252 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4253 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4254 */ 4255 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4256 return true; 4257 4258 return false; 4259 } 4260 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4261 4262 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4263 int __user *optlen) 4264 { 4265 struct inet_connection_sock *icsk = inet_csk(sk); 4266 4267 if (level != SOL_TCP) 4268 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4269 optval, optlen); 4270 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4271 } 4272 EXPORT_SYMBOL(tcp_getsockopt); 4273 4274 #ifdef CONFIG_TCP_MD5SIG 4275 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4276 static DEFINE_MUTEX(tcp_md5sig_mutex); 4277 static bool tcp_md5sig_pool_populated = false; 4278 4279 static void __tcp_alloc_md5sig_pool(void) 4280 { 4281 struct crypto_ahash *hash; 4282 int cpu; 4283 4284 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4285 if (IS_ERR(hash)) 4286 return; 4287 4288 for_each_possible_cpu(cpu) { 4289 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4290 struct ahash_request *req; 4291 4292 if (!scratch) { 4293 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4294 sizeof(struct tcphdr), 4295 GFP_KERNEL, 4296 cpu_to_node(cpu)); 4297 if (!scratch) 4298 return; 4299 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4300 } 4301 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4302 continue; 4303 4304 req = ahash_request_alloc(hash, GFP_KERNEL); 4305 if (!req) 4306 return; 4307 4308 ahash_request_set_callback(req, 0, NULL, NULL); 4309 4310 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4311 } 4312 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4313 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4314 */ 4315 smp_wmb(); 4316 tcp_md5sig_pool_populated = true; 4317 } 4318 4319 bool tcp_alloc_md5sig_pool(void) 4320 { 4321 if (unlikely(!tcp_md5sig_pool_populated)) { 4322 mutex_lock(&tcp_md5sig_mutex); 4323 4324 if (!tcp_md5sig_pool_populated) { 4325 __tcp_alloc_md5sig_pool(); 4326 if (tcp_md5sig_pool_populated) 4327 static_branch_inc(&tcp_md5_needed); 4328 } 4329 4330 mutex_unlock(&tcp_md5sig_mutex); 4331 } 4332 return tcp_md5sig_pool_populated; 4333 } 4334 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4335 4336 4337 /** 4338 * tcp_get_md5sig_pool - get md5sig_pool for this user 4339 * 4340 * We use percpu structure, so if we succeed, we exit with preemption 4341 * and BH disabled, to make sure another thread or softirq handling 4342 * wont try to get same context. 4343 */ 4344 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4345 { 4346 local_bh_disable(); 4347 4348 if (tcp_md5sig_pool_populated) { 4349 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4350 smp_rmb(); 4351 return this_cpu_ptr(&tcp_md5sig_pool); 4352 } 4353 local_bh_enable(); 4354 return NULL; 4355 } 4356 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4357 4358 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4359 const struct sk_buff *skb, unsigned int header_len) 4360 { 4361 struct scatterlist sg; 4362 const struct tcphdr *tp = tcp_hdr(skb); 4363 struct ahash_request *req = hp->md5_req; 4364 unsigned int i; 4365 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4366 skb_headlen(skb) - header_len : 0; 4367 const struct skb_shared_info *shi = skb_shinfo(skb); 4368 struct sk_buff *frag_iter; 4369 4370 sg_init_table(&sg, 1); 4371 4372 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4373 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4374 if (crypto_ahash_update(req)) 4375 return 1; 4376 4377 for (i = 0; i < shi->nr_frags; ++i) { 4378 const skb_frag_t *f = &shi->frags[i]; 4379 unsigned int offset = skb_frag_off(f); 4380 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4381 4382 sg_set_page(&sg, page, skb_frag_size(f), 4383 offset_in_page(offset)); 4384 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4385 if (crypto_ahash_update(req)) 4386 return 1; 4387 } 4388 4389 skb_walk_frags(skb, frag_iter) 4390 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4391 return 1; 4392 4393 return 0; 4394 } 4395 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4396 4397 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4398 { 4399 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4400 struct scatterlist sg; 4401 4402 sg_init_one(&sg, key->key, keylen); 4403 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4404 4405 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4406 return data_race(crypto_ahash_update(hp->md5_req)); 4407 } 4408 EXPORT_SYMBOL(tcp_md5_hash_key); 4409 4410 /* Called with rcu_read_lock() */ 4411 enum skb_drop_reason 4412 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4413 const void *saddr, const void *daddr, 4414 int family, int dif, int sdif) 4415 { 4416 /* 4417 * This gets called for each TCP segment that arrives 4418 * so we want to be efficient. 4419 * We have 3 drop cases: 4420 * o No MD5 hash and one expected. 4421 * o MD5 hash and we're not expecting one. 4422 * o MD5 hash and its wrong. 4423 */ 4424 const __u8 *hash_location = NULL; 4425 struct tcp_md5sig_key *hash_expected; 4426 const struct tcphdr *th = tcp_hdr(skb); 4427 struct tcp_sock *tp = tcp_sk(sk); 4428 int genhash, l3index; 4429 u8 newhash[16]; 4430 4431 /* sdif set, means packet ingressed via a device 4432 * in an L3 domain and dif is set to the l3mdev 4433 */ 4434 l3index = sdif ? dif : 0; 4435 4436 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4437 hash_location = tcp_parse_md5sig_option(th); 4438 4439 /* We've parsed the options - do we have a hash? */ 4440 if (!hash_expected && !hash_location) 4441 return SKB_NOT_DROPPED_YET; 4442 4443 if (hash_expected && !hash_location) { 4444 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4445 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4446 } 4447 4448 if (!hash_expected && hash_location) { 4449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4450 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4451 } 4452 4453 /* check the signature */ 4454 genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected, 4455 NULL, skb); 4456 4457 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4459 if (family == AF_INET) { 4460 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4461 saddr, ntohs(th->source), 4462 daddr, ntohs(th->dest), 4463 genhash ? " tcp_v4_calc_md5_hash failed" 4464 : "", l3index); 4465 } else { 4466 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4467 genhash ? "failed" : "mismatch", 4468 saddr, ntohs(th->source), 4469 daddr, ntohs(th->dest), l3index); 4470 } 4471 return SKB_DROP_REASON_TCP_MD5FAILURE; 4472 } 4473 return SKB_NOT_DROPPED_YET; 4474 } 4475 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4476 4477 #endif 4478 4479 void tcp_done(struct sock *sk) 4480 { 4481 struct request_sock *req; 4482 4483 /* We might be called with a new socket, after 4484 * inet_csk_prepare_forced_close() has been called 4485 * so we can not use lockdep_sock_is_held(sk) 4486 */ 4487 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4488 4489 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4490 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4491 4492 tcp_set_state(sk, TCP_CLOSE); 4493 tcp_clear_xmit_timers(sk); 4494 if (req) 4495 reqsk_fastopen_remove(sk, req, false); 4496 4497 sk->sk_shutdown = SHUTDOWN_MASK; 4498 4499 if (!sock_flag(sk, SOCK_DEAD)) 4500 sk->sk_state_change(sk); 4501 else 4502 inet_csk_destroy_sock(sk); 4503 } 4504 EXPORT_SYMBOL_GPL(tcp_done); 4505 4506 int tcp_abort(struct sock *sk, int err) 4507 { 4508 if (!sk_fullsock(sk)) { 4509 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4510 struct request_sock *req = inet_reqsk(sk); 4511 4512 local_bh_disable(); 4513 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4514 local_bh_enable(); 4515 return 0; 4516 } 4517 return -EOPNOTSUPP; 4518 } 4519 4520 /* Don't race with userspace socket closes such as tcp_close. */ 4521 lock_sock(sk); 4522 4523 if (sk->sk_state == TCP_LISTEN) { 4524 tcp_set_state(sk, TCP_CLOSE); 4525 inet_csk_listen_stop(sk); 4526 } 4527 4528 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4529 local_bh_disable(); 4530 bh_lock_sock(sk); 4531 4532 if (!sock_flag(sk, SOCK_DEAD)) { 4533 sk->sk_err = err; 4534 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4535 smp_wmb(); 4536 sk_error_report(sk); 4537 if (tcp_need_reset(sk->sk_state)) 4538 tcp_send_active_reset(sk, GFP_ATOMIC); 4539 tcp_done(sk); 4540 } 4541 4542 bh_unlock_sock(sk); 4543 local_bh_enable(); 4544 tcp_write_queue_purge(sk); 4545 release_sock(sk); 4546 return 0; 4547 } 4548 EXPORT_SYMBOL_GPL(tcp_abort); 4549 4550 extern struct tcp_congestion_ops tcp_reno; 4551 4552 static __initdata unsigned long thash_entries; 4553 static int __init set_thash_entries(char *str) 4554 { 4555 ssize_t ret; 4556 4557 if (!str) 4558 return 0; 4559 4560 ret = kstrtoul(str, 0, &thash_entries); 4561 if (ret) 4562 return 0; 4563 4564 return 1; 4565 } 4566 __setup("thash_entries=", set_thash_entries); 4567 4568 static void __init tcp_init_mem(void) 4569 { 4570 unsigned long limit = nr_free_buffer_pages() / 16; 4571 4572 limit = max(limit, 128UL); 4573 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4574 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4575 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4576 } 4577 4578 void __init tcp_init(void) 4579 { 4580 int max_rshare, max_wshare, cnt; 4581 unsigned long limit; 4582 unsigned int i; 4583 4584 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4585 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4586 sizeof_field(struct sk_buff, cb)); 4587 4588 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4589 4590 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4591 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4592 4593 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4594 thash_entries, 21, /* one slot per 2 MB*/ 4595 0, 64 * 1024); 4596 tcp_hashinfo.bind_bucket_cachep = 4597 kmem_cache_create("tcp_bind_bucket", 4598 sizeof(struct inet_bind_bucket), 0, 4599 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4600 SLAB_ACCOUNT, 4601 NULL); 4602 tcp_hashinfo.bind2_bucket_cachep = 4603 kmem_cache_create("tcp_bind2_bucket", 4604 sizeof(struct inet_bind2_bucket), 0, 4605 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4606 SLAB_ACCOUNT, 4607 NULL); 4608 4609 /* Size and allocate the main established and bind bucket 4610 * hash tables. 4611 * 4612 * The methodology is similar to that of the buffer cache. 4613 */ 4614 tcp_hashinfo.ehash = 4615 alloc_large_system_hash("TCP established", 4616 sizeof(struct inet_ehash_bucket), 4617 thash_entries, 4618 17, /* one slot per 128 KB of memory */ 4619 0, 4620 NULL, 4621 &tcp_hashinfo.ehash_mask, 4622 0, 4623 thash_entries ? 0 : 512 * 1024); 4624 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4625 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4626 4627 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4628 panic("TCP: failed to alloc ehash_locks"); 4629 tcp_hashinfo.bhash = 4630 alloc_large_system_hash("TCP bind bhash tables", 4631 sizeof(struct inet_bind_hashbucket) + 4632 sizeof(struct inet_bind2_hashbucket), 4633 tcp_hashinfo.ehash_mask + 1, 4634 17, /* one slot per 128 KB of memory */ 4635 0, 4636 &tcp_hashinfo.bhash_size, 4637 NULL, 4638 0, 4639 64 * 1024); 4640 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4641 tcp_hashinfo.bhash2 = 4642 (struct inet_bind2_hashbucket *)(tcp_hashinfo.bhash + tcp_hashinfo.bhash_size); 4643 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4644 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4645 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4646 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4647 } 4648 4649 4650 cnt = tcp_hashinfo.ehash_mask + 1; 4651 sysctl_tcp_max_orphans = cnt / 2; 4652 4653 tcp_init_mem(); 4654 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4655 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4656 max_wshare = min(4UL*1024*1024, limit); 4657 max_rshare = min(6UL*1024*1024, limit); 4658 4659 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4660 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4661 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4662 4663 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4664 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4665 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4666 4667 pr_info("Hash tables configured (established %u bind %u)\n", 4668 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4669 4670 tcp_v4_init(); 4671 tcp_metrics_init(); 4672 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4673 tcp_tasklet_init(); 4674 mptcp_init(); 4675 } 4676