1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 458 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1166 int *copied, size_t size, 1167 struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1175 TFO_CLIENT_ENABLE) || 1176 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1177 uaddr->sa_family == AF_UNSPEC)) 1178 return -EOPNOTSUPP; 1179 if (tp->fastopen_req) 1180 return -EALREADY; /* Another Fast Open is in progress */ 1181 1182 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1183 sk->sk_allocation); 1184 if (unlikely(!tp->fastopen_req)) 1185 return -ENOBUFS; 1186 tp->fastopen_req->data = msg; 1187 tp->fastopen_req->size = size; 1188 tp->fastopen_req->uarg = uarg; 1189 1190 if (inet->defer_connect) { 1191 err = tcp_connect(sk); 1192 /* Same failure procedure as in tcp_v4/6_connect */ 1193 if (err) { 1194 tcp_set_state(sk, TCP_CLOSE); 1195 inet->inet_dport = 0; 1196 sk->sk_route_caps = 0; 1197 } 1198 } 1199 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1200 err = __inet_stream_connect(sk->sk_socket, uaddr, 1201 msg->msg_namelen, flags, 1); 1202 /* fastopen_req could already be freed in __inet_stream_connect 1203 * if the connection times out or gets rst 1204 */ 1205 if (tp->fastopen_req) { 1206 *copied = tp->fastopen_req->copied; 1207 tcp_free_fastopen_req(tp); 1208 inet->defer_connect = 0; 1209 } 1210 return err; 1211 } 1212 1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1214 { 1215 struct tcp_sock *tp = tcp_sk(sk); 1216 struct ubuf_info *uarg = NULL; 1217 struct sk_buff *skb; 1218 struct sockcm_cookie sockc; 1219 int flags, err, copied = 0; 1220 int mss_now = 0, size_goal, copied_syn = 0; 1221 int process_backlog = 0; 1222 bool zc = false; 1223 long timeo; 1224 1225 flags = msg->msg_flags; 1226 1227 if ((flags & MSG_ZEROCOPY) && size) { 1228 skb = tcp_write_queue_tail(sk); 1229 1230 if (msg->msg_ubuf) { 1231 uarg = msg->msg_ubuf; 1232 net_zcopy_get(uarg); 1233 zc = sk->sk_route_caps & NETIF_F_SG; 1234 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1235 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1236 if (!uarg) { 1237 err = -ENOBUFS; 1238 goto out_err; 1239 } 1240 zc = sk->sk_route_caps & NETIF_F_SG; 1241 if (!zc) 1242 uarg->zerocopy = 0; 1243 } 1244 } 1245 1246 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1247 !tp->repair) { 1248 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1249 if (err == -EINPROGRESS && copied_syn > 0) 1250 goto out; 1251 else if (err) 1252 goto out_err; 1253 } 1254 1255 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1256 1257 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1258 1259 /* Wait for a connection to finish. One exception is TCP Fast Open 1260 * (passive side) where data is allowed to be sent before a connection 1261 * is fully established. 1262 */ 1263 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1264 !tcp_passive_fastopen(sk)) { 1265 err = sk_stream_wait_connect(sk, &timeo); 1266 if (err != 0) 1267 goto do_error; 1268 } 1269 1270 if (unlikely(tp->repair)) { 1271 if (tp->repair_queue == TCP_RECV_QUEUE) { 1272 copied = tcp_send_rcvq(sk, msg, size); 1273 goto out_nopush; 1274 } 1275 1276 err = -EINVAL; 1277 if (tp->repair_queue == TCP_NO_QUEUE) 1278 goto out_err; 1279 1280 /* 'common' sending to sendq */ 1281 } 1282 1283 sockcm_init(&sockc, sk); 1284 if (msg->msg_controllen) { 1285 err = sock_cmsg_send(sk, msg, &sockc); 1286 if (unlikely(err)) { 1287 err = -EINVAL; 1288 goto out_err; 1289 } 1290 } 1291 1292 /* This should be in poll */ 1293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1294 1295 /* Ok commence sending. */ 1296 copied = 0; 1297 1298 restart: 1299 mss_now = tcp_send_mss(sk, &size_goal, flags); 1300 1301 err = -EPIPE; 1302 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1303 goto do_error; 1304 1305 while (msg_data_left(msg)) { 1306 int copy = 0; 1307 1308 skb = tcp_write_queue_tail(sk); 1309 if (skb) 1310 copy = size_goal - skb->len; 1311 1312 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1313 bool first_skb; 1314 1315 new_segment: 1316 if (!sk_stream_memory_free(sk)) 1317 goto wait_for_space; 1318 1319 if (unlikely(process_backlog >= 16)) { 1320 process_backlog = 0; 1321 if (sk_flush_backlog(sk)) 1322 goto restart; 1323 } 1324 first_skb = tcp_rtx_and_write_queues_empty(sk); 1325 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1326 first_skb); 1327 if (!skb) 1328 goto wait_for_space; 1329 1330 process_backlog++; 1331 1332 tcp_skb_entail(sk, skb); 1333 copy = size_goal; 1334 1335 /* All packets are restored as if they have 1336 * already been sent. skb_mstamp_ns isn't set to 1337 * avoid wrong rtt estimation. 1338 */ 1339 if (tp->repair) 1340 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1341 } 1342 1343 /* Try to append data to the end of skb. */ 1344 if (copy > msg_data_left(msg)) 1345 copy = msg_data_left(msg); 1346 1347 if (!zc) { 1348 bool merge = true; 1349 int i = skb_shinfo(skb)->nr_frags; 1350 struct page_frag *pfrag = sk_page_frag(sk); 1351 1352 if (!sk_page_frag_refill(sk, pfrag)) 1353 goto wait_for_space; 1354 1355 if (!skb_can_coalesce(skb, i, pfrag->page, 1356 pfrag->offset)) { 1357 if (i >= sysctl_max_skb_frags) { 1358 tcp_mark_push(tp, skb); 1359 goto new_segment; 1360 } 1361 merge = false; 1362 } 1363 1364 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1365 1366 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1367 if (tcp_downgrade_zcopy_pure(sk, skb)) 1368 goto wait_for_space; 1369 skb_zcopy_downgrade_managed(skb); 1370 } 1371 1372 copy = tcp_wmem_schedule(sk, copy); 1373 if (!copy) 1374 goto wait_for_space; 1375 1376 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1377 pfrag->page, 1378 pfrag->offset, 1379 copy); 1380 if (err) 1381 goto do_error; 1382 1383 /* Update the skb. */ 1384 if (merge) { 1385 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1386 } else { 1387 skb_fill_page_desc(skb, i, pfrag->page, 1388 pfrag->offset, copy); 1389 page_ref_inc(pfrag->page); 1390 } 1391 pfrag->offset += copy; 1392 } else { 1393 /* First append to a fragless skb builds initial 1394 * pure zerocopy skb 1395 */ 1396 if (!skb->len) 1397 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1398 1399 if (!skb_zcopy_pure(skb)) { 1400 copy = tcp_wmem_schedule(sk, copy); 1401 if (!copy) 1402 goto wait_for_space; 1403 } 1404 1405 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1406 if (err == -EMSGSIZE || err == -EEXIST) { 1407 tcp_mark_push(tp, skb); 1408 goto new_segment; 1409 } 1410 if (err < 0) 1411 goto do_error; 1412 copy = err; 1413 } 1414 1415 if (!copied) 1416 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1417 1418 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1419 TCP_SKB_CB(skb)->end_seq += copy; 1420 tcp_skb_pcount_set(skb, 0); 1421 1422 copied += copy; 1423 if (!msg_data_left(msg)) { 1424 if (unlikely(flags & MSG_EOR)) 1425 TCP_SKB_CB(skb)->eor = 1; 1426 goto out; 1427 } 1428 1429 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1430 continue; 1431 1432 if (forced_push(tp)) { 1433 tcp_mark_push(tp, skb); 1434 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1435 } else if (skb == tcp_send_head(sk)) 1436 tcp_push_one(sk, mss_now); 1437 continue; 1438 1439 wait_for_space: 1440 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1441 if (copied) 1442 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1443 TCP_NAGLE_PUSH, size_goal); 1444 1445 err = sk_stream_wait_memory(sk, &timeo); 1446 if (err != 0) 1447 goto do_error; 1448 1449 mss_now = tcp_send_mss(sk, &size_goal, flags); 1450 } 1451 1452 out: 1453 if (copied) { 1454 tcp_tx_timestamp(sk, sockc.tsflags); 1455 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1456 } 1457 out_nopush: 1458 net_zcopy_put(uarg); 1459 return copied + copied_syn; 1460 1461 do_error: 1462 tcp_remove_empty_skb(sk); 1463 1464 if (copied + copied_syn) 1465 goto out; 1466 out_err: 1467 net_zcopy_put_abort(uarg, true); 1468 err = sk_stream_error(sk, flags, err); 1469 /* make sure we wake any epoll edge trigger waiter */ 1470 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1471 sk->sk_write_space(sk); 1472 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1473 } 1474 return err; 1475 } 1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1477 1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1479 { 1480 int ret; 1481 1482 lock_sock(sk); 1483 ret = tcp_sendmsg_locked(sk, msg, size); 1484 release_sock(sk); 1485 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(tcp_sendmsg); 1489 1490 /* 1491 * Handle reading urgent data. BSD has very simple semantics for 1492 * this, no blocking and very strange errors 8) 1493 */ 1494 1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1496 { 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 /* No URG data to read. */ 1500 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1501 tp->urg_data == TCP_URG_READ) 1502 return -EINVAL; /* Yes this is right ! */ 1503 1504 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1505 return -ENOTCONN; 1506 1507 if (tp->urg_data & TCP_URG_VALID) { 1508 int err = 0; 1509 char c = tp->urg_data; 1510 1511 if (!(flags & MSG_PEEK)) 1512 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1513 1514 /* Read urgent data. */ 1515 msg->msg_flags |= MSG_OOB; 1516 1517 if (len > 0) { 1518 if (!(flags & MSG_TRUNC)) 1519 err = memcpy_to_msg(msg, &c, 1); 1520 len = 1; 1521 } else 1522 msg->msg_flags |= MSG_TRUNC; 1523 1524 return err ? -EFAULT : len; 1525 } 1526 1527 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1528 return 0; 1529 1530 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1531 * the available implementations agree in this case: 1532 * this call should never block, independent of the 1533 * blocking state of the socket. 1534 * Mike <pall@rz.uni-karlsruhe.de> 1535 */ 1536 return -EAGAIN; 1537 } 1538 1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1540 { 1541 struct sk_buff *skb; 1542 int copied = 0, err = 0; 1543 1544 /* XXX -- need to support SO_PEEK_OFF */ 1545 1546 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1547 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1548 if (err) 1549 return err; 1550 copied += skb->len; 1551 } 1552 1553 skb_queue_walk(&sk->sk_write_queue, skb) { 1554 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1555 if (err) 1556 break; 1557 1558 copied += skb->len; 1559 } 1560 1561 return err ?: copied; 1562 } 1563 1564 /* Clean up the receive buffer for full frames taken by the user, 1565 * then send an ACK if necessary. COPIED is the number of bytes 1566 * tcp_recvmsg has given to the user so far, it speeds up the 1567 * calculation of whether or not we must ACK for the sake of 1568 * a window update. 1569 */ 1570 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1571 { 1572 struct tcp_sock *tp = tcp_sk(sk); 1573 bool time_to_ack = false; 1574 1575 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1576 1577 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1578 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1579 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1580 1581 if (inet_csk_ack_scheduled(sk)) { 1582 const struct inet_connection_sock *icsk = inet_csk(sk); 1583 1584 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1585 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1586 /* 1587 * If this read emptied read buffer, we send ACK, if 1588 * connection is not bidirectional, user drained 1589 * receive buffer and there was a small segment 1590 * in queue. 1591 */ 1592 (copied > 0 && 1593 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1594 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1595 !inet_csk_in_pingpong_mode(sk))) && 1596 !atomic_read(&sk->sk_rmem_alloc))) 1597 time_to_ack = true; 1598 } 1599 1600 /* We send an ACK if we can now advertise a non-zero window 1601 * which has been raised "significantly". 1602 * 1603 * Even if window raised up to infinity, do not send window open ACK 1604 * in states, where we will not receive more. It is useless. 1605 */ 1606 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1607 __u32 rcv_window_now = tcp_receive_window(tp); 1608 1609 /* Optimize, __tcp_select_window() is not cheap. */ 1610 if (2*rcv_window_now <= tp->window_clamp) { 1611 __u32 new_window = __tcp_select_window(sk); 1612 1613 /* Send ACK now, if this read freed lots of space 1614 * in our buffer. Certainly, new_window is new window. 1615 * We can advertise it now, if it is not less than current one. 1616 * "Lots" means "at least twice" here. 1617 */ 1618 if (new_window && new_window >= 2 * rcv_window_now) 1619 time_to_ack = true; 1620 } 1621 } 1622 if (time_to_ack) 1623 tcp_send_ack(sk); 1624 } 1625 1626 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1627 { 1628 __skb_unlink(skb, &sk->sk_receive_queue); 1629 if (likely(skb->destructor == sock_rfree)) { 1630 sock_rfree(skb); 1631 skb->destructor = NULL; 1632 skb->sk = NULL; 1633 return skb_attempt_defer_free(skb); 1634 } 1635 __kfree_skb(skb); 1636 } 1637 1638 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1639 { 1640 struct sk_buff *skb; 1641 u32 offset; 1642 1643 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1644 offset = seq - TCP_SKB_CB(skb)->seq; 1645 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1646 pr_err_once("%s: found a SYN, please report !\n", __func__); 1647 offset--; 1648 } 1649 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1650 *off = offset; 1651 return skb; 1652 } 1653 /* This looks weird, but this can happen if TCP collapsing 1654 * splitted a fat GRO packet, while we released socket lock 1655 * in skb_splice_bits() 1656 */ 1657 tcp_eat_recv_skb(sk, skb); 1658 } 1659 return NULL; 1660 } 1661 EXPORT_SYMBOL(tcp_recv_skb); 1662 1663 /* 1664 * This routine provides an alternative to tcp_recvmsg() for routines 1665 * that would like to handle copying from skbuffs directly in 'sendfile' 1666 * fashion. 1667 * Note: 1668 * - It is assumed that the socket was locked by the caller. 1669 * - The routine does not block. 1670 * - At present, there is no support for reading OOB data 1671 * or for 'peeking' the socket using this routine 1672 * (although both would be easy to implement). 1673 */ 1674 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1675 sk_read_actor_t recv_actor) 1676 { 1677 struct sk_buff *skb; 1678 struct tcp_sock *tp = tcp_sk(sk); 1679 u32 seq = tp->copied_seq; 1680 u32 offset; 1681 int copied = 0; 1682 1683 if (sk->sk_state == TCP_LISTEN) 1684 return -ENOTCONN; 1685 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1686 if (offset < skb->len) { 1687 int used; 1688 size_t len; 1689 1690 len = skb->len - offset; 1691 /* Stop reading if we hit a patch of urgent data */ 1692 if (unlikely(tp->urg_data)) { 1693 u32 urg_offset = tp->urg_seq - seq; 1694 if (urg_offset < len) 1695 len = urg_offset; 1696 if (!len) 1697 break; 1698 } 1699 used = recv_actor(desc, skb, offset, len); 1700 if (used <= 0) { 1701 if (!copied) 1702 copied = used; 1703 break; 1704 } 1705 if (WARN_ON_ONCE(used > len)) 1706 used = len; 1707 seq += used; 1708 copied += used; 1709 offset += used; 1710 1711 /* If recv_actor drops the lock (e.g. TCP splice 1712 * receive) the skb pointer might be invalid when 1713 * getting here: tcp_collapse might have deleted it 1714 * while aggregating skbs from the socket queue. 1715 */ 1716 skb = tcp_recv_skb(sk, seq - 1, &offset); 1717 if (!skb) 1718 break; 1719 /* TCP coalescing might have appended data to the skb. 1720 * Try to splice more frags 1721 */ 1722 if (offset + 1 != skb->len) 1723 continue; 1724 } 1725 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1726 tcp_eat_recv_skb(sk, skb); 1727 ++seq; 1728 break; 1729 } 1730 tcp_eat_recv_skb(sk, skb); 1731 if (!desc->count) 1732 break; 1733 WRITE_ONCE(tp->copied_seq, seq); 1734 } 1735 WRITE_ONCE(tp->copied_seq, seq); 1736 1737 tcp_rcv_space_adjust(sk); 1738 1739 /* Clean up data we have read: This will do ACK frames. */ 1740 if (copied > 0) { 1741 tcp_recv_skb(sk, seq, &offset); 1742 tcp_cleanup_rbuf(sk, copied); 1743 } 1744 return copied; 1745 } 1746 EXPORT_SYMBOL(tcp_read_sock); 1747 1748 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1749 { 1750 struct tcp_sock *tp = tcp_sk(sk); 1751 u32 seq = tp->copied_seq; 1752 struct sk_buff *skb; 1753 int copied = 0; 1754 u32 offset; 1755 1756 if (sk->sk_state == TCP_LISTEN) 1757 return -ENOTCONN; 1758 1759 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1760 int used; 1761 1762 __skb_unlink(skb, &sk->sk_receive_queue); 1763 used = recv_actor(sk, skb); 1764 if (used <= 0) { 1765 if (!copied) 1766 copied = used; 1767 break; 1768 } 1769 seq += used; 1770 copied += used; 1771 1772 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1773 consume_skb(skb); 1774 ++seq; 1775 break; 1776 } 1777 consume_skb(skb); 1778 break; 1779 } 1780 WRITE_ONCE(tp->copied_seq, seq); 1781 1782 tcp_rcv_space_adjust(sk); 1783 1784 /* Clean up data we have read: This will do ACK frames. */ 1785 if (copied > 0) 1786 tcp_cleanup_rbuf(sk, copied); 1787 1788 return copied; 1789 } 1790 EXPORT_SYMBOL(tcp_read_skb); 1791 1792 void tcp_read_done(struct sock *sk, size_t len) 1793 { 1794 struct tcp_sock *tp = tcp_sk(sk); 1795 u32 seq = tp->copied_seq; 1796 struct sk_buff *skb; 1797 size_t left; 1798 u32 offset; 1799 1800 if (sk->sk_state == TCP_LISTEN) 1801 return; 1802 1803 left = len; 1804 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1805 int used; 1806 1807 used = min_t(size_t, skb->len - offset, left); 1808 seq += used; 1809 left -= used; 1810 1811 if (skb->len > offset + used) 1812 break; 1813 1814 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1815 tcp_eat_recv_skb(sk, skb); 1816 ++seq; 1817 break; 1818 } 1819 tcp_eat_recv_skb(sk, skb); 1820 } 1821 WRITE_ONCE(tp->copied_seq, seq); 1822 1823 tcp_rcv_space_adjust(sk); 1824 1825 /* Clean up data we have read: This will do ACK frames. */ 1826 if (left != len) 1827 tcp_cleanup_rbuf(sk, len - left); 1828 } 1829 EXPORT_SYMBOL(tcp_read_done); 1830 1831 int tcp_peek_len(struct socket *sock) 1832 { 1833 return tcp_inq(sock->sk); 1834 } 1835 EXPORT_SYMBOL(tcp_peek_len); 1836 1837 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1838 int tcp_set_rcvlowat(struct sock *sk, int val) 1839 { 1840 int cap; 1841 1842 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1843 cap = sk->sk_rcvbuf >> 1; 1844 else 1845 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1846 val = min(val, cap); 1847 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1848 1849 /* Check if we need to signal EPOLLIN right now */ 1850 tcp_data_ready(sk); 1851 1852 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1853 return 0; 1854 1855 val <<= 1; 1856 if (val > sk->sk_rcvbuf) { 1857 WRITE_ONCE(sk->sk_rcvbuf, val); 1858 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1859 } 1860 return 0; 1861 } 1862 EXPORT_SYMBOL(tcp_set_rcvlowat); 1863 1864 void tcp_update_recv_tstamps(struct sk_buff *skb, 1865 struct scm_timestamping_internal *tss) 1866 { 1867 if (skb->tstamp) 1868 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1869 else 1870 tss->ts[0] = (struct timespec64) {0}; 1871 1872 if (skb_hwtstamps(skb)->hwtstamp) 1873 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1874 else 1875 tss->ts[2] = (struct timespec64) {0}; 1876 } 1877 1878 #ifdef CONFIG_MMU 1879 static const struct vm_operations_struct tcp_vm_ops = { 1880 }; 1881 1882 int tcp_mmap(struct file *file, struct socket *sock, 1883 struct vm_area_struct *vma) 1884 { 1885 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1886 return -EPERM; 1887 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1888 1889 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1890 vma->vm_flags |= VM_MIXEDMAP; 1891 1892 vma->vm_ops = &tcp_vm_ops; 1893 return 0; 1894 } 1895 EXPORT_SYMBOL(tcp_mmap); 1896 1897 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1898 u32 *offset_frag) 1899 { 1900 skb_frag_t *frag; 1901 1902 if (unlikely(offset_skb >= skb->len)) 1903 return NULL; 1904 1905 offset_skb -= skb_headlen(skb); 1906 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1907 return NULL; 1908 1909 frag = skb_shinfo(skb)->frags; 1910 while (offset_skb) { 1911 if (skb_frag_size(frag) > offset_skb) { 1912 *offset_frag = offset_skb; 1913 return frag; 1914 } 1915 offset_skb -= skb_frag_size(frag); 1916 ++frag; 1917 } 1918 *offset_frag = 0; 1919 return frag; 1920 } 1921 1922 static bool can_map_frag(const skb_frag_t *frag) 1923 { 1924 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1925 } 1926 1927 static int find_next_mappable_frag(const skb_frag_t *frag, 1928 int remaining_in_skb) 1929 { 1930 int offset = 0; 1931 1932 if (likely(can_map_frag(frag))) 1933 return 0; 1934 1935 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1936 offset += skb_frag_size(frag); 1937 ++frag; 1938 } 1939 return offset; 1940 } 1941 1942 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1943 struct tcp_zerocopy_receive *zc, 1944 struct sk_buff *skb, u32 offset) 1945 { 1946 u32 frag_offset, partial_frag_remainder = 0; 1947 int mappable_offset; 1948 skb_frag_t *frag; 1949 1950 /* worst case: skip to next skb. try to improve on this case below */ 1951 zc->recv_skip_hint = skb->len - offset; 1952 1953 /* Find the frag containing this offset (and how far into that frag) */ 1954 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1955 if (!frag) 1956 return; 1957 1958 if (frag_offset) { 1959 struct skb_shared_info *info = skb_shinfo(skb); 1960 1961 /* We read part of the last frag, must recvmsg() rest of skb. */ 1962 if (frag == &info->frags[info->nr_frags - 1]) 1963 return; 1964 1965 /* Else, we must at least read the remainder in this frag. */ 1966 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1967 zc->recv_skip_hint -= partial_frag_remainder; 1968 ++frag; 1969 } 1970 1971 /* partial_frag_remainder: If part way through a frag, must read rest. 1972 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1973 * in partial_frag_remainder. 1974 */ 1975 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1976 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1977 } 1978 1979 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1980 int flags, struct scm_timestamping_internal *tss, 1981 int *cmsg_flags); 1982 static int receive_fallback_to_copy(struct sock *sk, 1983 struct tcp_zerocopy_receive *zc, int inq, 1984 struct scm_timestamping_internal *tss) 1985 { 1986 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1987 struct msghdr msg = {}; 1988 struct iovec iov; 1989 int err; 1990 1991 zc->length = 0; 1992 zc->recv_skip_hint = 0; 1993 1994 if (copy_address != zc->copybuf_address) 1995 return -EINVAL; 1996 1997 err = import_single_range(READ, (void __user *)copy_address, 1998 inq, &iov, &msg.msg_iter); 1999 if (err) 2000 return err; 2001 2002 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 2003 tss, &zc->msg_flags); 2004 if (err < 0) 2005 return err; 2006 2007 zc->copybuf_len = err; 2008 if (likely(zc->copybuf_len)) { 2009 struct sk_buff *skb; 2010 u32 offset; 2011 2012 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 2013 if (skb) 2014 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 2015 } 2016 return 0; 2017 } 2018 2019 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 2020 struct sk_buff *skb, u32 copylen, 2021 u32 *offset, u32 *seq) 2022 { 2023 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2024 struct msghdr msg = {}; 2025 struct iovec iov; 2026 int err; 2027 2028 if (copy_address != zc->copybuf_address) 2029 return -EINVAL; 2030 2031 err = import_single_range(READ, (void __user *)copy_address, 2032 copylen, &iov, &msg.msg_iter); 2033 if (err) 2034 return err; 2035 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 2036 if (err) 2037 return err; 2038 zc->recv_skip_hint -= copylen; 2039 *offset += copylen; 2040 *seq += copylen; 2041 return (__s32)copylen; 2042 } 2043 2044 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2045 struct sock *sk, 2046 struct sk_buff *skb, 2047 u32 *seq, 2048 s32 copybuf_len, 2049 struct scm_timestamping_internal *tss) 2050 { 2051 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2052 2053 if (!copylen) 2054 return 0; 2055 /* skb is null if inq < PAGE_SIZE. */ 2056 if (skb) { 2057 offset = *seq - TCP_SKB_CB(skb)->seq; 2058 } else { 2059 skb = tcp_recv_skb(sk, *seq, &offset); 2060 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2061 tcp_update_recv_tstamps(skb, tss); 2062 zc->msg_flags |= TCP_CMSG_TS; 2063 } 2064 } 2065 2066 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2067 seq); 2068 return zc->copybuf_len < 0 ? 0 : copylen; 2069 } 2070 2071 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2072 struct page **pending_pages, 2073 unsigned long pages_remaining, 2074 unsigned long *address, 2075 u32 *length, 2076 u32 *seq, 2077 struct tcp_zerocopy_receive *zc, 2078 u32 total_bytes_to_map, 2079 int err) 2080 { 2081 /* At least one page did not map. Try zapping if we skipped earlier. */ 2082 if (err == -EBUSY && 2083 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2084 u32 maybe_zap_len; 2085 2086 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2087 *length + /* Mapped or pending */ 2088 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2089 zap_page_range(vma, *address, maybe_zap_len); 2090 err = 0; 2091 } 2092 2093 if (!err) { 2094 unsigned long leftover_pages = pages_remaining; 2095 int bytes_mapped; 2096 2097 /* We called zap_page_range, try to reinsert. */ 2098 err = vm_insert_pages(vma, *address, 2099 pending_pages, 2100 &pages_remaining); 2101 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2102 *seq += bytes_mapped; 2103 *address += bytes_mapped; 2104 } 2105 if (err) { 2106 /* Either we were unable to zap, OR we zapped, retried an 2107 * insert, and still had an issue. Either ways, pages_remaining 2108 * is the number of pages we were unable to map, and we unroll 2109 * some state we speculatively touched before. 2110 */ 2111 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2112 2113 *length -= bytes_not_mapped; 2114 zc->recv_skip_hint += bytes_not_mapped; 2115 } 2116 return err; 2117 } 2118 2119 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2120 struct page **pages, 2121 unsigned int pages_to_map, 2122 unsigned long *address, 2123 u32 *length, 2124 u32 *seq, 2125 struct tcp_zerocopy_receive *zc, 2126 u32 total_bytes_to_map) 2127 { 2128 unsigned long pages_remaining = pages_to_map; 2129 unsigned int pages_mapped; 2130 unsigned int bytes_mapped; 2131 int err; 2132 2133 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2134 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2135 bytes_mapped = PAGE_SIZE * pages_mapped; 2136 /* Even if vm_insert_pages fails, it may have partially succeeded in 2137 * mapping (some but not all of the pages). 2138 */ 2139 *seq += bytes_mapped; 2140 *address += bytes_mapped; 2141 2142 if (likely(!err)) 2143 return 0; 2144 2145 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2146 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2147 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2148 err); 2149 } 2150 2151 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2152 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2153 struct tcp_zerocopy_receive *zc, 2154 struct scm_timestamping_internal *tss) 2155 { 2156 unsigned long msg_control_addr; 2157 struct msghdr cmsg_dummy; 2158 2159 msg_control_addr = (unsigned long)zc->msg_control; 2160 cmsg_dummy.msg_control = (void *)msg_control_addr; 2161 cmsg_dummy.msg_controllen = 2162 (__kernel_size_t)zc->msg_controllen; 2163 cmsg_dummy.msg_flags = in_compat_syscall() 2164 ? MSG_CMSG_COMPAT : 0; 2165 cmsg_dummy.msg_control_is_user = true; 2166 zc->msg_flags = 0; 2167 if (zc->msg_control == msg_control_addr && 2168 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2169 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2170 zc->msg_control = (__u64) 2171 ((uintptr_t)cmsg_dummy.msg_control); 2172 zc->msg_controllen = 2173 (__u64)cmsg_dummy.msg_controllen; 2174 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2175 } 2176 } 2177 2178 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2179 static int tcp_zerocopy_receive(struct sock *sk, 2180 struct tcp_zerocopy_receive *zc, 2181 struct scm_timestamping_internal *tss) 2182 { 2183 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2184 unsigned long address = (unsigned long)zc->address; 2185 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2186 s32 copybuf_len = zc->copybuf_len; 2187 struct tcp_sock *tp = tcp_sk(sk); 2188 const skb_frag_t *frags = NULL; 2189 unsigned int pages_to_map = 0; 2190 struct vm_area_struct *vma; 2191 struct sk_buff *skb = NULL; 2192 u32 seq = tp->copied_seq; 2193 u32 total_bytes_to_map; 2194 int inq = tcp_inq(sk); 2195 int ret; 2196 2197 zc->copybuf_len = 0; 2198 zc->msg_flags = 0; 2199 2200 if (address & (PAGE_SIZE - 1) || address != zc->address) 2201 return -EINVAL; 2202 2203 if (sk->sk_state == TCP_LISTEN) 2204 return -ENOTCONN; 2205 2206 sock_rps_record_flow(sk); 2207 2208 if (inq && inq <= copybuf_len) 2209 return receive_fallback_to_copy(sk, zc, inq, tss); 2210 2211 if (inq < PAGE_SIZE) { 2212 zc->length = 0; 2213 zc->recv_skip_hint = inq; 2214 if (!inq && sock_flag(sk, SOCK_DONE)) 2215 return -EIO; 2216 return 0; 2217 } 2218 2219 mmap_read_lock(current->mm); 2220 2221 vma = vma_lookup(current->mm, address); 2222 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2223 mmap_read_unlock(current->mm); 2224 return -EINVAL; 2225 } 2226 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2227 avail_len = min_t(u32, vma_len, inq); 2228 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2229 if (total_bytes_to_map) { 2230 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2231 zap_page_range(vma, address, total_bytes_to_map); 2232 zc->length = total_bytes_to_map; 2233 zc->recv_skip_hint = 0; 2234 } else { 2235 zc->length = avail_len; 2236 zc->recv_skip_hint = avail_len; 2237 } 2238 ret = 0; 2239 while (length + PAGE_SIZE <= zc->length) { 2240 int mappable_offset; 2241 struct page *page; 2242 2243 if (zc->recv_skip_hint < PAGE_SIZE) { 2244 u32 offset_frag; 2245 2246 if (skb) { 2247 if (zc->recv_skip_hint > 0) 2248 break; 2249 skb = skb->next; 2250 offset = seq - TCP_SKB_CB(skb)->seq; 2251 } else { 2252 skb = tcp_recv_skb(sk, seq, &offset); 2253 } 2254 2255 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2256 tcp_update_recv_tstamps(skb, tss); 2257 zc->msg_flags |= TCP_CMSG_TS; 2258 } 2259 zc->recv_skip_hint = skb->len - offset; 2260 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2261 if (!frags || offset_frag) 2262 break; 2263 } 2264 2265 mappable_offset = find_next_mappable_frag(frags, 2266 zc->recv_skip_hint); 2267 if (mappable_offset) { 2268 zc->recv_skip_hint = mappable_offset; 2269 break; 2270 } 2271 page = skb_frag_page(frags); 2272 prefetchw(page); 2273 pages[pages_to_map++] = page; 2274 length += PAGE_SIZE; 2275 zc->recv_skip_hint -= PAGE_SIZE; 2276 frags++; 2277 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2278 zc->recv_skip_hint < PAGE_SIZE) { 2279 /* Either full batch, or we're about to go to next skb 2280 * (and we cannot unroll failed ops across skbs). 2281 */ 2282 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2283 pages_to_map, 2284 &address, &length, 2285 &seq, zc, 2286 total_bytes_to_map); 2287 if (ret) 2288 goto out; 2289 pages_to_map = 0; 2290 } 2291 } 2292 if (pages_to_map) { 2293 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2294 &address, &length, &seq, 2295 zc, total_bytes_to_map); 2296 } 2297 out: 2298 mmap_read_unlock(current->mm); 2299 /* Try to copy straggler data. */ 2300 if (!ret) 2301 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2302 2303 if (length + copylen) { 2304 WRITE_ONCE(tp->copied_seq, seq); 2305 tcp_rcv_space_adjust(sk); 2306 2307 /* Clean up data we have read: This will do ACK frames. */ 2308 tcp_recv_skb(sk, seq, &offset); 2309 tcp_cleanup_rbuf(sk, length + copylen); 2310 ret = 0; 2311 if (length == zc->length) 2312 zc->recv_skip_hint = 0; 2313 } else { 2314 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2315 ret = -EIO; 2316 } 2317 zc->length = length; 2318 return ret; 2319 } 2320 #endif 2321 2322 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2323 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2324 struct scm_timestamping_internal *tss) 2325 { 2326 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2327 bool has_timestamping = false; 2328 2329 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2330 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2331 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2332 if (new_tstamp) { 2333 struct __kernel_timespec kts = { 2334 .tv_sec = tss->ts[0].tv_sec, 2335 .tv_nsec = tss->ts[0].tv_nsec, 2336 }; 2337 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2338 sizeof(kts), &kts); 2339 } else { 2340 struct __kernel_old_timespec ts_old = { 2341 .tv_sec = tss->ts[0].tv_sec, 2342 .tv_nsec = tss->ts[0].tv_nsec, 2343 }; 2344 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2345 sizeof(ts_old), &ts_old); 2346 } 2347 } else { 2348 if (new_tstamp) { 2349 struct __kernel_sock_timeval stv = { 2350 .tv_sec = tss->ts[0].tv_sec, 2351 .tv_usec = tss->ts[0].tv_nsec / 1000, 2352 }; 2353 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2354 sizeof(stv), &stv); 2355 } else { 2356 struct __kernel_old_timeval tv = { 2357 .tv_sec = tss->ts[0].tv_sec, 2358 .tv_usec = tss->ts[0].tv_nsec / 1000, 2359 }; 2360 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2361 sizeof(tv), &tv); 2362 } 2363 } 2364 } 2365 2366 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2367 has_timestamping = true; 2368 else 2369 tss->ts[0] = (struct timespec64) {0}; 2370 } 2371 2372 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2373 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2374 has_timestamping = true; 2375 else 2376 tss->ts[2] = (struct timespec64) {0}; 2377 } 2378 2379 if (has_timestamping) { 2380 tss->ts[1] = (struct timespec64) {0}; 2381 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2382 put_cmsg_scm_timestamping64(msg, tss); 2383 else 2384 put_cmsg_scm_timestamping(msg, tss); 2385 } 2386 } 2387 2388 static int tcp_inq_hint(struct sock *sk) 2389 { 2390 const struct tcp_sock *tp = tcp_sk(sk); 2391 u32 copied_seq = READ_ONCE(tp->copied_seq); 2392 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2393 int inq; 2394 2395 inq = rcv_nxt - copied_seq; 2396 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2397 lock_sock(sk); 2398 inq = tp->rcv_nxt - tp->copied_seq; 2399 release_sock(sk); 2400 } 2401 /* After receiving a FIN, tell the user-space to continue reading 2402 * by returning a non-zero inq. 2403 */ 2404 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2405 inq = 1; 2406 return inq; 2407 } 2408 2409 /* 2410 * This routine copies from a sock struct into the user buffer. 2411 * 2412 * Technical note: in 2.3 we work on _locked_ socket, so that 2413 * tricks with *seq access order and skb->users are not required. 2414 * Probably, code can be easily improved even more. 2415 */ 2416 2417 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2418 int flags, struct scm_timestamping_internal *tss, 2419 int *cmsg_flags) 2420 { 2421 struct tcp_sock *tp = tcp_sk(sk); 2422 int copied = 0; 2423 u32 peek_seq; 2424 u32 *seq; 2425 unsigned long used; 2426 int err; 2427 int target; /* Read at least this many bytes */ 2428 long timeo; 2429 struct sk_buff *skb, *last; 2430 u32 urg_hole = 0; 2431 2432 err = -ENOTCONN; 2433 if (sk->sk_state == TCP_LISTEN) 2434 goto out; 2435 2436 if (tp->recvmsg_inq) { 2437 *cmsg_flags = TCP_CMSG_INQ; 2438 msg->msg_get_inq = 1; 2439 } 2440 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2441 2442 /* Urgent data needs to be handled specially. */ 2443 if (flags & MSG_OOB) 2444 goto recv_urg; 2445 2446 if (unlikely(tp->repair)) { 2447 err = -EPERM; 2448 if (!(flags & MSG_PEEK)) 2449 goto out; 2450 2451 if (tp->repair_queue == TCP_SEND_QUEUE) 2452 goto recv_sndq; 2453 2454 err = -EINVAL; 2455 if (tp->repair_queue == TCP_NO_QUEUE) 2456 goto out; 2457 2458 /* 'common' recv queue MSG_PEEK-ing */ 2459 } 2460 2461 seq = &tp->copied_seq; 2462 if (flags & MSG_PEEK) { 2463 peek_seq = tp->copied_seq; 2464 seq = &peek_seq; 2465 } 2466 2467 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2468 2469 do { 2470 u32 offset; 2471 2472 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2473 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2474 if (copied) 2475 break; 2476 if (signal_pending(current)) { 2477 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2478 break; 2479 } 2480 } 2481 2482 /* Next get a buffer. */ 2483 2484 last = skb_peek_tail(&sk->sk_receive_queue); 2485 skb_queue_walk(&sk->sk_receive_queue, skb) { 2486 last = skb; 2487 /* Now that we have two receive queues this 2488 * shouldn't happen. 2489 */ 2490 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2491 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2492 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2493 flags)) 2494 break; 2495 2496 offset = *seq - TCP_SKB_CB(skb)->seq; 2497 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2498 pr_err_once("%s: found a SYN, please report !\n", __func__); 2499 offset--; 2500 } 2501 if (offset < skb->len) 2502 goto found_ok_skb; 2503 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2504 goto found_fin_ok; 2505 WARN(!(flags & MSG_PEEK), 2506 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2507 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2508 } 2509 2510 /* Well, if we have backlog, try to process it now yet. */ 2511 2512 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2513 break; 2514 2515 if (copied) { 2516 if (!timeo || 2517 sk->sk_err || 2518 sk->sk_state == TCP_CLOSE || 2519 (sk->sk_shutdown & RCV_SHUTDOWN) || 2520 signal_pending(current)) 2521 break; 2522 } else { 2523 if (sock_flag(sk, SOCK_DONE)) 2524 break; 2525 2526 if (sk->sk_err) { 2527 copied = sock_error(sk); 2528 break; 2529 } 2530 2531 if (sk->sk_shutdown & RCV_SHUTDOWN) 2532 break; 2533 2534 if (sk->sk_state == TCP_CLOSE) { 2535 /* This occurs when user tries to read 2536 * from never connected socket. 2537 */ 2538 copied = -ENOTCONN; 2539 break; 2540 } 2541 2542 if (!timeo) { 2543 copied = -EAGAIN; 2544 break; 2545 } 2546 2547 if (signal_pending(current)) { 2548 copied = sock_intr_errno(timeo); 2549 break; 2550 } 2551 } 2552 2553 if (copied >= target) { 2554 /* Do not sleep, just process backlog. */ 2555 __sk_flush_backlog(sk); 2556 } else { 2557 tcp_cleanup_rbuf(sk, copied); 2558 sk_wait_data(sk, &timeo, last); 2559 } 2560 2561 if ((flags & MSG_PEEK) && 2562 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2563 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2564 current->comm, 2565 task_pid_nr(current)); 2566 peek_seq = tp->copied_seq; 2567 } 2568 continue; 2569 2570 found_ok_skb: 2571 /* Ok so how much can we use? */ 2572 used = skb->len - offset; 2573 if (len < used) 2574 used = len; 2575 2576 /* Do we have urgent data here? */ 2577 if (unlikely(tp->urg_data)) { 2578 u32 urg_offset = tp->urg_seq - *seq; 2579 if (urg_offset < used) { 2580 if (!urg_offset) { 2581 if (!sock_flag(sk, SOCK_URGINLINE)) { 2582 WRITE_ONCE(*seq, *seq + 1); 2583 urg_hole++; 2584 offset++; 2585 used--; 2586 if (!used) 2587 goto skip_copy; 2588 } 2589 } else 2590 used = urg_offset; 2591 } 2592 } 2593 2594 if (!(flags & MSG_TRUNC)) { 2595 err = skb_copy_datagram_msg(skb, offset, msg, used); 2596 if (err) { 2597 /* Exception. Bailout! */ 2598 if (!copied) 2599 copied = -EFAULT; 2600 break; 2601 } 2602 } 2603 2604 WRITE_ONCE(*seq, *seq + used); 2605 copied += used; 2606 len -= used; 2607 2608 tcp_rcv_space_adjust(sk); 2609 2610 skip_copy: 2611 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2612 WRITE_ONCE(tp->urg_data, 0); 2613 tcp_fast_path_check(sk); 2614 } 2615 2616 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2617 tcp_update_recv_tstamps(skb, tss); 2618 *cmsg_flags |= TCP_CMSG_TS; 2619 } 2620 2621 if (used + offset < skb->len) 2622 continue; 2623 2624 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2625 goto found_fin_ok; 2626 if (!(flags & MSG_PEEK)) 2627 tcp_eat_recv_skb(sk, skb); 2628 continue; 2629 2630 found_fin_ok: 2631 /* Process the FIN. */ 2632 WRITE_ONCE(*seq, *seq + 1); 2633 if (!(flags & MSG_PEEK)) 2634 tcp_eat_recv_skb(sk, skb); 2635 break; 2636 } while (len > 0); 2637 2638 /* According to UNIX98, msg_name/msg_namelen are ignored 2639 * on connected socket. I was just happy when found this 8) --ANK 2640 */ 2641 2642 /* Clean up data we have read: This will do ACK frames. */ 2643 tcp_cleanup_rbuf(sk, copied); 2644 return copied; 2645 2646 out: 2647 return err; 2648 2649 recv_urg: 2650 err = tcp_recv_urg(sk, msg, len, flags); 2651 goto out; 2652 2653 recv_sndq: 2654 err = tcp_peek_sndq(sk, msg, len); 2655 goto out; 2656 } 2657 2658 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2659 int *addr_len) 2660 { 2661 int cmsg_flags = 0, ret; 2662 struct scm_timestamping_internal tss; 2663 2664 if (unlikely(flags & MSG_ERRQUEUE)) 2665 return inet_recv_error(sk, msg, len, addr_len); 2666 2667 if (sk_can_busy_loop(sk) && 2668 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2669 sk->sk_state == TCP_ESTABLISHED) 2670 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2671 2672 lock_sock(sk); 2673 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2674 release_sock(sk); 2675 2676 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2677 if (cmsg_flags & TCP_CMSG_TS) 2678 tcp_recv_timestamp(msg, sk, &tss); 2679 if (msg->msg_get_inq) { 2680 msg->msg_inq = tcp_inq_hint(sk); 2681 if (cmsg_flags & TCP_CMSG_INQ) 2682 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2683 sizeof(msg->msg_inq), &msg->msg_inq); 2684 } 2685 } 2686 return ret; 2687 } 2688 EXPORT_SYMBOL(tcp_recvmsg); 2689 2690 void tcp_set_state(struct sock *sk, int state) 2691 { 2692 int oldstate = sk->sk_state; 2693 2694 /* We defined a new enum for TCP states that are exported in BPF 2695 * so as not force the internal TCP states to be frozen. The 2696 * following checks will detect if an internal state value ever 2697 * differs from the BPF value. If this ever happens, then we will 2698 * need to remap the internal value to the BPF value before calling 2699 * tcp_call_bpf_2arg. 2700 */ 2701 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2702 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2703 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2704 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2705 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2706 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2707 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2708 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2709 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2710 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2711 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2712 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2713 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2714 2715 /* bpf uapi header bpf.h defines an anonymous enum with values 2716 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2717 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2718 * But clang built vmlinux does not have this enum in DWARF 2719 * since clang removes the above code before generating IR/debuginfo. 2720 * Let us explicitly emit the type debuginfo to ensure the 2721 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2722 * regardless of which compiler is used. 2723 */ 2724 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2725 2726 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2727 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2728 2729 switch (state) { 2730 case TCP_ESTABLISHED: 2731 if (oldstate != TCP_ESTABLISHED) 2732 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2733 break; 2734 2735 case TCP_CLOSE: 2736 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2737 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2738 2739 sk->sk_prot->unhash(sk); 2740 if (inet_csk(sk)->icsk_bind_hash && 2741 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2742 inet_put_port(sk); 2743 fallthrough; 2744 default: 2745 if (oldstate == TCP_ESTABLISHED) 2746 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2747 } 2748 2749 /* Change state AFTER socket is unhashed to avoid closed 2750 * socket sitting in hash tables. 2751 */ 2752 inet_sk_state_store(sk, state); 2753 } 2754 EXPORT_SYMBOL_GPL(tcp_set_state); 2755 2756 /* 2757 * State processing on a close. This implements the state shift for 2758 * sending our FIN frame. Note that we only send a FIN for some 2759 * states. A shutdown() may have already sent the FIN, or we may be 2760 * closed. 2761 */ 2762 2763 static const unsigned char new_state[16] = { 2764 /* current state: new state: action: */ 2765 [0 /* (Invalid) */] = TCP_CLOSE, 2766 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2767 [TCP_SYN_SENT] = TCP_CLOSE, 2768 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2769 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2770 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2771 [TCP_TIME_WAIT] = TCP_CLOSE, 2772 [TCP_CLOSE] = TCP_CLOSE, 2773 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2774 [TCP_LAST_ACK] = TCP_LAST_ACK, 2775 [TCP_LISTEN] = TCP_CLOSE, 2776 [TCP_CLOSING] = TCP_CLOSING, 2777 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2778 }; 2779 2780 static int tcp_close_state(struct sock *sk) 2781 { 2782 int next = (int)new_state[sk->sk_state]; 2783 int ns = next & TCP_STATE_MASK; 2784 2785 tcp_set_state(sk, ns); 2786 2787 return next & TCP_ACTION_FIN; 2788 } 2789 2790 /* 2791 * Shutdown the sending side of a connection. Much like close except 2792 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2793 */ 2794 2795 void tcp_shutdown(struct sock *sk, int how) 2796 { 2797 /* We need to grab some memory, and put together a FIN, 2798 * and then put it into the queue to be sent. 2799 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2800 */ 2801 if (!(how & SEND_SHUTDOWN)) 2802 return; 2803 2804 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2805 if ((1 << sk->sk_state) & 2806 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2807 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2808 /* Clear out any half completed packets. FIN if needed. */ 2809 if (tcp_close_state(sk)) 2810 tcp_send_fin(sk); 2811 } 2812 } 2813 EXPORT_SYMBOL(tcp_shutdown); 2814 2815 int tcp_orphan_count_sum(void) 2816 { 2817 int i, total = 0; 2818 2819 for_each_possible_cpu(i) 2820 total += per_cpu(tcp_orphan_count, i); 2821 2822 return max(total, 0); 2823 } 2824 2825 static int tcp_orphan_cache; 2826 static struct timer_list tcp_orphan_timer; 2827 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2828 2829 static void tcp_orphan_update(struct timer_list *unused) 2830 { 2831 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2832 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2833 } 2834 2835 static bool tcp_too_many_orphans(int shift) 2836 { 2837 return READ_ONCE(tcp_orphan_cache) << shift > 2838 READ_ONCE(sysctl_tcp_max_orphans); 2839 } 2840 2841 bool tcp_check_oom(struct sock *sk, int shift) 2842 { 2843 bool too_many_orphans, out_of_socket_memory; 2844 2845 too_many_orphans = tcp_too_many_orphans(shift); 2846 out_of_socket_memory = tcp_out_of_memory(sk); 2847 2848 if (too_many_orphans) 2849 net_info_ratelimited("too many orphaned sockets\n"); 2850 if (out_of_socket_memory) 2851 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2852 return too_many_orphans || out_of_socket_memory; 2853 } 2854 2855 void __tcp_close(struct sock *sk, long timeout) 2856 { 2857 struct sk_buff *skb; 2858 int data_was_unread = 0; 2859 int state; 2860 2861 sk->sk_shutdown = SHUTDOWN_MASK; 2862 2863 if (sk->sk_state == TCP_LISTEN) { 2864 tcp_set_state(sk, TCP_CLOSE); 2865 2866 /* Special case. */ 2867 inet_csk_listen_stop(sk); 2868 2869 goto adjudge_to_death; 2870 } 2871 2872 /* We need to flush the recv. buffs. We do this only on the 2873 * descriptor close, not protocol-sourced closes, because the 2874 * reader process may not have drained the data yet! 2875 */ 2876 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2877 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2878 2879 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2880 len--; 2881 data_was_unread += len; 2882 __kfree_skb(skb); 2883 } 2884 2885 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2886 if (sk->sk_state == TCP_CLOSE) 2887 goto adjudge_to_death; 2888 2889 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2890 * data was lost. To witness the awful effects of the old behavior of 2891 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2892 * GET in an FTP client, suspend the process, wait for the client to 2893 * advertise a zero window, then kill -9 the FTP client, wheee... 2894 * Note: timeout is always zero in such a case. 2895 */ 2896 if (unlikely(tcp_sk(sk)->repair)) { 2897 sk->sk_prot->disconnect(sk, 0); 2898 } else if (data_was_unread) { 2899 /* Unread data was tossed, zap the connection. */ 2900 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2901 tcp_set_state(sk, TCP_CLOSE); 2902 tcp_send_active_reset(sk, sk->sk_allocation); 2903 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2904 /* Check zero linger _after_ checking for unread data. */ 2905 sk->sk_prot->disconnect(sk, 0); 2906 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2907 } else if (tcp_close_state(sk)) { 2908 /* We FIN if the application ate all the data before 2909 * zapping the connection. 2910 */ 2911 2912 /* RED-PEN. Formally speaking, we have broken TCP state 2913 * machine. State transitions: 2914 * 2915 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2916 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2917 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2918 * 2919 * are legal only when FIN has been sent (i.e. in window), 2920 * rather than queued out of window. Purists blame. 2921 * 2922 * F.e. "RFC state" is ESTABLISHED, 2923 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2924 * 2925 * The visible declinations are that sometimes 2926 * we enter time-wait state, when it is not required really 2927 * (harmless), do not send active resets, when they are 2928 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2929 * they look as CLOSING or LAST_ACK for Linux) 2930 * Probably, I missed some more holelets. 2931 * --ANK 2932 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2933 * in a single packet! (May consider it later but will 2934 * probably need API support or TCP_CORK SYN-ACK until 2935 * data is written and socket is closed.) 2936 */ 2937 tcp_send_fin(sk); 2938 } 2939 2940 sk_stream_wait_close(sk, timeout); 2941 2942 adjudge_to_death: 2943 state = sk->sk_state; 2944 sock_hold(sk); 2945 sock_orphan(sk); 2946 2947 local_bh_disable(); 2948 bh_lock_sock(sk); 2949 /* remove backlog if any, without releasing ownership. */ 2950 __release_sock(sk); 2951 2952 this_cpu_inc(tcp_orphan_count); 2953 2954 /* Have we already been destroyed by a softirq or backlog? */ 2955 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2956 goto out; 2957 2958 /* This is a (useful) BSD violating of the RFC. There is a 2959 * problem with TCP as specified in that the other end could 2960 * keep a socket open forever with no application left this end. 2961 * We use a 1 minute timeout (about the same as BSD) then kill 2962 * our end. If they send after that then tough - BUT: long enough 2963 * that we won't make the old 4*rto = almost no time - whoops 2964 * reset mistake. 2965 * 2966 * Nope, it was not mistake. It is really desired behaviour 2967 * f.e. on http servers, when such sockets are useless, but 2968 * consume significant resources. Let's do it with special 2969 * linger2 option. --ANK 2970 */ 2971 2972 if (sk->sk_state == TCP_FIN_WAIT2) { 2973 struct tcp_sock *tp = tcp_sk(sk); 2974 if (tp->linger2 < 0) { 2975 tcp_set_state(sk, TCP_CLOSE); 2976 tcp_send_active_reset(sk, GFP_ATOMIC); 2977 __NET_INC_STATS(sock_net(sk), 2978 LINUX_MIB_TCPABORTONLINGER); 2979 } else { 2980 const int tmo = tcp_fin_time(sk); 2981 2982 if (tmo > TCP_TIMEWAIT_LEN) { 2983 inet_csk_reset_keepalive_timer(sk, 2984 tmo - TCP_TIMEWAIT_LEN); 2985 } else { 2986 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2987 goto out; 2988 } 2989 } 2990 } 2991 if (sk->sk_state != TCP_CLOSE) { 2992 if (tcp_check_oom(sk, 0)) { 2993 tcp_set_state(sk, TCP_CLOSE); 2994 tcp_send_active_reset(sk, GFP_ATOMIC); 2995 __NET_INC_STATS(sock_net(sk), 2996 LINUX_MIB_TCPABORTONMEMORY); 2997 } else if (!check_net(sock_net(sk))) { 2998 /* Not possible to send reset; just close */ 2999 tcp_set_state(sk, TCP_CLOSE); 3000 } 3001 } 3002 3003 if (sk->sk_state == TCP_CLOSE) { 3004 struct request_sock *req; 3005 3006 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3007 lockdep_sock_is_held(sk)); 3008 /* We could get here with a non-NULL req if the socket is 3009 * aborted (e.g., closed with unread data) before 3WHS 3010 * finishes. 3011 */ 3012 if (req) 3013 reqsk_fastopen_remove(sk, req, false); 3014 inet_csk_destroy_sock(sk); 3015 } 3016 /* Otherwise, socket is reprieved until protocol close. */ 3017 3018 out: 3019 bh_unlock_sock(sk); 3020 local_bh_enable(); 3021 } 3022 3023 void tcp_close(struct sock *sk, long timeout) 3024 { 3025 lock_sock(sk); 3026 __tcp_close(sk, timeout); 3027 release_sock(sk); 3028 sock_put(sk); 3029 } 3030 EXPORT_SYMBOL(tcp_close); 3031 3032 /* These states need RST on ABORT according to RFC793 */ 3033 3034 static inline bool tcp_need_reset(int state) 3035 { 3036 return (1 << state) & 3037 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3038 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3039 } 3040 3041 static void tcp_rtx_queue_purge(struct sock *sk) 3042 { 3043 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3044 3045 tcp_sk(sk)->highest_sack = NULL; 3046 while (p) { 3047 struct sk_buff *skb = rb_to_skb(p); 3048 3049 p = rb_next(p); 3050 /* Since we are deleting whole queue, no need to 3051 * list_del(&skb->tcp_tsorted_anchor) 3052 */ 3053 tcp_rtx_queue_unlink(skb, sk); 3054 tcp_wmem_free_skb(sk, skb); 3055 } 3056 } 3057 3058 void tcp_write_queue_purge(struct sock *sk) 3059 { 3060 struct sk_buff *skb; 3061 3062 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3063 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3064 tcp_skb_tsorted_anchor_cleanup(skb); 3065 tcp_wmem_free_skb(sk, skb); 3066 } 3067 tcp_rtx_queue_purge(sk); 3068 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3069 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3070 tcp_sk(sk)->packets_out = 0; 3071 inet_csk(sk)->icsk_backoff = 0; 3072 } 3073 3074 int tcp_disconnect(struct sock *sk, int flags) 3075 { 3076 struct inet_sock *inet = inet_sk(sk); 3077 struct inet_connection_sock *icsk = inet_csk(sk); 3078 struct tcp_sock *tp = tcp_sk(sk); 3079 int old_state = sk->sk_state; 3080 u32 seq; 3081 3082 if (old_state != TCP_CLOSE) 3083 tcp_set_state(sk, TCP_CLOSE); 3084 3085 /* ABORT function of RFC793 */ 3086 if (old_state == TCP_LISTEN) { 3087 inet_csk_listen_stop(sk); 3088 } else if (unlikely(tp->repair)) { 3089 sk->sk_err = ECONNABORTED; 3090 } else if (tcp_need_reset(old_state) || 3091 (tp->snd_nxt != tp->write_seq && 3092 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3093 /* The last check adjusts for discrepancy of Linux wrt. RFC 3094 * states 3095 */ 3096 tcp_send_active_reset(sk, gfp_any()); 3097 sk->sk_err = ECONNRESET; 3098 } else if (old_state == TCP_SYN_SENT) 3099 sk->sk_err = ECONNRESET; 3100 3101 tcp_clear_xmit_timers(sk); 3102 __skb_queue_purge(&sk->sk_receive_queue); 3103 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3104 WRITE_ONCE(tp->urg_data, 0); 3105 tcp_write_queue_purge(sk); 3106 tcp_fastopen_active_disable_ofo_check(sk); 3107 skb_rbtree_purge(&tp->out_of_order_queue); 3108 3109 inet->inet_dport = 0; 3110 3111 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3112 inet_reset_saddr(sk); 3113 3114 sk->sk_shutdown = 0; 3115 sock_reset_flag(sk, SOCK_DONE); 3116 tp->srtt_us = 0; 3117 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3118 tp->rcv_rtt_last_tsecr = 0; 3119 3120 seq = tp->write_seq + tp->max_window + 2; 3121 if (!seq) 3122 seq = 1; 3123 WRITE_ONCE(tp->write_seq, seq); 3124 3125 icsk->icsk_backoff = 0; 3126 icsk->icsk_probes_out = 0; 3127 icsk->icsk_probes_tstamp = 0; 3128 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3129 icsk->icsk_rto_min = TCP_RTO_MIN; 3130 icsk->icsk_delack_max = TCP_DELACK_MAX; 3131 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3132 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3133 tp->snd_cwnd_cnt = 0; 3134 tp->window_clamp = 0; 3135 tp->delivered = 0; 3136 tp->delivered_ce = 0; 3137 if (icsk->icsk_ca_ops->release) 3138 icsk->icsk_ca_ops->release(sk); 3139 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3140 icsk->icsk_ca_initialized = 0; 3141 tcp_set_ca_state(sk, TCP_CA_Open); 3142 tp->is_sack_reneg = 0; 3143 tcp_clear_retrans(tp); 3144 tp->total_retrans = 0; 3145 inet_csk_delack_init(sk); 3146 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3147 * issue in __tcp_select_window() 3148 */ 3149 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3150 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3151 __sk_dst_reset(sk); 3152 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3153 tcp_saved_syn_free(tp); 3154 tp->compressed_ack = 0; 3155 tp->segs_in = 0; 3156 tp->segs_out = 0; 3157 tp->bytes_sent = 0; 3158 tp->bytes_acked = 0; 3159 tp->bytes_received = 0; 3160 tp->bytes_retrans = 0; 3161 tp->data_segs_in = 0; 3162 tp->data_segs_out = 0; 3163 tp->duplicate_sack[0].start_seq = 0; 3164 tp->duplicate_sack[0].end_seq = 0; 3165 tp->dsack_dups = 0; 3166 tp->reord_seen = 0; 3167 tp->retrans_out = 0; 3168 tp->sacked_out = 0; 3169 tp->tlp_high_seq = 0; 3170 tp->last_oow_ack_time = 0; 3171 /* There's a bubble in the pipe until at least the first ACK. */ 3172 tp->app_limited = ~0U; 3173 tp->rack.mstamp = 0; 3174 tp->rack.advanced = 0; 3175 tp->rack.reo_wnd_steps = 1; 3176 tp->rack.last_delivered = 0; 3177 tp->rack.reo_wnd_persist = 0; 3178 tp->rack.dsack_seen = 0; 3179 tp->syn_data_acked = 0; 3180 tp->rx_opt.saw_tstamp = 0; 3181 tp->rx_opt.dsack = 0; 3182 tp->rx_opt.num_sacks = 0; 3183 tp->rcv_ooopack = 0; 3184 3185 3186 /* Clean up fastopen related fields */ 3187 tcp_free_fastopen_req(tp); 3188 inet->defer_connect = 0; 3189 tp->fastopen_client_fail = 0; 3190 3191 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3192 3193 if (sk->sk_frag.page) { 3194 put_page(sk->sk_frag.page); 3195 sk->sk_frag.page = NULL; 3196 sk->sk_frag.offset = 0; 3197 } 3198 sk_error_report(sk); 3199 return 0; 3200 } 3201 EXPORT_SYMBOL(tcp_disconnect); 3202 3203 static inline bool tcp_can_repair_sock(const struct sock *sk) 3204 { 3205 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3206 (sk->sk_state != TCP_LISTEN); 3207 } 3208 3209 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3210 { 3211 struct tcp_repair_window opt; 3212 3213 if (!tp->repair) 3214 return -EPERM; 3215 3216 if (len != sizeof(opt)) 3217 return -EINVAL; 3218 3219 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3220 return -EFAULT; 3221 3222 if (opt.max_window < opt.snd_wnd) 3223 return -EINVAL; 3224 3225 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3226 return -EINVAL; 3227 3228 if (after(opt.rcv_wup, tp->rcv_nxt)) 3229 return -EINVAL; 3230 3231 tp->snd_wl1 = opt.snd_wl1; 3232 tp->snd_wnd = opt.snd_wnd; 3233 tp->max_window = opt.max_window; 3234 3235 tp->rcv_wnd = opt.rcv_wnd; 3236 tp->rcv_wup = opt.rcv_wup; 3237 3238 return 0; 3239 } 3240 3241 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3242 unsigned int len) 3243 { 3244 struct tcp_sock *tp = tcp_sk(sk); 3245 struct tcp_repair_opt opt; 3246 size_t offset = 0; 3247 3248 while (len >= sizeof(opt)) { 3249 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3250 return -EFAULT; 3251 3252 offset += sizeof(opt); 3253 len -= sizeof(opt); 3254 3255 switch (opt.opt_code) { 3256 case TCPOPT_MSS: 3257 tp->rx_opt.mss_clamp = opt.opt_val; 3258 tcp_mtup_init(sk); 3259 break; 3260 case TCPOPT_WINDOW: 3261 { 3262 u16 snd_wscale = opt.opt_val & 0xFFFF; 3263 u16 rcv_wscale = opt.opt_val >> 16; 3264 3265 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3266 return -EFBIG; 3267 3268 tp->rx_opt.snd_wscale = snd_wscale; 3269 tp->rx_opt.rcv_wscale = rcv_wscale; 3270 tp->rx_opt.wscale_ok = 1; 3271 } 3272 break; 3273 case TCPOPT_SACK_PERM: 3274 if (opt.opt_val != 0) 3275 return -EINVAL; 3276 3277 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3278 break; 3279 case TCPOPT_TIMESTAMP: 3280 if (opt.opt_val != 0) 3281 return -EINVAL; 3282 3283 tp->rx_opt.tstamp_ok = 1; 3284 break; 3285 } 3286 } 3287 3288 return 0; 3289 } 3290 3291 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3292 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3293 3294 static void tcp_enable_tx_delay(void) 3295 { 3296 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3297 static int __tcp_tx_delay_enabled = 0; 3298 3299 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3300 static_branch_enable(&tcp_tx_delay_enabled); 3301 pr_info("TCP_TX_DELAY enabled\n"); 3302 } 3303 } 3304 } 3305 3306 /* When set indicates to always queue non-full frames. Later the user clears 3307 * this option and we transmit any pending partial frames in the queue. This is 3308 * meant to be used alongside sendfile() to get properly filled frames when the 3309 * user (for example) must write out headers with a write() call first and then 3310 * use sendfile to send out the data parts. 3311 * 3312 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3313 * TCP_NODELAY. 3314 */ 3315 void __tcp_sock_set_cork(struct sock *sk, bool on) 3316 { 3317 struct tcp_sock *tp = tcp_sk(sk); 3318 3319 if (on) { 3320 tp->nonagle |= TCP_NAGLE_CORK; 3321 } else { 3322 tp->nonagle &= ~TCP_NAGLE_CORK; 3323 if (tp->nonagle & TCP_NAGLE_OFF) 3324 tp->nonagle |= TCP_NAGLE_PUSH; 3325 tcp_push_pending_frames(sk); 3326 } 3327 } 3328 3329 void tcp_sock_set_cork(struct sock *sk, bool on) 3330 { 3331 lock_sock(sk); 3332 __tcp_sock_set_cork(sk, on); 3333 release_sock(sk); 3334 } 3335 EXPORT_SYMBOL(tcp_sock_set_cork); 3336 3337 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3338 * remembered, but it is not activated until cork is cleared. 3339 * 3340 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3341 * even TCP_CORK for currently queued segments. 3342 */ 3343 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3344 { 3345 if (on) { 3346 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3347 tcp_push_pending_frames(sk); 3348 } else { 3349 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3350 } 3351 } 3352 3353 void tcp_sock_set_nodelay(struct sock *sk) 3354 { 3355 lock_sock(sk); 3356 __tcp_sock_set_nodelay(sk, true); 3357 release_sock(sk); 3358 } 3359 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3360 3361 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3362 { 3363 if (!val) { 3364 inet_csk_enter_pingpong_mode(sk); 3365 return; 3366 } 3367 3368 inet_csk_exit_pingpong_mode(sk); 3369 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3370 inet_csk_ack_scheduled(sk)) { 3371 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3372 tcp_cleanup_rbuf(sk, 1); 3373 if (!(val & 1)) 3374 inet_csk_enter_pingpong_mode(sk); 3375 } 3376 } 3377 3378 void tcp_sock_set_quickack(struct sock *sk, int val) 3379 { 3380 lock_sock(sk); 3381 __tcp_sock_set_quickack(sk, val); 3382 release_sock(sk); 3383 } 3384 EXPORT_SYMBOL(tcp_sock_set_quickack); 3385 3386 int tcp_sock_set_syncnt(struct sock *sk, int val) 3387 { 3388 if (val < 1 || val > MAX_TCP_SYNCNT) 3389 return -EINVAL; 3390 3391 lock_sock(sk); 3392 inet_csk(sk)->icsk_syn_retries = val; 3393 release_sock(sk); 3394 return 0; 3395 } 3396 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3397 3398 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3399 { 3400 lock_sock(sk); 3401 inet_csk(sk)->icsk_user_timeout = val; 3402 release_sock(sk); 3403 } 3404 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3405 3406 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3407 { 3408 struct tcp_sock *tp = tcp_sk(sk); 3409 3410 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3411 return -EINVAL; 3412 3413 tp->keepalive_time = val * HZ; 3414 if (sock_flag(sk, SOCK_KEEPOPEN) && 3415 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3416 u32 elapsed = keepalive_time_elapsed(tp); 3417 3418 if (tp->keepalive_time > elapsed) 3419 elapsed = tp->keepalive_time - elapsed; 3420 else 3421 elapsed = 0; 3422 inet_csk_reset_keepalive_timer(sk, elapsed); 3423 } 3424 3425 return 0; 3426 } 3427 3428 int tcp_sock_set_keepidle(struct sock *sk, int val) 3429 { 3430 int err; 3431 3432 lock_sock(sk); 3433 err = tcp_sock_set_keepidle_locked(sk, val); 3434 release_sock(sk); 3435 return err; 3436 } 3437 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3438 3439 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3440 { 3441 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3442 return -EINVAL; 3443 3444 lock_sock(sk); 3445 tcp_sk(sk)->keepalive_intvl = val * HZ; 3446 release_sock(sk); 3447 return 0; 3448 } 3449 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3450 3451 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3452 { 3453 if (val < 1 || val > MAX_TCP_KEEPCNT) 3454 return -EINVAL; 3455 3456 lock_sock(sk); 3457 tcp_sk(sk)->keepalive_probes = val; 3458 release_sock(sk); 3459 return 0; 3460 } 3461 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3462 3463 int tcp_set_window_clamp(struct sock *sk, int val) 3464 { 3465 struct tcp_sock *tp = tcp_sk(sk); 3466 3467 if (!val) { 3468 if (sk->sk_state != TCP_CLOSE) 3469 return -EINVAL; 3470 tp->window_clamp = 0; 3471 } else { 3472 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3473 SOCK_MIN_RCVBUF / 2 : val; 3474 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3475 } 3476 return 0; 3477 } 3478 3479 /* 3480 * Socket option code for TCP. 3481 */ 3482 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3483 sockptr_t optval, unsigned int optlen) 3484 { 3485 struct tcp_sock *tp = tcp_sk(sk); 3486 struct inet_connection_sock *icsk = inet_csk(sk); 3487 struct net *net = sock_net(sk); 3488 int val; 3489 int err = 0; 3490 3491 /* These are data/string values, all the others are ints */ 3492 switch (optname) { 3493 case TCP_CONGESTION: { 3494 char name[TCP_CA_NAME_MAX]; 3495 3496 if (optlen < 1) 3497 return -EINVAL; 3498 3499 val = strncpy_from_sockptr(name, optval, 3500 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3501 if (val < 0) 3502 return -EFAULT; 3503 name[val] = 0; 3504 3505 lock_sock(sk); 3506 err = tcp_set_congestion_control(sk, name, true, 3507 ns_capable(sock_net(sk)->user_ns, 3508 CAP_NET_ADMIN)); 3509 release_sock(sk); 3510 return err; 3511 } 3512 case TCP_ULP: { 3513 char name[TCP_ULP_NAME_MAX]; 3514 3515 if (optlen < 1) 3516 return -EINVAL; 3517 3518 val = strncpy_from_sockptr(name, optval, 3519 min_t(long, TCP_ULP_NAME_MAX - 1, 3520 optlen)); 3521 if (val < 0) 3522 return -EFAULT; 3523 name[val] = 0; 3524 3525 lock_sock(sk); 3526 err = tcp_set_ulp(sk, name); 3527 release_sock(sk); 3528 return err; 3529 } 3530 case TCP_FASTOPEN_KEY: { 3531 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3532 __u8 *backup_key = NULL; 3533 3534 /* Allow a backup key as well to facilitate key rotation 3535 * First key is the active one. 3536 */ 3537 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3538 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3539 return -EINVAL; 3540 3541 if (copy_from_sockptr(key, optval, optlen)) 3542 return -EFAULT; 3543 3544 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3545 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3546 3547 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3548 } 3549 default: 3550 /* fallthru */ 3551 break; 3552 } 3553 3554 if (optlen < sizeof(int)) 3555 return -EINVAL; 3556 3557 if (copy_from_sockptr(&val, optval, sizeof(val))) 3558 return -EFAULT; 3559 3560 lock_sock(sk); 3561 3562 switch (optname) { 3563 case TCP_MAXSEG: 3564 /* Values greater than interface MTU won't take effect. However 3565 * at the point when this call is done we typically don't yet 3566 * know which interface is going to be used 3567 */ 3568 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3569 err = -EINVAL; 3570 break; 3571 } 3572 tp->rx_opt.user_mss = val; 3573 break; 3574 3575 case TCP_NODELAY: 3576 __tcp_sock_set_nodelay(sk, val); 3577 break; 3578 3579 case TCP_THIN_LINEAR_TIMEOUTS: 3580 if (val < 0 || val > 1) 3581 err = -EINVAL; 3582 else 3583 tp->thin_lto = val; 3584 break; 3585 3586 case TCP_THIN_DUPACK: 3587 if (val < 0 || val > 1) 3588 err = -EINVAL; 3589 break; 3590 3591 case TCP_REPAIR: 3592 if (!tcp_can_repair_sock(sk)) 3593 err = -EPERM; 3594 else if (val == TCP_REPAIR_ON) { 3595 tp->repair = 1; 3596 sk->sk_reuse = SK_FORCE_REUSE; 3597 tp->repair_queue = TCP_NO_QUEUE; 3598 } else if (val == TCP_REPAIR_OFF) { 3599 tp->repair = 0; 3600 sk->sk_reuse = SK_NO_REUSE; 3601 tcp_send_window_probe(sk); 3602 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3603 tp->repair = 0; 3604 sk->sk_reuse = SK_NO_REUSE; 3605 } else 3606 err = -EINVAL; 3607 3608 break; 3609 3610 case TCP_REPAIR_QUEUE: 3611 if (!tp->repair) 3612 err = -EPERM; 3613 else if ((unsigned int)val < TCP_QUEUES_NR) 3614 tp->repair_queue = val; 3615 else 3616 err = -EINVAL; 3617 break; 3618 3619 case TCP_QUEUE_SEQ: 3620 if (sk->sk_state != TCP_CLOSE) { 3621 err = -EPERM; 3622 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3623 if (!tcp_rtx_queue_empty(sk)) 3624 err = -EPERM; 3625 else 3626 WRITE_ONCE(tp->write_seq, val); 3627 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3628 if (tp->rcv_nxt != tp->copied_seq) { 3629 err = -EPERM; 3630 } else { 3631 WRITE_ONCE(tp->rcv_nxt, val); 3632 WRITE_ONCE(tp->copied_seq, val); 3633 } 3634 } else { 3635 err = -EINVAL; 3636 } 3637 break; 3638 3639 case TCP_REPAIR_OPTIONS: 3640 if (!tp->repair) 3641 err = -EINVAL; 3642 else if (sk->sk_state == TCP_ESTABLISHED) 3643 err = tcp_repair_options_est(sk, optval, optlen); 3644 else 3645 err = -EPERM; 3646 break; 3647 3648 case TCP_CORK: 3649 __tcp_sock_set_cork(sk, val); 3650 break; 3651 3652 case TCP_KEEPIDLE: 3653 err = tcp_sock_set_keepidle_locked(sk, val); 3654 break; 3655 case TCP_KEEPINTVL: 3656 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3657 err = -EINVAL; 3658 else 3659 tp->keepalive_intvl = val * HZ; 3660 break; 3661 case TCP_KEEPCNT: 3662 if (val < 1 || val > MAX_TCP_KEEPCNT) 3663 err = -EINVAL; 3664 else 3665 tp->keepalive_probes = val; 3666 break; 3667 case TCP_SYNCNT: 3668 if (val < 1 || val > MAX_TCP_SYNCNT) 3669 err = -EINVAL; 3670 else 3671 icsk->icsk_syn_retries = val; 3672 break; 3673 3674 case TCP_SAVE_SYN: 3675 /* 0: disable, 1: enable, 2: start from ether_header */ 3676 if (val < 0 || val > 2) 3677 err = -EINVAL; 3678 else 3679 tp->save_syn = val; 3680 break; 3681 3682 case TCP_LINGER2: 3683 if (val < 0) 3684 tp->linger2 = -1; 3685 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3686 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3687 else 3688 tp->linger2 = val * HZ; 3689 break; 3690 3691 case TCP_DEFER_ACCEPT: 3692 /* Translate value in seconds to number of retransmits */ 3693 icsk->icsk_accept_queue.rskq_defer_accept = 3694 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3695 TCP_RTO_MAX / HZ); 3696 break; 3697 3698 case TCP_WINDOW_CLAMP: 3699 err = tcp_set_window_clamp(sk, val); 3700 break; 3701 3702 case TCP_QUICKACK: 3703 __tcp_sock_set_quickack(sk, val); 3704 break; 3705 3706 #ifdef CONFIG_TCP_MD5SIG 3707 case TCP_MD5SIG: 3708 case TCP_MD5SIG_EXT: 3709 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3710 break; 3711 #endif 3712 case TCP_USER_TIMEOUT: 3713 /* Cap the max time in ms TCP will retry or probe the window 3714 * before giving up and aborting (ETIMEDOUT) a connection. 3715 */ 3716 if (val < 0) 3717 err = -EINVAL; 3718 else 3719 icsk->icsk_user_timeout = val; 3720 break; 3721 3722 case TCP_FASTOPEN: 3723 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3724 TCPF_LISTEN))) { 3725 tcp_fastopen_init_key_once(net); 3726 3727 fastopen_queue_tune(sk, val); 3728 } else { 3729 err = -EINVAL; 3730 } 3731 break; 3732 case TCP_FASTOPEN_CONNECT: 3733 if (val > 1 || val < 0) { 3734 err = -EINVAL; 3735 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3736 TFO_CLIENT_ENABLE) { 3737 if (sk->sk_state == TCP_CLOSE) 3738 tp->fastopen_connect = val; 3739 else 3740 err = -EINVAL; 3741 } else { 3742 err = -EOPNOTSUPP; 3743 } 3744 break; 3745 case TCP_FASTOPEN_NO_COOKIE: 3746 if (val > 1 || val < 0) 3747 err = -EINVAL; 3748 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3749 err = -EINVAL; 3750 else 3751 tp->fastopen_no_cookie = val; 3752 break; 3753 case TCP_TIMESTAMP: 3754 if (!tp->repair) 3755 err = -EPERM; 3756 else 3757 tp->tsoffset = val - tcp_time_stamp_raw(); 3758 break; 3759 case TCP_REPAIR_WINDOW: 3760 err = tcp_repair_set_window(tp, optval, optlen); 3761 break; 3762 case TCP_NOTSENT_LOWAT: 3763 tp->notsent_lowat = val; 3764 sk->sk_write_space(sk); 3765 break; 3766 case TCP_INQ: 3767 if (val > 1 || val < 0) 3768 err = -EINVAL; 3769 else 3770 tp->recvmsg_inq = val; 3771 break; 3772 case TCP_TX_DELAY: 3773 if (val) 3774 tcp_enable_tx_delay(); 3775 tp->tcp_tx_delay = val; 3776 break; 3777 default: 3778 err = -ENOPROTOOPT; 3779 break; 3780 } 3781 3782 release_sock(sk); 3783 return err; 3784 } 3785 3786 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3787 unsigned int optlen) 3788 { 3789 const struct inet_connection_sock *icsk = inet_csk(sk); 3790 3791 if (level != SOL_TCP) 3792 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3793 optval, optlen); 3794 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3795 } 3796 EXPORT_SYMBOL(tcp_setsockopt); 3797 3798 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3799 struct tcp_info *info) 3800 { 3801 u64 stats[__TCP_CHRONO_MAX], total = 0; 3802 enum tcp_chrono i; 3803 3804 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3805 stats[i] = tp->chrono_stat[i - 1]; 3806 if (i == tp->chrono_type) 3807 stats[i] += tcp_jiffies32 - tp->chrono_start; 3808 stats[i] *= USEC_PER_SEC / HZ; 3809 total += stats[i]; 3810 } 3811 3812 info->tcpi_busy_time = total; 3813 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3814 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3815 } 3816 3817 /* Return information about state of tcp endpoint in API format. */ 3818 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3819 { 3820 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3821 const struct inet_connection_sock *icsk = inet_csk(sk); 3822 unsigned long rate; 3823 u32 now; 3824 u64 rate64; 3825 bool slow; 3826 3827 memset(info, 0, sizeof(*info)); 3828 if (sk->sk_type != SOCK_STREAM) 3829 return; 3830 3831 info->tcpi_state = inet_sk_state_load(sk); 3832 3833 /* Report meaningful fields for all TCP states, including listeners */ 3834 rate = READ_ONCE(sk->sk_pacing_rate); 3835 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3836 info->tcpi_pacing_rate = rate64; 3837 3838 rate = READ_ONCE(sk->sk_max_pacing_rate); 3839 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3840 info->tcpi_max_pacing_rate = rate64; 3841 3842 info->tcpi_reordering = tp->reordering; 3843 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3844 3845 if (info->tcpi_state == TCP_LISTEN) { 3846 /* listeners aliased fields : 3847 * tcpi_unacked -> Number of children ready for accept() 3848 * tcpi_sacked -> max backlog 3849 */ 3850 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3851 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3852 return; 3853 } 3854 3855 slow = lock_sock_fast(sk); 3856 3857 info->tcpi_ca_state = icsk->icsk_ca_state; 3858 info->tcpi_retransmits = icsk->icsk_retransmits; 3859 info->tcpi_probes = icsk->icsk_probes_out; 3860 info->tcpi_backoff = icsk->icsk_backoff; 3861 3862 if (tp->rx_opt.tstamp_ok) 3863 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3864 if (tcp_is_sack(tp)) 3865 info->tcpi_options |= TCPI_OPT_SACK; 3866 if (tp->rx_opt.wscale_ok) { 3867 info->tcpi_options |= TCPI_OPT_WSCALE; 3868 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3869 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3870 } 3871 3872 if (tp->ecn_flags & TCP_ECN_OK) 3873 info->tcpi_options |= TCPI_OPT_ECN; 3874 if (tp->ecn_flags & TCP_ECN_SEEN) 3875 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3876 if (tp->syn_data_acked) 3877 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3878 3879 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3880 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3881 info->tcpi_snd_mss = tp->mss_cache; 3882 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3883 3884 info->tcpi_unacked = tp->packets_out; 3885 info->tcpi_sacked = tp->sacked_out; 3886 3887 info->tcpi_lost = tp->lost_out; 3888 info->tcpi_retrans = tp->retrans_out; 3889 3890 now = tcp_jiffies32; 3891 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3892 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3893 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3894 3895 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3896 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3897 info->tcpi_rtt = tp->srtt_us >> 3; 3898 info->tcpi_rttvar = tp->mdev_us >> 2; 3899 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3900 info->tcpi_advmss = tp->advmss; 3901 3902 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3903 info->tcpi_rcv_space = tp->rcvq_space.space; 3904 3905 info->tcpi_total_retrans = tp->total_retrans; 3906 3907 info->tcpi_bytes_acked = tp->bytes_acked; 3908 info->tcpi_bytes_received = tp->bytes_received; 3909 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3910 tcp_get_info_chrono_stats(tp, info); 3911 3912 info->tcpi_segs_out = tp->segs_out; 3913 3914 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3915 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3916 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3917 3918 info->tcpi_min_rtt = tcp_min_rtt(tp); 3919 info->tcpi_data_segs_out = tp->data_segs_out; 3920 3921 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3922 rate64 = tcp_compute_delivery_rate(tp); 3923 if (rate64) 3924 info->tcpi_delivery_rate = rate64; 3925 info->tcpi_delivered = tp->delivered; 3926 info->tcpi_delivered_ce = tp->delivered_ce; 3927 info->tcpi_bytes_sent = tp->bytes_sent; 3928 info->tcpi_bytes_retrans = tp->bytes_retrans; 3929 info->tcpi_dsack_dups = tp->dsack_dups; 3930 info->tcpi_reord_seen = tp->reord_seen; 3931 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3932 info->tcpi_snd_wnd = tp->snd_wnd; 3933 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3934 unlock_sock_fast(sk, slow); 3935 } 3936 EXPORT_SYMBOL_GPL(tcp_get_info); 3937 3938 static size_t tcp_opt_stats_get_size(void) 3939 { 3940 return 3941 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3942 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3943 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3944 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3945 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3946 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3947 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3948 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3949 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3950 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3951 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3952 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3953 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3954 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3955 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3956 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3957 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3958 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3959 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3960 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3961 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3962 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3963 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3964 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3965 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3966 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3967 0; 3968 } 3969 3970 /* Returns TTL or hop limit of an incoming packet from skb. */ 3971 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3972 { 3973 if (skb->protocol == htons(ETH_P_IP)) 3974 return ip_hdr(skb)->ttl; 3975 else if (skb->protocol == htons(ETH_P_IPV6)) 3976 return ipv6_hdr(skb)->hop_limit; 3977 else 3978 return 0; 3979 } 3980 3981 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3982 const struct sk_buff *orig_skb, 3983 const struct sk_buff *ack_skb) 3984 { 3985 const struct tcp_sock *tp = tcp_sk(sk); 3986 struct sk_buff *stats; 3987 struct tcp_info info; 3988 unsigned long rate; 3989 u64 rate64; 3990 3991 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3992 if (!stats) 3993 return NULL; 3994 3995 tcp_get_info_chrono_stats(tp, &info); 3996 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3997 info.tcpi_busy_time, TCP_NLA_PAD); 3998 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3999 info.tcpi_rwnd_limited, TCP_NLA_PAD); 4000 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 4001 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 4002 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4003 tp->data_segs_out, TCP_NLA_PAD); 4004 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4005 tp->total_retrans, TCP_NLA_PAD); 4006 4007 rate = READ_ONCE(sk->sk_pacing_rate); 4008 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4009 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4010 4011 rate64 = tcp_compute_delivery_rate(tp); 4012 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4013 4014 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4015 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4016 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4017 4018 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4019 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4020 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4021 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4022 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4023 4024 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4025 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4026 4027 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4028 TCP_NLA_PAD); 4029 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4030 TCP_NLA_PAD); 4031 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4032 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4033 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4034 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4035 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4036 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4037 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4038 TCP_NLA_PAD); 4039 if (ack_skb) 4040 nla_put_u8(stats, TCP_NLA_TTL, 4041 tcp_skb_ttl_or_hop_limit(ack_skb)); 4042 4043 return stats; 4044 } 4045 4046 static int do_tcp_getsockopt(struct sock *sk, int level, 4047 int optname, char __user *optval, int __user *optlen) 4048 { 4049 struct inet_connection_sock *icsk = inet_csk(sk); 4050 struct tcp_sock *tp = tcp_sk(sk); 4051 struct net *net = sock_net(sk); 4052 int val, len; 4053 4054 if (get_user(len, optlen)) 4055 return -EFAULT; 4056 4057 len = min_t(unsigned int, len, sizeof(int)); 4058 4059 if (len < 0) 4060 return -EINVAL; 4061 4062 switch (optname) { 4063 case TCP_MAXSEG: 4064 val = tp->mss_cache; 4065 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4066 val = tp->rx_opt.user_mss; 4067 if (tp->repair) 4068 val = tp->rx_opt.mss_clamp; 4069 break; 4070 case TCP_NODELAY: 4071 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4072 break; 4073 case TCP_CORK: 4074 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4075 break; 4076 case TCP_KEEPIDLE: 4077 val = keepalive_time_when(tp) / HZ; 4078 break; 4079 case TCP_KEEPINTVL: 4080 val = keepalive_intvl_when(tp) / HZ; 4081 break; 4082 case TCP_KEEPCNT: 4083 val = keepalive_probes(tp); 4084 break; 4085 case TCP_SYNCNT: 4086 val = icsk->icsk_syn_retries ? : 4087 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4088 break; 4089 case TCP_LINGER2: 4090 val = tp->linger2; 4091 if (val >= 0) 4092 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4093 break; 4094 case TCP_DEFER_ACCEPT: 4095 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4096 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4097 break; 4098 case TCP_WINDOW_CLAMP: 4099 val = tp->window_clamp; 4100 break; 4101 case TCP_INFO: { 4102 struct tcp_info info; 4103 4104 if (get_user(len, optlen)) 4105 return -EFAULT; 4106 4107 tcp_get_info(sk, &info); 4108 4109 len = min_t(unsigned int, len, sizeof(info)); 4110 if (put_user(len, optlen)) 4111 return -EFAULT; 4112 if (copy_to_user(optval, &info, len)) 4113 return -EFAULT; 4114 return 0; 4115 } 4116 case TCP_CC_INFO: { 4117 const struct tcp_congestion_ops *ca_ops; 4118 union tcp_cc_info info; 4119 size_t sz = 0; 4120 int attr; 4121 4122 if (get_user(len, optlen)) 4123 return -EFAULT; 4124 4125 ca_ops = icsk->icsk_ca_ops; 4126 if (ca_ops && ca_ops->get_info) 4127 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4128 4129 len = min_t(unsigned int, len, sz); 4130 if (put_user(len, optlen)) 4131 return -EFAULT; 4132 if (copy_to_user(optval, &info, len)) 4133 return -EFAULT; 4134 return 0; 4135 } 4136 case TCP_QUICKACK: 4137 val = !inet_csk_in_pingpong_mode(sk); 4138 break; 4139 4140 case TCP_CONGESTION: 4141 if (get_user(len, optlen)) 4142 return -EFAULT; 4143 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4144 if (put_user(len, optlen)) 4145 return -EFAULT; 4146 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4147 return -EFAULT; 4148 return 0; 4149 4150 case TCP_ULP: 4151 if (get_user(len, optlen)) 4152 return -EFAULT; 4153 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4154 if (!icsk->icsk_ulp_ops) { 4155 if (put_user(0, optlen)) 4156 return -EFAULT; 4157 return 0; 4158 } 4159 if (put_user(len, optlen)) 4160 return -EFAULT; 4161 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4162 return -EFAULT; 4163 return 0; 4164 4165 case TCP_FASTOPEN_KEY: { 4166 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4167 unsigned int key_len; 4168 4169 if (get_user(len, optlen)) 4170 return -EFAULT; 4171 4172 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4173 TCP_FASTOPEN_KEY_LENGTH; 4174 len = min_t(unsigned int, len, key_len); 4175 if (put_user(len, optlen)) 4176 return -EFAULT; 4177 if (copy_to_user(optval, key, len)) 4178 return -EFAULT; 4179 return 0; 4180 } 4181 case TCP_THIN_LINEAR_TIMEOUTS: 4182 val = tp->thin_lto; 4183 break; 4184 4185 case TCP_THIN_DUPACK: 4186 val = 0; 4187 break; 4188 4189 case TCP_REPAIR: 4190 val = tp->repair; 4191 break; 4192 4193 case TCP_REPAIR_QUEUE: 4194 if (tp->repair) 4195 val = tp->repair_queue; 4196 else 4197 return -EINVAL; 4198 break; 4199 4200 case TCP_REPAIR_WINDOW: { 4201 struct tcp_repair_window opt; 4202 4203 if (get_user(len, optlen)) 4204 return -EFAULT; 4205 4206 if (len != sizeof(opt)) 4207 return -EINVAL; 4208 4209 if (!tp->repair) 4210 return -EPERM; 4211 4212 opt.snd_wl1 = tp->snd_wl1; 4213 opt.snd_wnd = tp->snd_wnd; 4214 opt.max_window = tp->max_window; 4215 opt.rcv_wnd = tp->rcv_wnd; 4216 opt.rcv_wup = tp->rcv_wup; 4217 4218 if (copy_to_user(optval, &opt, len)) 4219 return -EFAULT; 4220 return 0; 4221 } 4222 case TCP_QUEUE_SEQ: 4223 if (tp->repair_queue == TCP_SEND_QUEUE) 4224 val = tp->write_seq; 4225 else if (tp->repair_queue == TCP_RECV_QUEUE) 4226 val = tp->rcv_nxt; 4227 else 4228 return -EINVAL; 4229 break; 4230 4231 case TCP_USER_TIMEOUT: 4232 val = icsk->icsk_user_timeout; 4233 break; 4234 4235 case TCP_FASTOPEN: 4236 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4237 break; 4238 4239 case TCP_FASTOPEN_CONNECT: 4240 val = tp->fastopen_connect; 4241 break; 4242 4243 case TCP_FASTOPEN_NO_COOKIE: 4244 val = tp->fastopen_no_cookie; 4245 break; 4246 4247 case TCP_TX_DELAY: 4248 val = tp->tcp_tx_delay; 4249 break; 4250 4251 case TCP_TIMESTAMP: 4252 val = tcp_time_stamp_raw() + tp->tsoffset; 4253 break; 4254 case TCP_NOTSENT_LOWAT: 4255 val = tp->notsent_lowat; 4256 break; 4257 case TCP_INQ: 4258 val = tp->recvmsg_inq; 4259 break; 4260 case TCP_SAVE_SYN: 4261 val = tp->save_syn; 4262 break; 4263 case TCP_SAVED_SYN: { 4264 if (get_user(len, optlen)) 4265 return -EFAULT; 4266 4267 lock_sock(sk); 4268 if (tp->saved_syn) { 4269 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4270 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4271 optlen)) { 4272 release_sock(sk); 4273 return -EFAULT; 4274 } 4275 release_sock(sk); 4276 return -EINVAL; 4277 } 4278 len = tcp_saved_syn_len(tp->saved_syn); 4279 if (put_user(len, optlen)) { 4280 release_sock(sk); 4281 return -EFAULT; 4282 } 4283 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4284 release_sock(sk); 4285 return -EFAULT; 4286 } 4287 tcp_saved_syn_free(tp); 4288 release_sock(sk); 4289 } else { 4290 release_sock(sk); 4291 len = 0; 4292 if (put_user(len, optlen)) 4293 return -EFAULT; 4294 } 4295 return 0; 4296 } 4297 #ifdef CONFIG_MMU 4298 case TCP_ZEROCOPY_RECEIVE: { 4299 struct scm_timestamping_internal tss; 4300 struct tcp_zerocopy_receive zc = {}; 4301 int err; 4302 4303 if (get_user(len, optlen)) 4304 return -EFAULT; 4305 if (len < 0 || 4306 len < offsetofend(struct tcp_zerocopy_receive, length)) 4307 return -EINVAL; 4308 if (unlikely(len > sizeof(zc))) { 4309 err = check_zeroed_user(optval + sizeof(zc), 4310 len - sizeof(zc)); 4311 if (err < 1) 4312 return err == 0 ? -EINVAL : err; 4313 len = sizeof(zc); 4314 if (put_user(len, optlen)) 4315 return -EFAULT; 4316 } 4317 if (copy_from_user(&zc, optval, len)) 4318 return -EFAULT; 4319 if (zc.reserved) 4320 return -EINVAL; 4321 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4322 return -EINVAL; 4323 lock_sock(sk); 4324 err = tcp_zerocopy_receive(sk, &zc, &tss); 4325 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4326 &zc, &len, err); 4327 release_sock(sk); 4328 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4329 goto zerocopy_rcv_cmsg; 4330 switch (len) { 4331 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4332 goto zerocopy_rcv_cmsg; 4333 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4334 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4335 case offsetofend(struct tcp_zerocopy_receive, flags): 4336 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4337 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4338 case offsetofend(struct tcp_zerocopy_receive, err): 4339 goto zerocopy_rcv_sk_err; 4340 case offsetofend(struct tcp_zerocopy_receive, inq): 4341 goto zerocopy_rcv_inq; 4342 case offsetofend(struct tcp_zerocopy_receive, length): 4343 default: 4344 goto zerocopy_rcv_out; 4345 } 4346 zerocopy_rcv_cmsg: 4347 if (zc.msg_flags & TCP_CMSG_TS) 4348 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4349 else 4350 zc.msg_flags = 0; 4351 zerocopy_rcv_sk_err: 4352 if (!err) 4353 zc.err = sock_error(sk); 4354 zerocopy_rcv_inq: 4355 zc.inq = tcp_inq_hint(sk); 4356 zerocopy_rcv_out: 4357 if (!err && copy_to_user(optval, &zc, len)) 4358 err = -EFAULT; 4359 return err; 4360 } 4361 #endif 4362 default: 4363 return -ENOPROTOOPT; 4364 } 4365 4366 if (put_user(len, optlen)) 4367 return -EFAULT; 4368 if (copy_to_user(optval, &val, len)) 4369 return -EFAULT; 4370 return 0; 4371 } 4372 4373 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4374 { 4375 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4376 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4377 */ 4378 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4379 return true; 4380 4381 return false; 4382 } 4383 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4384 4385 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4386 int __user *optlen) 4387 { 4388 struct inet_connection_sock *icsk = inet_csk(sk); 4389 4390 if (level != SOL_TCP) 4391 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4392 optval, optlen); 4393 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4394 } 4395 EXPORT_SYMBOL(tcp_getsockopt); 4396 4397 #ifdef CONFIG_TCP_MD5SIG 4398 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4399 static DEFINE_MUTEX(tcp_md5sig_mutex); 4400 static bool tcp_md5sig_pool_populated = false; 4401 4402 static void __tcp_alloc_md5sig_pool(void) 4403 { 4404 struct crypto_ahash *hash; 4405 int cpu; 4406 4407 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4408 if (IS_ERR(hash)) 4409 return; 4410 4411 for_each_possible_cpu(cpu) { 4412 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4413 struct ahash_request *req; 4414 4415 if (!scratch) { 4416 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4417 sizeof(struct tcphdr), 4418 GFP_KERNEL, 4419 cpu_to_node(cpu)); 4420 if (!scratch) 4421 return; 4422 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4423 } 4424 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4425 continue; 4426 4427 req = ahash_request_alloc(hash, GFP_KERNEL); 4428 if (!req) 4429 return; 4430 4431 ahash_request_set_callback(req, 0, NULL, NULL); 4432 4433 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4434 } 4435 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4436 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4437 */ 4438 smp_wmb(); 4439 tcp_md5sig_pool_populated = true; 4440 } 4441 4442 bool tcp_alloc_md5sig_pool(void) 4443 { 4444 if (unlikely(!tcp_md5sig_pool_populated)) { 4445 mutex_lock(&tcp_md5sig_mutex); 4446 4447 if (!tcp_md5sig_pool_populated) { 4448 __tcp_alloc_md5sig_pool(); 4449 if (tcp_md5sig_pool_populated) 4450 static_branch_inc(&tcp_md5_needed); 4451 } 4452 4453 mutex_unlock(&tcp_md5sig_mutex); 4454 } 4455 return tcp_md5sig_pool_populated; 4456 } 4457 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4458 4459 4460 /** 4461 * tcp_get_md5sig_pool - get md5sig_pool for this user 4462 * 4463 * We use percpu structure, so if we succeed, we exit with preemption 4464 * and BH disabled, to make sure another thread or softirq handling 4465 * wont try to get same context. 4466 */ 4467 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4468 { 4469 local_bh_disable(); 4470 4471 if (tcp_md5sig_pool_populated) { 4472 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4473 smp_rmb(); 4474 return this_cpu_ptr(&tcp_md5sig_pool); 4475 } 4476 local_bh_enable(); 4477 return NULL; 4478 } 4479 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4480 4481 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4482 const struct sk_buff *skb, unsigned int header_len) 4483 { 4484 struct scatterlist sg; 4485 const struct tcphdr *tp = tcp_hdr(skb); 4486 struct ahash_request *req = hp->md5_req; 4487 unsigned int i; 4488 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4489 skb_headlen(skb) - header_len : 0; 4490 const struct skb_shared_info *shi = skb_shinfo(skb); 4491 struct sk_buff *frag_iter; 4492 4493 sg_init_table(&sg, 1); 4494 4495 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4496 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4497 if (crypto_ahash_update(req)) 4498 return 1; 4499 4500 for (i = 0; i < shi->nr_frags; ++i) { 4501 const skb_frag_t *f = &shi->frags[i]; 4502 unsigned int offset = skb_frag_off(f); 4503 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4504 4505 sg_set_page(&sg, page, skb_frag_size(f), 4506 offset_in_page(offset)); 4507 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4508 if (crypto_ahash_update(req)) 4509 return 1; 4510 } 4511 4512 skb_walk_frags(skb, frag_iter) 4513 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4514 return 1; 4515 4516 return 0; 4517 } 4518 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4519 4520 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4521 { 4522 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4523 struct scatterlist sg; 4524 4525 sg_init_one(&sg, key->key, keylen); 4526 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4527 4528 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4529 return data_race(crypto_ahash_update(hp->md5_req)); 4530 } 4531 EXPORT_SYMBOL(tcp_md5_hash_key); 4532 4533 /* Called with rcu_read_lock() */ 4534 enum skb_drop_reason 4535 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4536 const void *saddr, const void *daddr, 4537 int family, int dif, int sdif) 4538 { 4539 /* 4540 * This gets called for each TCP segment that arrives 4541 * so we want to be efficient. 4542 * We have 3 drop cases: 4543 * o No MD5 hash and one expected. 4544 * o MD5 hash and we're not expecting one. 4545 * o MD5 hash and its wrong. 4546 */ 4547 const __u8 *hash_location = NULL; 4548 struct tcp_md5sig_key *hash_expected; 4549 const struct tcphdr *th = tcp_hdr(skb); 4550 struct tcp_sock *tp = tcp_sk(sk); 4551 int genhash, l3index; 4552 u8 newhash[16]; 4553 4554 /* sdif set, means packet ingressed via a device 4555 * in an L3 domain and dif is set to the l3mdev 4556 */ 4557 l3index = sdif ? dif : 0; 4558 4559 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4560 hash_location = tcp_parse_md5sig_option(th); 4561 4562 /* We've parsed the options - do we have a hash? */ 4563 if (!hash_expected && !hash_location) 4564 return SKB_NOT_DROPPED_YET; 4565 4566 if (hash_expected && !hash_location) { 4567 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4568 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4569 } 4570 4571 if (!hash_expected && hash_location) { 4572 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4573 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4574 } 4575 4576 /* Check the signature. 4577 * To support dual stack listeners, we need to handle 4578 * IPv4-mapped case. 4579 */ 4580 if (family == AF_INET) 4581 genhash = tcp_v4_md5_hash_skb(newhash, 4582 hash_expected, 4583 NULL, skb); 4584 else 4585 genhash = tp->af_specific->calc_md5_hash(newhash, 4586 hash_expected, 4587 NULL, skb); 4588 4589 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4591 if (family == AF_INET) { 4592 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4593 saddr, ntohs(th->source), 4594 daddr, ntohs(th->dest), 4595 genhash ? " tcp_v4_calc_md5_hash failed" 4596 : "", l3index); 4597 } else { 4598 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4599 genhash ? "failed" : "mismatch", 4600 saddr, ntohs(th->source), 4601 daddr, ntohs(th->dest), l3index); 4602 } 4603 return SKB_DROP_REASON_TCP_MD5FAILURE; 4604 } 4605 return SKB_NOT_DROPPED_YET; 4606 } 4607 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4608 4609 #endif 4610 4611 void tcp_done(struct sock *sk) 4612 { 4613 struct request_sock *req; 4614 4615 /* We might be called with a new socket, after 4616 * inet_csk_prepare_forced_close() has been called 4617 * so we can not use lockdep_sock_is_held(sk) 4618 */ 4619 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4620 4621 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4622 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4623 4624 tcp_set_state(sk, TCP_CLOSE); 4625 tcp_clear_xmit_timers(sk); 4626 if (req) 4627 reqsk_fastopen_remove(sk, req, false); 4628 4629 sk->sk_shutdown = SHUTDOWN_MASK; 4630 4631 if (!sock_flag(sk, SOCK_DEAD)) 4632 sk->sk_state_change(sk); 4633 else 4634 inet_csk_destroy_sock(sk); 4635 } 4636 EXPORT_SYMBOL_GPL(tcp_done); 4637 4638 int tcp_abort(struct sock *sk, int err) 4639 { 4640 int state = inet_sk_state_load(sk); 4641 4642 if (state == TCP_NEW_SYN_RECV) { 4643 struct request_sock *req = inet_reqsk(sk); 4644 4645 local_bh_disable(); 4646 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4647 local_bh_enable(); 4648 return 0; 4649 } 4650 if (state == TCP_TIME_WAIT) { 4651 struct inet_timewait_sock *tw = inet_twsk(sk); 4652 4653 refcount_inc(&tw->tw_refcnt); 4654 local_bh_disable(); 4655 inet_twsk_deschedule_put(tw); 4656 local_bh_enable(); 4657 return 0; 4658 } 4659 4660 /* Don't race with userspace socket closes such as tcp_close. */ 4661 lock_sock(sk); 4662 4663 if (sk->sk_state == TCP_LISTEN) { 4664 tcp_set_state(sk, TCP_CLOSE); 4665 inet_csk_listen_stop(sk); 4666 } 4667 4668 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4669 local_bh_disable(); 4670 bh_lock_sock(sk); 4671 4672 if (!sock_flag(sk, SOCK_DEAD)) { 4673 sk->sk_err = err; 4674 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4675 smp_wmb(); 4676 sk_error_report(sk); 4677 if (tcp_need_reset(sk->sk_state)) 4678 tcp_send_active_reset(sk, GFP_ATOMIC); 4679 tcp_done(sk); 4680 } 4681 4682 bh_unlock_sock(sk); 4683 local_bh_enable(); 4684 tcp_write_queue_purge(sk); 4685 release_sock(sk); 4686 return 0; 4687 } 4688 EXPORT_SYMBOL_GPL(tcp_abort); 4689 4690 extern struct tcp_congestion_ops tcp_reno; 4691 4692 static __initdata unsigned long thash_entries; 4693 static int __init set_thash_entries(char *str) 4694 { 4695 ssize_t ret; 4696 4697 if (!str) 4698 return 0; 4699 4700 ret = kstrtoul(str, 0, &thash_entries); 4701 if (ret) 4702 return 0; 4703 4704 return 1; 4705 } 4706 __setup("thash_entries=", set_thash_entries); 4707 4708 static void __init tcp_init_mem(void) 4709 { 4710 unsigned long limit = nr_free_buffer_pages() / 16; 4711 4712 limit = max(limit, 128UL); 4713 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4714 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4715 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4716 } 4717 4718 void __init tcp_init(void) 4719 { 4720 int max_rshare, max_wshare, cnt; 4721 unsigned long limit; 4722 unsigned int i; 4723 4724 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4725 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4726 sizeof_field(struct sk_buff, cb)); 4727 4728 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4729 4730 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4731 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4732 4733 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4734 thash_entries, 21, /* one slot per 2 MB*/ 4735 0, 64 * 1024); 4736 tcp_hashinfo.bind_bucket_cachep = 4737 kmem_cache_create("tcp_bind_bucket", 4738 sizeof(struct inet_bind_bucket), 0, 4739 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4740 SLAB_ACCOUNT, 4741 NULL); 4742 4743 /* Size and allocate the main established and bind bucket 4744 * hash tables. 4745 * 4746 * The methodology is similar to that of the buffer cache. 4747 */ 4748 tcp_hashinfo.ehash = 4749 alloc_large_system_hash("TCP established", 4750 sizeof(struct inet_ehash_bucket), 4751 thash_entries, 4752 17, /* one slot per 128 KB of memory */ 4753 0, 4754 NULL, 4755 &tcp_hashinfo.ehash_mask, 4756 0, 4757 thash_entries ? 0 : 512 * 1024); 4758 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4759 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4760 4761 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4762 panic("TCP: failed to alloc ehash_locks"); 4763 tcp_hashinfo.bhash = 4764 alloc_large_system_hash("TCP bind", 4765 sizeof(struct inet_bind_hashbucket), 4766 tcp_hashinfo.ehash_mask + 1, 4767 17, /* one slot per 128 KB of memory */ 4768 0, 4769 &tcp_hashinfo.bhash_size, 4770 NULL, 4771 0, 4772 64 * 1024); 4773 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4774 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4775 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4776 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4777 } 4778 4779 4780 cnt = tcp_hashinfo.ehash_mask + 1; 4781 sysctl_tcp_max_orphans = cnt / 2; 4782 4783 tcp_init_mem(); 4784 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4785 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4786 max_wshare = min(4UL*1024*1024, limit); 4787 max_rshare = min(6UL*1024*1024, limit); 4788 4789 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4790 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4791 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4792 4793 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4794 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4795 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4796 4797 pr_info("Hash tables configured (established %u bind %u)\n", 4798 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4799 4800 tcp_v4_init(); 4801 tcp_metrics_init(); 4802 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4803 tcp_tasklet_init(); 4804 mptcp_init(); 4805 } 4806