1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/netdma.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286 int sysctl_tcp_min_tso_segs __read_mostly = 2; 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 long sysctl_tcp_mem[3] __read_mostly; 292 int sysctl_tcp_wmem[3] __read_mostly; 293 int sysctl_tcp_rmem[3] __read_mostly; 294 295 EXPORT_SYMBOL(sysctl_tcp_mem); 296 EXPORT_SYMBOL(sysctl_tcp_rmem); 297 EXPORT_SYMBOL(sysctl_tcp_wmem); 298 299 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 300 EXPORT_SYMBOL(tcp_memory_allocated); 301 302 /* 303 * Current number of TCP sockets. 304 */ 305 struct percpu_counter tcp_sockets_allocated; 306 EXPORT_SYMBOL(tcp_sockets_allocated); 307 308 /* 309 * TCP splice context 310 */ 311 struct tcp_splice_state { 312 struct pipe_inode_info *pipe; 313 size_t len; 314 unsigned int flags; 315 }; 316 317 /* 318 * Pressure flag: try to collapse. 319 * Technical note: it is used by multiple contexts non atomically. 320 * All the __sk_mem_schedule() is of this nature: accounting 321 * is strict, actions are advisory and have some latency. 322 */ 323 int tcp_memory_pressure __read_mostly; 324 EXPORT_SYMBOL(tcp_memory_pressure); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 if (!tcp_memory_pressure) { 329 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 330 tcp_memory_pressure = 1; 331 } 332 } 333 EXPORT_SYMBOL(tcp_enter_memory_pressure); 334 335 /* Convert seconds to retransmits based on initial and max timeout */ 336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 337 { 338 u8 res = 0; 339 340 if (seconds > 0) { 341 int period = timeout; 342 343 res = 1; 344 while (seconds > period && res < 255) { 345 res++; 346 timeout <<= 1; 347 if (timeout > rto_max) 348 timeout = rto_max; 349 period += timeout; 350 } 351 } 352 return res; 353 } 354 355 /* Convert retransmits to seconds based on initial and max timeout */ 356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 357 { 358 int period = 0; 359 360 if (retrans > 0) { 361 period = timeout; 362 while (--retrans) { 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return period; 370 } 371 372 /* Address-family independent initialization for a tcp_sock. 373 * 374 * NOTE: A lot of things set to zero explicitly by call to 375 * sk_alloc() so need not be done here. 376 */ 377 void tcp_init_sock(struct sock *sk) 378 { 379 struct inet_connection_sock *icsk = inet_csk(sk); 380 struct tcp_sock *tp = tcp_sk(sk); 381 382 skb_queue_head_init(&tp->out_of_order_queue); 383 tcp_init_xmit_timers(sk); 384 tcp_prequeue_init(tp); 385 INIT_LIST_HEAD(&tp->tsq_node); 386 387 icsk->icsk_rto = TCP_TIMEOUT_INIT; 388 tp->mdev = TCP_TIMEOUT_INIT; 389 390 /* So many TCP implementations out there (incorrectly) count the 391 * initial SYN frame in their delayed-ACK and congestion control 392 * algorithms that we must have the following bandaid to talk 393 * efficiently to them. -DaveM 394 */ 395 tp->snd_cwnd = TCP_INIT_CWND; 396 397 /* See draft-stevens-tcpca-spec-01 for discussion of the 398 * initialization of these values. 399 */ 400 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 401 tp->snd_cwnd_clamp = ~0; 402 tp->mss_cache = TCP_MSS_DEFAULT; 403 404 tp->reordering = sysctl_tcp_reordering; 405 tcp_enable_early_retrans(tp); 406 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 407 408 tp->tsoffset = 0; 409 410 sk->sk_state = TCP_CLOSE; 411 412 sk->sk_write_space = sk_stream_write_space; 413 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 414 415 icsk->icsk_sync_mss = tcp_sync_mss; 416 417 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 418 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 419 420 local_bh_disable(); 421 sock_update_memcg(sk); 422 sk_sockets_allocated_inc(sk); 423 local_bh_enable(); 424 } 425 EXPORT_SYMBOL(tcp_init_sock); 426 427 /* 428 * Wait for a TCP event. 429 * 430 * Note that we don't need to lock the socket, as the upper poll layers 431 * take care of normal races (between the test and the event) and we don't 432 * go look at any of the socket buffers directly. 433 */ 434 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 435 { 436 unsigned int mask; 437 struct sock *sk = sock->sk; 438 const struct tcp_sock *tp = tcp_sk(sk); 439 440 sock_rps_record_flow(sk); 441 442 sock_poll_wait(file, sk_sleep(sk), wait); 443 if (sk->sk_state == TCP_LISTEN) 444 return inet_csk_listen_poll(sk); 445 446 /* Socket is not locked. We are protected from async events 447 * by poll logic and correct handling of state changes 448 * made by other threads is impossible in any case. 449 */ 450 451 mask = 0; 452 453 /* 454 * POLLHUP is certainly not done right. But poll() doesn't 455 * have a notion of HUP in just one direction, and for a 456 * socket the read side is more interesting. 457 * 458 * Some poll() documentation says that POLLHUP is incompatible 459 * with the POLLOUT/POLLWR flags, so somebody should check this 460 * all. But careful, it tends to be safer to return too many 461 * bits than too few, and you can easily break real applications 462 * if you don't tell them that something has hung up! 463 * 464 * Check-me. 465 * 466 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 467 * our fs/select.c). It means that after we received EOF, 468 * poll always returns immediately, making impossible poll() on write() 469 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 470 * if and only if shutdown has been made in both directions. 471 * Actually, it is interesting to look how Solaris and DUX 472 * solve this dilemma. I would prefer, if POLLHUP were maskable, 473 * then we could set it on SND_SHUTDOWN. BTW examples given 474 * in Stevens' books assume exactly this behaviour, it explains 475 * why POLLHUP is incompatible with POLLOUT. --ANK 476 * 477 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 478 * blocking on fresh not-connected or disconnected socket. --ANK 479 */ 480 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 481 mask |= POLLHUP; 482 if (sk->sk_shutdown & RCV_SHUTDOWN) 483 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 484 485 /* Connected or passive Fast Open socket? */ 486 if (sk->sk_state != TCP_SYN_SENT && 487 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 488 int target = sock_rcvlowat(sk, 0, INT_MAX); 489 490 if (tp->urg_seq == tp->copied_seq && 491 !sock_flag(sk, SOCK_URGINLINE) && 492 tp->urg_data) 493 target++; 494 495 /* Potential race condition. If read of tp below will 496 * escape above sk->sk_state, we can be illegally awaken 497 * in SYN_* states. */ 498 if (tp->rcv_nxt - tp->copied_seq >= target) 499 mask |= POLLIN | POLLRDNORM; 500 501 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 502 if (sk_stream_is_writeable(sk)) { 503 mask |= POLLOUT | POLLWRNORM; 504 } else { /* send SIGIO later */ 505 set_bit(SOCK_ASYNC_NOSPACE, 506 &sk->sk_socket->flags); 507 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 508 509 /* Race breaker. If space is freed after 510 * wspace test but before the flags are set, 511 * IO signal will be lost. 512 */ 513 if (sk_stream_is_writeable(sk)) 514 mask |= POLLOUT | POLLWRNORM; 515 } 516 } else 517 mask |= POLLOUT | POLLWRNORM; 518 519 if (tp->urg_data & TCP_URG_VALID) 520 mask |= POLLPRI; 521 } 522 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 523 smp_rmb(); 524 if (sk->sk_err) 525 mask |= POLLERR; 526 527 return mask; 528 } 529 EXPORT_SYMBOL(tcp_poll); 530 531 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 532 { 533 struct tcp_sock *tp = tcp_sk(sk); 534 int answ; 535 bool slow; 536 537 switch (cmd) { 538 case SIOCINQ: 539 if (sk->sk_state == TCP_LISTEN) 540 return -EINVAL; 541 542 slow = lock_sock_fast(sk); 543 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 544 answ = 0; 545 else if (sock_flag(sk, SOCK_URGINLINE) || 546 !tp->urg_data || 547 before(tp->urg_seq, tp->copied_seq) || 548 !before(tp->urg_seq, tp->rcv_nxt)) { 549 550 answ = tp->rcv_nxt - tp->copied_seq; 551 552 /* Subtract 1, if FIN was received */ 553 if (answ && sock_flag(sk, SOCK_DONE)) 554 answ--; 555 } else 556 answ = tp->urg_seq - tp->copied_seq; 557 unlock_sock_fast(sk, slow); 558 break; 559 case SIOCATMARK: 560 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 561 break; 562 case SIOCOUTQ: 563 if (sk->sk_state == TCP_LISTEN) 564 return -EINVAL; 565 566 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 567 answ = 0; 568 else 569 answ = tp->write_seq - tp->snd_una; 570 break; 571 case SIOCOUTQNSD: 572 if (sk->sk_state == TCP_LISTEN) 573 return -EINVAL; 574 575 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 576 answ = 0; 577 else 578 answ = tp->write_seq - tp->snd_nxt; 579 break; 580 default: 581 return -ENOIOCTLCMD; 582 } 583 584 return put_user(answ, (int __user *)arg); 585 } 586 EXPORT_SYMBOL(tcp_ioctl); 587 588 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 589 { 590 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 591 tp->pushed_seq = tp->write_seq; 592 } 593 594 static inline bool forced_push(const struct tcp_sock *tp) 595 { 596 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 597 } 598 599 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 600 { 601 struct tcp_sock *tp = tcp_sk(sk); 602 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 603 604 skb->csum = 0; 605 tcb->seq = tcb->end_seq = tp->write_seq; 606 tcb->tcp_flags = TCPHDR_ACK; 607 tcb->sacked = 0; 608 skb_header_release(skb); 609 tcp_add_write_queue_tail(sk, skb); 610 sk->sk_wmem_queued += skb->truesize; 611 sk_mem_charge(sk, skb->truesize); 612 if (tp->nonagle & TCP_NAGLE_PUSH) 613 tp->nonagle &= ~TCP_NAGLE_PUSH; 614 } 615 616 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 617 { 618 if (flags & MSG_OOB) 619 tp->snd_up = tp->write_seq; 620 } 621 622 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 623 int nonagle) 624 { 625 if (tcp_send_head(sk)) { 626 struct tcp_sock *tp = tcp_sk(sk); 627 628 if (!(flags & MSG_MORE) || forced_push(tp)) 629 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 630 631 tcp_mark_urg(tp, flags); 632 __tcp_push_pending_frames(sk, mss_now, 633 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 634 } 635 } 636 637 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 638 unsigned int offset, size_t len) 639 { 640 struct tcp_splice_state *tss = rd_desc->arg.data; 641 int ret; 642 643 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 644 tss->flags); 645 if (ret > 0) 646 rd_desc->count -= ret; 647 return ret; 648 } 649 650 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 651 { 652 /* Store TCP splice context information in read_descriptor_t. */ 653 read_descriptor_t rd_desc = { 654 .arg.data = tss, 655 .count = tss->len, 656 }; 657 658 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 659 } 660 661 /** 662 * tcp_splice_read - splice data from TCP socket to a pipe 663 * @sock: socket to splice from 664 * @ppos: position (not valid) 665 * @pipe: pipe to splice to 666 * @len: number of bytes to splice 667 * @flags: splice modifier flags 668 * 669 * Description: 670 * Will read pages from given socket and fill them into a pipe. 671 * 672 **/ 673 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 674 struct pipe_inode_info *pipe, size_t len, 675 unsigned int flags) 676 { 677 struct sock *sk = sock->sk; 678 struct tcp_splice_state tss = { 679 .pipe = pipe, 680 .len = len, 681 .flags = flags, 682 }; 683 long timeo; 684 ssize_t spliced; 685 int ret; 686 687 sock_rps_record_flow(sk); 688 /* 689 * We can't seek on a socket input 690 */ 691 if (unlikely(*ppos)) 692 return -ESPIPE; 693 694 ret = spliced = 0; 695 696 lock_sock(sk); 697 698 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 699 while (tss.len) { 700 ret = __tcp_splice_read(sk, &tss); 701 if (ret < 0) 702 break; 703 else if (!ret) { 704 if (spliced) 705 break; 706 if (sock_flag(sk, SOCK_DONE)) 707 break; 708 if (sk->sk_err) { 709 ret = sock_error(sk); 710 break; 711 } 712 if (sk->sk_shutdown & RCV_SHUTDOWN) 713 break; 714 if (sk->sk_state == TCP_CLOSE) { 715 /* 716 * This occurs when user tries to read 717 * from never connected socket. 718 */ 719 if (!sock_flag(sk, SOCK_DONE)) 720 ret = -ENOTCONN; 721 break; 722 } 723 if (!timeo) { 724 ret = -EAGAIN; 725 break; 726 } 727 sk_wait_data(sk, &timeo); 728 if (signal_pending(current)) { 729 ret = sock_intr_errno(timeo); 730 break; 731 } 732 continue; 733 } 734 tss.len -= ret; 735 spliced += ret; 736 737 if (!timeo) 738 break; 739 release_sock(sk); 740 lock_sock(sk); 741 742 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 743 (sk->sk_shutdown & RCV_SHUTDOWN) || 744 signal_pending(current)) 745 break; 746 } 747 748 release_sock(sk); 749 750 if (spliced) 751 return spliced; 752 753 return ret; 754 } 755 EXPORT_SYMBOL(tcp_splice_read); 756 757 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 758 { 759 struct sk_buff *skb; 760 761 /* The TCP header must be at least 32-bit aligned. */ 762 size = ALIGN(size, 4); 763 764 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 765 if (skb) { 766 if (sk_wmem_schedule(sk, skb->truesize)) { 767 skb_reserve(skb, sk->sk_prot->max_header); 768 /* 769 * Make sure that we have exactly size bytes 770 * available to the caller, no more, no less. 771 */ 772 skb->reserved_tailroom = skb->end - skb->tail - size; 773 return skb; 774 } 775 __kfree_skb(skb); 776 } else { 777 sk->sk_prot->enter_memory_pressure(sk); 778 sk_stream_moderate_sndbuf(sk); 779 } 780 return NULL; 781 } 782 783 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 784 int large_allowed) 785 { 786 struct tcp_sock *tp = tcp_sk(sk); 787 u32 xmit_size_goal, old_size_goal; 788 789 xmit_size_goal = mss_now; 790 791 if (large_allowed && sk_can_gso(sk)) { 792 u32 gso_size, hlen; 793 794 /* Maybe we should/could use sk->sk_prot->max_header here ? */ 795 hlen = inet_csk(sk)->icsk_af_ops->net_header_len + 796 inet_csk(sk)->icsk_ext_hdr_len + 797 tp->tcp_header_len; 798 799 /* Goal is to send at least one packet per ms, 800 * not one big TSO packet every 100 ms. 801 * This preserves ACK clocking and is consistent 802 * with tcp_tso_should_defer() heuristic. 803 */ 804 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC); 805 gso_size = max_t(u32, gso_size, 806 sysctl_tcp_min_tso_segs * mss_now); 807 808 xmit_size_goal = min_t(u32, gso_size, 809 sk->sk_gso_max_size - 1 - hlen); 810 811 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 812 813 /* We try hard to avoid divides here */ 814 old_size_goal = tp->xmit_size_goal_segs * mss_now; 815 816 if (likely(old_size_goal <= xmit_size_goal && 817 old_size_goal + mss_now > xmit_size_goal)) { 818 xmit_size_goal = old_size_goal; 819 } else { 820 tp->xmit_size_goal_segs = 821 min_t(u16, xmit_size_goal / mss_now, 822 sk->sk_gso_max_segs); 823 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 824 } 825 } 826 827 return max(xmit_size_goal, mss_now); 828 } 829 830 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 831 { 832 int mss_now; 833 834 mss_now = tcp_current_mss(sk); 835 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 836 837 return mss_now; 838 } 839 840 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 841 size_t size, int flags) 842 { 843 struct tcp_sock *tp = tcp_sk(sk); 844 int mss_now, size_goal; 845 int err; 846 ssize_t copied; 847 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 848 849 /* Wait for a connection to finish. One exception is TCP Fast Open 850 * (passive side) where data is allowed to be sent before a connection 851 * is fully established. 852 */ 853 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 854 !tcp_passive_fastopen(sk)) { 855 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 856 goto out_err; 857 } 858 859 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 860 861 mss_now = tcp_send_mss(sk, &size_goal, flags); 862 copied = 0; 863 864 err = -EPIPE; 865 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 866 goto out_err; 867 868 while (size > 0) { 869 struct sk_buff *skb = tcp_write_queue_tail(sk); 870 int copy, i; 871 bool can_coalesce; 872 873 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 874 new_segment: 875 if (!sk_stream_memory_free(sk)) 876 goto wait_for_sndbuf; 877 878 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 879 if (!skb) 880 goto wait_for_memory; 881 882 skb_entail(sk, skb); 883 copy = size_goal; 884 } 885 886 if (copy > size) 887 copy = size; 888 889 i = skb_shinfo(skb)->nr_frags; 890 can_coalesce = skb_can_coalesce(skb, i, page, offset); 891 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 892 tcp_mark_push(tp, skb); 893 goto new_segment; 894 } 895 if (!sk_wmem_schedule(sk, copy)) 896 goto wait_for_memory; 897 898 if (can_coalesce) { 899 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 900 } else { 901 get_page(page); 902 skb_fill_page_desc(skb, i, page, offset, copy); 903 } 904 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 905 906 skb->len += copy; 907 skb->data_len += copy; 908 skb->truesize += copy; 909 sk->sk_wmem_queued += copy; 910 sk_mem_charge(sk, copy); 911 skb->ip_summed = CHECKSUM_PARTIAL; 912 tp->write_seq += copy; 913 TCP_SKB_CB(skb)->end_seq += copy; 914 skb_shinfo(skb)->gso_segs = 0; 915 916 if (!copied) 917 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 918 919 copied += copy; 920 offset += copy; 921 if (!(size -= copy)) 922 goto out; 923 924 if (skb->len < size_goal || (flags & MSG_OOB)) 925 continue; 926 927 if (forced_push(tp)) { 928 tcp_mark_push(tp, skb); 929 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 930 } else if (skb == tcp_send_head(sk)) 931 tcp_push_one(sk, mss_now); 932 continue; 933 934 wait_for_sndbuf: 935 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 936 wait_for_memory: 937 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 938 939 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 940 goto do_error; 941 942 mss_now = tcp_send_mss(sk, &size_goal, flags); 943 } 944 945 out: 946 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 947 tcp_push(sk, flags, mss_now, tp->nonagle); 948 return copied; 949 950 do_error: 951 if (copied) 952 goto out; 953 out_err: 954 return sk_stream_error(sk, flags, err); 955 } 956 957 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 958 size_t size, int flags) 959 { 960 ssize_t res; 961 962 if (!(sk->sk_route_caps & NETIF_F_SG) || 963 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 964 return sock_no_sendpage(sk->sk_socket, page, offset, size, 965 flags); 966 967 lock_sock(sk); 968 res = do_tcp_sendpages(sk, page, offset, size, flags); 969 release_sock(sk); 970 return res; 971 } 972 EXPORT_SYMBOL(tcp_sendpage); 973 974 static inline int select_size(const struct sock *sk, bool sg) 975 { 976 const struct tcp_sock *tp = tcp_sk(sk); 977 int tmp = tp->mss_cache; 978 979 if (sg) { 980 if (sk_can_gso(sk)) { 981 /* Small frames wont use a full page: 982 * Payload will immediately follow tcp header. 983 */ 984 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 985 } else { 986 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 987 988 if (tmp >= pgbreak && 989 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 990 tmp = pgbreak; 991 } 992 } 993 994 return tmp; 995 } 996 997 void tcp_free_fastopen_req(struct tcp_sock *tp) 998 { 999 if (tp->fastopen_req != NULL) { 1000 kfree(tp->fastopen_req); 1001 tp->fastopen_req = NULL; 1002 } 1003 } 1004 1005 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size) 1006 { 1007 struct tcp_sock *tp = tcp_sk(sk); 1008 int err, flags; 1009 1010 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1011 return -EOPNOTSUPP; 1012 if (tp->fastopen_req != NULL) 1013 return -EALREADY; /* Another Fast Open is in progress */ 1014 1015 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1016 sk->sk_allocation); 1017 if (unlikely(tp->fastopen_req == NULL)) 1018 return -ENOBUFS; 1019 tp->fastopen_req->data = msg; 1020 1021 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1022 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1023 msg->msg_namelen, flags); 1024 *size = tp->fastopen_req->copied; 1025 tcp_free_fastopen_req(tp); 1026 return err; 1027 } 1028 1029 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1030 size_t size) 1031 { 1032 struct iovec *iov; 1033 struct tcp_sock *tp = tcp_sk(sk); 1034 struct sk_buff *skb; 1035 int iovlen, flags, err, copied = 0; 1036 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1037 bool sg; 1038 long timeo; 1039 1040 lock_sock(sk); 1041 1042 flags = msg->msg_flags; 1043 if (flags & MSG_FASTOPEN) { 1044 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn); 1045 if (err == -EINPROGRESS && copied_syn > 0) 1046 goto out; 1047 else if (err) 1048 goto out_err; 1049 offset = copied_syn; 1050 } 1051 1052 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1053 1054 /* Wait for a connection to finish. One exception is TCP Fast Open 1055 * (passive side) where data is allowed to be sent before a connection 1056 * is fully established. 1057 */ 1058 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1059 !tcp_passive_fastopen(sk)) { 1060 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1061 goto do_error; 1062 } 1063 1064 if (unlikely(tp->repair)) { 1065 if (tp->repair_queue == TCP_RECV_QUEUE) { 1066 copied = tcp_send_rcvq(sk, msg, size); 1067 goto out; 1068 } 1069 1070 err = -EINVAL; 1071 if (tp->repair_queue == TCP_NO_QUEUE) 1072 goto out_err; 1073 1074 /* 'common' sending to sendq */ 1075 } 1076 1077 /* This should be in poll */ 1078 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1079 1080 mss_now = tcp_send_mss(sk, &size_goal, flags); 1081 1082 /* Ok commence sending. */ 1083 iovlen = msg->msg_iovlen; 1084 iov = msg->msg_iov; 1085 copied = 0; 1086 1087 err = -EPIPE; 1088 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1089 goto out_err; 1090 1091 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1092 1093 while (--iovlen >= 0) { 1094 size_t seglen = iov->iov_len; 1095 unsigned char __user *from = iov->iov_base; 1096 1097 iov++; 1098 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1099 if (offset >= seglen) { 1100 offset -= seglen; 1101 continue; 1102 } 1103 seglen -= offset; 1104 from += offset; 1105 offset = 0; 1106 } 1107 1108 while (seglen > 0) { 1109 int copy = 0; 1110 int max = size_goal; 1111 1112 skb = tcp_write_queue_tail(sk); 1113 if (tcp_send_head(sk)) { 1114 if (skb->ip_summed == CHECKSUM_NONE) 1115 max = mss_now; 1116 copy = max - skb->len; 1117 } 1118 1119 if (copy <= 0) { 1120 new_segment: 1121 /* Allocate new segment. If the interface is SG, 1122 * allocate skb fitting to single page. 1123 */ 1124 if (!sk_stream_memory_free(sk)) 1125 goto wait_for_sndbuf; 1126 1127 skb = sk_stream_alloc_skb(sk, 1128 select_size(sk, sg), 1129 sk->sk_allocation); 1130 if (!skb) 1131 goto wait_for_memory; 1132 1133 /* 1134 * All packets are restored as if they have 1135 * already been sent. 1136 */ 1137 if (tp->repair) 1138 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1139 1140 /* 1141 * Check whether we can use HW checksum. 1142 */ 1143 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1144 skb->ip_summed = CHECKSUM_PARTIAL; 1145 1146 skb_entail(sk, skb); 1147 copy = size_goal; 1148 max = size_goal; 1149 } 1150 1151 /* Try to append data to the end of skb. */ 1152 if (copy > seglen) 1153 copy = seglen; 1154 1155 /* Where to copy to? */ 1156 if (skb_availroom(skb) > 0) { 1157 /* We have some space in skb head. Superb! */ 1158 copy = min_t(int, copy, skb_availroom(skb)); 1159 err = skb_add_data_nocache(sk, skb, from, copy); 1160 if (err) 1161 goto do_fault; 1162 } else { 1163 bool merge = true; 1164 int i = skb_shinfo(skb)->nr_frags; 1165 struct page_frag *pfrag = sk_page_frag(sk); 1166 1167 if (!sk_page_frag_refill(sk, pfrag)) 1168 goto wait_for_memory; 1169 1170 if (!skb_can_coalesce(skb, i, pfrag->page, 1171 pfrag->offset)) { 1172 if (i == MAX_SKB_FRAGS || !sg) { 1173 tcp_mark_push(tp, skb); 1174 goto new_segment; 1175 } 1176 merge = false; 1177 } 1178 1179 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1180 1181 if (!sk_wmem_schedule(sk, copy)) 1182 goto wait_for_memory; 1183 1184 err = skb_copy_to_page_nocache(sk, from, skb, 1185 pfrag->page, 1186 pfrag->offset, 1187 copy); 1188 if (err) 1189 goto do_error; 1190 1191 /* Update the skb. */ 1192 if (merge) { 1193 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1194 } else { 1195 skb_fill_page_desc(skb, i, pfrag->page, 1196 pfrag->offset, copy); 1197 get_page(pfrag->page); 1198 } 1199 pfrag->offset += copy; 1200 } 1201 1202 if (!copied) 1203 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1204 1205 tp->write_seq += copy; 1206 TCP_SKB_CB(skb)->end_seq += copy; 1207 skb_shinfo(skb)->gso_segs = 0; 1208 1209 from += copy; 1210 copied += copy; 1211 if ((seglen -= copy) == 0 && iovlen == 0) 1212 goto out; 1213 1214 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1215 continue; 1216 1217 if (forced_push(tp)) { 1218 tcp_mark_push(tp, skb); 1219 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1220 } else if (skb == tcp_send_head(sk)) 1221 tcp_push_one(sk, mss_now); 1222 continue; 1223 1224 wait_for_sndbuf: 1225 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1226 wait_for_memory: 1227 if (copied) 1228 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1229 1230 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1231 goto do_error; 1232 1233 mss_now = tcp_send_mss(sk, &size_goal, flags); 1234 } 1235 } 1236 1237 out: 1238 if (copied) 1239 tcp_push(sk, flags, mss_now, tp->nonagle); 1240 release_sock(sk); 1241 return copied + copied_syn; 1242 1243 do_fault: 1244 if (!skb->len) { 1245 tcp_unlink_write_queue(skb, sk); 1246 /* It is the one place in all of TCP, except connection 1247 * reset, where we can be unlinking the send_head. 1248 */ 1249 tcp_check_send_head(sk, skb); 1250 sk_wmem_free_skb(sk, skb); 1251 } 1252 1253 do_error: 1254 if (copied + copied_syn) 1255 goto out; 1256 out_err: 1257 err = sk_stream_error(sk, flags, err); 1258 release_sock(sk); 1259 return err; 1260 } 1261 EXPORT_SYMBOL(tcp_sendmsg); 1262 1263 /* 1264 * Handle reading urgent data. BSD has very simple semantics for 1265 * this, no blocking and very strange errors 8) 1266 */ 1267 1268 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1269 { 1270 struct tcp_sock *tp = tcp_sk(sk); 1271 1272 /* No URG data to read. */ 1273 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1274 tp->urg_data == TCP_URG_READ) 1275 return -EINVAL; /* Yes this is right ! */ 1276 1277 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1278 return -ENOTCONN; 1279 1280 if (tp->urg_data & TCP_URG_VALID) { 1281 int err = 0; 1282 char c = tp->urg_data; 1283 1284 if (!(flags & MSG_PEEK)) 1285 tp->urg_data = TCP_URG_READ; 1286 1287 /* Read urgent data. */ 1288 msg->msg_flags |= MSG_OOB; 1289 1290 if (len > 0) { 1291 if (!(flags & MSG_TRUNC)) 1292 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1293 len = 1; 1294 } else 1295 msg->msg_flags |= MSG_TRUNC; 1296 1297 return err ? -EFAULT : len; 1298 } 1299 1300 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1301 return 0; 1302 1303 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1304 * the available implementations agree in this case: 1305 * this call should never block, independent of the 1306 * blocking state of the socket. 1307 * Mike <pall@rz.uni-karlsruhe.de> 1308 */ 1309 return -EAGAIN; 1310 } 1311 1312 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1313 { 1314 struct sk_buff *skb; 1315 int copied = 0, err = 0; 1316 1317 /* XXX -- need to support SO_PEEK_OFF */ 1318 1319 skb_queue_walk(&sk->sk_write_queue, skb) { 1320 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1321 if (err) 1322 break; 1323 1324 copied += skb->len; 1325 } 1326 1327 return err ?: copied; 1328 } 1329 1330 /* Clean up the receive buffer for full frames taken by the user, 1331 * then send an ACK if necessary. COPIED is the number of bytes 1332 * tcp_recvmsg has given to the user so far, it speeds up the 1333 * calculation of whether or not we must ACK for the sake of 1334 * a window update. 1335 */ 1336 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1337 { 1338 struct tcp_sock *tp = tcp_sk(sk); 1339 bool time_to_ack = false; 1340 1341 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1342 1343 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1344 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1345 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1346 1347 if (inet_csk_ack_scheduled(sk)) { 1348 const struct inet_connection_sock *icsk = inet_csk(sk); 1349 /* Delayed ACKs frequently hit locked sockets during bulk 1350 * receive. */ 1351 if (icsk->icsk_ack.blocked || 1352 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1353 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1354 /* 1355 * If this read emptied read buffer, we send ACK, if 1356 * connection is not bidirectional, user drained 1357 * receive buffer and there was a small segment 1358 * in queue. 1359 */ 1360 (copied > 0 && 1361 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1362 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1363 !icsk->icsk_ack.pingpong)) && 1364 !atomic_read(&sk->sk_rmem_alloc))) 1365 time_to_ack = true; 1366 } 1367 1368 /* We send an ACK if we can now advertise a non-zero window 1369 * which has been raised "significantly". 1370 * 1371 * Even if window raised up to infinity, do not send window open ACK 1372 * in states, where we will not receive more. It is useless. 1373 */ 1374 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1375 __u32 rcv_window_now = tcp_receive_window(tp); 1376 1377 /* Optimize, __tcp_select_window() is not cheap. */ 1378 if (2*rcv_window_now <= tp->window_clamp) { 1379 __u32 new_window = __tcp_select_window(sk); 1380 1381 /* Send ACK now, if this read freed lots of space 1382 * in our buffer. Certainly, new_window is new window. 1383 * We can advertise it now, if it is not less than current one. 1384 * "Lots" means "at least twice" here. 1385 */ 1386 if (new_window && new_window >= 2 * rcv_window_now) 1387 time_to_ack = true; 1388 } 1389 } 1390 if (time_to_ack) 1391 tcp_send_ack(sk); 1392 } 1393 1394 static void tcp_prequeue_process(struct sock *sk) 1395 { 1396 struct sk_buff *skb; 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 1399 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1400 1401 /* RX process wants to run with disabled BHs, though it is not 1402 * necessary */ 1403 local_bh_disable(); 1404 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1405 sk_backlog_rcv(sk, skb); 1406 local_bh_enable(); 1407 1408 /* Clear memory counter. */ 1409 tp->ucopy.memory = 0; 1410 } 1411 1412 #ifdef CONFIG_NET_DMA 1413 static void tcp_service_net_dma(struct sock *sk, bool wait) 1414 { 1415 dma_cookie_t done, used; 1416 dma_cookie_t last_issued; 1417 struct tcp_sock *tp = tcp_sk(sk); 1418 1419 if (!tp->ucopy.dma_chan) 1420 return; 1421 1422 last_issued = tp->ucopy.dma_cookie; 1423 dma_async_issue_pending(tp->ucopy.dma_chan); 1424 1425 do { 1426 if (dma_async_is_tx_complete(tp->ucopy.dma_chan, 1427 last_issued, &done, 1428 &used) == DMA_COMPLETE) { 1429 /* Safe to free early-copied skbs now */ 1430 __skb_queue_purge(&sk->sk_async_wait_queue); 1431 break; 1432 } else { 1433 struct sk_buff *skb; 1434 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1435 (dma_async_is_complete(skb->dma_cookie, done, 1436 used) == DMA_COMPLETE)) { 1437 __skb_dequeue(&sk->sk_async_wait_queue); 1438 kfree_skb(skb); 1439 } 1440 } 1441 } while (wait); 1442 } 1443 #endif 1444 1445 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1446 { 1447 struct sk_buff *skb; 1448 u32 offset; 1449 1450 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1451 offset = seq - TCP_SKB_CB(skb)->seq; 1452 if (tcp_hdr(skb)->syn) 1453 offset--; 1454 if (offset < skb->len || tcp_hdr(skb)->fin) { 1455 *off = offset; 1456 return skb; 1457 } 1458 /* This looks weird, but this can happen if TCP collapsing 1459 * splitted a fat GRO packet, while we released socket lock 1460 * in skb_splice_bits() 1461 */ 1462 sk_eat_skb(sk, skb, false); 1463 } 1464 return NULL; 1465 } 1466 1467 /* 1468 * This routine provides an alternative to tcp_recvmsg() for routines 1469 * that would like to handle copying from skbuffs directly in 'sendfile' 1470 * fashion. 1471 * Note: 1472 * - It is assumed that the socket was locked by the caller. 1473 * - The routine does not block. 1474 * - At present, there is no support for reading OOB data 1475 * or for 'peeking' the socket using this routine 1476 * (although both would be easy to implement). 1477 */ 1478 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1479 sk_read_actor_t recv_actor) 1480 { 1481 struct sk_buff *skb; 1482 struct tcp_sock *tp = tcp_sk(sk); 1483 u32 seq = tp->copied_seq; 1484 u32 offset; 1485 int copied = 0; 1486 1487 if (sk->sk_state == TCP_LISTEN) 1488 return -ENOTCONN; 1489 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1490 if (offset < skb->len) { 1491 int used; 1492 size_t len; 1493 1494 len = skb->len - offset; 1495 /* Stop reading if we hit a patch of urgent data */ 1496 if (tp->urg_data) { 1497 u32 urg_offset = tp->urg_seq - seq; 1498 if (urg_offset < len) 1499 len = urg_offset; 1500 if (!len) 1501 break; 1502 } 1503 used = recv_actor(desc, skb, offset, len); 1504 if (used <= 0) { 1505 if (!copied) 1506 copied = used; 1507 break; 1508 } else if (used <= len) { 1509 seq += used; 1510 copied += used; 1511 offset += used; 1512 } 1513 /* If recv_actor drops the lock (e.g. TCP splice 1514 * receive) the skb pointer might be invalid when 1515 * getting here: tcp_collapse might have deleted it 1516 * while aggregating skbs from the socket queue. 1517 */ 1518 skb = tcp_recv_skb(sk, seq - 1, &offset); 1519 if (!skb) 1520 break; 1521 /* TCP coalescing might have appended data to the skb. 1522 * Try to splice more frags 1523 */ 1524 if (offset + 1 != skb->len) 1525 continue; 1526 } 1527 if (tcp_hdr(skb)->fin) { 1528 sk_eat_skb(sk, skb, false); 1529 ++seq; 1530 break; 1531 } 1532 sk_eat_skb(sk, skb, false); 1533 if (!desc->count) 1534 break; 1535 tp->copied_seq = seq; 1536 } 1537 tp->copied_seq = seq; 1538 1539 tcp_rcv_space_adjust(sk); 1540 1541 /* Clean up data we have read: This will do ACK frames. */ 1542 if (copied > 0) { 1543 tcp_recv_skb(sk, seq, &offset); 1544 tcp_cleanup_rbuf(sk, copied); 1545 } 1546 return copied; 1547 } 1548 EXPORT_SYMBOL(tcp_read_sock); 1549 1550 /* 1551 * This routine copies from a sock struct into the user buffer. 1552 * 1553 * Technical note: in 2.3 we work on _locked_ socket, so that 1554 * tricks with *seq access order and skb->users are not required. 1555 * Probably, code can be easily improved even more. 1556 */ 1557 1558 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1559 size_t len, int nonblock, int flags, int *addr_len) 1560 { 1561 struct tcp_sock *tp = tcp_sk(sk); 1562 int copied = 0; 1563 u32 peek_seq; 1564 u32 *seq; 1565 unsigned long used; 1566 int err; 1567 int target; /* Read at least this many bytes */ 1568 long timeo; 1569 struct task_struct *user_recv = NULL; 1570 bool copied_early = false; 1571 struct sk_buff *skb; 1572 u32 urg_hole = 0; 1573 1574 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1575 (sk->sk_state == TCP_ESTABLISHED)) 1576 sk_busy_loop(sk, nonblock); 1577 1578 lock_sock(sk); 1579 1580 err = -ENOTCONN; 1581 if (sk->sk_state == TCP_LISTEN) 1582 goto out; 1583 1584 timeo = sock_rcvtimeo(sk, nonblock); 1585 1586 /* Urgent data needs to be handled specially. */ 1587 if (flags & MSG_OOB) 1588 goto recv_urg; 1589 1590 if (unlikely(tp->repair)) { 1591 err = -EPERM; 1592 if (!(flags & MSG_PEEK)) 1593 goto out; 1594 1595 if (tp->repair_queue == TCP_SEND_QUEUE) 1596 goto recv_sndq; 1597 1598 err = -EINVAL; 1599 if (tp->repair_queue == TCP_NO_QUEUE) 1600 goto out; 1601 1602 /* 'common' recv queue MSG_PEEK-ing */ 1603 } 1604 1605 seq = &tp->copied_seq; 1606 if (flags & MSG_PEEK) { 1607 peek_seq = tp->copied_seq; 1608 seq = &peek_seq; 1609 } 1610 1611 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1612 1613 #ifdef CONFIG_NET_DMA 1614 tp->ucopy.dma_chan = NULL; 1615 preempt_disable(); 1616 skb = skb_peek_tail(&sk->sk_receive_queue); 1617 { 1618 int available = 0; 1619 1620 if (skb) 1621 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1622 if ((available < target) && 1623 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1624 !sysctl_tcp_low_latency && 1625 net_dma_find_channel()) { 1626 preempt_enable_no_resched(); 1627 tp->ucopy.pinned_list = 1628 dma_pin_iovec_pages(msg->msg_iov, len); 1629 } else { 1630 preempt_enable_no_resched(); 1631 } 1632 } 1633 #endif 1634 1635 do { 1636 u32 offset; 1637 1638 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1639 if (tp->urg_data && tp->urg_seq == *seq) { 1640 if (copied) 1641 break; 1642 if (signal_pending(current)) { 1643 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1644 break; 1645 } 1646 } 1647 1648 /* Next get a buffer. */ 1649 1650 skb_queue_walk(&sk->sk_receive_queue, skb) { 1651 /* Now that we have two receive queues this 1652 * shouldn't happen. 1653 */ 1654 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1655 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1656 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1657 flags)) 1658 break; 1659 1660 offset = *seq - TCP_SKB_CB(skb)->seq; 1661 if (tcp_hdr(skb)->syn) 1662 offset--; 1663 if (offset < skb->len) 1664 goto found_ok_skb; 1665 if (tcp_hdr(skb)->fin) 1666 goto found_fin_ok; 1667 WARN(!(flags & MSG_PEEK), 1668 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1669 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1670 } 1671 1672 /* Well, if we have backlog, try to process it now yet. */ 1673 1674 if (copied >= target && !sk->sk_backlog.tail) 1675 break; 1676 1677 if (copied) { 1678 if (sk->sk_err || 1679 sk->sk_state == TCP_CLOSE || 1680 (sk->sk_shutdown & RCV_SHUTDOWN) || 1681 !timeo || 1682 signal_pending(current)) 1683 break; 1684 } else { 1685 if (sock_flag(sk, SOCK_DONE)) 1686 break; 1687 1688 if (sk->sk_err) { 1689 copied = sock_error(sk); 1690 break; 1691 } 1692 1693 if (sk->sk_shutdown & RCV_SHUTDOWN) 1694 break; 1695 1696 if (sk->sk_state == TCP_CLOSE) { 1697 if (!sock_flag(sk, SOCK_DONE)) { 1698 /* This occurs when user tries to read 1699 * from never connected socket. 1700 */ 1701 copied = -ENOTCONN; 1702 break; 1703 } 1704 break; 1705 } 1706 1707 if (!timeo) { 1708 copied = -EAGAIN; 1709 break; 1710 } 1711 1712 if (signal_pending(current)) { 1713 copied = sock_intr_errno(timeo); 1714 break; 1715 } 1716 } 1717 1718 tcp_cleanup_rbuf(sk, copied); 1719 1720 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1721 /* Install new reader */ 1722 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1723 user_recv = current; 1724 tp->ucopy.task = user_recv; 1725 tp->ucopy.iov = msg->msg_iov; 1726 } 1727 1728 tp->ucopy.len = len; 1729 1730 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1731 !(flags & (MSG_PEEK | MSG_TRUNC))); 1732 1733 /* Ugly... If prequeue is not empty, we have to 1734 * process it before releasing socket, otherwise 1735 * order will be broken at second iteration. 1736 * More elegant solution is required!!! 1737 * 1738 * Look: we have the following (pseudo)queues: 1739 * 1740 * 1. packets in flight 1741 * 2. backlog 1742 * 3. prequeue 1743 * 4. receive_queue 1744 * 1745 * Each queue can be processed only if the next ones 1746 * are empty. At this point we have empty receive_queue. 1747 * But prequeue _can_ be not empty after 2nd iteration, 1748 * when we jumped to start of loop because backlog 1749 * processing added something to receive_queue. 1750 * We cannot release_sock(), because backlog contains 1751 * packets arrived _after_ prequeued ones. 1752 * 1753 * Shortly, algorithm is clear --- to process all 1754 * the queues in order. We could make it more directly, 1755 * requeueing packets from backlog to prequeue, if 1756 * is not empty. It is more elegant, but eats cycles, 1757 * unfortunately. 1758 */ 1759 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1760 goto do_prequeue; 1761 1762 /* __ Set realtime policy in scheduler __ */ 1763 } 1764 1765 #ifdef CONFIG_NET_DMA 1766 if (tp->ucopy.dma_chan) { 1767 if (tp->rcv_wnd == 0 && 1768 !skb_queue_empty(&sk->sk_async_wait_queue)) { 1769 tcp_service_net_dma(sk, true); 1770 tcp_cleanup_rbuf(sk, copied); 1771 } else 1772 dma_async_issue_pending(tp->ucopy.dma_chan); 1773 } 1774 #endif 1775 if (copied >= target) { 1776 /* Do not sleep, just process backlog. */ 1777 release_sock(sk); 1778 lock_sock(sk); 1779 } else 1780 sk_wait_data(sk, &timeo); 1781 1782 #ifdef CONFIG_NET_DMA 1783 tcp_service_net_dma(sk, false); /* Don't block */ 1784 tp->ucopy.wakeup = 0; 1785 #endif 1786 1787 if (user_recv) { 1788 int chunk; 1789 1790 /* __ Restore normal policy in scheduler __ */ 1791 1792 if ((chunk = len - tp->ucopy.len) != 0) { 1793 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1794 len -= chunk; 1795 copied += chunk; 1796 } 1797 1798 if (tp->rcv_nxt == tp->copied_seq && 1799 !skb_queue_empty(&tp->ucopy.prequeue)) { 1800 do_prequeue: 1801 tcp_prequeue_process(sk); 1802 1803 if ((chunk = len - tp->ucopy.len) != 0) { 1804 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1805 len -= chunk; 1806 copied += chunk; 1807 } 1808 } 1809 } 1810 if ((flags & MSG_PEEK) && 1811 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1812 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1813 current->comm, 1814 task_pid_nr(current)); 1815 peek_seq = tp->copied_seq; 1816 } 1817 continue; 1818 1819 found_ok_skb: 1820 /* Ok so how much can we use? */ 1821 used = skb->len - offset; 1822 if (len < used) 1823 used = len; 1824 1825 /* Do we have urgent data here? */ 1826 if (tp->urg_data) { 1827 u32 urg_offset = tp->urg_seq - *seq; 1828 if (urg_offset < used) { 1829 if (!urg_offset) { 1830 if (!sock_flag(sk, SOCK_URGINLINE)) { 1831 ++*seq; 1832 urg_hole++; 1833 offset++; 1834 used--; 1835 if (!used) 1836 goto skip_copy; 1837 } 1838 } else 1839 used = urg_offset; 1840 } 1841 } 1842 1843 if (!(flags & MSG_TRUNC)) { 1844 #ifdef CONFIG_NET_DMA 1845 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1846 tp->ucopy.dma_chan = net_dma_find_channel(); 1847 1848 if (tp->ucopy.dma_chan) { 1849 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1850 tp->ucopy.dma_chan, skb, offset, 1851 msg->msg_iov, used, 1852 tp->ucopy.pinned_list); 1853 1854 if (tp->ucopy.dma_cookie < 0) { 1855 1856 pr_alert("%s: dma_cookie < 0\n", 1857 __func__); 1858 1859 /* Exception. Bailout! */ 1860 if (!copied) 1861 copied = -EFAULT; 1862 break; 1863 } 1864 1865 dma_async_issue_pending(tp->ucopy.dma_chan); 1866 1867 if ((offset + used) == skb->len) 1868 copied_early = true; 1869 1870 } else 1871 #endif 1872 { 1873 err = skb_copy_datagram_iovec(skb, offset, 1874 msg->msg_iov, used); 1875 if (err) { 1876 /* Exception. Bailout! */ 1877 if (!copied) 1878 copied = -EFAULT; 1879 break; 1880 } 1881 } 1882 } 1883 1884 *seq += used; 1885 copied += used; 1886 len -= used; 1887 1888 tcp_rcv_space_adjust(sk); 1889 1890 skip_copy: 1891 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1892 tp->urg_data = 0; 1893 tcp_fast_path_check(sk); 1894 } 1895 if (used + offset < skb->len) 1896 continue; 1897 1898 if (tcp_hdr(skb)->fin) 1899 goto found_fin_ok; 1900 if (!(flags & MSG_PEEK)) { 1901 sk_eat_skb(sk, skb, copied_early); 1902 copied_early = false; 1903 } 1904 continue; 1905 1906 found_fin_ok: 1907 /* Process the FIN. */ 1908 ++*seq; 1909 if (!(flags & MSG_PEEK)) { 1910 sk_eat_skb(sk, skb, copied_early); 1911 copied_early = false; 1912 } 1913 break; 1914 } while (len > 0); 1915 1916 if (user_recv) { 1917 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1918 int chunk; 1919 1920 tp->ucopy.len = copied > 0 ? len : 0; 1921 1922 tcp_prequeue_process(sk); 1923 1924 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1925 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1926 len -= chunk; 1927 copied += chunk; 1928 } 1929 } 1930 1931 tp->ucopy.task = NULL; 1932 tp->ucopy.len = 0; 1933 } 1934 1935 #ifdef CONFIG_NET_DMA 1936 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1937 tp->ucopy.dma_chan = NULL; 1938 1939 if (tp->ucopy.pinned_list) { 1940 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1941 tp->ucopy.pinned_list = NULL; 1942 } 1943 #endif 1944 1945 /* According to UNIX98, msg_name/msg_namelen are ignored 1946 * on connected socket. I was just happy when found this 8) --ANK 1947 */ 1948 1949 /* Clean up data we have read: This will do ACK frames. */ 1950 tcp_cleanup_rbuf(sk, copied); 1951 1952 release_sock(sk); 1953 return copied; 1954 1955 out: 1956 release_sock(sk); 1957 return err; 1958 1959 recv_urg: 1960 err = tcp_recv_urg(sk, msg, len, flags); 1961 goto out; 1962 1963 recv_sndq: 1964 err = tcp_peek_sndq(sk, msg, len); 1965 goto out; 1966 } 1967 EXPORT_SYMBOL(tcp_recvmsg); 1968 1969 void tcp_set_state(struct sock *sk, int state) 1970 { 1971 int oldstate = sk->sk_state; 1972 1973 switch (state) { 1974 case TCP_ESTABLISHED: 1975 if (oldstate != TCP_ESTABLISHED) 1976 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1977 break; 1978 1979 case TCP_CLOSE: 1980 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1981 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1982 1983 sk->sk_prot->unhash(sk); 1984 if (inet_csk(sk)->icsk_bind_hash && 1985 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1986 inet_put_port(sk); 1987 /* fall through */ 1988 default: 1989 if (oldstate == TCP_ESTABLISHED) 1990 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1991 } 1992 1993 /* Change state AFTER socket is unhashed to avoid closed 1994 * socket sitting in hash tables. 1995 */ 1996 sk->sk_state = state; 1997 1998 #ifdef STATE_TRACE 1999 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2000 #endif 2001 } 2002 EXPORT_SYMBOL_GPL(tcp_set_state); 2003 2004 /* 2005 * State processing on a close. This implements the state shift for 2006 * sending our FIN frame. Note that we only send a FIN for some 2007 * states. A shutdown() may have already sent the FIN, or we may be 2008 * closed. 2009 */ 2010 2011 static const unsigned char new_state[16] = { 2012 /* current state: new state: action: */ 2013 /* (Invalid) */ TCP_CLOSE, 2014 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2015 /* TCP_SYN_SENT */ TCP_CLOSE, 2016 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2017 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 2018 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 2019 /* TCP_TIME_WAIT */ TCP_CLOSE, 2020 /* TCP_CLOSE */ TCP_CLOSE, 2021 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 2022 /* TCP_LAST_ACK */ TCP_LAST_ACK, 2023 /* TCP_LISTEN */ TCP_CLOSE, 2024 /* TCP_CLOSING */ TCP_CLOSING, 2025 }; 2026 2027 static int tcp_close_state(struct sock *sk) 2028 { 2029 int next = (int)new_state[sk->sk_state]; 2030 int ns = next & TCP_STATE_MASK; 2031 2032 tcp_set_state(sk, ns); 2033 2034 return next & TCP_ACTION_FIN; 2035 } 2036 2037 /* 2038 * Shutdown the sending side of a connection. Much like close except 2039 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2040 */ 2041 2042 void tcp_shutdown(struct sock *sk, int how) 2043 { 2044 /* We need to grab some memory, and put together a FIN, 2045 * and then put it into the queue to be sent. 2046 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2047 */ 2048 if (!(how & SEND_SHUTDOWN)) 2049 return; 2050 2051 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2052 if ((1 << sk->sk_state) & 2053 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2054 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2055 /* Clear out any half completed packets. FIN if needed. */ 2056 if (tcp_close_state(sk)) 2057 tcp_send_fin(sk); 2058 } 2059 } 2060 EXPORT_SYMBOL(tcp_shutdown); 2061 2062 bool tcp_check_oom(struct sock *sk, int shift) 2063 { 2064 bool too_many_orphans, out_of_socket_memory; 2065 2066 too_many_orphans = tcp_too_many_orphans(sk, shift); 2067 out_of_socket_memory = tcp_out_of_memory(sk); 2068 2069 if (too_many_orphans) 2070 net_info_ratelimited("too many orphaned sockets\n"); 2071 if (out_of_socket_memory) 2072 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2073 return too_many_orphans || out_of_socket_memory; 2074 } 2075 2076 void tcp_close(struct sock *sk, long timeout) 2077 { 2078 struct sk_buff *skb; 2079 int data_was_unread = 0; 2080 int state; 2081 2082 lock_sock(sk); 2083 sk->sk_shutdown = SHUTDOWN_MASK; 2084 2085 if (sk->sk_state == TCP_LISTEN) { 2086 tcp_set_state(sk, TCP_CLOSE); 2087 2088 /* Special case. */ 2089 inet_csk_listen_stop(sk); 2090 2091 goto adjudge_to_death; 2092 } 2093 2094 /* We need to flush the recv. buffs. We do this only on the 2095 * descriptor close, not protocol-sourced closes, because the 2096 * reader process may not have drained the data yet! 2097 */ 2098 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2099 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2100 tcp_hdr(skb)->fin; 2101 data_was_unread += len; 2102 __kfree_skb(skb); 2103 } 2104 2105 sk_mem_reclaim(sk); 2106 2107 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2108 if (sk->sk_state == TCP_CLOSE) 2109 goto adjudge_to_death; 2110 2111 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2112 * data was lost. To witness the awful effects of the old behavior of 2113 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2114 * GET in an FTP client, suspend the process, wait for the client to 2115 * advertise a zero window, then kill -9 the FTP client, wheee... 2116 * Note: timeout is always zero in such a case. 2117 */ 2118 if (unlikely(tcp_sk(sk)->repair)) { 2119 sk->sk_prot->disconnect(sk, 0); 2120 } else if (data_was_unread) { 2121 /* Unread data was tossed, zap the connection. */ 2122 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2123 tcp_set_state(sk, TCP_CLOSE); 2124 tcp_send_active_reset(sk, sk->sk_allocation); 2125 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2126 /* Check zero linger _after_ checking for unread data. */ 2127 sk->sk_prot->disconnect(sk, 0); 2128 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2129 } else if (tcp_close_state(sk)) { 2130 /* We FIN if the application ate all the data before 2131 * zapping the connection. 2132 */ 2133 2134 /* RED-PEN. Formally speaking, we have broken TCP state 2135 * machine. State transitions: 2136 * 2137 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2138 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2139 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2140 * 2141 * are legal only when FIN has been sent (i.e. in window), 2142 * rather than queued out of window. Purists blame. 2143 * 2144 * F.e. "RFC state" is ESTABLISHED, 2145 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2146 * 2147 * The visible declinations are that sometimes 2148 * we enter time-wait state, when it is not required really 2149 * (harmless), do not send active resets, when they are 2150 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2151 * they look as CLOSING or LAST_ACK for Linux) 2152 * Probably, I missed some more holelets. 2153 * --ANK 2154 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2155 * in a single packet! (May consider it later but will 2156 * probably need API support or TCP_CORK SYN-ACK until 2157 * data is written and socket is closed.) 2158 */ 2159 tcp_send_fin(sk); 2160 } 2161 2162 sk_stream_wait_close(sk, timeout); 2163 2164 adjudge_to_death: 2165 state = sk->sk_state; 2166 sock_hold(sk); 2167 sock_orphan(sk); 2168 2169 /* It is the last release_sock in its life. It will remove backlog. */ 2170 release_sock(sk); 2171 2172 2173 /* Now socket is owned by kernel and we acquire BH lock 2174 to finish close. No need to check for user refs. 2175 */ 2176 local_bh_disable(); 2177 bh_lock_sock(sk); 2178 WARN_ON(sock_owned_by_user(sk)); 2179 2180 percpu_counter_inc(sk->sk_prot->orphan_count); 2181 2182 /* Have we already been destroyed by a softirq or backlog? */ 2183 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2184 goto out; 2185 2186 /* This is a (useful) BSD violating of the RFC. There is a 2187 * problem with TCP as specified in that the other end could 2188 * keep a socket open forever with no application left this end. 2189 * We use a 3 minute timeout (about the same as BSD) then kill 2190 * our end. If they send after that then tough - BUT: long enough 2191 * that we won't make the old 4*rto = almost no time - whoops 2192 * reset mistake. 2193 * 2194 * Nope, it was not mistake. It is really desired behaviour 2195 * f.e. on http servers, when such sockets are useless, but 2196 * consume significant resources. Let's do it with special 2197 * linger2 option. --ANK 2198 */ 2199 2200 if (sk->sk_state == TCP_FIN_WAIT2) { 2201 struct tcp_sock *tp = tcp_sk(sk); 2202 if (tp->linger2 < 0) { 2203 tcp_set_state(sk, TCP_CLOSE); 2204 tcp_send_active_reset(sk, GFP_ATOMIC); 2205 NET_INC_STATS_BH(sock_net(sk), 2206 LINUX_MIB_TCPABORTONLINGER); 2207 } else { 2208 const int tmo = tcp_fin_time(sk); 2209 2210 if (tmo > TCP_TIMEWAIT_LEN) { 2211 inet_csk_reset_keepalive_timer(sk, 2212 tmo - TCP_TIMEWAIT_LEN); 2213 } else { 2214 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2215 goto out; 2216 } 2217 } 2218 } 2219 if (sk->sk_state != TCP_CLOSE) { 2220 sk_mem_reclaim(sk); 2221 if (tcp_check_oom(sk, 0)) { 2222 tcp_set_state(sk, TCP_CLOSE); 2223 tcp_send_active_reset(sk, GFP_ATOMIC); 2224 NET_INC_STATS_BH(sock_net(sk), 2225 LINUX_MIB_TCPABORTONMEMORY); 2226 } 2227 } 2228 2229 if (sk->sk_state == TCP_CLOSE) { 2230 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2231 /* We could get here with a non-NULL req if the socket is 2232 * aborted (e.g., closed with unread data) before 3WHS 2233 * finishes. 2234 */ 2235 if (req != NULL) 2236 reqsk_fastopen_remove(sk, req, false); 2237 inet_csk_destroy_sock(sk); 2238 } 2239 /* Otherwise, socket is reprieved until protocol close. */ 2240 2241 out: 2242 bh_unlock_sock(sk); 2243 local_bh_enable(); 2244 sock_put(sk); 2245 } 2246 EXPORT_SYMBOL(tcp_close); 2247 2248 /* These states need RST on ABORT according to RFC793 */ 2249 2250 static inline bool tcp_need_reset(int state) 2251 { 2252 return (1 << state) & 2253 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2254 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2255 } 2256 2257 int tcp_disconnect(struct sock *sk, int flags) 2258 { 2259 struct inet_sock *inet = inet_sk(sk); 2260 struct inet_connection_sock *icsk = inet_csk(sk); 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 int err = 0; 2263 int old_state = sk->sk_state; 2264 2265 if (old_state != TCP_CLOSE) 2266 tcp_set_state(sk, TCP_CLOSE); 2267 2268 /* ABORT function of RFC793 */ 2269 if (old_state == TCP_LISTEN) { 2270 inet_csk_listen_stop(sk); 2271 } else if (unlikely(tp->repair)) { 2272 sk->sk_err = ECONNABORTED; 2273 } else if (tcp_need_reset(old_state) || 2274 (tp->snd_nxt != tp->write_seq && 2275 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2276 /* The last check adjusts for discrepancy of Linux wrt. RFC 2277 * states 2278 */ 2279 tcp_send_active_reset(sk, gfp_any()); 2280 sk->sk_err = ECONNRESET; 2281 } else if (old_state == TCP_SYN_SENT) 2282 sk->sk_err = ECONNRESET; 2283 2284 tcp_clear_xmit_timers(sk); 2285 __skb_queue_purge(&sk->sk_receive_queue); 2286 tcp_write_queue_purge(sk); 2287 __skb_queue_purge(&tp->out_of_order_queue); 2288 #ifdef CONFIG_NET_DMA 2289 __skb_queue_purge(&sk->sk_async_wait_queue); 2290 #endif 2291 2292 inet->inet_dport = 0; 2293 2294 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2295 inet_reset_saddr(sk); 2296 2297 sk->sk_shutdown = 0; 2298 sock_reset_flag(sk, SOCK_DONE); 2299 tp->srtt = 0; 2300 if ((tp->write_seq += tp->max_window + 2) == 0) 2301 tp->write_seq = 1; 2302 icsk->icsk_backoff = 0; 2303 tp->snd_cwnd = 2; 2304 icsk->icsk_probes_out = 0; 2305 tp->packets_out = 0; 2306 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2307 tp->snd_cwnd_cnt = 0; 2308 tp->window_clamp = 0; 2309 tcp_set_ca_state(sk, TCP_CA_Open); 2310 tcp_clear_retrans(tp); 2311 inet_csk_delack_init(sk); 2312 tcp_init_send_head(sk); 2313 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2314 __sk_dst_reset(sk); 2315 2316 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2317 2318 sk->sk_error_report(sk); 2319 return err; 2320 } 2321 EXPORT_SYMBOL(tcp_disconnect); 2322 2323 void tcp_sock_destruct(struct sock *sk) 2324 { 2325 inet_sock_destruct(sk); 2326 2327 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2328 } 2329 2330 static inline bool tcp_can_repair_sock(const struct sock *sk) 2331 { 2332 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2333 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2334 } 2335 2336 static int tcp_repair_options_est(struct tcp_sock *tp, 2337 struct tcp_repair_opt __user *optbuf, unsigned int len) 2338 { 2339 struct tcp_repair_opt opt; 2340 2341 while (len >= sizeof(opt)) { 2342 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2343 return -EFAULT; 2344 2345 optbuf++; 2346 len -= sizeof(opt); 2347 2348 switch (opt.opt_code) { 2349 case TCPOPT_MSS: 2350 tp->rx_opt.mss_clamp = opt.opt_val; 2351 break; 2352 case TCPOPT_WINDOW: 2353 { 2354 u16 snd_wscale = opt.opt_val & 0xFFFF; 2355 u16 rcv_wscale = opt.opt_val >> 16; 2356 2357 if (snd_wscale > 14 || rcv_wscale > 14) 2358 return -EFBIG; 2359 2360 tp->rx_opt.snd_wscale = snd_wscale; 2361 tp->rx_opt.rcv_wscale = rcv_wscale; 2362 tp->rx_opt.wscale_ok = 1; 2363 } 2364 break; 2365 case TCPOPT_SACK_PERM: 2366 if (opt.opt_val != 0) 2367 return -EINVAL; 2368 2369 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2370 if (sysctl_tcp_fack) 2371 tcp_enable_fack(tp); 2372 break; 2373 case TCPOPT_TIMESTAMP: 2374 if (opt.opt_val != 0) 2375 return -EINVAL; 2376 2377 tp->rx_opt.tstamp_ok = 1; 2378 break; 2379 } 2380 } 2381 2382 return 0; 2383 } 2384 2385 /* 2386 * Socket option code for TCP. 2387 */ 2388 static int do_tcp_setsockopt(struct sock *sk, int level, 2389 int optname, char __user *optval, unsigned int optlen) 2390 { 2391 struct tcp_sock *tp = tcp_sk(sk); 2392 struct inet_connection_sock *icsk = inet_csk(sk); 2393 int val; 2394 int err = 0; 2395 2396 /* These are data/string values, all the others are ints */ 2397 switch (optname) { 2398 case TCP_CONGESTION: { 2399 char name[TCP_CA_NAME_MAX]; 2400 2401 if (optlen < 1) 2402 return -EINVAL; 2403 2404 val = strncpy_from_user(name, optval, 2405 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2406 if (val < 0) 2407 return -EFAULT; 2408 name[val] = 0; 2409 2410 lock_sock(sk); 2411 err = tcp_set_congestion_control(sk, name); 2412 release_sock(sk); 2413 return err; 2414 } 2415 default: 2416 /* fallthru */ 2417 break; 2418 } 2419 2420 if (optlen < sizeof(int)) 2421 return -EINVAL; 2422 2423 if (get_user(val, (int __user *)optval)) 2424 return -EFAULT; 2425 2426 lock_sock(sk); 2427 2428 switch (optname) { 2429 case TCP_MAXSEG: 2430 /* Values greater than interface MTU won't take effect. However 2431 * at the point when this call is done we typically don't yet 2432 * know which interface is going to be used */ 2433 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2434 err = -EINVAL; 2435 break; 2436 } 2437 tp->rx_opt.user_mss = val; 2438 break; 2439 2440 case TCP_NODELAY: 2441 if (val) { 2442 /* TCP_NODELAY is weaker than TCP_CORK, so that 2443 * this option on corked socket is remembered, but 2444 * it is not activated until cork is cleared. 2445 * 2446 * However, when TCP_NODELAY is set we make 2447 * an explicit push, which overrides even TCP_CORK 2448 * for currently queued segments. 2449 */ 2450 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2451 tcp_push_pending_frames(sk); 2452 } else { 2453 tp->nonagle &= ~TCP_NAGLE_OFF; 2454 } 2455 break; 2456 2457 case TCP_THIN_LINEAR_TIMEOUTS: 2458 if (val < 0 || val > 1) 2459 err = -EINVAL; 2460 else 2461 tp->thin_lto = val; 2462 break; 2463 2464 case TCP_THIN_DUPACK: 2465 if (val < 0 || val > 1) 2466 err = -EINVAL; 2467 else { 2468 tp->thin_dupack = val; 2469 if (tp->thin_dupack) 2470 tcp_disable_early_retrans(tp); 2471 } 2472 break; 2473 2474 case TCP_REPAIR: 2475 if (!tcp_can_repair_sock(sk)) 2476 err = -EPERM; 2477 else if (val == 1) { 2478 tp->repair = 1; 2479 sk->sk_reuse = SK_FORCE_REUSE; 2480 tp->repair_queue = TCP_NO_QUEUE; 2481 } else if (val == 0) { 2482 tp->repair = 0; 2483 sk->sk_reuse = SK_NO_REUSE; 2484 tcp_send_window_probe(sk); 2485 } else 2486 err = -EINVAL; 2487 2488 break; 2489 2490 case TCP_REPAIR_QUEUE: 2491 if (!tp->repair) 2492 err = -EPERM; 2493 else if (val < TCP_QUEUES_NR) 2494 tp->repair_queue = val; 2495 else 2496 err = -EINVAL; 2497 break; 2498 2499 case TCP_QUEUE_SEQ: 2500 if (sk->sk_state != TCP_CLOSE) 2501 err = -EPERM; 2502 else if (tp->repair_queue == TCP_SEND_QUEUE) 2503 tp->write_seq = val; 2504 else if (tp->repair_queue == TCP_RECV_QUEUE) 2505 tp->rcv_nxt = val; 2506 else 2507 err = -EINVAL; 2508 break; 2509 2510 case TCP_REPAIR_OPTIONS: 2511 if (!tp->repair) 2512 err = -EINVAL; 2513 else if (sk->sk_state == TCP_ESTABLISHED) 2514 err = tcp_repair_options_est(tp, 2515 (struct tcp_repair_opt __user *)optval, 2516 optlen); 2517 else 2518 err = -EPERM; 2519 break; 2520 2521 case TCP_CORK: 2522 /* When set indicates to always queue non-full frames. 2523 * Later the user clears this option and we transmit 2524 * any pending partial frames in the queue. This is 2525 * meant to be used alongside sendfile() to get properly 2526 * filled frames when the user (for example) must write 2527 * out headers with a write() call first and then use 2528 * sendfile to send out the data parts. 2529 * 2530 * TCP_CORK can be set together with TCP_NODELAY and it is 2531 * stronger than TCP_NODELAY. 2532 */ 2533 if (val) { 2534 tp->nonagle |= TCP_NAGLE_CORK; 2535 } else { 2536 tp->nonagle &= ~TCP_NAGLE_CORK; 2537 if (tp->nonagle&TCP_NAGLE_OFF) 2538 tp->nonagle |= TCP_NAGLE_PUSH; 2539 tcp_push_pending_frames(sk); 2540 } 2541 break; 2542 2543 case TCP_KEEPIDLE: 2544 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2545 err = -EINVAL; 2546 else { 2547 tp->keepalive_time = val * HZ; 2548 if (sock_flag(sk, SOCK_KEEPOPEN) && 2549 !((1 << sk->sk_state) & 2550 (TCPF_CLOSE | TCPF_LISTEN))) { 2551 u32 elapsed = keepalive_time_elapsed(tp); 2552 if (tp->keepalive_time > elapsed) 2553 elapsed = tp->keepalive_time - elapsed; 2554 else 2555 elapsed = 0; 2556 inet_csk_reset_keepalive_timer(sk, elapsed); 2557 } 2558 } 2559 break; 2560 case TCP_KEEPINTVL: 2561 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2562 err = -EINVAL; 2563 else 2564 tp->keepalive_intvl = val * HZ; 2565 break; 2566 case TCP_KEEPCNT: 2567 if (val < 1 || val > MAX_TCP_KEEPCNT) 2568 err = -EINVAL; 2569 else 2570 tp->keepalive_probes = val; 2571 break; 2572 case TCP_SYNCNT: 2573 if (val < 1 || val > MAX_TCP_SYNCNT) 2574 err = -EINVAL; 2575 else 2576 icsk->icsk_syn_retries = val; 2577 break; 2578 2579 case TCP_LINGER2: 2580 if (val < 0) 2581 tp->linger2 = -1; 2582 else if (val > sysctl_tcp_fin_timeout / HZ) 2583 tp->linger2 = 0; 2584 else 2585 tp->linger2 = val * HZ; 2586 break; 2587 2588 case TCP_DEFER_ACCEPT: 2589 /* Translate value in seconds to number of retransmits */ 2590 icsk->icsk_accept_queue.rskq_defer_accept = 2591 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2592 TCP_RTO_MAX / HZ); 2593 break; 2594 2595 case TCP_WINDOW_CLAMP: 2596 if (!val) { 2597 if (sk->sk_state != TCP_CLOSE) { 2598 err = -EINVAL; 2599 break; 2600 } 2601 tp->window_clamp = 0; 2602 } else 2603 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2604 SOCK_MIN_RCVBUF / 2 : val; 2605 break; 2606 2607 case TCP_QUICKACK: 2608 if (!val) { 2609 icsk->icsk_ack.pingpong = 1; 2610 } else { 2611 icsk->icsk_ack.pingpong = 0; 2612 if ((1 << sk->sk_state) & 2613 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2614 inet_csk_ack_scheduled(sk)) { 2615 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2616 tcp_cleanup_rbuf(sk, 1); 2617 if (!(val & 1)) 2618 icsk->icsk_ack.pingpong = 1; 2619 } 2620 } 2621 break; 2622 2623 #ifdef CONFIG_TCP_MD5SIG 2624 case TCP_MD5SIG: 2625 /* Read the IP->Key mappings from userspace */ 2626 err = tp->af_specific->md5_parse(sk, optval, optlen); 2627 break; 2628 #endif 2629 case TCP_USER_TIMEOUT: 2630 /* Cap the max timeout in ms TCP will retry/retrans 2631 * before giving up and aborting (ETIMEDOUT) a connection. 2632 */ 2633 if (val < 0) 2634 err = -EINVAL; 2635 else 2636 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2637 break; 2638 2639 case TCP_FASTOPEN: 2640 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2641 TCPF_LISTEN))) 2642 err = fastopen_init_queue(sk, val); 2643 else 2644 err = -EINVAL; 2645 break; 2646 case TCP_TIMESTAMP: 2647 if (!tp->repair) 2648 err = -EPERM; 2649 else 2650 tp->tsoffset = val - tcp_time_stamp; 2651 break; 2652 case TCP_NOTSENT_LOWAT: 2653 tp->notsent_lowat = val; 2654 sk->sk_write_space(sk); 2655 break; 2656 default: 2657 err = -ENOPROTOOPT; 2658 break; 2659 } 2660 2661 release_sock(sk); 2662 return err; 2663 } 2664 2665 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2666 unsigned int optlen) 2667 { 2668 const struct inet_connection_sock *icsk = inet_csk(sk); 2669 2670 if (level != SOL_TCP) 2671 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2672 optval, optlen); 2673 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2674 } 2675 EXPORT_SYMBOL(tcp_setsockopt); 2676 2677 #ifdef CONFIG_COMPAT 2678 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2679 char __user *optval, unsigned int optlen) 2680 { 2681 if (level != SOL_TCP) 2682 return inet_csk_compat_setsockopt(sk, level, optname, 2683 optval, optlen); 2684 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2685 } 2686 EXPORT_SYMBOL(compat_tcp_setsockopt); 2687 #endif 2688 2689 /* Return information about state of tcp endpoint in API format. */ 2690 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2691 { 2692 const struct tcp_sock *tp = tcp_sk(sk); 2693 const struct inet_connection_sock *icsk = inet_csk(sk); 2694 u32 now = tcp_time_stamp; 2695 2696 memset(info, 0, sizeof(*info)); 2697 2698 info->tcpi_state = sk->sk_state; 2699 info->tcpi_ca_state = icsk->icsk_ca_state; 2700 info->tcpi_retransmits = icsk->icsk_retransmits; 2701 info->tcpi_probes = icsk->icsk_probes_out; 2702 info->tcpi_backoff = icsk->icsk_backoff; 2703 2704 if (tp->rx_opt.tstamp_ok) 2705 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2706 if (tcp_is_sack(tp)) 2707 info->tcpi_options |= TCPI_OPT_SACK; 2708 if (tp->rx_opt.wscale_ok) { 2709 info->tcpi_options |= TCPI_OPT_WSCALE; 2710 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2711 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2712 } 2713 2714 if (tp->ecn_flags & TCP_ECN_OK) 2715 info->tcpi_options |= TCPI_OPT_ECN; 2716 if (tp->ecn_flags & TCP_ECN_SEEN) 2717 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2718 if (tp->syn_data_acked) 2719 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2720 2721 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2722 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2723 info->tcpi_snd_mss = tp->mss_cache; 2724 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2725 2726 if (sk->sk_state == TCP_LISTEN) { 2727 info->tcpi_unacked = sk->sk_ack_backlog; 2728 info->tcpi_sacked = sk->sk_max_ack_backlog; 2729 } else { 2730 info->tcpi_unacked = tp->packets_out; 2731 info->tcpi_sacked = tp->sacked_out; 2732 } 2733 info->tcpi_lost = tp->lost_out; 2734 info->tcpi_retrans = tp->retrans_out; 2735 info->tcpi_fackets = tp->fackets_out; 2736 2737 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2738 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2739 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2740 2741 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2742 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2743 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2744 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2745 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2746 info->tcpi_snd_cwnd = tp->snd_cwnd; 2747 info->tcpi_advmss = tp->advmss; 2748 info->tcpi_reordering = tp->reordering; 2749 2750 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2751 info->tcpi_rcv_space = tp->rcvq_space.space; 2752 2753 info->tcpi_total_retrans = tp->total_retrans; 2754 } 2755 EXPORT_SYMBOL_GPL(tcp_get_info); 2756 2757 static int do_tcp_getsockopt(struct sock *sk, int level, 2758 int optname, char __user *optval, int __user *optlen) 2759 { 2760 struct inet_connection_sock *icsk = inet_csk(sk); 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 int val, len; 2763 2764 if (get_user(len, optlen)) 2765 return -EFAULT; 2766 2767 len = min_t(unsigned int, len, sizeof(int)); 2768 2769 if (len < 0) 2770 return -EINVAL; 2771 2772 switch (optname) { 2773 case TCP_MAXSEG: 2774 val = tp->mss_cache; 2775 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2776 val = tp->rx_opt.user_mss; 2777 if (tp->repair) 2778 val = tp->rx_opt.mss_clamp; 2779 break; 2780 case TCP_NODELAY: 2781 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2782 break; 2783 case TCP_CORK: 2784 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2785 break; 2786 case TCP_KEEPIDLE: 2787 val = keepalive_time_when(tp) / HZ; 2788 break; 2789 case TCP_KEEPINTVL: 2790 val = keepalive_intvl_when(tp) / HZ; 2791 break; 2792 case TCP_KEEPCNT: 2793 val = keepalive_probes(tp); 2794 break; 2795 case TCP_SYNCNT: 2796 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2797 break; 2798 case TCP_LINGER2: 2799 val = tp->linger2; 2800 if (val >= 0) 2801 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2802 break; 2803 case TCP_DEFER_ACCEPT: 2804 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2805 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2806 break; 2807 case TCP_WINDOW_CLAMP: 2808 val = tp->window_clamp; 2809 break; 2810 case TCP_INFO: { 2811 struct tcp_info info; 2812 2813 if (get_user(len, optlen)) 2814 return -EFAULT; 2815 2816 tcp_get_info(sk, &info); 2817 2818 len = min_t(unsigned int, len, sizeof(info)); 2819 if (put_user(len, optlen)) 2820 return -EFAULT; 2821 if (copy_to_user(optval, &info, len)) 2822 return -EFAULT; 2823 return 0; 2824 } 2825 case TCP_QUICKACK: 2826 val = !icsk->icsk_ack.pingpong; 2827 break; 2828 2829 case TCP_CONGESTION: 2830 if (get_user(len, optlen)) 2831 return -EFAULT; 2832 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2833 if (put_user(len, optlen)) 2834 return -EFAULT; 2835 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2836 return -EFAULT; 2837 return 0; 2838 2839 case TCP_THIN_LINEAR_TIMEOUTS: 2840 val = tp->thin_lto; 2841 break; 2842 case TCP_THIN_DUPACK: 2843 val = tp->thin_dupack; 2844 break; 2845 2846 case TCP_REPAIR: 2847 val = tp->repair; 2848 break; 2849 2850 case TCP_REPAIR_QUEUE: 2851 if (tp->repair) 2852 val = tp->repair_queue; 2853 else 2854 return -EINVAL; 2855 break; 2856 2857 case TCP_QUEUE_SEQ: 2858 if (tp->repair_queue == TCP_SEND_QUEUE) 2859 val = tp->write_seq; 2860 else if (tp->repair_queue == TCP_RECV_QUEUE) 2861 val = tp->rcv_nxt; 2862 else 2863 return -EINVAL; 2864 break; 2865 2866 case TCP_USER_TIMEOUT: 2867 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2868 break; 2869 case TCP_TIMESTAMP: 2870 val = tcp_time_stamp + tp->tsoffset; 2871 break; 2872 case TCP_NOTSENT_LOWAT: 2873 val = tp->notsent_lowat; 2874 break; 2875 default: 2876 return -ENOPROTOOPT; 2877 } 2878 2879 if (put_user(len, optlen)) 2880 return -EFAULT; 2881 if (copy_to_user(optval, &val, len)) 2882 return -EFAULT; 2883 return 0; 2884 } 2885 2886 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2887 int __user *optlen) 2888 { 2889 struct inet_connection_sock *icsk = inet_csk(sk); 2890 2891 if (level != SOL_TCP) 2892 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2893 optval, optlen); 2894 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2895 } 2896 EXPORT_SYMBOL(tcp_getsockopt); 2897 2898 #ifdef CONFIG_COMPAT 2899 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2900 char __user *optval, int __user *optlen) 2901 { 2902 if (level != SOL_TCP) 2903 return inet_csk_compat_getsockopt(sk, level, optname, 2904 optval, optlen); 2905 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2906 } 2907 EXPORT_SYMBOL(compat_tcp_getsockopt); 2908 #endif 2909 2910 #ifdef CONFIG_TCP_MD5SIG 2911 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly; 2912 static DEFINE_MUTEX(tcp_md5sig_mutex); 2913 2914 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2915 { 2916 int cpu; 2917 2918 for_each_possible_cpu(cpu) { 2919 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2920 2921 if (p->md5_desc.tfm) 2922 crypto_free_hash(p->md5_desc.tfm); 2923 } 2924 free_percpu(pool); 2925 } 2926 2927 static void __tcp_alloc_md5sig_pool(void) 2928 { 2929 int cpu; 2930 struct tcp_md5sig_pool __percpu *pool; 2931 2932 pool = alloc_percpu(struct tcp_md5sig_pool); 2933 if (!pool) 2934 return; 2935 2936 for_each_possible_cpu(cpu) { 2937 struct crypto_hash *hash; 2938 2939 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2940 if (IS_ERR_OR_NULL(hash)) 2941 goto out_free; 2942 2943 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 2944 } 2945 /* before setting tcp_md5sig_pool, we must commit all writes 2946 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool() 2947 */ 2948 smp_wmb(); 2949 tcp_md5sig_pool = pool; 2950 return; 2951 out_free: 2952 __tcp_free_md5sig_pool(pool); 2953 } 2954 2955 bool tcp_alloc_md5sig_pool(void) 2956 { 2957 if (unlikely(!tcp_md5sig_pool)) { 2958 mutex_lock(&tcp_md5sig_mutex); 2959 2960 if (!tcp_md5sig_pool) 2961 __tcp_alloc_md5sig_pool(); 2962 2963 mutex_unlock(&tcp_md5sig_mutex); 2964 } 2965 return tcp_md5sig_pool != NULL; 2966 } 2967 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2968 2969 2970 /** 2971 * tcp_get_md5sig_pool - get md5sig_pool for this user 2972 * 2973 * We use percpu structure, so if we succeed, we exit with preemption 2974 * and BH disabled, to make sure another thread or softirq handling 2975 * wont try to get same context. 2976 */ 2977 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2978 { 2979 struct tcp_md5sig_pool __percpu *p; 2980 2981 local_bh_disable(); 2982 p = ACCESS_ONCE(tcp_md5sig_pool); 2983 if (p) 2984 return __this_cpu_ptr(p); 2985 2986 local_bh_enable(); 2987 return NULL; 2988 } 2989 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2990 2991 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2992 const struct tcphdr *th) 2993 { 2994 struct scatterlist sg; 2995 struct tcphdr hdr; 2996 int err; 2997 2998 /* We are not allowed to change tcphdr, make a local copy */ 2999 memcpy(&hdr, th, sizeof(hdr)); 3000 hdr.check = 0; 3001 3002 /* options aren't included in the hash */ 3003 sg_init_one(&sg, &hdr, sizeof(hdr)); 3004 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3005 return err; 3006 } 3007 EXPORT_SYMBOL(tcp_md5_hash_header); 3008 3009 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3010 const struct sk_buff *skb, unsigned int header_len) 3011 { 3012 struct scatterlist sg; 3013 const struct tcphdr *tp = tcp_hdr(skb); 3014 struct hash_desc *desc = &hp->md5_desc; 3015 unsigned int i; 3016 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3017 skb_headlen(skb) - header_len : 0; 3018 const struct skb_shared_info *shi = skb_shinfo(skb); 3019 struct sk_buff *frag_iter; 3020 3021 sg_init_table(&sg, 1); 3022 3023 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3024 if (crypto_hash_update(desc, &sg, head_data_len)) 3025 return 1; 3026 3027 for (i = 0; i < shi->nr_frags; ++i) { 3028 const struct skb_frag_struct *f = &shi->frags[i]; 3029 unsigned int offset = f->page_offset; 3030 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3031 3032 sg_set_page(&sg, page, skb_frag_size(f), 3033 offset_in_page(offset)); 3034 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3035 return 1; 3036 } 3037 3038 skb_walk_frags(skb, frag_iter) 3039 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3040 return 1; 3041 3042 return 0; 3043 } 3044 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3045 3046 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3047 { 3048 struct scatterlist sg; 3049 3050 sg_init_one(&sg, key->key, key->keylen); 3051 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3052 } 3053 EXPORT_SYMBOL(tcp_md5_hash_key); 3054 3055 #endif 3056 3057 void tcp_done(struct sock *sk) 3058 { 3059 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3060 3061 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3062 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3063 3064 tcp_set_state(sk, TCP_CLOSE); 3065 tcp_clear_xmit_timers(sk); 3066 if (req != NULL) 3067 reqsk_fastopen_remove(sk, req, false); 3068 3069 sk->sk_shutdown = SHUTDOWN_MASK; 3070 3071 if (!sock_flag(sk, SOCK_DEAD)) 3072 sk->sk_state_change(sk); 3073 else 3074 inet_csk_destroy_sock(sk); 3075 } 3076 EXPORT_SYMBOL_GPL(tcp_done); 3077 3078 extern struct tcp_congestion_ops tcp_reno; 3079 3080 static __initdata unsigned long thash_entries; 3081 static int __init set_thash_entries(char *str) 3082 { 3083 ssize_t ret; 3084 3085 if (!str) 3086 return 0; 3087 3088 ret = kstrtoul(str, 0, &thash_entries); 3089 if (ret) 3090 return 0; 3091 3092 return 1; 3093 } 3094 __setup("thash_entries=", set_thash_entries); 3095 3096 static void tcp_init_mem(void) 3097 { 3098 unsigned long limit = nr_free_buffer_pages() / 8; 3099 limit = max(limit, 128UL); 3100 sysctl_tcp_mem[0] = limit / 4 * 3; 3101 sysctl_tcp_mem[1] = limit; 3102 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3103 } 3104 3105 void __init tcp_init(void) 3106 { 3107 struct sk_buff *skb = NULL; 3108 unsigned long limit; 3109 int max_rshare, max_wshare, cnt; 3110 unsigned int i; 3111 3112 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3113 3114 percpu_counter_init(&tcp_sockets_allocated, 0); 3115 percpu_counter_init(&tcp_orphan_count, 0); 3116 tcp_hashinfo.bind_bucket_cachep = 3117 kmem_cache_create("tcp_bind_bucket", 3118 sizeof(struct inet_bind_bucket), 0, 3119 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3120 3121 /* Size and allocate the main established and bind bucket 3122 * hash tables. 3123 * 3124 * The methodology is similar to that of the buffer cache. 3125 */ 3126 tcp_hashinfo.ehash = 3127 alloc_large_system_hash("TCP established", 3128 sizeof(struct inet_ehash_bucket), 3129 thash_entries, 3130 17, /* one slot per 128 KB of memory */ 3131 0, 3132 NULL, 3133 &tcp_hashinfo.ehash_mask, 3134 0, 3135 thash_entries ? 0 : 512 * 1024); 3136 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3137 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3138 3139 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3140 panic("TCP: failed to alloc ehash_locks"); 3141 tcp_hashinfo.bhash = 3142 alloc_large_system_hash("TCP bind", 3143 sizeof(struct inet_bind_hashbucket), 3144 tcp_hashinfo.ehash_mask + 1, 3145 17, /* one slot per 128 KB of memory */ 3146 0, 3147 &tcp_hashinfo.bhash_size, 3148 NULL, 3149 0, 3150 64 * 1024); 3151 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3152 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3153 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3154 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3155 } 3156 3157 3158 cnt = tcp_hashinfo.ehash_mask + 1; 3159 3160 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3161 sysctl_tcp_max_orphans = cnt / 2; 3162 sysctl_max_syn_backlog = max(128, cnt / 256); 3163 3164 tcp_init_mem(); 3165 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3166 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3167 max_wshare = min(4UL*1024*1024, limit); 3168 max_rshare = min(6UL*1024*1024, limit); 3169 3170 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3171 sysctl_tcp_wmem[1] = 16*1024; 3172 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3173 3174 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3175 sysctl_tcp_rmem[1] = 87380; 3176 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3177 3178 pr_info("Hash tables configured (established %u bind %u)\n", 3179 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3180 3181 tcp_metrics_init(); 3182 3183 tcp_register_congestion_control(&tcp_reno); 3184 3185 tcp_tasklet_init(); 3186 } 3187