1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 smp_mb__after_atomic(); 726 } 727 /* It is possible TX completion already happened 728 * before we set TSQ_THROTTLED. 729 */ 730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 731 return; 732 } 733 734 if (flags & MSG_MORE) 735 nonagle = TCP_NAGLE_CORK; 736 737 __tcp_push_pending_frames(sk, mss_now, nonagle); 738 } 739 740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 741 unsigned int offset, size_t len) 742 { 743 struct tcp_splice_state *tss = rd_desc->arg.data; 744 int ret; 745 746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 747 min(rd_desc->count, len), tss->flags); 748 if (ret > 0) 749 rd_desc->count -= ret; 750 return ret; 751 } 752 753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 754 { 755 /* Store TCP splice context information in read_descriptor_t. */ 756 read_descriptor_t rd_desc = { 757 .arg.data = tss, 758 .count = tss->len, 759 }; 760 761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 762 } 763 764 /** 765 * tcp_splice_read - splice data from TCP socket to a pipe 766 * @sock: socket to splice from 767 * @ppos: position (not valid) 768 * @pipe: pipe to splice to 769 * @len: number of bytes to splice 770 * @flags: splice modifier flags 771 * 772 * Description: 773 * Will read pages from given socket and fill them into a pipe. 774 * 775 **/ 776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 777 struct pipe_inode_info *pipe, size_t len, 778 unsigned int flags) 779 { 780 struct sock *sk = sock->sk; 781 struct tcp_splice_state tss = { 782 .pipe = pipe, 783 .len = len, 784 .flags = flags, 785 }; 786 long timeo; 787 ssize_t spliced; 788 int ret; 789 790 sock_rps_record_flow(sk); 791 /* 792 * We can't seek on a socket input 793 */ 794 if (unlikely(*ppos)) 795 return -ESPIPE; 796 797 ret = spliced = 0; 798 799 lock_sock(sk); 800 801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 802 while (tss.len) { 803 ret = __tcp_splice_read(sk, &tss); 804 if (ret < 0) 805 break; 806 else if (!ret) { 807 if (spliced) 808 break; 809 if (sock_flag(sk, SOCK_DONE)) 810 break; 811 if (sk->sk_err) { 812 ret = sock_error(sk); 813 break; 814 } 815 if (sk->sk_shutdown & RCV_SHUTDOWN) 816 break; 817 if (sk->sk_state == TCP_CLOSE) { 818 /* 819 * This occurs when user tries to read 820 * from never connected socket. 821 */ 822 ret = -ENOTCONN; 823 break; 824 } 825 if (!timeo) { 826 ret = -EAGAIN; 827 break; 828 } 829 /* if __tcp_splice_read() got nothing while we have 830 * an skb in receive queue, we do not want to loop. 831 * This might happen with URG data. 832 */ 833 if (!skb_queue_empty(&sk->sk_receive_queue)) 834 break; 835 ret = sk_wait_data(sk, &timeo, NULL); 836 if (ret < 0) 837 break; 838 if (signal_pending(current)) { 839 ret = sock_intr_errno(timeo); 840 break; 841 } 842 continue; 843 } 844 tss.len -= ret; 845 spliced += ret; 846 847 if (!tss.len || !timeo) 848 break; 849 release_sock(sk); 850 lock_sock(sk); 851 852 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 853 (sk->sk_shutdown & RCV_SHUTDOWN) || 854 signal_pending(current)) 855 break; 856 } 857 858 release_sock(sk); 859 860 if (spliced) 861 return spliced; 862 863 return ret; 864 } 865 EXPORT_SYMBOL(tcp_splice_read); 866 867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 868 bool force_schedule) 869 { 870 struct sk_buff *skb; 871 872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 873 if (likely(skb)) { 874 bool mem_scheduled; 875 876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 877 if (force_schedule) { 878 mem_scheduled = true; 879 sk_forced_mem_schedule(sk, skb->truesize); 880 } else { 881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 882 } 883 if (likely(mem_scheduled)) { 884 skb_reserve(skb, MAX_TCP_HEADER); 885 skb->ip_summed = CHECKSUM_PARTIAL; 886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 887 return skb; 888 } 889 __kfree_skb(skb); 890 } else { 891 sk->sk_prot->enter_memory_pressure(sk); 892 sk_stream_moderate_sndbuf(sk); 893 } 894 return NULL; 895 } 896 897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 898 int large_allowed) 899 { 900 struct tcp_sock *tp = tcp_sk(sk); 901 u32 new_size_goal, size_goal; 902 903 if (!large_allowed) 904 return mss_now; 905 906 /* Note : tcp_tso_autosize() will eventually split this later */ 907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 908 909 /* We try hard to avoid divides here */ 910 size_goal = tp->gso_segs * mss_now; 911 if (unlikely(new_size_goal < size_goal || 912 new_size_goal >= size_goal + mss_now)) { 913 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 914 sk->sk_gso_max_segs); 915 size_goal = tp->gso_segs * mss_now; 916 } 917 918 return max(size_goal, mss_now); 919 } 920 921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 922 { 923 int mss_now; 924 925 mss_now = tcp_current_mss(sk); 926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 927 928 return mss_now; 929 } 930 931 /* In some cases, sendmsg() could have added an skb to the write queue, 932 * but failed adding payload on it. We need to remove it to consume less 933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 934 * epoll() users. Another reason is that tcp_write_xmit() does not like 935 * finding an empty skb in the write queue. 936 */ 937 void tcp_remove_empty_skb(struct sock *sk) 938 { 939 struct sk_buff *skb = tcp_write_queue_tail(sk); 940 941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 942 tcp_unlink_write_queue(skb, sk); 943 if (tcp_write_queue_empty(sk)) 944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 945 tcp_wmem_free_skb(sk, skb); 946 } 947 } 948 949 /* skb changing from pure zc to mixed, must charge zc */ 950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 951 { 952 if (unlikely(skb_zcopy_pure(skb))) { 953 u32 extra = skb->truesize - 954 SKB_TRUESIZE(skb_end_offset(skb)); 955 956 if (!sk_wmem_schedule(sk, extra)) 957 return -ENOMEM; 958 959 sk_mem_charge(sk, extra); 960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 961 } 962 return 0; 963 } 964 965 966 int tcp_wmem_schedule(struct sock *sk, int copy) 967 { 968 int left; 969 970 if (likely(sk_wmem_schedule(sk, copy))) 971 return copy; 972 973 /* We could be in trouble if we have nothing queued. 974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 975 * to guarantee some progress. 976 */ 977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 978 if (left > 0) 979 sk_forced_mem_schedule(sk, min(left, copy)); 980 return min(copy, sk->sk_forward_alloc); 981 } 982 983 void tcp_free_fastopen_req(struct tcp_sock *tp) 984 { 985 if (tp->fastopen_req) { 986 kfree(tp->fastopen_req); 987 tp->fastopen_req = NULL; 988 } 989 } 990 991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 992 size_t size, struct ubuf_info *uarg) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 struct inet_sock *inet = inet_sk(sk); 996 struct sockaddr *uaddr = msg->msg_name; 997 int err, flags; 998 999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1000 TFO_CLIENT_ENABLE) || 1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1002 uaddr->sa_family == AF_UNSPEC)) 1003 return -EOPNOTSUPP; 1004 if (tp->fastopen_req) 1005 return -EALREADY; /* Another Fast Open is in progress */ 1006 1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1008 sk->sk_allocation); 1009 if (unlikely(!tp->fastopen_req)) 1010 return -ENOBUFS; 1011 tp->fastopen_req->data = msg; 1012 tp->fastopen_req->size = size; 1013 tp->fastopen_req->uarg = uarg; 1014 1015 if (inet_test_bit(DEFER_CONNECT, sk)) { 1016 err = tcp_connect(sk); 1017 /* Same failure procedure as in tcp_v4/6_connect */ 1018 if (err) { 1019 tcp_set_state(sk, TCP_CLOSE); 1020 inet->inet_dport = 0; 1021 sk->sk_route_caps = 0; 1022 } 1023 } 1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1025 err = __inet_stream_connect(sk->sk_socket, uaddr, 1026 msg->msg_namelen, flags, 1); 1027 /* fastopen_req could already be freed in __inet_stream_connect 1028 * if the connection times out or gets rst 1029 */ 1030 if (tp->fastopen_req) { 1031 *copied = tp->fastopen_req->copied; 1032 tcp_free_fastopen_req(tp); 1033 inet_clear_bit(DEFER_CONNECT, sk); 1034 } 1035 return err; 1036 } 1037 1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 struct ubuf_info *uarg = NULL; 1042 struct sk_buff *skb; 1043 struct sockcm_cookie sockc; 1044 int flags, err, copied = 0; 1045 int mss_now = 0, size_goal, copied_syn = 0; 1046 int process_backlog = 0; 1047 int zc = 0; 1048 long timeo; 1049 1050 flags = msg->msg_flags; 1051 1052 if ((flags & MSG_ZEROCOPY) && size) { 1053 if (msg->msg_ubuf) { 1054 uarg = msg->msg_ubuf; 1055 if (sk->sk_route_caps & NETIF_F_SG) 1056 zc = MSG_ZEROCOPY; 1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1058 skb = tcp_write_queue_tail(sk); 1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1060 if (!uarg) { 1061 err = -ENOBUFS; 1062 goto out_err; 1063 } 1064 if (sk->sk_route_caps & NETIF_F_SG) 1065 zc = MSG_ZEROCOPY; 1066 else 1067 uarg_to_msgzc(uarg)->zerocopy = 0; 1068 } 1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1070 if (sk->sk_route_caps & NETIF_F_SG) 1071 zc = MSG_SPLICE_PAGES; 1072 } 1073 1074 if (unlikely(flags & MSG_FASTOPEN || 1075 inet_test_bit(DEFER_CONNECT, sk)) && 1076 !tp->repair) { 1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1078 if (err == -EINPROGRESS && copied_syn > 0) 1079 goto out; 1080 else if (err) 1081 goto out_err; 1082 } 1083 1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1085 1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1087 1088 /* Wait for a connection to finish. One exception is TCP Fast Open 1089 * (passive side) where data is allowed to be sent before a connection 1090 * is fully established. 1091 */ 1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1093 !tcp_passive_fastopen(sk)) { 1094 err = sk_stream_wait_connect(sk, &timeo); 1095 if (err != 0) 1096 goto do_error; 1097 } 1098 1099 if (unlikely(tp->repair)) { 1100 if (tp->repair_queue == TCP_RECV_QUEUE) { 1101 copied = tcp_send_rcvq(sk, msg, size); 1102 goto out_nopush; 1103 } 1104 1105 err = -EINVAL; 1106 if (tp->repair_queue == TCP_NO_QUEUE) 1107 goto out_err; 1108 1109 /* 'common' sending to sendq */ 1110 } 1111 1112 sockcm_init(&sockc, sk); 1113 if (msg->msg_controllen) { 1114 err = sock_cmsg_send(sk, msg, &sockc); 1115 if (unlikely(err)) { 1116 err = -EINVAL; 1117 goto out_err; 1118 } 1119 } 1120 1121 /* This should be in poll */ 1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1123 1124 /* Ok commence sending. */ 1125 copied = 0; 1126 1127 restart: 1128 mss_now = tcp_send_mss(sk, &size_goal, flags); 1129 1130 err = -EPIPE; 1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1132 goto do_error; 1133 1134 while (msg_data_left(msg)) { 1135 ssize_t copy = 0; 1136 1137 skb = tcp_write_queue_tail(sk); 1138 if (skb) 1139 copy = size_goal - skb->len; 1140 1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1142 bool first_skb; 1143 1144 new_segment: 1145 if (!sk_stream_memory_free(sk)) 1146 goto wait_for_space; 1147 1148 if (unlikely(process_backlog >= 16)) { 1149 process_backlog = 0; 1150 if (sk_flush_backlog(sk)) 1151 goto restart; 1152 } 1153 first_skb = tcp_rtx_and_write_queues_empty(sk); 1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1155 first_skb); 1156 if (!skb) 1157 goto wait_for_space; 1158 1159 process_backlog++; 1160 1161 #ifdef CONFIG_SKB_DECRYPTED 1162 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1163 #endif 1164 tcp_skb_entail(sk, skb); 1165 copy = size_goal; 1166 1167 /* All packets are restored as if they have 1168 * already been sent. skb_mstamp_ns isn't set to 1169 * avoid wrong rtt estimation. 1170 */ 1171 if (tp->repair) 1172 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1173 } 1174 1175 /* Try to append data to the end of skb. */ 1176 if (copy > msg_data_left(msg)) 1177 copy = msg_data_left(msg); 1178 1179 if (zc == 0) { 1180 bool merge = true; 1181 int i = skb_shinfo(skb)->nr_frags; 1182 struct page_frag *pfrag = sk_page_frag(sk); 1183 1184 if (!sk_page_frag_refill(sk, pfrag)) 1185 goto wait_for_space; 1186 1187 if (!skb_can_coalesce(skb, i, pfrag->page, 1188 pfrag->offset)) { 1189 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1190 tcp_mark_push(tp, skb); 1191 goto new_segment; 1192 } 1193 merge = false; 1194 } 1195 1196 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1197 1198 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1199 if (tcp_downgrade_zcopy_pure(sk, skb)) 1200 goto wait_for_space; 1201 skb_zcopy_downgrade_managed(skb); 1202 } 1203 1204 copy = tcp_wmem_schedule(sk, copy); 1205 if (!copy) 1206 goto wait_for_space; 1207 1208 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1209 pfrag->page, 1210 pfrag->offset, 1211 copy); 1212 if (err) 1213 goto do_error; 1214 1215 /* Update the skb. */ 1216 if (merge) { 1217 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1218 } else { 1219 skb_fill_page_desc(skb, i, pfrag->page, 1220 pfrag->offset, copy); 1221 page_ref_inc(pfrag->page); 1222 } 1223 pfrag->offset += copy; 1224 } else if (zc == MSG_ZEROCOPY) { 1225 /* First append to a fragless skb builds initial 1226 * pure zerocopy skb 1227 */ 1228 if (!skb->len) 1229 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1230 1231 if (!skb_zcopy_pure(skb)) { 1232 copy = tcp_wmem_schedule(sk, copy); 1233 if (!copy) 1234 goto wait_for_space; 1235 } 1236 1237 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1238 if (err == -EMSGSIZE || err == -EEXIST) { 1239 tcp_mark_push(tp, skb); 1240 goto new_segment; 1241 } 1242 if (err < 0) 1243 goto do_error; 1244 copy = err; 1245 } else if (zc == MSG_SPLICE_PAGES) { 1246 /* Splice in data if we can; copy if we can't. */ 1247 if (tcp_downgrade_zcopy_pure(sk, skb)) 1248 goto wait_for_space; 1249 copy = tcp_wmem_schedule(sk, copy); 1250 if (!copy) 1251 goto wait_for_space; 1252 1253 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1254 sk->sk_allocation); 1255 if (err < 0) { 1256 if (err == -EMSGSIZE) { 1257 tcp_mark_push(tp, skb); 1258 goto new_segment; 1259 } 1260 goto do_error; 1261 } 1262 copy = err; 1263 1264 if (!(flags & MSG_NO_SHARED_FRAGS)) 1265 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1266 1267 sk_wmem_queued_add(sk, copy); 1268 sk_mem_charge(sk, copy); 1269 } 1270 1271 if (!copied) 1272 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1273 1274 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1275 TCP_SKB_CB(skb)->end_seq += copy; 1276 tcp_skb_pcount_set(skb, 0); 1277 1278 copied += copy; 1279 if (!msg_data_left(msg)) { 1280 if (unlikely(flags & MSG_EOR)) 1281 TCP_SKB_CB(skb)->eor = 1; 1282 goto out; 1283 } 1284 1285 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1286 continue; 1287 1288 if (forced_push(tp)) { 1289 tcp_mark_push(tp, skb); 1290 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1291 } else if (skb == tcp_send_head(sk)) 1292 tcp_push_one(sk, mss_now); 1293 continue; 1294 1295 wait_for_space: 1296 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1297 tcp_remove_empty_skb(sk); 1298 if (copied) 1299 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1300 TCP_NAGLE_PUSH, size_goal); 1301 1302 err = sk_stream_wait_memory(sk, &timeo); 1303 if (err != 0) 1304 goto do_error; 1305 1306 mss_now = tcp_send_mss(sk, &size_goal, flags); 1307 } 1308 1309 out: 1310 if (copied) { 1311 tcp_tx_timestamp(sk, sockc.tsflags); 1312 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1313 } 1314 out_nopush: 1315 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1316 if (uarg && !msg->msg_ubuf) 1317 net_zcopy_put(uarg); 1318 return copied + copied_syn; 1319 1320 do_error: 1321 tcp_remove_empty_skb(sk); 1322 1323 if (copied + copied_syn) 1324 goto out; 1325 out_err: 1326 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1327 if (uarg && !msg->msg_ubuf) 1328 net_zcopy_put_abort(uarg, true); 1329 err = sk_stream_error(sk, flags, err); 1330 /* make sure we wake any epoll edge trigger waiter */ 1331 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1332 sk->sk_write_space(sk); 1333 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1334 } 1335 return err; 1336 } 1337 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1338 1339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1340 { 1341 int ret; 1342 1343 lock_sock(sk); 1344 ret = tcp_sendmsg_locked(sk, msg, size); 1345 release_sock(sk); 1346 1347 return ret; 1348 } 1349 EXPORT_SYMBOL(tcp_sendmsg); 1350 1351 void tcp_splice_eof(struct socket *sock) 1352 { 1353 struct sock *sk = sock->sk; 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 int mss_now, size_goal; 1356 1357 if (!tcp_write_queue_tail(sk)) 1358 return; 1359 1360 lock_sock(sk); 1361 mss_now = tcp_send_mss(sk, &size_goal, 0); 1362 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1363 release_sock(sk); 1364 } 1365 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1366 1367 /* 1368 * Handle reading urgent data. BSD has very simple semantics for 1369 * this, no blocking and very strange errors 8) 1370 */ 1371 1372 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1373 { 1374 struct tcp_sock *tp = tcp_sk(sk); 1375 1376 /* No URG data to read. */ 1377 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1378 tp->urg_data == TCP_URG_READ) 1379 return -EINVAL; /* Yes this is right ! */ 1380 1381 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1382 return -ENOTCONN; 1383 1384 if (tp->urg_data & TCP_URG_VALID) { 1385 int err = 0; 1386 char c = tp->urg_data; 1387 1388 if (!(flags & MSG_PEEK)) 1389 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1390 1391 /* Read urgent data. */ 1392 msg->msg_flags |= MSG_OOB; 1393 1394 if (len > 0) { 1395 if (!(flags & MSG_TRUNC)) 1396 err = memcpy_to_msg(msg, &c, 1); 1397 len = 1; 1398 } else 1399 msg->msg_flags |= MSG_TRUNC; 1400 1401 return err ? -EFAULT : len; 1402 } 1403 1404 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1405 return 0; 1406 1407 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1408 * the available implementations agree in this case: 1409 * this call should never block, independent of the 1410 * blocking state of the socket. 1411 * Mike <pall@rz.uni-karlsruhe.de> 1412 */ 1413 return -EAGAIN; 1414 } 1415 1416 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1417 { 1418 struct sk_buff *skb; 1419 int copied = 0, err = 0; 1420 1421 /* XXX -- need to support SO_PEEK_OFF */ 1422 1423 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1424 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1425 if (err) 1426 return err; 1427 copied += skb->len; 1428 } 1429 1430 skb_queue_walk(&sk->sk_write_queue, skb) { 1431 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1432 if (err) 1433 break; 1434 1435 copied += skb->len; 1436 } 1437 1438 return err ?: copied; 1439 } 1440 1441 /* Clean up the receive buffer for full frames taken by the user, 1442 * then send an ACK if necessary. COPIED is the number of bytes 1443 * tcp_recvmsg has given to the user so far, it speeds up the 1444 * calculation of whether or not we must ACK for the sake of 1445 * a window update. 1446 */ 1447 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1448 { 1449 struct tcp_sock *tp = tcp_sk(sk); 1450 bool time_to_ack = false; 1451 1452 if (inet_csk_ack_scheduled(sk)) { 1453 const struct inet_connection_sock *icsk = inet_csk(sk); 1454 1455 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1456 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1457 /* 1458 * If this read emptied read buffer, we send ACK, if 1459 * connection is not bidirectional, user drained 1460 * receive buffer and there was a small segment 1461 * in queue. 1462 */ 1463 (copied > 0 && 1464 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1465 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1466 !inet_csk_in_pingpong_mode(sk))) && 1467 !atomic_read(&sk->sk_rmem_alloc))) 1468 time_to_ack = true; 1469 } 1470 1471 /* We send an ACK if we can now advertise a non-zero window 1472 * which has been raised "significantly". 1473 * 1474 * Even if window raised up to infinity, do not send window open ACK 1475 * in states, where we will not receive more. It is useless. 1476 */ 1477 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1478 __u32 rcv_window_now = tcp_receive_window(tp); 1479 1480 /* Optimize, __tcp_select_window() is not cheap. */ 1481 if (2*rcv_window_now <= tp->window_clamp) { 1482 __u32 new_window = __tcp_select_window(sk); 1483 1484 /* Send ACK now, if this read freed lots of space 1485 * in our buffer. Certainly, new_window is new window. 1486 * We can advertise it now, if it is not less than current one. 1487 * "Lots" means "at least twice" here. 1488 */ 1489 if (new_window && new_window >= 2 * rcv_window_now) 1490 time_to_ack = true; 1491 } 1492 } 1493 if (time_to_ack) 1494 tcp_send_ack(sk); 1495 } 1496 1497 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1498 { 1499 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1500 struct tcp_sock *tp = tcp_sk(sk); 1501 1502 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1503 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1504 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1505 __tcp_cleanup_rbuf(sk, copied); 1506 } 1507 1508 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1509 { 1510 __skb_unlink(skb, &sk->sk_receive_queue); 1511 if (likely(skb->destructor == sock_rfree)) { 1512 sock_rfree(skb); 1513 skb->destructor = NULL; 1514 skb->sk = NULL; 1515 return skb_attempt_defer_free(skb); 1516 } 1517 __kfree_skb(skb); 1518 } 1519 1520 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1521 { 1522 struct sk_buff *skb; 1523 u32 offset; 1524 1525 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1526 offset = seq - TCP_SKB_CB(skb)->seq; 1527 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1528 pr_err_once("%s: found a SYN, please report !\n", __func__); 1529 offset--; 1530 } 1531 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1532 *off = offset; 1533 return skb; 1534 } 1535 /* This looks weird, but this can happen if TCP collapsing 1536 * splitted a fat GRO packet, while we released socket lock 1537 * in skb_splice_bits() 1538 */ 1539 tcp_eat_recv_skb(sk, skb); 1540 } 1541 return NULL; 1542 } 1543 EXPORT_SYMBOL(tcp_recv_skb); 1544 1545 /* 1546 * This routine provides an alternative to tcp_recvmsg() for routines 1547 * that would like to handle copying from skbuffs directly in 'sendfile' 1548 * fashion. 1549 * Note: 1550 * - It is assumed that the socket was locked by the caller. 1551 * - The routine does not block. 1552 * - At present, there is no support for reading OOB data 1553 * or for 'peeking' the socket using this routine 1554 * (although both would be easy to implement). 1555 */ 1556 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1557 sk_read_actor_t recv_actor) 1558 { 1559 struct sk_buff *skb; 1560 struct tcp_sock *tp = tcp_sk(sk); 1561 u32 seq = tp->copied_seq; 1562 u32 offset; 1563 int copied = 0; 1564 1565 if (sk->sk_state == TCP_LISTEN) 1566 return -ENOTCONN; 1567 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1568 if (offset < skb->len) { 1569 int used; 1570 size_t len; 1571 1572 len = skb->len - offset; 1573 /* Stop reading if we hit a patch of urgent data */ 1574 if (unlikely(tp->urg_data)) { 1575 u32 urg_offset = tp->urg_seq - seq; 1576 if (urg_offset < len) 1577 len = urg_offset; 1578 if (!len) 1579 break; 1580 } 1581 used = recv_actor(desc, skb, offset, len); 1582 if (used <= 0) { 1583 if (!copied) 1584 copied = used; 1585 break; 1586 } 1587 if (WARN_ON_ONCE(used > len)) 1588 used = len; 1589 seq += used; 1590 copied += used; 1591 offset += used; 1592 1593 /* If recv_actor drops the lock (e.g. TCP splice 1594 * receive) the skb pointer might be invalid when 1595 * getting here: tcp_collapse might have deleted it 1596 * while aggregating skbs from the socket queue. 1597 */ 1598 skb = tcp_recv_skb(sk, seq - 1, &offset); 1599 if (!skb) 1600 break; 1601 /* TCP coalescing might have appended data to the skb. 1602 * Try to splice more frags 1603 */ 1604 if (offset + 1 != skb->len) 1605 continue; 1606 } 1607 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1608 tcp_eat_recv_skb(sk, skb); 1609 ++seq; 1610 break; 1611 } 1612 tcp_eat_recv_skb(sk, skb); 1613 if (!desc->count) 1614 break; 1615 WRITE_ONCE(tp->copied_seq, seq); 1616 } 1617 WRITE_ONCE(tp->copied_seq, seq); 1618 1619 tcp_rcv_space_adjust(sk); 1620 1621 /* Clean up data we have read: This will do ACK frames. */ 1622 if (copied > 0) { 1623 tcp_recv_skb(sk, seq, &offset); 1624 tcp_cleanup_rbuf(sk, copied); 1625 } 1626 return copied; 1627 } 1628 EXPORT_SYMBOL(tcp_read_sock); 1629 1630 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1631 { 1632 struct sk_buff *skb; 1633 int copied = 0; 1634 1635 if (sk->sk_state == TCP_LISTEN) 1636 return -ENOTCONN; 1637 1638 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1639 u8 tcp_flags; 1640 int used; 1641 1642 __skb_unlink(skb, &sk->sk_receive_queue); 1643 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1644 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1645 used = recv_actor(sk, skb); 1646 if (used < 0) { 1647 if (!copied) 1648 copied = used; 1649 break; 1650 } 1651 copied += used; 1652 1653 if (tcp_flags & TCPHDR_FIN) 1654 break; 1655 } 1656 return copied; 1657 } 1658 EXPORT_SYMBOL(tcp_read_skb); 1659 1660 void tcp_read_done(struct sock *sk, size_t len) 1661 { 1662 struct tcp_sock *tp = tcp_sk(sk); 1663 u32 seq = tp->copied_seq; 1664 struct sk_buff *skb; 1665 size_t left; 1666 u32 offset; 1667 1668 if (sk->sk_state == TCP_LISTEN) 1669 return; 1670 1671 left = len; 1672 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1673 int used; 1674 1675 used = min_t(size_t, skb->len - offset, left); 1676 seq += used; 1677 left -= used; 1678 1679 if (skb->len > offset + used) 1680 break; 1681 1682 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1683 tcp_eat_recv_skb(sk, skb); 1684 ++seq; 1685 break; 1686 } 1687 tcp_eat_recv_skb(sk, skb); 1688 } 1689 WRITE_ONCE(tp->copied_seq, seq); 1690 1691 tcp_rcv_space_adjust(sk); 1692 1693 /* Clean up data we have read: This will do ACK frames. */ 1694 if (left != len) 1695 tcp_cleanup_rbuf(sk, len - left); 1696 } 1697 EXPORT_SYMBOL(tcp_read_done); 1698 1699 int tcp_peek_len(struct socket *sock) 1700 { 1701 return tcp_inq(sock->sk); 1702 } 1703 EXPORT_SYMBOL(tcp_peek_len); 1704 1705 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1706 int tcp_set_rcvlowat(struct sock *sk, int val) 1707 { 1708 int space, cap; 1709 1710 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1711 cap = sk->sk_rcvbuf >> 1; 1712 else 1713 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1714 val = min(val, cap); 1715 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1716 1717 /* Check if we need to signal EPOLLIN right now */ 1718 tcp_data_ready(sk); 1719 1720 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1721 return 0; 1722 1723 space = tcp_space_from_win(sk, val); 1724 if (space > sk->sk_rcvbuf) { 1725 WRITE_ONCE(sk->sk_rcvbuf, space); 1726 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1727 } 1728 return 0; 1729 } 1730 EXPORT_SYMBOL(tcp_set_rcvlowat); 1731 1732 void tcp_update_recv_tstamps(struct sk_buff *skb, 1733 struct scm_timestamping_internal *tss) 1734 { 1735 if (skb->tstamp) 1736 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1737 else 1738 tss->ts[0] = (struct timespec64) {0}; 1739 1740 if (skb_hwtstamps(skb)->hwtstamp) 1741 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1742 else 1743 tss->ts[2] = (struct timespec64) {0}; 1744 } 1745 1746 #ifdef CONFIG_MMU 1747 static const struct vm_operations_struct tcp_vm_ops = { 1748 }; 1749 1750 int tcp_mmap(struct file *file, struct socket *sock, 1751 struct vm_area_struct *vma) 1752 { 1753 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1754 return -EPERM; 1755 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1756 1757 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1758 vm_flags_set(vma, VM_MIXEDMAP); 1759 1760 vma->vm_ops = &tcp_vm_ops; 1761 return 0; 1762 } 1763 EXPORT_SYMBOL(tcp_mmap); 1764 1765 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1766 u32 *offset_frag) 1767 { 1768 skb_frag_t *frag; 1769 1770 if (unlikely(offset_skb >= skb->len)) 1771 return NULL; 1772 1773 offset_skb -= skb_headlen(skb); 1774 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1775 return NULL; 1776 1777 frag = skb_shinfo(skb)->frags; 1778 while (offset_skb) { 1779 if (skb_frag_size(frag) > offset_skb) { 1780 *offset_frag = offset_skb; 1781 return frag; 1782 } 1783 offset_skb -= skb_frag_size(frag); 1784 ++frag; 1785 } 1786 *offset_frag = 0; 1787 return frag; 1788 } 1789 1790 static bool can_map_frag(const skb_frag_t *frag) 1791 { 1792 struct page *page; 1793 1794 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1795 return false; 1796 1797 page = skb_frag_page(frag); 1798 1799 if (PageCompound(page) || page->mapping) 1800 return false; 1801 1802 return true; 1803 } 1804 1805 static int find_next_mappable_frag(const skb_frag_t *frag, 1806 int remaining_in_skb) 1807 { 1808 int offset = 0; 1809 1810 if (likely(can_map_frag(frag))) 1811 return 0; 1812 1813 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1814 offset += skb_frag_size(frag); 1815 ++frag; 1816 } 1817 return offset; 1818 } 1819 1820 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1821 struct tcp_zerocopy_receive *zc, 1822 struct sk_buff *skb, u32 offset) 1823 { 1824 u32 frag_offset, partial_frag_remainder = 0; 1825 int mappable_offset; 1826 skb_frag_t *frag; 1827 1828 /* worst case: skip to next skb. try to improve on this case below */ 1829 zc->recv_skip_hint = skb->len - offset; 1830 1831 /* Find the frag containing this offset (and how far into that frag) */ 1832 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1833 if (!frag) 1834 return; 1835 1836 if (frag_offset) { 1837 struct skb_shared_info *info = skb_shinfo(skb); 1838 1839 /* We read part of the last frag, must recvmsg() rest of skb. */ 1840 if (frag == &info->frags[info->nr_frags - 1]) 1841 return; 1842 1843 /* Else, we must at least read the remainder in this frag. */ 1844 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1845 zc->recv_skip_hint -= partial_frag_remainder; 1846 ++frag; 1847 } 1848 1849 /* partial_frag_remainder: If part way through a frag, must read rest. 1850 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1851 * in partial_frag_remainder. 1852 */ 1853 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1854 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1855 } 1856 1857 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1858 int flags, struct scm_timestamping_internal *tss, 1859 int *cmsg_flags); 1860 static int receive_fallback_to_copy(struct sock *sk, 1861 struct tcp_zerocopy_receive *zc, int inq, 1862 struct scm_timestamping_internal *tss) 1863 { 1864 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1865 struct msghdr msg = {}; 1866 struct iovec iov; 1867 int err; 1868 1869 zc->length = 0; 1870 zc->recv_skip_hint = 0; 1871 1872 if (copy_address != zc->copybuf_address) 1873 return -EINVAL; 1874 1875 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1876 inq, &iov, &msg.msg_iter); 1877 if (err) 1878 return err; 1879 1880 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1881 tss, &zc->msg_flags); 1882 if (err < 0) 1883 return err; 1884 1885 zc->copybuf_len = err; 1886 if (likely(zc->copybuf_len)) { 1887 struct sk_buff *skb; 1888 u32 offset; 1889 1890 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1891 if (skb) 1892 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1893 } 1894 return 0; 1895 } 1896 1897 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1898 struct sk_buff *skb, u32 copylen, 1899 u32 *offset, u32 *seq) 1900 { 1901 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1902 struct msghdr msg = {}; 1903 struct iovec iov; 1904 int err; 1905 1906 if (copy_address != zc->copybuf_address) 1907 return -EINVAL; 1908 1909 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1910 copylen, &iov, &msg.msg_iter); 1911 if (err) 1912 return err; 1913 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1914 if (err) 1915 return err; 1916 zc->recv_skip_hint -= copylen; 1917 *offset += copylen; 1918 *seq += copylen; 1919 return (__s32)copylen; 1920 } 1921 1922 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1923 struct sock *sk, 1924 struct sk_buff *skb, 1925 u32 *seq, 1926 s32 copybuf_len, 1927 struct scm_timestamping_internal *tss) 1928 { 1929 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1930 1931 if (!copylen) 1932 return 0; 1933 /* skb is null if inq < PAGE_SIZE. */ 1934 if (skb) { 1935 offset = *seq - TCP_SKB_CB(skb)->seq; 1936 } else { 1937 skb = tcp_recv_skb(sk, *seq, &offset); 1938 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1939 tcp_update_recv_tstamps(skb, tss); 1940 zc->msg_flags |= TCP_CMSG_TS; 1941 } 1942 } 1943 1944 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1945 seq); 1946 return zc->copybuf_len < 0 ? 0 : copylen; 1947 } 1948 1949 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1950 struct page **pending_pages, 1951 unsigned long pages_remaining, 1952 unsigned long *address, 1953 u32 *length, 1954 u32 *seq, 1955 struct tcp_zerocopy_receive *zc, 1956 u32 total_bytes_to_map, 1957 int err) 1958 { 1959 /* At least one page did not map. Try zapping if we skipped earlier. */ 1960 if (err == -EBUSY && 1961 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1962 u32 maybe_zap_len; 1963 1964 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1965 *length + /* Mapped or pending */ 1966 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1967 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1968 err = 0; 1969 } 1970 1971 if (!err) { 1972 unsigned long leftover_pages = pages_remaining; 1973 int bytes_mapped; 1974 1975 /* We called zap_page_range_single, try to reinsert. */ 1976 err = vm_insert_pages(vma, *address, 1977 pending_pages, 1978 &pages_remaining); 1979 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1980 *seq += bytes_mapped; 1981 *address += bytes_mapped; 1982 } 1983 if (err) { 1984 /* Either we were unable to zap, OR we zapped, retried an 1985 * insert, and still had an issue. Either ways, pages_remaining 1986 * is the number of pages we were unable to map, and we unroll 1987 * some state we speculatively touched before. 1988 */ 1989 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1990 1991 *length -= bytes_not_mapped; 1992 zc->recv_skip_hint += bytes_not_mapped; 1993 } 1994 return err; 1995 } 1996 1997 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1998 struct page **pages, 1999 unsigned int pages_to_map, 2000 unsigned long *address, 2001 u32 *length, 2002 u32 *seq, 2003 struct tcp_zerocopy_receive *zc, 2004 u32 total_bytes_to_map) 2005 { 2006 unsigned long pages_remaining = pages_to_map; 2007 unsigned int pages_mapped; 2008 unsigned int bytes_mapped; 2009 int err; 2010 2011 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2012 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2013 bytes_mapped = PAGE_SIZE * pages_mapped; 2014 /* Even if vm_insert_pages fails, it may have partially succeeded in 2015 * mapping (some but not all of the pages). 2016 */ 2017 *seq += bytes_mapped; 2018 *address += bytes_mapped; 2019 2020 if (likely(!err)) 2021 return 0; 2022 2023 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2024 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2025 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2026 err); 2027 } 2028 2029 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2030 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2031 struct tcp_zerocopy_receive *zc, 2032 struct scm_timestamping_internal *tss) 2033 { 2034 unsigned long msg_control_addr; 2035 struct msghdr cmsg_dummy; 2036 2037 msg_control_addr = (unsigned long)zc->msg_control; 2038 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2039 cmsg_dummy.msg_controllen = 2040 (__kernel_size_t)zc->msg_controllen; 2041 cmsg_dummy.msg_flags = in_compat_syscall() 2042 ? MSG_CMSG_COMPAT : 0; 2043 cmsg_dummy.msg_control_is_user = true; 2044 zc->msg_flags = 0; 2045 if (zc->msg_control == msg_control_addr && 2046 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2047 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2048 zc->msg_control = (__u64) 2049 ((uintptr_t)cmsg_dummy.msg_control_user); 2050 zc->msg_controllen = 2051 (__u64)cmsg_dummy.msg_controllen; 2052 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2053 } 2054 } 2055 2056 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2057 unsigned long address, 2058 bool *mmap_locked) 2059 { 2060 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2061 2062 if (vma) { 2063 if (vma->vm_ops != &tcp_vm_ops) { 2064 vma_end_read(vma); 2065 return NULL; 2066 } 2067 *mmap_locked = false; 2068 return vma; 2069 } 2070 2071 mmap_read_lock(mm); 2072 vma = vma_lookup(mm, address); 2073 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2074 mmap_read_unlock(mm); 2075 return NULL; 2076 } 2077 *mmap_locked = true; 2078 return vma; 2079 } 2080 2081 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2082 static int tcp_zerocopy_receive(struct sock *sk, 2083 struct tcp_zerocopy_receive *zc, 2084 struct scm_timestamping_internal *tss) 2085 { 2086 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2087 unsigned long address = (unsigned long)zc->address; 2088 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2089 s32 copybuf_len = zc->copybuf_len; 2090 struct tcp_sock *tp = tcp_sk(sk); 2091 const skb_frag_t *frags = NULL; 2092 unsigned int pages_to_map = 0; 2093 struct vm_area_struct *vma; 2094 struct sk_buff *skb = NULL; 2095 u32 seq = tp->copied_seq; 2096 u32 total_bytes_to_map; 2097 int inq = tcp_inq(sk); 2098 bool mmap_locked; 2099 int ret; 2100 2101 zc->copybuf_len = 0; 2102 zc->msg_flags = 0; 2103 2104 if (address & (PAGE_SIZE - 1) || address != zc->address) 2105 return -EINVAL; 2106 2107 if (sk->sk_state == TCP_LISTEN) 2108 return -ENOTCONN; 2109 2110 sock_rps_record_flow(sk); 2111 2112 if (inq && inq <= copybuf_len) 2113 return receive_fallback_to_copy(sk, zc, inq, tss); 2114 2115 if (inq < PAGE_SIZE) { 2116 zc->length = 0; 2117 zc->recv_skip_hint = inq; 2118 if (!inq && sock_flag(sk, SOCK_DONE)) 2119 return -EIO; 2120 return 0; 2121 } 2122 2123 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2124 if (!vma) 2125 return -EINVAL; 2126 2127 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2128 avail_len = min_t(u32, vma_len, inq); 2129 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2130 if (total_bytes_to_map) { 2131 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2132 zap_page_range_single(vma, address, total_bytes_to_map, 2133 NULL); 2134 zc->length = total_bytes_to_map; 2135 zc->recv_skip_hint = 0; 2136 } else { 2137 zc->length = avail_len; 2138 zc->recv_skip_hint = avail_len; 2139 } 2140 ret = 0; 2141 while (length + PAGE_SIZE <= zc->length) { 2142 int mappable_offset; 2143 struct page *page; 2144 2145 if (zc->recv_skip_hint < PAGE_SIZE) { 2146 u32 offset_frag; 2147 2148 if (skb) { 2149 if (zc->recv_skip_hint > 0) 2150 break; 2151 skb = skb->next; 2152 offset = seq - TCP_SKB_CB(skb)->seq; 2153 } else { 2154 skb = tcp_recv_skb(sk, seq, &offset); 2155 } 2156 2157 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2158 tcp_update_recv_tstamps(skb, tss); 2159 zc->msg_flags |= TCP_CMSG_TS; 2160 } 2161 zc->recv_skip_hint = skb->len - offset; 2162 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2163 if (!frags || offset_frag) 2164 break; 2165 } 2166 2167 mappable_offset = find_next_mappable_frag(frags, 2168 zc->recv_skip_hint); 2169 if (mappable_offset) { 2170 zc->recv_skip_hint = mappable_offset; 2171 break; 2172 } 2173 page = skb_frag_page(frags); 2174 prefetchw(page); 2175 pages[pages_to_map++] = page; 2176 length += PAGE_SIZE; 2177 zc->recv_skip_hint -= PAGE_SIZE; 2178 frags++; 2179 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2180 zc->recv_skip_hint < PAGE_SIZE) { 2181 /* Either full batch, or we're about to go to next skb 2182 * (and we cannot unroll failed ops across skbs). 2183 */ 2184 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2185 pages_to_map, 2186 &address, &length, 2187 &seq, zc, 2188 total_bytes_to_map); 2189 if (ret) 2190 goto out; 2191 pages_to_map = 0; 2192 } 2193 } 2194 if (pages_to_map) { 2195 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2196 &address, &length, &seq, 2197 zc, total_bytes_to_map); 2198 } 2199 out: 2200 if (mmap_locked) 2201 mmap_read_unlock(current->mm); 2202 else 2203 vma_end_read(vma); 2204 /* Try to copy straggler data. */ 2205 if (!ret) 2206 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2207 2208 if (length + copylen) { 2209 WRITE_ONCE(tp->copied_seq, seq); 2210 tcp_rcv_space_adjust(sk); 2211 2212 /* Clean up data we have read: This will do ACK frames. */ 2213 tcp_recv_skb(sk, seq, &offset); 2214 tcp_cleanup_rbuf(sk, length + copylen); 2215 ret = 0; 2216 if (length == zc->length) 2217 zc->recv_skip_hint = 0; 2218 } else { 2219 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2220 ret = -EIO; 2221 } 2222 zc->length = length; 2223 return ret; 2224 } 2225 #endif 2226 2227 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2228 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2229 struct scm_timestamping_internal *tss) 2230 { 2231 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2232 bool has_timestamping = false; 2233 2234 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2235 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2236 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2237 if (new_tstamp) { 2238 struct __kernel_timespec kts = { 2239 .tv_sec = tss->ts[0].tv_sec, 2240 .tv_nsec = tss->ts[0].tv_nsec, 2241 }; 2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2243 sizeof(kts), &kts); 2244 } else { 2245 struct __kernel_old_timespec ts_old = { 2246 .tv_sec = tss->ts[0].tv_sec, 2247 .tv_nsec = tss->ts[0].tv_nsec, 2248 }; 2249 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2250 sizeof(ts_old), &ts_old); 2251 } 2252 } else { 2253 if (new_tstamp) { 2254 struct __kernel_sock_timeval stv = { 2255 .tv_sec = tss->ts[0].tv_sec, 2256 .tv_usec = tss->ts[0].tv_nsec / 1000, 2257 }; 2258 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2259 sizeof(stv), &stv); 2260 } else { 2261 struct __kernel_old_timeval tv = { 2262 .tv_sec = tss->ts[0].tv_sec, 2263 .tv_usec = tss->ts[0].tv_nsec / 1000, 2264 }; 2265 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2266 sizeof(tv), &tv); 2267 } 2268 } 2269 } 2270 2271 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2272 has_timestamping = true; 2273 else 2274 tss->ts[0] = (struct timespec64) {0}; 2275 } 2276 2277 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2278 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2279 has_timestamping = true; 2280 else 2281 tss->ts[2] = (struct timespec64) {0}; 2282 } 2283 2284 if (has_timestamping) { 2285 tss->ts[1] = (struct timespec64) {0}; 2286 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2287 put_cmsg_scm_timestamping64(msg, tss); 2288 else 2289 put_cmsg_scm_timestamping(msg, tss); 2290 } 2291 } 2292 2293 static int tcp_inq_hint(struct sock *sk) 2294 { 2295 const struct tcp_sock *tp = tcp_sk(sk); 2296 u32 copied_seq = READ_ONCE(tp->copied_seq); 2297 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2298 int inq; 2299 2300 inq = rcv_nxt - copied_seq; 2301 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2302 lock_sock(sk); 2303 inq = tp->rcv_nxt - tp->copied_seq; 2304 release_sock(sk); 2305 } 2306 /* After receiving a FIN, tell the user-space to continue reading 2307 * by returning a non-zero inq. 2308 */ 2309 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2310 inq = 1; 2311 return inq; 2312 } 2313 2314 /* 2315 * This routine copies from a sock struct into the user buffer. 2316 * 2317 * Technical note: in 2.3 we work on _locked_ socket, so that 2318 * tricks with *seq access order and skb->users are not required. 2319 * Probably, code can be easily improved even more. 2320 */ 2321 2322 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2323 int flags, struct scm_timestamping_internal *tss, 2324 int *cmsg_flags) 2325 { 2326 struct tcp_sock *tp = tcp_sk(sk); 2327 int copied = 0; 2328 u32 peek_seq; 2329 u32 *seq; 2330 unsigned long used; 2331 int err; 2332 int target; /* Read at least this many bytes */ 2333 long timeo; 2334 struct sk_buff *skb, *last; 2335 u32 urg_hole = 0; 2336 2337 err = -ENOTCONN; 2338 if (sk->sk_state == TCP_LISTEN) 2339 goto out; 2340 2341 if (tp->recvmsg_inq) { 2342 *cmsg_flags = TCP_CMSG_INQ; 2343 msg->msg_get_inq = 1; 2344 } 2345 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2346 2347 /* Urgent data needs to be handled specially. */ 2348 if (flags & MSG_OOB) 2349 goto recv_urg; 2350 2351 if (unlikely(tp->repair)) { 2352 err = -EPERM; 2353 if (!(flags & MSG_PEEK)) 2354 goto out; 2355 2356 if (tp->repair_queue == TCP_SEND_QUEUE) 2357 goto recv_sndq; 2358 2359 err = -EINVAL; 2360 if (tp->repair_queue == TCP_NO_QUEUE) 2361 goto out; 2362 2363 /* 'common' recv queue MSG_PEEK-ing */ 2364 } 2365 2366 seq = &tp->copied_seq; 2367 if (flags & MSG_PEEK) { 2368 peek_seq = tp->copied_seq; 2369 seq = &peek_seq; 2370 } 2371 2372 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2373 2374 do { 2375 u32 offset; 2376 2377 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2378 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2379 if (copied) 2380 break; 2381 if (signal_pending(current)) { 2382 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2383 break; 2384 } 2385 } 2386 2387 /* Next get a buffer. */ 2388 2389 last = skb_peek_tail(&sk->sk_receive_queue); 2390 skb_queue_walk(&sk->sk_receive_queue, skb) { 2391 last = skb; 2392 /* Now that we have two receive queues this 2393 * shouldn't happen. 2394 */ 2395 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2396 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2397 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2398 flags)) 2399 break; 2400 2401 offset = *seq - TCP_SKB_CB(skb)->seq; 2402 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2403 pr_err_once("%s: found a SYN, please report !\n", __func__); 2404 offset--; 2405 } 2406 if (offset < skb->len) 2407 goto found_ok_skb; 2408 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2409 goto found_fin_ok; 2410 WARN(!(flags & MSG_PEEK), 2411 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2412 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2413 } 2414 2415 /* Well, if we have backlog, try to process it now yet. */ 2416 2417 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2418 break; 2419 2420 if (copied) { 2421 if (!timeo || 2422 sk->sk_err || 2423 sk->sk_state == TCP_CLOSE || 2424 (sk->sk_shutdown & RCV_SHUTDOWN) || 2425 signal_pending(current)) 2426 break; 2427 } else { 2428 if (sock_flag(sk, SOCK_DONE)) 2429 break; 2430 2431 if (sk->sk_err) { 2432 copied = sock_error(sk); 2433 break; 2434 } 2435 2436 if (sk->sk_shutdown & RCV_SHUTDOWN) 2437 break; 2438 2439 if (sk->sk_state == TCP_CLOSE) { 2440 /* This occurs when user tries to read 2441 * from never connected socket. 2442 */ 2443 copied = -ENOTCONN; 2444 break; 2445 } 2446 2447 if (!timeo) { 2448 copied = -EAGAIN; 2449 break; 2450 } 2451 2452 if (signal_pending(current)) { 2453 copied = sock_intr_errno(timeo); 2454 break; 2455 } 2456 } 2457 2458 if (copied >= target) { 2459 /* Do not sleep, just process backlog. */ 2460 __sk_flush_backlog(sk); 2461 } else { 2462 tcp_cleanup_rbuf(sk, copied); 2463 err = sk_wait_data(sk, &timeo, last); 2464 if (err < 0) { 2465 err = copied ? : err; 2466 goto out; 2467 } 2468 } 2469 2470 if ((flags & MSG_PEEK) && 2471 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2472 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2473 current->comm, 2474 task_pid_nr(current)); 2475 peek_seq = tp->copied_seq; 2476 } 2477 continue; 2478 2479 found_ok_skb: 2480 /* Ok so how much can we use? */ 2481 used = skb->len - offset; 2482 if (len < used) 2483 used = len; 2484 2485 /* Do we have urgent data here? */ 2486 if (unlikely(tp->urg_data)) { 2487 u32 urg_offset = tp->urg_seq - *seq; 2488 if (urg_offset < used) { 2489 if (!urg_offset) { 2490 if (!sock_flag(sk, SOCK_URGINLINE)) { 2491 WRITE_ONCE(*seq, *seq + 1); 2492 urg_hole++; 2493 offset++; 2494 used--; 2495 if (!used) 2496 goto skip_copy; 2497 } 2498 } else 2499 used = urg_offset; 2500 } 2501 } 2502 2503 if (!(flags & MSG_TRUNC)) { 2504 err = skb_copy_datagram_msg(skb, offset, msg, used); 2505 if (err) { 2506 /* Exception. Bailout! */ 2507 if (!copied) 2508 copied = -EFAULT; 2509 break; 2510 } 2511 } 2512 2513 WRITE_ONCE(*seq, *seq + used); 2514 copied += used; 2515 len -= used; 2516 2517 tcp_rcv_space_adjust(sk); 2518 2519 skip_copy: 2520 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2521 WRITE_ONCE(tp->urg_data, 0); 2522 tcp_fast_path_check(sk); 2523 } 2524 2525 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2526 tcp_update_recv_tstamps(skb, tss); 2527 *cmsg_flags |= TCP_CMSG_TS; 2528 } 2529 2530 if (used + offset < skb->len) 2531 continue; 2532 2533 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2534 goto found_fin_ok; 2535 if (!(flags & MSG_PEEK)) 2536 tcp_eat_recv_skb(sk, skb); 2537 continue; 2538 2539 found_fin_ok: 2540 /* Process the FIN. */ 2541 WRITE_ONCE(*seq, *seq + 1); 2542 if (!(flags & MSG_PEEK)) 2543 tcp_eat_recv_skb(sk, skb); 2544 break; 2545 } while (len > 0); 2546 2547 /* According to UNIX98, msg_name/msg_namelen are ignored 2548 * on connected socket. I was just happy when found this 8) --ANK 2549 */ 2550 2551 /* Clean up data we have read: This will do ACK frames. */ 2552 tcp_cleanup_rbuf(sk, copied); 2553 return copied; 2554 2555 out: 2556 return err; 2557 2558 recv_urg: 2559 err = tcp_recv_urg(sk, msg, len, flags); 2560 goto out; 2561 2562 recv_sndq: 2563 err = tcp_peek_sndq(sk, msg, len); 2564 goto out; 2565 } 2566 2567 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2568 int *addr_len) 2569 { 2570 int cmsg_flags = 0, ret; 2571 struct scm_timestamping_internal tss; 2572 2573 if (unlikely(flags & MSG_ERRQUEUE)) 2574 return inet_recv_error(sk, msg, len, addr_len); 2575 2576 if (sk_can_busy_loop(sk) && 2577 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2578 sk->sk_state == TCP_ESTABLISHED) 2579 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2580 2581 lock_sock(sk); 2582 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2583 release_sock(sk); 2584 2585 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2586 if (cmsg_flags & TCP_CMSG_TS) 2587 tcp_recv_timestamp(msg, sk, &tss); 2588 if (msg->msg_get_inq) { 2589 msg->msg_inq = tcp_inq_hint(sk); 2590 if (cmsg_flags & TCP_CMSG_INQ) 2591 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2592 sizeof(msg->msg_inq), &msg->msg_inq); 2593 } 2594 } 2595 return ret; 2596 } 2597 EXPORT_SYMBOL(tcp_recvmsg); 2598 2599 void tcp_set_state(struct sock *sk, int state) 2600 { 2601 int oldstate = sk->sk_state; 2602 2603 /* We defined a new enum for TCP states that are exported in BPF 2604 * so as not force the internal TCP states to be frozen. The 2605 * following checks will detect if an internal state value ever 2606 * differs from the BPF value. If this ever happens, then we will 2607 * need to remap the internal value to the BPF value before calling 2608 * tcp_call_bpf_2arg. 2609 */ 2610 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2611 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2612 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2613 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2614 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2615 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2616 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2617 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2618 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2619 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2620 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2621 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2622 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2623 2624 /* bpf uapi header bpf.h defines an anonymous enum with values 2625 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2626 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2627 * But clang built vmlinux does not have this enum in DWARF 2628 * since clang removes the above code before generating IR/debuginfo. 2629 * Let us explicitly emit the type debuginfo to ensure the 2630 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2631 * regardless of which compiler is used. 2632 */ 2633 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2634 2635 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2636 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2637 2638 switch (state) { 2639 case TCP_ESTABLISHED: 2640 if (oldstate != TCP_ESTABLISHED) 2641 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2642 break; 2643 case TCP_CLOSE_WAIT: 2644 if (oldstate == TCP_SYN_RECV) 2645 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2646 break; 2647 2648 case TCP_CLOSE: 2649 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2650 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2651 2652 sk->sk_prot->unhash(sk); 2653 if (inet_csk(sk)->icsk_bind_hash && 2654 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2655 inet_put_port(sk); 2656 fallthrough; 2657 default: 2658 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2659 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2660 } 2661 2662 /* Change state AFTER socket is unhashed to avoid closed 2663 * socket sitting in hash tables. 2664 */ 2665 inet_sk_state_store(sk, state); 2666 } 2667 EXPORT_SYMBOL_GPL(tcp_set_state); 2668 2669 /* 2670 * State processing on a close. This implements the state shift for 2671 * sending our FIN frame. Note that we only send a FIN for some 2672 * states. A shutdown() may have already sent the FIN, or we may be 2673 * closed. 2674 */ 2675 2676 static const unsigned char new_state[16] = { 2677 /* current state: new state: action: */ 2678 [0 /* (Invalid) */] = TCP_CLOSE, 2679 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2680 [TCP_SYN_SENT] = TCP_CLOSE, 2681 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2682 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2683 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2684 [TCP_TIME_WAIT] = TCP_CLOSE, 2685 [TCP_CLOSE] = TCP_CLOSE, 2686 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2687 [TCP_LAST_ACK] = TCP_LAST_ACK, 2688 [TCP_LISTEN] = TCP_CLOSE, 2689 [TCP_CLOSING] = TCP_CLOSING, 2690 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2691 }; 2692 2693 static int tcp_close_state(struct sock *sk) 2694 { 2695 int next = (int)new_state[sk->sk_state]; 2696 int ns = next & TCP_STATE_MASK; 2697 2698 tcp_set_state(sk, ns); 2699 2700 return next & TCP_ACTION_FIN; 2701 } 2702 2703 /* 2704 * Shutdown the sending side of a connection. Much like close except 2705 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2706 */ 2707 2708 void tcp_shutdown(struct sock *sk, int how) 2709 { 2710 /* We need to grab some memory, and put together a FIN, 2711 * and then put it into the queue to be sent. 2712 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2713 */ 2714 if (!(how & SEND_SHUTDOWN)) 2715 return; 2716 2717 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2718 if ((1 << sk->sk_state) & 2719 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2720 TCPF_CLOSE_WAIT)) { 2721 /* Clear out any half completed packets. FIN if needed. */ 2722 if (tcp_close_state(sk)) 2723 tcp_send_fin(sk); 2724 } 2725 } 2726 EXPORT_SYMBOL(tcp_shutdown); 2727 2728 int tcp_orphan_count_sum(void) 2729 { 2730 int i, total = 0; 2731 2732 for_each_possible_cpu(i) 2733 total += per_cpu(tcp_orphan_count, i); 2734 2735 return max(total, 0); 2736 } 2737 2738 static int tcp_orphan_cache; 2739 static struct timer_list tcp_orphan_timer; 2740 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2741 2742 static void tcp_orphan_update(struct timer_list *unused) 2743 { 2744 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2745 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2746 } 2747 2748 static bool tcp_too_many_orphans(int shift) 2749 { 2750 return READ_ONCE(tcp_orphan_cache) << shift > 2751 READ_ONCE(sysctl_tcp_max_orphans); 2752 } 2753 2754 bool tcp_check_oom(struct sock *sk, int shift) 2755 { 2756 bool too_many_orphans, out_of_socket_memory; 2757 2758 too_many_orphans = tcp_too_many_orphans(shift); 2759 out_of_socket_memory = tcp_out_of_memory(sk); 2760 2761 if (too_many_orphans) 2762 net_info_ratelimited("too many orphaned sockets\n"); 2763 if (out_of_socket_memory) 2764 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2765 return too_many_orphans || out_of_socket_memory; 2766 } 2767 2768 void __tcp_close(struct sock *sk, long timeout) 2769 { 2770 struct sk_buff *skb; 2771 int data_was_unread = 0; 2772 int state; 2773 2774 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2775 2776 if (sk->sk_state == TCP_LISTEN) { 2777 tcp_set_state(sk, TCP_CLOSE); 2778 2779 /* Special case. */ 2780 inet_csk_listen_stop(sk); 2781 2782 goto adjudge_to_death; 2783 } 2784 2785 /* We need to flush the recv. buffs. We do this only on the 2786 * descriptor close, not protocol-sourced closes, because the 2787 * reader process may not have drained the data yet! 2788 */ 2789 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2790 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2791 2792 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2793 len--; 2794 data_was_unread += len; 2795 __kfree_skb(skb); 2796 } 2797 2798 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2799 if (sk->sk_state == TCP_CLOSE) 2800 goto adjudge_to_death; 2801 2802 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2803 * data was lost. To witness the awful effects of the old behavior of 2804 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2805 * GET in an FTP client, suspend the process, wait for the client to 2806 * advertise a zero window, then kill -9 the FTP client, wheee... 2807 * Note: timeout is always zero in such a case. 2808 */ 2809 if (unlikely(tcp_sk(sk)->repair)) { 2810 sk->sk_prot->disconnect(sk, 0); 2811 } else if (data_was_unread) { 2812 /* Unread data was tossed, zap the connection. */ 2813 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2814 tcp_set_state(sk, TCP_CLOSE); 2815 tcp_send_active_reset(sk, sk->sk_allocation); 2816 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2817 /* Check zero linger _after_ checking for unread data. */ 2818 sk->sk_prot->disconnect(sk, 0); 2819 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2820 } else if (tcp_close_state(sk)) { 2821 /* We FIN if the application ate all the data before 2822 * zapping the connection. 2823 */ 2824 2825 /* RED-PEN. Formally speaking, we have broken TCP state 2826 * machine. State transitions: 2827 * 2828 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2829 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 2830 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2831 * 2832 * are legal only when FIN has been sent (i.e. in window), 2833 * rather than queued out of window. Purists blame. 2834 * 2835 * F.e. "RFC state" is ESTABLISHED, 2836 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2837 * 2838 * The visible declinations are that sometimes 2839 * we enter time-wait state, when it is not required really 2840 * (harmless), do not send active resets, when they are 2841 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2842 * they look as CLOSING or LAST_ACK for Linux) 2843 * Probably, I missed some more holelets. 2844 * --ANK 2845 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2846 * in a single packet! (May consider it later but will 2847 * probably need API support or TCP_CORK SYN-ACK until 2848 * data is written and socket is closed.) 2849 */ 2850 tcp_send_fin(sk); 2851 } 2852 2853 sk_stream_wait_close(sk, timeout); 2854 2855 adjudge_to_death: 2856 state = sk->sk_state; 2857 sock_hold(sk); 2858 sock_orphan(sk); 2859 2860 local_bh_disable(); 2861 bh_lock_sock(sk); 2862 /* remove backlog if any, without releasing ownership. */ 2863 __release_sock(sk); 2864 2865 this_cpu_inc(tcp_orphan_count); 2866 2867 /* Have we already been destroyed by a softirq or backlog? */ 2868 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2869 goto out; 2870 2871 /* This is a (useful) BSD violating of the RFC. There is a 2872 * problem with TCP as specified in that the other end could 2873 * keep a socket open forever with no application left this end. 2874 * We use a 1 minute timeout (about the same as BSD) then kill 2875 * our end. If they send after that then tough - BUT: long enough 2876 * that we won't make the old 4*rto = almost no time - whoops 2877 * reset mistake. 2878 * 2879 * Nope, it was not mistake. It is really desired behaviour 2880 * f.e. on http servers, when such sockets are useless, but 2881 * consume significant resources. Let's do it with special 2882 * linger2 option. --ANK 2883 */ 2884 2885 if (sk->sk_state == TCP_FIN_WAIT2) { 2886 struct tcp_sock *tp = tcp_sk(sk); 2887 if (READ_ONCE(tp->linger2) < 0) { 2888 tcp_set_state(sk, TCP_CLOSE); 2889 tcp_send_active_reset(sk, GFP_ATOMIC); 2890 __NET_INC_STATS(sock_net(sk), 2891 LINUX_MIB_TCPABORTONLINGER); 2892 } else { 2893 const int tmo = tcp_fin_time(sk); 2894 2895 if (tmo > TCP_TIMEWAIT_LEN) { 2896 inet_csk_reset_keepalive_timer(sk, 2897 tmo - TCP_TIMEWAIT_LEN); 2898 } else { 2899 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2900 goto out; 2901 } 2902 } 2903 } 2904 if (sk->sk_state != TCP_CLOSE) { 2905 if (tcp_check_oom(sk, 0)) { 2906 tcp_set_state(sk, TCP_CLOSE); 2907 tcp_send_active_reset(sk, GFP_ATOMIC); 2908 __NET_INC_STATS(sock_net(sk), 2909 LINUX_MIB_TCPABORTONMEMORY); 2910 } else if (!check_net(sock_net(sk))) { 2911 /* Not possible to send reset; just close */ 2912 tcp_set_state(sk, TCP_CLOSE); 2913 } 2914 } 2915 2916 if (sk->sk_state == TCP_CLOSE) { 2917 struct request_sock *req; 2918 2919 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2920 lockdep_sock_is_held(sk)); 2921 /* We could get here with a non-NULL req if the socket is 2922 * aborted (e.g., closed with unread data) before 3WHS 2923 * finishes. 2924 */ 2925 if (req) 2926 reqsk_fastopen_remove(sk, req, false); 2927 inet_csk_destroy_sock(sk); 2928 } 2929 /* Otherwise, socket is reprieved until protocol close. */ 2930 2931 out: 2932 bh_unlock_sock(sk); 2933 local_bh_enable(); 2934 } 2935 2936 void tcp_close(struct sock *sk, long timeout) 2937 { 2938 lock_sock(sk); 2939 __tcp_close(sk, timeout); 2940 release_sock(sk); 2941 if (!sk->sk_net_refcnt) 2942 inet_csk_clear_xmit_timers_sync(sk); 2943 sock_put(sk); 2944 } 2945 EXPORT_SYMBOL(tcp_close); 2946 2947 /* These states need RST on ABORT according to RFC793 */ 2948 2949 static inline bool tcp_need_reset(int state) 2950 { 2951 return (1 << state) & 2952 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2953 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2954 } 2955 2956 static void tcp_rtx_queue_purge(struct sock *sk) 2957 { 2958 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2959 2960 tcp_sk(sk)->highest_sack = NULL; 2961 while (p) { 2962 struct sk_buff *skb = rb_to_skb(p); 2963 2964 p = rb_next(p); 2965 /* Since we are deleting whole queue, no need to 2966 * list_del(&skb->tcp_tsorted_anchor) 2967 */ 2968 tcp_rtx_queue_unlink(skb, sk); 2969 tcp_wmem_free_skb(sk, skb); 2970 } 2971 } 2972 2973 void tcp_write_queue_purge(struct sock *sk) 2974 { 2975 struct sk_buff *skb; 2976 2977 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2978 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2979 tcp_skb_tsorted_anchor_cleanup(skb); 2980 tcp_wmem_free_skb(sk, skb); 2981 } 2982 tcp_rtx_queue_purge(sk); 2983 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2984 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2985 tcp_sk(sk)->packets_out = 0; 2986 inet_csk(sk)->icsk_backoff = 0; 2987 } 2988 2989 int tcp_disconnect(struct sock *sk, int flags) 2990 { 2991 struct inet_sock *inet = inet_sk(sk); 2992 struct inet_connection_sock *icsk = inet_csk(sk); 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 int old_state = sk->sk_state; 2995 u32 seq; 2996 2997 if (old_state != TCP_CLOSE) 2998 tcp_set_state(sk, TCP_CLOSE); 2999 3000 /* ABORT function of RFC793 */ 3001 if (old_state == TCP_LISTEN) { 3002 inet_csk_listen_stop(sk); 3003 } else if (unlikely(tp->repair)) { 3004 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3005 } else if (tcp_need_reset(old_state) || 3006 (tp->snd_nxt != tp->write_seq && 3007 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3008 /* The last check adjusts for discrepancy of Linux wrt. RFC 3009 * states 3010 */ 3011 tcp_send_active_reset(sk, gfp_any()); 3012 WRITE_ONCE(sk->sk_err, ECONNRESET); 3013 } else if (old_state == TCP_SYN_SENT) 3014 WRITE_ONCE(sk->sk_err, ECONNRESET); 3015 3016 tcp_clear_xmit_timers(sk); 3017 __skb_queue_purge(&sk->sk_receive_queue); 3018 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3019 WRITE_ONCE(tp->urg_data, 0); 3020 tcp_write_queue_purge(sk); 3021 tcp_fastopen_active_disable_ofo_check(sk); 3022 skb_rbtree_purge(&tp->out_of_order_queue); 3023 3024 inet->inet_dport = 0; 3025 3026 inet_bhash2_reset_saddr(sk); 3027 3028 WRITE_ONCE(sk->sk_shutdown, 0); 3029 sock_reset_flag(sk, SOCK_DONE); 3030 tp->srtt_us = 0; 3031 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3032 tp->rcv_rtt_last_tsecr = 0; 3033 3034 seq = tp->write_seq + tp->max_window + 2; 3035 if (!seq) 3036 seq = 1; 3037 WRITE_ONCE(tp->write_seq, seq); 3038 3039 icsk->icsk_backoff = 0; 3040 icsk->icsk_probes_out = 0; 3041 icsk->icsk_probes_tstamp = 0; 3042 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3043 icsk->icsk_rto_min = TCP_RTO_MIN; 3044 icsk->icsk_delack_max = TCP_DELACK_MAX; 3045 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3046 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3047 tp->snd_cwnd_cnt = 0; 3048 tp->is_cwnd_limited = 0; 3049 tp->max_packets_out = 0; 3050 tp->window_clamp = 0; 3051 tp->delivered = 0; 3052 tp->delivered_ce = 0; 3053 if (icsk->icsk_ca_ops->release) 3054 icsk->icsk_ca_ops->release(sk); 3055 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3056 icsk->icsk_ca_initialized = 0; 3057 tcp_set_ca_state(sk, TCP_CA_Open); 3058 tp->is_sack_reneg = 0; 3059 tcp_clear_retrans(tp); 3060 tp->total_retrans = 0; 3061 inet_csk_delack_init(sk); 3062 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3063 * issue in __tcp_select_window() 3064 */ 3065 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3066 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3067 __sk_dst_reset(sk); 3068 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3069 tcp_saved_syn_free(tp); 3070 tp->compressed_ack = 0; 3071 tp->segs_in = 0; 3072 tp->segs_out = 0; 3073 tp->bytes_sent = 0; 3074 tp->bytes_acked = 0; 3075 tp->bytes_received = 0; 3076 tp->bytes_retrans = 0; 3077 tp->data_segs_in = 0; 3078 tp->data_segs_out = 0; 3079 tp->duplicate_sack[0].start_seq = 0; 3080 tp->duplicate_sack[0].end_seq = 0; 3081 tp->dsack_dups = 0; 3082 tp->reord_seen = 0; 3083 tp->retrans_out = 0; 3084 tp->sacked_out = 0; 3085 tp->tlp_high_seq = 0; 3086 tp->last_oow_ack_time = 0; 3087 tp->plb_rehash = 0; 3088 /* There's a bubble in the pipe until at least the first ACK. */ 3089 tp->app_limited = ~0U; 3090 tp->rate_app_limited = 1; 3091 tp->rack.mstamp = 0; 3092 tp->rack.advanced = 0; 3093 tp->rack.reo_wnd_steps = 1; 3094 tp->rack.last_delivered = 0; 3095 tp->rack.reo_wnd_persist = 0; 3096 tp->rack.dsack_seen = 0; 3097 tp->syn_data_acked = 0; 3098 tp->rx_opt.saw_tstamp = 0; 3099 tp->rx_opt.dsack = 0; 3100 tp->rx_opt.num_sacks = 0; 3101 tp->rcv_ooopack = 0; 3102 3103 3104 /* Clean up fastopen related fields */ 3105 tcp_free_fastopen_req(tp); 3106 inet_clear_bit(DEFER_CONNECT, sk); 3107 tp->fastopen_client_fail = 0; 3108 3109 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3110 3111 if (sk->sk_frag.page) { 3112 put_page(sk->sk_frag.page); 3113 sk->sk_frag.page = NULL; 3114 sk->sk_frag.offset = 0; 3115 } 3116 sk_error_report(sk); 3117 return 0; 3118 } 3119 EXPORT_SYMBOL(tcp_disconnect); 3120 3121 static inline bool tcp_can_repair_sock(const struct sock *sk) 3122 { 3123 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3124 (sk->sk_state != TCP_LISTEN); 3125 } 3126 3127 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3128 { 3129 struct tcp_repair_window opt; 3130 3131 if (!tp->repair) 3132 return -EPERM; 3133 3134 if (len != sizeof(opt)) 3135 return -EINVAL; 3136 3137 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3138 return -EFAULT; 3139 3140 if (opt.max_window < opt.snd_wnd) 3141 return -EINVAL; 3142 3143 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3144 return -EINVAL; 3145 3146 if (after(opt.rcv_wup, tp->rcv_nxt)) 3147 return -EINVAL; 3148 3149 tp->snd_wl1 = opt.snd_wl1; 3150 tp->snd_wnd = opt.snd_wnd; 3151 tp->max_window = opt.max_window; 3152 3153 tp->rcv_wnd = opt.rcv_wnd; 3154 tp->rcv_wup = opt.rcv_wup; 3155 3156 return 0; 3157 } 3158 3159 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3160 unsigned int len) 3161 { 3162 struct tcp_sock *tp = tcp_sk(sk); 3163 struct tcp_repair_opt opt; 3164 size_t offset = 0; 3165 3166 while (len >= sizeof(opt)) { 3167 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3168 return -EFAULT; 3169 3170 offset += sizeof(opt); 3171 len -= sizeof(opt); 3172 3173 switch (opt.opt_code) { 3174 case TCPOPT_MSS: 3175 tp->rx_opt.mss_clamp = opt.opt_val; 3176 tcp_mtup_init(sk); 3177 break; 3178 case TCPOPT_WINDOW: 3179 { 3180 u16 snd_wscale = opt.opt_val & 0xFFFF; 3181 u16 rcv_wscale = opt.opt_val >> 16; 3182 3183 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3184 return -EFBIG; 3185 3186 tp->rx_opt.snd_wscale = snd_wscale; 3187 tp->rx_opt.rcv_wscale = rcv_wscale; 3188 tp->rx_opt.wscale_ok = 1; 3189 } 3190 break; 3191 case TCPOPT_SACK_PERM: 3192 if (opt.opt_val != 0) 3193 return -EINVAL; 3194 3195 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3196 break; 3197 case TCPOPT_TIMESTAMP: 3198 if (opt.opt_val != 0) 3199 return -EINVAL; 3200 3201 tp->rx_opt.tstamp_ok = 1; 3202 break; 3203 } 3204 } 3205 3206 return 0; 3207 } 3208 3209 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3210 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3211 3212 static void tcp_enable_tx_delay(void) 3213 { 3214 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3215 static int __tcp_tx_delay_enabled = 0; 3216 3217 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3218 static_branch_enable(&tcp_tx_delay_enabled); 3219 pr_info("TCP_TX_DELAY enabled\n"); 3220 } 3221 } 3222 } 3223 3224 /* When set indicates to always queue non-full frames. Later the user clears 3225 * this option and we transmit any pending partial frames in the queue. This is 3226 * meant to be used alongside sendfile() to get properly filled frames when the 3227 * user (for example) must write out headers with a write() call first and then 3228 * use sendfile to send out the data parts. 3229 * 3230 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3231 * TCP_NODELAY. 3232 */ 3233 void __tcp_sock_set_cork(struct sock *sk, bool on) 3234 { 3235 struct tcp_sock *tp = tcp_sk(sk); 3236 3237 if (on) { 3238 tp->nonagle |= TCP_NAGLE_CORK; 3239 } else { 3240 tp->nonagle &= ~TCP_NAGLE_CORK; 3241 if (tp->nonagle & TCP_NAGLE_OFF) 3242 tp->nonagle |= TCP_NAGLE_PUSH; 3243 tcp_push_pending_frames(sk); 3244 } 3245 } 3246 3247 void tcp_sock_set_cork(struct sock *sk, bool on) 3248 { 3249 lock_sock(sk); 3250 __tcp_sock_set_cork(sk, on); 3251 release_sock(sk); 3252 } 3253 EXPORT_SYMBOL(tcp_sock_set_cork); 3254 3255 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3256 * remembered, but it is not activated until cork is cleared. 3257 * 3258 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3259 * even TCP_CORK for currently queued segments. 3260 */ 3261 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3262 { 3263 if (on) { 3264 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3265 tcp_push_pending_frames(sk); 3266 } else { 3267 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3268 } 3269 } 3270 3271 void tcp_sock_set_nodelay(struct sock *sk) 3272 { 3273 lock_sock(sk); 3274 __tcp_sock_set_nodelay(sk, true); 3275 release_sock(sk); 3276 } 3277 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3278 3279 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3280 { 3281 if (!val) { 3282 inet_csk_enter_pingpong_mode(sk); 3283 return; 3284 } 3285 3286 inet_csk_exit_pingpong_mode(sk); 3287 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3288 inet_csk_ack_scheduled(sk)) { 3289 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3290 tcp_cleanup_rbuf(sk, 1); 3291 if (!(val & 1)) 3292 inet_csk_enter_pingpong_mode(sk); 3293 } 3294 } 3295 3296 void tcp_sock_set_quickack(struct sock *sk, int val) 3297 { 3298 lock_sock(sk); 3299 __tcp_sock_set_quickack(sk, val); 3300 release_sock(sk); 3301 } 3302 EXPORT_SYMBOL(tcp_sock_set_quickack); 3303 3304 int tcp_sock_set_syncnt(struct sock *sk, int val) 3305 { 3306 if (val < 1 || val > MAX_TCP_SYNCNT) 3307 return -EINVAL; 3308 3309 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3310 return 0; 3311 } 3312 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3313 3314 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3315 { 3316 /* Cap the max time in ms TCP will retry or probe the window 3317 * before giving up and aborting (ETIMEDOUT) a connection. 3318 */ 3319 if (val < 0) 3320 return -EINVAL; 3321 3322 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3323 return 0; 3324 } 3325 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3326 3327 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3328 { 3329 struct tcp_sock *tp = tcp_sk(sk); 3330 3331 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3332 return -EINVAL; 3333 3334 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3335 WRITE_ONCE(tp->keepalive_time, val * HZ); 3336 if (sock_flag(sk, SOCK_KEEPOPEN) && 3337 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3338 u32 elapsed = keepalive_time_elapsed(tp); 3339 3340 if (tp->keepalive_time > elapsed) 3341 elapsed = tp->keepalive_time - elapsed; 3342 else 3343 elapsed = 0; 3344 inet_csk_reset_keepalive_timer(sk, elapsed); 3345 } 3346 3347 return 0; 3348 } 3349 3350 int tcp_sock_set_keepidle(struct sock *sk, int val) 3351 { 3352 int err; 3353 3354 lock_sock(sk); 3355 err = tcp_sock_set_keepidle_locked(sk, val); 3356 release_sock(sk); 3357 return err; 3358 } 3359 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3360 3361 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3362 { 3363 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3364 return -EINVAL; 3365 3366 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3367 return 0; 3368 } 3369 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3370 3371 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3372 { 3373 if (val < 1 || val > MAX_TCP_KEEPCNT) 3374 return -EINVAL; 3375 3376 /* Paired with READ_ONCE() in keepalive_probes() */ 3377 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3378 return 0; 3379 } 3380 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3381 3382 int tcp_set_window_clamp(struct sock *sk, int val) 3383 { 3384 struct tcp_sock *tp = tcp_sk(sk); 3385 3386 if (!val) { 3387 if (sk->sk_state != TCP_CLOSE) 3388 return -EINVAL; 3389 WRITE_ONCE(tp->window_clamp, 0); 3390 } else { 3391 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3392 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3393 SOCK_MIN_RCVBUF / 2 : val; 3394 3395 if (new_window_clamp == old_window_clamp) 3396 return 0; 3397 3398 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3399 if (new_window_clamp < old_window_clamp) { 3400 /* need to apply the reserved mem provisioning only 3401 * when shrinking the window clamp 3402 */ 3403 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3404 3405 } else { 3406 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3407 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3408 tp->rcv_ssthresh); 3409 } 3410 } 3411 return 0; 3412 } 3413 3414 /* 3415 * Socket option code for TCP. 3416 */ 3417 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3418 sockptr_t optval, unsigned int optlen) 3419 { 3420 struct tcp_sock *tp = tcp_sk(sk); 3421 struct inet_connection_sock *icsk = inet_csk(sk); 3422 struct net *net = sock_net(sk); 3423 int val; 3424 int err = 0; 3425 3426 /* These are data/string values, all the others are ints */ 3427 switch (optname) { 3428 case TCP_CONGESTION: { 3429 char name[TCP_CA_NAME_MAX]; 3430 3431 if (optlen < 1) 3432 return -EINVAL; 3433 3434 val = strncpy_from_sockptr(name, optval, 3435 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3436 if (val < 0) 3437 return -EFAULT; 3438 name[val] = 0; 3439 3440 sockopt_lock_sock(sk); 3441 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3442 sockopt_ns_capable(sock_net(sk)->user_ns, 3443 CAP_NET_ADMIN)); 3444 sockopt_release_sock(sk); 3445 return err; 3446 } 3447 case TCP_ULP: { 3448 char name[TCP_ULP_NAME_MAX]; 3449 3450 if (optlen < 1) 3451 return -EINVAL; 3452 3453 val = strncpy_from_sockptr(name, optval, 3454 min_t(long, TCP_ULP_NAME_MAX - 1, 3455 optlen)); 3456 if (val < 0) 3457 return -EFAULT; 3458 name[val] = 0; 3459 3460 sockopt_lock_sock(sk); 3461 err = tcp_set_ulp(sk, name); 3462 sockopt_release_sock(sk); 3463 return err; 3464 } 3465 case TCP_FASTOPEN_KEY: { 3466 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3467 __u8 *backup_key = NULL; 3468 3469 /* Allow a backup key as well to facilitate key rotation 3470 * First key is the active one. 3471 */ 3472 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3473 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3474 return -EINVAL; 3475 3476 if (copy_from_sockptr(key, optval, optlen)) 3477 return -EFAULT; 3478 3479 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3480 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3481 3482 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3483 } 3484 default: 3485 /* fallthru */ 3486 break; 3487 } 3488 3489 if (optlen < sizeof(int)) 3490 return -EINVAL; 3491 3492 if (copy_from_sockptr(&val, optval, sizeof(val))) 3493 return -EFAULT; 3494 3495 /* Handle options that can be set without locking the socket. */ 3496 switch (optname) { 3497 case TCP_SYNCNT: 3498 return tcp_sock_set_syncnt(sk, val); 3499 case TCP_USER_TIMEOUT: 3500 return tcp_sock_set_user_timeout(sk, val); 3501 case TCP_KEEPINTVL: 3502 return tcp_sock_set_keepintvl(sk, val); 3503 case TCP_KEEPCNT: 3504 return tcp_sock_set_keepcnt(sk, val); 3505 case TCP_LINGER2: 3506 if (val < 0) 3507 WRITE_ONCE(tp->linger2, -1); 3508 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3509 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3510 else 3511 WRITE_ONCE(tp->linger2, val * HZ); 3512 return 0; 3513 case TCP_DEFER_ACCEPT: 3514 /* Translate value in seconds to number of retransmits */ 3515 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3516 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3517 TCP_RTO_MAX / HZ)); 3518 return 0; 3519 } 3520 3521 sockopt_lock_sock(sk); 3522 3523 switch (optname) { 3524 case TCP_MAXSEG: 3525 /* Values greater than interface MTU won't take effect. However 3526 * at the point when this call is done we typically don't yet 3527 * know which interface is going to be used 3528 */ 3529 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3530 err = -EINVAL; 3531 break; 3532 } 3533 tp->rx_opt.user_mss = val; 3534 break; 3535 3536 case TCP_NODELAY: 3537 __tcp_sock_set_nodelay(sk, val); 3538 break; 3539 3540 case TCP_THIN_LINEAR_TIMEOUTS: 3541 if (val < 0 || val > 1) 3542 err = -EINVAL; 3543 else 3544 tp->thin_lto = val; 3545 break; 3546 3547 case TCP_THIN_DUPACK: 3548 if (val < 0 || val > 1) 3549 err = -EINVAL; 3550 break; 3551 3552 case TCP_REPAIR: 3553 if (!tcp_can_repair_sock(sk)) 3554 err = -EPERM; 3555 else if (val == TCP_REPAIR_ON) { 3556 tp->repair = 1; 3557 sk->sk_reuse = SK_FORCE_REUSE; 3558 tp->repair_queue = TCP_NO_QUEUE; 3559 } else if (val == TCP_REPAIR_OFF) { 3560 tp->repair = 0; 3561 sk->sk_reuse = SK_NO_REUSE; 3562 tcp_send_window_probe(sk); 3563 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3564 tp->repair = 0; 3565 sk->sk_reuse = SK_NO_REUSE; 3566 } else 3567 err = -EINVAL; 3568 3569 break; 3570 3571 case TCP_REPAIR_QUEUE: 3572 if (!tp->repair) 3573 err = -EPERM; 3574 else if ((unsigned int)val < TCP_QUEUES_NR) 3575 tp->repair_queue = val; 3576 else 3577 err = -EINVAL; 3578 break; 3579 3580 case TCP_QUEUE_SEQ: 3581 if (sk->sk_state != TCP_CLOSE) { 3582 err = -EPERM; 3583 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3584 if (!tcp_rtx_queue_empty(sk)) 3585 err = -EPERM; 3586 else 3587 WRITE_ONCE(tp->write_seq, val); 3588 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3589 if (tp->rcv_nxt != tp->copied_seq) { 3590 err = -EPERM; 3591 } else { 3592 WRITE_ONCE(tp->rcv_nxt, val); 3593 WRITE_ONCE(tp->copied_seq, val); 3594 } 3595 } else { 3596 err = -EINVAL; 3597 } 3598 break; 3599 3600 case TCP_REPAIR_OPTIONS: 3601 if (!tp->repair) 3602 err = -EINVAL; 3603 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3604 err = tcp_repair_options_est(sk, optval, optlen); 3605 else 3606 err = -EPERM; 3607 break; 3608 3609 case TCP_CORK: 3610 __tcp_sock_set_cork(sk, val); 3611 break; 3612 3613 case TCP_KEEPIDLE: 3614 err = tcp_sock_set_keepidle_locked(sk, val); 3615 break; 3616 case TCP_SAVE_SYN: 3617 /* 0: disable, 1: enable, 2: start from ether_header */ 3618 if (val < 0 || val > 2) 3619 err = -EINVAL; 3620 else 3621 tp->save_syn = val; 3622 break; 3623 3624 case TCP_WINDOW_CLAMP: 3625 err = tcp_set_window_clamp(sk, val); 3626 break; 3627 3628 case TCP_QUICKACK: 3629 __tcp_sock_set_quickack(sk, val); 3630 break; 3631 3632 #ifdef CONFIG_TCP_MD5SIG 3633 case TCP_MD5SIG: 3634 case TCP_MD5SIG_EXT: 3635 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3636 break; 3637 #endif 3638 case TCP_FASTOPEN: 3639 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3640 TCPF_LISTEN))) { 3641 tcp_fastopen_init_key_once(net); 3642 3643 fastopen_queue_tune(sk, val); 3644 } else { 3645 err = -EINVAL; 3646 } 3647 break; 3648 case TCP_FASTOPEN_CONNECT: 3649 if (val > 1 || val < 0) { 3650 err = -EINVAL; 3651 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3652 TFO_CLIENT_ENABLE) { 3653 if (sk->sk_state == TCP_CLOSE) 3654 tp->fastopen_connect = val; 3655 else 3656 err = -EINVAL; 3657 } else { 3658 err = -EOPNOTSUPP; 3659 } 3660 break; 3661 case TCP_FASTOPEN_NO_COOKIE: 3662 if (val > 1 || val < 0) 3663 err = -EINVAL; 3664 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3665 err = -EINVAL; 3666 else 3667 tp->fastopen_no_cookie = val; 3668 break; 3669 case TCP_TIMESTAMP: 3670 if (!tp->repair) 3671 err = -EPERM; 3672 else 3673 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3674 break; 3675 case TCP_REPAIR_WINDOW: 3676 err = tcp_repair_set_window(tp, optval, optlen); 3677 break; 3678 case TCP_NOTSENT_LOWAT: 3679 WRITE_ONCE(tp->notsent_lowat, val); 3680 sk->sk_write_space(sk); 3681 break; 3682 case TCP_INQ: 3683 if (val > 1 || val < 0) 3684 err = -EINVAL; 3685 else 3686 tp->recvmsg_inq = val; 3687 break; 3688 case TCP_TX_DELAY: 3689 if (val) 3690 tcp_enable_tx_delay(); 3691 WRITE_ONCE(tp->tcp_tx_delay, val); 3692 break; 3693 default: 3694 err = -ENOPROTOOPT; 3695 break; 3696 } 3697 3698 sockopt_release_sock(sk); 3699 return err; 3700 } 3701 3702 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3703 unsigned int optlen) 3704 { 3705 const struct inet_connection_sock *icsk = inet_csk(sk); 3706 3707 if (level != SOL_TCP) 3708 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3709 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3710 optval, optlen); 3711 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3712 } 3713 EXPORT_SYMBOL(tcp_setsockopt); 3714 3715 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3716 struct tcp_info *info) 3717 { 3718 u64 stats[__TCP_CHRONO_MAX], total = 0; 3719 enum tcp_chrono i; 3720 3721 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3722 stats[i] = tp->chrono_stat[i - 1]; 3723 if (i == tp->chrono_type) 3724 stats[i] += tcp_jiffies32 - tp->chrono_start; 3725 stats[i] *= USEC_PER_SEC / HZ; 3726 total += stats[i]; 3727 } 3728 3729 info->tcpi_busy_time = total; 3730 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3731 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3732 } 3733 3734 /* Return information about state of tcp endpoint in API format. */ 3735 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3736 { 3737 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3738 const struct inet_connection_sock *icsk = inet_csk(sk); 3739 unsigned long rate; 3740 u32 now; 3741 u64 rate64; 3742 bool slow; 3743 3744 memset(info, 0, sizeof(*info)); 3745 if (sk->sk_type != SOCK_STREAM) 3746 return; 3747 3748 info->tcpi_state = inet_sk_state_load(sk); 3749 3750 /* Report meaningful fields for all TCP states, including listeners */ 3751 rate = READ_ONCE(sk->sk_pacing_rate); 3752 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3753 info->tcpi_pacing_rate = rate64; 3754 3755 rate = READ_ONCE(sk->sk_max_pacing_rate); 3756 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3757 info->tcpi_max_pacing_rate = rate64; 3758 3759 info->tcpi_reordering = tp->reordering; 3760 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3761 3762 if (info->tcpi_state == TCP_LISTEN) { 3763 /* listeners aliased fields : 3764 * tcpi_unacked -> Number of children ready for accept() 3765 * tcpi_sacked -> max backlog 3766 */ 3767 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3768 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3769 return; 3770 } 3771 3772 slow = lock_sock_fast(sk); 3773 3774 info->tcpi_ca_state = icsk->icsk_ca_state; 3775 info->tcpi_retransmits = icsk->icsk_retransmits; 3776 info->tcpi_probes = icsk->icsk_probes_out; 3777 info->tcpi_backoff = icsk->icsk_backoff; 3778 3779 if (tp->rx_opt.tstamp_ok) 3780 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3781 if (tcp_is_sack(tp)) 3782 info->tcpi_options |= TCPI_OPT_SACK; 3783 if (tp->rx_opt.wscale_ok) { 3784 info->tcpi_options |= TCPI_OPT_WSCALE; 3785 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3786 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3787 } 3788 3789 if (tp->ecn_flags & TCP_ECN_OK) 3790 info->tcpi_options |= TCPI_OPT_ECN; 3791 if (tp->ecn_flags & TCP_ECN_SEEN) 3792 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3793 if (tp->syn_data_acked) 3794 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3795 3796 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3797 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato, 3798 tcp_delack_max(sk))); 3799 info->tcpi_snd_mss = tp->mss_cache; 3800 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3801 3802 info->tcpi_unacked = tp->packets_out; 3803 info->tcpi_sacked = tp->sacked_out; 3804 3805 info->tcpi_lost = tp->lost_out; 3806 info->tcpi_retrans = tp->retrans_out; 3807 3808 now = tcp_jiffies32; 3809 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3810 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3811 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3812 3813 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3814 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3815 info->tcpi_rtt = tp->srtt_us >> 3; 3816 info->tcpi_rttvar = tp->mdev_us >> 2; 3817 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3818 info->tcpi_advmss = tp->advmss; 3819 3820 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3821 info->tcpi_rcv_space = tp->rcvq_space.space; 3822 3823 info->tcpi_total_retrans = tp->total_retrans; 3824 3825 info->tcpi_bytes_acked = tp->bytes_acked; 3826 info->tcpi_bytes_received = tp->bytes_received; 3827 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3828 tcp_get_info_chrono_stats(tp, info); 3829 3830 info->tcpi_segs_out = tp->segs_out; 3831 3832 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3833 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3834 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3835 3836 info->tcpi_min_rtt = tcp_min_rtt(tp); 3837 info->tcpi_data_segs_out = tp->data_segs_out; 3838 3839 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3840 rate64 = tcp_compute_delivery_rate(tp); 3841 if (rate64) 3842 info->tcpi_delivery_rate = rate64; 3843 info->tcpi_delivered = tp->delivered; 3844 info->tcpi_delivered_ce = tp->delivered_ce; 3845 info->tcpi_bytes_sent = tp->bytes_sent; 3846 info->tcpi_bytes_retrans = tp->bytes_retrans; 3847 info->tcpi_dsack_dups = tp->dsack_dups; 3848 info->tcpi_reord_seen = tp->reord_seen; 3849 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3850 info->tcpi_snd_wnd = tp->snd_wnd; 3851 info->tcpi_rcv_wnd = tp->rcv_wnd; 3852 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3853 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3854 3855 info->tcpi_total_rto = tp->total_rto; 3856 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3857 info->tcpi_total_rto_time = tp->total_rto_time; 3858 if (tp->rto_stamp) { 3859 info->tcpi_total_rto_time += tcp_time_stamp_raw() - 3860 tp->rto_stamp; 3861 } 3862 3863 unlock_sock_fast(sk, slow); 3864 } 3865 EXPORT_SYMBOL_GPL(tcp_get_info); 3866 3867 static size_t tcp_opt_stats_get_size(void) 3868 { 3869 return 3870 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3871 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3872 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3873 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3874 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3875 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3876 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3877 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3878 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3879 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3880 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3881 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3882 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3883 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3884 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3885 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3886 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3887 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3888 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3889 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3890 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3891 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3892 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3893 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3894 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3895 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3897 0; 3898 } 3899 3900 /* Returns TTL or hop limit of an incoming packet from skb. */ 3901 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3902 { 3903 if (skb->protocol == htons(ETH_P_IP)) 3904 return ip_hdr(skb)->ttl; 3905 else if (skb->protocol == htons(ETH_P_IPV6)) 3906 return ipv6_hdr(skb)->hop_limit; 3907 else 3908 return 0; 3909 } 3910 3911 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3912 const struct sk_buff *orig_skb, 3913 const struct sk_buff *ack_skb) 3914 { 3915 const struct tcp_sock *tp = tcp_sk(sk); 3916 struct sk_buff *stats; 3917 struct tcp_info info; 3918 unsigned long rate; 3919 u64 rate64; 3920 3921 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3922 if (!stats) 3923 return NULL; 3924 3925 tcp_get_info_chrono_stats(tp, &info); 3926 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3927 info.tcpi_busy_time, TCP_NLA_PAD); 3928 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3929 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3930 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3931 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3932 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3933 tp->data_segs_out, TCP_NLA_PAD); 3934 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3935 tp->total_retrans, TCP_NLA_PAD); 3936 3937 rate = READ_ONCE(sk->sk_pacing_rate); 3938 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3939 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3940 3941 rate64 = tcp_compute_delivery_rate(tp); 3942 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3943 3944 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3945 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3946 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3947 3948 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3949 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3950 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3951 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3952 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3953 3954 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3955 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3956 3957 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3958 TCP_NLA_PAD); 3959 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3960 TCP_NLA_PAD); 3961 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3962 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3963 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3964 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3965 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3966 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3967 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3968 TCP_NLA_PAD); 3969 if (ack_skb) 3970 nla_put_u8(stats, TCP_NLA_TTL, 3971 tcp_skb_ttl_or_hop_limit(ack_skb)); 3972 3973 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3974 return stats; 3975 } 3976 3977 int do_tcp_getsockopt(struct sock *sk, int level, 3978 int optname, sockptr_t optval, sockptr_t optlen) 3979 { 3980 struct inet_connection_sock *icsk = inet_csk(sk); 3981 struct tcp_sock *tp = tcp_sk(sk); 3982 struct net *net = sock_net(sk); 3983 int val, len; 3984 3985 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3986 return -EFAULT; 3987 3988 if (len < 0) 3989 return -EINVAL; 3990 3991 len = min_t(unsigned int, len, sizeof(int)); 3992 3993 switch (optname) { 3994 case TCP_MAXSEG: 3995 val = tp->mss_cache; 3996 if (tp->rx_opt.user_mss && 3997 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3998 val = tp->rx_opt.user_mss; 3999 if (tp->repair) 4000 val = tp->rx_opt.mss_clamp; 4001 break; 4002 case TCP_NODELAY: 4003 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4004 break; 4005 case TCP_CORK: 4006 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4007 break; 4008 case TCP_KEEPIDLE: 4009 val = keepalive_time_when(tp) / HZ; 4010 break; 4011 case TCP_KEEPINTVL: 4012 val = keepalive_intvl_when(tp) / HZ; 4013 break; 4014 case TCP_KEEPCNT: 4015 val = keepalive_probes(tp); 4016 break; 4017 case TCP_SYNCNT: 4018 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4019 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4020 break; 4021 case TCP_LINGER2: 4022 val = READ_ONCE(tp->linger2); 4023 if (val >= 0) 4024 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4025 break; 4026 case TCP_DEFER_ACCEPT: 4027 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4028 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4029 TCP_RTO_MAX / HZ); 4030 break; 4031 case TCP_WINDOW_CLAMP: 4032 val = READ_ONCE(tp->window_clamp); 4033 break; 4034 case TCP_INFO: { 4035 struct tcp_info info; 4036 4037 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4038 return -EFAULT; 4039 4040 tcp_get_info(sk, &info); 4041 4042 len = min_t(unsigned int, len, sizeof(info)); 4043 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4044 return -EFAULT; 4045 if (copy_to_sockptr(optval, &info, len)) 4046 return -EFAULT; 4047 return 0; 4048 } 4049 case TCP_CC_INFO: { 4050 const struct tcp_congestion_ops *ca_ops; 4051 union tcp_cc_info info; 4052 size_t sz = 0; 4053 int attr; 4054 4055 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4056 return -EFAULT; 4057 4058 ca_ops = icsk->icsk_ca_ops; 4059 if (ca_ops && ca_ops->get_info) 4060 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4061 4062 len = min_t(unsigned int, len, sz); 4063 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4064 return -EFAULT; 4065 if (copy_to_sockptr(optval, &info, len)) 4066 return -EFAULT; 4067 return 0; 4068 } 4069 case TCP_QUICKACK: 4070 val = !inet_csk_in_pingpong_mode(sk); 4071 break; 4072 4073 case TCP_CONGESTION: 4074 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4075 return -EFAULT; 4076 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4077 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4078 return -EFAULT; 4079 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4080 return -EFAULT; 4081 return 0; 4082 4083 case TCP_ULP: 4084 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4085 return -EFAULT; 4086 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4087 if (!icsk->icsk_ulp_ops) { 4088 len = 0; 4089 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4090 return -EFAULT; 4091 return 0; 4092 } 4093 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4094 return -EFAULT; 4095 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4096 return -EFAULT; 4097 return 0; 4098 4099 case TCP_FASTOPEN_KEY: { 4100 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4101 unsigned int key_len; 4102 4103 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4104 return -EFAULT; 4105 4106 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4107 TCP_FASTOPEN_KEY_LENGTH; 4108 len = min_t(unsigned int, len, key_len); 4109 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4110 return -EFAULT; 4111 if (copy_to_sockptr(optval, key, len)) 4112 return -EFAULT; 4113 return 0; 4114 } 4115 case TCP_THIN_LINEAR_TIMEOUTS: 4116 val = tp->thin_lto; 4117 break; 4118 4119 case TCP_THIN_DUPACK: 4120 val = 0; 4121 break; 4122 4123 case TCP_REPAIR: 4124 val = tp->repair; 4125 break; 4126 4127 case TCP_REPAIR_QUEUE: 4128 if (tp->repair) 4129 val = tp->repair_queue; 4130 else 4131 return -EINVAL; 4132 break; 4133 4134 case TCP_REPAIR_WINDOW: { 4135 struct tcp_repair_window opt; 4136 4137 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4138 return -EFAULT; 4139 4140 if (len != sizeof(opt)) 4141 return -EINVAL; 4142 4143 if (!tp->repair) 4144 return -EPERM; 4145 4146 opt.snd_wl1 = tp->snd_wl1; 4147 opt.snd_wnd = tp->snd_wnd; 4148 opt.max_window = tp->max_window; 4149 opt.rcv_wnd = tp->rcv_wnd; 4150 opt.rcv_wup = tp->rcv_wup; 4151 4152 if (copy_to_sockptr(optval, &opt, len)) 4153 return -EFAULT; 4154 return 0; 4155 } 4156 case TCP_QUEUE_SEQ: 4157 if (tp->repair_queue == TCP_SEND_QUEUE) 4158 val = tp->write_seq; 4159 else if (tp->repair_queue == TCP_RECV_QUEUE) 4160 val = tp->rcv_nxt; 4161 else 4162 return -EINVAL; 4163 break; 4164 4165 case TCP_USER_TIMEOUT: 4166 val = READ_ONCE(icsk->icsk_user_timeout); 4167 break; 4168 4169 case TCP_FASTOPEN: 4170 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4171 break; 4172 4173 case TCP_FASTOPEN_CONNECT: 4174 val = tp->fastopen_connect; 4175 break; 4176 4177 case TCP_FASTOPEN_NO_COOKIE: 4178 val = tp->fastopen_no_cookie; 4179 break; 4180 4181 case TCP_TX_DELAY: 4182 val = READ_ONCE(tp->tcp_tx_delay); 4183 break; 4184 4185 case TCP_TIMESTAMP: 4186 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4187 break; 4188 case TCP_NOTSENT_LOWAT: 4189 val = READ_ONCE(tp->notsent_lowat); 4190 break; 4191 case TCP_INQ: 4192 val = tp->recvmsg_inq; 4193 break; 4194 case TCP_SAVE_SYN: 4195 val = tp->save_syn; 4196 break; 4197 case TCP_SAVED_SYN: { 4198 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4199 return -EFAULT; 4200 4201 sockopt_lock_sock(sk); 4202 if (tp->saved_syn) { 4203 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4204 len = tcp_saved_syn_len(tp->saved_syn); 4205 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4206 sockopt_release_sock(sk); 4207 return -EFAULT; 4208 } 4209 sockopt_release_sock(sk); 4210 return -EINVAL; 4211 } 4212 len = tcp_saved_syn_len(tp->saved_syn); 4213 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4214 sockopt_release_sock(sk); 4215 return -EFAULT; 4216 } 4217 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4218 sockopt_release_sock(sk); 4219 return -EFAULT; 4220 } 4221 tcp_saved_syn_free(tp); 4222 sockopt_release_sock(sk); 4223 } else { 4224 sockopt_release_sock(sk); 4225 len = 0; 4226 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4227 return -EFAULT; 4228 } 4229 return 0; 4230 } 4231 #ifdef CONFIG_MMU 4232 case TCP_ZEROCOPY_RECEIVE: { 4233 struct scm_timestamping_internal tss; 4234 struct tcp_zerocopy_receive zc = {}; 4235 int err; 4236 4237 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4238 return -EFAULT; 4239 if (len < 0 || 4240 len < offsetofend(struct tcp_zerocopy_receive, length)) 4241 return -EINVAL; 4242 if (unlikely(len > sizeof(zc))) { 4243 err = check_zeroed_sockptr(optval, sizeof(zc), 4244 len - sizeof(zc)); 4245 if (err < 1) 4246 return err == 0 ? -EINVAL : err; 4247 len = sizeof(zc); 4248 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4249 return -EFAULT; 4250 } 4251 if (copy_from_sockptr(&zc, optval, len)) 4252 return -EFAULT; 4253 if (zc.reserved) 4254 return -EINVAL; 4255 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4256 return -EINVAL; 4257 sockopt_lock_sock(sk); 4258 err = tcp_zerocopy_receive(sk, &zc, &tss); 4259 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4260 &zc, &len, err); 4261 sockopt_release_sock(sk); 4262 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4263 goto zerocopy_rcv_cmsg; 4264 switch (len) { 4265 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4266 goto zerocopy_rcv_cmsg; 4267 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4268 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4269 case offsetofend(struct tcp_zerocopy_receive, flags): 4270 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4271 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4272 case offsetofend(struct tcp_zerocopy_receive, err): 4273 goto zerocopy_rcv_sk_err; 4274 case offsetofend(struct tcp_zerocopy_receive, inq): 4275 goto zerocopy_rcv_inq; 4276 case offsetofend(struct tcp_zerocopy_receive, length): 4277 default: 4278 goto zerocopy_rcv_out; 4279 } 4280 zerocopy_rcv_cmsg: 4281 if (zc.msg_flags & TCP_CMSG_TS) 4282 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4283 else 4284 zc.msg_flags = 0; 4285 zerocopy_rcv_sk_err: 4286 if (!err) 4287 zc.err = sock_error(sk); 4288 zerocopy_rcv_inq: 4289 zc.inq = tcp_inq_hint(sk); 4290 zerocopy_rcv_out: 4291 if (!err && copy_to_sockptr(optval, &zc, len)) 4292 err = -EFAULT; 4293 return err; 4294 } 4295 #endif 4296 default: 4297 return -ENOPROTOOPT; 4298 } 4299 4300 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4301 return -EFAULT; 4302 if (copy_to_sockptr(optval, &val, len)) 4303 return -EFAULT; 4304 return 0; 4305 } 4306 4307 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4308 { 4309 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4310 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4311 */ 4312 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4313 return true; 4314 4315 return false; 4316 } 4317 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4318 4319 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4320 int __user *optlen) 4321 { 4322 struct inet_connection_sock *icsk = inet_csk(sk); 4323 4324 if (level != SOL_TCP) 4325 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4326 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4327 optval, optlen); 4328 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4329 USER_SOCKPTR(optlen)); 4330 } 4331 EXPORT_SYMBOL(tcp_getsockopt); 4332 4333 #ifdef CONFIG_TCP_MD5SIG 4334 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4335 static DEFINE_MUTEX(tcp_md5sig_mutex); 4336 static bool tcp_md5sig_pool_populated = false; 4337 4338 static void __tcp_alloc_md5sig_pool(void) 4339 { 4340 struct crypto_ahash *hash; 4341 int cpu; 4342 4343 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4344 if (IS_ERR(hash)) 4345 return; 4346 4347 for_each_possible_cpu(cpu) { 4348 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4349 struct ahash_request *req; 4350 4351 if (!scratch) { 4352 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4353 sizeof(struct tcphdr), 4354 GFP_KERNEL, 4355 cpu_to_node(cpu)); 4356 if (!scratch) 4357 return; 4358 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4359 } 4360 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4361 continue; 4362 4363 req = ahash_request_alloc(hash, GFP_KERNEL); 4364 if (!req) 4365 return; 4366 4367 ahash_request_set_callback(req, 0, NULL, NULL); 4368 4369 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4370 } 4371 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4372 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4373 */ 4374 smp_wmb(); 4375 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4376 * and tcp_get_md5sig_pool(). 4377 */ 4378 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4379 } 4380 4381 bool tcp_alloc_md5sig_pool(void) 4382 { 4383 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4384 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4385 mutex_lock(&tcp_md5sig_mutex); 4386 4387 if (!tcp_md5sig_pool_populated) 4388 __tcp_alloc_md5sig_pool(); 4389 4390 mutex_unlock(&tcp_md5sig_mutex); 4391 } 4392 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4393 return READ_ONCE(tcp_md5sig_pool_populated); 4394 } 4395 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4396 4397 4398 /** 4399 * tcp_get_md5sig_pool - get md5sig_pool for this user 4400 * 4401 * We use percpu structure, so if we succeed, we exit with preemption 4402 * and BH disabled, to make sure another thread or softirq handling 4403 * wont try to get same context. 4404 */ 4405 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4406 { 4407 local_bh_disable(); 4408 4409 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4410 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4411 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4412 smp_rmb(); 4413 return this_cpu_ptr(&tcp_md5sig_pool); 4414 } 4415 local_bh_enable(); 4416 return NULL; 4417 } 4418 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4419 4420 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4421 const struct sk_buff *skb, unsigned int header_len) 4422 { 4423 struct scatterlist sg; 4424 const struct tcphdr *tp = tcp_hdr(skb); 4425 struct ahash_request *req = hp->md5_req; 4426 unsigned int i; 4427 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4428 skb_headlen(skb) - header_len : 0; 4429 const struct skb_shared_info *shi = skb_shinfo(skb); 4430 struct sk_buff *frag_iter; 4431 4432 sg_init_table(&sg, 1); 4433 4434 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4435 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4436 if (crypto_ahash_update(req)) 4437 return 1; 4438 4439 for (i = 0; i < shi->nr_frags; ++i) { 4440 const skb_frag_t *f = &shi->frags[i]; 4441 unsigned int offset = skb_frag_off(f); 4442 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4443 4444 sg_set_page(&sg, page, skb_frag_size(f), 4445 offset_in_page(offset)); 4446 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4447 if (crypto_ahash_update(req)) 4448 return 1; 4449 } 4450 4451 skb_walk_frags(skb, frag_iter) 4452 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4453 return 1; 4454 4455 return 0; 4456 } 4457 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4458 4459 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4460 { 4461 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4462 struct scatterlist sg; 4463 4464 sg_init_one(&sg, key->key, keylen); 4465 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4466 4467 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4468 return data_race(crypto_ahash_update(hp->md5_req)); 4469 } 4470 EXPORT_SYMBOL(tcp_md5_hash_key); 4471 4472 /* Called with rcu_read_lock() */ 4473 enum skb_drop_reason 4474 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4475 const void *saddr, const void *daddr, 4476 int family, int dif, int sdif) 4477 { 4478 /* 4479 * This gets called for each TCP segment that arrives 4480 * so we want to be efficient. 4481 * We have 3 drop cases: 4482 * o No MD5 hash and one expected. 4483 * o MD5 hash and we're not expecting one. 4484 * o MD5 hash and its wrong. 4485 */ 4486 const __u8 *hash_location = NULL; 4487 struct tcp_md5sig_key *hash_expected; 4488 const struct tcphdr *th = tcp_hdr(skb); 4489 const struct tcp_sock *tp = tcp_sk(sk); 4490 int genhash, l3index; 4491 u8 newhash[16]; 4492 4493 /* sdif set, means packet ingressed via a device 4494 * in an L3 domain and dif is set to the l3mdev 4495 */ 4496 l3index = sdif ? dif : 0; 4497 4498 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4499 hash_location = tcp_parse_md5sig_option(th); 4500 4501 /* We've parsed the options - do we have a hash? */ 4502 if (!hash_expected && !hash_location) 4503 return SKB_NOT_DROPPED_YET; 4504 4505 if (hash_expected && !hash_location) { 4506 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4507 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4508 } 4509 4510 if (!hash_expected && hash_location) { 4511 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4512 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4513 } 4514 4515 /* Check the signature. 4516 * To support dual stack listeners, we need to handle 4517 * IPv4-mapped case. 4518 */ 4519 if (family == AF_INET) 4520 genhash = tcp_v4_md5_hash_skb(newhash, 4521 hash_expected, 4522 NULL, skb); 4523 else 4524 genhash = tp->af_specific->calc_md5_hash(newhash, 4525 hash_expected, 4526 NULL, skb); 4527 4528 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4530 if (family == AF_INET) { 4531 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4532 saddr, ntohs(th->source), 4533 daddr, ntohs(th->dest), 4534 genhash ? " tcp_v4_calc_md5_hash failed" 4535 : "", l3index); 4536 } else { 4537 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4538 genhash ? "failed" : "mismatch", 4539 saddr, ntohs(th->source), 4540 daddr, ntohs(th->dest), l3index); 4541 } 4542 return SKB_DROP_REASON_TCP_MD5FAILURE; 4543 } 4544 return SKB_NOT_DROPPED_YET; 4545 } 4546 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4547 4548 #endif 4549 4550 void tcp_done(struct sock *sk) 4551 { 4552 struct request_sock *req; 4553 4554 /* We might be called with a new socket, after 4555 * inet_csk_prepare_forced_close() has been called 4556 * so we can not use lockdep_sock_is_held(sk) 4557 */ 4558 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4559 4560 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4561 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4562 4563 tcp_set_state(sk, TCP_CLOSE); 4564 tcp_clear_xmit_timers(sk); 4565 if (req) 4566 reqsk_fastopen_remove(sk, req, false); 4567 4568 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4569 4570 if (!sock_flag(sk, SOCK_DEAD)) 4571 sk->sk_state_change(sk); 4572 else 4573 inet_csk_destroy_sock(sk); 4574 } 4575 EXPORT_SYMBOL_GPL(tcp_done); 4576 4577 int tcp_abort(struct sock *sk, int err) 4578 { 4579 int state = inet_sk_state_load(sk); 4580 4581 if (state == TCP_NEW_SYN_RECV) { 4582 struct request_sock *req = inet_reqsk(sk); 4583 4584 local_bh_disable(); 4585 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4586 local_bh_enable(); 4587 return 0; 4588 } 4589 if (state == TCP_TIME_WAIT) { 4590 struct inet_timewait_sock *tw = inet_twsk(sk); 4591 4592 refcount_inc(&tw->tw_refcnt); 4593 local_bh_disable(); 4594 inet_twsk_deschedule_put(tw); 4595 local_bh_enable(); 4596 return 0; 4597 } 4598 4599 /* BPF context ensures sock locking. */ 4600 if (!has_current_bpf_ctx()) 4601 /* Don't race with userspace socket closes such as tcp_close. */ 4602 lock_sock(sk); 4603 4604 if (sk->sk_state == TCP_LISTEN) { 4605 tcp_set_state(sk, TCP_CLOSE); 4606 inet_csk_listen_stop(sk); 4607 } 4608 4609 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4610 local_bh_disable(); 4611 bh_lock_sock(sk); 4612 4613 if (!sock_flag(sk, SOCK_DEAD)) { 4614 WRITE_ONCE(sk->sk_err, err); 4615 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4616 smp_wmb(); 4617 sk_error_report(sk); 4618 if (tcp_need_reset(sk->sk_state)) 4619 tcp_send_active_reset(sk, GFP_ATOMIC); 4620 tcp_done(sk); 4621 } 4622 4623 bh_unlock_sock(sk); 4624 local_bh_enable(); 4625 tcp_write_queue_purge(sk); 4626 if (!has_current_bpf_ctx()) 4627 release_sock(sk); 4628 return 0; 4629 } 4630 EXPORT_SYMBOL_GPL(tcp_abort); 4631 4632 extern struct tcp_congestion_ops tcp_reno; 4633 4634 static __initdata unsigned long thash_entries; 4635 static int __init set_thash_entries(char *str) 4636 { 4637 ssize_t ret; 4638 4639 if (!str) 4640 return 0; 4641 4642 ret = kstrtoul(str, 0, &thash_entries); 4643 if (ret) 4644 return 0; 4645 4646 return 1; 4647 } 4648 __setup("thash_entries=", set_thash_entries); 4649 4650 static void __init tcp_init_mem(void) 4651 { 4652 unsigned long limit = nr_free_buffer_pages() / 16; 4653 4654 limit = max(limit, 128UL); 4655 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4656 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4657 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4658 } 4659 4660 void __init tcp_init(void) 4661 { 4662 int max_rshare, max_wshare, cnt; 4663 unsigned long limit; 4664 unsigned int i; 4665 4666 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4667 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4668 sizeof_field(struct sk_buff, cb)); 4669 4670 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4671 4672 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4673 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4674 4675 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4676 thash_entries, 21, /* one slot per 2 MB*/ 4677 0, 64 * 1024); 4678 tcp_hashinfo.bind_bucket_cachep = 4679 kmem_cache_create("tcp_bind_bucket", 4680 sizeof(struct inet_bind_bucket), 0, 4681 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4682 SLAB_ACCOUNT, 4683 NULL); 4684 tcp_hashinfo.bind2_bucket_cachep = 4685 kmem_cache_create("tcp_bind2_bucket", 4686 sizeof(struct inet_bind2_bucket), 0, 4687 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4688 SLAB_ACCOUNT, 4689 NULL); 4690 4691 /* Size and allocate the main established and bind bucket 4692 * hash tables. 4693 * 4694 * The methodology is similar to that of the buffer cache. 4695 */ 4696 tcp_hashinfo.ehash = 4697 alloc_large_system_hash("TCP established", 4698 sizeof(struct inet_ehash_bucket), 4699 thash_entries, 4700 17, /* one slot per 128 KB of memory */ 4701 0, 4702 NULL, 4703 &tcp_hashinfo.ehash_mask, 4704 0, 4705 thash_entries ? 0 : 512 * 1024); 4706 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4707 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4708 4709 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4710 panic("TCP: failed to alloc ehash_locks"); 4711 tcp_hashinfo.bhash = 4712 alloc_large_system_hash("TCP bind", 4713 2 * sizeof(struct inet_bind_hashbucket), 4714 tcp_hashinfo.ehash_mask + 1, 4715 17, /* one slot per 128 KB of memory */ 4716 0, 4717 &tcp_hashinfo.bhash_size, 4718 NULL, 4719 0, 4720 64 * 1024); 4721 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4722 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4723 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4724 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4725 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4726 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4727 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4728 } 4729 4730 tcp_hashinfo.pernet = false; 4731 4732 cnt = tcp_hashinfo.ehash_mask + 1; 4733 sysctl_tcp_max_orphans = cnt / 2; 4734 4735 tcp_init_mem(); 4736 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4737 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4738 max_wshare = min(4UL*1024*1024, limit); 4739 max_rshare = min(6UL*1024*1024, limit); 4740 4741 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4742 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4743 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4744 4745 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4746 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4747 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4748 4749 pr_info("Hash tables configured (established %u bind %u)\n", 4750 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4751 4752 tcp_v4_init(); 4753 tcp_metrics_init(); 4754 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4755 tcp_tasklet_init(); 4756 mptcp_init(); 4757 } 4758